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Abstract

This thesis explores data-driven approaches, particularly reinforcement learning (RL), for en-

hancing the autonomous navigation capabilities of mobile robots in complex and dynamic en-

vironments. While RL-based motion planners have shown promise in various scenarios, they

encounter two major challenges: the reality gap and human-centered design. The reality gap,

a discrepancy between data collected from offline sources or simulations and the real-world

environment, poses a major challenge for transferring learned behaviors to real-world deploy-

ment. Additionally, ensuring human-centered design is crucial for tailoring robot behavior to

individual preferences and adhering to social norms, which are essential for successful integra-

tion into human environments. This thesis focuses on addressing both challenges to improve

the practicality and broader adoption of RL-based local motion planners.

In the first part of the thesis, we address the dynamics mismatch inherent in both online and

offline RL. In the online RL setting, dynamics mismatch arises when the agent learns through

interaction with a simulated environment that does not fully represent real-world dynamics. To

address this, we introduce the Dual Action Policy (DAP), a novel method that uses a single pol-

icy to predict two sets of actions: one for maximizing task rewards in simulation and another

for adapting to real-world dynamics through reward adjustments. This decoupling approach

simplifies the optimization landscape, leading to more effective and robust policy convergence.

Our experiments demonstrate that DAP significantly improves baseline performance using only

a small amount of data from the target environment. In the offline RL setting, we tackle the

dynamics mismatch that occurs when learning from large-scale datasets that do not perfectly

match the target environment’s dynamics. Our approach utilizes conditional diffusion models

to learn a joint distribution between a readily available off-dynamics source dataset and a lim-

ited target dataset. We also incorporate a continuous dynamics score and an inverse-dynamics

context to better capture the underlying dynamics structure and generate trajectories that align
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with the target environment’s dynamics. This approach enhances adaptation and robustness to

subtle dynamic shifts in the target domain.

The second part of this work focuses on human-centered solutions for RL-based planners.

First, to tackle the challenge of personalizing robot behaviors, we introduce a resource-efficient

approach that enables rapid adaptation to individual user preferences. Our method leverages

a pretrained conditional diffusion model with preference latent embeddings (PLE), trained on

a large, reward-free offline dataset. The PLE serves as a compact representation for capturing

specific user preferences. By adapting the pretrained model using our proposed preference

inversion method, which directly optimizes the learnable PLE, we achieve superior alignment

with human preferences compared to existing solutions. Finally, we address the challenge of

navigating crowded environments with unpredictable pedestrians. To tackle this problem, we

introduce an efficient method that enhances agent diversity within a single policy by maxi-

mizing an information-theoretic objective. This diversity enriches each agent’s experiences,

leading to improved adaptability to unseen crowd behaviors. Our behavior-conditioned poli-

cies outperform existing methods in various scenarios inspired by pedestrian crowd behaviors,

effectively reducing potential collisions without increasing travel time or distance..

In summary, this thesis presents novel solutions to tackle the reality gap and incorporates

human-centered design principles, advancing the applicability and acceptance of RL-based

local motion planners. The research presented here marks a substantial step forward in bridging

the gap between theoretical RL models and their real-world applications, extending beyond

motion planning and robotics to impact a broader range of intelligent systems and autonomous

technologies.

vi



Acknowledgments

This PhD journey would not have been possible without the support, guidance, and encourage-

ment of many individuals who have been integral in shaping both my research and my personal

growth. I would like to take this opportunity to acknowledge their contributions and express

my heartfelt appreciation.

I would like to express my deepest gratitude to my supervisor, Prof. Zhang Tianwei, for

his unwavering guidance and support throughout my PhD journey. His profound expertise,

insightful advice, and constant encouragement have been instrumental in shaping my research.

I am grateful for his patience, trust, and motivation, which pushed me to reach my full potential.

His role as both a mentor and a role model has inspired me in many aspects of life, and I am

truly grateful for the opportunity to learn from him.

I would like to express my sincere gratitude to Prof. Sinno Pan for his invaluable guid-

ance during my initial two years of PhD studies. His extensive knowledge and mentorship

allowed me to develop a broad technical foundation and fostered my growth as an independent

researcher. I am deeply grateful to my main collaborator and senior, Dr. Chen Jianda, for

the countless hours of insightful discussions on various aspects of reinforcement learning. His

willingness to share his experiences and knowledge helped me navigate through challenges

and setbacks. I extend my thanks to the following individuals who contributed to my research

through engaging technical discussions: Shi Haosen, Chen Guan Lin, and Dr. Michael Hoy.

I would thank the Economic Development Board of Singapore for their generous scholarship

and funding, which made this research possible.

I am grateful to my colleagues at Continental Automotive: Vinay Adiga and Dr. David

Woon, who encouraged me to embark on this PhD journey; Eric Juliani, for his continuous

support during the challenging years; Andreas Hartmannsgruber and Vincent Wong, for

providing me with the space and support to focus on my research; Dr. Shen Ren for being

vii



an awesome teammate and always having my back; my entire AI team for their encourage-

ments throughout these years; the support staff from the Conti-NTU Corp Lab: Dr. Lee Meng

Yeong and Ethel Sng with legal matters. I would like to thank my friends who supported

and encouraged me along the way: Dr. Ma Yu Kun, Dimitris Geromichalos, Matteo Pelati,

Erin Chang, Yeoh Oon Jie, and Kim Seol Hee. I am grateful to my former colleagues, Dr.

Tran Huy Dat and Dr. Jonathan Dennis, who ignited my passion for machine learning. I

extend my heartfelt gratitude to my family members for their constant support: my parents

and parents-in-law, my siblings and my uncle Raymond Ang.

To the most important people in my life: my wife, Chen Yi Jie, thank you for your immense

sacrifices, understanding, encouragement, and trust. I could not have achieved this without you.

Thank you for taking this path and walking this journey with me. I love you. To my children,

Charlotte Ng and Owen Ng, thank you for teaching me to appreciate the simplest things in life.

You are growing up in the most exciting times of AI and Robotics; and will witness incredible

advancements. I cannot wait to see how these technologies shape your world. I promise to

make up for all the lost time and share in your journey of discovery. Finally, to myself: This

has been by far the toughest challenge, juggling work, PhD, and raising two young children.

Although difficult, this journey has been incredibly fruitful and satisfying. As this chapter of

my academic journey comes to a close, I am reminded that the pursuit of knowledge is endless,

beautifully captured in Isaac Newton’s words:

“I do not know what I may appear to the world, but to myself, I seem to have been

only like a boy playing on the seashore, diverting myself now and then in finding

a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth

lay all undiscovered before me.”

viii



To my dear family.

ix



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Bridging the Reality Gap for RL-based Planners . . . . . . . . . . . . 5

1.2.2 Handling Human Pedestrians Behavior . . . . . . . . . . . . . . . . . 7

1.2.3 Personalization for RL-based Planners . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminary 13

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Value-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Policy-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 16

x



2.3 Offline RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Policy Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Conservation Value Functions . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 RL For Local Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.5 Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Diffusion Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Conditional DPMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.3 Diffusion-based Planners . . . . . . . . . . . . . . . . . . . . . . . . . 32

I Closing the Reality Gap: Online & Offline Strategies 35

3 Mitigating Dynamics Mismatch in Sim-to-Real Reinforcement Learning 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Dynamics Mismatch in Sim-to-Real RL . . . . . . . . . . . . . . . . . 38

3.2.2 Uncertainty in Deep Reinforcement Learning . . . . . . . . . . . . . . 40

3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Problem Formulation: Off-Dynamics RL . . . . . . . . . . . . . . . . 41

3.3.2 Domain Adaptation with Rewards from Classifier (DARC) . . . . . . . 41

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Dual Action Policy (DAP) . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Uncertainty-based Robust Action Resampling . . . . . . . . . . . . . . 45

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



3.5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Mitigating Dynamics Mismatch in Offline Reinforcement Learning 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Related Work and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Problem Formulation: Off-Dynamics Offline RL . . . . . . . . . . . . 56

4.2.2 Dynamics Modelling for Dynamics Mismatch . . . . . . . . . . . . . . 56

4.2.3 Off-dynamics Offline RL . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Dynamics Score Context . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Inverse-dynamics Context . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Practical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.3 Contexts Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

II From Personalization to Crowd Navigation: A Human-Centered
Approach 69

5 Personalization of Decision-making Systems 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Direct Preference Optimization . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 DPO for Diffusion Planners . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xii



5.4.1 Pretraining with Masked Trajectories . . . . . . . . . . . . . . . . . . 77

5.4.2 Adaptation via preference inversion . . . . . . . . . . . . . . . . . . . 78

5.4.3 Generating Preferred Trajectories . . . . . . . . . . . . . . . . . . . . 80

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Latent Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.2 Preliminary Results: Finetuning with DPO and IPO . . . . . . . . . . . 83

5.5.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.4 Comparisons with Preference Transformers . . . . . . . . . . . . . . . 84

5.5.5 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.6 Real Human Preference on Quality Diversity Dataset . . . . . . . . . . 85

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Generalization of Human Pedestrians Behaviors 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Pedestrian Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.2 Behavior Diversity in RL . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Agent Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.2 Behavior-Conditioned Policy . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.3 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.2 Training Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.3 Impact of the Number of Behaviors . . . . . . . . . . . . . . . . . . . 108

6.4.4 Scalability with number of agents . . . . . . . . . . . . . . . . . . . . 109

6.4.5 Ablation Experiments: Intrinsic Rewards . . . . . . . . . . . . . . . . 109

6.4.6 Comparisons with Prior Work . . . . . . . . . . . . . . . . . . . . . . 110

6.4.7 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.8 Realistic Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiii



7 Conclusion 114

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

References 119

xiv



List of Figures

1.1 An overview of the research and chapter structure of this thesis. . . . . . . . . 12

2.1 A point robot in the global coordinate (𝑋,𝑌 ) frame. 𝑉 and 𝜔 are the veloc-

ity and the angular velocity with respect to the robot’s frame. 𝜑 is the angle

between the two frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Comparisons of Simulator and Input Type . . . . . . . . . . . . . . . . . . 28

3.1 Training in Source Env. 𝜋DAP predicts additional action set 𝑎tgt, optimized

for the target environment while 𝑎src is utilized for sampling the source envi-

ronment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Deployment in Target Env. Only 𝑎tgt is utilized while 𝑎src is discarded. . . . 45

3.3 Main results evaluated in target environment. We compare our proposed

methods, DAP and DAP+U, against several baseline approaches. . . . . . . . . 49

3.4 Ablation: Regularization Effects on parameter 𝜆. . . . . . . . . . . . . . . 50

3.5 Ablation: Effect of scaling parameter for uncertainty-based action resam-

pling, 𝑘 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Ablation: Effect of size of offline dataset, 𝑀 , collected in target environ-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Overview of our proposed framework for off-dynamics offline RL. (Left)

We utilize an accessible off-dynamics source dataset to enhance a limited tar-

get dataset for Offline RL. Our goal is to generate optimal trajectories within

the green region. (Right) By conditioning a diffusion planner with our pro-

posed continuous dynamics score, we enable the model to capture the underly-

ing dynamics structure within the latent space through overlapping dynamics

information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv



4.2 Ablation: models trained with different contexts following Algorithm 2.

We report the mean normalized score across different settings per environment.

(‘R’, blue) represents the base model conditioned on only the return. (‘R+DS’,

orange) adds on the dynamics score as contexts. (‘R+DS+ID’, green) further

adds on the inverse-dynamics context. (‘R+DS+IA’, red) applies inverse action

on ‘R+DS’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Plot of the generalisation capabilities for Halfcheetah. Models are trained

on Dsource (𝑚 = 14), Dtarget (𝑚 = 7). Models are evaluated at interpolated

masses 8 ≤ 𝑚 ≤ 13 and extrapolated masses 3 ≤ 𝑚 ≤ 6. Mean returns are

shown due to varying normalizing score factors across different masses. . . . . 67

5.1 Overview of personalizing decision-making models. . . . . . . . . . . . . . 71

5.2 Overview of the proposed method. (Left) Pretraining: A placeholder for

preference latent embedding (PLE), 𝑧, is co-trained with the diffusion model,

without reward supervision. (Middle) Adaptation: With diffusion model weights

frozen, PLEs are aligned to user labelled query pairs via preference inversion.

(Right) Generation: Conditional sampling with optimal PLEs generate trajec-

tories that match the users’ preference. . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Latent space analysis: We visualize t-SNE plots of PLEs post-pretraining.

Each point represents a trajectory in PLE space, with color intensity indicating

its normalized return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Comparisons between different losses for finetuning baseline. . . . . . . . . 89

5.5 Main results evaluated over different numbers of queries across six control

tasks. We report the normalized score as defined in [1] . . . . . . . . . . . . . 90

5.6 Comparison with Preference Transformers . . . . . . . . . . . . . . . . . . 91

5.7 Ablation: Adaptation stability across 𝑁adapt. . . . . . . . . . . . . . . . . . 92

5.8 Ablation: The impact of utilizing loser PLE, 𝑧∗
𝑙

for sampling . . . . . . . . 92

5.9 Ablation: Choice of different priors for initialization and PLE dimension . 93

5.10 Trajectories generated using our proposed method, an aligned model con-

ditioned on user’s respective PLE. The samples closely match each user’s

description of their preference. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xvi



5.11 Preference Learning Survey Results. Users select their preferred trajectories

from samples generated by both baseline and our proposed method. . . . . . . 94

6.1 Overview of diversity framework. A human may take diverse strategies to

reach the same predefined goal (left). We propose a behavior-conditioned pol-

icy to integrate such diversity into the robot agent (right). This diversity en-

riches the agent with a more varied range of experiences when learning in a

multi-agent framework, and improves its ability to generalize in unseen crowd

behaviors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Our framework for behavior-conditioned policy. An intrinsic reward is

computed based on discriminators 𝑞𝜓 and 𝑞𝜙, which encourages the diversity

by indirectly maximizing the lower variation bound G(𝜃) . . . . . . . . . . . . 102

6.3 The discriminator loss and reward curves. . . . . . . . . . . . . . . . . . . 106

6.4 Testing our method in Gazebo with more realistic scenarios. Map settings:

(Left) Warehouse (Right) Hospital . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Trajectories of diverse behaviors sampled from our behavior-conditioned

policy. Agents exhibit unique ways to reach the goal depending on sampled

behaviors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xvii



List of Tables

4.1 Nine different experimental settings across three distinct environments.

Each with three variations in their physical properties. The columns ‘Source’

and ‘Target’ represent the dynamics settings of Dsource and Dtarget, respectively. 63

4.2 Mean normalized scores evaluated on the target environment over 900

episodes across 9 diverse settings. Our proposed method is a conditional dif-

fusion planner with contexts according to Equation 4.5, trained with Algorithm

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Settings for Diffuser and Decision-Diffuser . . . . . . . . . . . . . . . . . . 82

5.2 Reward model settings (Guided Sampling) . . . . . . . . . . . . . . . . . . 82

6.1 Hyper-parameters in our implementation. . . . . . . . . . . . . . . . . . . 105

6.2 Impact of the number of behaviors 𝑀 . Policies are evaluated under six di-

verse unseen pedestrian setups. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Impact of the number of agents 𝑁 . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Policies trained using different intrinsic rewards. 𝜁 is a measure of action

diversity between agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Comparisons with baseline methods using different metrics averaged across

1000 episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Experimental results of Gazebo deployment. Success rate out of 100 episodes113

xviii



List of Abbreviations

A2C Advantage Actor-Critic
CQL Conservative Q-Learning
CTDE Centralized Training with Decentralized Execution
DAP Dual Action Policy (Proposed)
DARC Domain Adaptation with Rewards from Classifier
DARA Dynamics-Aware Reward Augmentation
DDGP Deep Deterministic Policy Gradient
DIAYN Diversity is All You Need
DNN Deep Neural Networks
DPO Direct Policy Optimization
DPM Diffusion Probabilistic Models
DQN Deep Q-Networks
DR Domain Randomization
DT Decision Transformer
DWA Dynamic Window Approach
FID Frechet Inception Distance
GAIL Generative Adversarial Imitation Learning
GAN Generative Adversarial Network
GARAT Generative Adversarial Reinforced Action Transformation
GAT Grounded Action Transforms
IN Invisible (Proposed)
IPO Identity Preference Optimization
KL Kullback-Leibler
LiDAR Light, Detection and Ranging
LSTM Long Short-Term Memory
MC Monte-Carlo
MDP Markov Decision Process
MSE Mean Squared Error
NH Non-Homogeneous (Proposed)
NLP Natural Language Processing
OOD Out-of-distribution
ORCA Optimal Reciprocal Collision Avoidance

xix



PPO Proximal Policy Optimization
PLE Preference Latent Embedding (Proposed)
PT Preference Transformers
QD Quality Diversity
RGB Red, Green, Blue
RGAT Reinforced Grounded Action Transforms
RL Reinforcement Learning
RLHF Reinforcement Learning from Human Feedback
SAC Soft Actor-Critic
SF Social Force (Proposed)
SO Sub-optimal (Proposed)
TD Temporal Difference
TEB Timed Elastic Band
TT Trajectory Transformer
VA Variability (Proposed)
VO Velocity Obstacle (Proposed)

xx



List of Notations

M Markov Decision Process
S State space
A Action space
R Reward function
𝑃 Transition distribution
𝛾 Discount factor
𝜋 Policy
𝑠 State
𝑎 Action
𝑟 Reward signal
𝑉 State value function
𝑄 State-action value function
D Dataset (General)
H Entropy
𝜏 Trajectory
𝐻 Horizon length
DKL Kullback–Leibler divergence
𝑞(𝑥) Forward diffusion process
𝑝𝜃 (𝑥) Reverse diffusion process
𝐾 Number of diffusion steps
𝜖 Diffusion noise
𝛼0:𝐾 Diffusion noise schedule
Dsource Dataset from source MDP
Dtarget Dataset from target MDP
𝜅 Scaling coefficient for Dynamics score context
𝑥𝑤 Winning sample from preference pair
𝑥𝑙 Losing sample from preference pair
𝛽 KL penalty coefficient
𝑧 Preference latent embedding
𝑧𝑤 Winner’s Preference latent embedding
𝑧𝑙 Loser’s Preference latent embedding
ℎ Behavior tokens

xxi



𝑀 Number of behavior tokens
𝜁 Mean KL div between pairwise action distribution

xxii



List of Publications

International Conferences

1. Wen Zheng Terence Ng, Jianda Chen, Sinno Jialin Pan, Tianwei Zhang, “Improving the

Generalization of Unseen Crowd Behaviors for Reinforcement Learning based Local

Motion Planners”. In “IEEE International Conference on Robotics and Automation

(ICRA)”, Yokohama, Japan, 2024.

2. Wen Zheng Terence Ng, Jianda Chen, “Dual Action Policy for Robust Sim-to-Real Re-

inforcement Learning”. In “33rd International Conference on Artificial Neural Networks

(ICANN)”, Lugano, Switzerland, 2024.

3. Wen Zheng Terence Ng, Jianda Chen, Tianwei Zhang, “Off-dynamics Conditional Dif-

fusion Planners”. In “IEEE International Conference on Intelligent Robots and Systems

(IROS)”, Abu Dhabi, UAE, 2024.

4. Wen Zheng Terence Ng, Jianda Chen, Tianwei Zhang, “Latent Embedding Adaptation

for Human Preference Alignment in Diffusion Planners”. In “IEEE International Con-

ference on Robotics and Automation (ICRA)”, Atlanta, USA 2025.

International Workshops

1. Wen Zheng Terence Ng, Jianda Chen, Kangjie Chen, Zichen Chen, Tianwei Zhang, “Per-

sonalizing Diffusion Planners with Efficient Preference Optimization”. In “International

Conference on Learning Representations Workshop (ICLR Workshop)”, Vienna, Aus-

tria, 2024.

xxiii



Chapter 1

Introduction

1.1 Background

Motion planning, the process of determining a sequence of valid geometric configurations

that guide an object from its initial state to a desired goal state, is a fundamental problem in

robotics [2]. This field has attracted significant research interest over the years, leading to

the development of numerous approaches for solving this complex problem. In the specific

context of wheeled mobile robots, motion planning translates to finding a collision-free path

that allows the robot to move from its starting position to a designated goal position. While

humans effortlessly navigate through their surroundings, achieving robust and reliable motion

planning for autonomous mobile robots remains a considerable challenge.

Motion planning algorithms can be broadly classified into two categories: global and local

motion planning [3, 4]. Both types of planning share the same objective of finding a path

from one point to another, but their approaches differ significantly. Global motion planning

operates under the assumption of a known and static environment, often relying on a map or

a priori information to generate a complete path from start to finish. Local motion planning,

on the other hand, does not assume any prior knowledge of the environment. Instead, it relies

on real-time sensor data, such as LiDAR or RGB camera input, to perceive the immediate

surroundings and dynamically adjust the robot’s path to avoid obstacles and respond to changes

in the environment. Our research primarily focuses on this local motion planning aspect.

The ability of mobile robots to maneuver and navigate in complex and dynamic environ-

ments, particularly through effective local motion planning, is essential for their successful

integration into various real-world applications [5]. In industrial automation, robots can work
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alongside humans in factories and warehouses, optimizing workflows and increasing produc-

tivity. In service delivery, these robots can autonomously navigate through crowded urban

spaces to deliver packages, groceries, or food, improving convenience and efficiency. In agri-

culture, robots can traverse fields, orchards, and vineyards to perform tasks such as harvesting,

spraying, and monitoring crops, reducing manual labor and increasing yields. Additionally,

local motion planning is crucial for robots operating in public spaces, such as shopping malls,

airports, or hospitals, where they need to interact with people safely and efficiently. By con-

tinuously sensing and adapting to their surroundings, local motion planners ensure that robots

can avoid collisions, navigate around obstacles, and safely reach their destinations, even in the

face of unexpected events or changes in the environment.

Classical local motion planning algorithms offer a foundation for addressing the challenges

of navigating complex and dynamic environments. These algorithms, often based on geomet-

ric principles and heuristics, provide a structured way to compute collision-free trajectories for

mobile robots. Common examples include the Dynamic Window Approach (DWA) [6], which

optimizes the robot’s velocity profile to avoid obstacles while maximizing progress towards the

goal, and the Timed Elastic Band (TEB) algorithm [7], which deforms an initial trajectory to

accommodate dynamic obstacles while maintaining smoothness. However, classical methods

have several limitations [8, 9]. They can become computationally expensive and less efficient

when higher accuracy is required through increased complexity. They may also struggle in

noisy environments due to sensor inaccuracies, as they heavily rely on the perception mod-

ule. Compounded errors in the perception module can negatively impact the performance of

classical methods compared to end-to-end systems, which directly utilize raw sensor values

for decision-making. Additionally, their reliance on pre-defined rules and heuristics makes

them less adaptable to unexpected situations and novel obstacles. It is particularly difficult to

incorporate social aspects of navigation, such as understanding and predicting pedestrian be-

havior, into these methods compared to data-driven approaches that can learn these nuances

from real-world data.

Model Predictive Control (MPC) offers a sophisticated approach by optimizing control in-

puts through finite-horizon optimization at each timestep, considering system dynamics, con-

straints, and future predictions [10]. While MPC effectively models robot dynamics and han-

dles various constraints, it faces significant challenges in dynamic environments with human
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pedestrians [11–13]. Modeling pedestrian behavior is particularly difficult due to its unpre-

dictability, variability, and complex social interactions. Furthermore, MPC’s performance is

highly sensitive to the planning horizon length, and achieving optimal performance often re-

quires substantial computational resources at runtime. This computational burden increases

with environmental complexity, such as in crowded spaces with multiple pedestrians. Addi-

tionally, the effectiveness of MPC depends heavily on the accuracy of its predictive models,

which becomes challenging when accounting for the inherent uncertainty and variability of

human behavior. In crowded environments, these modeling challenges, combined with com-

putational demands, can lead to reduced performance or delayed responses.

In recent years, data-driven approaches, particularly reinforcement learning (RL) [14], have

gained traction in addressing the autonomous navigation problem for mobile robots [15–26].

Unlike classical methods that rely on heuristics, RL enables robots to learn navigation poli-

cies through experience, making them more adaptable to complex and dynamic environments.

The RL framework treats the robot as an agent that interacts with its environment. By re-

ceiving sensor data as input, the agent makes decisions about actions like steering and speed,

and then receives feedback in the form of rewards or penalties based on the outcome of those

actions. Through repeated trial and error, the robot learns to optimize its behavior to max-

imize long-term rewards, resulting in efficient and safe navigation. Several key advantages

make RL particularly well-suited for local motion planning. Firstly, by eliminating the need

for manually designed rules, RL-based approaches are inherently more robust and adaptable

to unforeseen situations and obstacles. Secondly, RL can learn directly from raw sensor data,

reducing the dependency on the performance of the perception modules. Thirdly, RL-based

methods can continuously learn and improve with experience, adapting to changes in the envi-

ronment or the robot’s own capabilities. This adaptability is crucial for real-world deployment,

where conditions are rarely static. Lastly, RL offers a framework for incorporating social as-

pects of navigation, such as understanding and predicting pedestrian behavior, by learning from

demonstrations or interactions with humans.

RL-based planners have already demonstrated their effectiveness in various challenging

scenarios, outperforming classical methods in cluttered and dynamic environments. The flexi-

bility of RL allows for the incorporation of diverse objectives into the reward function, includ-

ing social norms, smoother motion, and safety constraints. Furthermore, RL has the potential
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to effectively handle high-dimensional state spaces and complex sensor inputs, which can be

challenging for classical planning methods. Despite their successes, RL-based planners still

face significant challenges in real-world applications. The literature review highlights two key

areas that require attention: the reality gap and human-centered design.

1. The reality gap in RL, often referred to as the sim-to-real gap in the field of robotics,

is the discrepancy between the performance of models trained in simulation and their

performance in real-world environments [27–29]. In the RL-based planner literature,

most research trains and tests these planners in simulated environments, leaving their

real-world effectiveness uncertain due to this gap. While some researchers attempt to

bridge this gap by incorporating safety constraints into reward shaping, these approaches

often lack generalizability to diverse real-world situations. Addressing the reality gap

is essential for ensuring the safe and effective operation of mobile robots in real-world

applications. This gap also extends beyond training in simulation, even when offline data

collected from other sources is being used for training.

2. Human-centered design in RL-based planners is another key challenge, with two main

areas encompassing the handling of human pedestrian behavior and the personalization

of robot behavior. First, understanding and predicting pedestrian behavior is crucial for

mobile robots to navigate in human populated environments [19]. This allows robots

to anticipate movements, avoid collisions, and plan efficient paths, ensuring safety and

smooth operation. Although some work has considered social aspects and human-robot

interaction in reward design, these socially-aware planners may fail when faced with

the unpredictable movements of real-world crowds. Second, personalization of mobile

robots is essential for enhancing user experience, improving safety, and gaining trust and

acceptance [30, 31]. By tailoring a robot’s navigation style to individual preferences,

it can navigate more efficiently, safely and predictably, thereby increasing its overall

usability and impact. This adaptability can also lead to greater user satisfaction and

promote wider adoption of robotic technology in various domains. While personalization

has been extensively studied in other fields like Natural Language Processing (NLP) [32],

it remains less explored in sequential decision-making models.
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Closing the reality gap and implementing human-centered approaches are closely intercon-

nected in advancing RL-based planners. Addressing the reality gap, by improving sim-to-real

transfer and ensuring robustness to discrepancies in offline data, ensures that planners oper-

ate reliably in environments that closely approximate real-world dynamics. This reliability

is essential for enabling human-centered features such as socially compliant navigation and

personalized behaviors, which require consistent performance in dynamic, human-populated

settings. For instance, planners that overcome sim-to-real gaps can more effectively antici-

pate pedestrian movements, while personalization frameworks leverage this reliability to tailor

navigation styles to individual user preferences. Together, these efforts form a cohesive foun-

dation: closing the reality gap ensures functional robustness, while human-centered design

provides adaptability to human needs. By unifying these efforts, this work underscores how

RL-based planning must balance technical robustness with human adaptability, paving the way

for systems that are both reliable and socially intelligent, and ultimately enabling their practical

applicability.

1.2 Motivation

1.2.1 Bridging the Reality Gap for RL-based Planners

In RL-based motion planners, to enable the agent to interact and learn within an environment,

most research has primarily relied on simulations to validate and verify proposed ideas [33–36].

Training the RL agent in a simulator offers a safe environment without the risk of damaging

physical robots and obstacles. It is also cost-effective since no physical hardware needs to be

purchased or designed. Most importantly, simulators allow data collection much faster than

real-time. However, deploying agents trained in a simulator directly to the real world often

suffers from the sim-to-real gap. This gap is a long-standing problem in the field of robotics

and has been the subject of extensive research.

This gap mainly derives from two primary sources: sensor mismatch and dynamics mis-

match. (1) Sensor mismatch arises when simulators fail to accurately reproduce textures,

shapes, and lighting conditions found in the real world [29]. This discrepancy causes data-

driven models, which are often sensitive to such distribution shifts, to fail. For RL-based

planners, most work relies on 2D laser scanners as the main sensor to detect obstacles in their
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surroundings. The 2D laser scanner returns a one-dimensional array of distance measurements.

Its main advantage lies in the relatively low distribution shift when transitioning from simu-

lation to real-world deployment, making it less susceptible to the sim-to-real gap in our sce-

nario. (2) Dynamics mismatch often arises from the inability to perfectly replicate real-world

physics [27]. Discrepancies in, for example, lag time, inertia, and friction contribute to this

issue. Simulated robots might respond instantaneously, while real robots experience delays.

Inertia effects, often simplified in simulations, can lead to unrealistic acceleration and decel-

eration profiles. Additionally, neglecting joint and gear frictions, which significantly impact

real-world robot movement, further exacerbates the mismatch. These discrepancies collec-

tively affect the robot’s performance, which can become problematic if not properly addressed.

In the context of RL-based planners, some proposed methods attempt to circumvent the prob-

lem without directly addressing the mismatch. For example, to mitigate the effects of dynamics

mismatch, several approaches propose adding safety constraints as a conservative strategy or

employing hybrid control strategies. Also, most work primarily evaluated their methods in

simulation without considering the mismatch, and this lack of proven reliability in deploying

these robots in the real world has been highlighted in several review papers.

An alternative to simulation-based training is offline RL, which uses data collected from

real robots [37]. This method is safe and cost-effective, potentially avoiding some sim-to-

real issues like dynamics mismatch. However, even with data from matching robots, slight

differences in dynamics can exist between individual units due to manufacturing variations,

wear and tear, or environmental factors. This can lead to some dynamics mismatch, affecting

the performance of RL agents when transferred to new robots. Interestingly, allowing the

use of robots with slightly different dynamics for offline data collection can be more cost-

effective. This approach reduces the need to maintain high precision similarity among robots

and increases data availability. By addressing dynamics mismatch in offline RL, it opens up the

possibility of using robots with slightly different dynamics for offline data collection. It reduces

the need to maintain high precision similarity among robots and increases data availability,

potentially offering more realistic and versatile training for robotic systems. The dynamics

mismatch remains a significant challenge in both online (simulation-based) and offline RL

approaches. Addressing this issue is crucial for improving the reliability and performance of

RL agents when deployed in real-world environments, regardless of the training method used.
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1.2.2 Handling Human Pedestrians Behavior

RL-based motion planning relies heavily on the training environment to develop effective

decision-making capabilities. A critical aspect is accurately representing diverse and unpre-

dictable human pedestrian movements, influenced by personal preferences, social norms, and

environmental factors. To learn a robust policy, the RL agent’s environment must capture a

wide range of pedestrian behaviors. Two main approaches exist for generating these move-

ments: single-agent methods and decentralized multi-agent collision avoidance. Single-agent

approaches include assigning waypoints from datasets, manually designing behaviors, or using

fixed algorithms, but may lack diversity and lead to overfitting [18, 21]. In contrast, decentral-

ized multi-agent approaches, where agents learn to navigate and avoid collisions independently,

avoid potential design biases [15,17,19]. They also have greater sample efficiency as all agents

can contribute to the learning process. However, one drawback is that under this multi-agent

framework, agents tend to behave homogeneously, which may struggle to generalize to diverse

and unseen crowd behaviors. Most studies evaluate their proposed RL-based planners using

the same pedestrian scenarios as in training. This approach lacks robust testing in diverse, re-

alistic conditions. As a result, there is insufficient evidence of these robots’ reliability when

deployed in complex environments with varied pedestrian behaviors. This remains a significant

challenge in the field of RL-based motion planning for robots interacting with humans.

1.2.3 Personalization for RL-based Planners

Numerous studies have explored reward shaping techniques to influence how RL-based agents

navigate obstacles and reach goals. These reward structures primarily aim to enhance human-

robot interaction and improve safety in shared environments. One of the earliest and most

intuitive approaches to improve human-robot interaction involves incorporating social norms

into the reward function. For example, researchers have introduced rewards for behaviors such

as not overtaking or cutting off others, giving way to pedestrians, and maintaining appropriate

social distances when passing [19]. These socially-aware reward structures encourage robots to

navigate in a manner more aligned with human expectations and comfort levels. Another com-

mon aspect of reward shaping focuses on adding safety guidance to the training process [23].

This approach encourages more conservative robot behavior, preparing for worst-case scenar-

ios to prevent collisions. Safety-oriented rewards might penalize close proximity to obstacles
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or reward maintaining a safe distance from pedestrians. Researchers have also proposed meth-

ods to improve the smoothness of robot motion through reward shaping [17]. Rewards for

smooth motion might penalize sudden accelerations or changes in direction. Smoother tra-

jectories can reduce mechanical wear and tear, improve energy efficiency, and create more

predictable movements. This predictability is crucial for enhancing safety for nearby humans,

as it allows them to anticipate the robot’s actions more easily.

However, a major challenge with personalizing through reward shaping is the risk for hu-

man bias and limited generalization. For instance, a robot trained to prioritize maintaining large

personal space might inconvenience people in crowded areas who are used to closer proximity.

Social norms can vary greatly between individuals and cultures, making it difficult to design a

reward function that suits everyone. Moreover, over-prioritizing smoothness in robot motion

can lead to decreased efficiency, as the robot may sacrifice speed or take longer paths to avoid

abrupt movements. Instead of manually designing these rewards, a more effective approach

might involve rapid and accurate customization of the robot’s behavior based on individual

preferences.

1.3 Thesis Objective

Our main objective is to enhance the practicality, effectiveness, and adoption potential of RL-

based local motion planners. We aim to address the reality gap and improve human-centered

design for these systems.

Reality Gap. The reality gap presents a significant challenge in both online (simulation-based)

and offline RL settings for our local motion planning tasks. Our approach focuses on bridging

this gap, offering solutions applicable to a broad spectrum of data-driven robotic applications

beyond just local motion planning for mobile robots. For online RL trained in simulation,

we propose designing a method to incorporate dynamics mismatch information using a small

dataset collected from the target environment. This approach should enable the policy to be

aware of target dynamics during simulation-based learning, leading to improved real-world

performance. We will explore techniques such as adaptive sim-to-real transfer, and uncertainty

prediction to achieve this goal. In the offline RL context, we aim to bridge the reality gap that
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may exist when using pre-collected data. This approach opens possibilities for leveraging more

accessible source datasets, even if they do not have exactly similar dynamics to the target en-

vironment. This strategy could address the challenge of data scarcity in offline RL for robotics

applications. To address these challenges, we propose exploring diffusion-based solutions, a

novel approach that has shown great success in offline RL tasks and offers promising potential

for tackling dynamics mismatch.

Human-centered Design. Our primary objective in handling human pedestrian behavior is to

develop a robust agent capable of navigating the unpredictable nature of crowds. To improve

the robustness of the RL agent, our key idea is to encourage diversity during the learning pro-

cess with multiple agents. This diversity should be free from expert knowledge and minimize

inductive bias. By exposing the agents to a wide range of experiences through interactions

with diverse behaviors, we expect each agent to develop more robust and adaptable navigation

strategies. This approach aims to create an RL-based motion planner that can navigate complex

environments with unpredictable pedestrians, including in unseen scenarios. We also plan on

expanding and refining the current testing framework for local motion planning among moving

obstacles by developing a more comprehensive and diverse set of testing scenarios that better

represent unpredictable human movement. These scenarios will be distinct from the training

scenarios to ensure the agent’s ability to generalize to unseen situations.

Finally, to enhance user experience and build trust in mobile robots, we propose personal-

izing the robot’s behavior. Our research will focus on developing a resource-efficient method

for rapid and accurate adaptation to individual user preferences across a wide range of auto-

mated decision-making systems. We will develop a practical framework based on a two-stage

process: pretraining and fine-tuning. First, we will train a general policy that captures common

behaviors and navigation strategies. Then, we will implement a quick fine-tuning mechanism

that can adjust this general policy using just a few human preference labels. These preference

labels will directly reflect the ideal behavior that each user wants to experience from the robot.

This approach eliminates the need for hand-crafted reward shaping, which may difficult to ac-

curately represent individual user preferences. Additionally, we will explore diffusion-based

solutions, which have shown promising flexibility in several offline RL formulations, to guide

the personalization process.
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1.4 Main Contributions

The main contributions of each chapter are summarized below.

• Mitigating the dynamics mismatch inherent in the sim-to-real gap when utilizing

simulators for online RL. We propose a novel approach using a single policy to predict

two sets of actions: one for maximizing task rewards in simulation and another specifi-

cally for domain adaptation via reward adjustments. This decoupling makes it easier to

maximize the overall reward in the source domain during training. Our proposed method

is effective in bridging the sim-to-real gap, outperforming several baselines on challeng-

ing tasks. Additionally, by incorporating uncertainty-based exploration during training,

our approach is shown to enhance agent robustness.

• Mitigating the dynamics mismatch in Offline RL, and alleviating the data scarcity

by enabling the use of more readily available, off-dynamics datasets. We propose

a novel approach using conditional Diffusion models to learn the joint distribution of

the large-scale off-dynamics dataset and the limited target dataset. We introduce two

contexts for the conditional model to capture the underlying dynamics structure: (1)

a continuous dynamics score allows for partial overlap between trajectories from both

datasets, providing the model with richer information; (2) an inverse-dynamics context

guides the model to generate trajectories that adhere to the target environment’s dynamic

constraints. Empirical results show our method significantly outperforms several strong

baselines. Ablation studies reveal the importance of each dynamics context. Addition-

ally, the model’s robustness to subtle environmental shifts is demonstrated through con-

text modification.

• Personalizing automated decision-making systems by introducing a resource-efficient

approach that enables rapid adaptation to individual user’s preferences. We pro-

pose a novel approach to pretrain a conditional diffusion model on reward-free offline

datasets. We introduce the concept of preference latent embedding and provide the de-

tailed process of co-training it during the pretraining phase. Furthermore, we present

an adaptation method for rapid preference alignment through preference inversion to
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quickly fine-tune the pretrained model to user-specific preferences. We create a bench-

mark experiment using real human preferences on diverse, optimal trajectories, better

reflecting real-world scenarios. Rigorous evaluations and ablation studies are conducted

using both our human-annotated dataset and an existing dataset. It is shown that our

proposed method demonstrates superior adaptation accuracy to human preferences with

less data in both simulated and real-world scenarios. The ablation studies reveal that the

best performing configuration utilizes spectral normalization for pretraining, followed

by initializing the preference latent embedding using a uniform prior during adaptation.

• Developing an RL-based local motion planner that can robustly navigate in en-
vironments with crowded and unpredictable human pedestrians. We propose an

efficient method that enhances the agent diversity within a single policy by maximiz-

ing an information-theoretic objective. This diversity enriches each agent’s experiences,

improving its adaptability to unseen crowd behaviors. A novel set of diverse scenar-

ios inspired by pedestrian crowd behaviors are proposed to assess an agent’s robustness

against pedestrian behavior not encountered during training. Experiments shown that the

proposed behavior-conditioned policies outperform existing works in these challenging

scenes, reducing potential collisions without additional time or travel. Additional ex-

periments validated that the methods remains effective in high density environments and

more realistic evaluations in Gazebo simulator.

1.5 Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 introduces the fundamental con-

cepts of RL, encompassing both online and offline approaches. It also explores RL methods

in the context of local motion planning and presents the basics of Diffusion models, including

their application to offline RL. Chapters 3 and 4 propose methods to address dynamics mis-

match in online (simulation-based) and offline RL, respectively. The latter part of the thesis

focuses on human-centered solutions for RL-based planners: Chapter 5 proposes an effective

and efficient personalization framework using diffusion models. Chapter 6 tackles the chal-

lenge of navigation amidst crowded and unpredictable human pedestrians. Finally, Chapter

7 concludes the thesis, offering insights into relevant future research directions. Figure 1.1

provides a visual representation of our research and its chapter structure.
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CHAPTER 1. INTRODUCTION

Figure 1.1: An overview of the research and chapter structure of this thesis.

12



Chapter 2

Preliminary

This chapter covers the core principles of deep reinforcement learning (RL). We begin with an

overview of the Markov decision process, followed by a definition of RL and Offline RL, as

well as a discussion of key RL algorithms. We then examine the RL framework as it applies

to local motion planning. This discussion lays the groundwork for the concepts explored in

Chapter 6. The chapter concludes with an introduction to Diffusion models and their use in

offline RL. This modeling approach is central to the methods we propose in Chapters 4 and 5.

2.1 Reinforcement Learning

2.1.1 Markov Decision Process

Markov Decision Process (MDP) is a mathematical framework used to represent an environ-

ment in RL [38]. It provides a structured way to formulate the problem of learning from

interactions to achieve a desired goal. Formally, a finite-horizon MDP can be represented by

M = ⟨S,A, 𝑃,R, 𝛾⟩:

• S - a set of states, S ⊆ R𝑛, which may be either discrete or continuous.

• A - a set of actions, A ⊆ R𝑚, which similarly can be discrete or continuous.

• The function 𝑃(𝑠′|𝑠, 𝑎) represents the transition dynamics, indicating the likelihood of

the environment moving from state 𝑠 to state 𝑠′ when action 𝑎 is executed. Here, 𝑠, 𝑠′ ∈ S
and 𝑎 ∈ A.

13
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• R : S ×A → R defines the reward mechanism. It assigns a real-valued reward to each

state-action pair, where states are drawn from S and actions from A.

• 𝛾 - discounting factor for future rewards, 𝛾 ∈ (0,1].

The MDP framework assumes all states possess the Markov characteristic, meaning future state

predictions rely solely on the current state, independent of historical information: P𝑎 [𝑠𝑡+1 |𝑠𝑡] =

P𝑎 [𝑠𝑡+1 |𝑠1, . . . , 𝑠𝑡]. In the RL paradigm, an agent engages with its environment in a sequen-

tial manner, accumulating rewards. At each time step 𝑡, the agent receives a state 𝑠𝑡 from the

environment and selects an action 𝑎𝑡 . Upon action execution, the environment yields an im-

mediate reward 𝑟𝑡 and transitions to state 𝑠𝑡+1. The agent’s behavior is governed by a policy

𝜋 : S→A, which dictates action selection. For non-deterministic policies, 𝜋(𝑎𝑡 |𝑠𝑡) represents

the likelihood of choosing action 𝑎𝑡 given state 𝑠𝑡 . The agent-environment interaction gen-

erates a series of state-action-reward tuples: {(𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), . . . , (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡), . . .}. This

sequence, termed the trajectory, includes rewards 𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡) at each time step 𝑡. RL aims to

determine an optimal policy 𝜋∗ that maximizes the expected sum of future rewards:

𝜋∗ = argmax
𝜋

E

[∑︁
𝑡

R(𝑠𝑡 , 𝑎𝑡)
]
, (2.1)

where actions 𝑎𝑡 are drawn from the policy distribution 𝜋(·|𝑠𝑡) conditioned on state 𝑠𝑡 at time

𝑡.

2.1.2 Value Functions

Two important functions evaluate the agent’s performance based on future rewards: the state-

value function and the Q-function (state-action value function). The state-value function 𝑉𝜋 (𝑠)

defines the expected sum of future rewards when following policy 𝜋 from state 𝑠:

𝑉𝜋 (𝑠) = E𝜋

[ ∞∑︁
𝑡=0
𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠

]
. (2.2)
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The Bellman equation for 𝑉𝜋 (𝑠) is:

𝑉𝜋 (𝑠) = E𝜋

[ ∞∑︁
𝑡=0
𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠

]
= E𝜋

[
𝑟𝑡 +

∞∑︁
𝑡=1
𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠

]
=
∑︁
𝑎

𝜋(𝑎 |𝑠)
∑︁
𝑠′
𝑃(𝑠′|𝑠, 𝑎)

[
R(𝑠, 𝑎) +𝛾E𝜋

[ ∞∑︁
𝑡=0
𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠

′
] ]

=
∑︁
𝑎

𝜋(𝑎 |𝑠)
∑︁
𝑠′
𝑃(𝑠′|𝑠, 𝑎) [R(𝑠, 𝑎) +𝛾𝑉𝜋 (𝑠′)] .

(2.3)

The Q-function 𝑄𝜋 (𝑠, 𝑎) defines the expected value given an action and a state under policy 𝜋:

𝑄𝜋 (𝑠, 𝑎) = E𝜋

[ ∞∑︁
𝑡=0
𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝑎0 = 𝑎

]
. (2.4)

2.2 Algorithms

RL methods aim to learn a policy, denoted as 𝜋, that guides an agent to make optimal decisions

in an environment. There are two primary categories of approaches to achieving this: value-

based and policy-based, which are introduced in Section 2.2.1 and Section 2.2.2, respectively.

2.2.1 Value-based Approaches

Value-based approaches leverage the concept of an optimal Q-function,𝑄∗(𝑠, 𝑎). This function

represents the maximum expected cumulative reward that can be obtained by taking action 𝑎

in state 𝑠 and subsequently following an optimal policy:

𝑄∗(𝑠, 𝑎) = max
𝜋
𝑄𝜋 (𝑠, 𝑎). (2.5)

In these approaches, the optimal policy 𝜋∗ is determined by greedily selecting the action asso-

ciated with the highest Q-value in a given state 𝑠:

𝜋∗(𝑠) = argmax
𝑎

𝑄∗(𝑠, 𝑎). (2.6)

The Bellman equation provides a recursive relationship for calculating the optimal Q-function:

𝑄∗(𝑠, 𝑎) = E𝑠′
[
R(𝑠, 𝑎) +𝛾max

𝑎′
𝑄∗(𝑠′, 𝑎′)

]
. (2.7)
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One well-known value-based algorithm, Q-learning [14], iteratively updates the Q-function

using temporal difference (TD) error. The update rule is as follows:

𝑄(𝑠, 𝑎) =𝑄(𝑠, 𝑎) +𝛼
[
R(𝑠, 𝑎) +𝛾max

𝑎′
𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)

]
, (2.8)

where 𝛼 represents the learning rate. Over time, this update process leads to the convergence

of the estimated Q-function, 𝑄(𝑠, 𝑎), to the optimal Q-function, 𝑄∗(𝑠, 𝑎).
The Deep Q-Network (DQN) [39] is a notable advancement in value-based methods. It

approximates the Q-function using a neural network with parameters 𝜃, denoted as 𝑄(𝑠, 𝑎;𝜃).
The training of this network involves minimizing a regression loss:

L(𝜃𝑖) = E𝑠,𝑎

[
(𝑟 +𝛾max

𝑎′
𝑄(𝑠′,a′;𝜃𝑖−1) −𝑄(𝑠, 𝑎;𝜃𝑖))2

]
, (2.9)

where 𝜃𝑖 represents the parameters at iteration 𝑖. DQN utilizes a replay buffer to store and

randomly sample past experiences during training, effectively mitigating the issue of corre-

lated data. Each time step 𝑡 results in a transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡) being stored in the buffer.

This buffer maintains a collection of recent transitions, discarding the oldest ones as it fills

up. This strategy facilitates the neural network’s update process by providing a diverse set of

experiences.

2.2.2 Policy-based Approaches

In reinforcement learning, policy-based methods focus on directly learning the policy 𝜋, often

represented by a neural network in the context of deep RL. Unlike value-based approaches,

policy-based methods do not rely on explicitly estimating value functions.

Policy Gradient techniques, as described in Sutton et al. [40], model the action distribution

of the policy and directly approximate the gradients of expected rewards with respect to the

policy parameters. If we denote the policy parameterized by 𝜃 as 𝜋𝜃 (𝑎 |𝑠) and the expected

accumulated rewards as 𝐽 (𝜃), the policy gradient can be estimated as follows:

∇𝜃𝐽 (𝜃) = E [𝑄𝜋 (𝑠, 𝑎)∇𝜃 log𝜋𝜃 (𝑎 |𝑠)] . (2.10)

Subsequently, the parameter 𝜃 is updated through gradient ascent:

𝜃← 𝜃 +𝛼∇𝜃𝐽 (𝜃), (2.11)
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where 𝛼 ∈ R+ signifies the learning rate.

REINFORCE [41] estimates 𝑄𝜋 (𝑠, 𝑎) using Monte-Carlo (MC) methods:

∇𝜃𝐽 (𝜃) = E [𝐺 𝑡∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] , (2.12)

where 𝐺 𝑡 is the accumulated discounted rewards from time step 𝑡.

Actor-Critic methods combine a policy model (actor) and a value function (critic). The critic

evaluates the current policy by approximating the state-value, while the actor updates the policy

parameters.

Advantage Actor-Critic (A2C) [42] uses the advantage value for policy updates:

𝐴(𝑠𝑡 , 𝑎𝑡) =𝑄(𝑠𝑡 , 𝑎𝑡) −𝑉 (𝑠𝑡) = 𝑟𝑡 +𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡). (2.13)

The critic is trained by minimizing the TD error 𝛿𝑡 = 𝑦𝑡 −𝑉𝜃 (𝑠𝑡), where 𝑦𝑡 = 𝑟𝑡 +𝛾𝑉 (𝑠𝑡+1). The

policy update becomes:

𝜃← 𝜃 +𝛼𝐴(𝑠𝑡 , 𝑎𝑡)∇𝜃 log𝜋𝜃 (𝑎 |𝑠). (2.14)

Proximal Policy Optimization (PPO) [43], a policy-based approach, introduces stability to

the learning process by restricting the extent of policy updates. It achieves this by employing a

clipped objective function:

L𝐶𝐿𝐼𝑃 (𝜃) = Ê𝑡
[
min( ¤𝑟𝑡 (𝜃) �̂�𝑡 ,clip( ¤𝑟𝑡 (𝜃),1− 𝜖,1+ 𝜖) �̂�𝑡)

]
. (2.15)

In this formulation, Ê𝑡 denotes the empirical expectation, �̂�𝑡 is the estimated advantage, 𝜖

is a hyperparameter controlling the clipping range, and ¤𝑟𝑡 (𝜃) represents the probability ratio

between the updated and old policy:

¤𝑟𝑡 (𝜃) =
𝜋𝜃 (𝑎 |𝑠)
𝜋𝜃𝑜𝑙𝑑 (𝑎 |𝑠)

. (2.16)

PPO’s clipped objective function simplifies implementation and parameter tuning compared to

related trust region methods like TRPO [44], while still delivering state-of-the-art performance.

Soft Actor-Critic (SAC) algorithm, introduced by Haarnoja et al. [45], is an actor-critic frame-

work designed for learning stochastic policies in an off-policy fashion. While initially proposed

for offline RL, where agents learn solely from a static dataset without direct environmental in-

teraction, SAC has proven effective across various continuous control tasks in both offline and
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online settings, making it a robust benchmark. In SAC, the stochastic policy is optimized using

a critic network inspired by the Deep Deterministic Policy Gradient (DDPG) approach [46].

The critic network evaluates actions sampled from the policy and provides gradients for updat-

ing the actor network. A key aspect of SAC is its focus on maximizing policy entropy, which

quantifies the randomness or exploratory behavior of the policy. The policy learning process in

SAC balances exploitation (maximizing expected return) and exploration (maximizing policy

entropy) through the objective function:

J = E𝜋

[ ∞∑︁
𝑡=0
𝛾𝑡
(
R(s𝑡 ,a𝑡) +𝛼H (𝜋(·|s𝑡))

)]
, (2.17)

where H represents entropy, and 𝛼 is a hyperparameter that controls the trade-off between

exploitation and exploration.

The Bellman equation for the entropy-regularized Q-function in SAC is given by:

𝑄𝜋 (s,a) = Ea′∼𝜋,s′∼𝑃

[
R(s,a) +𝛾

(
𝑄𝜋 (s′,a′) +𝛼H (𝜋(·|s′))

)]
= Es′∼𝑃

[
R(s,a) +𝛾𝑉𝜋 (s′)

]
.

(2.18)

Similar to off-policy algorithms like DQN [39] and DDPG [46], SAC employs a paramet-

ric Q-function 𝑄(s,a) to approximate the on-policy Q-function 𝑄𝜋 (s,a) and utilizes a replay

buffer D to store experienced transitions. During learning, transitions are sampled from D to

optimize the Q-function by minimizing the Bellman error:

L(𝑄) = E
(s,a,𝑟,s′)∼D

[ (
𝑄(s,a) −R(s,a) −𝛾�̄� (s′)

)2
]
. (2.19)

Here, �̄� is the target value network, which is updated to minimize the following mean squared

error:

L(�̄�) = Es∼D
[ (
�̄� (s) −Ea∼𝜋 [𝑄(s,a) −𝛼 log𝜋(a|s)]

)2
]
. (2.20)

The policy is evaluated using the parametric Q-function and improved by maximizing both the

predicted Q-value and the entropy, with the objective:

J (𝜋) = Es∼D

[
Ea∼𝜋 [𝑄(s,a) −𝛼 log𝜋(a|s)]

]
. (2.21)

Actions are sampled on-policy, and the reparameterization trick is employed to enable back-

propagation through the policy network.
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2.3 Offline RL

Offline RL is a data-driven approach to the RL problem where the objective remains to optimize

the expected cumulative reward (Equation 2.1), but the agent cannot actively interact with

the environment to collect new data. Instead, it relies on a fixed dataset of transitions, D =

{(s𝑡 ,a𝑡 , s𝑡+1, 𝑟𝑡)}, analogous to a training set in supervised learning. This approach opens doors

to training intelligent agents across a wide range of applications, including life-saving surgical

robots [47,48], data-driven financial trading [49,50], improved medical diagnosis [51,52], and

autonomous vehicles [53–55].

Offline RL presents unique challenges, notably the inability to gather new experiences

through direct interaction with the environment. This limits discovery of high-reward regions

if they are not represented in the static datasetD. However, a more subtle yet crucial challenge

is the need to address scenarios where the agent’s actions differ from the observed data. This is

necessary as the aim is to learn a policy that surpasses the demonstrated behavior in the dataset.

This requirement leads to distributional shift, a common issue when a function approximator

(e.g., policy, value function, or model) is trained on one distribution but evaluated on another.

In offline RL, this shift stems from the divergence between the learned policy 𝜋off and the

behavior policy 𝜋𝛽 used to collect the dataset. This divergence causes a change in the states

visited and is further amplified by the act of maximizing expected returns.

Formally, the offline RL objective function 𝐽 (𝜙) aims to minimize the Bellman error, cal-

culated using the action-value Bellman equation:

𝐽 (𝜙) = 𝐸𝑠,𝑎,𝑠′∼𝐷
[ (
𝑟 (𝑠, 𝑎) +𝛾E𝑎′∼𝜋(·|𝑠′) [𝑄𝜙 (𝑠′, 𝑎′)] −𝑄𝜙 (𝑠, 𝑎)

)2
]
. (2.22)

This objective relies on the assumption that the action distributions of 𝜋off and 𝜋𝛽 are the same,

which is often untrue in practice. Even with an accurate Q-function, errors can accumulate,

leading to a divergence between the state distributions induced by the two policies: 𝑑𝜋off (𝑠) ≠
𝑑𝜋𝛽 (𝑠). This divergence is more severe in offline RL as there is no ongoing interaction to

rectify these errors.

2.3.1 Policy Constraints

A strategy to mitigate distributional shift in offline RL is to constrain the learning process, par-

ticularly by limiting how much the learned policy deviates from the behavior policy. This ap-

proach ensures that the Q-function is evaluated on actions that are within the distribution of the
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training data, preventing the accumulation of errors due to out-of-distribution actions. Policy

constraint methods for offline RL achieve this by enforcing a ‘closeness’ between the learned

policy 𝜋(𝑎 |𝑠) and the behavior policy 𝜋𝛽 (𝑎 |𝑠) using a probability metric. The specific metric

and how the constraint is imposed can vary across different methods. One category involves

explicit f-divergence constraints, where a direct constraint is added to the actor update to main-

tain proximity between the policies in terms of an f-divergence, typically the KL-divergence.

Another category uses implicit f-divergence constraints, achieved through actor updates that

inherently keep the policies close. The constraints can be implemented either directly on the

policy update (policy constraints) or through a penalty added to the reward function or target

Q-value (policy penalty). Formally, policy iteration with constraints can be represented as:

�̂�𝜋
𝑘+1← argmin

𝑄
E(s,a,s′)∼D

[(
𝑄(s,a) −

(
𝑟 (s,a) +𝛾Ea′∼𝜋𝑘 (a′ |s′) [�̂�𝜋

𝑘 (s
′,a′)]

))2
]

(2.23)

𝜋𝑘+1← argmax
𝜋

Es∼D
[
Ea∼𝜋(a|s) [�̂�𝜋

𝑘+1(s,a)]
]

s.t. 𝐷 (𝜋, 𝜋𝛽) ≤ 𝜖 . (2.24)

When these optimizations are not fully converged but limited to a few gradient steps, we get

the actor-critic method with the additional constraint 𝐷 (𝜋, 𝜋𝛽) ≤ 𝜖 on the policy update. Prior

methods have instantiated this approach with various choices of D [56–58], collectively re-

ferred to as policy constraint methods.

2.3.2 Conservation Value Functions

Instead of constraining the policy in an actor-critic framework, we can effectively regularize

the value or Q-function to prevent overestimation of out-of-distribution (OOD) actions. This

approach offers advantages like applicability to both actor-critic and Q-learning methods, even

without an explicit policy representation, and eliminates the need for modeling the behavior

policy. A simple modification to achieve a conservative Q-function is adding a penalty term

to the objective function for fitting Q-function parameters. An example of this approach is

Conservative Q-Learning (CQL) [59]. CQL modifies the standard Bellman error objective by

introducing a conservative penalty term, resulting in a modified objective:

𝐽 (𝜙) = 𝐽 (𝜙) +𝛼 ·penalty(𝜙), (2.25)

where 𝐽 (𝜙) is the Bellman error, penalty(𝜙) is the conservative penalty, and 𝛼 is a weighting

factor controlling the strength of the penalty. The penalty term encourages the Q-function to
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underestimate the value of OOD actions, thereby promoting a more conservative policy that is

less likely to take risky actions in states not well-represented in the dataset. One common form

of the penalty is:

penaltyCQL0
(𝐵,𝜙) = E𝑠∼𝐵,𝑎∼𝜇(𝑎 |𝑠) [𝑄𝜙 (𝑠, 𝑎)],

where 𝜇(𝑎 |𝑠) is an adversarial distribution chosen to maximize the Q-values. This effectively

pushes down the Q-values for actions that are likely to be OOD. CQL has shown promising

results in practice, achieving state-of-the-art performance on several offline RL benchmarks. Its

simplicity and ease of implementation make it a popular choice for addressing the challenges

of distributional shift and overestimation in offline RL.

2.3.3 Trajectory Optimization

Trajectory optimization in offline RL aims to learn a model of the trajectory distribution 𝑃𝜋𝐵 (𝜏)
induced by the behavior policy 𝜋𝐵 [60]. This enables planning optimal actions from a given

initial state 𝑠0. Using a sequence modeling objective, anchored by multiple states and actions,

reduces the risk of OOD actions and allows for utilizing large models like transformers [61].

Janner et al. [60] proposed the Trajectory Transformer (TT), which maximizes the log-

likelihood of all tokens in a trajectory, represented as 𝜏 = (𝑅𝑜, 𝑆𝑜, 𝑎𝑜, 𝑅1, 𝑆1, 𝑎1, ...𝑅𝐻 , 𝑆𝐻) with

horizon length 𝐻, and uses beam search for planning. Conversely, Chen et al. [15] introduced

the Decision Transformer (DT), also based on the transformer architecture, but focusing on

minimizing the mean squared error (MSE) between predicted and actual actions. They argue

that predicting states and returns-to-go is not necessary for good performance. During evalua-

tion, DT conditions trajectory rollouts on a target return and iteratively updates its reward-to-

go target until episode termination. While computationally expensive, these transformer-based

methods excel in sparse reward settings where traditional temporal-difference methods struggle

due to their reliance on dense reward estimates for effective Q-value propagation.

2.4 RL For Local Motion Planning

In this section, we describe different approaches in which the local motion planning problem

have been formulated into MDPs,M = ⟨S,A, 𝑃, 𝑅, 𝛾⟩.
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2.4.1 State Space

The state space in robotic motion planning typically consists of two distinct types: internal

states and external states. This division allows for a comprehensive representation of both the

robot’s condition and its surrounding environment.

Internal States: Internal states capture the real-time information of the robot itself. In the

pioneering work that proposed RL-based local motion planning, Chen et al. [15] utilized the

robot’s linear and angular velocities (𝑣 and 𝜔) as key components of the internal state. Addi-

tionally, the desired goal position is represented by either the relative or absolute goal coordi-

nates. Together, these elements constitute the internal states. This formulation has been widely

adopted in subsequent research, with most follow-up work adhering to a similar structure for

representing the robot’s internal states.

External States: External states typically capture information about the robot’s surroundings,

providing crucial data for navigation and obstacle avoidance. Chen et al. [15] utilized ground

truth data of obstacles as input. This approach implies that in real-world deployment, a front-

end perception module would be required to process sensor data before feeding it to the RL

module. Methods developed using ground truth data can establish an upper bound on perfor-

mance since complete information about obstacles is available. However, this approach has

drawbacks. The performance of the agent becomes highly dependent on the accuracy of the

perception modules, and the policy might fail catastrophically given noisy inputs, as no noise

is present during training. Furthermore, the policy might be overly optimistic due to the lack

of obstacle occlusion in training scenarios. During training, the exact size, shape, and position

of all obstacles are known, which may not always be observable in practice. An example of

these approaches is illustrated in Figure 2.2.

Several research efforts have explored the use of end-to-end RL to directly predict actions

from sensor data, eliminating the need for a separate front-end perception module. One of the

pioneering works in this direction utilized RGB camera inputs for end-to-end RL in motion

planning [62]. The primary advantage of RGB sensors is their ability to provide rich infor-

mation, including the capability to classify different types of obstacles. However, a significant

drawback is that training an end-to-end RL system with RGB inputs requires a highly realistic

simulation of the real world to avoid distribution shift when deployed in real-world scenarios.

This requirement can be computationally intensive and challenging to achieve.
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Another frequently used sensor is the 2D Laser Scanner, initially proposed for the appli-

cation in [17, 34]. The 2D laser scanner returns a one-dimensional array of distance measure-

ments. Its main advantage lies in the relatively low distribution shift when transitioning from

simulation to real-world deployment. Compared to RGB sensors, the simulation requirements

for 2D laser scanners are less demanding in terms of world creation and simulation speed.

Additionally, the distance readings from laser scanners are generally more reliable and offer

shorter response time when dealing with moving obstacles.

In our work, we opt for a realistic representation that utilizes distance readings from a

2D laser range finder to sense the environment, similar to the approach in [17]. This choice

strikes a balance between realism and practicality. We take into account the sensor noise and

obstacle occlusions, making no assumptions about the shape, size, or number of obstacles. This

approach aligns more closely with real-world conditions, potentially leading to more robust and

generalizable motion planning strategies.

2.4.2 Action Space

The action space 𝐴 represents the set of permissible velocities that a robot can execute, defined

in either the continuous or discrete space. This space is crucial in determining the range and

precision of movements the robot can perform during navigation and obstacle avoidance tasks.

One commonly defined action space consists of two actions:

• Linear velocity: 𝑣 ∈ [0, 𝑣max]. This represents the forward speed of the robot. The range

starts from 0 (stationary) up to a maximum velocity 𝑣max. 𝑣max is determined by the

physical limitations of the robot or safety considerations.

• Angular velocity: 𝜔 ∈ [−𝜔max,𝜔max]. This represents the turning rate of the robot. The

range includes both positive and negative values, allowing for clockwise and counter-

clockwise rotations. 𝜔max is the maximum turning rate, again determined by the robot’s

capabilities or safety limits.

In this formulation, both 𝑣 and𝜔 are continuous values, allowing for smooth and precise control

of the robot’s movement. This continuous action space provides a high degree of flexibility in
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navigation, enabling the robot to make fine adjustments to its trajectory as needed. The output

actions 𝑣 and 𝜔 drive the motion of the robot using the following kinematics equations:
¤𝑥
¤𝑦
¤𝜑

 =


cos𝜑 0
sin𝜑 0

0 1


[
𝑣

𝜔

]
, (2.26)

where ¤𝑥, ¤𝑦 and ¤𝜑 are derivatives in the global coordinate frame as illustrated in Figure 2.1. The

matrix multiplication in this equation accounts for the robot’s current orientation, 𝜑, when cal-

culating how the velocities affect its position and heading in the global coordinate frame. These

equations describe how the linear and angular velocities translate into the robot’s movement in

the environment. Specifically:

• ¤𝑥 represents the rate of change of the robot’s x-coordinate.

• ¤𝑦 represents the rate of change of the robot’s y-coordinate.

• ¤𝜑 represents the rate of change of the robot’s orientation angle.

Another common approach in defining the action space is to use a discretized version. This

involves subdividing the continuous space into equal intervals or manually defining specific

values. For example: linear velocity might be discretized into values like [0, 0.2, 0.4, 0.6, 0.8,

1.0] m/s and the angular velocity might be discretized into values like [-0.5, -0.25, 0, 0.25,

0.5] rad/s. Discretization can simplify the action selection process and may be beneficial in

certain learning algorithms. However, it can also limit the precision of the robot’s movements

compared to a continuous action space. The choice between continuous and discrete action

spaces often depends on factors such as the specific requirements of the task, the capabilities of

the robot, and the complexity of the learning algorithm being used. Researchers and engineers

must carefully consider these factors when designing the action space for their specific robotic

application.

To execute these velocities on a wheeled robot, different drive controllers are typically used,

depending on the robot’s configuration and mechanical design. These controllers translate the

desired linear and angular velocities into specific commands for the robot’s motors or wheels.

One commonly example is the differential drive controller. This is widely used for robots with

two independently driven wheels. The controller calculates the required velocities for each
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wheel based on the desired linear and angular velocities. The equations for left and right wheel

velocities are:
𝑣𝑙 = 𝑣−

𝜔𝐿

2

𝑣𝑟 = 𝑣 +
𝜔𝐿

2
.

(2.27)

where 𝑣𝑙 and 𝑣𝑟 are left and right wheel velocities, and 𝐿 is the distance between the wheels.

Figure 2.1: A point robot in the global coordinate (𝑋,𝑌 ) frame. 𝑉 and𝜔 are the velocity and
the angular velocity with respect to the robot’s frame. 𝜑 is the angle between the two frames.

2.4.3 Rewards

To incentivize the robot to reach a goal without collision, some standard rewards commonly

used in the literature are:

• Reaching Goal: it assigns a positive reward when the agent is within a certain distance

of the desired goal. This reward encourages the robot to complete its primary objective.

• Crash: it assigns a negative reward when the robot is within a certain distance of any

obstacles. This penalty helps the robot learn to avoid collisions.
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• Timeout: it assigns a negative reward when the robot fails to reach the goal within a

certain number of steps. This discourages inefficient or circuitous paths.

• Goal Approach Reward: it assigns a positive reward when the robot is closer to the goal

than in the previous step. This provides a step-wise reward signal since the reach goal

reward is very sparse. It helps guide the robot towards the goal even when it is far away.

Putting all together, the overall reward 𝑅 can be represented as follows:

𝑟𝑡 =


𝑟𝑡𝑖𝑚𝑒𝑜𝑢𝑡 if 𝑡 < 𝑁timeout,

𝑟𝑔𝑜𝑎𝑙 if ∥p𝑡 −g∥ < 𝑑𝑐𝑜𝑙 ,
𝑟𝑐𝑜𝑙 else if collision ,
𝑟𝑠𝑡𝑒𝑝 · (∥p𝑡−1−g∥ − ∥p𝑡 −g∥) otherwise.

(2.28)

where 𝑟𝑡𝑖𝑚𝑒𝑜𝑢𝑡 < 0 is the penalty for not reaching the goal after 𝑁timeout steps, 𝑟𝑔𝑜𝑎𝑙 is the reward

for reaching the desired goal, 𝑟𝑐𝑜𝑙 < 0 is the penalty for collision, 𝑟𝑠𝑡𝑒𝑝 is the dense reward for

getting closer to the goal, 𝑑𝑐𝑜𝑙 is the distance threshold for reaching the goal, p and g are

positions of the robot and goal.

These standard rewards form the foundation of most RL approaches in robot navigation.

They balance the primary objectives of reaching the goal and avoiding obstacles while en-

couraging efficient movement. In addition to these commonly used rewards, several other

non-standard rewards have been proposed to improve the robot’s behavior:

• Social Reward [19]: it adds some rules on social behaviors like overtaking, crossing, and

passing. This reward helps the robot navigate in a more socially acceptable manner when

interacting with humans or other robots.

• Curiosity Reward [20]: this is an intrinsic reward to encourage exploration. It motivates

the robot to explore unfamiliar areas of its environment, potentially leading to better

overall performance.

• Safety Zone Penalty [23]: it discourages obstacles in a predefined area near the robot.

This creates a buffer zone around the robot, enhancing safety in dynamic environments.

• Crowd Density Penalty [63]: it discourages the robot from visiting crowded areas. This

helps the robot navigate more efficiently in populated environments and reduce the risk

of collisions or social discomfort.
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• Trajectory Smoothness [17]: it discourages the robot from taking large angular velocity

values. This smooths out the trajectories to some extent, resulting in more natural and

efficient movement patterns.

These additional rewards address specific aspects of robot behavior that go beyond the ba-

sic requirements of reaching a goal and avoiding obstacles. They can be combined with the

standard rewards to create more sophisticated and context-aware navigation policies. Dur-

ing reward shaping, the relative weighting of each reward term can significantly impact the

learned behavior. For example, placing too much emphasis on the crash penalty might result

in overly cautious behavior, while overemphasizing the goal approach reward might lead to

risky shortcuts. Moreover, the effectiveness of these rewards can vary depending on the spe-

cific environment and task. For instance, the social reward might be crucial in crowded human

environments but less important in industrial settings.

2.4.4 Transition Probabilities

The transition probabilities are determined by the environment the RL agent interacts with. For

our local motion planning task, two key factors affect the environment: physical properties of

the robots and nature of the obstacles. For the environment, there are many proposed methods

which train the agent in custom built simulators [16, 18–20] or Stage simulator [17, 21, 22].

These simulators follow the kinematics constraints described in Section 2.4.2. However, some

physical properties like inertia, friction, stiffness, dampening and friction values which affect

the dynamics of the robots are not considered. Some works [23–25] used the Gazebo simulator

[64] to include such physical properties when training the robot.

Another key aspect that affects the transition probability is how the dynamic obstacles

are generated. When our robot agent interacts with the environments, the movements of the

dynamic obstacles will determine how the robot agent should move to avoid them. Fan et

al. [21] design custom movements using waypoints for the obstacles. Chen et al. [18] utilize

Optimal Reciprocal Collision Avoidance (ORCA) [65], an obstacle avoidance algorithm to

control the dynamic obstacles. Sun et al. [26] simulate crowds based on social forces models.

The most popular way, however, is not to self define crowd movements. Instead, some

works [15–18] proposed training in a new paradigm using a decentralised multi-agent scheme.
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(a) Robot in custom 2D simulator using Ground
Truth Position and Velocities of obstacles

(b) Robot in Gazebo Simulator us-
ing 2D laser Scanner to detect ob-
stacles

Figure 2.2: Comparisons of Simulator and Input Type

In this formulation, 𝑁 agents following a single policy are randomly deployed to reach their

respectively goals. The advantage of this approach is that the movements of the obstacles are

constantly updated, unlike previous approaches where the policy might overfit to the fixed be-

havior of the pedestrians. One drawback is this formulation encourages cooperative behaviors

and thus making it over-optimistic when deployed in the real-world.

2.4.5 Neural Network Architectures

The backbone design of the NN architectures depends on the input type. For ground truth

position, Chen et al. [15] use a simple fully connected feed-forward network to aggregate

features from other obstacles. One major drawback is that the number of agents needs to be

fixed and this network is sensitive to the ordering of the agents. To overcome this, Everett

et al. [16] propose using Long Short-Term Memory (LSTM) [66] to make the input length

invariant to the number of agents. This approach is sensitive to the ordering of the agents.

Chen et al. [18] propose a pooling with attention architecture to make the architecture invariant

to the ordering of the agents. The experiments shown that it outperforms all the prior methods.
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For 2D laser scanners, Tai et al. [34] propose using a simple fully connected feed-forward

network for a 10-dimensional laser scan readings. Long et al. [17] propose to use multiple

1D-convolutions to process a 512-dimensional laser scan readings. The convolution layers en-

able higher dimensional inputs while maintaining a small network size. Lastly, Tan et al. [22]

propose to first represent the 2D laser scan inputs in its Cartesian coordinate frame and subse-

quently apply 2D-Convolutions.

2.5 Diffusion Models

2.5.1 Diffusion Probabilistic Models

Diffusion Probabilistic Models (DPMs) [67–69] are a class of generative models that learn data

distributions 𝑞(𝑥) through an inverse modeling process that effectively reverses the addition of

noise. The forward noising process involves taking data points sampled from the true data

distribution 𝑝data(𝑥) and subjecting them to a sequence of noise additions. This generates a

Markov chain 𝑥0 : 𝐾 , where each step 𝑥𝑘 is obtained by adding Gaussian noise to the previous

step 𝑥𝑘−1 according to the formula 𝑥𝑘 ∼N(
√
𝛼𝑘𝑥𝑘−1, (1−𝛼𝑘 )𝐼). The parameters 𝛼0:𝐾 represent

a predefined noise schedule, and 𝐾 denotes the total number of diffusion steps.

The reverse process, known as the variational process, aims to recover the original data 𝑥0

from the final noisy sample 𝑥𝐾 . This is achieved through a series of iterative denoising steps,

where each step 𝑥𝑘−1 is estimated from the previous noisy sample 𝑥𝑘 using a parameterized

model 𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 ) = N(𝑥𝑘−1 |𝜇𝜃 (𝑥𝑘 , 𝑘), (1−𝛼𝑘 )𝐼). The initial sample 𝑥𝐾 is typically drawn

from a standard normal distribution, and the denoising process continues until the original

data 𝑥0 is reconstructed. To optimize the parameters of the model, a surrogate loss function is

employed [69]:

L(𝜃) = E𝑘∼[1,𝐾],𝑥0∼𝑞,𝜖∼N(0,𝐼) ∥𝜖 − 𝜖𝜃 (𝑥𝑘 , 𝑘)∥2 . (2.29)

In this loss function, 𝜖 represents the true noise added at each step, while 𝜖𝜃 (𝑥𝑘 , 𝑘) is the noise

predicted by the model. By minimizing this loss, the model learns to accurately estimate the

noise at each step, enabling it to effectively reverse the diffusion process and generate high-

quality samples. The mean of the reverse Gaussian distribution used in the denoising process

is given by:

𝜇𝜃 (𝑥𝑘 , 𝑘) =
𝑥𝑘 −
√

1− �̄�𝜖𝜃 (𝑥𝑘 , 𝑘)√
�̄�

, (2.30)
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where �̄�𝑘 =
∏𝑘
𝑠=1𝛼𝑠 represents the cumulative product of the noise schedule parameters in up to

step 𝑘 . This formula ensures that the denoised samples gradually converge towards the original

data distribution as the noise is progressively removed.

These generative models have garnered significant attention in recent years due to their abil-

ity to generate high-quality, diverse samples across various domains, including images, audios,

and videos [70–75]. These generative models learn to construct data by reversing a process that

systematically introduces noise into the data over multiple steps. This approach offers several

key advantages. Firstly, it allows for the creation of flexible models that can accommodate

arbitrary data structures, making them applicable to a wide range of tasks. Secondly, it en-

ables training in a tractable manner, avoiding the instability issues often encountered in other

generative models like Generative Adversarial Networks (GANs) [76, 77]. DPMs exhibit high

stability during training and are less prone to mode collapse, a phenomenon where the model

produces limited and repetitive samples.

2.5.2 Conditional DPMs

To enhance the capabilities of DPMs, researchers have introduced conditional DPMs through

the classifier-guided sampling [71] or classifier-free [78] approach. These conditional mod-

els have been applied to a wide range of tasks across various domains. A notable application

involves generating images from textual descriptions [70–72], where the generative model pro-

duces visual content based on the provided text input. This approach has shown remarkable

results in creating images that closely match the given textual descriptions. In addition to uti-

lizing textual contexts for conditioning, researchers have explored other types of contexts for

conditional image generation. For example, low resolution contexts have been used for super-

resolution tasks [79], binary masks contexts for in-painting applications [80], and semantic

masks and human poses contexts for ControlNet [81]. These diverse conditioning approaches

demonstrate the flexibility and adaptability of conditional DPMs in addressing various im-

age generation challenges. Beyond image generation, conditional DPMs have also achieved

significant success in various other fields. For instance, they have been applied to 3D graph

generation using 2D molecular graph contexts [82], point-cloud synthesis from partial point-

cloud observations [83], and audio generation conditioned on linguistic features [73]. These
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applications highlight the versatility of conditional DPMs across different data modalities and

problem domains.

Classifier-guided diffusion. To explicitly integrate class information into the diffusion pro-

cess, Dhariwal and Nichol [71] proposed training a classifier 𝑓𝜙 (𝑦 |𝑥𝑡 , 𝑡) on noisy images 𝑥𝑡
and using the gradients ∇𝑥𝑡 log 𝑓𝜙 (𝑦 |𝑥𝑡) to steer the diffusion sampling process towards the de-

sired conditioning information 𝑦 (such as a target class label). This is done by modifying the

noise prediction. Recalling that ∇𝑥𝑡 log𝑞(𝑥𝑡) = − 1√
1−�̄�

𝜖𝜃 (𝑥𝑡 , 𝑡), the score function for the joint

distribution 𝑞(𝑥𝑡 , 𝑦) can be approximated as:

∇𝑥𝑡 log𝑞(𝑥𝑡 , 𝑦) ≈ −
1

√
1− �̄�

𝜖𝜃 (𝑥𝑡 , 𝑡) +∇𝑥𝑡 log 𝑓𝜙 (𝑦 |𝑥𝑡). (2.31)

This leads to a new classifier-guided predictor 𝜖𝜃:

𝜖𝜃 (𝑥𝑡 , 𝑡) = 𝜖𝜃 (𝑥𝑡 , 𝑡) −
√

1− �̄�∇𝑥𝑡 log 𝑓𝜙 (𝑦 |𝑥𝑡). (2.32)

A weight 𝑤 can be added to control the strength of the classifier guidance:

𝜖𝜃 (𝑥𝑡 , 𝑡) = 𝜖𝜃 (𝑥𝑡 , 𝑡) −
√

1− �̄�𝑤∇𝑥𝑡 log 𝑓𝜙 (𝑦 |𝑥𝑡). (2.33)

Classifier-free guidance. This method enables conditional diffusion steps without requiring

a separate classifier [78]. This is achieved by combining scores from both conditional and

unconditional diffusion models. Let 𝑝𝜃 (𝑥) be an unconditional denoising diffusion model pa-

rameterized by a score estimator 𝜖𝜃 (𝑥, 𝑡), and 𝑝𝜃 (𝑥 |𝑦) be the corresponding conditional model

parameterized by 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦). These two models can be learned using a single neural network,

where a conditional diffusion model is trained on paired data (𝑥, 𝑦) with the conditioning infor-

mation 𝑦 occasionally discarded to enable unconditional image generation. The gradient of an

implicit classifier can be expressed using conditional and unconditional score estimators. Sub-

stituting this into the classifier-guided modified score eliminates the dependence on a separate

classifier:

∇𝑥𝑡 log 𝑝(𝑦 |𝑥𝑡) = ∇𝑥𝑡 log 𝑝(𝑥𝑡 |𝑦) −∇𝑥𝑡 log 𝑝(𝑥𝑡)

=
1

√
1− �̄�

(𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) − 𝜖𝜃 (𝑥𝑡 , 𝑡)).
(2.34)

Therefore, the modified score becomes:

𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) = (𝑤 +1)𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) −𝑤𝜖𝜃 (𝑥𝑡 , 𝑡). (2.35)
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This approach allows for more controlled generation of samples based on specific input condi-

tions 𝑐. During the sampling process, the predicted noise is adapted to a weighted combination

of conditional and non-conditional sampling:

𝜖𝜃 (𝑥𝑡 | 𝑐) = (1+𝑤)𝜖𝜃 (𝑥𝑡 | 𝑐) −𝑤𝜖𝜃 (𝑥𝑡 | ∅) , (2.36)

where ∅ represents the null context, and 𝑤 is a parameter that regulates the trade-off between

sample quality and diversity by balancing the conditioned and unconditioned models. This

formulation allows for fine-tuning the generation process to achieve desired characteristics in

the output. In practice, the unconditioned model is often obtained by applying dropout on the

context embedding during training. This technique helps in learning a more robust model that

can generate samples both with and without conditioning information. They demonstrated that

classifier-free guidance can effectively balance Frechet Inception Distance (FID), a metric used

to distinguish between synthetic and real images.

While it is possible to train a conditional model using classifier-guided sampling [71], the

classifier-free guidance approach offers several advantages. These include improved control

over the generation process and superior performance in various tasks [72, 84]. The classifier-

free method has become increasingly popular due to its effectiveness and ease of implementa-

tion in conditional DPM frameworks.

2.5.3 Diffusion-based Planners

Diffusion-based planners, which leverage DPMs to generate trajectories, have recently emerged

as a promising solution to the challenges faced by offline RL methods discussed in [37, 85].

This approach is an example of trajectory optimization solution discussed in Section 2.3.3.

These planners have demonstrated superior performance compared to existing offline RL ap-

proaches, offering the ability to specify flexible constraints and compose multiple skills [84,86,

87]. Their versatility has led to adaptations in various reinforcement learning problem settings

and tasks, including Multi-agent RL, Meta-RL, Multi-task RL, and Safe RL [88–91], where

diffusion models’ strengths are utilized to address specific challenges.

More formally, diffusion-based planners utilize expressive PDMs to model trajectories in

the following form:

𝝉 =

[
𝒔0 𝒔1 . . . 𝒔𝐻
𝒂0 𝒂1 . . . 𝒂𝐻

]
, (2.37)
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where 𝐻 represents the planning horizon. These planners learn the gradient 𝜖𝜃 (𝜏𝑖, 𝑖) associated

with the denoising of trajectories. The mean 𝜇𝜃 is computed in closed-form from the learned

gradient, following the denoising framework of Ho et al. [69] (Equation 2.29). The model is

trained using the simplified objective:

L(𝜃) = E𝑖,𝜖 ,𝜏0
[
∥𝜖 − 𝜖𝜃 (𝜏𝑖, 𝑖)∥2

]
,

where:

• 𝑖 ∼U{1,2, . . . , 𝑁} is a uniformly sampled diffusion timestep,

• 𝜖 ∼ N(0, 𝐼) is a Gaussian noise target, modeled by U-Nets [92], chosen for their non-

autoregressive, temporally local, and equivariant characteristics

• 𝜏𝑖 represents the trajectory 𝜏0 perturbed by noise 𝜖 .

The covariance matrices Σ𝑖 governing the reverse denoising process utilize the cosine-based

scheduling proposed by [93]. While this process enables learning the underlying distribution of

an offline dataset, naive sampling from the diffusion model yields trajectories that are randomly

drawn from the learned distribution and do not necessarily maximise task-specific returns.

Diffuser. To generate trajectories that maximize the return, Diffuser [86] uses guided-diffusion

with the gradient of the return:

∇J =

𝑇∑︁
𝑡=0
∇𝑠𝑡 ,𝑎𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) = ∇𝝉 log 𝑝 (O1:𝑇 | 𝝉) , (2.38)

where O𝑡 is a binary random variable indicating the optimality of timestep 𝑡 in a trajectory,

and 𝑝 (O𝑡 = 1) = exp
(
𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)

)
. A separate model J𝜙 is trained to predict the cumulative

rewards. The gradients of J𝜙 are then used to guide the trajectory following the classifier-

guided sampling procedure.

Decision-Diffuser. Following the development of Diffuser, Decision-Diffuser [84] was intro-

duced. This approach adopts a classifier-free method, with the optimization objective formu-

lated as:

max
𝜃

E𝜏∼𝐷 [log 𝑝𝜃 (𝑥0(𝜏) |𝑐(𝜏))], (2.39)
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In this equation, 𝑐(𝜏) may encompass various conditional information related to the trajectory

𝜏, such as the cumulative return or specific skills demonstrated within the trajectory. Decision-

Diffuser demonstrates superior performance compared to Diffuser, with the added flexibility of

incorporating new conditions. These conditions can significantly enhance the adaptability and

robustness of the planner across various tasks. Examples of useful conditions include task ab-

stractions, which provide high-level instructions or sub-goals to structure the trajectory gener-

ation process [90]; goal states, enabling trajectory optimization toward specific endpoints [86];

skills, which represent reusable motion primitives or behaviors that facilitate solving complex

tasks [84]; and obstacle maps, which incorporate spatial information about the environment

to ensure collision-free trajectory generation [94]. By leveraging these conditions, diffusion-

based planners can tailor trajectories to meet specific requirements, improve task performance,

and generalize across diverse scenarios.

Connection to Motion Planning Both Diffusion-based planners like Diffuser and Decision-

Diffuser enable an agent to generate high-reward trajectories from any given state. In practice,

while these methods sample complete trajectories, only the first action of the sampled trajec-

tory is executed in the environment at each step. The remaining actions in the trajectory are

discarded but play a critical role during the planning process. Specifically, adjacent actions

within the sampled trajectory ensure local consistency, meaning that consecutive actions align

smoothly without abrupt transitions. Additionally, the long planning horizon of the trajectory

guarantees global coherence, where the overall trajectory adheres to the desired objective or

task. This balance between local consistency and global coherence is crucial for effective mo-

tion planning, as it ensures that the agent’s immediate actions contribute to achieving long-term

goals while maintaining smooth and stable operation.
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Chapter 3

Mitigating Dynamics Mismatch in
Sim-to-Real Reinforcement Learning

3.1 Introduction

RL is a powerful technique for training intelligent agents to make sequential decisions. The on-

line nature of this approach requires agents to interact directly with the deployed environment,

iteratively collecting experience and improving their decision-making capabilities in real-time.

This direct interaction with the real world, while potentially beneficial for learning, poses sig-

nificant challenges in terms of safety, cost and time efficiency. Particularly, training RL agents

directly in the real world presents numerous challenges. Real-world interactions can be expen-

sive, time-consuming, and even dangerous, especially when dealing with complex systems like

robots or autonomous vehicles [95, 96].

Simulators offer a compelling solution to the challenges of training online RL agents in

the real world [97, 98]. They provide a safe, controlled, and cost-effective environment where

agents can learn through trial and error, without the risks and costs associated with real-world

interactions. In a simulator, agents can interact with virtual replicas of the real world, allowing

them to freely explore different strategies, make mistakes, and learn from them without any

negative consequences. Simulators often run faster than real-time, enabling rapid iteration and

experimentation, and they allow for parallel training of multiple agents, significantly acceler-

ating the learning process. This accelerated learning is particularly valuable for developing

complex behaviors that would be impractical or even dangerous to learn directly in the real

world. Furthermore, simulators offer researchers a high degree of flexibility in designing sce-

narios, enabling them to expose agents to a wide range of situations and edge cases, thereby
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enhancing their robustness and ability to generalize to new situations. This shift from the real

world to simulated environments opens the door to training intelligent agents for various appli-

cations, paving the way for advancements in fields like robotics [97, 98], healthcare [99], and

finance [100].

However, the use of simulators in online RL introduces the challenge of the sim-to-real gap

between the simulated and real-world environments [27,29]. A major contributor to the sim-to-

real gap is the dynamics mismatch, where the physical dynamics of the simulated environment

differ from those of the real world. This mismatch can manifest in various ways across different

domains. In robotic manipulation, simulators often struggle to accurately model friction and

contact dynamics, leading to discrepancies in grasping and object interaction behaviors [27].

For autonomous vehicles, the complex tire-road interactions and aerodynamic effects at high

speeds may not be fully captured. In aerial robotics, the impacts of air turbulence and intricate

propeller dynamics are frequently oversimplified [101]. Legged robots face challenges with

accurate terrain interaction modeling, particularly on deformable surfaces [97,102]. Underwa-

ter and soft robotics encounter issues with fluid dynamics and material deformation simula-

tions [103]. These discrepancies in dynamics can lead to learned policies that fail to generalize

or perform sub-optimally when transferred to the real world, as the agent’s expectations about

the consequences of its actions may not align with reality. Despite efforts to create realistic

simulators, discrepancies between simulated and real-world environments can lead to perfor-

mance degradation when deploying agents trained solely in simulation to the physical world.

Several approaches have been explored to tackle the sim-to-real gap, and this work specif-

ically focuses on the challenge of dynamics mismatch. One common approach is domain

randomization (DR) where RL policies are trained across a diverse range of simulated dy-

namics [27, 28]. While DR improves real-world performance by training adaptable policies, it

often requires prior knowledge of parameter variations. Another contrasting approach involves

grounding the simulator to resemble the target domain, allowing the agent to learn as if it were

directly interacting with the real world [104–106]. A similar strategy involves reward shaping,

where a bonus reward incentivizes the agent to take actions that mimic those preferred in the

real world [107, 108]. Both grounding and reward shaping techniques require some level of

interaction with the target environment, which contradicts our objective of avoiding real-world

interactions due to safety and feasibility concerns. Therefore, we focus on a more realistic
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approach by leveraging a small, sub-optimal offline dataset from the target environment to re-

duce the sim-to-real gap [109]. This eliminates the need for further real-world interactions,

making it well-suited for real-world scenarios, e.g., operating rescue robots in hazardous en-

vironments, deploying trading strategies in high-frequency markets, or controlling unmanned

aerial vehicles in challenging settings.

In this work, we propose a novel method, Dual Action Policy (DAP), which utilizes a single

policy to simultaneously predict two distinct sets of actions. The first set of actions functions

conventionally, maximizing the task reward within the simulation environment. However, a

crucial addition is the introduction of a second set of actions which enables the policy to sep-

arately address the dynamics mismatch. Inspired by [107], we achieve this by incorporating

a reward adjustment which incentivizes the policy to prioritize actions that lead to state tran-

sitions resembling those in the target domain. By decoupling the actions, the agent can more

easily maximize the task reward while also attending to the reward adjustments. Additionally,

to increase the robustness of our agent, we propose an exploration method based on the inher-

ent uncertainty in dynamics estimation. This encourages the agent to actively explore areas

with high uncertainty during training, enabling it to remain within the state-action distribution

of the data during deployment.

Our experiments demonstrate the effectiveness of DAP for bridging the sim-to-real gap.

We compared various methods on challenging simulated tasks with mismatched dynamics.

DAP outperformed all baselines, achieving significantly higher returns than the strong base-

lines. Additionally, incorporating uncertainty estimation further improved performance, nearly

matching the optimal results in some cases. Ablation studies validated the importance of

the uncertainty-based exploration and showed that DAP remains effective even with a limited

amount of target data.

3.2 Related Work

3.2.1 Dynamics Mismatch in Sim-to-Real RL

The challenge of bridging the sim-to-real gap in RL, particularly the issue of dynamics mis-

match between training and deployment environments, has spurred the development of various

methodologies. These methods can be broadly classified into three main approaches: system
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identification, domain randomization, and domain adaptation. Each approach offers unique

advantages and limitations in tackling the complexities of transferring knowledge learned in

simulation to real-world scenarios.

System identification, a well-established approach with a rich history, involves utilizing

offline data collected from the target environment to calibrate the simulator’s parameters. By

adjusting these parameters, the simulated environment can be made to more closely resemble

the real world, enhancing the transferability of learned policies [29]. An extension of this

is online system identification, where inferred system parameters are directly utilized during

the training process to update a meta-policy in real time [28]. This allows for continuous

adaptation and refinement of the policy as the agent interacts with the real-world environment.

While effective, both offline and online system identification methods can be data-intensive

and computationally demanding, particularly in complex, high-dimensional environments.

Domain randomization (DR) presents a contrasting approach to addressing the sim-to-real

gap by training RL policies across a wide range of simulated dynamics. This technique in-

volves systematically varying the parameters of the simulated environment during training,

exposing the agent to a diverse set of conditions and scenarios. By doing so, DR encourages

the learning of robust policies that can generalize to a variety of real-world conditions [27].

The randomized parameters can include physical properties such as mass, friction coefficients,

and object dimensions, encouraging the agent to develop meta-capabilities or learn a meta-

policy that generalizes across diverse dynamics. This approach emphasizes adaptability and

robustness, aiming to create policies that are less sensitive to the specific dynamics of any

single environment. Instead, the agent learns to perform well across a distribution of possible

dynamics, increasing the likelihood of successful transfer to the real world. However, DR often

requires careful consideration and prior knowledge or assumptions about the types and ranges

of parameter variations that the agent may encounter in the real world. Determining the appro-

priate distribution of randomized parameters is crucial, as overly conservative randomization

may lead to suboptimal performance, while excessive randomization can make the learning

task too challenging [110–112].

Domain adaptation represents a more recent set of strategies aimed at bridging the sim-to-

real gap. A prominent example is the reward adjustment technique, which penalizes actions

during training that lead to transitions significantly different from those observed in the tar-

get domain [107]. This approach leverages auxiliary classifiers trained to distinguish between
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source and target domain transitions, guiding the agent towards behaviors that are more aligned

with the real-world deployment environment. The reward adjustment technique has demon-

strated its versatility by being successfully applied to various RL domains, including model-

based RL, inverse RL, and unsupervised RL, for mitigating dynamics mismatch [113–115].

Another approach in this category combines an offline dataset with online samples from sim-

ulation, offering a blend of offline and online learning, but it relies on the assumption of near-

optimal samples in the offline dataset for effective performance [108].

Lastly, a hybrid category of approaches combines elements of both system identification

and domain adaptation. These methods, such as grounded simulators, employ transformations

on the source domain to align its behavior with the target domain, effectively allowing the

agent to learn as if it were directly interacting with the real world [104–106]. This is achieved

by incorporating forward and/or inverse dynamics models of both the source and target do-

mains. While promising, the performance of grounded simulators is highly dependent on the

state-action coverage achieved by the grounding policy, making it sensitive to the quality and

diversity of the collected data.

3.2.2 Uncertainty in Deep Reinforcement Learning

Deep Neural Networks (DNNs) have been instrumental in the success of deep RL due to

their ability to represent complex functions [39], including smooth dynamics often present in

robotics [46]. However, when data is limited, DNNs are susceptible to over-fitting, which can

lead to significant uncertainty about the model’s true capabilities and degrade the performance

of deep RL frameworks.

To address this issue, researchers have explored various approaches. One systematic method

is parametric Bayesian inference [116], which leverages predefined probability distributions to

represent uncertainty in model parameters. While powerful, this approach can be computation-

ally expensive for complex models with numerous parameters, especially when dealing with

high-dimensional data. Its effectiveness also heavily depends on choosing an informative prior.

An effective alternative is non-parametric bootstrapping, which utilizes an ensemble of

models with random initializations. This technique has found wide application across vari-

ous areas of deep RL. For example, in model-based RL, bootstrapping ensembles have been
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employed to learn accurate dynamics models [60,117]. They have also proven valuable in pol-

icy and value function estimation within model-free RL [118, 119] and offline RL [120, 121].

Furthermore, model uncertainty estimation plays a crucial role in designing exploration re-

wards [119, 122], enhancing the agent’s ability to efficiently explore its environment. By in-

centivizing the agent to gather information that reduces model uncertainty, these approaches

can lead to more efficient and effective learning, particularly in sparse reward settings. In our

work, we leverage bootstrapped models to estimate uncertainty in the dynamics modelling, a

factor we demonstrate to be crucial for domain adaptation.

3.3 Background

3.3.1 Problem Formulation: Off-Dynamics RL

We intend to deploy our agent in a given environmentMtarget = (𝑆, 𝐴, 𝑃, 𝑅, 𝛾, 𝑑0). However,

due to the constraints on interacting directly with the target environment, we leverage inter-

actions with a more accessible simulation environment,Msource = (𝑆, 𝐴, 𝑃′, 𝑅, 𝛾, 𝑑0). The key

difference between these two environments lies in their transition dynamics, i.e. 𝑃 ≠ 𝑃′. In our

problem setting, we assume abundant interactions withMsource and a limited and sub-optimal

dataset collected fromMtarget.

3.3.2 Domain Adaptation with Rewards from Classifier (DARC)

To mitigate the dynamics mismatch, Eysenbach et al. [107] proposed a domain adaptation

method DARC, which learns a policy whose behavior receives high reward in the source do-

main and has high likelihood under the target domain dynamics. By defining 𝑝(𝜏) as the

desired distribution over trajectories in the target domain,

𝑝(𝜏) ∝ 𝑝1(𝑠1)
(∏

𝑡

𝑝target(𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡)
)

exp
(∑︁

𝑡

𝑟 (𝑠𝑡 , 𝑎𝑡)
)
, (3.1)

and 𝑞(𝜏) as our agent’s distribution over trajectories in the source domain,

𝑞(𝜏) = 𝑝1(𝑠1)
∏
𝑡

𝑝source(𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡)𝜋𝜃 (𝑎𝑡 | 𝑠𝑡). (3.2)
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They minimized the reverse KL divergence between 𝑝(𝜏) and 𝑞(𝜏) as follows:

min
𝜋(𝑎 |𝑠)

𝐷KL(𝑞∥𝑝) = −E𝑝source

[∑︁
𝑡

𝑟 (𝑠𝑡 , 𝑎𝑡) +H𝜋 [𝑎𝑡 | 𝑠𝑡] +Δ𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]

(3.3)

where

Δ𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) ≜ log 𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡) − log𝑞 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡) .

H𝜋 is the entropy of the policy and 𝑡 is the time-step. The reward adjustment Δ𝑟, penalises the

agent for taking transitions more likely in the source domain than in the target domain and vice

versa. The reward adjustment Δ𝑟 requires an explicit model of the dynamics which may be in-

accurate in continuous control tasks with a high dimensional state-action space. Subsequently,

they estimated Δ𝑟 using Bayes rules with two domain classifiers 𝑝(·|𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and 𝑝(·|𝑠𝑡 , 𝑎𝑡)
as follows:

Δ𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = log 𝑝 (target | 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) − log 𝑝 (target | 𝑠𝑡 , 𝑎𝑡)

− log 𝑝 ( source | 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + log 𝑝 ( source | 𝑠𝑡 , 𝑎𝑡)
(3.4)

The domain classifiers are binary classifiers trained separately used to distinguish between

source and target domain transitions.

3.4 Methodology

The key to DARC for domain adaptation lies in the introduced reward adjustment. This ad-

justment incentivizes agents to choose actions that lead to transitions resembling those in the

target domain. However, this approach has two limitations:

1. Action Set Constraint: During training, the action set used to compute the reward ad-

justments (Equation 3.3) coincides with the action set used for updating the maximum

entropy RL method through simulation sampling. Restricting both actions to the same

set hinders the search for an optimal solution that maximises both rewards.

2. Classifier Errors: Due to the epistemic errors in the DARC classifiers, the dynamics re-

ward adjustments might be inaccurate. These errors are particularly problematic if they

are overly optimistic. In such cases, the policy might be led to sample state-action pairs

that fall outside the target distribution during rollouts in the target environment. Conse-

quently, the agent lacks the capability to self-correct and return to the desired distribution,

causing planning in the target environment to diverge.
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In the following, we propose novel solutions to address these limitations.

3.4.1 Dual Action Policy (DAP)

The first limitation of DARC lies in the action set constraint. To address this issue, we propose

a relaxation strategy using DAP. The core idea of DAP is to utilize a single policy to simultane-

ously predict two distinct sets of actions 𝑎 = [𝑎src, 𝑎tgt]. The first set 𝑎src, is used for sampling

within the simulation environment which aligns with the standard behavior of maximum en-

tropy RL methods. The second set introduces a novel concept: predicting an additional set

of actions 𝑎src. The decoupling of the actions into two sets would make it easier for 𝑎tgt to

address the dynamics mismatch via reward adjustments, while 𝑎src focuses on maximizing the

task reward. We highlighted all terms related to the 𝑎src or 𝑎tgt in blue and red respectively.

Formally, following Equation 3.3, the modified objective function can be expressed as:

min
𝜋( [𝑎src

𝑡 ,𝑎
tgt
𝑡 ] |𝑠)

𝐷KL(𝑞∥𝑝) =−E𝑝source

[∑︁
𝑡

𝑟
(
𝑠𝑡 , 𝑎

src
𝑡

)
+H𝜋

(
𝑎src
𝑡 | 𝑠𝑡

)
+Δ𝑟

(
𝑠𝑡 , 𝑎

tgt
𝑡 , 𝑠𝑡+1

)]
and the modified reward adjustment is:

Δ̂𝑟

(
𝑠𝑡 , 𝑎

tgt
𝑡 , 𝑠𝑡+1

)
≜ log 𝑝

(
𝑠𝑡+1 | 𝑠𝑡 , 𝑎tgt

𝑡

)
− log𝑞

(
𝑠𝑡+1 | 𝑠𝑡 , 𝑎tgt

𝑡

)
This objective is optimized under a new MDP,Mdual = (𝑆, 𝐴dual, 𝑃, 𝑅, 𝛾, 𝑑0), where |𝐴dual | =
2× |𝐴|, and 𝐴 is the original action-space. Similar to DARC, following Equation 3.4, we use a

pair of domain classifiers to estimate Δ̂𝑟:

Δ̂𝑟

(
𝑠𝑡 , 𝑎

tgt
𝑡 , 𝑠𝑡+1

)
= log 𝑝

(
target | 𝑠𝑡 , 𝑎tgt

𝑡 , 𝑠𝑡+1
)
− log 𝑝

(
target | 𝑠𝑡 , 𝑎tgt

𝑡

)
− log 𝑝

(
source | 𝑠𝑡 , 𝑎tgt

𝑡 , 𝑠𝑡+1
)
+ log 𝑝

(
source | 𝑠𝑡 , 𝑎tgt

𝑡

) (3.5)

An overview of the training process for DAP is illustrated in Figure 3.1. During deploy-

ment, we exclusively utilize 𝑎tgt to sample actions in the target environment, while 𝑎src is no

longer used, as illustrated in Figure 3.2.
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Figure 3.1: Training in Source Env. 𝜋DAP predicts additional action set 𝑎tgt, optimized for the
target environment while 𝑎src is utilized for sampling the source environment.

3.4.2 Regularization

From our DAP formulation in Equation 3.5, the source and target policies play distinct but

interconnected roles. The source policy faces a dual optimization challenge: it must maxi-

mize returns while generating state sequences indistinguishable from the target tasks by the

classifiers. In contrast, the target policy’s primary influence is on the reward shaping term.

This design creates an interesting dynamic. To this end, we introduce a regularization term,

| |𝑎src
𝑡 − 𝑎

tgt
𝑡 | |22, to prevent the generation of infeasible actions by 𝑎tgt, controlled by a hyperpa-

rameter 𝜆 as follows:

Δ𝑟

(
𝑠𝑡 , 𝑎

tgt
𝑡 , 𝑠𝑡+1

)
= Δ̂𝑟

(
𝑠𝑡 , 𝑎

tgt
𝑡 , 𝑠𝑡+1

)
+𝜆 | |𝑎src

𝑡 − 𝑎
tgt
𝑡 | |22 (3.6)

The regularization hyper-parameter 𝜆 plays a pivotal role in maintaining the balance be-

tween these two policies. Without regularization (𝜆→ 0), the target policy would be uncon-

strained and might prioritize generating actions that maximize the reward shaping term, without

necessarily optimizing for actual task returns. Conversely, large 𝜆 values would cause DAP to

converge towards DARC-like behavior, as the regularization term would dominate the reward

shaping, effectively forcing the two policies to be nearly identical.
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Figure 3.2: Deployment in Target Env. Only 𝑎tgt is utilized while 𝑎src is discarded.

Another factor contributing to DAP’s effectiveness is the simultaneous prediction of 𝑎src

and 𝑎tgt using a single policy. Maximizing Equation 3.6 with a single policy constrains the

target policy to ensure that 𝑎tgt stays within the state distribution reachable by 𝑎src, which

would be challenging if separate models were used.

3.4.3 Uncertainty-based Robust Action Resampling

Next, we address the problem of epistemic errors in the DARC’s domain classifiers, which

can lead to overly optimistic strategies during deployment. Our solution tackles this issue

within the training framework by first measuring these uncertainties. Thereafter, we modify

the predicted action to a more robust choice based on the severity of the uncertainty. This is

achieved by randomly perturbing the action with a magnitude proportional to the uncertainty

level. This approach allows actions with low uncertainty to remain unchanged, while forcing

uncertain actions to explore a wider range of states. By encouraging exploration in uncertain

areas, the agent gains the capability to self-correct and return to state-action distributions with

greater certainty.

Formally, to quantify the dynamics uncertainty due to epistemic errors, we follow a simple

but effective method in [123] which utilizes a deep ensemble. Specifically, we train an ensem-
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ble of 𝑁 domain classifiers (Equation 3.6), denoted by 𝑝𝑖 (target|𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and 𝑝𝑖 (source|𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1),
respectively, for 𝑖 = 1, . . . , 𝑁 , with randomly initialized weights. The intuition behind this ap-

proach is that a high standard deviation in the log probabilities across the ensemble indicates

significant disagreement about the predicted state transitions, suggesting higher uncertainty in

the dynamics model. During training, for each sampled action 𝑎 = [𝑎src, 𝑎tgt], we resample and

replace 𝑎src with a robust action, denoted as �̂�src
𝑡 , from a normal distribution:

�̂�src
𝑡 ∼ N(𝑎src

𝑡 , 𝑘𝜎𝑡), (3.7)

where

𝜎𝑡 = Std
{ [

log 𝑝𝑖
(
target | 𝑠𝑡−1, 𝑎

tgt
𝑡−1, 𝑠𝑡

)
− log 𝑝𝑖

(
target | 𝑠𝑡−1, 𝑎

tgt
𝑡−1

)
− log 𝑝𝑖

(
source | 𝑠𝑡−1, 𝑎

tgt
𝑡−1, 𝑠𝑡

)
+ log 𝑝𝑖

(
source | 𝑠𝑡−1, 𝑎

tgt
𝑡−1

)]
𝑖=1,...,𝑁

} (3.8)

Here, 𝑘 represents a scaling hyper-parameter, 𝜎𝑡 represents an uncertainty measure and Std()
is the standard deviation function. The modified action encourages exploration where the agent

may behave erroneously in the target environment, enhancing its robustness. During deploy-

ment, the agent directly relies on the sampled action from the policy, bypassing the robust

action. The complete training procedure combining DAP and uncertainty-based action resam-

pling is detailed in Algorithm 1.

Algorithm 1 Dual Action Policies (DAP) with Uncertainty-based Action Resampling
1: Input: Target dataset Dtarget, Source MDPMsource
2: Input: Regularizer 𝜆, scaling parameter 𝑘 , ensemble size 𝑁 .
3: Initialize: 𝜋DAP,Mdual usingMsource, initial state 𝑠1, replay bufferDsource and ensemble of domain

classifiers 𝑝𝑖 (·|𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and 𝑝𝑖 (·|𝑠𝑡 , 𝑎𝑡 ) for 𝑖 = 1, · · · , 𝑁 .
4: for 𝑡 in 1,2, ...,num iter do
5: Sample 𝑎 = [𝑎src, 𝑎tgt] from 𝜋DAP(𝑠𝑡 )
6: Resample 𝑎src based on Eqn. 3.7 to get �̂�src

7: Sample 𝑠𝑡+1 in MDPMdual using �̂�src

8: Compute reward adjustment Δ𝑟 (𝑠𝑡 , 𝑎tgt
𝑡 , 𝑠𝑡+1) using Eqn 3.6

9: Store (𝑠𝑡 , 𝑎src, 𝑎tgt, 𝑟𝑡 +Δ𝑟, 𝑠𝑡+1) in Dsource
10: Update 𝜋DAP with Dsource using SAC [45]
11: Update domain classifiers with Dsource∪Dtarget [107]
12: end for
13: return 𝜋DAP
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3.5 Experiments

In this section, we conduct experiments to demonstrate the effectiveness of our method. We

begin by outlining the experimental setup, which involves creating a diverse and challenging

set of environments for both training and evaluation. We then design and conduct compre-

hensive experiments to thoroughly compare the effectiveness of our proposed methods against

several strong baselines. Additionally, we perform ablation studies to investigate the impact of

regularizer, resampling the robust action and size of dataset.

3.5.1 Experimental Setup

Environments. To evaluate our method’s ability to bridge the sim-to-real gap, we conducted

experiments in the MuJoCo physics simulator [124]. We used a diverse set of four challeng-

ing settings created by modifying the physical properties of simulated robots in these environ-

ments: Ant, Half-Cheetah, Hopper, and Walker2d. We collected an offline dataset consisting of

𝑀 = 20000 samples using a source behavioral policy sampled in the target environment. The

source behavioral policy is trained using Soft-Actor Critic (SAC) in the source environment

with 1M steps [45].

Baselines. We benchmarked against various sim-to-real algorithms which aim to address the

dynamics mismatch. We have excluded methods which requires dynamics prior [27, 29, 109].

Overall, we trained the following policies:

1. RL on source - Policy trained in the source environment using SAC [45]. This is also

the behavioral policy used to collect the target dataset.

2. RL on target - Policy trained in the target environment using SAC [45]. Oracle for the

upper bound performance in the target environment.

3. GARAT [125] - Method to ground the simulator using adversarial policy.

4. H2O [108] - Dynamics-aware method to learn from both online and offline data.

5. DARC [107] - Method based on reward adjustments with domain classifiers .

6. DAP (Ours) - Dual action policy predicting two set of actions (Sect. 3.4.1)
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7. DAP+U (Ours) - DAP + Uncertainty-based Robust Action Resampling (Sect. 3.4.3)

Implementation details. We adopted the default hyperparameter settings from DARC [107]

for our DAP implementation. All policies were trained for 1M steps. For the regularization

term 𝜆 (Equation 3.6), we observed stability across values in the range [0.05,0.2], thus we

fixed 𝜆 = 0.10 for all experiments, except for the ablation study of 𝜆. The number of ensembles

used to calculate uncertainty was set to 𝑁 = 5 to achieve a good balance between accuracy and

speed. The scaling parameter for uncertainty-based action resampling (Equation 3.7) was set

to 𝑘 = 0.10 for all experiments except for the ablation study of 𝑘 .

3.5.2 Main Results

We evaluated baseline policies across four target tasks. Each evaluation comprised 100 episodes

across 3 random seeds per checkpoint. The evaluation curves are presented in Figure 3.3, with

the title specifying details about the tasks and environment settings. We plot target environment

returns against the number of source environment training steps. For “RL on source” and “RL

on target”, we show their respective maximum returns as horizontal dashed lines. For all tasks,

“RL on source” performs significantly worse than “RL on target”. The huge gaps suggest that

policies optimized for the source domain are not directly transferable to the target domain.

Our experiments reveal several key findings. First, H2O performs poorly in all tasks, of-

ten worse than “RL on source”. This is because H2O relies on access to optimal target data

for good performance. Next, without online interaction, both DARC and GARAT struggle,

achieving performance slightly better or worse than “RL on source.” Our proposed method,

DAP, outperforms all other baselines significantly. It achieves at least double the return com-

pared to “RL on source” on all tasks, demonstrating its effectiveness despite utilizing only

sub-optimal offline data. Furthermore, DAP with uncertainty estimation (DAP+U) shows ad-

ditional improvement on most tasks, nearly matching the performance of “RL on target” in

some cases. This demonstrates the effectiveness of the robust action resampling. Notably,

the half-cheetah task remains the most challenging, with even the best method achieving only

∼ 3500, significantly lower than the optimal score of 9000.
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Figure 3.3: Main results evaluated in target environment. We compare our proposed meth-
ods, DAP and DAP+U, against several baseline approaches.

3.5.3 Ablation Experiments

Regularization Effects. The interplay between the source and target policies in DAP is crucial

to its performance. The source policy serves a dual purpose: optimizing returns and generating

state sequences indistinguishable from the target tasks. Meanwhile, the target policy primar-

ily influences the reward shaping term. The regularization parameter 𝜆 plays a pivotal role

in maintaining the balance between these two policies. Our ablation studies on 𝜆 as seen in

Figure 3.4 revealed a clear trade-off: as 𝜆 approaches 0, performance on the target task signifi-

cantly deteriorates due to the target policy generating ”interesting” actions without optimizing

returns. Conversely, large 𝜆 values cause DAP to converge towards DARC-like behavior, as

the regularization term dominates the shaping. We found an optimal range for 𝜆 that preserves

DAP’s unique benefits while ensuring sufficient closeness between the policies. This balance
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Figure 3.4: Ablation: Regularization Effects on parameter 𝜆.

is critical: it allows the target policy to explore potentially beneficial actions while still lever-

aging the source policy’s optimized behavior. The careful tuning of 𝜆 thus enables DAP to

outperform both unconstrained exploration and strict imitation of the source policy.

Uncertainty-based action resampling. Our next experiment investigates the importance of

the scaling parameter, 𝑘 , for uncertainty-based action resampling (Equation 3.7). We evaluate

a range of 𝑘 values on the Walker2D environment and present the results in Figure 3.5. We

begin with DAP without any resampling (𝑘 = 0) as the baseline. When we slightly increase 𝑘 to

0.01, we observe slight improvement over the baseline at certain points during training. How-

ever, this performance gain doesn’t persist throughout the training process. Further increasing

𝑘 to 0.05 and 0.10 leads to significant improvement over the baseline, with 𝑘 = 0.10 achieving

the best performance. However, setting 𝑘 to larger values like 0.15 and 0.20 results in a dete-

rioration of the policy’s performance. Notably, at 𝑘 = 0.20, the policy exhibits instability and

fails completely.

Size of target dataset. Our next experiment investigates the impact of the target dataset size,

𝑀 . We evaluate a range of 𝑀 values on the Walker2D environment and present the results in

Figure 3.6. The policy setting is DAP+U (DAP with uncertainty estimation, 𝑘 = 0.10). We
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Figure 3.5: Ablation: Effect of scaling parameter for uncertainty-based action resam-
pling, 𝑘 .

Figure 3.6: Ablation: Effect of size of offline dataset, 𝑀 , collected in target environment.
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begin with 𝑀 = 20,000 as the baseline similarly used in the main experiment. We observe

that decreasing 𝑀 to 15,000 and 10,000 has minimal impact on the results, with the evalua-

tion curves remaining relatively similar throughout the training process. However, a further

decrease to 𝑀 = 5,000 shows a decline in performance beyond 400,000 steps. Interestingly,

with a bare minimum of 𝑀 = 1,000 samples (equivalent to 1 episode), the policy maintains

performance close to ”RL on source” and avoids complete failure.

3.6 Conclusion

We propose the Dual Action Policy, a method for reinforcement learning that tackles the real-

ity gap. Unlike conventional approaches, DAP employs a single policy to predict two sets of

actions simultaneously. The first set maximizes the task reward, while the second set addresses

the dynamics mismatch through reward adjustments. This decoupling makes it easier to max-

imise the overall reward in the source domain during training. To improve robustness, we

introduce additional exploration based on uncertainty in dynamics estimation. Through action

resampling, the agent explores areas with high dynamics uncertainty during training, enhancing

its robustness during deployment. Experimental results demonstrate the effectiveness of DAP

in achieving superior performance compared to several strong baselines across diverse and

challenging target environments. Notably, DAP with uncertainty-based exploration (DAP+U)

further improves performance, nearly matching the Oracle performance in some cases.
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Chapter 4

Mitigating Dynamics Mismatch in Offline
Reinforcement Learning

4.1 Introduction

Offline RL offers a valuable alternative to simulation-based training [37, 126], complementing

the benefits of online RL explored in Chapter 3. This approach utilizes pre-existing datasets,

eliminating the need for real-time interaction with the environment during training. By an-

alyzing and extracting knowledge from these datasets, offline RL algorithms learn effective

control policies. A significant advantage of offline RL is its ability to leverage diverse datasets

from multiple sources, potentially including expert demonstrations or high-performing agents.

This allows the RL agent to learn from a vast array of experiences that may be challenging

to replicate in simulations. Consequently, offline RL not only addresses safety and feasibility

concerns but also opens up new avenues for training intelligent agents in various fields. For

instance, offline RL can be employed to train surgical robots by learning from demonstrations

by experienced surgeons [47,48], or to enhance data-driven financial trading by analyzing his-

torical market data [49, 50]. In medicine, offline RL can improve diagnosis by learning from

past patient records and clinical data [51, 52]. Additionally, it holds potential for revolutioniz-

ing autonomous vehicle development by learning from vast amounts of driving data collected

from real-world scenarios [53–55].

However, offline RL is not without its challenges. The effectiveness of offline RL algo-

rithms is heavily dependent on the quantity and quality of the available data. In scenarios

where data is scarce or of low quality, the performance of offline RL can deteriorate signifi-

cantly [127, 128]. Therefore, despite the advantage of not requiring live interaction with the
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environment, a fundamental challenge in offline RL lies in the acquisition of large-scale, high-

quality datasets, particularly those containing expert-level demonstrations. Addressing this

challenge is crucial for realizing the full potential of offline RL in a wide range of real-world

applications.

This work explores the potential of leveraging more accessible source datasets to address

the challenge of data scarcity in offline RL. We draw inspiration from the success of transfer

learning in supervised learning, where the utilization of data from multiple sources, including

those that are easier to obtain, has become increasingly common [129–133]. We aim to adapt

this principle to offline RL, where the scarcity of high-quality data can significantly limit the

learning process. Specifically, we propose to incorporate readily available off-dynamics source

datasets into the offline RL framework. These datasets are characterized by their alignment

with the target task’s objective, meaning they contain relevant information about the desired

behavior or outcome. Although these datasets may be collected from similar robots, subtle

dynamic variations can exist between individual units due to factors like manufacturing incon-

sistencies, wear and tear, or environmental conditions. This can introduce dynamics mismatch,

potentially impacting the performance of RL agents when transferred to the target robot.

This strategy can be well applicable to real-world settings. For instance, in the domain of

self-driving cars, data collected from various cities or different vehicle models, even if they

possess distinct dynamics due to varying road conditions or vehicle specifications, can still be

leveraged to improve the learning process. Similarly, in medical diagnosis, data from similar

but not identical illnesses can provide valuable insights and contribute to the development of

more accurate diagnostic models. In the field of surgical robotics, initial training on artificial

organs can offer a valuable stepping stone for learning complex surgical procedures before

transitioning to real patients. Furthermore, financial trading algorithms can benefit from uti-

lizing data from larger, related markets to inform their decision-making processes in smaller

markets with limited historical data.

Several approaches have been proposed to leverage off-dynamics samples to boost RL

training. One popular method is to introduce a reward bonus to incentivize agents for taking

actions which end up resembling the target environment [107, 108, 113, 115, 128]. However,

this incurs extra cost and renders the learning of the primary task to be less effectively due to

the embedded nature of the reward bonus. An alternative method is to apply transformations to
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Figure 4.1: Overview of our proposed framework for off-dynamics offline RL. (Left) We
utilize an accessible off-dynamics source dataset to enhance a limited target dataset for Offline
RL. Our goal is to generate optimal trajectories within the green region. (Right) By condition-
ing a diffusion planner with our proposed continuous dynamics score, we enable the model to
capture the underlying dynamics structure within the latent space through overlapping dynam-
ics information.

the source domain [104–106], making it behave like the target domain. This allows the agent

to learn as if it were in the target domain. However, this requires online interactions with the

target environment, making it unsuitable for our problem setting.

To address these limitations, we propose to utilize the flexibility and expressiveness of dif-

fusion probabilistic models (DPMs) [67–69] to learn a joint distribution of both source and

target data for greater data efficiency. DPMs have demonstrated impressive capabilities in

image generation [70, 72], audio generation [73], video generation [75] and more recently in

Offline RL [84,86,87]. To enable our model to generate trajectories for the target environment,

we utilize classifier-free guidance [78] by conditioning our model with dynamics-related con-

texts. For this context, we propose a continuous dynamics score as an alternative to the discrete

dynamics labels as seen in Figure 4.1. This “soft score” allows for greater coverage, enabling

overlap between trajectories from different datasets. Furthermore, we incorporate an inverse-

dynamics context that measures the closeness to the target dynamics, ensuring the generated

trajectories adhere to the target environment’s dynamic constraints. Together, the context fa-
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cilitates capturing the underlying dynamics structure within the latent space more effectively,

leading to improved generation performance.

We conduct comprehensive experiments to evaluate the effectiveness of our method on a

diverse set of challenging off-dynamics settings. Empirical results demonstrate that our method

outperforms several strong baselines. The simplicity of the proposed dynamics-related contexts

coupled with the powerful capabilities of DPMs allow us to effectively leverage an accessible

off-dynamics source dataset. Lastly, we demonstrate that by modifying the context, we can

interpolate between source and target dynamics, making the model more robust to subtle shifts.

4.2 Related Work and Background

4.2.1 Problem Formulation: Off-Dynamics Offline RL

In this chapter, we aim to enhance a limited target dataset offline using an accessible off-

dynamics source dataset. We go beyond the standard offline RL framework of using a single

fixed static offline dataset Dtarget. Formally, similarly defined in [128], we incorporate an

additional source dataset Dsource = (𝑠, 𝑎,𝑟, 𝑠′), collected by another unknown behavior policy

𝜇source, where 𝜇source ≠ 𝜇target. A key distinction is that the source dataset is derived from an eas-

ily accessible source MDPMsource, which exhibits different transition dynamics from the target

MDPMtarget, i.e., ∃(𝑠, 𝑎, 𝑠′) : 𝑃source(𝑠′|𝑠, 𝑎) ≠ 𝑃target(𝑠′|𝑠, 𝑎). We assume that 𝜇source is nearly

optimal, and Dsource sampled underMsource is abundant but off-dynamics. Conversely, the tar-

get dataset is presumed to have limited and suboptimal trajectories sampled underMtarget. Our

goal is to enable the transfer of knowledge between the offline datasets Dsource and Dtarget to

diminish the data dependency of Dtarget for learning an optimal policy forMtarget. For brevity,

we now refer the transition dynamics of the source and target domain as source dynamics and

target dynamics respectively.

4.2.2 Dynamics Modelling for Dynamics Mismatch

Numerous works have explored inverse dynamics modeling to address the dynamics mismatch

in sim-to-real transfer. A key idea is to learn a transformation that makes the dynamics learned

in the simulator resemble those of the target environment. In early work, [134] proposed using

inverse dynamics modeling to align the dynamics learned in simulation with those of the target
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environment. This is achieved by sampling actions in the source environment and then utilizing

an inverse target dynamics model to determine corresponding actions. The inverse dynamics

are modeled using a neural network, assuming some data collection in the target environment.

Building on this concept, Grounded Action Transforms (GAT) [104] also models inverse tar-

get dynamics but relaxes the assumption of known forward source dynamics. Instead, GAT

proposes collecting samples in the simulator to learn the forward source dynamics. Further im-

provements came with Reinforced GAT (RGAT) [105], where the inverse model is represented

as a separate policy rather than a supervised model. This approach addresses the state distri-

bution shift problem in the inverse modelling of GAT by directly predicting the output of the

forward model. In Generative Adversarial Reinforced Action Transformation (GARAT) [125],

a single discriminative model is learned to predict whether trajectories come from the source

or target environment, inspired by Generative Adversarial Imitation Learning (GAIL) [135].

This eliminates the need for separate forward and inverse models. Overall, information extrac-

tion between source and target environments primarily involves inverse and forward dynamics

models using regression or discriminative models using classification.

4.2.3 Off-dynamics Offline RL

In the online RL context described in Chapter 3, we introduced DARC, which uses two do-

main classifiers to measure the difference between source and target domains. This method

encourages the agent to choose actions that more closely match the target dynamics. In offline

settings, we can apply this concept to address dynamics differences, but we must also tackle

the value overestimation issue in offline RL. Leveraging on this idea, Dynamics-Aware Reward

Augmentation (DARA) [128] applies the DARC reward adjustment to all existing rewards in

the offline dataset. This modification allows for subsequent policy training using any offline RL

method that addresses value overestimation. A similar approach was taken by Niu et al. [108],

who combined online and offline learning samples in a hybrid fashion. However, these meth-

ods using DARC reward adjustments face the similar limitations of the action set discussed

in Section 3.4, where restricting same action sets for reward adjustments and policy updates

during training can limit the search for an optimal solution that maximizes both rewards.
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4.3 Approach

We present our novel approach to improve a limited, sub-optimal target dataset, Dtarget, by

leveraging a larger, diverse but off-dynamics source dataset, Dsource. We achieve this by train-

ing a conditional DPM to learn the joint distribution of both datasets. Naively training both

datasets would be ineffective, as it would bias the model towards the source dynamics due to

the larger size and optimality of Dsource. This bias would cause the generated trajectories not

to align with the target environment’s dynamics.

To address this challenge, the model is conditioned on the following two dynamics-related

contexts:

• Continuous dynamics score: This replaces discrete labels (Figure 4.1) with a “soft” score,

allowing for smoother transitions and overlap between trajectories from different datasets.

• Inverse-dynamics context: This measures how closely generated trajectories align with

the target environment’s dynamics, ensuring the generated samples adhere to its specific

constraints.

These contexts enable the model to learn the joint distribution while adhering the inherent

dynamics within the latent space.

4.3.1 Dynamics Score Context

We aim to introduce a context that can effectively capture both the differences and similarities

between Dsource and Dtarget in terms of dynamics information. This context is crucial for

understanding how the system behavior changes across different environments or conditions. A

straightforward method is assigning the context as a discrete one-hot label, for example, using

‘0’ for samples from Dsource and ‘1’ for those from Dtarget. This approach provides a clear

distinction between the two datasets, making it easy to identify which environment a particular

sample comes from. However, this discrete labeling does not provide sufficient information due

to the potential overlaps in dynamics between the datasets. The binary nature of this approach

does not allow for representing partial similarities or gradual changes in dynamics, which are

often present in real-world systems. For instance, there could exist transitions in both Dsource

and Dtarget that are identical, indicating a shared dynamic characteristic across both domains.
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These similarities are important to recognize, as they represent aspects of the system behavior

that remain consistent across different environments.

To address this limitation, we propose replacing the discrete context with a continuous

score. This continuous representation allows for a more fine-grained description of the dynam-

ics, capturing subtle differences and similarities. This score should also be symmetric, ensuring

equal representation for trajectories originating from Dsource and Dtarget. The symmetry prop-

erty is important as it prevents bias towards either the source or target domain, treating both

datasets equally in the analysis. To achieve this, for each trajectory 𝜏 in the form of Equation

2.37, we define the dynamics score over horizon, 𝐻 as

𝑐dyn score(𝜏) =
1
𝜅𝐻

𝐻−1∑︁
𝑡=0

{
log[𝑃target(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝜖]

− log[𝑃source(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝜖]} .
(4.1)

In this equation, 𝑃source and 𝑃target represent the probability of a given transition originat-

ing from the source and target datasets respectively. These probabilities quantify how likely a

particular state-action-next state transition is to occur in each environment. The parameter 𝜖 is

a small value added to prevent infinities when taking logarithms, ensuring numerical stability

in the calculations. The scaling parameter 𝜅 is introduced to keep the score within the range

[−1,1], making it easier to interpret and use in subsequent analyses. Smaller score values cor-

respond to trajectories with dynamics that more closely resemble the source dynamics, while

larger score values correspond to trajectories with dynamics that more closely resemble the

target dynamics. This allows for a continuous spectrum of similarity between the source and

target domains. When the score is zero, it means both dynamics are equally likely, representing

a point of shared characteristics or transition points between the two environments. The de-

tails of modeling 𝑃target will be elaborated in Section 4.3.3, where we will discuss the practical

aspects of implementing this scoring system.

4.3.2 Inverse-dynamics Context

When the diffusion sampling process attempts to maximize the out-of-distribution return con-

text, the resulting trajectory may not fully comply with the dynamics constraints of the under-

lying target MDP. To enforce these constraints more effectively, one potential approach is to
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employ an inverse action based on inverse dynamics, as demonstrated in [136]. This involves

using a separately trained inverse dynamics model to predict the action that best aligns with the

underlying MDP given two consecutive states.

Building upon this concept, we integrate inverse dynamics information into our method.

However, a key distinction is that instead of applying the inverse action as a post-processing

step after trajectory generation, we directly incorporate it as a context for the conditional model.

This modification is motivated by the observation that if the inverse action is computed after the

trajectory has already been generated, the consecutive states within the trajectory might have

already violated the dynamics constraints, rendering the inverse model incapable of accurately

recovering the correct action. By incorporating the inverse dynamics constraints directly into

the training process, we compel the trajectory to adhere to these constraints as closely as pos-

sible during the conditional sampling process, thereby preventing violations of the dynamics

constraints from occurring in the first place.

Formally, for each trajectory 𝜏 adhering to the structure defined in Equation 2.37, the in-

verse context, 𝑐inverse, is computed as follows:

𝑐inverse(𝜏) =
1
𝐻

𝐻−1∑︁
𝑡=0

log[1+ ∥𝐼target(𝑠𝑡 , 𝑠𝑡+1) − 𝑎𝑡 ∥2], (4.2)

where 𝐼target is the target inverse dynamics model, 𝐻 is the planning horizon. The logarithm

function helps to compress the range of the large-valued errors.

4.3.3 Practical Algorithm

We begin by outlining the process of learning 𝑃target, 𝑃source and 𝐼inverse. To model 𝑃target, we

parameterize a binary classifier, 𝑝𝜙 = 𝑝(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1;𝜙), with a multi-layer perceptron (MLP).

For 𝑃source, we simply use 1− 𝑝𝜙. We fit 𝑝𝜙 by minimizing the standard binary cross-entropy

loss:

𝐿 (𝜙) = −E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1)∼D𝑠𝑜𝑢𝑟𝑐𝑒∪D𝑡𝑎𝑟𝑔𝑒𝑡[
𝑦 log(𝑝𝜙) + (1− 𝑦) log(1− 𝑝𝜙)

]
,

(4.3)

where 𝑦 = 0,1 represents the source and target labels respectively.

Next, to model the inverse dynamics 𝐼target, we parameterize it by 𝜓 with another MLP, and

minimize the standard mean-squared error between the predicted action and true action 𝑎𝑡 :

𝐿 (𝜓) = E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1)∼D𝑡𝑎𝑟𝑔𝑒𝑡

[
(𝐼𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡 , 𝑠𝑡+1;𝜓) − 𝑎𝑡)2

]
. (4.4)
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Algorithm 2 Training: Off-dynamics Conditional Diffusion Planners
1: Input: Target dataset Dtarget, Source dataset Dsource
2: Input: Number of training updates 𝑁 ,
3: Number of diffusion time steps 𝑇
4: Initialize dynamics score model 𝑞𝜙 and inverse model 𝑓𝜓
5: Fit 𝑞𝜙 using Loss in Eq.4.3 over Dtarget∪Dsource
6: Fit 𝑓𝜓 using Loss in Eq.4.4 over Dtarget
7: // Start Conditional Diffusion Training
8: Initialize Conditional U-Nets 𝜖𝜃
9: for 𝑛 in 1,2, ..., 𝑁 do

10: Sample stratified batch 𝜏B ∈ Dtarget∪Dsource
11: Compute context 𝑐𝑑𝑦𝑛 𝑠𝑐𝑜𝑟𝑒 (𝜏B) = 𝑞𝜙 (𝜏B)
12: Compute context 𝑐𝑖𝑛𝑣𝑒𝑟𝑠𝑒 (𝜏B) = 𝑓𝜓 (𝜏B)
13: Set full context 𝒚(𝜏B) = [𝑅(𝜏B), 𝑐𝑑𝑦𝑛 𝑠𝑐𝑜𝑟𝑒 (𝜏B), 𝑐inverse(𝜏B)] .
14: for 𝑡 in 1,2, ...,𝑇 do
15: Update 𝜃 with 𝜖𝜃 (𝜏B , 𝑡, 𝒚(𝜏B)) using Loss in Eq.4.6
16: end for
17: end for

Now, we introduce a practical algorithm that combines all components for training a off-

dynamics conditional diffusion-based planner. Our model follows the classifier-free approach

with input trajectories 𝜏, following Equation 2.37. The models are conditioned on the full

context 𝒚(𝜏), which consists of the dynamics score, the inverse dynamics and the normalised

return 𝑅(𝜏) ∈ [0,1] as follows:

𝒚(𝜏) = [𝑅(𝜏), 𝑐𝑑𝑦𝑛 𝑠𝑐𝑜𝑟𝑒 (𝜏), 𝑐inverse(𝜏)] . (4.5)

This context summarizes the optimality and the dynamics information of each trajectory in a

continuous form as movitated in Fig. 4.1. By leveraging dynamics information, the condi-

tional model gains the ability to flexibly learn from both Dsource and Dtarget with greater data

efficiency. It also enables the conditional model to generate optimal trajectories from either

domain in a seamless manner. The objective for the conditional diffusion process is,

max
𝜃

E𝜏∼(Dsource∪Dtarget) [log 𝑝𝜃 (𝒙0(𝜏) | 𝒚(𝜏))]

with the loss given by

L(𝜃) = E𝑘∼[1,𝐾],𝑥0∼𝑞,𝜖∼N(0,𝐼) ∥𝜖 − 𝜖𝜃 (𝑥𝑘 (𝜏), 𝑘, 𝑦(𝜏))∥2 (4.6)
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The complete training procedure is detailed in Algorithm 2. During planning, we set the

target context 𝑦(𝜏) = [1,1,0] to generate trajectories that maximize the reward for the tar-

get environment. This aligns with Equations 4.1 and 4.2, where 𝑃target(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 1 and

𝐼target(𝑠𝑡 , 𝑠𝑡+1) = 𝑎𝑡 , ensuring the generated trajectories adhere to the target dynamics.

4.4 Experiments

We design and conduct comprehensive experiments to thoroughly compare the effectiveness of

our method with existing ones. We begin by outlining the experimental setup, which involves

creating a diverse and challenging set of off-dynamics datasets for training and evaluation.

Nine distinct settings are used to compare our approach with several strong baselines. Addi-

tionally, an ablation study is conducted to investigate the specific contribution of each dynamics

context to the performance improvement. Finally, we investigate the robustness and capacity

of our model to seamlessly interpolate between source and target dynamics.

4.4.1 Experimental Setup

Datasets. We formulate our experimental datasets based on our proposed framework, illus-

trated in Figure 4.1 (left). We require a large and diverse offline source dataset, and select the

Hopper, Walker2d, and Halfcheetah medium-expert datasets from D4RL [1], each consisting

of around 2 million samples. For the target dataset, we need limited and sub-optimal samples

with different dynamics compared to the source. To achieve this, we first create multiple off-

dynamics variants by modifying parameters like mass, size, control range, friction, and gear

torques within each environment. We proposed nine different experimental settings across

three distinct environments, each with three variations in their physical properties as seen in

Table 4.1. Subsequently, we collect 10,000 samples from each modified environment using a

behavioral policy trained with Diffuser in the respective source environment. This diverse and

challenging off-dynamics setting allows for comprehensive evaluation of our method.

Baselines. We benchmark against various data-driven control algorithms for off-dynamics

offline RL. We apply the off-dynamics reward compensation method DARA [128] to sev-

eral well-performing offline RL algorithms. Among these offline RL algorithms, we include
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Task Property Source Target Environment

Half-cheetah
total mass 14 7 Half-cheetah mass
torso size 0.046 0.092 Half-cheetah torso size

control range [-1,1] [-0.5,0.5] Half-cheetah ctrl range

Walker2d
thigh action Enabled Disabled Walker2d thigh

foot gear torque 100 70 Walker2d foot torque
foot length 0.1 0.25 Walker2d foot len

Hopper
foot friction 2.0 1.7 Hopper foot fric

torso stiffness 0 3 Hopper torso stiff
leg size 0.03 0.04 Hopper leg size

Table 4.1: Nine different experimental settings across three distinct environments. Each
with three variations in their physical properties. The columns ‘Source’ and ‘Target’ represent
the dynamics settings of Dsource and Dtarget, respectively.

model-free methods like BCQ [57] and CQL [59], as well as diffusion-based methods like Dif-

fuser [86]. In addition to DARA, we include the fine-tuning method, which performs 10,000

additional updates on a pre-trained source model using the target dataset.

Implementation details. For the hyper-parameters of DPM, we follow the default settings in

Diffuser [86]. For both the classifier and inverse models, we use basic MLPs with 2 hidden

layers and 32 nodes, each trained for 200k updates. We apply min-max normalization to the

outputs of these models prior to context computations. During training, we apply a context

dropout of 𝑝 = 0.5 for each context independently. During sampling, we use a conditional

sampling weight of 𝑤 = 0.9 for all environments. We evaluate our models over 300 episodes

across 3 seeds (total 900 episodes) and compute the normalized score over the target environ-

ments [1].

4.4.2 Main Results

The normalized scores obtained by various methods under three training scenarios are pre-

sented in Table 4.2: 1) training exclusively on source data, 2) pretraining on source data fol-

lowed by finetuning on target data, and 3) joint training on both source and target data.

In the source-only training scenario, where a Diffuser model trained on optimal samples

from the source dataset is evaluated on the target environment (“Dsource” column), we observe
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a substantial decrease in performance across all environments. This finding underscores the

significant challenges posed by the off-dynamics nature of our experimental environments,

where the dynamics of the source and target environments differ. The scores achieved by the

Diffuser in this setting serve as a baseline for evaluating performance on the target dataset, as

the Diffuser policy is subsequently used to collect target data.

When we transition to the finetuning scenario (“Dsource pretrain+Dtarget finetune” column),

where models are pretrained on the source dataset and then finetuned on the target dataset,

we find that all three methods (Diffuser, CQL, BCQ) generally underperform compared to

the source-only Diffuser. This suggests that the finetuning process may struggle to strike an

effective balance between learning the dynamics of the target environment while retaining the

knowledge of optimal behaviors acquired from the source dataset.

Finally, in the joint training setting (“Dsource∪Dtarget Joint Training” column), where mod-

els are trained on both source and target data simultaneously, we observe that both DARA

methods face difficulties in this low-data regime, despite the dynamics-aware reward adjust-

ment mechanism. In contrast, our proposed conditional DPM with dynamics contexts consis-

tently outperforms all other baseline methods. This superior performance can be attributed to

the powerful capability of the DPM to generate high-reward trajectories specifically tailored

for the target environment, guided by the contextually relevant information about the dynamics

of that environment. In the subsequent sections, we will analyze the individual contributions

of each dynamic context to the overall performance improvement.

4.4.3 Contexts Analysis

To gain a more comprehensive understanding of each context’s contribution to the performance

of the conditional DPM model, we conducted additional experiments. The mean normalized

score for each environment is presented in Figure 4.2. As a starting point, we consider the

conditional DPM with a single context comprising solely the trajectory return (R, blue bar).

This serves as a baseline to assess the impact of adding dynamics-related contexts.

When we augment the context with the dynamics score (R+DS, orange bar), we observe a

notable improvement in performance across all environments, achieving a score of 63.8. Re-

markably, the inclusion of just this single dynamics-related context is sufficient to surpass the
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Environment Dsource Dsource pretrain + Dtarget finetune Dsource∪Dtarget Joint Training
Diffuser Diffuser CQL BCQ CQL+DARA BCQ+DARA Proposed

Half-cheetah mass 30.2 32.6 26.3 28.7 27.3 19.8 56.8 ± 5.9
Half-cheetah torso size 43.6 38.2 32.0 46.8 45.9 32.2 54.1 ± 7.9
Half-cheetah ctrl range 41.7 25.2 52.2 2.2 53.2 53.1 61.5 ± 6.6

Walker2d thigh 22.6 39.1 28.8 -0.3 32.2 10.2 58.5 ± 9.0
Walker2d foot torque 42.9 36.7 46.8 51.0 -0.2 44.2 63.4 ± 12.2
Walker2d foot length 42.7 41.6 48.3 43.6 -0.2 5.3 63.0 ± 10.7

Hopper foot fric 50.7 52.5 32.1 40.2 49.7 109.5 124.2 ± 31.5
Hopper torso stiffness 73.9 72.2 65.7 72.5 51.8 42.9 95.0 ± 6.9

Hopper leg size 74.2 57.3 36.8 82.8 75.6 93.1 95.9 ± 9.3
Average 46.9 43.9 41.0 40.8 37.3 45.6 74.7

Table 4.2: Mean normalized scores evaluated on the target environment over 900 episodes
across 9 diverse settings. Our proposed method is a conditional diffusion planner with con-
texts according to Equation 4.5, trained with Algorithm 2.

performance of all other baseline methods listed in Table 4.2. This highlights the substan-

tial impact that even a simple dynamics-related signal can have on guiding the DPM towards

generating trajectories that are more aligned with the target environment dynamics.

Further incorporating the inverse dynamics context (R+DS+ID, green bar) yields additional

performance gains, with a particularly significant improvement observed in the Hopper envi-

ronment. This result suggests that even when the dynamics score effectively biases the gener-

ated trajectories towards the target environment, the inverse dynamics context provides supple-

mentary guidance for the sampling process, resulting in trajectories that adhere more closely

to the target dynamics.

To further investigate the role of inverse dynamics, we conducted an ablation study (R+DS+IA,

red bar) in which we applied the inverse action (as discussed in Section 4.3.2) directly to the

R+DS context. However, this modification led to a decline in performance compared to the

model without the inverse action. This finding supports our hypothesis that the consecutive

states generated by R+DS may already violate the dynamics constraints of the target environ-

ment, rendering the inverse model incapable of reliably recovering the correct action. These

results collectively underscore the importance of carefully selecting and combining context in-

formation to optimize the performance of the conditional DPM model. The dynamics score

plays a crucial role in guiding the model towards the target environment dynamics, while the

inverse dynamics context can provide further refinements.
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Figure 4.2: Ablation: models trained with different contexts following Algorithm 2. We re-
port the mean normalized score across different settings per environment. (‘R’, blue) represents
the base model conditioned on only the return. (‘R+DS’, orange) adds on the dynamics score
as contexts. (‘R+DS+ID’, green) further adds on the inverse-dynamics context. (‘R+DS+IA’,
red) applies inverse action on ‘R+DS’.

4.4.4 Robustness

Inspired by the success of diffusion models in other domains, where they achieve smooth in-

terpolation within the latent space by controlling contexts, we investigate whether our model

exhibits similar behaviors. This ability becomes crucial in real-world scenarios, as target dy-

namics often undergo subtle shifts. The capacity to generalize across a range of dynamics

without explicit training data for each variation is a key advantage for robust and adaptable

reinforcement learning systems.

To explore this, we leverage one of our experimental settings involving Halfcheetah with

varying masses (Table 4.2, first row). The source and target datasets correspond to masses

of 𝑚 = 14 and 𝑚 = 7, respectively. This setup allows us to examine how well our model can

interpolate between known dynamics and extrapolate to unseen conditions. Using the models

trained with these two datasets, we further evaluate the masses in between (interpolation: 8 ≤
𝑚 ≤ 13) and beyond (extrapolation: 3 ≤ 𝑚 ≤ 6). This comprehensive evaluation across a

spectrum of masses enables us to assess the model’s generalization capabilities and its ability

to handle dynamics shifts of varying magnitudes.
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Figure 4.3: Plot of the generalisation capabilities for Halfcheetah. Models are trained on
Dsource (𝑚 = 14), Dtarget (𝑚 = 7). Models are evaluated at interpolated masses 8 ≤ 𝑚 ≤ 13
and extrapolated masses 3 ≤ 𝑚 ≤ 6. Mean returns are shown due to varying normalizing score
factors across different masses.

We evaluate our model, alongside two baselines: (1) Diffuser, using only source data;

(2) CQL+FT, source pre-train with target fine-tuning. These baselines represent alternative

approaches to handling varying dynamics, providing context for assessing our model’s perfor-

mance. For our approach, we apply a simple linear scale on the dynamics-related contexts

based on mass for intermediate evaluations. During extrapolation 3 ≤ 𝑚 ≤ 6, we utilize the

context corresponding to the target mass 𝑚 = 7. This strategy allows us to test how well our

model can leverage learned representations to handle unseen dynamics. Figure 4.3 presents

the results of our comparative analysis. Our method (orange line) exhibits robust performance

across the interpolated range (8 ≤ 𝑚 ≤ 13), even without training data following these envi-

ronment’s dynamics. This demonstrates the model’s ability to generalize effectively within

the range of known dynamics. Compared to CQL+FT (red line), our model maintains similar
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performance for 𝑚 = 8,9, but exhibits a gradual decline beyond those values. This aligns with

the expectation that the fine-tuned model has forgotten most of its source information. The

comparison highlights the trade-off between adaptation to new dynamics and retention of pre-

viously learned knowledge. While sharing a similar architecture, the Diffuser trained on source

data (green line) experiences a rapid performance drop beyond the source mass of 𝑚 = 7. This

suggests that the dataset with matching dynamics, despite its small quantity, remains crucial

for effectively training our model. The contrast in performance underscores the importance of

incorporating target domain data, even in limited quantities.

Finally, when extrapolating masses outside the range of the training data (3 ≤ 𝑚 ≤ 6), all

three models exhibit similar limitations in their capabilities. This is evident in the similar rate

of performance degradation observed for all models in this region. The results indicate that

while our model shows improved interpolation abilities, extrapolation to significantly different

dynamics remains challenging across all approaches. These findings provide valuable insights

into the generalization capabilities of our model and its potential for handling dynamic shifts

in real-world applications. They also highlight areas for future research, such as improving ex-

trapolation performance and developing more sophisticated context adaptation techniques. We

have also provided qualitative results in https://youtu.be/7x7XVROjhR0, showcasing the per-

formance of policies trained on datasets with 1× and 2× torso scales when applied to previously

unseen Half-Cheetah torso sizes (1.3× and 1.7×).

4.5 Conclusion

We propose a new approach, which utilizes a conditional DPM with dynamics-related contexts

to address the challenge of data scarcity in offline RL. We introduce a continuous dynamics

score and an inverse-dynamics context to effectively capture the underlying dynamics structure

within the latent space, enabling the model to learn from both a larger off-dynamics source

dataset and a limited, sub-optimal target dataset. Experimental results demonstrate that our

method significantly outperforms various baselines. Ablation studies further reveal the critical

role of each dynamics context in improving performance. Additionally, our model exhibits

promising robustness in handling interpolation scenarios, showcasing its potential for real-

world applications with dynamic shifts in the target environment. As future work, we aim to

explore the use of multiple off-dynamics datasets and validation in real-world applications.
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Chapter 5

Personalization of Decision-making
Systems

5.1 Introduction

In today’s increasingly automated world, personalization is crucial for decision-making sys-

tems to effectively cater to individual’s needs, preferences, and circumstances. Tailoring ex-

periences enhances the system effectiveness and user satisfaction across diverse applications,

such as customizing self-driving vehicles [137,138], transforming robotic assistants into adap-

tive companions [139–143], and optimizing prosthetics for wearers’ unique requirements [144–

146]. However, accurately capturing and aligning the abstract and dynamic human preferences

with automated systems remains a complex challenge [147–149].

This work tackles this personalization challenge in automated decision-making systems,

aiming to create adaptable and reusable models that cater to individual user’s needs [150–

153]. While large-scale pretrained models offer broad capabilities [154–157], they lack the

individual customization, and training personalized models for every user is infeasible. In

contrast, it is more promising to first pretrain a model on large-scale offline data, and then

align it with human preferences using smaller, user-specific preference datasets, as shown in

Figure 5.1. The adoption of pretrained models from offline data avoids costly or risky real-

time interaction, enabling broader applications in challenging environments [47, 48, 54]. The

process for adapting human preferences must be resource-efficient, enabling both real-time

updates for millions of users and rapid deployment on edge devices, while minimizing data

requirements due to privacy concerns. Therefore, we adopt this pretrain-align framework to

achieve personalized decision making.
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Figure 5.1: Overview of personalizing decision-making models.

However, there are still a couple of difficulties to realize this system. (1) For pretraining

the decision-making models, some approaches [158,159] perform the training without rewards,

but require the online interaction with the environment, which is not applicable in our offline

setting. Other approaches with offline RL [37, 59, 160, 161] relies on rewards, which are of-

ten unavailable or difficult to quantify for human preferences. It is important but challenging

to address both requirements simultaneously. (2) For adapting models to human preferences,

Reinforcement Learning from Human Feedback (RLHF) [148] has emerged as a key technique

for integrating human preferences into decision-making systems [162–165]. It works by first

learning reward models to capture individual preferences and then refining policies based on

those learned reward models. Direct policy optimization (DPO) offers an alternative approach

by directly aligning policies with human preferences, bypassing the need for a separate reward

model [166]. However, both RLHF and DPO face computational challenges due to the large

number of parameters involved during alignment, making them less resource-efficient. Fur-

thermore, both methods require careful tuning to prevent the adapted model from deviating too

far from the base model.

We propose a new pretrain-align framework to enable efficient and rapid personalized

decision-making. Our solution is built atop of diffusion-based planners [84, 86], which lever-

age the expressive power of diffusion models [67,69] to learn flexible and tractable models for
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trajectory generation. Specifically, in the pretraining phase, we learn a conditional diffusion

model from a large offline dataset consisting of reward-free trajectories.

We introduce preference latent embeddings (PLE), low-dimensional vectors that effectively

encode human preferences, for rapidly adapting pretrained models to individual user prefer-

ences. During the alignment phase, when deploying the model for individual users, we adapt

the pretrained conditional diffusion model without modifying its underlying parameters. This

is achieved by using a novel inversion method that optimizes a learnable PLE on a small pref-

erence dataset. The compact representation of PLE enables seamless integration into decen-

tralized systems and enhances real-world applicability. Results demonstrate that our method

adapts more accurately to human preferences with less data, in both simulated and real-world

scenarios.

5.2 Related Work

Inversion for Image Manipulation. In the domain of generative adversarial networks (GANs)

[167], manipulating images often involves finding the corresponding latent representation of a

given image, a process known as inversion [168,169]. This can be achieved through optimization-

based techniques [170–172], which directly optimize a latent vector to recreate the target image

when passed through the GAN, or through the use of encoders [173–175]. Similarly, in the do-

main of DPMs, inversion enables image manipulations such as cross-image interpolations and

semantic editing in DALL-E 2 [176]. Additionally, the concept of textual inversion, introduced

in [177], allows for the representation of visual concepts using novel tokens within the embed-

ding space of a frozen text-to-image model, resulting in personalized token embeddings.

Preference Learning. It has proven to be effective to leverage relative human judgments

through pairwise preference labels for optimizing human preferences without direct access

to the reward function. This approach shows significant success in various natural language

processing tasks, such as translation [178], summarization [179, 180], story-telling [180], and

instruction-following [32, 181]. It typically learns a reward function using a preference model

like the Bradley-Terry model [182], and subsequently trains the model using RL algorithms

[41, 43] to maximize the learned reward. Direct policy optimization (DPO) has been proposed

as an alternative to directly align the policy with human preferences and learn from collected
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data without a separate reward model [166]. DPO variants [183–186] have shown great align-

ment with human preferences that matches or surpasses reward-based methods. In the domain

of RL, learning policies from preferences has been studied, as designing a suitable reward func-

tion can be challenging. Various approaches have been proposed [148,158,162–165] that learn

a reward function from trajectory segment pairs. Recently, DPO has also been incorporated

into this domain [187].

5.3 Background

Preference Modelling. Optimizing for human preferences in the generation of data samples

𝑥 under specific conditions 𝑐, without explicit knowledge of the underlying reward function

𝑟 (𝑐, 𝑥), poses a significant challenge in machine learning. A widely adopted approach to

address this challenge involves defining a pairwise preference relationship between samples

annotated by humans, where the winning sample 𝑥𝑤 is preferred over losing sample 𝑥𝑙 .

The Bradley-Terry model offers a framework for modeling and understanding these human

preferences. It proposes that the probability of one sample being preferred over another can

be expressed as a function of the difference in their underlying reward values. This can be

formulated as:

𝑝BT(𝑥𝑤 ≻ 𝑥𝑙 |𝑐) = 𝜎(𝑟 (𝑐, 𝑥𝑤) − 𝑟 (𝑐, 𝑥𝑙))

where 𝜎 represents the sigmoid function, which maps the difference in reward values to a

probability between 0 and 1.

In practice, we can leverage this model to estimate the hidden reward function by parame-

terizing it with a neural network denoted as 𝜙. We can then train this network using maximum

likelihood estimation on a fixed dataset consisting of prompts 𝑥 and corresponding data pairs

𝑦𝑢, 𝑦𝑙 , where the labels have been annotated by humans. The loss function for this binary

classification task can be expressed as:

𝐿BT(𝜙) = −E𝑥,𝑦𝑢,𝑦𝑙
[
log

(
𝜎(𝑟𝜙 (𝑥, 𝑦𝑢)) −𝜎(𝑟𝜙 (𝑥, 𝑦𝑙))

) ]
(5.1)

By minimizing this loss function, we can learn the parameters of the neural network 𝜙 that

best approximate the hidden reward function. This learned reward function can then be utilized
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as feedback to guide the generation of data samples that align with human preferences, even

without direct access to the true underlying reward function.

Reinforcement Learning from Human Feedback Reinforcement Learning from Human Feed-

back (RLHF) [32, 179] aims to refine a conditional distribution, 𝑝𝜃 (𝑦0 |𝑥), where 𝑥 is drawn

from a dataset 𝐷𝑥 , to maximize the underlying reward function 𝑟 (𝑥, 𝑦0). This process also

aims to regulate the Kullback-Leibler (KL) divergence concerning a base distribution 𝑝𝑟𝑒.

In essence, RLHF seeks to find the distribution 𝑝𝜃 (𝑦0 |𝑥) that generates outputs 𝑦0 given

inputs 𝑥 that are not only highly rewarded by the latent reward function but also do not deviate

significantly from a reference distribution 𝑝𝑟𝑒. This reference distribution can be thought of

as a prior belief about the desired output distribution, and the KL divergence term acts as a

regularizer, preventing the learned distribution from straying too far from this prior.

Formally, this optimization problem can be expressed as follows:

max
𝑝𝜃

E𝒙∼D𝑥 ,𝒚0∼𝑝𝜃 (𝒚0 |𝒙)
[
𝑟 (𝒙, 𝒚0)

]
− 𝛽DKL

[
𝑝𝜃 (𝒚0 |𝒙) | |𝑝ref(𝒚0 |𝒙)

]
(5.2)

In this equation, the first term represents the expected reward under the learned distribution

𝑝𝜃 , while the second term measures the KL divergence between 𝑝𝜃 and the reference distribu-

tion 𝑝𝑟𝑒. The hyperparameter 𝛽 controls the strength of this regularization term, determining

the trade-off between maximizing the reward and staying close to the prior distribution. A

larger 𝛽 value places a stronger emphasis on staying close to the reference distribution, while

a smaller value allows for greater flexibility in maximizing the reward, potentially at the cost

of increased divergence from the prior.

5.3.1 Direct Preference Optimization

Direct Preference Optimization (DPO) [166] is an approach that aims to optimize the gener-

ation of data samples to align with human preferences without explicitly learning a reward

function. This method starts with a reference generative model, which may not initially incor-

porate human preferences, and has a conditional probability distribution denoted as 𝑝ref(𝑥 |𝑐).
DPO then proceeds to fine-tune this conditional probability distribution into 𝑝𝜃 (𝑥 |𝑐) by lever-

aging human feedback in the form of pairwise comparisons.

The core idea behind DPO is to adjust the model’s parameters 𝜃 to increase the probability

of generating samples that are preferred by humans. This is achieved by minimizing a loss
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function that encourages the model to assign higher probabilities to preferred samples (𝑥𝑤)

and lower probabilities to less preferred samples (𝑥𝑙), given a specific condition c. The loss

function used in DPO is as follows:

𝐿DPO(𝜃) = − E
𝑐,𝑥𝑤 ,𝑥𝑙

[
log𝜎

(
𝛽 log 𝑝𝜃 (𝑥𝑤 |𝑐)

𝑝ref (𝑥𝑤 |𝑐) − 𝛽 log 𝑝𝜃 (𝑥𝑙 |𝑐)
𝑝ref (𝑥𝑙 |𝑐)

)]
In this equation, 𝛽 serves as a hyperparameter that controls the extent to which the model is

allowed to deviate from the reference policy. A larger value of 𝛽 encourages the model to stay

closer to the reference policy, while a smaller value allows for more flexibility in incorporating

human preferences.

Building upon the principles of DPO, Identity Preference Optimization (IPO) [183] pro-

poses a stronger constraint to ensure even closer alignment with the reference policy. IPO

achieves this by minimizing a modified loss function:

𝐿IPO(𝜃) = E
𝑐,𝑥𝑤 ,𝑥𝑙

[(
log 𝑝𝜃 (𝑥𝑤 |𝑐)𝑝ref (𝑥𝑙 |𝑐)

𝑝𝜃 (𝑥𝑙 |𝑐)𝑝ref (𝑥𝑤 |𝑐)
− 1

2𝛽

)2
]

(5.3)

This modified loss function effectively penalizes larger deviations from the reference pol-

icy, ensuring that the fine-tuned model adheres more closely to the initial preferences encoded

in the reference model while still incorporating human feedback to improve its performance.

5.3.2 DPO for Diffusion Planners

Previous approaches derive an objective for general diffusion models with Direct Preference

Optimization (DPO) for image generation [188]. This method combines the strengths of diffu-

sion models with preference learning, enabling the generation of images that better align with

human preferences. By adapting this approach to diffusion planning, we can formulate a loss

function that incorporates preference information into the trajectory generation process. The

loss function for Diffusion-DPO in the context of planning is derived as:

𝐿Diff-DPO(𝜃) = E
𝜖𝑤 ,𝜖 𝑙 ,𝜏𝑤 ,𝜏𝑙 ,𝑘

log𝜎
(
−𝛽

(
∥𝜖𝑤 − 𝜖𝜃 (𝜏𝑤𝑘 , 𝑘)∥

2− ∥𝜖𝑤 − 𝜖ref(𝜏𝑤𝑘 , 𝑘)∥
2

−(∥𝜖 𝑙 − 𝜖𝜃 (𝜏𝑙𝑘 , 𝑘)∥
2− ∥𝜖 𝑙 − 𝜖ref(𝜏𝑙𝑘 , 𝑘)∥

2)
) )
.

(5.4)

In this formulation, the terms 𝜏𝑤 and 𝜏𝑙 represent trajectories classified as ‘winning’ and

‘losing’ respectively, based on human preferences. The variables 𝜖𝑤 and 𝜖 𝑙 represent the noise
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associated with these trajectories at the k-th diffusion timestep (denoted by 𝑘). The term 𝜖𝜃

refers to the fine-tuned diffusion-based planning model, while 𝜖ref denotes the frozen pre-

trained model. The hyperparameter 𝛽 is a scaling factor used to control the strength of the

preference signal. The winning and losing trajectories, 𝜏𝑤 and 𝜏𝑙 , are sampled from a prefer-

ence dataset 𝐷, where each trajectory is annotated by a human evaluator indicating whether it

is considered ‘winning’ (preferred) or ‘losing’ (less preferred).

Following a similar approach to that employed for DPO, we can derive a loss function

adapted for IPO within the context of diffusion planning. This loss function is formulated as:

𝐿Diff-IPO(𝜃) = E
𝜖𝑤 ,𝜖 𝑙 ,𝜏𝑤 ,𝜏𝑙 ,𝑘

[ (
(∥𝜖 𝑙 − 𝜖𝜃 (𝜏𝑙𝑘 , 𝑘)∥

2− ∥𝜖 𝑙 − 𝜖ref(𝜏𝑙𝑘 , 𝑘)∥
2)−

(∥𝜖𝑤 − 𝜖𝜃 (𝜏𝑤𝑘 , 𝑘)∥
2− ∥𝜖𝑤 − 𝜖ref(𝜏𝑤𝑘 , 𝑘)∥

2) − 1
2𝛽

)2] (5.5)

In both loss functions, Equation 5.4 (for Diff-DPO) and Equation 5.5 (for Diff-IPO), we

observe four L2 error terms. Each of these terms corresponds to the loss of the DPMs as

defined in Equation 2.29. Both functions aim to reduce the error of the fine-tuned model

𝜖𝜃 on preferred trajectories 𝜏𝑤 while increasing the error on less preferred trajectories 𝜏𝑙 . This

mechanism effectively increases the probability of generating preferred trajectories 𝑝𝜃 (𝜏𝑤) and

decreases the probability of generating less preferred ones 𝑝𝜃 (𝜏𝑙), aligning the model’s output

with human preferences.

5.4 Methodology

To enable rapid adaptation of our pretrained model to individual user preferences, we introduce

the concept of preference latent embeddings (PLE), denoted by 𝑧. PLEs are low-dimensional

vectors that encode human preferences efficiently. Our method comprises three distinct stages,

as illustrated in Figure 5.2: pretraining, adaptation, and generation. During the pretraining

stage, we train the diffusion model without reward supervision and initialize a placeholder for

the PLE. This step establishes a general-purpose generative model with a broad understanding

of the task domain, prior to any specific preference adaptation. The adaptation stage follows,

where we utilize a small set of human preference labels to partially fine-tune the pretrained

model. This process allows us to identify the PLE that aligns with the given preferences,

effectively capturing the user’s specific requirements in our low-dimensional representation.
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Once adaptation is complete, we enter the generation stage. Here, we leverage the identified

PLE to generate trajectories that match the human preferences encoded within it. We now

elaborate on each of these stages in detail.

5.4.1 Pretraining with Masked Trajectories

The pretraining stage of our method addresses two concurrent goals: training a general-purpose

generative model that comprehensively understands the task domain without reward supervi-

sion, and initializing a meaningful representation for the PLE placeholder. To achieve the

first goal, we employ the decision diffuser [84], which excels in training on offline trajectory

datasets without explicit reward requirements. Its ability to incorporate additional context is

crucial for our second goal.

For the second goal, we posit that each preference correlates with a set of similar trajecto-

ries. Consequently, we aim to map similar trajectories to similar embeddings to give structure

for the PLE placeholder. We propose a learnable mapping 𝑓 : R𝐿×(𝑆+𝐴) → R𝑑𝑒 , 𝑓 (𝜏full) = 𝑧,
where 𝜏full is the corresponding full trajectory from which a sub-trajectory, 𝜏 (Equation 2.37),

is sampled. Here, 𝐿 is the length of the full trajectory, 𝑆 and 𝐴 are the dimensions of the state

and action spaces respectively, and 𝑑𝑒 is the dimension of the PLE, which is a hyper-parameter.

This mapping function 𝑓 is designed to transform the high-dimensional trajectory data into a

lower-dimensional preference embedding.

This mapping, 𝑓 , should have the following properties: (1) it encodes similar trajectories

into nearby points in the latent space; (2) it prevents leaking any information about 𝜏 from 𝜏full;

(3) it handles 𝜏full of any horizon length; (4) it produces a normalized output range; (5) it allows

for end-to-end learning with the decision diffuser. To achieve these properties, we design the

mapping with the following sequence of operations:

1. We apply a fixed mask to 𝜏full to conceal information about 𝜏. This step ensures that the

PLE does not directly encode information about the specific sub-trajectory we’re trying

to predict, preventing information leakage.

2. We apply a learnable feed-forward layer which maps the state-action features into the

PLE space. This layer allows the model to learn a suitable transformation of the input

data.
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3. We apply mean pooling to prevent time leakage and to handle variable horizon lengths.

This operation allows the model to process trajectories of different lengths consistently.

4. We apply the sigmoid activation function for normalization, a choice motivated for adap-

tation described in the next subsection. This ensures that the output falls within a fixed

range, facilitating stable training and adaptation.

5. Lastly, we compose each differentiable component to obtain the PLEs, 𝑧, which is then

fed into the decision diffuser as context with the following objective:

Lpretrain(𝜃) = E𝑘∼[1,𝐾],𝑥0∼𝑞,𝝐∼N(0,𝐼)
[
∥𝝐 − 𝝐 𝜃 (𝜏𝑘 , 𝑓 (𝜏full), 𝑘)∥2

]
. (5.6)

The proposed objective serves two crucial purposes in our approach: constructing a repre-

sentation for the PLE placeholder that groups similar trajectories, and pretraining the model to

generate trajectories adhering to the offline dataset’s distribution. However, the model remains

unaligned with specific user preferences at this stage. This general model serves as a start-

ing point for further adaptation to individual preferences. The overall network architecture for

pretraining is illustrated in the Figure 5.2 (left), providing a visual representation of how the

various components interact during the pretraining phase.

5.4.2 Adaptation via preference inversion

We design a solution to quickly align the pretrained model to human preferences using a small

human preference dataset. This approach aims to efficiently adapt the general model to spe-

cific user preferences without requiring extensive retraining. The basic idea is to learn a low-

dimensional PLE, 𝑧, corresponding to preference labels, rather than performing full fine-tuning

of the pretrained model. By focusing on learning only this compact representation, we antic-

ipate faster convergence and improved stability in the adaptation process. We refer to the

process of finding the matching PLE as preference inversion, drawing an analogy to the inver-

sion methods for image manipulation described in Section 5.3. This terminology reflects the

idea of “inverting” the model to find the preference embedding that best generates the desired

trajectories.
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We start the preference inversion process with a randomly initialized, learnable PLE, 𝑧.

During pretraining, applying the sigmoid activation enables us to choose a prior bounded be-

tween 0 and 1. This bounded range provides a well-defined space for the preference embed-

dings, facilitating stable optimization and interpretation. To learn 𝑧, we freeze all weights of

the diffuser model and backpropagate the loss gradients towards 𝑧. This approach effectively

constructs trajectories that match human preferences while adhering to the data distribution

sampled from the MDP during pretraining. By keeping the diffuser model fixed, we ensure

that the learned preferences are consistent with the underlying dynamics and behaviors cap-

tured during pretraining.

To design a loss function that leverages pairwise preference labels, we sub-categorize the

PLE into two types: winner PLE 𝑧𝑤, and loser PLE 𝑧𝑙 . This categorization allows us to ex-

plicitly model the preference relationship between pairs of trajectories. By learning separate

embeddings for preferred and non-preferred trajectories, we can capture the nuances of human

preferences more effectively. This enables us to optimize and obtain an optimal 𝑧∗𝑤 and 𝑧∗
𝑙

based on the reconstruction loss of the respective winner and loser trajectories, 𝑥𝑤 and 𝑥𝑙 as

follows:

Linversion(𝑧𝑤, 𝑧𝑙) = E𝑘∼[1,𝐾],𝑥0∼𝑞,𝝐∼N(0,𝐼)

[𝝐 − 𝝐 𝜃 (𝜏𝑤𝑘 , 𝑧𝑤, 𝑘 )2 +
𝝐 − 𝝐 𝜃 (𝜏𝑙𝑘 , 𝑧𝑙 , 𝑘)2

]
, (5.7)

where 𝜃 is fixed. This loss function encourages the model to find preference embeddings that

accurately reconstruct both the preferred and non-preferred trajectories, while maintaining the

distinction between them.

A key advantage of having a frozen pretrained model is that it does not require the addi-

tional constraints to remain aligned to the base model, as is the case with Reinforcement Learn-

ing from Human Feedback (RLHF) or Direct Preference Optimization (DPO). This simplifies

the adaptation process and potentially reduces the risk of instability due to over-deviation away

from the base policy.

Furthermore, by performing partially fine-tuning using preference inversion, we may achieve

comparable performance with less data and compute, similar to the success observed in parameter-

efficient fine-tuning (PEFT) methods [189, 190]. This approach aligns with the growing trend

in machine learning to develop more efficient adaptation techniques that reduce the computa-

tional and data requirements for personalization. In summary, the preference inversion method

offers several potential benefits:
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• Rapid adaptation: By focusing on learning a compact preference embedding, the model

can quickly adjust to new preferences without extensive retraining.

• Data efficiency: The method potentially requires fewer preference labels to achieve good

performance, making it more practical for real-world applications.

• Stability: By keeping the pretrained model fixed, we reduce the risk of overfitting or

unstable behavior during adaptation.

5.4.3 Generating Preferred Trajectories

To sample a trajectory aligned with human preferences, we utilize a linear combination of the

winner and loser PLEs, similar to the approach used in [78] to predict noise:

𝝐 𝜃
(
𝑥𝑡 , 𝑧

∗
𝑤, 𝑧
∗
𝑙 , 𝑘

)
= (1+ 𝑣) ¤𝝐 𝜃

(
𝑥𝑡 , 𝑧

∗
𝑤, 𝑧
∗
𝑙 , 𝑘

)
− 𝑣𝝐 𝜃 (𝑥𝑡 ,∅, 𝑘) ,

where ¤𝝐 𝜃
(
𝑥𝑡 , 𝑧

∗
𝑤, 𝑧
∗
𝑙 , 𝑘

)
= (1+𝑢)𝝐 𝜃

(
𝑥𝑡 , 𝑧

∗
𝑤, 𝑘

)
−𝑢𝝐 𝜃

(
𝑥𝑡 , 𝑧

∗
𝑙 , 𝑘

)
.

(5.8)

Here, 𝑣 and 𝑢 are hyper-parameters. 𝑣 controls the strength of the guidance, while 𝑢 con-

trols the influence of the loser information. To gain an intuition, we rewrite ¤𝝐 𝜃
(
𝑥𝑡 , 𝑧

∗
𝑤, 𝑧
∗
𝑙
, 𝑘
)
=

𝝐 𝜃
(
𝑥𝑡 , 𝑧

∗
𝑤, 𝑘

)
+ 𝑢(𝝐 𝜃

(
𝑥𝑡 , 𝑧

∗
𝑤, 𝑘

)
− 𝝐 𝜃

(
𝑥𝑡 , 𝑧

∗
𝑙
, 𝑘
)
), which shows that we are pushing the score esti-

mations away from the loser, originating at the winner. This allows us to efficiently leverage the

pretrained model while quickly adapting to individual user preferences using a small amount

of preference data. By learning only the low-dimensional PLE while keeping our pretrained

model fixed, we reduce computational cost and enhance the stability of the adaptation process

compared to fine-tuning the entire model. The overall proposed method is illustrated in the

Figure 5.2.

5.5 Experiments

To rigorously assess the effectiveness of our method in integrating user preferences, we conduct

a comprehensive evaluation addressing the following key questions:

1. Preference Latent Embeddings: Does the pretraining enable the PLE place-holder to

be structured in a meaningful way, organizing similar trajectories close together?
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2. User Preference Alignment Efficiency: Does our approach outperform baselines in

aligning with user preferences when limited updates are available?

3. Query Impact on Performance: How does the number of preference queries influence

the performance of each method?

4. Human Preference: Can the methods achieve similar performance when provided human-

labeled, diverse and optimal queries?

5. Hyperparameter Sensitivity: How does the choice of prior and PLE dimension, 𝑑𝑒,

impact the results?

6. Fine-tuning Stability: Does the fine-tuned model maintain its effectiveness with addi-

tional updates?

We conduct comprehensive evaluations to assess the effectiveness of our method in integrating

user preferences. The evaluation addresses several key questions: the impact of the number of

preference queries, the choice of prior, incorporation of 𝑧∗
𝑙
, and the stability of the adaptation

process. Furthermore, we evaluate the capability to capture human preferences from diverse

and optimal queries by creating our own custom preference dataset. To establish a strong

benchmark, we compare our method against the following diverse baselines:

• Diffuser: A pretrained diffusion-based planner [191] representing the training data distribu-

tion but not adapted to user labels.

• Guided Sampling: Following RLHF, we train a reward model using the Bradley-Terry

model [182], but employ classifier-guidance sampling [71], eliminating the need for further

optimization with PPO [43].

• Finetuning (Full): This baseline directly fine-tunes the pretrained model using three dif-

ferent loss functions: DPO [166, 188], IPO [183], and a diffusion loss based solely on the

winner’s label. While all loss functions have been evaluated (details can be found in Section

5.5.2), Diffusion loss consistently performs the best and is used for this baseline.

• Finetuning (LoRA): This baseline provides a more direct comparison with our proposed

method, where partial fine-tuning is performed. To achieve this, we utilize LoRA [190] with

a rank of 𝑟 = 8.
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Hyper-parameters Value
n train steps 1e6
n diffusion steps 20
horizon (halfcheetah) 4
horizon (others) 32
batch size 32
learning rate 2e-4
classifier free v 0.5

Table 5.1: Settings for Diffuser and
Decision-Diffuser

Hyper-parameters Value
n train steps 5000
n diffusion steps 20
horizon (halfcheetah) 4
horizon (others) 32
batch size 32
learning rate 2e-4
classifier guided v 0.1

Table 5.2: Reward model settings
(Guided Sampling)

• Preference Inversion (Proposed): Our method partially fine-tunes the pretrained model to

retrieve the optimal preference context. The pretraining stage utilizes a diffuser conditioned

on masked trajectories.

Table 5.1 and 5.2 shows our hyper-parameter settings for our method and baselines respec-

tively. For DPO and IPO, we set 𝛽 = 5000. We also included a comparison with Preference

Transformers [165] which does not use pretraining, in Section 5.5.4.

Experimental Setup. To examine the effectiveness of various personalization methods in

automated decision-making systems, we tested our approach on a preference learning bench-

mark [165] that utilizes challenging control tasks from the d4rl dataset [1] in an offline setting.

Specifically, we used the Hopper, HalfCheetah, and Walker2D tasks from the d4rl dataset, fo-

cusing on the medium-expert and medium-replay settings. Following the setup in Preference

Transformers [165], we collected random query pairs without access to the task reward and

assigned the winner to the query with the higher reward. To ensure a fair comparison, all

baselines underwent 1 million updates during pretraining and 𝑁adapt = 5000 updates during the

alignment phase. Pretraining utilizes the full dataset for its respective tasks. During evalua-

tion, we sample each method for 100 episodes across 5 different random seeds within their

designated environments.

5.5.1 Latent Space Analysis

To understand the impact of our proposed mapping in the pretraining for the PLE placeholder,

we conducted a visualization of the latent space representation. Using their respective pre-

trained models, we sampled 1000 random trajectories from each dataset and obtained the PLE,
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𝑧. These embeddings were then projected onto a two-dimensional space using t-SNE (with

perplexity set to 30) as seen in Figure 5.3, with color intensity representing the normalized re-

turn of the corresponding masked trajectory. Examining the latent space of the medium-expert

dataset, we observed distinct clusters representing low, medium, and high returns, respectively.

These clusters were well separated and mostly linearly separable. In contrast, the medium-

replay dataset, which consists of the entire replay buffer with a continual range of returns,

exhibited a different pattern. The latent space reflected this continuous return distribution,

showing not distinct clusters but rather a smooth transition of the latent embeddings based on

their return values.

Overall, our proposed pretraining enables the PLE placeholder to be structured in an orga-

nized and meaningful manner, demonstrating that our proposed mapping, 𝑓 , is able to organize

similar trajectories close together. This organized latent space could accelerate the preference

inversion process by first navigating the loss landscape to a local region of similar trajecto-

ries, and then refining the search for a more precise alignment with the true reward (human

preference).

5.5.2 Preliminary Results: Finetuning with DPO and IPO

In our initial exploration of full-finetuning, we compared the performance of three loss func-

tions: DPO [166, 188], IPO [183], and a diffusion loss focused solely on the winner’s label.

Figure 5.4 illustrates that both IPO and DPO loss exhibit instability across most tasks. Con-

versely, utilizing only the diffusion loss consistently matches or surpasses the performance of

IPO and DPO in all scenarios.

5.5.3 Main Results

We compare our method against the baselines and assess the impact of the number of query

pairs, 𝑁query. We evaluate each model with 𝑁query values of 10, 25, 50, and 100, analyzing

their ability to align with user preferences using a small set of human-annotated queries and

a limited number of updates (𝑁adapt = 5000). For the main experiment, we set 𝑑𝑒 = 16 and

𝑢 = 0.02.

Our experimental results are presented in Figure 5.5. In comparison to the other two base-

lines, our method consistently outperforms them, with the performance gap widening as the
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number of queries decreases. This advantage is particularly pronounced in the hopper-medium-

replay and walker2d-medium-replay tasks. Among the baselines, there is no clear overall per-

formance winner. We observed that LoRA fine-tuning results are very close to full fine-tuning,

with LoRA performing marginally better at lower query numbers (N=10 and N=25) and mixed

results for N=50 and N=100. Preference Transformers performed the worst, likely due to its

reliance on training from scratch using the learned reward model without leveraging any pre-

trained models. Besides, while the baseline methods consistently outperform the pretrained

model (Diffuser) when 𝑁query > 50, they often fail to achieve this with fewer queries, leading

to negative adaptation. In contrast, our method manages to outperform the Diffuser in all cases.

Remarkably, it exhibits exceptional robustness, maintaining a comparable score even when the

number of queries 𝑁query is drastically reduced to as small as 10 in most scenarios.

Overall, the results indicate a non-negative correlation between the score and 𝑁query. For

our proposed method, it is sufficient to use a minimum of 𝑁query = 50 to retain the best per-

formance for all tasks, except for the hopper-medium-expert task, which requires 100 queries.

These findings validate our approach for resource efficient personalization, reducing the need

for a large number of labeled data while requiring only a moderate number of updates.

5.5.4 Comparisons with Preference Transformers

We also compared our method with Preference Transformers (PT) [165], which is one of the

state-of-the-art approaches for learning a preference reward for offline reinforcement learning.

The key difference between our method and PT is that PT does not follow a pretrain-align

framework and requires full training after the reward model is learned. Nonetheless, we con-

ducted experiments to compare our method with PT, using full 1 million updates and 5000

updates. From Figure 5.6, PT completely fails when using only 5,000 updates since it does

not leverage any pretrained model. Our method, using only 5,000 adaptation steps, is able to

approach the same performance in medium-replay environments and matches PT in medium-

expert environments.

5.5.5 Ablation Experiments

We perform a series of ablation experiments to gain deeper insights into the relative importance

of different design choices and determine the sensitivity of our approach to variations in model

components and hyperparameters.
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Number of adaptation steps. Figure 5.7 shows that all methods peak around 𝑁adapt = 5000.

Preference inversion and guided sampling remain stable after minor drops at 15000 and 20000

updates, respectively. However, the performance of finetuning consistently declines after peak-

ing, with rapid deterioration after 𝑁adapt = 30000, suggesting excessive deviation from the base

model. The stability of our method is advantageous for real-world deployment, where the

optimal stopping point is often unknown in advance.

Loser PLE. Figure 5.8 shows that incorporating the loser PLE, 𝑧∗
𝑙

with 𝑢 > 0, consistently

improves the sampling performance compared to using only the winner PLE with 𝑢 = 0. The

improvements peak at 𝑢 = 0.02, resulting in 1 ∼ 3% gains across various 𝑁query values, and

gradually diminish as 𝑢 decreases further. Utilizing 𝑧∗
𝑙

provides a small boost when 𝑁query is

high, but notably enhances the sampling when 𝑁query is low.

Choice of prior and PLE dimension. Given that our PLE 𝑧 is constrained to the range [0, 1],

we test three different priors for initialising 𝑧 within this interval: Uniform[0,1], Gaussian(0.5,0.5/3),
and Fixed 0.5. Figure 5.9 demonstrates that all three settings perform comparably well, with

the uniform prior slightly outperforming the others. Similarly, varying the PLE dimension 𝑑𝑒
across 2, 4, 8, 16, and 32 consistently yields good results, demonstrating relative insensitivity

to this hyper-parameter, with a slight advantage observed at 𝑑𝑒 = 16.

Recommendations. Our ablation studies reveal that the best performing configuration is to

utilize 𝑑𝑒 = 16 for pretraining, followed by initializing 𝑧 using a uniform prior during adaptation

with 𝑁adapt ≥ 5000 steps, and incorporating the loser PLE, 𝑧∗
𝑙

for sampling.

5.5.6 Real Human Preference on Quality Diversity Dataset

Previous experiments, following the design of Preference Transformers [165], focus on re-

covering a hidden task reward. While useful for validating human preferences, it prioritizes

optimality over diversity, and may not fully capture real-world scenarios. In contrast, practical

decision-making often involves selection from a diverse set of high-reward trajectories. To

better reflect this, we design a new experiment based on Quality Diversity (QD) [192–194].

In policy learning, QD refers to an algorithm’s ability to discover diverse, high-performing

policies with distinct behaviors.

To implement this, we train a set of QD policies as described in [194], generating a diverse

dataset of 750 optimal Walker2D episodes for model pretraining without preference alignment.

We collected our own preference dataset using the following process:
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• Participants: Three users with no prior robotics expertise were recruited to minimize

bias.

• Stimuli: Each participant evaluated 100 randomly generated pairs of video animations

showcasing diverse Walker2D gaits (e.g., varying speeds, strides, and styles), produced

using QD policies.

• Task: Participants selected their preferred motion based on intuitive criteria such as

smoothness, stability, and naturalness. They were instructed to maintain a consistent

selection strategy and document their decision criteria in writing.

• Output: Each comparison resulted in a winner (preferred) and loser (less preferred)

label, used for training.

We then adapt the pretrained policy to each user’s preference labels, consisting of 100 query

pairs each. For evaluation, we generate 100 trajectories per baseline and ask users to choose

the closest match to their preference criteria. The survey results, shown in Figure 5.11, indicate

that our proposed method receives the vast majority of votes, demonstrating its effectiveness in

capturing human preferences. Figure 5.10 displays the sampled trajectories from the aligned

model, generated using preference inversion, which closely match the users’ descriptions.

5.6 Conclusion

This work presents a novel approach that enables a policy to quickly adapt to a small human

preference dataset. It consists of pretraining followed by adaptation on latent embeddings

via preference inversion for rapid alignment. Evaluation results demonstrate that our method

adapts more accurately to human preferences with minimal preference labels, outperforming

baselines in both offline datasets and our custom dataset with real human labels. This promising

method shows potential for further applications across diverse settings.
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Figure 5.3: Latent space analysis: We visualize t-SNE plots of PLEs post-pretraining. Each
point represents a trajectory in PLE space, with color intensity indicating its normalized return.
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Figure 5.4: Comparisons between different losses for finetuning baseline.
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Figure 5.5: Main results evaluated over different numbers of queries across six control
tasks. We report the normalized score as defined in [1]
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Figure 5.6: Comparison with Preference Transformers
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Figure 5.7: Ablation: Adaptation stability across 𝑁adapt.

Figure 5.8: Ablation: The impact of utilizing loser PLE, 𝑧∗
𝑙

for sampling
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Figure 5.9: Ablation: Choice of different priors for initialization and PLE dimension
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(a) User A: ‘Back leg swing up high and body lean-
ing forward’

(b) User B: ‘Body upright, front knee bent, rear leg
45degrees’

(c) User C: ‘Gentle hopping with moderately fast
strides’

Figure 5.10: Trajectories generated using our proposed method, an aligned model condi-
tioned on user’s respective PLE. The samples closely match each user’s description of their
preference.

Figure 5.11: Preference Learning Survey Results. Users select their preferred trajectories
from samples generated by both baseline and our proposed method.
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Chapter 6

Generalization of Human Pedestrians
Behaviors

6.1 Introduction

Robot navigation in crowded environments is a critical challenge in robotics with significant

real-world implications. As robots become increasingly integrated into our daily lives, their

ability to safely and efficiently maneuver through spaces populated by human pedestrians be-

comes essential. This capability is essential for various applications, including autonomous

delivery services in urban areas, assistive robots in healthcare settings, and mobile robots in

bustling industrial environments [5]. Effective crowd navigation enables robots to perform

tasks in public spaces without causing disruptions or safety hazards, enhancing their utility and

acceptance in society [195]. Moreover, robots that can navigate crowded environments can

potentially improve emergency response scenarios, assist in crowd management during large

events, and contribute to the development of smarter, more efficient urban spaces. By master-

ing this skill, robots can seamlessly operate alongside humans, leading to more harmonious

human-robot interactions and paving the way for broader adoption of robotic technologies in

our increasingly populated and dynamic world.

For RL-based motion planners, the environment in which the agent learns plays a pivotal

role in shaping its decision-making capabilities. The environment serves as the agent’s training

ground, providing it with the necessary experiences to develop an optimal policy for navigating

and interacting with the world [15, 17, 18, 34, 196–200]. In the context of motion planning, a

crucial aspect of the environment is its ability to accurately represent the inherent diversity and
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unpredictability of pedestrian movements. Pedestrians exhibit a wide range of behaviors, influ-

enced by factors such as individual preferences, social norms, and environmental conditions.

They may walk at different speeds, change directions abruptly, engage in conversations, or ex-

hibit other unique movements. To enable an RL agent to learn a robust and adaptable policy,

the environment must comprehensively capture this spectrum of pedestrian behaviors. Failure

to adequately model the diversity of human movements can restrict the agent’s ability to gen-

eralize to unseen scenarios, making it difficult to navigate effectively and safely in real-world

crowded spaces.

Numerous approaches have been proposed to generate pedestrian movements for train-

ing RL-based local motion planning policies. These approaches can be broadly categorized

into two distinct groups, each with its own set of limitations. The first category involves

single-agent approaches. One straightforward method involves assigning waypoints to pedes-

trians from a dataset [21]. However, this approach does not capture the complex interac-

tions between robots and pedestrians, as they do not influence each other’s behaviors. To

address this limitation, some studies have manually designed pedestrian behaviors based on

crowd density [201, 202] or employed fixed non-learning-based algorithms to control pedes-

trians [18, 23, 63, 203]. While these methods attempt to introduce more realistic pedestrian

movements, they may still suffer from limited diversity and potentially lead to overfitting.

The second category of approaches for generating pedestrian movements in RL-based local

motion planning reframes the problem as a decentralized multi-agent collision avoidance task

[15,17,19]. In this paradigm, each agent (pedestrian or robot) operates independently, learning

to navigate towards its designated goal while concurrently avoiding collisions with other agents

in the environment. This learning process occurs dynamically during training, enabling the

agents to adapt their behaviors in response to the actions of others.

This decentralized multi-agent approach presents two key advantages. Firstly, it eliminates

the need for explicit specification of each pedestrian’s behavior, thereby avoiding potential

biases introduced by manual design choices. This allows for a more naturalistic and flexi-

ble representation of pedestrian movements, as the agents learn to navigate and interact based

on their own experiences and observations within the environment. Secondly, this approach

exhibits high sample efficiency due to policy bootstrapping. In this context, bootstrapping

refers to the ability of each agent’s trajectory to contribute to the learning of the shared policy

96



CHAPTER 6. GENERALIZATION OF HUMAN PEDESTRIANS BEHAVIORS

Figure 6.1: Overview of diversity framework. A human may take diverse strategies to reach
the same predefined goal (left). We propose a behavior-conditioned policy to integrate such
diversity into the robot agent (right). This diversity enriches the agent with a more varied range
of experiences when learning in a multi-agent framework, and improves its ability to generalize
in unseen crowd behaviors.

model, effectively increasing the amount of training data available and accelerating the learn-

ing process. However, despite these advantages, decentralized multi-agent approaches face

practical challenges when deployed in real-world scenarios characterized by diverse or unfore-

seen dynamics. The learned policy, often trained on a limited set of behaviors, tends to assume

homogeneous behaviors among multiple agents upon deployment which may not hold true in

general. Consequently, the robot may struggle to generalize well and navigate effectively and

safely in scenarios with varied crowd behaviors.

In this chapter, we propose a novel sample-efficient multi-agent framework to enhance

behavior diversity among agents. Diverse movements induced by different agents enrich expe-

riences and enhance robustness to unpredictable behaviors in unseen or challenging scenarios.

Our framework introduces the concept of behaviors conditioned on a policy. These behaviors,

randomly sampled as token embeddings by each agent at the start of each training episode, in-

centivize agent diversity. We assign intrinsic rewards for agents to take varied actions for every

state conditioned on the sampled behavior. These rewards are based on a discriminator capable

of identifying behavior from a state-action pair. With this approach, we can train robust RL

policies for local motion planning in highly complex environments.
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6.2 Related Work

6.2.1 Pedestrian Modelling

In the context of RL-based local motion planning, the movement of dynamic obstacles, often

represented by human pedestrians, is a crucial environmental factor. The behavior of each

pedestrian significantly influences both the overall dynamics of the environment and the learn-

ing process of the robot agent within the RL framework. Existing approaches to modeling

pedestrians in this context can be broadly classified into two following categories:

Single-agent approaches. In these approaches, only a single robot agent learns to navigate

within the crowd, while the behavior of pedestrians is typically modeled using non-learning-

based algorithms. One common strategy is based on the velocity obstacles (VO) [204], which

computes a region of collision under the assumption that other robots maintain their current

velocities. Some examples VO-based pedestrian modelling can be found in [18, 23, 63, 203]

Another strategy is based on the social forces [201, 202], which take into account the acceler-

ation toward the desired velocity while keeping a certain distance to other pedestrians. Lastly,

handcrafted ideas have also been proposed to model pedestrians’ behaviors. For example,

Wang et al. [205] proposed the simulated agent dynamics using a second-order physical sys-

tem parameterized by force, mass, and friction values. However, one common drawback to

these approaches is that the RL-agent might overfit to the chosen pedestrian behaviors during

training. Furthermore, due to the non-learning nature of the pedestrians in these approaches,

only the robot agent undergoes learning, leading to inefficient utilization of experiences and

lower sample efficiency during training.

Multi-agent approaches. The core principle of the multi-agent framework in the context of

simulating pedestrian behavior and training robot navigation policies is to control multiple

agents within the environment using a unified policy [15–17, 19, 22, 24, 206, 207]. Each agent,

be it a pedestrian or the robot itself, operates under the guidance of this shared policy, which

it learns through interactions and observations within the environment. This multi-agent setup

naturally leads to the emergence of dynamic movements during the training process. As each

agent strives to achieve its goal while adhering to the constraints of collision avoidance, it must
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continuously adapt its actions in response to the movements of other agents. This results in a

complex and interactive dance of movements within the environment, simulating the dynamic

nature of real-world crowded scenarios. The shared policy, updated based on the experiences

of all agents, evolves to capture the nuances of these interactions, ultimately guiding the agents

towards efficient and collision-free navigation strategies.

However, a potential drawback of this multi-agent framework is the tendency for agents

to converge towards homogeneous behaviors over time. This behavioral convergence can be

observed in our preliminary training using this framework as demonstrated in the accompany-

ing video (https://youtu.be/EevMn2-ZNng). Since all agents share the same policy and learn

through a bootstrapping process, where each agent’s experience contributes to the overall learn-

ing, their individual behaviors may gradually align and become increasingly similar. While this

convergence can be beneficial in terms of coordination and cooperation, it may also limit the

diversity of behaviors exhibited by the agents. This limitation can be problematic in scenarios

where the real-world environment presents a wide range of pedestrian behaviors.

6.2.2 Behavior Diversity in RL

To tackle the issue of homogeneity in agent behaviors, a range of approaches has been explored

to promote diversity. In single-agent scenarios, one prevalent solution involves maximizing

the entropy of the policy alongside the reward objective [208]. This encourages the agent

to explore a wider range of actions and discover diverse strategies for achieving the same

goal, thus preventing the policy from converging to a single, deterministic solution. However,

this entropy based diversity is specific for the actions of a single agent and does not increase

the diversity among multiple agents. Eysenbach et al. [159] introduced Diversity is All You

Need (DIYAN), a method that further enhances agent behavior diversity by maximizing the

mutual information between skills and states. This approach promotes more comprehensive

exploration of the state space, enabling the discovery of a wider variety of potential solutions

and improving the agent’s adaptability to novel situations.

In the multi-agent domain, efforts to increase behavior diversity have focused on the Cen-

tralized Training with Decentralized Execution (CTDE) framework [209–211]. CTDE involves

training agents with a centralized critic that possesses global information, while the execution

of the learned policies remains decentralized, with each agent acting independently based on its
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local observations. When agents are tasked with different objectives within the CTDE frame-

work, they are often assigned distinct policies, each specialized for its specific task, while

sharing a common critic network for evaluating the overall performance. This multi-policy

approach naturally fosters diversity in agent behaviors as each policy is tailored to a particular

objective. To further enhance this diversity, several strategies have been proposed, including

encouraging social interactions among agents, rewarding individualistic behaviors, and pro-

moting the exploration of diverse strategies [97, 212, 213]. However, one potential drawback

of multi-policy approaches is a reduction in sample efficiency during training. This is because

each agent primarily updates its own policy based on its individual experiences, rather than

contributing to the learning of a unified policy shared by all agents. As a result, the learning

process may require more data or interactions to achieve comparable performance compared

to approaches that utilize a single shared policy.

6.3 Approach

We present our approach to learning robust agents through behavior diversity. Instead of using

multiple policies to create diversity as in CTDE, we opt for a more sample-efficient method by

using only a single policy. We first formulate the agent behaviors, and how they can be used

to generate diversity among agents (Section 6.3.1). Then we explain how the behaviors and

diversity can be integrated together within a single policy (Section 6.3.2). Finally, we describe

how to train a behavior-conditioned policy in an end-to-end manner with all the integrated

components (Section 6.3.3).

6.3.1 Agent Behavior

In Figure 6.1, people’s approaches to walking towards a goal can vary: some prioritize speed

with a longer path, while others choose a shorter route at a slower pace. When avoiding

moving obstacles, some turn left, while others turn right. Although individuals may have

unique behaviors, there can be similar patterns. We formalize this with discrete behavior to-

kens ℎ ∈ [0,1, . . . , 𝑀 − 1], where 𝑀 is the total number of distinct behaviors. Each token

represents a distinct pedestrian behavior, and different agents may share the same token.

To foster diversity amongst different agents, our goal is to assign different behavior tokens

to different agents to exhibit distinct behaviors. In other words, for every state 𝑠, agents should
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perform different actions 𝑎 depending on the assigned ℎ. More formally, this idea can be

formalised using information theory by maximizing the mutual information 𝐼 ((𝑆, 𝐴);𝑍), where

(𝑆, 𝐴) is the joint distribution of 𝑆 and 𝐴. 𝑍 ∼ 𝑝(ℎ), 𝑆, and 𝐴 represent the random variables

for behavior, state, and action respectively. Additionally, the diverse actions performed for

different ℎ should arise for every state instead of exploiting only certain states. For this, we

minimize 𝐼 (𝑆, 𝑍) as a regularizer. In sum, we maximize

F (𝜃) ≜ 𝐼 ((𝑆, 𝐴);𝑍) − 𝐼 (𝑆;𝑍)

= (𝐻 [𝑍] −𝐻 [𝑍 | 𝑆, 𝐴]) − (𝐻 [𝑍] −𝐻 [𝑍 | 𝑆])

= −𝐻 [𝑍 | 𝑆, 𝐴] +𝐻 [𝑍 | 𝑆],

(6.1)

where 𝐻 is the Shannon entropy. The first term implies it is easy to infer the behavior ℎ

given any (𝑠, 𝑎). This makes sense intuitively as it means the agents are distinguishable due

to their diverse behaviors and not behaving in a homogeneous way. The second term implies

that the agents’ behavior should not be distinguishable exclusively given 𝑠. It is intractable to

compute 𝑝(ℎ |𝑠) and 𝑝(ℎ | (𝑠, 𝑎)) by integrating all states, actions, and skills. So we approximate

the posteriors with learned discriminators 𝑞𝜙 (ℎ |𝑠) and 𝑞𝜓 (ℎ | (𝑠, 𝑎)). We instead optimize the

variational lower bound derived using Jensen’s Inequality [214]:

F (𝜃) = −𝐻 [𝑍 | 𝑆, 𝐴] +𝐻 [𝑍 | 𝑆]

= E𝑧∼𝑝(ℎ),𝑠∼𝜋(ℎ) [log 𝑝(ℎ | 𝑠)]

−E𝑧∼𝑝(ℎ),𝑠∼𝜋(ℎ),𝑎∼𝜋(𝑠,ℎ) [log 𝑝(ℎ | 𝑠, 𝑎)]

≥ E𝑧∼𝑝(ℎ),𝑠∼𝜋(ℎ) [log𝑞𝜙 (ℎ | 𝑠)]

−E𝑧∼𝑝(ℎ),𝑠∼𝜋(ℎ),𝑎∼𝜋(𝑠,ℎ) [log𝑞𝜓 (ℎ | 𝑠, 𝑎)]

≜ G(𝜃),

(6.2)

where 𝑠 ∼ 𝜋(ℎ) means to first sample the action 𝑎 from 𝜋 followed by sampling the environment

to get the state 𝑠. It is non-trivial to directly optimize 𝜃 via maximizing the lower bound G(𝜃)
since 𝑠 ∼ 𝜋(ℎ) has to be sampled through a non-differentiable simulator. Below we introduce

how to optimize 𝜃 using an intrinsic reward alongside the RL objective.

6.3.2 Behavior-Conditioned Policy

First, we incorporate the idea of behaviors into our policy where we condition our policy on

the agent’s behaviors. Each agent, 𝑖, sample their actions from a shared behavior-conditioned
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Figure 6.2: Our framework for behavior-conditioned policy. An intrinsic reward is com-
puted based on discriminators 𝑞𝜓 and 𝑞𝜙, which encourages the diversity by indirectly maxi-
mizing the lower variation bound G(𝜃)

policy as 𝑎 ∼ 𝜋𝜃 (·, 𝑠𝑖𝑡 |ℎ𝑖), for behavior token ID ℎ𝑖 at timestep 𝑡. Each behavior token maps

to an embedding in the policy network, enabling the policy to generate distinct behaviors for

agents. To maximize such diversity, we introduce an intrinsic pseudo-reward 𝑟𝑖𝑛𝑡 motivated

from maximizing G(𝜃) derived previously:

𝑟𝑖𝑛𝑡𝑡 = 𝑙𝑜𝑔[𝑞𝜓𝑠𝑎
(ℎ | 𝑠𝑡 , 𝑎𝑡)] − 𝑙𝑜𝑔[𝑞𝜓𝑠

(ℎ | 𝑠𝑡)] . (6.3)

Maximizing the intrinsic pseudo-reward through reinforcement learning allows maximiz-

ing G(𝜃) despite sampling 𝑠 ∼ 𝜋(ℎ) from a non-differentiable simulator. In Eqn. (6.3), 𝑎𝑡

is sampled from a policy conditioned on behavior rather than a default policy, as generating

diverse actions requires knowledge about ℎ. The proposed intrinsic reward promotes action

diversity while learning the main task. Overall, our intrinsic reward shares some similarity to

DIAYN [159] in which both use token-conditioned policies. However, the difference is that

our method encourages agents with different tokens to generate diverse actions for a given

state instead visiting diverse states. Figure 6.2 shows an overview of the interaction between

the behavior-conditioned policy and the discriminators.
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Algorithm 3 Behavior-conditioned policy for 𝑁 agents
1: Initialize policy network 𝜋𝜃 , value function 𝑉𝜙, discriminators 𝑞𝜓𝑠𝑎

and 𝑞𝜓𝑠

2: Require: hyper-parameters 𝛼,𝛾,𝜆, 𝜖, 𝑀
3: while not converged do
4: // Collect data in parallel
5: for 𝑖 = 1,2, . . . ,N do
6: Sample behavior ℎ𝑖 ∼ 𝑝𝑀 (ℎ)
7: Sample behavior-conditioned policy 𝜋𝜃 (·, 𝑠𝑡 |ℎ) for 𝑇𝑖 timesteps, collecting {𝑠𝑖

𝑡+1, 𝑎
𝑖
𝑡 , 𝑟

𝑖
𝑡}

where 𝑡 ∈ [0,𝑇𝑖]
8: Modify reward by adding bonus intrinsic reward 𝑟 𝑖𝑡 ← 𝑟 𝑖𝑡 +
𝛼
{
𝑙𝑜𝑔[𝑞𝜓𝑠𝑎

(ℎ | (𝑠𝑖𝑡 , 𝑎𝑖𝑡 )]) − 𝑙𝑜𝑔[𝑞𝜓𝑠
(ℎ | 𝑠𝑖𝑡 )]

}
9: Compute advantages using GAE [215] �̂�𝑖

𝑡 =
∑𝑇𝑖

𝑙=0(𝛾𝜆)
𝑙 (𝑟 𝑖𝑡 +𝛾𝑉𝜙

(
𝑠𝑡+1
𝑖

)
−𝑉𝜙

(
𝑠𝑖𝑡
)
)

10: end for
11: 𝜋𝑜𝑙𝑑← 𝜋𝜃
12: // Update Policy, Value Functions and Discriminators
13: for 𝑗 = 1 to 𝑒𝑝𝑜𝑐ℎ𝜋 do
14: Compute Ratio 𝑘𝑡 =

𝜋𝜃 (𝑎𝑖𝑡 |𝑜𝑖𝑡)
𝜋old (𝑎𝑖𝑡 |𝑜𝑖𝑡)

15: L𝑃𝑃𝑂 𝑐𝑙𝑖𝑝 (𝜃) =∑𝑇max
𝑡=1 𝑚𝑖𝑛

(
𝑘𝑡 �̂�

𝑖
𝑡 ,clip (𝑘𝑡 ,1− 𝜖,1+ 𝜖) �̂�𝑖

𝑡

)
16: Update 𝜃 using Adam w.r.t. L𝑃𝑃𝑂 𝑐𝑙𝑖 𝑝 (𝜃)
17: end for
18: for 𝑗 = 1 to epoch v do
19: L𝑉 (𝜙) = −∑𝑁

𝑖=1
∑𝑇𝑖

𝑡=1

(∑
𝑡 ′>𝑡 𝛾

𝑡 ′−𝑡𝑟 𝑖
𝑡 ′− 𝑉𝜙

(
𝑠𝑖𝑡
) )2

20: Update 𝜙 using Adam w.r.t. L𝑉 (𝜙)
21: end for
22: for 𝑗 = 1 to epoch d do
23: L𝐷 (𝜓𝑠𝑎) = −

∑𝑁
𝑖=1

∑𝑇𝑖
𝑡=1

(
ℎ𝑖 · log

(
𝑞𝜓𝑠𝑎
(𝑠𝑖𝑡 , 𝑎𝑖𝑡 )

) )
24: L𝐷 (𝜓𝑠) = −

∑𝑁
𝑖=1

∑𝑇𝑖
𝑡=1

(
ℎ𝑖 · log

(
𝑞𝜓𝑠
(𝑠𝑖𝑡 )

) )
25: Update 𝜓𝑠𝑎, 𝜓𝑠 using Adam w.r.t. L𝐷 (𝜓𝑠𝑎), L𝐷 (𝜓𝑠)
26: end for
27: end while
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6.3.3 Training Procedure

To encourage diverse agent behaviors, we shift from the diffusion planner framework used

in earlier chapters, which focuses on offline datasets. While offline data can capture trajectory

variations, it falls short in multi-agent settings: these datasets may show differences in paths but

fail to reflect meaningful distinctions in how agents act or make decisions. This occurs because

pre-recorded data lacks real-time interactions where agents adapt to other agents’ evolving

behaviors, a process essential for fostering diversity. To address this, we train agents online,

enabling continuous interaction with the environment and other agents. Through this approach,

agents gradually develop distinct strategies, creating a cycle where diversity increases naturally

as they learn. Such adaptive behavior cannot be replicated with offline data alone.

We build upon the training procedure from [17], alternating between sampling trajectories

and updating the policy via the PPO algorithm [43]. Each agent uses an identical policy to

collect data until a batch is gathered. Algorithm 3 outlines the training details. Key differences

from [17] are highlighted in blue:

1. At each episode start, agent 𝑖 samples a new behavior token ℎ𝑖 ∼ 𝑝𝑀 (ℎ), with 𝑝𝑀 (ℎ)
being a discrete uniform distribution with 𝑀 behaviors (Line 6). This token is mapped

to a 32-dimensional continuous embedding.

2. Agents sample from a policy conditioned on ℎ𝑖 (Line 7), allowing for varied actions

based on behavior. This behavior-conditioned policy enables agents to take different

actions depending on the sampled behavior.

3. Intrinsic rewards for each agent are computed using discriminators 𝑞𝜓𝑠𝑎
and 𝑞𝜓𝑠

, param-

eterized by 𝜓𝑠𝑎 and 𝜓𝑠 respectively, based on Eqn. (6.3). These rewards are added to the

task reward in the replay buffer (Line 8).

4. We optimize discriminators 𝑞𝜓𝑠𝑎
and 𝑞𝜓𝑠

with cross-entropy loss (Line 25) using the

Adam optimizer [216]. Adding one standard deviation of Gaussian noise to discriminator

inputs helps prevent overfitting. The loss is computed between predicted behavior tokens

𝑧 from on-policy samples and ground truth behavior.
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6.4 Experiments

We conduct comprehensive experiments to demonstrate the effectiveness of our method over

previous solutions. We simulate these experiments with new crowd behaviors not encountered

during agent training.

6.4.1 Experimental Setup

Implementation. We simulate a large-scale group of robots using Stage [217], a popular robot

simulator widely used in multi-agent research. Each agent is initialized as a non-holonomic

differential drive robot (0.5𝑚×0.5𝑚) equipped with a 2D-laser scanner to sense its surround-

ings. The 2D laser is set to 360 degrees FOV with a max range of 10m. For baselines and

our proposed method, we follow the same setup as [17] in terms of task states and reward

formulation, PPO loss and neural network backbone to process the sensor data. We make one

change to the NN backbone by adding a behavior embedding derived from the behavior token,

ℎ, for the neural network input. Each discriminator is modeled with a two-layer feed-forward

network with 128 hidden units and ReLU activations [218]. Table 6.1 lists the hyper-parameter

settings.

Hyper-parameter Value
Discount Factor 𝛾 0.99
PPO Smoothing 𝜆 0.95
PPO Clip Value 𝜖 0.1
# Epoch for Policy Network 3
# Epoch For Value Network 3
# Epoch for Discriminators 1
Advantange Weight 𝛼 0.1
PPO Learning Rates 0.00005
Discriminators Learning Rates 0.00005
Epoch𝜋, Epoch𝑑 , Epoch𝑣 3

Table 6.1: Hyper-parameters in our implementation.

Training Setup. We train agents in a realistic, heavily trafficked 20𝑚 × 20𝑚 room. Random

goals are placed at least 10𝑚 away from the agents’ initial positions. A crash event is registered
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Figure 6.3: The discriminator loss and reward curves.

if laser-scan values fall below 0.5𝑚. During respawns, collision checks are made to ensure that

each agent is not spawned in the vicinity of others.

Testing Setup. To evaluate the robustness of our policy in unseen crowd behaviors, we propose

a novel set of testing conditions with the criteria that the movements of the other agents must

be unique and not encountered during training. Also, we omit static obstacles as we focus

on dynamic obstacle avoidance. In these environments, our agent interacts with other agents

which exhibit dynamic movements beyond our control. For clarity, we refer to other agents as

pedestrians for the remainder of this section. In total, we design six different pedestrian setups

to be evaluated for each study:

1. Non-homogeneous (NH): To achieve non-homogeneous behaviors, each pedestrian uti-

lizes a distinct policy instance, initialized with a unique seed, to generate varied experi-

ences during training.

2. Invisible (IN): Similar to 1), but our robot is invisible to pedestrians achieved by low-

ering our agent’s height below the pedestrians’ sensors. This reflects the non-reactive

individuals in the real world. We achieve this by lowering our agent’s height below the

pedestrians’ sensor in the simulator.

3. Variability (VA): Similar to 2), pedestrians are invisible but receive random speed multi-

pliers (0.5-1.5) at each episode start, representing real-world walking speed variability.
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4. Sub-optimal (SO): Similar to 1), but the policy is trained for half the period (2.5k updates

instead of 5k), simulating sub-optimal walking trajectories.

5. Velocity-obstacle (VO): We utilizes ground truth positions of all pedestrians to compute

permissible velocities, following the method in [219].

6. Social force (SF): We use a force-based system to anticipate pedestrian movements fol-

lowing [220], and utilize ground positions for prediction similar to VO.

We consider a mixture of learning-based (NH,IN,VA,SO) and non-learning based (VO,SF)

policies. Four of them (IN,SO,VO,SF) are challenging with the non-reactive pedestrians. All

evaluations are repeated for 1000 episodes. If not stated explicitly, we set the number of robots

𝑁 = 5 (1 agent and 4 pedestrians) and number of behaviors 𝑀 = 5. Agents, pedestrians and

goals are spawned similarly to training. During testing, each agent utilises a fixed behavior to-

ken, ℎ = 0 for all episodes. Our primary metric is the ‘success rate’, without further classifying

the non-successful episodes, as collisions are the primary reason instead of timeouts.

Metrics. We adopt the following metrics [17] to measure the performance and robustness of

an agent.

• Success rate: we compute the success rate out of 1000 episodes. An episode is regarded

as successful when the agent can reach within 0.5m of the desired goal in 50 seconds

without any collision.

• Extra distance: this is computed as the difference between the agent’s travel distance

and the shortest distance between the start and goal positions. A smaller value indicates

better efficiency for the agent.

• Extra time: this is computed as the difference between the agent’s travel time and the

shortest travel time. The shortest travel time is calculated as the shortest distance over

the maximum linear velocity of the robot. A smaller value indicates better efficiency for

the agent.

• Average speed: this is the average linear speed across all steps within an episode. A

larger average speed implies better efficiency for the agent.
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M #Updates #Updates/M Pedestrian Type AvgNH IN VA SO VO SF
1 5K 5K 0.63 0.55 0.59 0.52 0.59 0.43 0.55
5 5K 1K 0.87 0.85 0.86 0.72 0.78 0.77 0.81

10 5K 500 0.80 0.75 0.82 0.72 0.76 0.69 0.76
20 5K 250 0.61 0.63 0.54 0.59 0.59 0.51 0.58
10 10K 1K 0.88 0.86 0.86 0.76 0.77 0.78 0.82
20 20K 1K 0.89 0.87 0.85 0.77 0.78 0.79 0.82

Table 6.2: Impact of the number of behaviors 𝑀 . Policies are evaluated under six diverse
unseen pedestrian setups.

6.4.2 Training Stability

Figure 6.3 shows the stability of the discriminators and the intrinsic reward during training.

The discriminator loss and intrinsic reward steadily improves until ∼ 700 updates, which then

flattens until ∼ 4000 updates, possibly due to novel state-action exploration. Subsequently, both

curves continue to improve again until the end of training where the main task has converged.

The best advantage weight 𝛼, which combines the task and intrinsic reward is 0.1.

6.4.3 Impact of the Number of Behaviors

We assess diversity’s impact on agent robustness and its scalability with behavior count 𝑀 .

When 𝑀 = 1, all agents share the same behavior, equivalent to the baseline policy in [17]. Our

results are presented in Table 6.2. We have the following three observations. First, having non-

reactive pedestrians (NH,IN,VA,SO) is generally a more difficult task with fewer successful

runs. Second, adding diversity (𝑀 ≠ 1) outperforms the default policy (𝑀 = 1) for all pedes-

trian types, including the challenging non-reactive pedestrians. This validates the effectiveness

of our proposed method. Third, the optimal number of behaviors is 𝑀 = 5 and the effect of

diversity starts to diminish as we scale to higher values of 𝑀 = 10 and 20. We hypothesize the

diminishing effect is resulted from less frequent sampling when 𝑀 increases. To investigate

this, we increase 𝑛𝑢𝑚 𝑢𝑝𝑑𝑎𝑡𝑒𝑠/𝑀 for 𝑀 = 10 and 20 to match 𝑀 = 5 and find that the perfor-

mance of 𝑀 = 10 and 𝑀 = 20 could match that of 𝑀 = 5, validating our hypothesis. However,

this comes at an expense of more updates. Overall, 𝑀 = 5 provides a good balance between

creating good diversity and sample efficiency.

108



CHAPTER 6. GENERALIZATION OF HUMAN PEDESTRIANS BEHAVIORS

𝑁 Diversity Pedestrian Type AvgNH IN VA SO VO SF
5 No 0.63 0.55 0.59 0.52 0.59 0.43 0.55
5 Yes 0.87 0.85 0.86 0.72 0.78 0.77 0.81

10 No 0.41 0.38 0.42 0.37 0.31 0.28 0.35
10 Yes 0.83 0.78 0.77 0.65 0.75 0.52 0.72
20 No 0.47 0.43 0.42 0.39 0.36 0.32 0.38
20 Yes 0.58 0.50 0.58 0.47 0.42 0.49 0.50

Table 6.3: Impact of the number of agents 𝑁 .

Intrinsic Reward 𝛼 best
Pedestrian Type Avg 𝜁NH IN VA SO VO SF

𝑙𝑜𝑔[𝑞1(ℎ | 𝑠, 𝑎)] − 𝑙𝑜𝑔[𝑞2(ℎ | 𝑠)] 0.10 0.87 0.85 0.86 0.72 0.78 0.77 0.81 1.10
𝑙𝑜𝑔[𝑞(ℎ | 𝑠, 𝑎)] 0.01 0.88 0.77 0.86 0.70 0.75 0.72 0.78 0.48

𝑙𝑜𝑔[𝑞(ℎ | 𝑠)] [159] 0.03 0.75 0.75 0.69 0.71 0.73 0.58 0.70 0.17
None 0 0.63 0.55 0.59 0.52 0.59 0.43 0.55 0

Table 6.4: Policies trained using different intrinsic rewards. 𝜁 is a measure of action diver-
sity between agents

6.4.4 Scalability with number of agents

Here, we investigate the effect of increased numbers of agents 𝑁 and report the results in Table

6.3. As the number of agents, 𝑁 , increases to 10 and 20, the scenes become more crowded,

making it harder for them to reach their goals. This negatively affects the convergence speed, as

agents get restarted more frequently due to collisions or other obstacles. Despite this, by adding

diversity to the policy, we achieve consistent performance improvements across all pedestrian

cases.

6.4.5 Ablation Experiments: Intrinsic Rewards

In Section 6.3.1, we formulate a cost function to promote diversity among agents. In the

formulation, we require that diverse actions performed for different ℎ should arise for every

state instead of exploiting only certain states. This is achieved using a regularizer as part of

the intrinsic reward proposed in Eqn. (6.3). From ablation experiments reported in Table

6.4, we observe that the policy trained with the intrinsic reward containing the regularization

term, −𝑙𝑜𝑔(𝑞 | 𝑠), outperforms the policy without this term. The performance improvement is

consistent in all pedestrian setups including the challenging non-reactive pedestrians. Despite
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Metrics Policy Pedestrian Type
NH IN VA SO VO SF

Success Rate ↑
Basic 0.63 0.55 0.59 0.52 0.59 0.43
Safe 0.86 0.77 0.81 0.67 0.69 0.61
Ours 0.87 0.85 0.86 0.72 0.78 0.77

Extra Time (s) ↓
Basic 2.833 ± 2.439 3.366 ± 2.621 3.724 ± 2.219 2.511 ± 1.751 3.158 ± 2.121 2.997 ± 1.136
Safe 5.041 ± 2.356 5.102 ± 2.719 5.248 ± 2.658 5.100 ± 2.335 5.217 ± 2.454 4.813 ± 2.348
Ours 2.712 ± 2.259 2.902 ± 2.671 2.714 ± 2.427 2.336 ± 0.995 2.119 ± 1.038 2.202 ± 1.344

Extra Distance (m) ↓
Basic 4.811 ± 4.011 4.123 ± 5.637 5.717 ± 3.013 4.197 ± 5.873 5.887 ± 4.187 3.321 ± 3.899
Safe 10.099 ± 4.452 10.734 ± 5.177 16.601 ± 5.235 10.116 ± 4.182 9.870 ± 3.946 10.024 ± 4.275
Ours 3.667 ± 3.587 3.930 ± 4.024 4.262 ± 4.489 3.217 ± 2.309 2.492 ± 1.719 2.662 ± 2.112

Average Speed (m/s) ↑
Basic 0.919 ± 0.096 0.927 ± 0.088 0.917 ± 0.87 0.922 ± 0.068 0.920 ± 0.079 0.910 ± 0.087
Safe 0.810 ± 0.091 0.795 ± 0.098 0.779 ± 0.100 0.811 ± 0.084 0.811 ± 0.084 0.786 ± 0.097
Ours 0.957 ± 0.059 0.955 ± 0.061 0.942 ± 0.076 0.960 ± 0.057 0.966 ± 0.039 0.965 ± 0.043

Table 6.5: Comparisons with baseline methods using different metrics averaged across
1000 episodes.

this, the policy trained without regularization still outperforms the base policy without the

intrinsic reward.

Next, we compare our method with state-space exploration based intrinsic rewards, DIYAN,

from [159] which may implicitly encourage action diversity through novel state exploration.

However, it still lacks action diversity compared to our proposed intrinsic reward in Eqn.(6.3),

where the diversity of the action is explicitly encouraged. To measure the action diversity,

we also introduce a new metric, 𝜁 , using the KL divergence of action distributions between

pairwise agents:

𝜁 =
1

|𝜏 |𝑁𝑖≠ 𝑗

∑︁
𝑠∈𝜏

∑︁
𝑖≠ 𝑗

KL (𝜋(𝑎 |𝑠, ℎ = 𝑖)∥𝜋(𝑎 |𝑠, ℎ = 𝑗))

where 𝜏 denotes a trajectory. Specifically, we collect a trajectory of 1000 steps using the trained

policy with no intrinsic reward. From Table 6.4, our proposed method achieves higher action

diversity 𝜁 than the state-space exploration based intrinsic rewards. Also, we observe that

higher values of 𝜁 get translated into higher robustness in unseen crowd behaviors, achieving a

greater success rate.

6.4.6 Comparisons with Prior Work

We quantitatively compare our proposed behavior-conditioned policy with existing solutions

to demonstrate its robustness. In particular, we set up the baseline method as described in [17],

equivalent to our proposed method with 𝑀 = 1. Additionally, we added a safe policy proposed

in [23], which uses safety zone rewards to encourage safe behaviors, which could crash less
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Figure 6.4: Testing our method in Gazebo with more realistic scenarios. Map settings:
(Left) Warehouse (Right) Hospital

in unseen crowd movements. For our proposed method, we utilize the model trained with

𝑀 = 5 and 𝑁 = 5. Table 6.5 shows the comparison results against different metrics across 1000

episodes. Each metrics (success rate, extra time, extra distance, average speed) are similarly

defined like in [17].

Our proposed method consistently outperforms others across various pedestrian types, sug-

gesting robust strategies for handling diverse crowd behaviors effectively. While the safe policy

achieves a higher success rate than the base policy, it slightly falls short of our proposed pol-

icy. Collisions primarily contribute to non-successful episodes, surpassing timeouts. The safe

policy with a safety buffer performs well in reactive setups (NH, VA), closely matching our

policy’s results. However, it struggles in non-reactive setups (IN, SO, VO, SF). The conserva-

tive behavior of the safe policy reduces collisions but increases time and distance compared to

our proposed policy, sacrificing other metrics. Specifically, both time and distance taken by the

safe policy are more than double those of our proposed policy.

6.4.7 Qualitative Analysis

Next, we investigate if behavior-conditioned policies exhibit different behaviors to reach the

desired goal. We record the behaviors of agents starting from the origin and reaching a fixed

goal behind a static obstacle. The trajectories of the 5 agents can be seen in Figure 6.5. These

agents exhibit different behaviors when conditioned on different tokens ℎ. While passing the

obstacle, some agents are left-inclined whereas some are right-inclined which is consistent with
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Figure 6.5: Trajectories of diverse behaviors sampled from our behavior-conditioned pol-
icy. Agents exhibit unique ways to reach the goal depending on sampled behaviors.

the motivation illustrated in Figure 6.1. Additionally, we also observe the velocity diversity

which is represented by the length of the arrow. For example, the blue agent (ℎ = 2) travels

slightly faster than the purple agent (ℎ = 4) when taking a slightly longer route. While the

diversity may appear slight, deploying it with multiple agents generates vastly different training

trajectories, enhancing agent robustness. More qualitative examples about the diversity among

dynamic obstacles are available on https://youtu.be/EevMn2-ZNng.

6.4.8 Realistic Deployment

To validate our method in a more realistic setup, we deploy our best performing policy (𝑁 = 5,

𝑀 = 5) on a Jackal robot in Gazebo simulator [64]. Our intent with these experiments is to

illustrate the transferability of our framework across distinct simulation environments (from

Stage to Gazebo) without policy modifications, emphasizing generalizability. We utilize two

maps (warehouse and hospital) from Arena-ROSNAV-3D [221] as seen in Figure. 6.4. For

each episode, we randomly assign the start and goal position with 3 to 8 pedestrians within an

open area of each map (∼ 10𝑚 × 10𝑚). The pedestrians movements are simulated using the

social force model [220].

Table 6.6 shows the success rate from 100 episodes with and without the diversity con-

sideration. Our method proves to be equally effective for realistic scenes, outperforming the
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Diversity Warehouse Hospital
No 0.40 0.37
Yes 0.81 0.69

Table 6.6: Experimental results of Gazebo deployment. Success rate out of 100 episodes

baseline method when diversity is used during training. More qualitative examples for realistic

scenes are available on https://youtu.be/EevMn2-ZNng.

6.5 Conclusion

We introduce a framework to increase an agent’s ability to generalize to unseen crowd behav-

iors by utilizing diverse behaviors in a sample-efficient manner. Adding diversity in a multi-

agent framework implicitly provides each agent with a more varied range of experiences, hence

increasing its generalizability of unseen crowd behaviors. We demonstrate the robustness of

the proposed method in an extensive set of evaluation scenes containing challenging pedes-

trians’ behaviors. We also validate the scalability of our solution and practicality in realistic

scenes. Our experiments also demonstrate that our method improves the success rates without

negatively affecting other important metrics.
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Chapter 7

Conclusion

7.1 Summary

This thesis has provided a comprehensive investigation into methods for enhancing the practi-

cality and effectiveness of RL-based local motion planners, focusing on bridging the reality gap

and incorporating human-centered design principles. In the first part of the thesis, we addressed

the dynamics mismatch challenge inherent in both online and offline RL settings. In the online

RL setting, we presented a simple yet practical domain adaptation approach that compensates

for dynamics mismatch through reward function adjustments with a novel dual action set. This

method was proven to guarantee near-optimal policy performance in the target domain un-

der mild assumptions. Experiments across various control tasks confirmed its effectiveness

in leveraging source domain information to develop successful target domain policies, even

with limited target domain transitions. Notably, a minimum of 10,000 offline samples from

the target dataset was required to enable positive transfer, highlighting both the potential and

limitations of this approach. Furthermore, we validated our hypothesis that uncertainty-based

exploration is able to compensate state transitions with large variance. In the offline RL setting,

we introduced a novel conditional diffusion model to solve the dynamics mismatch problem.

The model incorporates a continuous dynamics score and an inverse-dynamics context to cap-

ture the underlying dynamics structure within the latent space. This enabled the model to

learn effectively from both larger off-dynamics source datasets and limited, sub-optimal target

datasets. Empirical results demonstrated that our method significantly outperformed existing

baselines, and ablation studies confirmed the importance of each dynamics context in improv-

ing performance. The model also exhibited promising robustness in handling interpolation
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scenarios, suggesting its potential for real-world applications with dynamic shifts in the target

environment.

The second part of the thesis shifts its focus towards human-centered approaches, ad-

dressing the challenges of effective personalization and navigation in human-populated en-

vironments. First, we tackled the challenge of personalizing robot behaviors by developing

a resource-efficient method that rapidly and accurately adapts to individual user preferences,

eliminating the need for manually designed rewards. Specifically, our approach leverages a

pretrain-finetune framework, allowing the network to learn a latent embedding that represents

user preferences. This pretraining process enables rapid adaptation by updating only the em-

bedding while keeping the rest of the network parameters fixed. Evaluation results demon-

strated superior adaptation accuracy with less data compared to other methods, proving its

effectiveness in both simulated and human-annotated benchmarks. In addition to attaining

high accuracy, our proposed method exhibited greater stability across update steps compared

to RLHF and PPO, further highlighting its potential for real-world deployment. Lastly, we

addressed the challenge of developing robust and adaptable agents capable of navigating un-

predictable environments with unforeseen crowd movements. We proposed a method to foster

diversity within multi-agent learning systems. By introducing behavior-conditioned policies

with distinct behavior tokens, we successfully encouraged diverse behaviors among agents, a

result we verified qualitatively. This increased diversity exposed each agent to a broader range

of experiences, which enhances their ability to generalize to novel crowd behaviors. Experi-

ments showed a significant improvement in success rates without negatively impacting other

essential metrics, even in high-density environments and realistic Gazebo simulations.

In conclusion, this thesis contributes to the advancement of RL-based local motion plan-

ning, with potential implications for the development of intelligent robotic systems that can

better integrate with human society. We believe that our approaches to tackling dynamics mis-

match have shown promising results and could significantly improve the real-world applicabil-

ity of these methods. The work presented here seeks to address the challenges of navigation in

unpredictable environments and adaptation to user preferences, with the goal of creating safer

and more efficient robots. While this research represents a step forward in the field, there re-

mains much to be explored in the ongoing quest to fully realize the potential of RL in shaping

the future of robotics and human-robot interaction.
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7.2 Broader Impact

Here, we discuss the broader impact of our research beyond mobile robots:

Reducing the dynamics mismatch between source and target domains can be extended to

general robotics and even non-robotic domains. In general robotics, our approaches can benefit

several key areas. Industrial robots can leverage these methods when transferring policies from

simulation to real-world tasks involving materials with varying physical properties, such as

cable manipulation, fabric handling, and precision assembly. Medical robots could use these

techniques to bridge the crucial gap between simulated and real surgical procedures, where

tissue properties and tool interactions vary significantly. For soft robotics, our methods address

the challenging dynamics of deformable materials, where simplified simulation models often

fail to capture the highly nonlinear behaviors of real-world applications. Beyond robotics, our

sim-to-real principles have valuable applications in autonomous vehicles and decision-making

systems. In autonomous driving, simulation-trained models often face performance issues due

to mismatches in vehicle physics and road conditions, but our approaches can improve real-

world reliability. Similarly, in industrial automation, control systems initially designed and

tested in simulation can benefit from our methods, enhancing their transition to operational

environments and resulting in more robust and efficient automation processes.

Personalization in the context of reinforcement learning and sequential decision-making

also has the potential for significant impact beyond mobile robots and traditional robotics ap-

plications. Assistive robots, such as eldercare or rehabilitation devices, can use preference

learning to align their actions with individual needs and comfort, improving quality of life.

Similarly, assistive technologies, like prosthetics or exoskeletons, can be personalized to match

user preferences for movement and comfort, enhancing usability and effectiveness. Beyond

robotics, preference learning has transformative potential in non-robotic domains such as ed-

ucation and healthcare. For example, adaptive learning platforms can personalize educational

content, pacing, and feedback to suit diverse learning styles. In healthcare, preference-aware

RL can align medical decision-making with clinician priorities and patient-centric care. On a

broader societal level, preference learning can influence policy design and governance by bal-

ancing competing preferences among diverse groups, leading to more inclusive and equitable

decision-making processes.
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Generalizing and learning diverse behaviors for crowd movement can significantly enhance

swarm robotics for drones and autonomous vehicles. In drone swarms, understanding and

replicating behaviors like flocking, dispersion, and collective decision-making enables more

efficient and adaptive operations. For instance, in delivery systems, swarm drones can uti-

lize crowd-inspired behaviors to optimize route selection, avoid mid-air collisions, and adapt

to changing traffic in urban airspaces, ensuring faster and safer deliveries. Similarly, in au-

tonomous vehicles, crowd movement principles can improve navigation and coordination in

complex urban settings. By learning diverse behaviors—such as merging into traffic, yield-

ing to pedestrians, or forming vehicle platoons—self-driving cars can operate more safely and

efficiently, especially in mixed-traffic scenarios involving vehicles, cyclists, and pedestrians.

7.3 Future Work

Our research has established theoretical foundations for improving RL-based local motion

planners, addressing the reality gap and integrating human-centered design principles. How-

ever, several aspects of our work require further investigation and refinement:

In addressing dynamics mismatch challenges in online and offline setting, we propose a

few ideas. In the online settings, further research is needed to explore performance based on

the optimality of the behavioral policy. Our current approach uses the source policy as the be-

havioral policy, but investigation into less optimal policies is necessary. Additionally, we need

to analyze the relationship between the effectiveness of reward adjustment and the extent of the

dynamics gap between source and target environments, as well as understand the limitations

of this approach as the gap widens. Next, the uncertainty-based exploration technique shows

promise, particularly in handling states with epistemic errors in the DARC classifiers, and could

be extended to more advanced formulations or other applications. In the offline settings, our

current setup is limited to single source off-dynamics datasets. Future studies should explore

the use of multiple off-dynamics datasets, potentially incorporating a multi-class classifier for-

mulation for domain classifiers, to enhance model generalization across diverse environments.

This approach could be viewed as a form of meta-learning, where the model learns to adapt to

various dynamics distributions. Lastly, while the proposed dynamics score and inverse dynam-

ics context proved effective, utilizing other forms of dynamics contexts with the conditional

DPMs remains under-explored.
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Next, we propose several ideas for human-centered applications. For the personalization

topic, our newly designed experiment based on Quality Diversity prioritizes diversity over op-

timality, better reflecting real-world scenarios for preference learning. While this represents

a significant step forward, the current study is limited in the variety of tasks and number of

users involved. To address these limitations, we propose expanding our research to incorporate

larger human-annotated datasets encompassing a broader range of tasks. This expansion could

provide a more comprehensive understanding of human preferences across a wider range of

scenarios, enhancing the robustness and applicability of our preference learning models. Addi-

tionally, we introduced a novel pretraining approach for the diffusion model, utilizing masked

trajectories and spectral normalization without relying on explicit supervision. While promis-

ing, this method leaves room for further exploration in pretraining design. Future research

could investigate alternative pretraining strategies, architectures, or regularization techniques

to potentially enhance this crucial step. In the context of generalization of human pedestrians

behaviors, our current approach calculates intrinsic rewards based on single-step predictions.

Future research could explore extending this to longer time horizons, potentially capturing

more complex behavioral patterns and improving long-term planning. Additionally, we pro-

pose integrating our diversity concept with imitation learning using real pedestrian datasets.

While imitation learning closely mimics human movement patterns, it often struggles with

overfitting and poor generalization. By incorporating diversity into the imitation learning pro-

cess, we could potentially leverage the strengths of both approaches, creating agents that are

more robust and adaptable in human-populated environments.

Finally, while our methods have been empirically validated against numerous strong base-

lines in Mujoco and Gazebo simulations, these environments do not fully replicate real-world

complexities. Future research should prioritize testing robots on actual hardware in real-world

settings to validate and refine our approaches, a crucial step in understanding the true capabili-

ties and limitations of our methods.
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