
Enhancing Side-channel Security:

Detection, Mitigation and Verification

Ke Jiang

College of Computing and Data Science

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2024

© 2024 Ke Jiang

Statement of Originality

I hereby certify that the work embodied in this thesis is the result

of original research, is free of plagiarised materials, and has not been

submitted for a higher degree to any other University or Institution.

06/10/2024
. .

Date Ke Jiang

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiarism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

06/10/2024
. .

Date Assoc. Prof. Tianwei Zhang

Authorship Attribution Statement

This thesis contains material from 2 papers accepted at conferences

and 1 paper being reviewed by the conference in which I am listed as

an author.

Chapter 2 is published as Ke Jiang, Yuyan Bao, Shuai Wang, Zhibo Liu, and
Tianwei Zhang. 2022. Cache Refinement Type for Side-Channel Detection of
Cryptographic Software. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’22). Los Angeles, L.A., USA,
1583–1597. https://doi.org/10.1145/3548606.3560672

The contributions of the co-authors are as follows:

• I proposed the idea, developed the system and conducted all experiments.

• All data, including locating the vulnerabilities in cryptography libraries was
analyzed by me.

• I prepared the manuscript drafts. The manuscript was revised by Asst/Prof
Yuyan Bao, Assoc/Prof Shuai Wang and Assoc/Prof Tianwei Zhang.

• Asst/Prof Yuyan Bao assisted in the collation of the refinement type rules.

• Assoc/Prof Shuai Wang assisted with the rebuttal period and polished the
revision.

• Dr. Zhibo Liu provided technical support on disassembly.

• Assoc/Prof Tianwei Zhang put forward constructive suggestions throughout
the project.

Chapter 3 is being reviewed as Ke Jiang, Sen Deng, Yinshuai Li, Shuai Wang, Tian-
wei Zhang, and Yinqian Zhang. 2024. CipherGuard: Compiler-aided Mitigation
against Ciphertext Side-channel Attacks.

The contributions of the co-authors are as follows:

• I proposed the idea, developed the system and conducted all experiments.

• I analyzed the data and wrote the draft of the manuscript. The draft was
revised by Assoc/Prof Shuai Wang, Assoc/Prof Tianwei Zhang and Prof Yin-
qian Zhang.

• Sen Deng participated in the discussion of important project nodes and made
valuable comments on the manuscript.

• Yinshuwai Li provided technical support on program debugging.

• Assoc/Prof Tianwei Zhang and Prof Yinqian Zhang guided the direction of
the project.

• Assoc/Prof Shuai Wang put forward constructive suggestions throughout the
project.

Chapter 4 is published as Ke Jiang, Tianwei Zhang, David Sanán, Yongwang Zhao,
and Yang Liu. 2022. A Formal Methodology for Verifying Side-channel Vulner-
abilities in Cache Architectures. In Proceedings of the 23rd International Con-
ference on Formal Engineering Methods (ICFEM’ 22), Madrid, Spain, 190-208.
https://doi.org/10.1007/978-3-031-17244-1 12

The contributions of the co-authors are as follows:

• I proposed the idea, developed the verification framework and conducted all
proofs.

• I analyzed the proof results, specifically connecting the results to all cache
designs. I prepared the manuscript.

• The manuscript was revised by Assoc/Prof Tianwei Zhang and Asst/Prof
David Sanán.

• Assoc/Prof Tianwei Zhang and Prof Yongwang Zhao participated in the dis-
cussion of important project nodes.

• Asst/Prof David Sanán provided technical support on formal verification.

• Prof Yang Liu put forward constructive suggestions throughout the project.

06/10/2024
. .

Date Ke Jiang

Acknowledgements

It is time to bid farewell to the Ph.D. journey, an unforgettable experience that has

imparted invaluable lessons and fostered profound personal growth. The challenges

and triumphs encountered along the way have not only deepened my knowledge

and honed my research skills but also strengthened my resilience and broadened

my perspective.

I would like to express my gratitude to my supervisor, Associate Professor Tian-

wei Zhang, for providing me the opportunity to pursue a Ph.D., as well as for

offering valuable guidance in establishing the overall research direction. His men-

torship fostered my capacity for independent scientific research and cultivated a

nuanced approach to critical thinking. By granting me the freedom to explore and

discover my research interests, he encouraged a spirit of inquiry and innovation,

while consistently providing clear guidance and substantial help whenever needed.

His exemplary conduct elucidated the qualities of a seasoned scientist, shaping my

understanding of the caliber and demeanor expected in the pursuit of scholarly

endeavors. His strict requirements and high standards challenged me to strive for

excellence and significantly enhanced the quality of my work. For all these reasons,

I am deeply thankful for his support and mentorship throughout my Ph.D. journey.

I express profound gratitude to Professor Yang Liu and Professor Yongwang Zhao

for ushering me into the realm of academic pursuit during a transformative trip

to Singapore. This marked the inception of my doctoral journey, altering the

trajectory of my life significantly. Witnessing their dedication and exploration

at the forefront of scientific frontiers served as a compelling inspiration. Their

commitment to conducting research with calmness and rigor became a guiding

beacon for me.

I would like to acknowledge Professor Yinqian Zhang, Associate Professor Shuai

Wang, Assistant Professor David Sanán, and Assistant Professor Yuyan Bao, for

vii

their collaborative efforts, which have contributed to the successful completion of

various aspects of my doctoral journey. Their dedication and expertise have been

indispensable, and I am grateful for the shared intellectual journey.

A heartfelt thank you to my friends, Kangjie Chen, Shuxin Li, Xiaoxuan Lou,

Tianlin Li, Chengwei Liu, Meng Hao, Hanxiao Chen, Anran Li, Wenjun Long, Dr.

Wenhao Fu, Gelei Deng, Dr. Jianwen Sun, Dr. Hongxu Chen, Dr. Fei Yang, Dr.

Feng Zhang, Jinyi Xian and others who have provided emotional support, encour-

agement, and moments of respite during the challenging phases of this journey.

To my wife, my parents, and other family members, I am deeply indebted for

their unwavering love, encouragement, and understanding throughout this jour-

ney. Their belief in my abilities have been a constant source of motivation. Their

collective support has not only fortified my academic endeavors but has also been

the bedrock of my personal growth. I am profoundly grateful for the invaluable

contributions of my family, without whom this journey would not have been possi-

ble. Lastly, I am overjoyed to share that my wife has bestowed upon me the most

precious gift of all, our daughter. Her arrival has filled our lives with immeasurable

happiness and has added a new, profound dimension to our journey as a family.

To my dear family

Abstract

In the realm of computer security, side-channel attacks pose a significant threat

by exploiting subtle information leaks during the operation of a system. These

attacks, which include cache side-channel attacks, a particularly insidious subset,

enable adversaries to extract sensitive data by exploiting cache memory behav-

iors. To defeat cache side-channel attacks, current research has made strides in

developing software and hardware-level countermeasures, but challenges persist

in achieving comprehensive and scalable methods. Furthermore, constant-time

coding practices, effective against traditional cache-based side channels, face lim-

itations with emerging threats like ciphertext side channels. Additionally, new

micro-architectural designs, e.g., cache designs, lack formal guarantees of effective-

ness, highlighting the need for ongoing evaluation and adaptability. This thesis

addresses these challenges, with the aim of improving cache side-channel defense

methods, addressing emerging ciphertext side channels, and improving the security

of novel hardware designs through formal verification.

To be more specific, this thesis focuses on three primary objectives. First, it aims

to advance cache side-channel detection by developing comprehensive methods to

identify and mitigate vulnerabilities in cryptography software. Second, it addresses

the emerging threat of ciphertext side channels by proposing a holistic approach

that combines constant-time coding practices with compiler-aided mitigation mech-

anisms. Finally, the research seeks to enhance the security of new cache designs

by providing a means for formal verification, acknowledging the challenges posed

by their complexity and potential vulnerabilities. Through these endeavors, this

thesis contributes to fortifying the security of modern computing systems against

the evolving and increasingly sophisticated landscape of side-channel threats.

We present three significant contributions addressing side-channel vulnerabilities.

Firstly, we introduce CaType, a groundbreaking refinement type-based tool for

cache side-channel detection in cryptographic software. CaType analyzes x86

xi

xii

assembly code using refinement types, offering enhancements like bit-level granu-

larity tracking, precise type inferences, and high scalability. It is the first static

analyzer for cryptography libraries considering blinding-based defenses and utilizes

cache layouts to suppress false positives, demonstrating superior performance in

identifying vulnerabilities. Secondly, we propose CipherGuard, a compiler-aided

mitigation tool addressing ciphertext side channels by recognizing secret-dependent

store instructions and providing multiple strategies to protect these instructions.

For the first time, CipherGuard employs various precise and flexible mitiga-

tion variants based on the LLVM ecosystem, achieving security without hardware

modification and displaying enhanced efficiency in cryptography implementations

compared to existing defense tools. Lastly, we introduce a formal methodology

for security verification of cache architectures, employing an entropy-based nonin-

terference reasoning framework to assess information leakage. The methodology,

applied to eight cache architectures, demonstrates reliability and flexibility, con-

tributing to the advancement of cache side-channel security.

Contents

Acknowledgements vii

Abstract xi

List of Figures xvii

List of Tables xix

Symbols and Acronyms xxi

1 Introduction 1

1.1 Side-channel Attacks . 1

1.1.1 Micro-architectural Side-channels 2

1.1.2 Trusted Computing Side-channels 3

1.1.3 Physical Side-channels . 4

1.2 Side-channel Mitigation . 6

1.2.1 Secure Architectures and System Designs 6

1.2.2 Trusted Computing Hardening 8

1.2.3 Constant-time Principles . 8

1.3 Research Scope and Overview . 11

1.4 Major Contributions . 13

1.5 Outline of the Thesis . 15

2 Refinement type-based Detection of Side-channels in Cryptogra-
phy Software 17

2.1 Introduction . 17

2.2 Background . 21

2.2.1 Refinement Type Systems 21

2.2.2 Cache Hierarchy and Cache Side-channels 22

2.2.3 Cache Side Channel Mitigation 23

2.3 Research Overview . 24

2.3.1 Assumptions . 24

2.3.2 Methodology Overview . 25

2.4 Design . 30

xiii

xiv CONTENTS

2.4.1 Bit-level Representation and Types 31

2.4.2 Type Inference for Bitvectors 33

2.4.3 Type Inference Rules . 34

2.4.4 Cache Side-channel Detection 39

2.5 Implementation . 42

2.6 Evaluation . 44

2.6.1 Evaluation Setup . 44

2.6.2 Results Overview . 44

2.6.3 Discussion of Known Vulnerabilities 49

2.6.4 Unknown Vulnerabilities . 53

2.6.5 Discussion about Blinding 56

2.6.6 Reducing False Positives . 57

2.7 Discussion and Limitation . 59

2.8 Related Work . 63

2.9 Conclusion . 64

3 Compiler-aided Mitigation against Side-channels in Trusted Exe-
cution Environment 65

3.1 Introduction . 65

3.2 Background . 69

3.2.1 Ciphertext Side-channel Attacks 69

3.2.2 Countermeasures to Ciphertext Side-channels 71

3.3 Methodology Overview . 72

3.3.1 Threat Model . 72

3.3.2 A Motivating Example . 73

3.3.3 Motivations of Compiler-aided Mitigation 75

3.3.4 Architecture Overview of CipherGuard 77

3.3.5 Technical Challenges . 78

3.4 Detailed System Design . 80

3.4.1 Tainting Secret Locations 80

3.4.2 Software-based Probabilistic Encryption 81

3.4.3 Secret-aware Register Allocation 83

3.4.4 Managing Nonce Buffers . 86

3.5 Implementation . 88

3.6 Evaluation . 89

3.6.1 Experiment Setup . 89

3.6.2 Comparison between Variants 90

3.6.3 Comparison with CipherFix 95

3.6.4 Comparison with Obelix 99

3.6.5 Security Analysis . 101

3.7 Discussion . 104

3.8 Conclusion . 105

CONTENTS xv

4 Noninterference-based Verification of Side-channels in Microar-
chitectural Designs 107

4.1 Introduction . 107

4.2 Background . 110

4.2.1 Cache Side-channel Attacks 110

4.2.2 Mutual Information . 112

4.2.3 Isabelle/HOL . 113

4.3 Methodology Overview . 113

4.3.1 Threat Model . 113

4.3.2 Architecture . 114

4.3.3 Available Proving Technique 116

4.4 Design of Reasoning Framework . 116

4.4.1 An Abstract State Machine 117

4.4.2 Noninterference . 118

4.4.3 Unwinding Conditions . 120

4.5 Application of Our Methodology . 122

4.5.1 Verifying Cache Designs . 122

4.5.2 Verifying TLB Designs . 129

4.6 Evaluation . 131

4.7 Conclusion . 134

5 Conclusions and Future Work 135

5.1 Conclusions . 135

5.2 Future Work . 136

List of Author’s Awards, Patents, and Publications 139

Bibliography 141

List of Figures

2.1 Square-and-Multiply Exponentiation. 22

2.2 Sliding-window Exponentiation. 23

2.3 Comparison of constraint solving-based techniques (b), type inference-
based approach (c), and CaType (d). TP, FP, and TN denote true
positive, false positive, and true negative, respectively. 26

2.4 Workflow of CaType. 30

2.5 Syntax of bit-level representation. 31

2.6 Type propagation from single-bit to bitvector. 33

2.7 One-bitvector Constant Type Rules. 34

2.8 One bit B type rules for logical operations. 35

2.9 Type rules for expressions involving bitvector Vec⟨n⟩. 36

2.10 Type Rules for Statements. 38

2.11 BN num bits word. 42

2.12 Trace lengths/processing time towards the analysis of RSA imple-
mentations. 47

2.13 RSA/ElGamal information leaks found in Libgcrypt-1.6.1. 49

2.14 RSA information leaks found in OpenSSL-1.0.2f. 50

2.15 Window size of modular exponentiation. 50

2.16 ECDSA information leaks found in OpenSSL-1.1.0g. 52

2.17 Bignumber resize. 52

2.18 Window size selection. 54

2.19 BN rshift1 information leaks found in OpenSSL-1.1.0g. 54

2.20 bn mul normal information leaks found in OpenSSL-1.1.0i. 55

2.21 BN copy from the OpenSSL Library. 57

2.22 Cache layout from OpenSSL-1.1.0g 57

2.23 Cache layout from OpenSSL-1.1.0h 58

3.1 ossl ec scalar mul ladder. 70

3.2 BN constant swap. 70

3.3 ossl ec scalar mul ladder and its Machine Basic Block. 73

3.4 BN constant swap and its Machine Basic Block. 74

3.5 Workflow of CipherGuard. 77

3.6 In-place code insertion. 82

3.7 Sensitive stack slots contained in MBBs. 85

xvii

xviii LIST OF FIGURES

3.8 An example of register allocation from the function bn mul add words

of OpenSSL-ECDSA. In the visualization, the white and shaded
blocks represent the liveness of stacks, with shaded blocks contain-
ing numbers that denote registers holding the sensitive stack slots. . 86

3.9 Function SHA512 Transform from the libsodium-SHA512 serves as
an example to illustrate the construction of CFGs and identify crit-
ical nodes. 97

3.10 Scatter distribution of masked pbit under different variants. Each
secret sequence comprises 512 values. 102

3.11 A corner case arises when a one-bit change in the secret can be re-
vealed by observing identical masked plaintext across multiple mask-
ing. 103

4.1 Side-channel attack scheme. Sub-figure (a) represents the prepara-
tion phase, (b) the waiting phase, and (c) the observation phase. . . 111

4.2 Workflow of our proposed approach. 115

4.3 Workflow of Random Permutation Cache 124

4.4 Workflow of Random Fill TLB . 129

List of Tables

2.1 Type inference over sample assembly code. To ease reading, we use
K, I, W, and U to term refinement type predicates, corresponding
to SDD, SID, WRA, and URA types. {K}32 means bit K repeats
32 times, while {1}16 means bit 1 repeats 16 times. “c-line” stands
for cache line. 41

2.2 Cryptosystems analyzed by CaType. 44

2.3 Identified Information Leakage Sites/Units by CaType. We com-
pare the results with recent works, including CacheD, CacheS and
DATA. 45

2.4 Performance comparison with CacheD/CacheS. We also list the anal-
ysis of eight RSA implementations for scalability assessment. 48

2.5 Branch vulnerabilities identified by CaType under gcc -O0, -O2,
and -O3 optimization settings. 59

2.6 Checking the correctness of refinement type system in CaType by
comparing with taint analysis. “FPs” denotes false positives of taint
analysis. We randomly select 100 cases for each setting for confir-
mation except ElGamal/Libgcrypt 1.9.4. 61

3.1 The maximum numbers of sensitive stack slots among tainted func-
tions. 84

3.2 Performance statistics towards mitigated cryptography software with
3 variants of CipherGuard. Results are obtained by measuring the
average clock cycles using the rdtsc instruction. XS+ is short for
XorShift128+. 91

3.3 Performance improvement by Variant 1 over the on-the-fly rdrand

method. CC20 is short for ChaCha20. 93

3.4 Profit analysis of variant 3. 94

3.5 Performance comparison with CipherFix based on the same num-
ber of tainted functions. The replication of CipherFix is conducted
on its Fast version. 96

3.6 Performance comparison betweenObelix andCipherGuard. The
factor data comes from Obelix paper and Table 3.2. 100

3.7 Entropy of the secret distribution under different variants. For each
variant, we run the cryptography library twice to ensure that the
original secrets are different. 102

xix

xx LIST OF TABLES

4.1 Verification Results of Cache Designs. 132

Symbols and Acronyms

Symbols

H the high security sensitivity of data

L the low security sensitivity of data

T the basic type

P the predicate associated with the basic type

♯ the concatenation operation of two expressions

[n1 : n2]/ · the extraction operation of the designated position of a bitvector

expression

▷◁ the logic operations

Vec⟨n⟩ the bitvector of n bits

⊔ the operation of taking the least upper bound of two types

∥x∥t the operation of inferring a bitvector’s type from the types of its

constituent bits based on a notion of structural priority

K the abbreviation of SDD type

I the abbreviation of SID type

W the abbreviation of WRA type

U the abbreviation of URA type

{ · }n the n-time repetitions of a bit

X the probability distribution of input

Y the probability distribution of output

P(· × ·) the power-set of two types

I the input content

O the output content

P the probability in real type

ψ the event-state transition function

xxi

xxii SYMBOLS AND ACRONYMS

ϖ the output function

S the state space

E the set of event labels

M the abstract state machine

Cpt the conditional probability transition function

W the conditional probability matrix

J the joint distribution

Acronyms

IoT Internet of Things

TEE Trusted Execution Environment

TLB Translation Lookaside Buffer

DRAM Dynamic Random Access Memory

PTE Page Table Entry

SPA Simple Power Analysis

DPA Differential Power Analysis

DES Data Encryption Standard

SEMA Simple Electromagnetic Analysis

DEMA Differential Electromagnetic Analysis

LLC Last Level Cache

CAT Cache Allocation Technology

VM Virtual Machine

ORAM Oblivious Random Access Memory

TSX Transactional Synchronization Extensions

SSA Static Single Assignment

SDBC Secret-Dependent Branch Condition

SDMA Secret-Dependent Memory Access

SAT Satisfiability

UNSAT Unsatisfiability

SDD Secret-Dependent Distribution

URA Uniformly Random Distribution

SID Secret-Independent Distribution

WRA Weakly Random Distribution

SYMBOLS AND ACRONYMS xxiii

CST Constant

MA Memory Access

BC Branch Condition

TP True Positive

FP False Positive

TN True Negative

SEV Secure Encryption Virtualization

ES Encrypted State

SNP Secure Nested Paging

SGX Software Guard Extension

TDX Trust Domain Extension

CCA Confidential Compute Architecture

NPT Nested Page Table

ASID Address Space identifier

DFSan Data Flow Sanitizer

XEX XOR-Encrypt-XOR

MBB Machine Basic Block

SIMD Single Instruction Multiple Data

CFG Control Flow Graph

ORAM Oblivious RAM

ASLR Address Space Layout Randomization

HDL Hardware Description Language

MMU Memory Management Unit

VA Virtual Address

PA Physical Address

SA Set Associative

RP Random Permutation

RF Random Fill

PL Partition Locked

NO No Observation

CO Constant Observation

Chapter 1

Introduction

1.1 Side-channel Attacks

Side-channel attacks present a serious risk to computer security, leveraging subtle

information leaks that occur during routine system operations. By exploiting unin-

tended side effects such as power usage, electromagnetic emissions, and variations

in execution times, malicious actors can deduce critical data such as encryption

keys, passwords, and other sensitive information. These attacks are difficult to

detect because they operate outside traditional intrusion methods, making them

particularly stealthy. Currently, side-channel attacks have proven effective against

both software and hardware, affecting a wide array of devices, from smartphones

and Internet of Things (IoT) devices to highly secure servers.

Side-channel attacks encompass micro-architectural attacks, power attacks, elec-

tromagnetic attacks, fault attacks, and transient execution attacks. Notably, the

attack and defense research on micro-architectural side-channels has advanced con-

siderably in recent years. Moreover, with the rise of trusted computing and the

application of Trusted Execution Environments (TEEs), research targeting side-

channel attacks on TEEs has also emerged. Below, we offer a concise overview of

side-channel attacks in different contexts.

1

2 1.1. Side-channel Attacks

1.1.1 Micro-architectural Side-channels

Micro-architectural side-channel attacks represent a significant and particularly

insidious subset of side-channel attacks that exploit the behavior of a computer’s

hardware optimizations [1].

Conventional attacks. Initially, timing side-channel attacks were first utilized

to compromise cryptography software by observing the execution time of opera-

tions involving private keys [2]. Over time, attention shifted to cache side-channel

attacks, where attackers meticulously measure the access time to specific cache

locations to deduce patterns and infer activities within the targeted system [3–8].

These attacks can expose sensitive details such as secret-dependent control-flow

patterns and memory access patterns [9–14]. Cache side-channel attacks are noted

for their ability to operate stealthily at a low level, posing significant challenges for

detection and defense.

Subsequently, more optimizations in modern processors and operating systems have

been exploited to obtain side-channel information. For instance, the branch predic-

tor unit, which forecasts branch outcomes and pre-processes subsequent code, does

not clear its values during context switches, potentially exposing sensitive data [15–

17]. Another critical optimization unit is the Translation Lookaside Buffer (TLB),

which stores mappings from virtual addresses to physical addresses. Attackers can

exploit the TLB to ascertain if a specific page is recently accessed, thus inferring

sensitive data [18].

Furthermore, additional optimizations including the memory management unit [19,

20], floating-point units [21], CPU ring interconnect [22], CPU ports [23, 24], and

the random number generator [25] introduce variations in the program execution

time, thereby exposing confidential information.

Fault attacks. Fault attacks exploit physical phenomena and are considered active

attacks, where attackers manipulate hardware components beyond their intended

limits using software. These exploits capitalize on vulnerabilities in the physical

design of computer hardware, such as Dynamic Random Access Memory (DRAM),

to compromise system security. One well-known fault attack is Rowhammer, which

targets DRAM [26–41]. Specifically, in DRAM, each cell stores binary data (0 or

1) using a capacitor and transistor. Through repeated access to these cells, elec-

trical charge can leak, causing unintended interactions with nearby cells. This

Chapter 1. Thesis Overview 3

phenomenon induces bit flips in adjacent memory cells without direct access, po-

tentially altering critical data and compromising system integrity. Rowhammer

exemplifies how subtle manipulations of hardware at the physical level can lead to

significant security risks, highlighting the intricate nature and stealthiness of fault

attacks in computing environments.

Transient execution attacks. Transient execution attacks exploit instructions

that are not permanently committed in the architectural state due to speculative

execution mis-predictions or faults. Despite pipeline flushes ensuring functional

correctness by discarding any architectural effects, traces persist in the micro-

architecture [42]. Techniques for extracting information from these traces through

side channels have been significantly refined over the past decade. Transient exe-

cution attacks are classified into two types: Meltdown and Spectre attacks [43, 44].

Meltdown attacks involve exploiting transient reads from L1 data caches or fill

buffers to retrieve secrets, while Spectre attacks use branch predictors and the

return stack buffer to induce branch mis-predictions. These attacks pose greater

risks compared to conventional side channels and fault attacks, capable of leaking

sensitive data such as kernel memory and passwords.

1.1.2 Trusted Computing Side-channels

Major processor vendors introduce a hardware-based technology known as TEE,

which provides an isolated environment with memory encryption to fortify the in-

tegrity and confidentiality of Virtual Machines (VMs) against privileged attackers,

such as malicious hypervisors or host OS. Micro-architectural side-channel attacks

within TEE represent a prominent area of security research. Similar to traditional

side-channels, this domain focuses on various micro-architectural components in

TEE.

For instance, Dessouky et al. [45] demonstrated that timing analysis on caches can

uncover sensitive data within TEEs. Building on previous work, the Prime+Count

cache side-channel attack was introduced against ARM TrustZone [46]. For TLB

component, Gras et al. [18] identified that attackers could exploit the TLB to

determine if a specific page was recently accessed in a TEE, thereby obtaining

sensitive data, with TLSBleed serving as an example. Additionally, Lee et al. [47]

utilized the branch target buffer to execute the Branch Shadowing attack, while

4 1.1. Side-channel Attacks

Evtyushkin et al. [17] exploited directional branch predictors to infer sensitive in-

formation by causing branch conflicts. Moreover, page-fault side-channel attacks

allowed attackers to deduce control and data flows from page faults [48]. These

attacks are classified based on the Page Table Entry (PTE) flag being monitored,

such as the present, accessed, dirty, and reserved bits [49]. DRAM side-channel

attacks exploited timing variations during memory operations, enabling attackers

to discern memory access patterns in TEEs [50]. Meltdown attacks leveraged tran-

sient reads from L1 data caches or fill buffers to extract TEE secrets, with notable

examples including the Foreshadow attack [51], Cache Line Freezing attack [52],

and ZombieLoad attack [53]. Spectre attacks leveraged branch mis-predictions, in-

cluding SgxPectre [54], which used branch predictors, and SpectreRSB [55], which

employed the return stack buffer.

Notably, researchers have discovered a new side-channel called ciphertext side-

channel attack due to the deterministic memory encryption used in AMD’s TEE.

This attack allows an attacker to deduce relationships between successive plain-

texts or identify specific plaintext patterns by observing changes in ciphertexts.

The concept of ciphertext side channels was first introduced in Li et al’s work [56]

and further explored by systematically examining the applicability of this vulnera-

bility [57]. While the initial research focused on AMD’s TEE [58], it is important to

note that this vulnerability also affects other TEE architectures based on determin-

istic encryption, provided that attackers can access ciphertext (through software

access [56] or memory bus snooping [59]).

1.1.3 Physical Side-channels

Power attacks and electromagnetic attacks are both non-invasive side-channel at-

tacks, meaning the attacker measures various energy consumption or electromag-

netic emissions of cryptography hardware devices. These side-channel attacks are

effective because bit flips in data cause changes in energy consumption or electro-

magnetic emissions, allowing the attacker to infer the key.

Power attacks are mainly divided into two types: Simple Power Analysis (SPA) [60,

61] and Differential Power Analysis (DPA) [62, 63]. SPA examines the waveform of

current or power consumption over time, using the values of energy consumption to

Chapter 1. Thesis Overview 5

infer related confidential information. Different instructions executed in a micro-

processor generate different currents and power consumption, enabling attackers to

deduce the control-flow information of the running program through power supply

analysis. Thus, control-flows in cryptography systems that depend on the key are

prime targets for attackers. For example, in the RSA cryptosystem, the sequence

of square and multiply operations depends on the bit values of the key, making it a

focal point for side-channel attacks. DPA is a more advanced power analysis tech-

nique that performs statistical analysis on data collected from multiple encryption

and decryption operations to calculate intermediate values during computation.

DPA relies on the assumption that in a cryptography system, there is an interme-

diate variable where part of the key’s bit values determine whether two inputs will

result in the same value for this variable. DPA does not focus on individual power

consumption information, thus making it less susceptible to noise. By observing

the S-box operations in the Data Encryption Standard (DES) cryptosystem, DPA

can recover several key bit values.

Similar to power attacks, electromagnetic attacks derive sensitive information from

cryptography systems by measuring the electromagnetic emissions of hardware de-

vices. Electromagnetic attacks are also categorized into Simple Electromagnetic

Analysis (SEMA) and Differential Electromagnetic Analysis (DEMA) [64, 65], fol-

lowing the same principles as power analysis counterparts.

Fault injection side-channel attacks involve altering the normal logic of a device

through external interference, causing the cryptography system to enter an ex-

ploitable error state, thereby revealing internal states, sensitive information, or even

the key. These attacks manipulate the operation of cryptography hardware devices

by changing the temperature, voltage, clock frequency, magnetic field strength, or

by emitting electromagnetic pulses and lasers, thus disrupting the processor’s oper-

ation and causing it to produce incorrect results. For example, during encryption

or decryption, random errors in the hardware device’s registers or memory can

cause a bit flip. By comparing the correct ciphertext with the erroneous ciphertext

or observing the system’s state, attackers can theoretically analyze and crack the

sensitive information of the cryptography system. Studies have shown that fault

injection attacks can successfully break DES and triple DES keys by flipping just

200 bits [66].

6 1.2. Side-channel Mitigation

1.2 Side-channel Mitigation

1.2.1 Secure Architectures and System Designs

A number of works aim to defeat side channels from both software and hardware

perspectives. We describe their mechanisms with cache side-channel attacks as

an example. In short, their purposes are divided into two categories based on the

strategies, namely limiting attacker’s abilities (thus limiting attacker’s observation)

and obfuscating attacker’s observation.

Limiting attacker’s abilities. Specifically, designing partition-based cache cir-

cuits strongly guaranteed hardware isolation [67, 68], whereas there is a long way

to go before adopting these new cache designs to commercial CPUs. Software-level

cache partition is then much more practical to achieve. For instance, employing

the page coloring mechanism [69, 70], where the same memory page color can be

mapped into the same cache set, partitioned the use of the Last-level-Cache (LLC)

for different security domains, thus excluding any possible cache conflicts. A sim-

ilar approach to PLcache [67] was implemented by stealth memory technique [71]

through offering hypercalls to lock stealth pages, which are never evicted out of

the cache. Besides, the Cache Allocation Technology (CAT) [72] was employed to

divide the LLC into secure and non-secure partitions [73]. The non-secure partition

is managed as a normal cache while the secure partition only stores secure pages

of a user-level program, hence cache line conflicts to secure pages are invisible to

attackers. Similarly, Zhou et al. [74] managed the number of lines per cache set

that an attacker may probe, weakening the attacker’s ability to control the cache.

Although the partition mechanism strongly confines an attacker’s observation, it

is at the cost of cache utilization and performance degradation.

Another approach to limiting attackers’ abilities is to restrict their preemption or

occupation to caches through a scheduler mechanism, especially in the Cross-VM

context. Godfrey et al. [75] and Sprabery et al. [76] relied on scheduler operations

to flush cache contents when switching a VM in the cloud, achieving temporal parti-

tion of caches. Another work from Varadarajan et al. [77] leveraged the hypervisor

scheduler to limit the frequency of cache preemption, obfuscating predictive state

to attackers. Nevertheless, relying on the scheduling approach to achieve temporal

Chapter 1. Thesis Overview 7

isolation of cache is still problematic because latency-sensitive workloads may be

delayed.

Obfuscating attacker’s observation. An attacker fails to deduce secrets when

he obtains invalid observations. Motivated by this idea, novel randomization-based

cache components were proposed to randomize the resident points of data in the

cache, achieving a high entropy for each data unit [67, 78–80]. However, recent

studies showed that these randomization-based caches are still vulnerable to cache

side-channel attacks [81, 82].

By increasing difficulty to the adversary’s measurements and resulting in a fixed

or random observation, it becomes infeasible for the adversary to obtain accurate

timing information. For example, Aviram et al. [83] provided enforced determin-

istic execution to eliminate timing channels. Another two works [84, 85] modified

the rdtsc instruction to offer coarse-grained clocks and added a small randomized

offset to fuzz the guest operating system’s measurement, respectively. Extremely,

Li et al. [86] introduced three replication of a VM and normalizes the timing to

be observed by the median of replicas collectively determined. The above three

works [84–86] disabled precise timing measurement for mitigating timing-channel

attacks, yet severely limiting the workloads that need accurate timing and may

incur overheads for network workloads resident in the cloud. In contrast, Zhang

et al. [87] periodically injected noise through flushing the L1 cache among the

adversary’s waiting period to obfuscate his timing measurement.

Software diversity aimed to prevent the adversary’s observation from deducing a

predictable cache state [26, 74, 88–90]. Precisely, Liu et al. [88] leveraged com-

piler transformation to guarantee memory access traces are the same no matter

which control flow path is taken by the program. Later, Rane et al. [89] made

improvements by arranging the exact same instructions for both paths of a branch,

preventing a wider range of side channels. Without modifying the source codes,

Grane et al. [90] dynamically inserted a mass of redundant operations (e.g., nop

and memory load) to generate diversified replicas, thus randomizing the control

flow of programs. Disabling and selectively enabling memory page sharing were

proposed to separate the touched points in the cache [26, 74]. As memory dedupli-

cation drives the access requests to the shared libraries from two distinct programs

into the same cache line, the attacker cannot deduce whether a certain path is

executed by the victim program from his observation.

8 1.2. Side-channel Mitigation

1.2.2 Trusted Computing Hardening

Since TEEs are built upon CPU hardware security technologies, vulnerabilities at

the micro-architectural level and flaws in the architectural design can severely com-

promise the security of TEEs. Researchers have extensively explored architectural

security enhancements, driving the iteration of TEE architectures.

To defend against micro-architectural side-channel vulnerabilities, the primary

mechanisms are implemented through software, focusing on detecting the occur-

rence of side-channel activities and disrupting the acquisition of side-channel in-

formation. Given that micro-architectural side-channel attacks often involve fre-

quent interrupts, detecting these interference signals can help identify ongoing at-

tacks [91, 92]. Additionally, since frequent interrupts result in increased latency for

TEE operations, some approaches used this latency as an indicator of an attack [93].

Providing an uninterrupted execution environment for TEEs is also a crucial de-

fensive measure against side-channel attacks. For example, Chen et al. [94] ensured

an uninterrupted environment through verifiable execution contracts. To prevent

attackers from obtaining effective side-channel information, current defenses uti-

lized Oblivious RAM (ORAM) [95, 96], CPU hardware features like Transactional

Synchronization Extensions (TSX) [97–99], and the introduction of randomization

techniques [100].

Transient execution vulnerabilities can be further divided into those caused by

implementation flaws and those resulting from design flaws. The former is due to

improper implementation of the CPU’s exception handling mechanisms and has

been addressed by hardware patches and upgrades in mainstream processors. The

latter is related to branch prediction units and represent design flaws, requiring

longer deployment cycles for hardware-based fixes [101]. The current mainstream

solution involves compiler-assisted software hardening, although this often incurred

significant performance overhead [102].

1.2.3 Constant-time Principles

Constant-time is a critical concept to resist side-channel leakage, which inherently

requires the memory access and condition branch to be independent of the secrets.

Chapter 1. Thesis Overview 9

Constant-time verification. Prior works develop analysis to formally reason the

constant-time designs, with more and more precise leakage models. In the early

stages, researchers applied a policy called program counter [103–108], where it

only takes into account the critical control flow and balances the timing behavior

of both branches. Considering memory accesses, subsequent works abided by the

most common leakage model that exploits time variations and covers cache-based

attacks. Specifically, VirtualCert [109] and constant-time MEE-CBC [110] per-

formed typing analysis in CompCert [111] on the x86 assembly, which enforced the

notion of noninterference to verify the classic observation equivalent. Similarly,

FlowTracker [112] analyzed the Static Single Assignment (SSA) form for LLVM

programs. Later, variable-time operations are also taken into account by Dehesa-

Azuara et al. [113]. They relaxed the conventional noninterference that measures

the value of a specific variable into a resource-ware noninterference, where the

observation can be the execution time or cache side channels.

In addition to noninterference, the reduction-based methods were applied, where

security was reduced to safety through the self-composition of programs or for-

mulas [114–120]. Separately, Almeida et al. [114] performed deductive verification

based on self-composition on C implementations, while ct-verif [115] targeted the

optimized LLVM implementations. A variety of methods, such as Themis [116],

Blazer [117], and IFC-CEGAR/BMC [118], were proposed to improve the self-

composition through taint analysis or complexity analysis. Different from ct-

verif [115] that utilized solvers to prove safety implying constant-time property,

Blazy et al. [119] developed an analyzer based on abstract interpretation to compute

the approximation of the execution of the analyzed program in an instrumented

semantics with tainting. Recently, considering the constant-time properties were

generally not preserved by the compilation, Binsec/rel [120] proposed a relational

symbolic execution-based analysis tool for verifying constant-time implementations

at the binary level. It self-composed the formulas of the program execution and

maximized sharing the equal expressions in both executions for improving the per-

formance of reduction.

Constant-time construction. The main target of this category is to formally

construct high-assurance cryptography libraries that fundamentally resolve the

constant-time issues. However, this is only restricted to the verified code level

instead of the runtime. For example, F∗ [121] and HACL∗ [122] (also bases on F∗

10 1.2. Side-channel Mitigation

language [123]) both supplied verified cryptography libraries at the source level.

Differently, the former [121] enforced a coding discipline for mitigating side chan-

nels by typing checking, while HACL∗ [122] proved freedom of timing channels

through manual pre-postconditions that at large rely on experts. In such a way,

they suffer from limited scalability. Moreover, their verification toolchain stops at

the source code, thereby failing to promise secret independence properties delivered

to lower code when using mainstream compilers. Vale [124] impelled the progress

of constructing side-channel freedom of a cryptography program to an assembly-

like code, i.e., Vale language. The Vale leakage verifier employed a taint-analysis

engine and the self-composition method to verify the program’s freedom from side-

channel vulnerabilities. However, Vale shared the same drawback that thinking

of the compiler as trusted thus not verifying it. Jasmin [125] and Fact [126] were

compiler-based formal frameworks that respectively transform Jasmin programs

into assembly code, and timing-sensitive FaCT code into constant-time LLVM IR.

Constant-time transformation. Transforming programs into constant-time equiv-

alents or variations also plays a significant role. Johan Agat [103] and Kopf

et al. [106] equalized the timing characteristics of secret-dependent conditional

branches by inserting dummy statements that do not update global variables, while

Barthe et al. [105] transformed two branches into the form of transaction. Using

source-to-source transformation, Molnar et al. [104] consecutively executed secret-

dependent branches and leverages bit-masking to commit the correct results. Simi-

larly, Coppens et al. [127] executed the dummy path with local, temporary variables

and submitted results with conditional instructions. Nevertheless, all these works

only consider branches that are under a simple side-channel attack model, i.e., pro-

gram counter security [104]. This means the branches of a balanced time property

may still leak the secrets with more-capable attackers such as cache-based attacks.

In addition, Barthe et al. [128, 129] proved the observational noninterference of

a compilation process, guaranteeing the constant-time property for cryptography.

Concretely, CompCert [111] was modified to enable it to capture constant-time dur-

ing the compilation [129]. Recently, SC-Eliminator [130] removed secret-dependent

branches by both executing real and decoy paths. However, its way to preloading

the lookup table cannot completely eliminate the cache side channels because the

table may be evicted by the attacker. Considering the unmodified addresses in the

decoy path that may result in out-of-bounds memory accesses in SC-Eliminator,

Soares et al. [131] guaranteed memory-safe accesses in the decoy paths. For the

Chapter 1. Thesis Overview 11

decoy iterations, they both inferred a bounded loop number from the compilation

and unroll the loop, hence the code size increases [130, 131]. Constantine [132], like

the most radical method in constant-time, proposed the linearization of control-

flow and data-flow, meaning to execute all possible code/data memory accesses.

It improved the linearization of loops by just-in-time the number that the loop

should execute. Nevertheless, Constantine only guaranteed the transformed code

is constant-time and required subsequent compilation not to add branches, which

may break the constant-time.

1.3 Research Scope and Overview

Researchers have made significant strides in defeating side-channels by developing

innovative hardware-based defenses and implementing software-level countermea-

sures, thus enhancing the security of modern computing systems.

While there is a growing body of work dedicated to the detection of cache side-

channels, many of these efforts grapple with significant challenges in terms of com-

prehensiveness and scalability. Detecting cache side-channels is inherently complex

due to the intricate interplay between hardware, software, and micro-architectural

intricacies. This complexity often results in a lack of comprehensiveness of the

underlying mechanisms and vulnerabilities, which can hinder the effectiveness of

detection methods. For example, CacheD [133] employed symbolic execution on

tainted assembly code to construct formulas, which were then sent to a solver to

check whether a memory address maps to different cache locations, depending on

secret values. However, CacheD primarily focused on secret-dependent memory

accesses and overlooked branches in its analysis. Additionally, the scalability of

cache side-channel detection approaches is a pervasive concern. Cryptography sys-

tems become increasingly intricate and larger in scale, making it challenging to

apply existing detection techniques comprehensively. One example is that modern

cryptography libraries extensively use randomization techniques, such as blinding,

to mitigate side-channel attacks. However, the effectiveness of these techniques

(and any remaining information leaks) has not been analyzed by previous tools

like CacheS [134], which is considered one of the most scalable static analysis tools

12 1.3. Research Scope and Overview

in this field. Consequently, addressing these issues in cache side-channel detec-

tion is paramount, as it ensures that security efforts remain effective in the face of

evolving threats and complex computing infrastructures.

It is important to highlight that while constant-time coding practices have tradi-

tionally been an effective means of mitigating cache side-channels, their efficacy

wanes when dealing with new challenges posed by ciphertext side channels. In

short, ciphertext side-channel attacks exploit the deterministic memory encryption

employed by TEEs, where the same physical address consistently encrypts into

the same ciphertext block. This inherent determinism means that constant-time

coding practices, which traditionally neutralize timing variations in cache side-

channels, are ineffective against this type of attack due to leaving footprints of

execution. Addressing ciphertext side channels necessitates a more holistic ap-

proach that combines constant-time coding practices with the attack mechanism.

For example, CipherFix [135] employed dynamic taint analysis to identify the

offsets of sensitive memory store instructions in a program. Using static instru-

mentation, it transformed each tainted memory store instruction into a copy that

incorporated masking operations in the instrumentation section. A direct jump

instruction was then inserted at the original program point, redirecting execution

to the newly created copy. However, CipherFix mitigated ciphertext side-channel

leakage at the cost of significant performance overhead, ranging from 2.4× to 16.8×
in its most efficient variant, due to the use of static binary instrumentation.

Simultaneously, while efforts are being made to develop new cache designs aimed at

countering cache side-channels, a notable challenge arises from the lack of formal

guarantees regarding their effectiveness. Novel cache designs that focus on mit-

igating side channels often introduce complex hardware operations, for example,

the randomization process [67, 78–80]. This intricacy makes it difficult to pro-

vide rigorous mathematical or formal proofs of their effectiveness. Moreover, the

ever-evolving landscape of side-channel attacks means that new vulnerabilities may

emerge over time, challenging the robustness of these designs. Thus, despite the

innovative solutions being proposed [136–140], the absence of formal guarantees

underscores the need for continuous evaluation, and adaptability to ensure that

these cache designs effectively thwart emerging side-channel threats in a real-world

context.

Chapter 1. Thesis Overview 13

The challenges and limitations in defending against side-channel attacks discussed

earlier provide the foundational motivation for this thesis. The primary objectives

of this thesis are threefold:

• Advancing the field of cache side-channel detection by developing more robust

and comprehensive methods for identifying and fixing these vulnerabilities.

• Addressing the emerging issue related to the constant-time principle by mit-

igating ciphertext side channels, which present new and formidable threats

in the realm of TEEs.

• Enhancing the security of new cache designs by providing a reasoning frame-

work for formally verifying their effectiveness in countering cache side-channel

attacks.

By addressing these critical areas, this thesis seeks to contribute to the ongoing

efforts to strengthen the security of modern computing systems in the face of

evolving and increasingly sophisticated side-channel threats.

1.4 Major Contributions

This thesis makes the following three contributions.

First, we propose CaType, a novel refinement type-based tool for detecting cache

side channels in cryptography software. Compared to previous works, CaType

provides the following advantages: For the first time CaType analyzes cache side

channels using refinement type over x86 assembly code. It reveals several signifi-

cant and effective enhancements with refined types, including bit-level granularity

tracking, distinguishing different effects of variables, precise type inferences, and

high scalability. CaType is the first static analyzer for cryptography libraries in

consideration of blinding-based defenses. From the perspective of implementation,

CaType uses cache layouts of potentially vulnerable control-flow branches rather

than cache states to suppress false positives. We evaluate CaType in identifying

side-channel vulnerabilities in real-world cryptography software, including RSA, El-

Gamal, and (EC)DSA from OpenSSL and Libgcrypt. CaType captures all known

defects in our dataset (Section 2.6.3), detects previously unknown vulnerabilities

14 1.4. Major Contributions

(Section 2.6.4), and reveals several false positives of previous tools (Section 2.6.6).

In terms of performance, CaType is 16× faster than CacheD [133] and 131×
faster than CacheS [134] when analyzing the same libraries. These evaluation re-

sults confirm the capability of CaType in identifying side channel defects with

great precision, efficiency, and scalability.

Second, we design CipherGuard, a compiler-aided mitigation methodology to

counteract ciphertext side channels with high efficiency and security. For the

first time, we introduce a compiler-aided strategy to address ciphertext side chan-

nels. Through the exploration and implementation of multiple mitigation variants,

e.g., software-based probabilistic encryption and secret-aware register allocation,

our compiler-aided strategy has been demonstrated to provide a more efficient

and flexible solution in comparison to the instrumentation strategy in Cipher-

Fix [135]. CipherGuard is an LLVM-based compiler-aided tool that harnesses

dynamic taint analysis and deploys vulnerability mitigation variants at the com-

pilation stage. CipherGuard excels in generating more efficient mitigated code

through in-place mitigation code insertion, precise buffer management for random

nonces, and flexible register allocation. CipherGuard is evaluated in mitigating

ciphertext side-channel vulnerabilities among real-world cryptography software by

hardening all the sensitive memory access instructions. With efficient management

of random nonce buffers and flexible register allocation, CipherGuard demon-

strates a satisfactory performance overhead, averaging 1.76-3.10× across various

evaluations of cryptography software. This is a significant performance improve-

ment over CipherFix, highlighting the efficacy of the compiler-aided strategy in

enhancing the security against ciphertext side channels.

Third, we propose a comprehensive methodology based on formal methods for se-

curity verification of cache architectures. Specifically, we design an entropy-based

noninterference reasoning framework with two unwinding conditions to assess the

information leakage of the cache designs. The reasoning framework quantifies the

dependency relationships by the mutual information between the distributions of

input and output of side channels. Given a cache design, we formalize its be-

havior specification along with the cache layouts into an abstract state machine,

to instantiate the parameterized reasoning framework that discloses any poten-

tial vulnerabilities. We use our methodology to assess eight state-of-the-art cache

architectures to demonstrate reliability as well as flexibility.

Chapter 1. Thesis Overview 15

1.5 Outline of the Thesis

The thesis is organized as follows.

Chapter 1 briefly introduces the background of side-channel attacks in various

contexts and existing methods for their detection and mitigation. The chapter

then defines the scope of the research, delineating the specific areas of focus, such

as side-channel detection and mitigation, as well as the verification of novel cache

architectures. It also outlines the primary contributions of the research and offers

an overview of the thesis’s structure.

Chapter 2 reveals the limitations of current cache side-channel detection, provid-

ing the motivation of CaType’s methodology. It discusses CaType’s innovative

features, specifically the refinement type system, and its comprehensive and scal-

able side-channel vulnerability detection to cryptography libraries. The evaluation

results demonstrate CaType’s precision and efficiency in identifying side-channel

vulnerabilities, concluding with a summary of its contributions.

Chapter 3 starts by introducing the emerging threat of ciphertext side channels

and CipherGuard’s purpose. It explains CipherGuard’s automatic recogni-

tion of secret-dependent store instructions and multiple precise mitigation variants

embedded in the LLVM ecosystem, emphasizing compatibility with TEEs. Evalu-

ation results underline CipherGuard’s efficiency and security compared to prior

methods, ending with a summary of contributions.

Chapter 4 begins with the importance of formal methods for cache architecture

security verification and provides background on the methodology. It details the

methodology’s application to assess cache architectures, highlighting reliability and

flexibility. The chapter concludes with a summary of its contributions and the

significance of using formal methods for security verification.

Chapter 5 summarizes the thesis, highlighting contributions like novel cache side-

channel detection tools, while also outlining future research directions, such as

quantification of cache side-channel leakage.

Chapter 2

Refinement type-based Detection

of Side-channels in Cryptography

Software

2.1 Introduction

Cache-based side channels have demonstrated serious threats to cryptography al-

gorithms, such as the symmetric cipher AES [5, 7], the asymmetric cipher RSA [11,

13, 141], and the digital signature (EC)DSA [142–144]. The essence of these cache

attacks is the interference of program memory accesses toward cache units, where

secret-dependent memory accesses or program branches leave distinguishable foot-

prints in cache units. Thus, identifying and removing cache interference can elim-

inate side-channel leakage.

Designing novel security-aware cache architectures may eliminate adversarial inter-

ference. Prior research relies mostly on two strategies, namely partitioning-based

and randomization-based approaches. Strong isolation is achieved in partition

isolated caches [67, 68] by physically partitioning the shared cache into multiple

zones for applications of various security levels. In contrast, randomization-based

cache designs [67, 78–80] obscured adversary observations by randomizing the cache

states. Although it is envisaged that these architectures will eliminate interference

and secure programs that run on top of them, recent studies showed that these

randomization-based caches may be still vulnerable to cache side channels [81, 82].

17

18 2.1. Introduction

Also, these new cache designs achieve security promise at the expense of perfor-

mance. Besides, they are not yet ready for commercial use due to extra costs in

chip circuit manufacturing.

Software-based mitigation of cache side channels appears increasingly viable. How-

ever, manually detecting vulnerable cryptography code takes specialized knowl-

edge, which drastically restricts normal developers from analyzing and patching

their cryptography software. With the fast development of more efficient cryp-

tography software under various usage scenarios, launching timely side channel

analysis becomes even more challenging. With this regard, developing a general,

automated, and efficient analytic tool for detecting cache side channels is receiving

broad attention from both academics and industry. Recent works [133, 134, 145–

148] served as examples of this. In general, these works constructed constraints

through symbolic modeling of program states and cache accesses. Then, constraint-

solving techniques (e.g., Z3 solver [149]) were employed to check the satisfiability

of constraints and decide whether the program is vulnerable to cache side channels.

While these automated methods have made concrete progress in discovering cache

side channels in real-world cryptosystems, they still face a number of obstacles.

Challenge 1: Software-based analysis needs to address precision issues and be scal-

able to production cryptography libraries. CacheAudit [145] and its extension [146]

calculated the upper bound of information leakage by counting all possible final

cache states via abstract interpretation [150]. However, estimating the worst-case

leakage bound may not reflect reality. Moreover, CacheAudit cannot pinpoint

what/where the vulnerability is, prohibiting the debugging/fixing of analyzed code.

Using symbolic execution, CaSym [148] distinguished two different cache states re-

sulting from secret variants. Though CaSym covered multiple paths, it suffered

from path explosion and is less scalable. CacheS [134], likely the most scalable

static tool in this field, also used abstract interpretation. It achieved higher scala-

bility due to modeling secret/non-secret semantics with symbolic formulas of dif-

ferent granularity. Dynamic approaches, in contrast, analyze concrete execution

traces to track program states and pinpoint side channels. CacheD [133] detected

secret-dependent memory accesses via symbolic execution, while not considering

secret-dependent branches. DATA [147] considered both memory access leaks and

branch leaks through differentiating address traces. Existing dynamic methods,

Chapter 2. Side-channel Detection 19

though manifest relatively improved scalability, may still be slow to analyze pro-

duction cryptography libraries (due to the usage of constraint solving) or require

many well-chosen inputs to induce distinct observations.

Challenge 2: Cache models adopted by software analyzers have an effect on the

scalability and detection granularity. Relying on concrete cache replacement poli-

cies (e.g., LRU, FIFO, and PLRU), CacheAudit precisely described a program

executed on the expected architecture, at the cost of scalability due to architec-

tural complexity. CaSym used high-level abstract cache models (i.e., infinite and

age models) to achieve higher analysis scalability. It used the array index to com-

pute the accessed cache locations. However, these abstract models have granularity

issues: there is a gap between the array index and the cache location in realistic

architectures. At the other extreme, a much-simplified cache model was shared

by works [133, 134, 146, 147, 151], where an architectural-independent model was

used to detect cache side channels. Though this model is realistic and efficient, per-

forming analysis at such granularity results in false positives, as will be discussed

in this chapter.

Challenge 3: Supporting a comprehensive analysis of cryptography software rather

than some specific defects in sensitive code fragments. For instance, CacheD omit-

ted the analysis of secret-dependent program branches. Moreover, modern cryp-

tography libraries extensively use randomization schemes like blinding to mitigate

side channels, whose effectiveness (and remaining leaks) have not been analyzed by

previous tools. Supporting randomization is inherently hard for previous static (ab-

stract interpretation-based) tools [134, 145, 146], requiring new abstract domains,

new abstract operators, and soundness proofs. Meanwhile, modeling randomiza-

tion is also costly for approaches that use constraint solvers, as it demands to iterate

blinding quantifiers [133, 134, 148]. Weiser et al. [147] conceptually differentiated

traces derived from blinding-involved computations, but it overlooked the complex

computations involving blinding in production cryptosystems, which may contain

new attack vectors.

The aforementioned obstacles incentivize the design of CaType, an automated,

precise, and efficient cache side-channel analysis tool. CaType is scalable and

capable of analyzing large-scale, complex cryptography software. CaType fol-

lows tools [133, 147] to log execution traces of cryptography software and performs

trace-based type inference on the logged traces. It features a novel refinement type

20 2.1. Introduction

system that enables tracking program variables in the bit-level representation. Dif-

ferent from previous constraint-solving-based approaches that are inherently costly,

our sound type system guarantees fine-grained secret tracking and side channel de-

tection with largely improved efficiency. Lastly, CaType comprehensively models

randomization-based mitigation schemes adopted in modern cryptography soft-

ware. It allocates specific refined types for differentiating the responsibilities of

(secret or randomized) variables, enabling precise information flow tracking under

the presence of randomization. In sum, we make the following contributions:

• Conceptually, for the first time, cache side channels are analyzed using refine-

ment type techniques. We establish our novel refinement type system directly

over x86 assembly code and formulate cache side channels over refined types.

• Technically, CaType features several important and effective enhancements

compared with prior tools on the basis of the refinement type system, includ-

ing bit-level granularity tracking, distinguishing different effects of variables,

precise type inferences, and much higher scalability. CaType takes into

account randomization-based defenses using specific refined types, and uses

novel cache layouts to suppress potential false positives.

• Empirically, we evaluate CaType to uncover side channel vulnerabilities

among real-world cryptography libraries. CaType captures all known de-

sign flaws, identifies unknown flaws, and reveals several false positives in

existing tools. CaType is 16× faster than CacheD and 131× faster than

CacheS, demonstrating its high applicability toward production cryptogra-

phy software.

Responsible disclosure. When publishing CaType, we identified newly dis-

covered side-channel vulnerabilities from Libgcrypt and OpenSSL. These vulner-

abilities were thoroughly investigated, and the findings were reported to relevant

community developers in an effort to improve the security of these libraries. Unfor-

tunately, no responses were received, and the issues were not assigned CVEs. We

documented these new findings in detail in Section 2.6.4, with a focus on detecting

such vulnerabilities rather than exploiting them for side-channel attacks, because

exploiting these vulnerabilities for malicious purposes is not within the scope of

this thesis. We believe that the detection techniques outlined here may serve as

Chapter 2. Side-channel Detection 21

useful resources for community developers who seek to understand and address

these types of vulnerabilities in cryptographic implementations.

For the other parts, we present the preliminary knowledge in Section 2.2, and

methodology overview in Section 2.3. Section 2.4 and Section 2.5 demonstrate

more details of the design and implementation of CaType. The evaluation of

CaType is conducted in Section 2.6. Section 2.7 gives a further discussion on our

tool. Section 2.8 discusses the related work and Section 2.9 concludes this chapter.

2.2 Background

2.2.1 Refinement Type Systems

A type system is a well-established formal system comprising a set of rules that

assigns types to terms in a programming language [152, 153]. For example, C lan-

guage contains a basic type system, where types (e.g., int, double, and int*) give

meaning to data in the memory or registers. Modern C compilers can feature basic

type-checking rules to detect invalid operations, e.g., when a variable of double is

used as int* (for pointer dereference), an error is thrown at the compilation time.

Type systems are widely used in language-based security research [154] like tracking

secure information flow. In those systems, the types of variables and expressions

are attached with annotations that specify confidentiality policies enforcing the use

of the typed data. For instance, two type annotations H and L are used to denote

high and low security sensitivity of data. To detect the violation of confidentiality

policy, a set of type rules is defined to check if the two classified sets of data interfere

with each other.

Refinement types [155] extend standard type annotations with predicates that con-

fine the use of the values described by the type. Typically, a variable x’s refinement

type can be defined in the form of x : T{v : P}, where T is a basic type and P is the

associated predicate. For example, a non-negative integer variable x is represented

as x : int{v : 0 ≤ v}, where predicate 0 ≤ v refines the basic type int by spec-

ifying that the integer must be greater than or equal to zero. With well-defined

predicates, the refinement types can provide stronger guarantees. For example,

the zero-division errors can be alerted at the compilation time when the predicate

22 2.2. Background

N ≥ 0 indicates that the divisor may be zero. Meanwhile, one can elaborately

specify security policies over the refinement types to verify software security vul-

nerabilities. Works [156–159] are successful examples of adopting refinement type

systems in high-level languages (e.g., F∗) to provide security guarantees in cryp-

tography infrastructures. To our best knowledge, CaType is the first to employ

refinement types over assembly code and for cache side channel detection.

2.2.2 Cache Hierarchy and Cache Side-channels

Caches are incorporated into CPUs to accelerate process execution due to the

locality principle. In modern CPUs, each core (i.e., a processing unit on a CPU

chip) monopolizes a L1 cache and a L2 cache. All cores share a megabyte-size

Last-Level Cache (LLC). The access time for a cache hit is around tens of cycles.

In contrast, the latency will become much higher (usually hundreds of cycles) when

a cache miss occurs and the main memory has to be accessed. Modern CPUs use

a W -way set-associative cache. Different memory blocks may reside on the same

cache set, and each cache set is further divided into W cache lines. Given an

N -bit memory address, S-set cache with L byte-size cache line, the lowest log2L

bits of the address represent the offset since continuous memory blocks are cached

together within one load instruction. The middle log2S bits starting from bit log2L

are used to locate the cache set index. The upper part represents cache hit/miss

tag bits.

However, cache poses threats of secret leakage, as program cache accesses may be

leveraged by adversaries to reconstruct confidential information. In this chapter,

we introduce two representative vulnerable code patterns, secret-dependent branch

condition (SDBC) and secret-dependent memory access (SDMA), via classic exam-

ples in RSA.

1 : x← 1
2 : for i← |e| − 1 downto 0
3 : x← x2 mod m
4 : if ei = 1 then
5 : x← x · b mod m
6 : return x

Figure 2.1: Square-and-Multiply Exponentiation.

Chapter 2. Side-channel Detection 23

Secret-Dependent Branch Condition (SDBC). Figure 2.1 shows a simplified

view of the square-and-multiply implementation of modular exponentiation in RSA.

ei (line 4) denotes a private key and decides if line 5 is executed. By monitoring

the L1 instruction cache (I-cache), attackers are aware of the execution of line 5,

and further reconstruct e using well-established cache attacks [11, 13].

1 : g[0]← b mod m
2 : for j ← 1 to 2S−1 − 1
3 : g[j]← b2j+1 mod m
4 : x← g[(wn−1 − 1)/2] mod m
5 : for i← n− 2 downto 0

6 : x← x2
L(wi)mod m

7 : if wi ̸= 0 then
8 : x← x · g[(wi − 1)/2] mod m
9 : return x

Figure 2.2: Sliding-window Exponentiation.

Secret-Dependent Memory Access (SDMA). Besides SDBC, SDMA also

leads to exploitation. Consider Figure 2.2, where the sliding window modular ex-

ponentiation algorithm initializes a precomputed array g[i] (lines 1–3) to accelerate

the computation. When performing decryption, a window size key wi (line 8) is

used as the index to query the precomputed table g[i]. For each for-loop (line 8),

monitoring the accessed data cache (D-cache) line can reveal certain bits in wi and

gradually reconstruct the private key [11].

2.2.3 Cache Side Channel Mitigation

Lou et al. [160] surveyed software-level countermeasures of cache side channels.

Overall, two code patterns can remove secret-dependent cache access patterns:

AlwaysAccess-BitwiseSelect permits programs to access secret-dependent data within

each loop iteration in a constant manner while deciding whether or not to accept it

via bitwise operations. Moreover, if the calculation is inexpensive and free of secret-

dependent branches, On-the-fly Calculation avoids using lookup tables, which elim-

inates leakage shown in Figure 2.2. Similarly, to remove secret-dependent branches,

AlwaysExecute-ConditionalSelect enables covering all branches regardless of the if

conditions. AlwaysExecute-BitwiseSelect eliminates secret-dependent branches by

selecting correct results through bitwise operations.

24 2.3. Research Overview

The aforementioned code patterns can frequently introduce high overhead. They

are thus less frequently used to only secure several core code fragments, which may

miss subtle usage of secrets [133, 146]. Blinding introduces extra randomness in

cryptography computations to obscure the inference of secrets. Depending on the

blinding target, there are two distinct usages of blinding masks.

Key Blinding. With this scheme enabled, the attacker obtains blinded secrets

without knowing the blinding mask r. As r is randomly generated before each ci-

pher process, the attacker cannot exploit the cryptosystem. For example, exponent

blinding in RSA adds a random multiple of Euler’s ϕ function, i.e., r ·ϕ(n), to the

secret exponent. Then, RSA decryption performs cd+r ·ϕ(n) mod n, which equals

cd mod n. Though some known attacks [161] exploit this scheme, the exponent

blinding still impedes the attacker at large.

Plaintext/Ciphertext Blinding. Blinding can also be applied to plaintext/-

ciphertext. For instance, when enforcing blinding, RSA converts the ciphertext

m into m · re, where r is the random factor. The original result md mod n

can be obtained by multiplying the new result (m · re)d mod n by r−1 due to

red · r−1mod n ≡ 1 mod n. The plaintext/ciphertext blinding defeats known-input

attacks that leverage timing side channels.

Blinding can usually provide more comprehensive protection as once key/cipher-

text is blinded, all their follow-up usages and their (subtle) influence on other

variables should be protected. However, their effectiveness in mitigating cache side

channels is not yet comprehensively analyzed, given the difficulty of modeling them

automatically in previous methods (noted in Challenge 3 in Section 2.1).

2.3 Research Overview

2.3.1 Assumptions

Threat Model. CaType follows an identical threat model as most current cache

side-channel detectors [133, 134, 148, 151, 162]. We assume that an adversary

Chapter 2. Side-channel Detection 25

shares the same hardware platform as the victim, a typical and practical assump-

tion in cloud computing systems. Thus, while the adversary cannot directly mon-

itor the victim’s memory accesses, he can probe the shared cache states to deter-

mine if certain cache lines have been visited by the victim software. This threat

model covers the majority of cache side-channel attacks in the literature. For

example, adversaries infer cache accesses by measuring the latency of the victim

program in EVICT-TIME attack [5], or the latency of the attacker program in

PRIME-PROBE [5, 7, 11], FLUSH-RELOAD [13], and FLUSH-FLUSH at-

tacks [163].

Existing works [145, 148] commonly refer to the attackers in our threat model as

“trace-based attackers” since they are able to probe the cache state after the ex-

ecution of each program statement in the victim software. It is also worth noting

that the attackers can distinguish cache layouts of instructions inside the program

branches of shared libraries. This is due to the fact that modern OSes adopt ag-

gressive memory deduplication techniques, allowing shared libraries to be mapped

to copy-on-write pages. As a result, the probing granularity of attackers is precisely

reduced to cache lines.

Main Audience. Consistent with previous works [120, 133, 134, 145, 147, 148,

151, 162, 164, 165], CaType is primarily designed for cryptography software de-

velopers who have sufficient knowledge about their own software. Before release,

CaType serves as a “vulnerability debugger” for the developers to detect attack

vectors in their software. CaType provides fully automated and speedy analysis

to flag program points that leak secrets via cache side channels. Developers can

accordingly patch CaType’s findings to mitigate leakage. Nevertheless, we clarify

that CaType is not an attack tool; the exploitability of its findings (e.g., whether

RSA private keys can be reconstructed via CaType’s findings) is beyond the scope

of this thesis.

2.3.2 Methodology Overview

This section illustrates the high-level methodology overview and compares it with

existing efforts in Figure 2.3. Recall that we have introduced two typical cache

side channel patterns in Section 2.2.2: SDMA and SDBC. Figure 2.3(a) presents a

26 2.3. Research Overview

sample code that is vulnerable to SDMA (line 6) whereas the condition at line 9

is not vulnerable to SDBC, given that the else branch will always be executed.

1

2

3

4

5

6

7

8

9

10

(a) sample code.

char buf[256] = {0};

uint32 k = secret_input();

uint32 c = k && 0x0000007;

//secret-dependent mem access

 char a = buf[k];

//secret-dependent branch

if (c > 16) int b = 14;

...

k
slow symbolic modeling &

constraint checking

(b) constraint solving-
based approaches.

F9(k) != F9(k’)

at line 9

k
speedy type inference

(c) standard (secret-aware)
type system.

F6(k) != F6(k’)

at line 6

can decide if ∃k, k’ ➔ access of
diff. cache lines?

H,L denote secret-sensitive
and non-sensitive types

at line 6

at line 9

k
tracking bit-level values and secret-aware

refinement types during speedy type inference

(d) refinement type system in .

① secret-aware
refinement types

② tracking bit-level values only
when constants are involved

k:uint32 {H}

at line 6
k:uint32 {SDD}

c:uint32 {[0,...,0,1,1,1] ∧ SDD}

at line 9

➔ SAT

➔ UNSAT

c:uint32 {H}

➔ TP

➔ FP

①

②

➔ TP

➔ TN
①

Figure 2.3: Comparison of constraint solving-based techniques (b), type
inference-based approach (c), and CaType (d). TP, FP, and TN denote true
positive, false positive, and true negative, respectively.

Symbolic Execution-Based Approaches. De facto side channel detectors per-

form heavyweight symbolic execution, where program (secret-related) data facts

are modeled using symbolic formulas. Then, at each memory access and branch

condition, they check if different secrets can lead to the access of different cache

lines using constraint solving. For instance, let symbol k represent the secret read in

line 2 of Figure 2.3(a), existing side channel detectors [133, 134, 148, 151] primarily

check the following constraint to decide SDMA/SDBC:

∃k ̸= k′, F (k) ̸= F (k′) (2.1)

Chapter 2. Side-channel Detection 27

where F denotes the memory access constraint formed at line 6, or branch condition

constraint formed at line 9. The symbolic engine forms F (k) = b+ k× 4 at line 6,

where b is the base address of buf. Figure 2.3(b) illustrates the constraint solving

process. The satisfiability (SAT) of Constraint 2.1 checks the existence of two

secrets that lead to the access of different cache lines, such that a certain amount

of secrets will be leaked to the attacker. Moreover, the symbolic engine will track

computations using symbolic formulas, and at line 9, the constraint solver yields

unsatisfiable (UNSAT) for Constraint 2.1, thereby proving the safety of line 9.

The primary obscurity of such detectors is scalability. Overall, existing symbolic ex-

ecution (or abstract interpretation)-based side channel detectors need to maintain

complex symbolic states for each program statement to encode program seman-

tics. As symbolic execution continues, the symbolic constraints (encoding program

states) will steadily accumulate and grow in size, filling a vast amount of memory.

Even worse, existing tools need to perform constraint solving for each suspicious

memory access and conditional branch instruction, and constraint solving is gen-

erally slow. With this regard, we notice that existing static analysis tools are often

limited to analyzing small programs, or fail to consider the effect of side channel

mitigation techniques like blinding.

Conventional Type-Based Analysis. Section 2.2.1 has introduced basic mech-

anisms of type systems and the extensions to track high/low secret-sensitive data

with type annotations H and L. As illustrated in Figure 2.3(c), performing type

inference can easily establish that the types of k and c (in lines 6 and 9, respec-

tively) are uint32. Moreover, by assigning a high-security sensitivity type H to k

at line 2, the type system identifies two usages of sensitive data at line 6 and line

9. These two statements are deemed as “vulnerable”, leading to secret-dependent

memory access and branch condition. Nevertheless, we underlie that while the

statement at line 6 is a true positive (TP) finding, the statement at line 9 is a

false positive (FP), as c can never exceed 7 (see line 3 in Figure 2.3(a)). Overall,

conventional type-based analysis delivers speedy tracking of (secret-related) data

through type annotations. They, however, lack tracking values and are less expres-

sive than constraint-solving-based methods. Indeed, Section 2.7 compares taint

analysis, conceptually similar to type systems enforcing information-flow security

(e.g., work from Sabelfeld et al. [166]), with refinement type system implemented

28 2.3. Research Overview

in CaType. We show that taint analysis yields considerably more false positives

than CaType.

Refinement Type System in CaType. Recall the refinement type of a variable

x can be expressed as x : T{v : P} (Section 2.2.1), where T and P are basic types

and predicates, respectively. Figure 2.3(d) illustrates the usage of the refinement

type system in CaType, where the refinement formalizes the concerned (secret-

related) program properties as predicates. In particular, we use type SDD to denote

secret-dependent values, and the refinement type system infers that in line 6, k is of

type uint32{v : SDD}, revealing a potential SDMA case. Similarly, the refinement

type of c in line 9 also has type SDD, revealing a potential SDBC case (which is not

vulnerable; see below for clarification). CaType defines in total five predicates,

systematically considering secret-dependent, secret-independent, as well as blinding

operations. In this way, CaType can benefit from refinement type techniques to

keep track of secret propagations and identify SDMA/SDBC in a speedy manner

while correctly considering randomization mechanisms like blinding (see Blinding

later this chapter for further discussion).

Moreover, CaType explores an important improvement, by tracking bit values

directly in refinement types, in the form of value predicates. A value predicate is

defined as v = b, where b is either 0 or 1. CaType is carefully designed to deliver a

“mild tracking” of bit-level values. That is, only the refinement types of constants

are initialized to comprise bit-level predicates. Then, CaType tracks the bit-level

predicates via type inference in a correct yet conservative manner. For instance,

when a constant, 0x0000007, is used as the mask over the secret (line 3), the type

of the output means that it is a bitvector with all secret bits (except the three

least significant bits) set to 0. Note that value predicates in refinement types can

be absent, indicating that the precise bit-level values are unknown.

By tracking bit values from constants, CaType can exclude the majority, if not

all, cases where different secret values at a suspicious SDMA/SDBC case result

in visiting the same cache line (i.e., a safe program site). For instance, when k

is masked by 0x0000007 before being used in the if condition at line 9 of Fig-

ure 2.3(a), the refinement type of c has all bits set to 0 except the lowest three

bits, and CaType can simply decide that the branch condition will always be

evaluated as “false” with an arithmetic comparison over two bitvectors. Therefore,

Chapter 2. Side-channel Detection 29

when analyzing the statement at line 9 of Figure 2.3(a), CaType yields a true neg-

ative (TN) finding, as shown in Figure 2.3(d). Overall, we view that the refinement

type system designed in CaType manifests comparable capability with constraint-

solving-based methods to analyze cache side channels. Moreover, CaType avoids

the use of constraint solving, and is therefore dramatically faster; see Table 2.4 in

Section 2.6.2.

Potential False Positives.We clarify that the refinement type system inCaType

may not always know the precise bit values: the absence of value predicates means

the value could be 0 or 1. Overall, CaType tracks the bit values introduced by

constants using refinement types at “its best effort”. Thus, we may encounter false

positives, e.g., due to constants that are however not tracked by CaType. Never-

theless, cache side channels are rare in practice, and we confirm that all findings

of CaType over production cryptosystems are true positives. Also, the refine-

ment type system is sound without introducing false negatives, as benchmarked in

Section 2.7.

Blinding. As introduced in Section 2.2.3, modern cryptosystems use randomness

mechanisms like blinding to impede side channels. To capture the security property

of blinding, our refinement type system facilitates a smooth and accurate modeling

of blinding, by adding specific predicates in type refinement to denote uniformly

random data (i.e., the blinding mask). We also define type inference rules and prop-

agation rules for blinding involved computations, so that we can capture sufficient

information used to infer potential leaks. For example, uniformly random factors

can perfectly mask the result through logic xor operation, eliminating the effects

of a secret if it is a source operand. See details in Section 2.4.2 and Section 2.4.3.

In contrast, adding support for blinding presumably increases the search space

of constraint-solving-based methods to a great extent. Consequently, finding a

SAT solution for Constraint 2.1 is highly expensive, especially when both secrets

and blinding masks are present. Though an “optimal solution” is not yet clear,

inspired by relevant research in perfect masking analysis [167–169], we expect to

fix two different secrets k, k′ and then iterate the quantifiers of all involved masks

r1, . . . , rn to count the ranges under k, k′. This process may take a dramatically

longer time or timeout.

30 2.4. Design

2.4 Design

Leakage
Detection

Binary Taint
Filter

Type
Inference

Bit-level
Representation

Control-flow
Information

Trace
Logging

Figure 2.4: Workflow of CaType.

Overview. Figure 2.4 depicts the workflow of CaType. Given the cryptography

software in executable format, we first run the executable using Intel Pin [170] to

perform concerned cryptography computation (e.g., RSA decryption) and log an

execution trace. Then, we require users of CaType to mark the program secrets

and random factors on the execution trace, and perform taint analysis by tainting

those secrets/randomness, and extract a tainted sub-trace depicting how tainted

variables are propagated and used. Meanwhile, we also disassemble the executable

and extract control flow information into a lookup table from the disassembled

assembly code, which will be used later in checking SDBC (see Section 2.4.4).

CaType then performs type inference over the tainted sub-trace, by first annotat-

ing variables with bit-level types of initialized refinements (Section 2.4.1). It tracks

the propagation and usage of secure-sensitive values in refined types during type

inference (Section 2.4.2 and Section 2.4.3). When encountering memory accesses

or branch conditions, CaType uses the refined types of involved variables to check

if SDBC/SDMA exists (Section 2.4.4). Once a side channel flaw is discovered, it

reports the detected instruction’s address to users for confirmation, debugging, and

patching. We now discuss each step in detail.

Design Consideration: Binary vs. Source. CaType is designed to directly

analyze x86 binary code compiled from cryptography software. Thus, the refine-

ment type system is defined over x86 assembly code, and CaType’s analysis de-

pends on the specific memory layout. Overall, side channels are sensitive to the

low-level architecture and system details. We clarify that prior works in this field

are consistently analyzing software in executable format. This enables the analysis

of legacy code and third-party libraries without accessing source code. More im-

portantly, by analyzing low-level assembly instructions, it is possible to take into

Chapter 2. Side-channel Detection 31

account low-level details, such as memory allocation. Recent work [171] has shown

that compiler optimizations could introduce extra side channel opportunities that

are not visible at the high-level code representation level.

Design Consideration: Information Flow Tracking. When illustrating cache

side channels in Figure 2.1, Figure 2.2 and Figure 2.3, we depict how the use of

secrets results in side channels. Nevertheless, in addition to side channels induced

via the direct usage of secrets, it is crucial to treat data derived from the secrets as

“sensitive”. CaType tracks both explicit and implicit information flows propagated

from secrets. When a variable x is of SDD type, and the data is loaded from a

memory address formed by x, the destination variable has type SDD. Similarly,

when x is used to form branch conditions, the result type is SDD as well. By

modeling information flows, CaType comprehensively uncovers the attack surface

of cryptosystems.

2.4.1 Bit-level Representation and Types

Expr e ::= b | x | [b, · · · , b] | ¬e | e1 ▷◁ e2
| e ? e1 : e2 | e1 ♯ e2 | [n1 : n2]/e

Stmt s ::= x← e | x← e1[e2] | e1[e2]← x | s1; s2
Basic Types T ::= B | Vec⟨n⟩

Security Types τ ::= SDD | URA | SID |WRA | CST
Refinements P ::= v : τ | v = b ∧ v : τ

Type ρ ::= {v : T | P}
Type Env Γ ::= ∅ | Γ, x : ρ

Figure 2.5: Syntax of bit-level representation.

We first clarify that in analyzing x86 assembly code, registers, CPU flags, and mem-

ory cells are all considered as variables in CaType. We use bit-level representation

for variables encountered on the execution trace, allowing us to track variables with

fine-grained precision. Considering the instruction syntax in Figure 2.5, where an

expression e can be a constant bit b, a variable x, a constant bitvector [b, · · · , b],
or computations over expressions. Concatenation e1♯ e2 uses e1 and e2 to form the

highest and lowest several bits, respectively. Extracting several bits from the desig-

nated position of a bitvector expression produces a fragment, dubbed as [n1 : n2]/e.

32 2.4. Design

Other operations include negation (¬), arithmetic and logic operations (▷◁) over

two expressions, and the conditional expression with three operands (the syntax

mimics conditional selection in the C language). A statement s is an assignment,

a memory load/store, or a sequence of statements. We clarify that execution trace

forms a typical straight-line code of instructions, omitting branch merges.

Types and Hierarchy. As introduced in Section 2.3.2, a type ρ has the form

of {v : T | P}, where T is a basic type and predicate P is the refinement. We

define basic type T as primitive types of bit representations, i.e., one bit B or a

bitvector of n bits Vec⟨n⟩. A refinement type P is either a security type predicate

τ or a conjunction with a value predicate. A security type predicate τ can be any

of the five types, i.e., SDD, URA, SID, WRA and CST, denoting secret-dependent,

uniformly random, secret-independent, weakly random, and constant values. A

value predicate is termed as v = b (where b is 1 or 0), meaning that v has value

b. The expression typing judgment, Γ ⊢ e : ρ, states that expression e has type ρ,

where Γ is the typing environment mapping from variables to types.

The hierarchy of security types τ is CST ≤: URA ≤: WRA ≤: SID ≤: SDD. We

clarify that among the five refined types, only SDD is related to secrets. We use

WRA to denote a data of weakly random distribution, meaning it is not uniformly

random (in other words, not perfect and secure blinding). URA means uniformly

random data, representing perfect and secure masking. The join operator ⊔ takes

the least upper bound of two types; for instance, SID ⊔ SDD = SDD, as SDD sits

higher in the hierarchy.

Types Annotation. Before launching type inference, we first annotate variables

with security types. Secrets, random factors, and constants are marked as SDD,

URA, and CST, respectively. We mark other variables using SID, and type WRA

may be generated during type inference. Given that we perform bit-level type

annotation and inference, if variable x hosts a 32-bit secret, it is annotated as

{v : Vec⟨32⟩ | v : SDD}. This vector type implies that each bit in the vector has

type SDD, i.e., ∀bi ∈ x. bi : {v : B | v : SDD}. For constants, we also explicitly

annotate each bit (whether it equals 0 or 1) in the value predicate. Thus, each

bit of a constant c is in the form of bi ∈ c. bi : {v : B | v = b ∧ v : CST},
where b is 0 or 1, depending on the value of c. Recall as noted in Section 2.3.2, our

refinement type-based inference conducts a “best-effort” tracking of bit-level values

derived from constants. The bit-level tracking updates value predicates during type

Chapter 2. Side-channel Detection 33

inference. Nevertheless, when a bit value becomes unknown (could be either 0 or

1), we conservatively omit its value predicate and only retain the security type

predicate.

2.4.2 Type Inference for Bitvectors

∥[bn−1, · · · , b0]∥t =

SDD ∃bi. bi : {v : B | v : SDD}
URA (∄bi. bi : {v : B | v : SDD}) ∧

(∃bi. bi : {v : B | v : URA})
SID (∄bi. bi : {v : B | v : SDD}) ∧

(∄bi. bi : {v : B | v : URA}) ∧
(∃bi. bi : {v : B | v : SID})

WRA (∄bi. bi : {v : B | v : SDD}) ∧
(∄bi. bi : {v : B | v : URA}) ∧
(∄bi. bi : {v : B | v : SID}) ∧
(∃bi. bi : {v : B | v : WRA})

CST ∀bi. bi : {v : B | v : CST}

Figure 2.6: Type propagation from single-bit to bitvector.

Different bits in a bitvector may have varying security types. Consider register

eax, which stores a 32-bit data, where the upper 16 bits are URA and the lower 16

bits are SID. Intuitively, the bitvector’s type can be inferred by simply taking the

least upper bound of all the constituent bits’ types, i.e., SID in this case. However,

the high 16 bits are URA, meaning that each bit has equal possibility of being 0 or

1. Thus, the intuitive approach would lose the information of randomness, leading

to inaccuracy in subsequent analyses.

To precisely track bit-level security propagation, we define function ∥x∥t in Fig-

ure 2.6 to infer a bitvector’s type from the types of its constituent bits based on a

notion of structural priority. We give type SDD the highest priority, meaning that

a bitvector is of type SDD if it contains at least one bit of type SDD. In the absence

of SDD type, type URA is structurally preceding, i.e., if there is a bit in a vector

whose type is URA, then the vector itself is URA. As seen in Figure 2.6, SID is

structurally superior to WRA and CST, whereas WRA is structurally superior to

CST.

34 2.4. Design

From a holistic view, sensitive data (specified in refinements) are “propagated”

from single-bit to whole bitvector following type rules in Figure 2.6. Therefore,

information flow analysis is performed here to determine how sensitive data are

propagated and influence program execution. To clarify, in addition to type rules,

CaType also conducts taint analysis over the Pin-logged trace and collects a list

of tainted instructions. This is a classic optimization to reduce trace length, also

adopted in previous works [133, 134, 151]. Our type inference is performed on the

tainted trace, as illustrated in Figure 2.4.

2.4.3 Type Inference Rules

CaType implements a comprehensive set of type inference rules over each encoun-

tered x86 assembly instruction to track the propagation of secure-sensitive types

and check cache side channels.

Prim-I

Γ ⊢ 0 : {v : B | v = 0 ∧ v : CST}
Prim-II

Γ ⊢ 1 : {v : B | v = 1 ∧ v : CST}

Const-Conj.I
Γ ⊢ e1 : {v : B | v : τ1}

Γ ⊢ e2 : {v : B | v = 0 ∧ v : CST}
Γ ⊢ e1 ∧ e2 : {v : B | v = 0 ∧ v : CST}

Const-Conj.II
Γ ⊢ e1 : {v : B | v : τ1}

Γ ⊢ e2 : {v : B | v = 1 ∧ v : CST}
Γ ⊢ e1 ∧ e2 : {v : B | v : τ1}

Const-Disj.I
Γ ⊢ e1 : {v : B | v : τ1}

Γ ⊢ e2 : {v : B | v = 0 ∧ v : CST}
Γ ⊢ e1 ∨ e2 : {v : B | v : τ1}

Const-Disj.II
Γ ⊢ e1 : {v : B | τ1}

Γ ⊢ e2 : {v : B | v = 1 ∧ v : τ2}
Γ ⊢ e1 ∨ e2 : {v : B | v = 1 ∧ v : CST}

XOR.III
Γ ⊢ e1 : {v : B | v : CST}

Γ ⊢ e2 : {v : B | v : CST} e1 ̸= e2

Γ ⊢ e1 ⊕ e2 : {v : B | v = 1 ∧ v : CST}

XOR.IV
Γ ⊢ e : {v : B | v : CST}

Γ ⊢ e⊕ e : {v : B | v = 0 ∧ v : CST}

Neg.II
Γ ⊢ e : {v : B | v = 0 ∧ v : CST}
Γ ⊢ ¬e : {v : B | v = 1 ∧ v : CST}

Neg.III
Γ ⊢ e : {v : B | v = 1 ∧ v : CST}
Γ ⊢ ¬e : {v : B | v = 0 ∧ v : CST}

Figure 2.7: One-bitvector Constant Type Rules.

Chapter 2. Side-channel Detection 35

Conj&Disj.I
Γ ⊢ e1 : {v : B | v : τ1} Γ ⊢ e2 : {v : B | v : τ2}

τ1 ̸= CST τ2 ̸= CST ¬(τ1 = URA ∧ τ2 = URA) ▷◁ ∈ {∧,∨}
Γ ⊢ e1 ▷◁ e2 : {v : B | v : τ1 ⊔ τ2}

Conj&Disj.II
Γ ⊢ e1 : {v : B | v : URA} Γ ⊢ e2 : {v : B | v : URA} ▷◁ ∈ {∧,∨}

Γ ⊢ e1 ▷◁ e2 : {v : B | v : WRA}

XOR.I
Γ ⊢ e1 : {v : B | v : τ1} Γ ⊢ e2 : {v : B | v : τ2}

τ1 ̸= URA τ2 ̸= URA ¬(τ1 = CST ∧ τ2 = CST)

Γ ⊢ e1 ⊕ e2 : {v : B | v : τ1 ⊔ τ2}

XOR.II
Γ ⊢ e1 : {v : B | v : URA} Γ ⊢ e2 : {v : B | v : τ}

Γ ⊢ e1 ⊕ e2 : {v : B | v : URA}

Neg.I
Γ ⊢ e : {v : B | v : τ}
Γ ⊢ ¬e : {v : B | v : τ}

Figure 2.8: One bit B type rules for logical operations.

Type Rules for One Bit Logical Operations. First, type rules that involve

CST type are designed to propagate CST in a straightforward way. Figure 2.7

shows the one-bitvector type rules involving the CST type. Rule Const-Conj and

Cons-Disj rules handle the situation when the refined type of one operand expres-

sion is CST. These four rules are straightforward. Rule XOR.III and XOR.IV

describe the refined type CST cases, which are consistent with basic cognition,

and the value predicates are given. Rules Neg.II and Neg.III keep security types

unchanged while tracking values precisely in types.

Figure 2.8 presents a representative list of type rules for one bit logical operations.

Rule Conj&Disj.I states that if two operands are not both CST or URA, then

the result type is the least upper bound of the two operands’ types, which enables

the tracking of secure-sensitive values in types. Rule Conj&Disj.II handles the

circumstance in which both operands are URA. Since the value of the result is no

longer distributed uniform-randomly under logic AND and OR, the result type is

lifted on the type hierarchy to WRA. Rule XOR.I is similar to rule Conj& Disj.I,

where the result type is the least upper bound of the two operands’ types, provided

that neither bit expression is URA or CST simultaneously. Rule XOR.II states

that if one of the operands is of type URA, the result type is URA. This refers

36 2.4. Design

to the fact that random factors can uniformly blind the results through exclusive

or (⊕) operations. Rule Neg.I keeps security types unchanged in front of the

negation operation.

Concat.I
Γ ⊢ e1 : {v : Vec⟨n1⟩ | v : τ1} τ1 ̸= URA
Γ ⊢ e2 : {v : Vec⟨n2⟩ | v : τ2} τ2 ̸= URA

Γ ⊢ e1 ♯ e2 : {v : Vec⟨n1 + n2⟩ | v : τ1 ⊔ τ2}

Concat.II-1
Γ ⊢ e1 : {v : Vec⟨n1⟩ | v : URA}

Γ ⊢ e2 : {v : Vec⟨n2⟩ | v : τ2} τ2 ̸= SDD

Γ ⊢ e1 ♯ e2 : {v : Vec⟨n1 + n2⟩ | v : URA}

Concat.II-2
Γ ⊢ e1 : {v : Vec⟨n1⟩ | v : URA}
Γ ⊢ e2 : {v : Vec⟨n2⟩ | v : SDD}

Γ ⊢ e1♯e2 : {v : Vec⟨n1 + n2⟩ | v : SDD}

Extraction
Γ ⊢ e : {v : Vec⟨n⟩ | v : τe}

m1 ≤ m2 ∥[m1 : m2]/e∥t = τ

Γ ⊢ [m1 : m2]/e : {v : Vec⟨m2 −m1 + 1⟩ | v : τ}

Logic.I
Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1} Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}

▷◁∈ {∧,∨,⊕} ∥e1 ▷◁ e2∥t = τ

Γ ⊢ e1 ▷◁ e2 : {v : Vec⟨n⟩ | v : τ}

Logic.II
Γ ⊢ e : {v : Vec⟨n⟩ | v : τ}
Γ ⊢ ¬e : {v : Vec⟨n⟩ | v : τ}

Arith.I
Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1} Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}

τ1 ̸= URA τ2 ̸= URA ¬(τ1 = CST ∧ τ2 = CST) ▷◁∈ {+,−,×,÷}
Γ ⊢ e1 ▷◁ e2 : {v : Vec⟨n⟩ | v : τ1 ⊔ τ2}

Arith.II-1
Γ ⊢ e1 : {v : Vec⟨n⟩ | v : URA} Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}

τ2 ̸= SDD ▷◁∈ {+,−,×,÷}
Γ ⊢ e1 ▷◁ e2 : {v : Vec⟨n⟩ | v : URA}

Arith.II-2
Γ ⊢ e1 : {v : Vec⟨n⟩ | v : URA}

Γ ⊢ e2 : {v : Vec⟨n⟩ | v : SDD} ▷◁∈ {+,−,×,÷}
Γ ⊢ e1 ▷◁ e2 : {v : Vec⟨n⟩ | v : SDD}

Comp
Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1} Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}
¬(τ1 = CST ∧ τ2 = CST) ▷◁∈ {<,≤, >,≥,=, ̸=}

Γ ⊢ e1 ▷◁ e2 : {v : Vec⟨1⟩ | v : τ1 ⊔ τ2}

Cond.I
Γ ⊢ e : {v : Vec⟨1⟩ | v : SDD} Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1}

Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}
Γ ⊢ e ? e1 : e2 : {v : Vec⟨n⟩ | v : SDD}

Cond.II
Γ ⊢ e : {v : Vec⟨1⟩ | v : τ} τ ̸= SDD Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1}

Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2} ¬(τ1 = CST ∧ τ2 = CST)

Γ ⊢ e ? e1 : e2 : {v : Vec⟨n⟩ | v : τ1 ⊔ τ2}

Figure 2.9: Type rules for expressions involving bitvector Vec⟨n⟩.

Chapter 2. Side-channel Detection 37

Type Rules for Bitvector Operations. Figure 2.9 depicts the type rules for

operations with bitvectors Vec⟨n⟩. There are three rules applicable to concate-

nation expressions. Rule Concat.I states that the resultant’s type takes the

least upper bound of the two vectors’ type, if both vectors are not URA. Rule

Concat.II-1 states that type URA is structurally prior to other secret-free types,

and Concat.II-2 specifies that a bitvector exhibits SDD type if at least one bit

in expression e2 is SDD. Rule Extraction is a well-demonstrated example that

leverages function ∥x∥t to determine the refined type of the segment extracted from

the source operand. Note that shift operations do not have their own rules as they

can be implemented by combining concatenation and extraction operations. Rule

Logic.I infers a vector type from the types of its constituent bits, i.e., the type

of the result is inferred by applying the structural priority defined in Figure 2.6.

Rule Logic.II is similar to Rule Neg.I.

For the arithmetic operations of two bitvectors, one difference lies in performing

the calculation at the whole bitvector level as opposite to each bit. Specifically, we

determine the security type of the result, and propagate it to each bit; this offers

a sound estimation of each bit’s security type. Similar to Concat rules, Arith

rules conform to the security type propagation in bitvector structures.

As specified in x86 assembly code, the comparison operation only produces one-bit

bitvector Vec⟨1⟩ to the result (i.e., the affected CPU flags). Rule Comp specifies

that the resultant’s type is the least upper bound of the two operands’ types. We

omit the case where two operands are both CST as it is straightforward. The last

two rules are designed for conditional expressions. We specify two rules according

to whether the condition expression e is related to the secret. Rule Cond.I states

that if the refined security type of the condition expression e is SDD, the result

type is SDD regardless of the type of two branch expressions. We clarify that

this rule allows CaType to keep track of implicit information flow propagated

from secret-dependent branch conditions to the instructions. Thus, it facilitates

detecting potential cache side channels derived from implicit information flow. In

contrast, Rule Cond.II takes the least upper bound of two branch expressions’

types.

Statement type rules are standard, and we emphasize that CaType tracks secrets

propagation through both explicit and implicit information flows. We extend the

type environment Γ (defined in Section 2.4.1) to track the value and security type

38 2.4. Design

Assign-I
Γ ⊢ x : {v : B | v : τx}

Γ ⊢ e : {v : B | v = b ∧ v : τe} Γ′ = Γ[x 7→ {v : B | v = b ∧ v : τe}]
Γ ⊢ x← e ⊣ Γ′

Assign-II
Γ ⊢ x : {v : B | v : τx} Γ ⊢ e : {v : B | v : τe} Γ′ = Γ[x 7→ {v : B | v : τe}]

Γ ⊢ x← e ⊣ Γ′

Load-I
Γ ⊢ x : {v : B | v : τx}

Γ ⊢ e1[e2] : {v : B | v = b ∧ v : τv} Γ′ = Γ[x 7→ {v : B | v = b ∧ v : τv}]
Γ ⊢ x← e1[e2] ⊣ Γ′

Load-II
Γ ⊢ x : {v : B | v : τx}

Γ ⊢ e1[e2] : {v : B | v : τv} Γ′ = Γ[x 7→ {v : B | v : τv}]
Γ ⊢ x← e1[e2] ⊣ Γ′

Load-III
Γ ⊢ x : {v : B | v : τx}

Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1} Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}
Γ ̸⊢ e1[e2] τr = τ1 ⊔ τ2 Γ′ = Γ[x 7→ {v : B | v : τr}

Γ ⊢ x← e1[e2] ⊣ Γ′

Store-I
Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1} Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}

Γ ⊢ x : {v : B | v = b ∧ v : τx} Γ′ = Γ[e1[e2] : {v : B | v = b ∧ v : τx}]
Γ ⊢ e1[e2]← x ⊣ Γ′

Store-II
Γ ⊢ e1 : {v : Vec⟨n⟩ | v : τ1} Γ ⊢ e2 : {v : Vec⟨n⟩ | v : τ2}
Γ ⊢ x : {v : B | v : τx} Γ′ = Γ[e1[e2] : {v : B | v : τx}]

Γ ⊢ e1[e2]← x ⊣ Γ′

Seq

Γ ⊢ s1 ⊣ Γ′′ Γ′′ ⊢ s2 ⊣ Γ′

Γ ⊢ s1; s2 ⊣ Γ′

Figure 2.10: Type Rules for Statements.

Chapter 2. Side-channel Detection 39

of each element in a vector, i.e., Γ ::= ∅ | Γ, x : ρ | Γ, e1[e2] : ρ. We use the following

rule to derive the type of vector indexing expression:

T-Vec-Index
e1[e2] ∈ Γ

Γ ⊢ e1[e2] : ρ

Figure 2.10 shows the type rules for statements. It tracks values in a flow-sensitive

way. The type judgment is in the form Γ ⊢ S ⊣ Γ′, meaning that statement S

is type-checked under Γ, and produces a new type environment Γ′. The notation

Γ[x 7→ ρ] overrides x’s type with ρ in Γ if x is in Γ; otherwise extends Γ with

[x 7→ ρ]. Rules Assign-I and Assign-II are for assignments, with and without

the presence of a value predicate respectively. Rule Assign-I updates variable

x’s value predicate with the one on the right-hand side, enabling precise tracking

values in types. Rules Load and Store are used for reading from and writing into

memories, where memory access safety is assumed. Rules Load-I and Load-II

retrieve the type of the vector e1 at index e2 and update x’s type with it if e1[e2]

is already tracked in Γ. Otherwise, x’s type is updated with τ1 ⊔ τ2 (rule Load-

III), which is capable of tracking implicit information flow. Rules Store-I and

Store-II update the type of the element e1[e2] with x’s type. Rule Seq checks

the first instruction S1 under Γ and produces a new type environment Γ′′, under

which, instruction S2 is checked.

Proposition 2.1. Our type system guarantees security-safety statically: if an ex-

pression e is given the type {v : T | v : τ}, then the type of its runtime value will

be at least at level τ on the type hierarchy.

That is, the type system in CaType is sound, and it does not make any false

negatives in its analysis; see further discussions and empirical results about type

system correctness in Section 2.7.

2.4.4 Cache Side-channel Detection

Section 2.2.2 has illustrated two representative forms of cache side channels, i.e.,

SDMA and SDBC. When performing type inference, CaType will check each

40 2.4. Design

encountered memory access or conditional jump instruction to see if cache side

channels exist. Specifically, to check if a memory access leads to SDMA, we right

shift the variable holding memory address by L bits, and decide if the resulting

variable is of SDD type. Following a common setup [133, 134, 151], L equals 6,

standing for 64-byte (26) cache line size on modern CPUs.

For SDBC, previous research [148, 151] merely checks if different secrets induce dis-

tinct executing branches. In contrast, CaType checks if the conditional expression

is of SDD type, and further assures two branches are not within identical cache

lines. Recall as shown in Figure 2.4, we disassemble the cryptography software

executable and recover the control flow structure. At this step, we compute the

covered cache units of two branches: a SDBC is confirmed, in case the condition

is of SDD type, and two branches are placed within distinguishable (at least one

non-overlapping) cache lines.

An Illustrative Example. We use an example from the OpenSSL library to vi-

sually demonstrate the type inference and detection of side channels. With respect

to code in Figure 2.11, we present the corresponding (simplified) type inference

procedure launched by CaType in Table 2.1. The first and second columns re-

port the applied type inference rules and the refinement types of relevant variables.

The last column reports the relevant cache line layout: MA(a) represents a secret-

dependent memory access, and we also report the accessed cache line. BC(a, b, c)

indicates that for a conditional control transfer the if branch starts at virtual ad-

dress a (ends at address b), whereas the else branch starts at b and ends at c. We

also report the accessed cache lines in the last column (“c-line”).

Before analysis, users mark eax as “secrets” (type SDD). With type inference

applied, CaType identifies one SDMA and two SDBC (marked in red). As shown

in the last column, for the memory address of the SDMA, CaType checks that

the refinement type of highest 32−L bits is of SDD type. As for those two SDBC

cases, in addition to checking the branch condition’s type is SDD, CaType further

checks whether the if and else branches are located within distinguishable cache

lines. CaType confirms all three cases as vulnerable to cache side channels, whose

findings are aligned with [133, 134].

Chapter 2. Side-channel Detection 41

T
a
b
l
e
2
.1
:
T
y
p
e
in
fe
re
n
ce

ov
er

sa
m
p
le

as
se
m
b
ly

co
d
e.

T
o
ea
se

re
ad

in
g,

w
e
u
se

K
,
I,
W

,
an

d
U

to
te
rm

re
fi
n
em

en
t
ty
p
e
p
re
d
ic
at
es
,

co
rr
es
p
o
n
d
in
g
to

S
D
D
,
S
ID

,
W

R
A
,
an

d
U
R
A

ty
p
es
.
{K
}3

2
m
ea
n
s
b
it
K

re
p
ea
ts

32
ti
m
es
,
w
h
il
e
{1
}1

6
m
ea
n
s
b
it
1
re
p
ea
ts

16
ti
m
es
.

“
c-
li
n
e”

st
a
n
d
s
fo
r
ca
ch
e
li
n
e.

In
vo
lv
ed

re
fi
n
m
en
t
ty
p
es

A
p
p
li
ed

ru
le
s

C
o
n
tr
o
l-
fl
ow

&
ca
ch
e
li
n
es

ea
x
=
{K
}3

2
:
S
D
D

ea
x
=
{K
}1

6
{0
}1

6
:
S
D
D
,
r 0

=
{1
}1

6
{0
}1

6
:
C
S
T

L
o
g
ic
.I
,
C
o
n
j&

D
is
j.
I,

C
o
n
st

-C
o
n
j.
I&

II
ea
x
=
{K
}1

6
{0
}1

6
:
S
D
D
,
r 0

=
{K
}1

6
{0
}1

6
:
S
D
D
,

z
f
=
{K
}
:
S
D
D

L
o
g
ic
.I
,
C
o
n
j&

D
is
j.
I,

C
o
n
st

-C
o
n
j.
I

j
e
co
n
d
it
io
n
(z
f
)
−→

se
cr
et
-d
ep

en
d
en
t

B
C
(8
0
4
9
6
2
9
,8
0
4
9
6
6
1
,8
0
4
9
6
8
c)

tr
u
e
b
ra
n
ch
−→

c-
li
n
e
2
0
1
2
5
8

fa
ls
e
b
ra
n
ch
−→

c-
li
n
e
2
0
1
2
5
9
2
0
1
2
5
a

ea
x
=
{K
}3

2
:
S
D
D

ea
x
=
{K
}8
{0
}2

4
:
S
D
D
,
r 0

=
{1
}8
{0
}2

4
:
C
S
T

L
o
g
ic
.I
,
C
o
n
j&

D
is
j.
I,

C
o
n
st

-C
o
n
j.
I&

II
ea
x
=
{K
}8
{0
}2

4
:
S
D
D
,
r 0

=
{K
}8
{0
}2

4
:
S
D
D
,

z
f
=
{K
}
:
S
D
D

L
o
g
ic
.I
,
C
o
n
j&

D
is
j.
I,

C
o
n
st

-C
o
n
j.
I

j
e
co
n
d
it
io
n
(z
f
)
−→

se
cr
et
-d
ep

en
d
en
t

B
C
(8
0
4
9
6
3
5
,8
0
4
9
6
4
b
,8
0
4
9
6
5
f)

tr
u
e
b
ra
n
ch
−→

c-
li
n
e
2
0
1
2
5
8

fa
ls
e
b
ra
n
ch
−→

c-
li
n
e
2
0
1
2
5
9

ea
x
=
{K
}3

2
:
S
D
D

ea
x
=
{0
}2

4
{K
}8

:
S
D
D
,
r 0

=
24

:
C
S
T

E
x
t
r
a
c
t
io
n
,
C
o
n
c
a
t
.I

ea
x
=
{0
}2

4
{K
}8

:
S
D
D
,
r 0

=
13
53
32
96
0
:
C
S
T
,

r 1
=
{0
}4
{1
}{

0}
6
{1
}{

0}
3
{1
}{

0}
5
{1
}{

0}
2
{K
}8

:
S
D
D
,

m
em

or
y
ad

d
re
ss

(r
1
)
−→

se
cr
et
-d
ep

en
d
en
t

A
r
it
h
.I
,
C
o
n
c
a
t
.I

M
A
(8
0
4
9
6
3
b
)

d
es
ti
n
a
ti
o
n
−→

c-
li
n
e
0
x
2
0
1
2
5
8
··
·

ea
x
=
{0
}2

4
{K
}8

:
S
D
D
,
r 0

=
{0
}2

4
{1
}8

:
C
S
T

L
o
g
ic
.I
,
C
o
n
j&

D
is
j.
I,

C
o
n
st

-C
o
n
j.
I&

II
ea
x
=
{0
}2

4
{K
}8

:
S
D
D
,
r 0

=
24

:
C
S
T

A
r
it
h
.I
,
C
o
n
c
a
t
.I

B
R
(8
0
4
9
6
4
9
,8
0
4
9
6
9
1
)

†
r 0

an
d
r 1

re
p
re
se
n
t
te
m
p
or
ar
y
va
ri
ab

le
s.
‡
z
f
re
p
re
se
n
ts

Z
er
o
F
la
g
re
g
is
te
r.

42 2.5. Implementation

804961d: mov eax, ptr [ebp+0x8]
8049620: and eax, 0xffff0000
8049625: test eax, eax
// secret-dependent condition
8049627: je 8049661
8049629: mov eax, ptr [ebp+0x8]
804962c: and eax, 0xff000000
8049631: test eax, eax
// secret-dependent condition
8049633: je 804964b
8049635: mov eax, ptr [ebp+0x8]
8049638: shr eax, 0x18
// secret-dependent mem access
804963b: mov al, ptr [eax+0x8110460]
8049641: and eax, 0xff
8049646: add eax, 0x18
8049649: jmp 8049691

Figure 2.11: BN num bits word.

2.5 Implementation

CaType is implemented in Scala, and presently performs analysis on cryptogra-

phy software executables compiled on 32-bit x86 platforms. However, extending

CaType to other platforms, e.g., 64-bit x86, is not complex. See discussion in

Section 2.7. As a common practice for trace-based analysis, we use Pin [170] to log

each covered instruction and its associated execution context, including all values

in CPU registers. These logged contexts are used to compute the concrete values of

pointers in the follow-up static analysis phase. In other words, our type inference

phase employs a practical and common memory model [133, 172], such that we

decide the addresses stored in a pointer using their concrete values logged on the

trace.

We use objdump to disassemble executable files of cryptography software, and

recover the control flow graph over the disassembled assembly code. Currently,

when encountering an indirect jump, we conservatively consider that it can jump

to any legitimate control transfer destinations in the disassembled assembly code.

For each conditional jump, we collect the memory address ranges of its if/else

branches from the disassembled code. We build a lookup table over these control

Chapter 2. Side-channel Detection 43

transfer information when checking if executing secret-dependent branches can visit

different cache lines.

Usage of CaType. To use CaType, users need to manually identify the secrets

and random factors like blinding in assembly code of cryptography software. As

noted in Section 2.3.1, CaType is designed primarily for cryptography software

developers, who have detailed knowledge of their own code. Note that the knowl-

edge of sensitive data in cryptography binary code is generally assumed by previous

side channel detectors, as most of them analyze binary code [133, 134, 147, 151].

We clarify that, as existing works [133, 134, 151], flagging secret (e.g., RSA pri-

vate key) only requires mundane reverse engineering of cryptography executable

and marking memory buffers that store keys. To date, disassemblers are ma-

ture for processing cryptography executables. Moreover, to ease the localization

of secrets/random factors in assembly code, we recommend developers to compile

cryptography software with debug information attached. We observe that it takes

less than 30 minutes to flag the secrets for each of our evaluated cryptography

software. Other than manually localizing secrets, all follow-up analyses are done

automatically by CaType, whose outputs would be localized vulnerable points

in assembly code, as illustrated in Table 2.1. Then, developers will need to map

those leakage assembly instructions to source code for diagnosis and patching. To

ease mapping assembly instructions to source code, it is also suggested to compile

binary code with debug information attached, thereby encoding source code line

number into assembly instructions.

In addition, we do not particularly mark certain one-way functions on the execution

trace, e.g., functions applying key blinding over secrets. Instead, we assign refined

types (URA) to random data before the analysis, and whenever keys are used

together with blinding, refined types for secrets and blinding will naturally fit

their corresponding type inference rules (as defined in Figure 2.8 and Figure 2.9).

Therefore, we should not miss any one-way function provided that random data

has been marked correctly before the analysis.

44 2.6. Evaluation

2.6 Evaluation

2.6.1 Evaluation Setup

We evaluate CaType on production cryptosystems. Evaluations are conducted

in Ubuntu 16.04 with Intel Xeon 3.50GHz CPU, 32GiB RAM. We collect execu-

tion traces of algorithms including RSA, ElGamal, and (EC)DSA from OpenSSL

and Libgcrypt (see Table 2.2). ∗ represents using random factor on plaintext/ci-

phertext and ⋆ indicates using random factor on secrets. Besides, we evaluate the

effectiveness of CaType on a constant-time dataset offered in Binsec/Rel [120].

This will validate the correctness of our methodology to a reasonable extent.

Table 2.2: Cryptosystems analyzed by CaType.

Algorithms Implementations Versions

RSA
OpenSSL

1.0.2f ∗, 1.1.0g∗, 1.1.0h∗

1.1.1n∗, 3.0.2∗

Libgcrypt 1.6.1∗, 1.7.3∗, 1.9.4∗⋆

ElGamal Libgcrypt 1.6.1, 1.7.3∗, 1.9.4∗⋆

(EC)DSA OpenSSL
1.0.1e, 1.1.0g, 1.1.0i⋆

1.1.1n⋆, 3.0.2⋆

The RSA/ElGamal algorithms from both libraries leverage the built-in secret gen-

eration function for generating 2048-bit secrets. The ECDSA algorithm adopts

OpenSSL sect571r1 curve. We initiate the plaintext or the message to be signed

as “hello world”. We use Intel Pin to log the execution traces when executing the

cryptography software for standard decryption/signature procedures, including the

majority of asymmetric encryption functions such as modular exponentiation in

RSA/ElGamal and point multiplication in the signature procedure of ECDSA.

2.6.2 Results Overview

Vulnerability Detection. We present the positives reported by CaType in Ta-

ble 2.3. We report that CaType confirms all cache side channel vulnerabilities

that have been found by CacheD/CacheS. Moreover, it identifies new defects that

were neglected in previous analyses of the same cryptography software. CaType

detects precisely 485 information leakage sites, including 440 known sites and 45

Chapter 2. Side-channel Detection 45

T
a
b
l
e
2
.3
:
Id
en
ti
fi
ed

In
fo
rm

a
ti
o
n
L
ea
ka
ge

S
it
es
/U

n
it
s
b
y
C
a
T
y
p
e
.
W
e
co
m
p
ar
e
th
e
re
su
lt
s
w
it
h
re
ce
n
t
w
or
k
s,

in
cl
u
d
in
g
C
ac
h
eD

,
C
ac
h
eS

a
n
d
D
A
T
A
.

C
r
y
p
to

g
r
a
p
h
y

se
tu

p
L
e
a
k
a
g
e
S
it
e
s

(k
n
o
w
n
/
u
n
k
n
o
w
n
)

L
e
a
k
a
g
e
U
n
it
s

(k
n
o
w
n
/
u
n
k
n
o
w
n
)

C
a
c
h
e
D

r
e
p
o
r
te

d
[1
3
3
]

C
a
c
h
e
S

r
e
p
o
r
te

d
[1
3
4
]

D
A
T
A

r
e
p
o
r
te

d
[1
4
7
,
1
7
3
]

L
e
a
k
a
g
e
S
it
e
s/

U
n
it
s†

L
e
a
k
a
g
e
S
it
e
s/

U
n
it
s†

L
e
a
k
a
g
e
U
n
it
s‡

R
S
A
-O

p
e
n
S
S
L

1
.0
.2
f

3
0
/
0

6
/
0

2
/
2

6
/
3

4
R
S
A
-O

p
e
n
S
S
L

1
.1
.0
g

3
0
/
4

8
/
1

-
-

5
R
S
A
-O

p
e
n
S
S
L

1
.1
.0
h

2
2
/
0

5
/
0

-
-

5
R
S
A
-O

p
e
n
S
S
L

1
.1
.1
n

9
/
0

5
/
0

-
-

3
R
S
A
-O

p
e
n
S
S
L

3
.0
.2

9
/
4

4
/
2

-
-

2
R
S
A
-L

ib
g
c
r
y
p
t
1
.6
.1

3
1
/
4

9
/
1

2
2
/
5

4
0
/
1
1

-
R
S
A
-L

ib
g
c
r
y
p
t
1
.7
.3

2
4
/
4

8
/
1

0
/
0

0
/
0

-
R
S
A
-L

ib
g
c
r
y
p
t
1
.9
.4

4
/
5

2
/
3

-
-

-
E
lG

a
m

a
l-
L
ib

g
c
r
y
p
t
1
.6
.1

3
1
/
4

9
/
1

2
2
/
5

4
0
/
1
1

-
E
lG

a
m

a
l-
L
ib

g
c
r
y
p
t
1
.7
.3

2
4
/
4

8
/
1

0
/
0

0
/
0

-
E
lG

a
m

a
l-
L
ib

g
c
r
y
p
t
1
.9
.4

3
/
0

1
/
0

-
-

-
E
C
D
S
A
-O

p
e
n
S
S
L

1
.0
.1
e

9
8
/
0

9
/
0

-
-

9
E
C
D
S
A
-O

p
e
n
S
S
L

1
.1
.0
g

4
9
/
0

6
/
0

-
-

6
E
C
D
S
A
-O

p
e
n
S
S
L

1
.1
.0
i

1
3
/
0

3
/
0

-
-

3
E
C
D
S
A
-O

p
e
n
S
S
L

1
.1
.1
n

1
4
/
0

2
/
0

-
-

2
E
C
D
S
A
-O

p
e
n
S
S
L

3
.0
.2

1
4
/
0

2
/
0

-
-

3
D
S
A
-O

p
e
n
S
S
L

1
.1
.0
i♮

0
/
4

0
/
1

-
-

-
D
S
A
(s
w
a
p
p
e
d
)-
O
p
e
n
S
S
L

1
.1
.0
i♮

9
/
4

4
/
1

-
-

-
D
S
A
-O

p
e
n
S
S
L

1
.1
.1
n

1
3
/
4

3
/
1

-
-

3
D
S
A
-O

p
e
n
S
S
L

3
.0
.2

1
3
/
4

3
/
1

-
-

3
to

ta
l

4
4
0
/
4
5

9
7
/
1
4

4
6
/
1
2

8
6
/
2
5

4
8

†
T
h
e
R
S
A

a
n
d
E
lg
a
m
a
l
fr
o
m

L
ib
g
cr
y
p
t
li
b
ra
ry

a
re

co
u
n
te
d
to
g
et
h
er

in
C
a
ch

eD
[1
3
3
]
a
n
d
C
a
ch

eS
[1
3
4
].

‡
W

e
co

ll
ec
t
a
ll
le
a
k
y
fu
n
ct
io
n
s
re
p
o
rt
ed

in
D
A
T
A

[1
4
7
,
1
7
3
]
a
n
d
lo
ca

te
w
h
et
h
er

th
es
e
le
a
k
y
fu
n
ct
io
n
s
a
p
p
ea

r
in

th
e
co

rr
es
p
o
n
d
in
g
O
p
en

S
S
L

v
er
si
o
n
.

♮
D
S
A

(O
p
en

S
S
L
-1
.1
.0
i)

a
n
d
it
s
sw

a
p
p
ed

p
a
tc
h
a
re

o
n
ly

ev
a
lu
a
te
d
fo
r
th

e
k
ey

b
li
n
d
in
g
p
a
rt
.

46 2.6. Evaluation

newly found sites. To better characterize findings, we adhere to CacheD/CacheS

to group adjacent leakage sites (assembly instructions) into a unit and eliminate

duplicated units. This way, 97 known units are confirmed and 14 unknown units

are discovered. Works [147, 173] only report leakage units, which are compared

here. We elaborate on the findings of CaType in the following two subsections.

Also, for the constant-time dataset offered by Binsec/rel [120], CaType has no

positive findings, meaning that CaType (over this dataset) does not produce false

positives or false negatives. We notice that constant-time computations in this

dataset (e.g., comparison and conditional selection) extensively use bitwise op-

erations. Since CaType performs bit-level type inference, CaType manifests

high accuracy without treating safe bitwise operations as vulnerable. Note that

constant-time operations provided in this dataset are frequently used in modern

cryptography libraries; thus, experiments on this dataset verify the correctness of

CaType to a reasonable extent.

Analysis Against Randomization. CaType is evaluated against blinding over

plaintext/ciphertext and keys. CaType confirms that the secret leakage exists

in OpenSSL-1.0.2f and Libgcrypt-1.6.1/1.7.3, notwithstanding the introduction of

plaintext/ciphertext blinding. Note that secrets are still exposed to side channels

without blinding in these cases. In contrast, key blinding mitigates most leakage

sites. For instance, evaluations of RSA/ElGamal in Libgcrypt-1.9.4 reveal that se-

crets are now labeled as random data (with type URA) by CaType. However, this

protection is at the cost of introducing extra (potentially vulnerable) procedures

to perform blinding. CaType discovers five new leakage sites in RSA/Libgcrypt-

1.9.4. These leakage units cover both the private key d and the prime p (recall

in RSA, d and p are secrets). Therefore, we show that though key blinding ob-

scures secrets, it introduces new leakage sites due to extra calculations. In sum, by

considering random factors with specific refined types, CaType can analyze side

channel mitigation techniques implemented in modern cryptography software.

Performance Evaluation. We compare CaType with CacheD and CacheS by

using the same cryptography implementations, and report the comparison results in

Table 2.4 (first five rows). For cryptography libraries evaluated by CacheD/CacheS

(with a total of 4.4M instructions), CaType finishes the analysis with around 120

CPU seconds, and exhibits promising speed across all evaluation settings with no

timeout cases. To compare with CacheD/CacheS, we use the processing time per

Chapter 2. Side-channel Detection 47

10 thousand lines as an indicator. CaType handles per 10 thousand lines in 0.27

seconds on average, while CacheD and CacheS require 4.42 and 35.41 CPU sec-

onds, respectively. We also report performance statistics of other RSA evaluation

settings in the next rows of Table 2.4. Their trace lengths range between thou-

sands and millions. Figure 2.12 illustrates the approximately linear correlations

between trace length and time. Considering the complexity of analyzing real-world

cryptosystems, CaType displays a highly promising performance and scalability.

0 25 50 75 100 125 150 175
of Instructions on the Traces (x 10^4)

5

10

15

20

25

30

35

40

Pr
oc

es
sin

g
Ti

m
e

(C
PU

 S
ec

on
ds

)

OpenSSL-1.0.2f
OpenSSL-1.1.0g
OpenSSL-1.1.0h
OpenSSL-1.1.1.n
OpenSSL-3.0.2
Libgcrypt-1.6.1
Libgcrypt-1.7.3
Libgcrypt-1.9.4

Figure 2.12: Trace lengths/processing time towards the analysis of RSA im-
plementations.

The performance comparison results (Table 2.4) demonstrate the superiority of

type inference as opposed to existing works (e.g., [133, 134, 148, 151]) that use the

constraint solver to decide the satisfiability of side channel constraints. Holistically,

those works suffer from the accumulation of complex constraints when performing

symbolic execution along the trace. In contrast, type inference ensures each deduc-

tion step has a straightforward result without huge search space. Overall, without

using constraint solving, CaType maintains a comparable analysis capability as

those of CacheD/CacheS. As noted in Section 2.4.4, by using bit-level secret track-

ing (SDD), deciding if secret-dependent memory access leads to cache side channels

is recast to essentially recognize SDD in refined types. This pattern match opera-

tion is very efficient without undermining soundness.

48 2.6. Evaluation

T
a
b
l
e
2
.4
:
P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
w
it
h
C
ac
h
eD

/C
ac
h
eS

.
W
e
al
so

li
st

th
e
an

al
y
si
s
of

ei
gh

t
R
S
A

im
p
le
m
en
ta
ti
on

s
fo
r
sc
al
ab

il
it
y

a
ss
es
sm

en
t.

C
ry

p
to

g
ra

p
h
y
se
tu

p
In

st
ru

c
ti
o
n
s

o
n

th
e
T
ra

c
e
s

P
ro

c
e
ss
in
g
T
im

e
(C

P
U

S
e
c
o
n
d
s)

T
im

e
o
f

P
e
r
1
0
4
L
in
e
s

C
a
ch

e
D

C
a
ch

e
S

P
e
r
1
04

L
in
e
s

P
e
r
1
0
4
L
in
e
s

R
S
A

&
E
lg
a
m
a
l

O
p
e
n
S
S
L
-1
.0
.2
f

1,
62
0,
40
4

3
5
.5
8

0
.2
2

3
.4
9

2
1
.1
6

R
S
A

&
E
lg
a
m
a
l

L
ib
g
c
ry

p
t-
1
.6
.1

1,
37
9,
65
2

3
6
.0
0

0
.2
6

4
.9
3

4
5
.3
6

R
S
A

&
E
lg
a
m
a
l

L
ib
g
c
ry

p
t-
1
.7
.3

1,
41
1,
08
1

4
8
.4
0

0
.3
4

3
.9
2

5
4
.5
7

to
ta

l
(fi

rs
t
th

re
e
ro

w
s)

4,
41
1,
13
7

1
1
9
.9
8

0
.2
7

4
.4
2

3
5
.4
1

R
S
A
-O

p
e
n
S
S
L

1
.0
.2
f

1,
62
0,
40
4

3
5
.5
8

0
.2
2

-
-

R
S
A
-O

p
e
n
S
S
L

1
.1
.0
g

82
2,
15
1

1
8
.5
8

0
.2
2

-
-

R
S
A
-O

p
e
n
S
S
L

1
.1
.0
h

28
,8
74

4
.8
8

1
.6
9

-
-

R
S
A
-O

p
e
n
S
S
L

1
.1
.1
n

1,
76
3,
97
0

3
9
.2
9

0
.2
2

-
-

R
S
A
-O

p
e
n
S
S
L

3
.0
.2

1,
71
1,
74
6

3
6
.5
7

0
.2
1

-
-

R
S
A
-L

ib
g
c
ry

p
t
1
.6
.1

80
6,
41
0

2
2
.6
3

0
.2
8

-
-

R
S
A
-L

ib
g
c
ry

p
t
1
.7
.3

83
7,
21
5

2
3
.2
3

0
.2
7

-
-

R
S
A
-L

ib
g
c
ry

p
t
1
.9
.4

11
4,
73
3

1
1
.2
5

0
.9
8

-
-

Chapter 2. Side-channel Detection 49

2.6.3 Discussion of Known Vulnerabilities

RSA/ElGamal-Libgcrypt.CaType confirms all vulnerabilities reported by prior

works CacheD/CacheS in the RSA/ElGamal implementations from Libgcrypt-

1.6.1, which adopts pre-computation tables for the sliding-window exponentiation.

1 void gcry mpi powm(gcry mpi t res, gcry mpi t base,
2 gcry mpi t expo, gcry mpi t mod){
3 · · ·
4 e = ep[i];
5 count leading zeros(c, e);
6 e = (e≪ c)≪ 1;
7 · · ·
8 e0 = (e≫ (BITS PER MPI LIMB −W));
9 count trailing zeros(c0, e0);
10 e0 = (e0≫ c0)≫ 1;
11 · · ·
12 base u = b 2i3[e0− 1];
13 base u size = b 2i3size[e0− 1];
14 · · ·
15 }

Figure 2.13: RSA/ElGamal information leaks found in Libgcrypt-1.6.1.

Figure 2.13 demonstrates the sliding-window implementation. Before the sliding-

window algorithm, two lookup tables are constructed. The first table stores the

modular exponentiation values of various bases and the second one stores the length

of the corresponding value. In the main loop of modular exponentiation, symbol

e represents the element of secret array and e0 represents each sliding-window

of e. Then e0 is used to access the pre-computation tables. Intuitively, with a

PRIME-PROBE attack, different cache sets are observed accessed under different

sliding-window values, eventually leaking the secret e.

Although Libgcrypt-1.7.3 employs a direct computation scheme rather than using

pre-computation tables, CaType still finds 24 leakage sites that leak the secret

length, which also exist in Libgcrypt-1.6.1. However, no leaks are reported in

CacheD/CacheS about Libgcrypt-1.7.3. In the CacheS paper, they admit these leak

points are false negatives of their tool. As Libgcrypt-1.9.4 adopts a new algorithm

(i.e., left-to-right exponentiation), CaType reports a known secret length leakage

in function gcry mpih add n, whereas prior leak operations are discontinued.

50 2.6. Evaluation

RSA-OpenSSL. Concerning OpenSSL, CaType first confirms the existence of

CVE-2018-0737, where RSA private key is leaked during key generation, in func-

tions BN gcd and BN mod inverse from OpenSSL-1.1.0g/1.1.0h. When analyzing

modular inverse, CaType detects a new vulnerability in the function BN rshift1

that discloses the length of the secret (see Section 2.6.4). A recently found vulner-

ability comes from function BN num bits word, reported in CacheD/CacheS.

1 int BN num bits(const BIGNUM ∗ a){
2 int i = a− > top− 1;
3 bn check top(a);
4 if (BN is zero(a)) return 0;
5 return ((i ∗BN BITS2) +BN num bits word(a− > d[i]));
6 }
7 int BN num bits word(BN ULONG l){
8 static const char bits[256] = {
9 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
10 · · ·
11 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
12 };
13 if (l & 0xffff0000L){
14 if (l & 0xff000000L) return bits[l >> 24] + 24;
15 else return bits[l >> 16] + 16;
16 }
17 else
18 if (l & 0xff00L) return bits[l≫ 8] + 8;
19 else return bits[l];
20 }
21 }

Figure 2.14: RSA information leaks found in OpenSSL-1.0.2f.

1 BN window bits for ctime exponent size(b) \
2 ((b) > 937 ? 6 : \
3 (b) > 306 ? 5 : \
4 (b) > 89 ? 4 : \
5 (b) > 22 ? 3 : 1)

Figure 2.15: Window size of modular exponentiation.

The BN num bits word is called by BN num bits that counts the number of bits

of a secret (see Figure 2.14). The secret is stored in a BIGNUM struct, where

the key value is stored in a byte array a->d of 32-bit element, and the length of

the array is stored in a->top. The number of bits of the last element requires

Chapter 2. Side-channel Detection 51

determined separately because its valid bits may be less than 32 bits. Therefore,

function BN num bits word refers to a lookup table to determine the number of

bits of the last element of the secret array. Different last elements lead to different

entries of the lookup table being accessed. Meanwhile, the branches further narrow

down the secret length. Thus, it is a combined vulnerability of memory access and

branch. CaType performs the type deduction process in Table 2.1. The issue

exists in OpenSSL-1.0.2f/1.1.0g/1.1.0h and has been fixed [174], hence disappears

in the latest OpenSSL versions (OpenSSL-1.1.1n/3.0.2).

CaType confirms a secret length leakage in function BN window bits for ctime ex-

ponent size in all analyzed OpenSSL versions, shown in Figure 2.15. The issue is

also reported in CacheS, but is not fixed in the latest OpenSSL. CaType also

detects a vulnerability reported in DATA, where constant-time flags of RSA secret

primes p and q are not propagated to the temporary copies inside the function

BN MONT CTX set during the Montgomery initialization for modular inverse.

This issue exists in OpenSSL-1.0.2f, but the other four OpenSSL libraries resolve

it.

ECDSA-OpenSSL. When evaluating the (EC)DSA implementations, we mark

the nonce used in Montgomery ladder as a secret. This is because the leaky

nonce can result in the Hidden Number Problem (HNP) [175, 176], where col-

lecting enough leaky nonce contributes to the recovery of private keys through

constructing lattice [177–179]. CaType confirms a direct leakage of the nonce in

the Montgomery ladder implementation from OpenSSL-1.0.1e. This vulnerability

was reported in [142], and this flaw (CVE-2014-0076) has been fixed by the devel-

opers and implemented in a non-branch commit [180, 181]. Recently, Ryan [143]

reports a vulnerability located in modular reduction of (EC)DSA implementations

in OpenSSL that uses an early abort condition to estimate the range of private keys.

CaType confirms this vulnerability comes from function BN ucmp and BN usub

inside function BN mod add quick.

ECDSA performs the second step of signature as s = (r · priv key+m) mod order

(see Figure 2.16), where r · priv key represents the result of the first step that

multiplies part of the signature r with the private key priv key. Before the addition

operation of the second step, the value of r · priv key ensures to be reduced into the

range [0, order-1]. By observing whether a reduction behaves after the addition

52 2.6. Evaluation

operation inside the second step (function BN mod add quick), an attacker can

deduce the range information of the private key priv key.

1 ECDSA SIG ∗ ossl ecdsa sign sig(· · ·){
2 · · ·
3 do{
4 · · ·
5 if (!BN mod mul(tmp, priv key, ret− > r, order, ctx)){
6 ECerr(EC F OSSL ECDSA SIGN SIG, ERR R BN LIB);
7 goto err;
8 }
9 if (!BN mod add quick(s, tmp, m, order)){
10 ECerr(EC F OSSL ECDSA SIGN SIG, ERR R BN LIB);
11 goto err;
12 }
13 · · ·
14 }
15 while(1);
16 · · ·
17 }
18 int BN mod add quick(BIGNUM ∗ r,
19 const BIGNUM ∗ a, const BIGNUM ∗ b,
20 const BIGNUM ∗m){
21 if (!BN uadd(r, a, b))
22 return 0;
23 if (!BN ucmp(r, m) >= 0)
24 return BN usub(r, r, m);
25 return 1;
26 }

Figure 2.16: ECDSA information leaks found in OpenSSL-1.1.0g.

1 if (!BN add(r, k, order)
2 || !BN add(X, r, order)
3 || !BN copy(k, BN num bits(r) > order bits ? r : X))
4 goto err;

Figure 2.17: Bignumber resize.

CaType is also evaluated on analyzing the lifetime of a nonce, including the gen-

eration, scalar multiplication, modular inversion, and main signing process. The

leakage sites identified by CaType fully cover the findings reported in Weiser et

al.’s paper [173]. For example, by distinguishing whether an extra limb is used

to expand the representation of nonce in BN add, CaType confirms the padding

Chapter 2. Side-channel Detection 53

resize vulnerabilities about the nonce reported in CVE-2018-0734 for DSA and

CVE-2018-0735 for ECDSA, as shown in Figure 2.17. The vulnerability states

that the result buffer resizes one more limb to hold the result. By distinguish-

ing the resize operations, attackers can learn the range information of the nonce.

Other known leakage sites of the nonce (e.g., skipping leading zero limbs through

bn correct top, performing an early stop in BN cmp, and conditional branches in

BN mul) are identified by CaType; they still exist in the latest versions. Individ-

ually, CaType reports non-constant-time vulnerabilities in OpenSSL-1.0.1e when

performing ECDSA nonce modular inverse. This is because the constant-time

flag was not set to the nonce. OpenSSL-1.1.0g/1.1.0i, on the other hand, imple-

ment Fermat’s little theorem via constant-time modular exponentiation. Benefit

to the cache layout checking, CaType finds four new leakage sites that reveal

the secret key size through a series of else/if branches in DSA from OpenSSL-

1.1.0i/1.1.1n/3.0.2 (see Section 2.6.4). Contrary to our expectations, CaType

does not mark cases in the switch statement of BN copy as vulnerable. Through

rechecking the source code and its disassembly code, we confirm that CaType per-

forms a correct inference because the trace on the cache cannot be distinguished

(see Section 2.6.6).

2.6.4 Unknown Vulnerabilities

CaType finds new vulnerable program points in Libgcrypt-1.6.1/1.7.3 that have

been analyzed by existing tools. It finds that the size of secret exponentiation is

leaked through the if/else statements at the beginning of function gcry mpi powm,

as shown in Figure 2.18. The sliding-window size W is determined by the size of

secret exponent esize. Different execution traces of the if/else statements can

be differentiated because it occupies multiple cache lines. However, we admit that

the if/else statements are a moderate leakage because only line 1 and line 5 can

be distinguished directly. CaType cannot distinguish execution between line 2

and line 4.

We find a new vulnerability in the OpenSSL function BN rshift1 which performs

Greatest Common Divisor (GCD) using the Euclid algorithm. Figure 2.19 presents

the source code from version 1.1.0g. We first demonstrate how this function leaks

the length of the one-shifted-right operand. Function BN rshift1 performs shifting

54 2.6. Evaluation

1 if (esize ∗ BITS PER MPI LIMB > 512) W = 5;
2 else if (esize ∗BITS PER MPI LIMB > 256) W = 4;
3 else if (esize ∗BITS PER MPI LIMB > 128) W = 3;
4 else if (esize ∗BITS PER MPI LIMB > 64) W = 2;
5 else W = 1;

Figure 2.18: Window size selection.

1 int BN rshift1(BIGNUM ∗ r, const BIGNUM ∗ a){
2 · · ·
3 i = a− > top;
4 ap = a− > d;
5 · · ·
6 rp = r− > d;
7 t = ap[−− i];
8 c = (t&1)? BN TBIT : 0;
9 if (t≫= 1)
10 rp[i] = t;
11 while (i > 0){
12 t = ap[−− i];
13 rp[i] = ((t≫ 1)&BN MASK2) | c;
14 c = (t&1)? BN TBIT : 0;
15 }
16 · · ·
17 }

Figure 2.19: BN rshift1 information leaks found in OpenSSL-1.1.0g.

to the right one-bit for each element of the BN ULONG structure. The length of

the source operand (i.e., a->top) is used as the while loop’s condition. CaType

confirms it as a secret-dependent branch, where the judgment of the while loops

and part instructions inside the while loops (lines 11–13) are stored in one cache

line and the subsequent instructions until the end of function BN rshift1 (lines

14–17) are stored in another cache line. Therefore, the trace of the while loops

can be distinguished. By probing the while loop condition, the value of a->top is

inferred as one increment to the number of while loops.

Weiser et al. [182] proposed a page-level attack to recover RSA primes p and q

when performing prime testing using BN gcd. CaType confirms the vulnerability

in which four different branches are identified because BN rshift1 of each branch is

at different cache lines. Meanwhile, we argue the length information of the source

operand leaked by BN rshift1 accelerates the recovery in this work [182]. For

Chapter 2. Side-channel Detection 55

example, between two adjacent loop operations (ai+1 = ai/2, ai+1 = (ai − bi)/2 or

ai+1 = (ai− bi)/2, ai+1 = ai/2), one decrement in the latter ai+1’s length indicates

that the topmost bit of the former ai+1 is one. This deduction helps to reduce

the range of intermediate results for each Euclid loop. In addition to BN rshift1,

CaType finds similar leakage in BN lshift1 from OpenSSL-3.0.2.

1 int bn mul normal(BN ULONG ∗ r,
2 BN ULONG ∗ a, int na, BN ULONG ∗ b, int nb){
3 · · ·
4 for(; ;){
5 if (−− nb <= 0) return;
6 rr[1] = bn mul add words(&(r[1]), a, na, b[1]);
7 if (−− nb <= 0) return;
8 rr[2] = bn mul add words(&(r[2]), a, na, b[2]);
9 if (−− nb <= 0) return;
10 rr[3] = bn mul add words(&(r[3]), a, na, b[3]);
11 if (−− nb <= 0) return;
12 rr[4] = bn mul add words(&(r[4]), a, na, b[4]);
13 · · ·
14 }
15 }

Figure 2.20: bn mul normal information leaks found in OpenSSL-1.1.0i.

CaType also finds another vulnerability in the OpenSSL-1.1.0i implementation

of DSA (see Figure 2.20). The key blinding mechanism of DSA first multiplies

the random factor blind and the DSA secret key dsa->priv key by calling the

function BN mul, which calls the function bn mul normal to perform a classic mul-

tiplication if the length of both operands is less than BN MULL SIZE NORMAL.

Figure 2.20 presents a for-loop, where four elements of the secret key as a group

are multiplied by blind. Then, four branches, where nb is the length of the secret

key, control whether to end the loop. When nb equals zero, the multiplication

is complete and the function bn mul normal returns. CaType confirms that the

secret-dependent branches leak the length of the secret key. By probing different

if-conditions present in distinct cache lines, the value of the secret length can be re-

covered. Such vulnerable operations are found in the latest OpenSSL-1.1.1n/3.0.2.

56 2.6. Evaluation

2.6.5 Discussion about Blinding

As stated in Section 2.6.2, CaType shows that the plaintext/ciphertext blinding

cannot eliminate cache side channels, given that secrets themselves are still exposed

(e.g., secret-dependent memory accesses and branches in modular exponentiation

from Libgcrypt-1.6.1). However, key blinding impedes nearly all leakage. For

example, CaType reports no vulnerability in the modular exponentiation from

Libgcrypt-1.9.4. By inspecting the type inference outputs, we find that the secret

exponent is marked as a random number (URA) through a series of blinding op-

erations before conducting modular exponentiation. However, CaType finds new

leakage sites in the blinding process. Considering key blinding in RSA/Libgcrypt-

1.9.4, which uses d blind = (d mod (p−1))+(p−1)∗r to mask the secret exponent

d before performing modular exponentiation. Here, p represents one RSA prime

number and r is the random factor. CaType newly discovers five leakage sites in

the subtraction and division operations. They leak the length of the prime number

p and secret exponent d. For instance, the function gcry mpi sub ui is invoked

to perform p − 1 on p. It leaks the length of p whenever the resize operation is

performed on the result operand, as well as at other length-related branches.

Apart from the key blinding in Libgcrypt-1.9.4, CaType also explores the effect

of different key blinding positions on mitigating cache side channels. For instance,

DSA implementation from OpenSSL-1.1.0i applies key blinding b to avoid leaking

the private key x as follows:

s = (bm+ bxr) mod q (2.2)

s = s · k−1 mod q (2.3)

s = s · b−1 mod q (2.4)

where statements 2.2, 2.3, and 2.4 are executed sequentially. Swapping state-

ments 2.3 and 2.4 results in different key blinding use, which is applied in a

LibreSSL patch [183]. CaType compares the original patch with the swapped

one (we manually swap statements 2.3 and 2.4 in OpenSSL-1.1.0i DSA). We find

nine additional leakage sites related to the length of the inverse nonce kinv in

Chapter 2. Side-channel Detection 57

the swapped patch (see Table 2.3), although the statement 2.3 also leaks the in-

verse nonce length in the original patch. We argue when executing statement 2.4

first, s does not possess the property of randomization anymore due to b(m +

xr)b−1 mod q ≡ (m+ xr) mod q. Hence, the nonce inverse kinv is exposed to the

attacker. The swapped practice is fix in a LibreSSL patch [184].

2.6.6 Reducing False Positives

We explain how CaType reduces false positives by using cache layouts rather than

cache states to detect side channels. Considering Figure 2.21, function BN copy is

used by RSA and (EC)DSA. Take (EC)DSA as an example, whose secret nonce

is copied from b to a via BN copy. In particular, a switch statement at line 8

helps skipping the copy of leading zero in b. By manually reviewing this func-

tion, we would anticipate that certain information about the nonce is leaked by

discriminating executed switch cases. However, CaType deems this case as safe.

1 BIGNUM ∗BN copy
2 (BIGNUM ∗ a,
3 BIGNUM ∗ b){
4 · · ·
5 / ∗ assign values in groups of 4 ∗ /
6 · · ·
7 switch (b− > top&3){
8 case 3 : A[2] = B[2];
9 case 2 : A[1] = B[1];
10 case 1 : A[0] = B[0];
11 case 0 :; }
12 · · · }

Figure 2.21: BN copy from the OpenSSL Library.

Cache Line A Cache Line B

0x0804ab00

sw
itch

case 3

case 2

case 1 if

0x0804ab40 0x0804ab80

Figure 2.22: Cache layout from OpenSSL-1.1.0g

58 2.6. Evaluation

Cache Line A Cache Line B

0x0804ab80

sw
itch

case 3

case 2

case 1

0x0804abC0 0x0804ac00

Figure 2.23: Cache layout from OpenSSL-1.1.0h

We analyze the result released by CaType from the perspectives of cache side-

channel attacks, i.e., the FLUSH-RELOAD and PRIME-PROBE attacks. We

depict the cache layouts of BN copy from OpenSSL-1.1.0g and OpenSSL-1.1.0h in

Figure 2.22 and Figure 2.23. In these two libraries, the switch statement occupies

two separate cache lines. Thus, the first cache line must be visited. Meanwhile,

instructions after the statement are loaded into the second cache line and are

also visited; in an extreme case, the whole switch statement is loaded into one

cache line. In sum, different switch cases are not distinguishable (e.g., for the

FLUSH-RELOAD attack). We further consider whether a PRIME-PROBE

attack can distinguish the difference in cache layouts. First, the base addresses are

loaded into the cache regardless of whether they correspond to the source array

(A[]) or the destination array (B[]). Second, the largest offset for the element

among the last group (both destination and source) is 8 bytes. In that sense, the

address of any element is mapped to the same cache line (address ≫ 6 for 64-

byte cache lines). Therefore, PRIME-PROBE cannot collect a distinguishable

observation and fails to extract secrets. However, CacheD/CacheS simply treats

BN copy as vulnerable, given that a secret-dependent branch condition (line 8)

is (inaccurately) treated as “vulnerable” in the view of their cache state-based

vulnerability pattern. However, it is indeed a false positive.

Robustness of Using Cache Layouts. The above experiments are conducted

using OpenSSL’s default compilation setting. The switch statement may be vul-

nerable, when the code chunk of each switch case occupies distinct cache lines.

Overall, we anticipate that different optimization settings could result in placing

instructions into different cache lines. To benchmark the robustness of using cache

layouts instead of using cache state-based threat models, we measure how compiler

optimizations may influence the results of CaType, whose results are given in

Table 2.5. At this step, we only measure side channels due to SDBC, because we

use the cache layout model to check SDBC. Also, given that we need to manually

Chapter 2. Side-channel Detection 59

confirm and compare each finding across different optimizations, we only select a

crypto library when its SDBC-related source code has visible changes across dif-

ferent versions. For instance, while we evaluate Libgcrypt 1.6.1, 1.7.3, and 1.9.4 in

Table 2.3, we only evaluate versions 1.7.3 and 1.9.4, since version 1.6.1 appears to

be identical with 1.7.3 in terms of those SDBC cases flagged by CaType.

Table 2.5 shows that optimizations affect the analysis results, as heavy optimiza-

tions tend to “condense” code into fewer cache lines. Similar to Table 2.3, we

provide the discovered leakage sites as well as grouped leakage units. CaType

can accurately capture the subtle leakage (without making false positives) with

its employed cache layout threat model. With manual efforts, we confirm that all

cases are true positives. Indeed, we report that all -O2 findings are subsumed by

those of -O0, and all -O3 findings are subsumed by -O2 findings. In contrast, we

report that CacheD/CacheS yields identical findings across different optimization

settings, meaning that they have a considerable number of false positives under

-O2 and -O3.

Table 2.5: Branch vulnerabilities identified by CaType under gcc -O0, -O2,
and -O3 optimization settings.

Cryptography setup
gcc-5.4

-O0 -O2 -O3
RSA-OpenSSL 1.1.0g 27/9 24/9 24/9
RSA-OpenSSL 1.1.0h 20/5 18/5 18/5

RSA/Elgamal-Libgcrypt 1.7.3 17/7 14/7 14/7
RSA/Elgamal-Libgcrypt 1.9.4 6/4 6/4 6/4

ECDSA-OpenSSL 1.1.0g 38/6 22/6 19/6
ECDSA-OpenSSL 1.1.0i 10/3 7/3 7/3
ECDSA-OpenSSL 3.0.2 9/2 9/2 9/2
DSA-OpenSSL 1.1.0i 4/1 3/1 3/1
DSA-OpenSSL 1.1.1n 14/4 12/4 12/4

total 145/41 115/41 112/41

2.7 Discussion and Limitation

Type System Benchmarking. Scientifically, it would be ideal to benchmark

our refinement type system against some “synthetic datasets” to determine their

algorithmic effectiveness and efficiency before evaluating side channel detections,

60 2.7. Discussion and Limitation

which is a “downstream” application of our type system. Nevertheless, it is prac-

tically hard to find a proper (synthetic) dataset to solely evaluate the type system,

and using downstream applications to reflect the effectiveness of a type system is

a common evaluation plan used by relevant works [185–187]. To avoid potential

confusion, we revisit the effectiveness and efficiency of our type system as follows.

First, our type system is sound (per Proposition 2.1). All typing rules are intuitive,

and there are no “tricky” ones implemented in CaType. Thus, the soundness is at

ease. Second, in terms of efficiency, our implementation manifests approximately

O(n) complexity, where n is the number of instructions in a given trace. CaType

is empirically very efficient. As demonstrated in Figure 2.12, CaType manifests a

mostly linear growth in terms of the trace length and processing time. Overall, the

end-to-end evaluation on side channel analysis illustrates the accuracy of CaType,

thereby reflecting the effectiveness of its underlying type systems at large.

Further to the above discussion, we empirically evaluate the type system by com-

paring it with taint analysis to check correctly-tagged variables. In general, taint

analysis offers a holistic modelling of how secrets propagate through the program,

while our type system is more precise. Most taint analysis implementation is per-

formed at the syntax level (whose cost and accuracy is conceptually similar to

conventional, syntax-level type inference). In contrast, as shown in Section 2.3.2

and Figure 2.3, CaType’s type system tracks bit-level values/secrets uniformly

using refined types; thus, the type system captures stronger semantics properties,

e.g., it models how blinding obscures secrets. Therefore, properly masked secrets

are not treated as secrets in CaType (i.e., they do not have an SDD type), but

taint analysis will “over-taint” them.

Recall CaType first conducts taint analysis over the Pin-logged trace before per-

forming type inference. Thus, we compare the number of tainted registers/memory

cells with the number of variables of type SDD over the same trace. Table 2.6 re-

ports the evaluation results. As clarified above and observed in Table 2.6, the

number of variables of SDD type is less than the number of tainted variables, as

expected. Also, we confirm that all variables of type SDD exist in the tainted set,

i.e., our type inference phase has no false negatives (when using tainted variables

as the baseline). More importantly, we also manually study every “over-tainted”

variable that does not have type SDD. As shown in the 6th column of Table 2.6,

taint analysis finds considerably more tainted variables than type inference. Given

Chapter 2. Side-channel Detection 61

T
a
b
l
e
2
.6
:
C
h
ec
k
in
g
th
e
co
rr
ec
tn
es
s
of

re
fi
n
em

en
t
ty
p
e
sy
st
em

in
C
a
T
y
p
e
b
y
co
m
p
ar
in
g
w
it
h
ta
in
t
an

al
y
si
s.

“F
P
s”

d
en

ot
es

fa
ls
e

p
os
it
iv
es

of
ta
in
t
a
n
al
y
si
s.

W
e
ra
n
d
om

ly
se
le
ct

10
0
ca
se
s
fo
r
ea
ch

se
tt
in
g
fo
r
co
n
fi
rm

at
io
n
ex
ce
p
t
E
lG

am
al
/L

ib
gc
ry
p
t
1.
9.
4.

C
r
y
p
to

g
r
a
p
h
y

se
tu

p
In

st
r
u
c
ti
o
n
s

o
n

th
e
tr
a
c
e
s

T
a
in
te

d
in

st
r
u
c
ti
o
n
s

T
a
in
te

d
r
e
g
is
te

r
s

a
n
d

m
e
m

o
r
y

c
e
ll
s

R
e
g
is
te

r
s
a
n
d

m
e
m

o
r
y

c
e
ll
s
w
it
h

S
D
D

ty
p
e
s

“
O
v
e
r
-t
a
in
te

d
”

F
P
s
in

1
0
0

“
o
v
e
r
-t
a
in
te

d
”

c
a
se

s
R
S
A
-O

p
e
n
S
S
L

1
.0
.2
f

1
,6
2
0
,4
0
4

4
,1
2
7

3
,2
7
1

3
,1
6
5

1
0
6

1
0
0

R
S
A
-O

p
e
n
S
S
L

1
.1
.0
g

8
2
2
,1
5
1

4
,0
9
2

3
,5
6
8

3
,4
5
2

1
1
6

1
0
0

R
S
A
-O

p
e
n
S
S
L

1
.1
.0
h

2
8
,8
7
4

9
,6
7
2

7
,9
3
9

5
,9
7
7

1
,9
6
2

1
0
0

R
S
A
-O

p
e
n
S
S
L

1
.1
.1
n

1
,7
6
3
,9
7
0

5
1
,9
3
3

3
4
,5
1
8

3
0
,2
7
6

4
,2
4
2

1
0
0

R
S
A
-O

p
e
n
S
S
L

3
.0
.2

1
,7
1
1
,7
4
6

5
6
,2
1
8

3
9
,7
9
9

3
7
,5
0
7

2
,2
9
2

1
0
0

R
S
A
-L

ib
g
c
r
y
p
t
1
.6
.1

8
0
6
,4
1
0

1
3
0
,1
4
1

1
2
5
,6
4
8

1
0
0
,4
9
3

2
5
,1
5
5

1
0
0

R
S
A
-L

ib
g
c
r
y
p
t
1
.7
.3

8
3
7
,2
1
5

1
4
0
,4
7
8

1
3
3
,1
0
5

1
0
7
,7
3
1

2
5
,3
7
4

1
0
0

R
S
A
-L

ib
g
c
r
y
p
t
1
.9
.4

1
1
4
,7
3
3

1
0
2
,1
3
2

1
0
4
,5
3
6

1
0
3
,6
7
6

8
6
0

1
0
0

E
lG

a
m

a
l-
L
ib

g
c
r
y
p
t
1
.6
.1

5
7
3
,2
4
2

3
3
4
,0
2
4

2
8
6
,0
9
5

1
8
4
,9
7
6

1
0
1
,1
1
9

1
0
0

E
lG

a
m

a
l-
L
ib

g
c
r
y
p
t
1
.7
.3

5
7
3
,8
6
6

3
3
4
,1
9
4

2
8
6
,2
1
3

1
8
5
,2
9
7

1
0
0
,9
1
6

1
0
0

E
lG

a
m

a
l-
L
ib

g
c
r
y
p
t
1
.9
.4

4
,6
7
6

1
,2
7
4

1
,1
4
5

1
,1
4
0

5
5

E
C
D
S
A
-O

p
e
n
S
S
L

1
.0
.1
e

2
,2
7
7
,4
5
9

2
5
8
,2
6
1

2
4
1
,3
2
6

2
3
7
,3
8
1

3
,9
4
5

1
0
0

E
C
D
S
A
-O

p
e
n
S
S
L

1
.1
.0
g

4
1
5
,4
1
5

1
4
0
,5
9
6

1
2
4
,9
0
7

1
1
0
,4
8
8

1
4
,4
1
9

1
0
0

E
C
D
S
A
-O

p
e
n
S
S
L

1
.1
.0
i

2
9
8
,4
6
3

8
1
,9
8
8

7
2
,0
9
0

5
5
,8
1
0

1
6
,2
8
0

1
0
0

E
C
D
S
A
-O

p
e
n
S
S
L

1
.1
.1
n

1
8
2
,7
4
5

3
1
5

2
2
0

1
2
0

1
0
0

1
0
0

E
C
D
S
A
-O

p
e
n
S
S
L

3
.0
.2

1
6
4
,6
1
3

3
1
5

2
2
0

1
2
0

1
0
0

1
0
0

D
S
A
-O

p
e
n
S
S
L

1
.1
.0
i♮

1
8
,5
1
6

4
,7
6
6

3
,9
7
0

3
,3
7
1

5
9
9

1
0
0

D
S
A
(s
w
a
p
p
e
d
)-
O
p
e
n
S
S
L

1
.1
.0
i♮

1
8
,6
0
8

4
,6
9
8

3
,8
9
9

3
,2
3
0

6
6
9

1
0
0

D
S
A
-O

p
e
n
S
S
L

1
.1
.1
n

1
6
7
8

5
7
8

4
3
5

3
0
2

1
3
3

1
0
0

D
S
A
-O

p
e
n
S
S
L

3
.0
.2

1
6
7
8

5
7
8

4
3
5

3
0
2

1
3
3

1
0
0

to
ta

l
1
2
,2
3
6
,4
6
2

1
,6
6
0
,3
8
0

1
,4
7
3
,3
3
9

1
,1
7
4
,8
1
4

2
9
8
,5
2
5

1
,9
0
5

♮
D
S
A

(O
p
en
S
S
L
-1
.1
.0
i)
an

d
it
s
sw

ap
p
ed

p
at
ch

ar
e
o
n
ly

ev
a
lu
a
te
d
fo
r
th
e
ke
y
b
li
n
d
in
g
p
a
rt
.

62 2.7. Discussion and Limitation

the difficulty of manual inspection, for each evaluation setting, we randomly select

100 cases (if there are more than 100 cases). For each case, we comprehend the

causality of how variable is tainted, and decide if this is a true positive (meaning

that the tainted variable is carrying secrets correctly) or not.

We show the manual inspection results in the last column of Table 2.6. We find

that all the “over-tainted” variables are false positives of the taint analysis. It is

thus correct for our type system to neglect them. Among in total 1,905 randomly

selected cases, the “over-tainted” variables belong to the following categories: ①

variables of SDD type that have been appropriately masked with blinding, while

they are still tainted, ② variables that are further tainted by variables belonging

to ①, ③ variables of SDD type that have been zeroized by constants, whereas

taint analysis retains the taint label over those variables, and ④ the base address

of a secret buffer is deemed as a taint source, such that whenever loading from

the base address, the output will be tainted. While ①, ②, and ③ are due to the

inherent limitation of standard taint analysis technique, ④ is due to the “clumsy”

implementation of our adopted taint analysis tool. We use the taint analysis tool

provided by CacheD. Note that ④ eases the implementation of a taint engine,

but overestimates secrets. Secrets (and their associated non-secret data) are often

stored in a BIGNUM struct. By treating the base address of this struct as the taint

source, non-secret data in the struct are all tainted due to ④. Out of 1,905 manually

checked cases, we find that about 52% cases fall in ④, whereas the remaining 48%

cases are due to ①, ②, or ③. Thus, we estimate that around 143K (298, 525 ×
48%) false positives are due to the inherent limitation of taint analysis, which are

correctly eliminated by our refinement type system.

Extension. We discuss the extension of CaType from both architectural and

analysis target perspectives. First, the current implementation of CaType sup-

ports to analyze 32-bit x86 binaries. Given that the closely-related works (e.g.,

CacheD, CacheS, and CacheAudit) only support 32-bit x86 binaries, supporting the

same binary format enables an “apple-to-apple” comparison. Moreover, CaType

can be extended to 64-bit binaries with no extra research challenge. We expect

to convert each refinement type, currently a 32-bit vector, to a 64-bit vector. We

also need to handle new instructions. Nevertheless, these are engineering endeav-

ors rather than open-ended research problems. We leave it as one future work to

support other architectures including 64-bit x86.

Chapter 2. Side-channel Detection 63

Also, from the analysis target perspective, side channel analyzers in this field re-

quire to flag program secrets (or other sensitive data) specified by users, and then

start to analyze their influence on cache. Detectors (including CaType) are not

limited to crypto software. Analyzing crypto software targeted by previous analyz-

ers, however, makes it easier to compare CaType with them. Given the scalability

of CaType, it should be feasible to extend CaType to analyze production soft-

ware running in TEEs and detect their side channel leaks [96, 188, 189].

2.8 Related Work

Perfect masking analysis conducted on power side channels is highly relevant to

our work [190, 191]. In such analysis, all intermediate computation outputs are

statistically examined for independence between secret data and power side chan-

nels. Recent efforts employ a type-based technique to deduce potentially leakage of

program intermediate variables. Specifically, works [192–194] used a syntactic type

system that primarily relies on the variable structural information. Works [195, 196]

extended the syntax-based approach to a semantic-based type system that refines

inference rules for boolean masking scheme analysis. Two improvements [197, 198]

added rules for additive and multiplicative masking. These works inspire the de-

sign of our refinement type system. However, crucial gaps exist in applying these

rules to detect cache side channels. First, perfect masking analysis of software

power side channel countermeasures targets specific masked programs (often bit-

wise operations), whose computation is usually straightforward (calculating and

then assigning). Cache side channel analysis targets complicated production cryp-

tosystems. Type systems proposed in prior works are primarily for bitvector logical

operations, not general x86 assembly semantics. Second, our tentative exploration

shows that earlier typing rules were often incomplete; they may need to use con-

straint solving when typing rules cannot be applied. Their performance is therefore

downgraded. In contrast, CaType’s type inference rules completely infer refined

types for variables.

64 2.9. Conclusion

2.9 Conclusion

Detecting cache side channels in production cryptographic software is still an open

problem. This chapter presents CaType, a refinement type-based tool to deliver

highly efficient and accurate analysis of cache side channels over x86 binary code.

Evaluation over real-world cryptographic software shows that CaType identifies

side channels with high precision, efficiency, and scalability.

Chapter 3

Compiler-aided Mitigation against

Side-channels in Trusted

Execution Environment

3.1 Introduction

Data security in cloud computing platforms has become a major concern, hindering

many data owners from fully leveraging Virtual Machines (VMs) from public ser-

vice providers. To ensure the confidentiality of operations and data in untrusted

cloud environments, major processor vendors have introduced a hardware-based

technology known as Trusted Execution Environment (TEE). TEE provides an

isolated environment with memory encryption to fortify the integrity and confi-

dentiality of VMs against potential threats posed by privileged attackers, such as

malicious hypervisors or host OS. Over the years, many TEE-enabled processors

have been released, including AMD Secure Encrypted Virtualization (SEV) [58]

and its iterations SEV Encrypted States (SEV-ES) [199] and SEV Secure Nested

Paging (SEV-SNP) [200], Intel Software Guard Extensions (SGX) [201, 202], Intel

Trust Domain Extensions (TDX) [203] and ARM Confidential Compute Architec-

ture (CCA) [204].

Admittedly, existing TEE processors still exhibit security weaknesses upon deeper

analysis by security researchers. For instance, SEV-SNP is designed to mitigate

65

66 3.1. Introduction

various known attacks that could undermine the prior versions of SEV, includ-

ing but not limited to unauthenticated encryption [205–207], Nested Page Table

(NPT) remapping [208–210], unprotected I/O [211], and unauthorized Address

Space Identifier (ASID) [212]. However, recent works disclosed a new vulnerabil-

ity in SEV-SNP, i.e., ciphertext side-channel attack [56, 57], enabling a malicious

hypervisor to extract the secret keys used in cryptography programs from their

encrypted memory. In essence, the ciphertext side-channel attack leverages the

deterministic nature of memory encryption in SEV-SNP: a consistent plaintext

block at the same physical address is always encrypted into the same ciphertext

block. Therefore, the adversary can construct a one-to-one mapping between the

plaintext and ciphertext by continuously monitoring changes in the ciphertext of

the encrypted guest memory. Researchers have demonstrated successful attacks

against mainstream cryptography libraries, such as OpenSSL and WolfSSL, even

when they are equipped with constant-time practices. More seriously, this cipher-

text side-channel attack is not limited to SEV-SNP, but can threaten any TEE

processors utilizing deterministic memory encryption with the memory bus snoop-

ing technique [59].

Several approaches have been designed for the detection and mitigation of cipher-

text side-channel attacks. CipherH [213] combined dynamic taint tracking and

static symbolic execution to identify ciphertext side-channel vulnerabilities in cryp-

tography software. It utilized DataFlowSanitizer (DFSan) [214] to efficiently mark

sensitive memory store instructions. Within functions involving these marked

instructions, CipherH conducted symbolic execution and constructed formulas

checked by a constraint solver to identify potential vulnerabilities. It has success-

fully detected ciphertext side-channel vulnerabilities in many popular cryptography

libraries, including WolfSSL, OpenSSL, and MbedTLS. CipherFix [135] employed

dynamic taint analysis to acquire the offset of sensitive memory store instructions

in a program. With static instrumentation, it transformed each tainted memory

store instruction into a code snippet with masked store in the instrumentation

section. Besides, a direct jump instruction was inserted at the original program

point, redirecting to the newly created code snippet. CipherFix mitigated cipher-

text side-channel leakage at the cost of an average performance overhead ranging

from 2.4× to 16.8× in its most efficient variant. Obelix [215], the latest side-

channel mitigation tool, leveraged Oblivious RAM (ORAM) to execute and access

Chapter 3. Side-channel Mitigation 67

enforced union code blocks, making execution flows indistinguishable to attack-

ers, thus protecting both executed code and accessed data. Nevertheless, Obelix

suffered from considerable performance overhead inherent to ORAM itself (e.g.,

hundreds of times), presenting a significant deployment issue.

For the mitigation tool capable of protecting existing cryptography libraries, i.e.,

CipherFix, the substantial overhead introduced can be attributed to two main

factors: the insertion mechanism it employs and the code it inserts. Given that

CipherFix conducts static instrumentation at the binary level, it necessitates fre-

quent jumps to the instrumentation code unless the original reference is altered.

This results in a large number of missed branch predictions, causing a performance

loss to some extent. Moreover, the platforms with inconsistent instruction lengths,

where jumps rely on interrupt procedures (e.g., int3), exacerbate the performance

degradation. Regarding the inserted code, CipherFix requires the placement of

initialization code during the program startup. For instance, it monitors explicit al-

locations of sensitive heap memory through standard library functions like malloc.

It then generates and zero-initializes another heap area of the same size for storing

the mask. Executing this part of the code can be time-consuming, especially if it

is called multiple times.

It is essential to explore alternative approaches for enhancing program security

with higher efficiency. Instead of relying on code instrumentation as CipherFix or

dynamic obfuscation as Obelix, we turn to a different strategy: mitigating side-

channel vulnerabilities at the compilation stage, which offers several advantages.

Firstly, it incorporates security measures into the compilation process in a more

integrated and streamlined manner, fixing the potential vulnerabilities directly in

the code generation phase. In contrast, instrumentation typically addresses vulner-

abilities in a compiled executable, lacking the same level of insight and control over

the code generation process. Secondly, the compiler has full analysis capabilities

over the entire program, while instrumentation is often constrained to specific lo-

cations where probes are inserted, potentially limiting the scope of examination to

isolated points within the program. Thirdly, compilers can still utilize various re-

sources and optimizations for generating efficient code during program repair. The

instrumentation method, however, can only be applied to fixed executable files,

facing constraints in layout adjustment and resource utilization, such as registers.

68 3.1. Introduction

Thus, in this research, we focus on revisiting ciphertext side-channel vulnerabili-

ties through the compiler itself, including the detection of sensitive memory access

instructions and the mitigation of vulnerable points by the compilation process.

To this end, we introduceCipherGuard, an LLVM-based compiler-aided method-

ology for automated and efficient mitigation against ciphertext side channels. In-

tegrated into the LLVM compilation flow, CipherGuard conducts dynamic taint

analysis at the last optimized LLVM-IR level, capturing all sensitive memory ac-

cess instructions and their precise memory references, including virtual symbols

of stack and heap memories. This tainted information aids the LLVM backend

in implementing multiple vulnerability mitigation variants. CipherGuard then

performs vulnerability mitigation at the LLVM Machine-IR level, employing vari-

ants such as software-based probabilistic encryption, which introduces a random

nonce to secret data upon memory writes, and secret-aware register allocation,

allowing the retention of secret-related variables in registers. The resulted fixed

Machine-IR is compiled into a secure executable that can run directly in existing

TEEs. With efficient management of random nonce buffers and flexible register

allocation, CipherGuard demonstrates a satisfactory performance overhead, av-

eraging 1.76-3.10× across various evaluations of cryptography software. This is

a significant performance improvement over CipherFix, highlighting the efficacy

of the compiler-aided strategy in enhancing the security against ciphertext side

channels. In sum, we make the following contributions:

• For the first time, we introduce a compiler-aided strategy to address cipher-

text side channels. Through the exploration and implementation of multiple

mitigation variants, e.g., software-based probabilistic encryption and secret-

aware register allocation, our compiler-aided strategy has been demonstrated

to provide a more efficient and flexible solution in comparison to the instru-

mentation strategy.

• It presents CipherGuard, an LLVM-based compiler-aided tool that har-

nesses dynamic taint analysis and deploys vulnerability mitigation variants

at the compilation stage. CipherGuard excels in generating more efficient

mitigated code through in-place mitigation code insertion, precise buffer man-

agement for random nonces, and flexible register allocation.

Chapter 3. Side-channel Mitigation 69

• It evaluates CipherGuard in mitigating ciphertext side-channel vulnera-

bilities among real-world cryptography software. CipherGuard hardens all

the sensitive memory access instructions with superior performance compared

to CipherFix. This demonstrates the high applicability and practicality to-

ward the protection of cryptography software in a compiler-aided manner.

In the following, we present the preliminary knowledge in Section 3.2, and method-

ology overview in Section 3.3. We demonstrate more details of the design and im-

plementation in Section 3.4 and Section 3.5. We set the experiment and evaluate

CipherGuard in Section 3.6. Section 3.7 gives a further discussion on our tool.

Finally, Section 3.8 concludes this chapter.

3.2 Background

3.2.1 Ciphertext Side-channel Attacks

The concept of the ciphertext side channel was initially introduced in work [56],

which was further expanded upon in study [57] to systematically explore the appli-

cability of this vulnerability. Briefly, the attacker observes the changes in cipher-

texts to deduce relationships between successive plaintexts or identify patterns of

specific plaintext changes.

The ciphertext side channel originates from the deterministic memory encryption

mode implemented in SEV-SNP. The encrypted memory is calculated by an XOR-

Encrypt-XOR (XEX) mode, expressed as: c = ENC(m⊕ T (Pm))⊕ T (Pm), where

the plaintext m undergoes the XOR operations before and after AES-128 encryp-

tion with a tweak value T (Pm) that incorporates the physical address Pm. The

absence of freshness in the encryption process results in the identical ciphertext

for the encryption of the same plaintext at a given physical address each time.

While the initial examination of the ciphertext side channel primarily targeted

AMD’s TEE [58], it is crucial to acknowledge that this vulnerability extends to

other deterministic encryption-based TEE architectures as long as attackers have

read accesses to ciphertext (via software access [56] or memory bus snooping [59]).

Two attack schemes were introduced in work [57]. The Dictionary attack involves

the continuous monitoring of the ciphertext of a secret variable at a fixed memory

70 3.2. Background

1: pbit ← 1;
2: for i ← cardinality bit - 1 downto 0{
3: kbit ← BN is bit set(k, i) ∧ pbit;
4: EC POINT CSWAP(kbit, r, s, ...);
5: ...
6: pbit ← pbit ∧ kbit;}

Figure 3.1: ossl ec scalar mul ladder.

address to construct a dictionary containing mappings of ciphertext-plaintext pairs.

Consider the code snippet shown in Figure 3.1, extracted from the ECDSA Mont-

gomery ladder algorithm implemented in OpenSSL-3.0.2. In each loop iteration,

the BN is bit set function is utilized to obtain one bit of the secret k, determin-

ing the conditional swap in the subsequent line. Following this, the kbit variable is

computed through an XOR operation with the value in pbit, which is then written

back to pbit. Given the dual XOR operations in lines 3 and 6, pbit ultimately

stores each bit of the secret k. The attacker records consecutive ciphertext pairs

(pbit-kbit) both before and after the BN is bit set function, aiming to deduce ki

in each iteration based on the changes observed in ciphertext pairs. Ultimately,

the attacker recovers the whole secret k.

1: for i ← 0 to nwords - 1{
2: t ← (a.d[i] ∧ b.d[i])
3: & condition;
4: a.d[i] ← a.d[i] ∧ t;
5: b.d[i] ← b.d[i] ∧ t;}

Figure 3.2: BN constant swap.

In contrast, the Collision attack focuses on identifying repetitions or alterations in

certain ciphertexts to break the constant-time mechanism. Figure 3.2 shows one

example of such attack against the constant-time-swap function BN constant swap.

This function takes two variables a and b, along with a secret decision condition

(e.g., kbit in line 4 of Figure 3.1. If condition is set to 1, the values of a and b are

exchanged, leading to observable changes in ciphertext. Conversely, if condition is

0, the ciphertext remains unaltered. In this way, the Collision attack undermines

the constant-time swap functions by recovering the secret decision condition.

Currently, many well-known cryptography applications are vulnerable to this at-

tack, including RSA and ECDSA (such as secp256k1 and secp384r1) equipped

Chapter 3. Side-channel Mitigation 71

with constant-time algorithms, ECDSA from WolfSSL-5.3.0, ECDSA and RSA

from MbedTLS-3.1.0, as well as EdDSA (Ed25519) from OpenSSH adopted by

Ubuntu LTS 20.04 [56, 57]. Given the widespread impact and severity of these

vulnerabilities, there is an urgent need to mitigate ciphertext side-channel attacks.

3.2.2 Countermeasures to Ciphertext Side-channels

While hardware-based countermeasures offer stronger security guarantees by fun-

damentally eliminating ciphertext side channels, they require thorough security

validation before chip circuit manufacturing for commercial use. Therefore, we opt

to mitigate attacks from the software perspective, which allows for more immediate

implementation and deployment without the need for hardware modifications.

Unfortunately, existing countermeasures to cache and timing side channels [5, 7, 11,

13, 141–144] cannot mitigate ciphertext side channels [56, 57, 213]. Specifically, the

most prominent countermeasure to these traditional side-channel threats is the con-

cept of constant-time cryptography. Previous efforts adhering to this concept can

be categorized into three classes. 1) Researchers verified whether a cryptography

program satisfies the constant-time criterion using various approaches, including

the program counter model [103–108], observation equivalence-based noninterfer-

ence [109, 110, 112, 113], and self-composition-based noninterference [114–120].

2) Conceptually, formally constructing high-assurance cryptography libraries shall

fundamentally resolve the constant-time issues, leveraging formal languages like

F∗ [121], HACL∗ [122], Vale [124], Jasmin [125] and Fact [126]. 3) Transforming

existing programs into constant-time equivalents also significantly contributes to

resisting side channels. For instance, some approaches [130, 131] executed both

real and decoy paths; Constantine [132] leveraged the linearization of control-flow

and data-flow.

Without detailed implementation, AMD’s whitepaper [216] and Li et al. [57] pro-

posed the following countermeasures to ciphertext side-channels. However, they

all have limitations.

• Preserving secret-related variables in registers throughout their lifecycle [57],

thereby preventing them from being stored in memory. While limiting the

72 3.3. Methodology Overview

observation of ciphertexts, this strategy faces some practical challenges for

implementation due to finite register resources.

• Avoiding the reuse of fixed memory addresses to ensure the generation of fresh

ciphertext and confuse the observation of valid ciphertext [57, 216]. However,

this requires additional memory allocation and deallocation, as well as pre-

cise runtime data reference management, which could introduce significant

performance overhead.

• Introducing a random nonce to the secret data with each memory write opera-

tion to enhance the unpredictability of the resulting ciphertext [57], including

masking and padding strategies proposed by AMD [216]. Due to the need for

extended data structures to store padding values, existing state-of-the-art de-

fense effort, namely CipherFix [135], implements masking through a binary

instrumentation approach. However, this method suffers from limitations

inherent to instrumentation itself.

To summarize, there is no single software-based scheme that is perfectly suited

in both methodology and implementation. Therefore, exploring the optimization

of each mitigation method and the combination of various approaches, achieved

through different implementations such as the compiler-aided approach, provides

valuable insights for the research field of mitigating ciphertext side-channel attacks.

3.3 Methodology Overview

3.3.1 Threat Model

We share the same threat model with prior works [56, 57] where a privileged at-

tacker performs the ciphertext side-channel attack to steal the secrets of the cryp-

tography program running inside a confidential VM, e.g., AMD SEV-SNP. The

attacker has full system privileges and is capable of reading the ciphertext of the

entire encrypted memory [57]. We also account for single-step attack [217], which

aids in selecting optimal observation points in the control flow by controlling pro-

cedures within confidential VMs and pausing after each instruction. In this work,

we only consider the attack vector of ciphertext side-channels, and assume that

Chapter 3. Side-channel Mitigation 73

the confidential VM hardware and the entities running inside it (i.e., guest OS,

applications) are trusted. It is worth noting that the content of registers could be

leaked via ciphertext side channels during the kernel context switch [57]. However,

the authors also acknowledged that this could be easily fixed with a kernel patch.

Hence, in this work, we assume the registers are secure to protect the secrets.

3.3.2 A Motivating Example

(a) ossl_ec_scalar_mul_ladder and its Machine Basic Block

1

2

3

4

5

6

7

8

9

pbit = 1;

for (i = cardinality_bit – 1; i >= 0; i--) {

kbit = BN_is_bit_set(k, i) ^ pbit;

EC_POINT_CSWAP(kbit, …);

. . .

pbit ^= kbit;

}

EC_POINT_CSWAP(pbit, …);

. . .

bb.73:
eax = 1; store rax stack.28;

// pbit

bb.74:
load stack.14 rax; test eax;

// i
. . .

bb.75:
i--;
edx = 0; store edx stack.29;

// BN_is_bit_set

bb.76:
eax = BN_is_bit_set(k, i);
store eax stack.29;

bb.77:
load pbit and BN_is_bit_set;
edi = BN_is_bit_set(k, i) ^ pbit;
store rdi stack.28;

// kbit shares location with
pbit
. . .
load stack.29 ecx;
store rcx stack.28;

// update pbit with
BN_is_bit_set

bb.78:

EC_POINT_CSWAP(pbit, …);

Figure 3.3: ossl ec scalar mul ladder and its Machine Basic Block.

We revisit the process of compiling a program using LLVM to illustrate how ci-

phertext side channels are identified. Figure 3.3 presents the Machine Basic Blocks

(MBBs) of the code snippet from the function ossl ec scalar mul ladder, which

is handled by the register allocation pass in LLVM. We simplify the representation

of these MBBs by only demonstrating the ciphertext side-channel relevant vari-

ables. Additionally, we format the first operand as the source and the second as the

destination. In bb.73 of Figure 3.3, the register eax is allocated to hold the variable

pbit. Since pbit is not used immediately or in succession, the compiler optimization

74 3.3. Methodology Overview

inserts a memory store instruction to write it back to stack.28. Subsequently, the

compiler inserts a reload instruction for the spilled variable pbit once it is involved

in operations, as shown in bb.77 where pbit is reloaded. This gives us the first

source of ciphertext side-channel occurrence: the spilling-reloading mechanism

during compilation generates additional memory writes related to secret-dependent

variables, resulting in involuntary leakage. A similar situation arises in stack.29,

as demonstrated in bb.75 and bb.76, where the variable directly holds the secret

returned from BN is bit set. If an attacker gains knowledge of the compilation

process, he can directly observe the ciphertext changes of stack.29 and potentially

recover the entire private key.

(b) BN_constant_swap and its Machine Basic Block

1

2

3

4

5

for (i = 0; i < nwords; i++) {

t = (a->d[i] ^ b->d[i]) & condition;

a->d[i] ^= t;

b->d[i] ^= t;

}

bb.14:
load (rdi, rcx, 8) r8;
load (rdx, rcx, 8) rsi;

// a[i] and b[i]
. . .
rsi = (r8 ^ rsi) & condition;

// t
r8 = rsi ^ r8;
store r8 (rdi, rcx, 8);
xorq rsi (rdx, rcx, 8);

bb.14:
load 8(rdi, rcx, 8) r8;
load 8(rdx, rcx, 8) rsi;
// a[i+1] and b[i+1]

. . .
rsi = (r8 ^ rsi) & condition;

// t
r8 = rsi ^ r8;
store r8 8(rdi, rcx, 8);
xorq rsi 8(rdx, rcx, 8);

bb.14:

rcx = 2 + rcx;

. . .

Figure 3.4: BN constant swap and its Machine Basic Block.

Next, we observe another vulnerable pattern, wherein intermediate values are writ-

ten back to allocated heap areas, as demonstrated by the function BN constant swap

in Figure 3.4. The compiler directly generates store instructions that point to heap

memories, using (rdi, rcx, 8) for a→ d[i] and (rdx, rcx, 8) for b→ d[i]. Naturally,

if these data are stored in registers during their usage period until the final results

are written to memory, the difficulty of the attack will be significantly increased

as the attacker can only obtain the final observation. Unfortunately, even with

Chapter 3. Side-channel Mitigation 75

the vector registers in Single Instruction Multiple Data (SIMD), big numbers in

cryptography software cannot be continuously held in registers. Thus, this gives us

the second source of ciphertext side-channel occurrence: the compiler pervasively

resorts to using stack and heap memory writes to store intermediate values due

to insufficient register resources, thereby resulting in large attack surfaces for

secret leakage.

3.3.3 Motivations of Compiler-aided Mitigation

After understanding how ciphertext side-channel leaks occur during compilation,

the compiler-aided strategy emerges as a natural and effective solution to defeat

such attacks. Compared to the binary instrumentation strategy, the compiler-aided

strategy offer several advantages.

In-place Code Insertion. The compiler-aided method repairs the program along-

side the compilation process in an integrated and streamlined manner. For instance,

it inserts the mitigation code adjacent to any sensitive memory access instructions

related to stack.28 and stack.29 in Figure 3.3 as well as instructions highlighted

in red in Figure 3.4. Thus, it ensures the fixed programs maintain their execution

flow as much as possible, eliminating the need for frequent jumps to the instrumen-

tation code that affect branch predictions, as seen in the binary instrumentation

approach of CipherFix.

Smooth Management for Random Nonces. It is feasible to introduce and

manage a random nonce for the secret data with each memory write operation dur-

ing compilation. We denote this method as software-based probabilistic encryption.

For example, the compiler creates two additional slots directly in the stack area to

hold the nonces for stack.28 and stack.29 in Figure 3.3. Afterwards, it precisely

links sensitive memories to their corresponding nonce locations through explicit

virtual symbols in LLVM-IR, i.e., stack.28 and stack.29. In contrast, it is chal-

lenging to allocate extra space for sensitive variables in the binary instrumentation

method due to the constraints imposed by fixed binaries.

Flexible Register Allocation. It is a significant advantage for the compiler

to preserve secret-related variables within registers throughout their lifecycle, by

leveraging register allocation strategies before the final binary is generated. We

76 3.3. Methodology Overview

denote this method as secret-aware register allocation. For the binary instrumen-

tation method, it is challenging to flexibly allocate the available registers. There

are some possible solutions to address this, including performing liveness analysis

on a fixed binary and preserving register values before allocating them to sensitive

variables, or reserving a certain number of registers at the beginning of compilation.

However, these solutions can inevitably lead to large performance degradation.

Accurate Variable Length. The LLVM-IR shown in Figure 3.3 and Figure 3.4

also serves as a valuable tool in identifying variable lengths of different memory

regions that require protection. Notably, the length of the stack and heap is crucial

for subsequent vulnerability mitigation processes, as it aids in determining the

duration for which memory needs to be protected. The compiler-aided approach

enables the protection of each memory unit independently, rather than the entire

memory, making the process more direct and efficient. Oppositely, the binary

instrumentation approach, focuses on protecting a slice of heap memory, primarily

because it can only track explicit memory allocations and deallocations, such as

malloc, realloc, calloc, and free. This overly cautious memory protection

introduces unnecessary computations as parts of them do not contain sensitive

information that requires safeguarding, potentially diminishing the performance of

the system.

Compensatory Dynamic Taint Analysis. Resorting to dynamic taint analysis

offers the advantage of rapidly identifying secret-related variables in the execution

path. However, this comes at the cost of sacrificing some degree of coverage. The

binary instrumentation method tracks sensitive stacks and heaps only in the exe-

cuted paths, leaving variables in untouched paths unprotected. While employing

a similar practice, the virtual symbols of LLVM-IR shown in Figure 3.3 and Fig-

ure 3.4 offer a form of compensation to the dynamic taint analysis. To be specific,

the virtual symbols representing sensitive stacks and heaps are initially tainted

in the executed paths. Subsequently, they are comprehensively recognized in all

MBBs of a tainted function due to the streamlined compilation process. While

not achieving the same level of coverage as static analysis, this still offers a more

comprehensive protection compared to the binary instrumentation method.

Chapter 3. Side-channel Mitigation 77

Libs

Crypto
Example

LLVM-IR Secure
Machine IR Executable

Vulnerable
Location

Taint
Analysis

Mitigation
Pass

Figure 3.5: Workflow of CipherGuard.

3.3.4 Architecture Overview of CipherGuard

Figure 3.5 depicts the workflow of CipherGuard, which comprises a dynamic

taint analysis phase (flagging sensitive memory writes) and a static rewriting phase

(mitigating vulnerable points). Both phases are integrated in the LLVM ecosystem.

To apply CipherGuard on a cryptography application, the developer needs to

first mark the secrets (e.g., private keys). The application and its shared dependen-

cies are then compiled and linked into standalone bitcode, after which subsequent

operations are performed on this bitcode.

Specifically, the dynamic taint analysis phase performs taint tracking on LLVM-IR

to identify sensitive memory accesses (Section 3.4.1). Then the mitigation pass

phase employs multiple variants within the realm of software-based probabilistic

encryption and secret-aware register allocation to protect the tainted instructions

in LLVM Machine-IR. Additionally, precise buffer management for random nonces

is carried out for all variants (Section 3.4.4). Lastly, the patched LLVMMachine-IR

is subsequently compiled into a hardened binary for deployment. The descriptions

of 3 variants are as below.

• Variant 1 employs the rdrand instruction to generate a random nonce when

encountering sensitive memory store instructions for both stack and heap

areas. It optimizes the compiling process by utilizing a pre-generated random

nonce buffer, reducing the performance bottleneck associated with generating

it on-the-fly (Section 3.4.2).

• Variant 2 employs the vaesenc instruction from AES-NI and a shift/rotate-

based linear transformation from XorShift128+ [218] to fulfill the requirement

of generating a random nonce on-the-fly (Chapter 3.4.2).

78 3.3. Methodology Overview

• Building upon Variant 1, Variant 3 seeks to safeguard secrets in sensitive

stack areas by retaining them within vector registers, such as SSE registers,

throughout their lifecycle, thereby avoiding any spillage to memory (Chap-

ter 3.4.3).

Application Scope. The primary audience for CipherGuard consists of devel-

opers aiming to deploy cryptography software on modern TEEs. CipherGuard

provides security assurances for existing crypto systems utilized in TEEs because

the hardware instructions required for implementing its three variants are main-

stream and universal.

3.3.5 Technical Challenges

IR Level. Existing taint analysis tools based on LLVM, such as DFSan, adeptly

track the information flow of tainted variables at the LLVM-IR level with high ac-

curacy and efficiency. However, as analyzed in Section 3.3.2, optimizations in the

LLVM backend, such as the register allocation pass, may inadvertently undermine

the efforts of mitigating ciphertext side-channel attacks. On the other hand, the

lower Machine-IR level could also be utilized for the mitigation, although it would

require additional efforts such as adapting the granularity of taint analysis, main-

taining the usage of physical registers, and manually allocating the mask buffer as

implemented in CipherFix. Therefore, ensuring the efficiency and effectiveness

of the program repair requires fixing the program at the LLVM Machine-IR level

with the register allocation pass.

This consideration presents a challenge of aligning the tainted results obtained at

the LLVM-IR level with the LLVM Machine-IR level. This can be addressed by

the transformation of LLVM-IR to LLVMMachine-IR through instruction selection

and linear sequence instruction emitting. Although replaced with target instruc-

tions, the semantic difference between these two levels is minimal, allowing for the

tainted results from LLVM-IR to be located within LLVM Machine-IR through

simple matching. As displayed in Figure 3.3 and Figure 3.4, the presentation of

the program as basic blocks in LLVM Machine-IR can mirror the structure in

LLVM-IR.

Chapter 3. Side-channel Mitigation 79

Vulnerability Detection. Ideally, performing mitigation only on true vulnerable

points can minimally impact the execution of the protected program. However,

it is challenging to achieve precise detection of ciphertext side-channel leakage.

For example, CipherH, a relatively accurate detection tool at present, may still

introduce false positives in analyzing ciphertext side channels. Hence, we opt

to protect all sensitive memory accesses flagged by taint analysis, following the

practice in CipherFix. It is important to clarify that CipherGuard can be

integrated with any ciphertext side-channel detector for the subsequent mitigation.

In Section 3.2.1, we demonstrate how secrets are tracked through direct memory

writes. However, in addition to ciphertext side channels induced via the direct

usage of secrets, it is challenging to consider data derived from the secrets as “sen-

sitive” as well. Therefore, as a common practice in this line of research, Cipher-

Guard tracks both explicit and implicit information flows propagated from the

secret. In this manner, CipherGuard comprehensively uncovers attack surfaces

of the cryptography application.

Random Nonce Management and Register Allocation. While the benefits

of smooth random nonce management and flexible register allocation are evident,

implementing these strategies in the compilation process poses a challenge in terms

of performance. CipherGuard automatically allocates and manages stack slots,

saving random nonces for sensitive stack areas. However, for sensitive heap areas,

optimizing the performance requires preemptively allocating space to store these

random nonces. Therefore, CipherGuard allocates this space beforehand and

references it for the corresponding heap areas in an efficient way. Next, to opti-

mize the generation of random nonces, it is a good choice to pre-generate a buffer

containing enough random numbers. This also requires to determine the index-

ing location inside the random number buffer for each sensitive stack and heap.

Lastly, due to insufficient register resources, CipherGuard heuristically decides

which registers to use and how to assign them to sensitive variables based on the

demand-centric strategy.

80 3.4. Detailed System Design

3.4 Detailed System Design

CipherGuard comprises the following pivotal components with three variants.

The taint analysis technique (Section 3.4.1) is employed to precisely identify sensi-

tive memory access instructions across all variants. The software-based probabilis-

tic encryption (Section 3.4.2) transforms these sensitive memory instructions into

masking-hardened snippets with random nonces in all variants. The secret-aware

register allocation (Section 3.4.3) is applied in Variant 3 to retain sensitive stack

variables in registers. The buffer management (Section 3.4.4) assists all variants in

efficiently accessing random nonces.

3.4.1 Tainting Secret Locations

CipherGuard initiates taint tracking on the LLVM-IR code derived from the

given cryptography program. At present, multiple taint analysis schemes may be

employed to track secret propagation at different compilation stages of a program.

For instance, to detect cache side-channel leakage, Wang et al. [133] applied tainting

directly on the binary of the cryptography program, resulting in a series of logged

instructions. However, this approach suffered from speed limitations, and the track-

ing of implicit information flow may not be comprehensive. Additionally, Weiser

et al. [147] performed taint analysis on a logged execution trace, but a single trace

may yield false negatives. Moreover, tainting at the compiler level is a common

practice in program vulnerability detection. For example, some works [132, 213]

utilized the DFSan tool to obtain a set of secret-related LLVM-IR instructions.

Considering the subsequent program repair on LLVM Machine-IR and the need

for comprehensive and readily available implicit information flow tracking, we also

adopt the compiler-level taint analysis scheme with DFSan.

Since our objective is to protect sensitive memory writes against ciphertext side

channels, any store instruction that writes secret variables into memory must be

tainted. These store instructions encompass both direct memory move instructions

and indirect memory operation instructions, e.g., arithmetic instructions whose

destination operand is a memory unit. To aid in locating places where sensitive

variables are read, CipherGuard also taints all secret-related read operations,

including direct memory move and calculation instructions containing a memory

Chapter 3. Side-channel Mitigation 81

unit as an operand. Furthermore, CipherGuard tracks implicit information flows

for comprehensive and conservative modeling of secret propagation. A secret may

appear in control-flow branches as a condition or in memory accesses as the index.

Then variables guarded by a tainted condition are tainted as secret-related; vari-

ables assigned through memory access are tainted once the index of the buffer is

tainted.

CipherGuard tracks the propagation of taint labels and identifies tainted mem-

ory accesses over a single execution trace of the cryptography program. On one

hand, varying inputs, such as different secret or public input lengths, may result

in divergent execution traces, leading to the discovery of different tainted memory

accesses. On the other hand, in practice, cryptography applications often fol-

low a relatively “fixed” execution flow, where the execution traces are similar for

different inputs, with some loop iterations executed more times depending on the

input length. This observation aligns with the findings reported in CipherH [213].

Therefore, we adopt the same strategy in CipherFix to log execution traces mul-

tiple times for each cryptography program with varied secrets and inputs. This

practice serves as another form of compensation to the dynamic taint analysis.

3.4.2 Software-based Probabilistic Encryption

The mitigation phase targets the tainted instructions collected from the afore-

mentioned taint analysis phase and performs program transformations (patching)

on these memory instructions in the form of LLVM Machine-IR. We intercept

each tainted memory instruction during the register allocation phase of the LLVM

backend. The key of our software-based probabilistic encryption is to introduce a

random nonce into secret variables before they are written back into the memory,

thereby achieving unpredictable ciphertexts. To accomplish this, we develop two

variants in CipherGuard. Variant 1 relies on the rdrand instruction to generate

random nonces, while Variant 2 utilizes the AES-NI and XorShift128+ schemes to

generate random nonces.

Mitigation Code Insertion. Figure 3.6 illustrates the general scenario for in-

serting the mitigation code, whereMEMkey represents a memory cell of a sensitive

memory access instruction that may locate in the stack or heap. The inserted miti-

gation code includes the following operations: 1) loading the masked plaintext and

82 3.4. Detailed System Design

1: load MEMkey REGkey // sensitive load
2: load MEMmask REGmask // load mask
3: save EFLAGS
4: xor REGmask REGkey

5: restore EFLAGS
6: operate REGkey

7: save EFLAGS
8: update REGmask // generate new mask
9: xor REGmask REGkey

10: restore EFLAGS
11: store REGmask MEMmask // store mask
12: store REGkey MEMkey // sensitive store

Figure 3.6: In-place code insertion.

random nonce from the source memory and its corresponding nonce buffer (lines

1–2); 2) XORing the nonce with the masked plaintext to obtain original plaintext

(lines 3–5); 3) performing the actual calculation on the secret variable (line 6); 4)

updating the new random nonce and XORing it with the secret result to obtain

a new masked plaintext (lines 7–10); and 5) storing the masked plaintext and its

new random nonce to their respective storage locations (lines 11–12).

To insert the code, we need to determine the memory cells that hold the random

nonce. We employ two different strategies for stack and heap areas, respectively.

For the stack area, since the mitigation code is inserted along with the register

allocation phase of the LLVM backend, we can freely allocate and organize a stack

slot for holding the nonce. For instance, we allocate a new stack slot MEMmask

to store the new random nonce within the stack area (line 11 of Figure 3.6), and

associate MEMmask with the source memory MEMkey (line 1). Subsequently,

when loading the nonce for MEMkey, we directly insert a load instruction that

references MEMmask.

For the heap area, even though the LLVM backend can intercept each malloc,

realloc, calloc, and free call to dynamically allocate memory for nonce buffers,

it introduces large overhead due to the invocation of system calls and initialization

procedures. We devise a hash mechanism to circumvent this issue. We leverage the

heap address of source memoryMEMkey at runtime to calculate the index at which

the corresponding nonce is stored in the .bss section (see Section 3.4.4 for more

details). Then, the newly generated random nonce is stored in .bss referenced

Chapter 3. Side-channel Mitigation 83

by this index. With this method, we mechanically insert the same code for each

encountered tainted heap instruction.

Random Nonce Generation. To enhance the security protection, we update

the random nonce for each sensitive store instruction. In Variant 1, we use rdrand

to pre-generate a nonce buffer in the .bss section with 1K random numbers during

the initialization of the cryptography program. For an unmasked stack area con-

taining secrets, Variant 1 selects a new random number from the .bss section at

the corresponding location as the initial nonce. Subsequently, the nonce is updated

by incrementing three when the stack area at the same location needs to store new

secrets (see Section 3.6.5 for security analysis). Variant 2, on the other hand, gen-

erates a random nonce on-the-fly using AES-NI and XorShift128+ schemes. The

AES-NI scheme involves inserting a single instruction with two 128-bit vector reg-

isters, such as xmm14 and xmm15 in CipherGuard. Conversely, the XorShift128+

scheme requires 11 instructions with three 128-bit vector registers, from xmm13 to

xmm15.

3.4.3 Secret-aware Register Allocation

The inherent locality of the stack area usage underscores the importance of pre-

serving secret contents within registers, thereby preventing their inadvertent ex-

posure through memory spills and thwarting potential ciphertext observations by

attackers. Additionally, utilizing registers to store secrets reduces memory access

consumption, thereby contributing to performance improvements. Building upon

Variant 1, the masking scheme for the stack area can be further enhanced through

register allocation.

Feasibility Analysis. However, it is challenging to achieve this scheme due to the

limited register resources. To evaluate this, we conduct a heuristic investigation as

follows: 1) We determine the maximum number of stack slots involved in sensitive

memory access instructions among all tainted functions extracted from different

cryptography programs, as shown in the second column of Table 3.1. Notably,

the EdDSA implementation in libsodium has the largest number of sensitive stack

slots (583). As discussed in Section 3.3.5, it is difficult to accommodate such a

requirement of vector registers in SIMD. This challenge prompts us to explore a

secret-aware register allocation approach, which involves tracking the liveness of

84 3.4. Detailed System Design

registers and performing timely deallocation for stacks that occur more frequently

in tainted functions. 2) We then determine the number of vector registers re-

quired for this scheme. By examining the disassembled cryptography programs in

Table 3.1, we note that the first 8 vector registers (xmm0 - xmm7) are often allo-

cated by the LLVM backend to optimize data movement for consecutive addresses.

Therefore, we heuristically preserve the last 8 SSE vector registers (xmm8 - xmm15)

and assess their performance impact on the protected programs, as shown in the

last two columns of Table 3.1. On average, the performance impact is 7%, with a

minimum observed impact of 1% in SHA512 of libsodium and a maximum impact

of 20% in AES of mbedTLS. This suggests that preserving the last 8 SSE vector

registers for sensitive stack slots is a viable and practical approach.

Table 3.1: The maximum numbers of sensitive stack slots among tainted func-
tions.

Implementation Stack Slots
Impact on performance
Cycles Factor

libsodium-EdDSA 583 198331 1.04
libsodium-SHA512 27 43043 1.01
mbedTLS-AES 7 571968 1.20

mbedTLS-Base64 25 11575 1.03
mbedTLS-ChaCha20 4 609942 1.02
mbedTLS-ECDH 52 4586425 1.08
mbedTLS-ECDSA 52 4095496 1.04
mbedTLS-RSA 52 1943880 1.03
OpenSSL-ECDH 157 1171024 1.19
OpenSSL-ECDSA 79 18180467 1.08
WolfSSL-AES 43 689316 1.08

WolfSSL-ChaCha20 5 512287 1.06
WolfSSL-ECDH 100 362967 1.04
WolfSSL-ECDSA 30 4559759 1.08
WolfSSL-EdDSA 159 426239 1.02
WolfSSL-RSA 28 543835 1.11

Average - - 1.07

Register Allocation. When analyzing the tainted functions within the cryptog-

raphy program, our primary focus is on stack slots that occur frequently. This

consideration arises from the understanding that recurring stack slots are more

likely to be repeatedly overwritten, exhibiting sequential change patterns that be-

come the targets of ciphertext side-channel attacks. Moreover, preserving these

Chapter 3. Side-channel Mitigation 85

stack slots within registers reduces the overhead associated with the masking oper-

ations on them. Consequently, we construct two structures in the LLVM backend:

StackUsage, which presents mappings from all sensitive stack slots to their respec-

tive MBB locations in the current tainted functions, and StackOpt, which selects

mappings from StackUsage based on the quantity of stack slot’s MBB locations

until its capacity satisfies the number of available vector registers. With these two

structures, secret-aware register allocation relies on two core operations:

• Allocation: when encountering a sensitive stack store instruction whose stack

slot falls within the mapping of StackOpt, Variant 3 allocates an available vector

register location to hold the secrets. At the same time, its MBB location in the

mapping of StackOpt is accordingly deleted to assist in tracking the liveness of the

allocated vector register.

• Deallocation: Once all MBB locations of the sensitive stack slot in StackOpt are

deleted, its associated vector register reaches the end of the liveness, and becomes

available for allocation to other sensitive stack slots. Subsequently, by selecting

another stack slot from StackUsage to replace the sensitive stack slot based on

the quantity of MBB locations, Variant 3 allocates available vector registers to the

remaining stack slots in StackOpt.

42: entry, if.end19, if.end24, if.end30,...
38: entry, if.end24, if.end30,...
39: entry, while.body, if.end30,...
52: if.end30,...
49: if.end30,...
46: while.body, if.then10, if.end12, if.then18, if.end19,...
43: while.body, if.end19, if.then22, if.then28, if.end30,...
40: entry, while.cond,...
50: if.end30,...
44: while.body, if.end19, if.end24, if.end30,...

Figure 3.7: Sensitive stack slots contained in MBBs.

We illustrate the register allocation process for sensitive stack slots using the func-

tion bn mul add words of OpenSSL-ECDSA as an example. Figure 3.7 describes

a sorted StackOpt structure, where the first element represents the sensitive stack

slots followed by their positions of appearance in MBBs. We simulate the register

allocation process until the if.end30 MBB and omit the subsequent MBBs for

brevity. Figure 3.8 visualizes the allocation process in Figure 3.7. Each stack slot

86 3.4. Detailed System Design

42

38

39

40

XMM15L

XMM15H

XMM14L

XMM14H

46

43

XMM13L

XMM13H

XMM12L

52

49

44 50

Time

Register

Figure 3.8: An example of register allocation from the function
bn mul add words of OpenSSL-ECDSA. In the visualization, the white and
shaded blocks represent the liveness of stacks, with shaded blocks containing
numbers that denote registers holding the sensitive stack slots.

is formatted with a size of 8 bytes, resulting in 16 independent storage cells allo-

cated from xmm8 to xmm15. H and L represent the high and low 64-bits of a vector

register, respectively. Notably, registers xmm13L, xmm13H and xmm12L are recycled

and reallocated to stack slots 52, 49 and 50, respectively, showing how liveness

tracking enables a more optimized storage capacity.

3.4.4 Managing Nonce Buffers

In CipherGuard, all the inserted mitigation codes involving the masking protec-

tion scheme must consider the management of random nonces, including selecting

the initial random nonce from the random number buffer (Variants 1 and 3) and

storing the random nonce currently in use for the corresponding stack and heap

areas (all variants).

Random Nonce Buffer. As briefly introduced in Section 3.4.2, CipherGuard

pre-generates a buffer in .bss containing 1K random numbers using rdrand during

the program initialization. For unmasked stack or heap areas in Variants 1 and

3, which require an initial random nonce, CipherGuard leverages the memory

address to calculate an index for selecting the corresponding random number from

.bss. Assuming the memory address in the sensitive memory access instruction

Chapter 3. Side-channel Mitigation 87

is addr, the index is calculated as: index = addr & 0x3FF . Then, the ran-

dom number in the .bss section is obtained using randomArray(, index, 8), where

randomArray represents the starting address of the random number buffer in the

.bss section.

While it is a fact that using memory addresses over 8K may result in the same

index and hence the same random number for masking, it is important to note

that the final ciphertext will still differ due to the different plaintexts in these

memory locations. Another approach to enhance the security is to periodically call

the rdrand instruction to generate new random numbers and overwrite the buffer,

making it hard for the attacker to guess.

Currently Used Nonces. Two distinct strategies for storing the random nonces

currently in use are employed for the sensitive stack and heap areas. For the stack,

the compiler automatically allocates slots to hold the random nonces and associates

each slot with the corresponding source memory, as demonstrated in Section 3.4.2.

Accessing these nonces is easily facilitated by adding an offset to the rsp register,

which is generated by the compiler for subsequent mask loading. Additionally, we

initialize all random buffers to zero at the beginning of the function, specifically

in the entry block of the function. For the reliability of the fixed functions, this

strategy ensures that the nonces are isolated from stacks in other locations by

leveraging the rbp register. In contrast, CipherFix adds a constant distance to

the current memory block to locate its corresponding nonce buffer. Unfortunately,

this poses a potential risk as the nonce buffers are not positioned within the runtime

stack area, which may result in overlap with other stack areas, ultimately leading

to program malfunctions.

For the heap, instead of applying a constant offset for the nonce buffer like in

CipherFix, we place the nonce buffer in the .bss section as well, pre-allocating

sufficient space in advance. A heuristic hash function maps heap addresses to

buffer indices for retrieving nonces: ((addr & 0xFFFFF) ∗ 648056)≫ 22. In this

setting, 128K consecutive 8-byte entries are mapped independently into the 1M

nonce buffer without collisions since all variants of CipherGuard align masking

operations to 8-byte addresses. However, the maximum index generated by the

hash function is 162,012, which exceeds 128K. To accommodate this, a 256K-entry

buffer is required, resulting in a 2M nonce buffer with around 50% utilization in

88 3.5. Implementation

our configuration. Through experimentation, we found that a nonce buffer space

of 2MB is sufficient for cryptographic programs without collisions.

CipherGuard offers several advantages for managing mask buffers in the heap

areas compared to CipherFix. Firstly, it resolves the overlapping risk present in

CipherFix, where the fixed distance between the heap area and its correspond-

ing mask buffer may become insufficient if the program dynamically allocates a

large amount of memory. CipherGuard addresses this by employing an indexing

method to locate the mask buffer, ensuring that each heap area has a dedicated

mask buffer without the risk of overlap. Secondly, CipherFix requires tracking

each malloc, realloc, calloc, and free call for dynamic (de)allocation of mask

buffers, which introduces overhead and impacts the runtime performance. In con-

trast, CipherGuard achieves direct access to the mask buffer by calculating the

index, thereby eliminating the need for system calls and reducing the overhead.

Furthermore, similar to the mask buffer for the stack areas, the mask buffer for

the heap areas also needs to be initialized to zero. Unlike CipherFix, which re-

quires special routine code to assign each mask buffer with zero, CipherGuard

simplifies this process by initializing .bss during program linking.

To handle potential hash collisions in nonce buffers for heap areas, such as in server

environments, we propose dynamically expanding the buffer by allocating multiple

groups of entries for each index (10 groups per index, requiring a 20M nonce buffer).

If two different heap addresses generate the same index, the first 8 bytes are used

to match the heap address, allowing us to locate the corresponding nonce in the

subsequent 8 bytes. We evaluated this method by simulating collisions across all

10×128K entries. The results showed only a slight increase of time to initialize

the expanded nonce buffer and handle each collision (≈ 8ms), indicating minimal

performance impact.

3.5 Implementation

CipherGuard is developed within the LLVM framework (LLVM-9 version), com-

prising a total of 4.6K lines of C++ code. However, it is important to note that

CipherGuard is not reliant on specific features of LLVM. Further discussion

on the portability of CipherGuard to other compiler frameworks is provided in

Chapter 3. Side-channel Mitigation 89

Section 3.7. CipherGuard consists of a taint analysis component utilizing DFSan

APIs and a mitigation component seamlessly integrated with the register alloca-

tion pass in the LLVM backend. To facilitate the 3 variants in CipherGuard,

we assemble 41 instruction blocks to perform various mitigation operations. These

operations include data moving, generating random numbers using three different

schemes, calculating hash indices, and other relevant tasks.

Usage of CipherGuard. To use CipherGuard, developers need to manually

identify the secrets within the cryptography program and mark them using the DF-

San API. This labeling process is user-friendly. For example, it is simple to insert

dfsan set label(label, key, sizeof(key)) into any cryptography program to

record both the pointer and size of the secret. Subsequently, the taint analysis and

LLVM backend mitigation processes automatically identify the tainted memory ac-

cess instructions and execute the mitigation without requiring human intervention.

Ultimately, the resulting security-hardened binary can be seamlessly executed on

the TEE processor.

3.6 Evaluation

3.6.1 Experiment Setup

We evaluate 3 variants of CipherGuard on a variety of cryptography libraries,

including libsodium-1.0.18, mbedTLS-3.3.0, OpenSSL-3.0.2, and WolfSSL-5.3.0.

All experiments are conducted on an AMD EPYC 7513 CPU with SEV-SNP en-

abled, running each cryptography library on the Ubuntu 20.04 platform. To com-

pare with CipherFix, we use the same snapshots of cryptography libraries eval-

uated in CipherFix. To be specific, EdDSA (Ed25519), ECDSA (secp256r1),

ECDH (X25519) and RSA signature schemes are demonstrated to be vulnerable

to ciphertext side channels in their implementations. Simultaneously, we incorpo-

rate symmetric primitives such as AES-GCM and ChaCha20-Poly1305 (AES and

ChaCha20 for short, respectively), the hash function SHA512, and the decoding

function Base64. For our evaluations, we utilize the default optimization levels,

specifically -O3 for OpenSSL and -O2 for the other libraries.

90 3.6. Evaluation

3.6.2 Comparison between Variants

Performance Overhead. We employ the rdtsc instruction to precisely mea-

sure the execution cycles of original and patched cryptography libraries. Each

cryptography library undergoes 200 iterations, and we measure the average exe-

cution overhead. Table 3.2 provides a comprehensive overview of the performance

statistics for patched cryptography libraries using 3 variants of CipherGuard.

In essence, all 3 variants exhibit an acceptable performance cost while effectively

eliminating the ciphertext side-channel leakage.

Specifically, Variant 1 introduces an average of 2.53× overhead, with a minimal

of 1.09× in repaired ChaCha20 of WolfSSL and a maximum of 6.17× in ECDH

of OpenSSL. This result is attributed to the utilization of a pre-generated nonce

buffer, a strategy that reduces the performance bottleneck associated with gener-

ating random nonces on-the-fly when encountering sensitive memory store instruc-

tions, particularly highlighting the impact of the rdrand instruction on patched

cryptography software. This improvement emphasizes the effectiveness of Cipher-

Guard in achieving a balance between performance and security.

The requirement of on-the-fly nonce generation introduces two approaches in Vari-

ant 2: the use of AES-NI and XorShift128+ schemes. These two approaches achieve

an average overhead of 2.78× and 3.10×, respectively, resulting in a marginal

performance reduction compared to the optimized rdrand scheme in Variant 1.

Notably, the execution of XorShift128+ takes slightly longer due to its require-

ment for multiple instructions compared to the vaesenc instruction from AES-NI.

The nuanced performance differences provide valuable insights in selecting specific

strategies for on-the-fly nonce generation in cryptography software.

Building upon the foundation of Variant 1, Variant 3 seeks to safeguard secrets in

sensitive memory access instructions by retaining them within registers through-

out their lifecycle, avoiding any spillage to memory. Although this scheme demon-

strates a better average performance improvement over Variant 1, with an overhead

of 1.76× as opposed to 2.53×, it is worth noting that its performance superiority

cannot be achieved in all cryptography libraries. This is attributed to the trade-off

introduced by the utilization of SSE registers. While this reduces the cost of insert-

ing additional mask instructions to protect sensitive memory access instructions,

it impacts the availability of SSE registers in other parts of the program.

Chapter 3. Side-channel Mitigation 91

T
a
b
l
e
3
.2
:
P
er
fo
rm

an
ce

st
a
ti
st
ic
s
to
w
ar
d
s
m
it
ig
at
ed

cr
y
p
to
gr
ap

h
y
so
ft
w
ar
e
w
it
h
3
va
ri
an

ts
of

C
ip
h
e
r
G
u
a
r
d
.
R
es
u
lt
s
ar
e
ob

ta
in
ed

b
y
m
ea
su
ri
n
g
th
e
av
er
a
ge

cl
o
ck

cy
cl
es

u
si
n
g
th
e
r
d
t
s
c
in
st
ru
ct
io
n
.
X
S
+

is
sh
or
t
fo
r
X
or
S
h
if
t1
28

+
.

Im
p
le
m
e
n
ta

ti
o
n

O
ri
g

V
a
ri
a
n
t
1

V
a
ri
a
n
t
2

V
a
ri
a
n
t
3

R
D
R
A
N
D
-O

P
T

F
a
c
to

r
A
E
S

F
a
c
to

r
X
S
+

F
a
c
to

r
R
E
G
IS

T
E
R

F
a
c
to

r
li
b
so
d
iu
m
-E

d
D
S
A

19
16
18

64
88
61

3
.3
9

6
5
1
9
3
0

3
.4
0

6
8
2
1
5
9

3
.5
6

3
0
4
0
6
7

1
.5
9

li
b
so
d
iu
m
-S
H
A
51
2

42
48
2

10
10
88

2
.3
8

1
3
7
2
9
8

3
.2
3

1
5
2
2
2
7

3
.5
8

1
0
5
0
6
1

2
.4
7

m
b
ed
T
L
S
-A

E
S

47
49
26

57
46
95

1
.2
1

8
1
5
5
4
2

1
.7
2

8
6
6
1
9
2

1
.8
2

9
9
3
2
5
5

2
.0
9

m
b
ed
T
L
S
-B

as
e6
4

11
22
0

16
87
7

1
.5
0

1
8
3
6
0

1
.6
4

1
9
6
4
2

1
.7
5

1
5
4
9
3

1
.3
8

m
b
ed
T
L
S
-C

h
aC

h
a2
0

59
70
00

75
29
78

1
.2
6

1
2
3
6
5
7
3

2
.0
7

1
3
8
5
7
3
7

2
.3
2

1
2
5
1
1
5
0

2
.1
0

m
b
ed
T
L
S
-E

C
D
H

42
53
88
7

76
80
05
1

1
.8
1

8
8
1
9
8
2
8

2
.0
7

9
6
2
6
0
4
6

2
.2
6

6
2
1
1
9
7
8

1
.4
6

m
b
ed
T
L
S
-E

C
D
S
A

39
42
14
0

73
10
69
4

1
.8
5

8
1
3
3
1
2
6

2
.0
6

8
7
1
7
6
7
8

2
.2
1

5
4
4
8
5
7
9

1
.3
8

m
b
ed
T
L
S
-R

S
A

18
84
56
8

43
14
75
9

2
.2
9

4
6
5
8
5
5
0

2
.4
7

5
5
0
4
4
6
0

2
.9
2

2
8
6
1
5
8
0

1
.5
2

O
p
en
S
S
L
-E

C
D
H

98
62
28

60
81
64
4

6
.1
7

6
1
3
2
8
2
9

6
.2
2

6
9
9
7
6
5
6

7
.1
0

1
5
1
9
5
9
0

1
.5
4

O
p
en
S
S
L
-E

C
D
S
A

16
85
49
15

66
81
67
68

3
.9
6

6
5
9
1
5
3
0
7

3
.9
1

7
6
2
9
0
7
8
3

4
.5
3

3
4
3
7
4
0
7
7

2
.0
4

W
ol
fS
S
L
-A

E
S

63
90
55

13
41
06
4

2
.1
0

2
1
2
6
6
8
1

3
.3
3

2
3
4
0
3
1
1

3
.6
6

1
8
9
7
4
6
0

2
.9
7

W
ol
fS
S
L
-C

h
aC

h
a2
0

48
16
50

52
66
43

1
.0
9

5
0
7
5
3
5

1
.0
5

5
1
7
2
1
4

1
.0
7

5
3
7
0
4
4

1
.1
2

W
ol
fS
S
L
-E

C
D
H

34
86
90

73
79
35

2
.1
2

7
3
1
2
5
0

2
.1
0

7
6
1
8
0
4

2
.1
8

5
2
2
3
3
0

1
.5
0

W
ol
fS
S
L
-E

C
D
S
A

42
26
94
0

20
97
66
00

4
.9
6

2
0
1
4
1
7
3
6

4
.7
7

2
5
0
1
3
5
6
9

5
.9
2

9
1
3
2
8
7
0

2
.1
6

W
ol
fS
S
L
-E

d
D
S
A

41
95
07

13
17
10
4

3
.1
4

1
2
9
6
6
9
0

3
.0
9

1
3
5
0
8
1
0

3
.2
2

6
3
9
8
4
0

1
.5
3

W
ol
fS
S
L
-R

S
A

49
19
70

60
81
90

1
.2
4

6
4
5
9
8
0

1
.3
1

7
3
7
5
2
0

1
.5
0

6
3
1
8
0
6

1
.2
8

A
ve
ra
ge

-
-

2
.5
3

-
2
.7
8

-
3
.1
0

-
1
.7
6

92 3.6. Evaluation

The Worst Case. Among Variant 1 and Variant 2, mitigating ciphertext side

channels in ECDH from OpenSSL incurs the highest overhead, ranging from 6.17×
to 7.10×. We manually examine the range of tainted MBBs in the function where

the mitigation code is inserted. The observation reveals that a large number of

MBBs contained secret values within loops, which inevitably introduce additional

cycles due to the multiple memory reads/writes involved in the masking protection

implemented in both Variant 1 and Variant 2. This finding motivates the adoption

of Variant 3, which retains secret variables in SSE registers rather than performing

masking. In particular, this approach significantly reduces overhead in the context

of loops. As shown in Table 3.4, Variant 3 improves the worst-case overhead for

ECDH in OpenSSL.

rdrand as the Bottleneck. Employing the on-the-fly generation of random num-

bers as nonces provides a robust defense mechanism. However, relying on rdrand

as the source of random numbers in this mechanism can incur a significant time

cost. This is evident in the implementation of the on-the-fly method in the Ci-

pherFix-Fast variant, leading to an average overhead of 16.8× and a maximum

of 40×. Consequently, we opt for the pre-generation of a nonce buffer to reduce

the performance impact.

To assess the performance enhancement introduced by Variant 1 of CipherGuard

in the context of the on-the-fly method, we focus on asymmetric cryptography

libraries (RSA and ECDSA), and symmetric cryptography libraries (AES and

ChaCha20). The results in Table 3.3 demonstrate a notable performance improve-

ment for asymmetric cryptography libraries, albeit only marginal improvement

for symmetric cryptography libraries, achieved by Variant 1. This enhancement is

particularly evident in programs involving blinding and nonce, with increased num-

bers of tainted functions and instructions. Thus, the advantage of pre-generating a

nonce buffer reaffirms the effectiveness of Variant 1 in optimizing the performance

of on-the-fly methods.

Alternative Nonce. Unlike Variant 1, which selects a random number as a nonce

and increments it for each sensitive memory write, the methods in Variant 2 di-

rectly generate a new random nonce when an updated nonce is required. AES-NI

accomplishes this with a single vaesenc instruction, while XorShift128+ requires

multiple instructions, resulting in a slight larger overhead compared to AES-NI.

Chapter 3. Side-channel Mitigation 93

Table 3.3: Performance improvement by Variant 1 over the on-the-fly rdrand

method. CC20 is short for ChaCha20.

Implementation
Variant 1 On-the-fly rdrand

Improvement
Factor Factor

ECDSA-mbedTLS 1.85 10.87 5.87
ECDSA-OpenSSL 3.96 18.92 4.77
ECDSA-WolfSSL 4.96 18.60 3.75
RSA-mbedTLS 2.29 14.91 6.51
RSA-WolfSSL 1.24 16.21 13.07
AES-mbedTLS 1.21 2.38 1.96
AES-WolfSSL 2.10 3.10 1.47
CC20-mbedTLS 1.26 1.30 1.03
CC20-WolfSSL 1.09 1.24 1.13

Average 2.21 9.72 4.39

Apart from the differences in nonce generation, Variant 2 also mandates the sep-

arate reservation of part of SSE vector registers for its use, i.e., two and three for

the two methods respectively. Such impact is exemplified in Table 3.2. Reserving a

small number of SSE vector registers could impact other parts of the cryptography

library, which amplify the burden on the repaired program compared to Variant 1.

The Profit of Registers. The intuitive advantage of using registers to store

intermediate results is a reduction in memory access consumption. However, as

discussed previously, the advantage of Variant 3 over Variant 1 does not hold for

all cryptography applications. A preliminary hypothesis suggests that Variant 3

concurrently impacts the availability of SSE registers in other parts of the program.

To test this hypothesis, we implement a new strategy “RSV+RDRAND-OPT”,

which adopts the method from Variant 1 while reserving 8 SSE vector registers

unused. This allows the compiler to freely allocate these 8 SSE vector registers

like Variant 1, or reserve these SSE vector registers for holding secrets of sensitive

memory access instructions like Variant 3.

Table 3.4 shows the results of this new strategy, revealing an average overhead of

2.98×, which is higher than the overheads of both Variant 1 and Variant 3. Specifi-

cally, some cryptographic functions (SHA512 from libsodium, AES and ChaCha20

from mbedTLS, AES, ChaCha20 and RSA from WolfSSL) experience worse per-

formance when SSE vector registers are utilized to protect sensitive memory access

instructions, due to their negative impact on other parts of the program. For those

functions that enjoy a positive performance profit, we observe a notable disparity,

94 3.6. Evaluation

Table 3.4: Profit analysis of variant 3.

Implementation
Variant 1 RSV+RDRAND-OPT Variant 3
Factor Cycles Factor Factor

libsodium-EdDSA 3.39 680723 3.55 1.59
libsodium-SHA512 2.38 121020 2.85 2.47
mbedTLS-AES 1.21 1135500 2.39 2.09

mbedTLS-Base64 1.50 20820 1.86 1.38
mbedTLS-CC20 1.26 1329720 2.23 2.10
mbedTLS-ECDH 1.81 7981500 1.88 1.46
mbedTLS-ECDSA 1.85 10137960 2.57 1.38
mbedTLS-RSA 2.29 5459100 2.90 1.52
OpenSSL-ECDH 6.17 6121680 6.21 1.54
OpenSSL-ECDSA 3.96 73640040 4.37 2.04
WolfSSL-AES 2.10 1916760 3.00 2.97
WolfSSL-CC20 1.09 614670 1.28 1.12
WolfSSL-ECDH 2.12 849300 2.44 1.50
WolfSSL-ECDSA 4.96 21068010 4.98 2.16
WolfSSL-EdDSA 3.14 1428990 3.41 1.53
WolfSSL-RSA 1.24 902452 1.83 1.28

Average 2.53 - 2.98 1.76

particularly in ECDH from OpenSSL, where Variant 3 proves to be particularly

profitable.

We delve deeper into the allocation of SSE vector registers to sensitive memory

access instructions in ECDH from OpenSSL. We follow the design principles of

secret-aware register allocation outlined in Section 3.4.3, and check the range of

MBBs in a function where these SSE vector registers are allocated to protect sensi-

tive memory access instructions. The observed pattern reveals a notable advantage

when registers are used to hold stack memory within loops, effectively saving extra

cycles that would be incurred by employing masks for protection, as implemented

in Variant 1. Conversely, if the protection extends to insufficient sensitive stack

memory within a loop — such as using SSE vector registers to safeguard sequen-

tial sensitive memory access instructions — the benefit may not be sufficient to

offset the impact of not allocating these registers to other parts of the cryptography

program. This highlights the importance of the context and specifics of the cryp-

tographic algorithm in determining the efficacy of secret-aware register allocation.

Variant Selection. With all variants providing sufficient security guarantees (see

Section 3.6.5), selection of an appropriate variant is based on the performance

Chapter 3. Side-channel Mitigation 95

and usage requirements. For Variant 1, pre-generated random buffers serve as an

optimization compared to on-the-fly random nonce generation. Variant 2, on the

other hand, is preferred when there is a need to generate a random nonce on-the-

fly, although it requires the use of SSE registers, which may affect cryptography

software with frequent data movement for consecutive addresses to some extent.

For less performance overhead, Variant 3 is worth considering, even though it

occupies more SSE registers than Variant 2. In short, developers proficient in

deploying cryptography software in TEEs are recommended to use Variants 2 and

3 due to their better understanding of the context and specifics of the software.

For general users, Variant 1 is recommended.

3.6.3 Comparison with CipherFix

Dynamic Taint Analysis. The initial step of using CipherGuard is to con-

duct dynamic taint analysis for identifying sensitive memory access instructions.

Subsequently, the compilation process with DFSan and the generation of tainted

LLVM-IR instructions are automated. Remarkably, the identification of sensitive

memory access instructions for each cryptography library requires less than 20

minutes. In particular, the taint analysis for symmetric primitives like AES and

ChaCha20 concludes within 2 to 3 minutes. Despite the utilization of blinding and

nonces in asymmetric primitives such as RSA and ECDSA, which extends the exe-

cution process, the taint analysis still completes in about 10 minutes, representing

a reasonably acceptable duration.

In the evaluation presented in Table 3.5, we meticulously tally the numbers of

functions and instructions for each cryptography library identified by the taint

analysis, as indicated in the fourth and fifth columns. The results showcase a

broad spectrum, with a minimum of 6 sub-functions in SHA512 from libsodium

to a maximum of 796 sub-functions in ECDSA from OpenSSL, with an average

of 120 functions across the assessed cryptographic implementations. The range of

tainted instructions within these tagged functions spans from 275 in ChaCha20 of

mbedTLS to a substantial 17,834 instructions in ECDSA of OpenSSL. Compared

to CipherFix, as evidenced by the second and third columns in Table 3.5, our

approach exhibits a more detailed and extensive tracking of secrets.

96 3.6. Evaluation

T
a
b
l
e
3
.5
:
P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
w
it
h
C
ip
h
e
r
F
ix

b
as
ed

on
th
e
sa
m
e
n
u
m
b
er

of
ta
in
te
d
fu
n
ct
io
n
s.

T
h
e
re
p
li
ca
ti
on

of
C
ip
h
e
r
F
ix

is
co
n
d
u
ct
ed

on
it
s
F
a
st

ve
rs
io
n
.

Im
p
le
m
e
n
ta

ti
o
n

C
ip
h
e
rF

ix
C
ip
h
e
rG

u
a
rd

C
ip
h
e
rF

ix
-F

a
st

C
ip
h
e
rG

u
a
rd

-V
a
ri
a
n
t
2

F
U
N

IN
S

F
U
N

IN
S

O
ri
g

A
E
S

F
a
c
to

r
C
o
n
su

m
e

IN
S

A
E
S

F
a
c
to

r
C
o
n
su

m
e

li
b
so
d
iu
m
-E

d
D
S
A

14
61
6

17
13
11

1
3
1
7
9
0

7
7
9
5
8
0

5
.9
2

1
0
5
2

6
3
0

2
7
1
5
5
7

1
.4
2

1
2
7

li
b
so
d
iu
m
-S
H
A
51
2

6
15
5

6
58
6

6
0
0
6
0

1
0
3
9
2
0

1
.7
3

2
8
3

2
1
1

8
4
1
3
9

1
.9
8

1
9
7

m
b
ed
T
L
S
-A

E
S

19
96

17
32
6

3
1
2
9
9
0

1
1
6
5
4
7
0

3
.7
2

8
8
8
0

3
1
8

7
8
0
3
1
7

1
.6
4

9
6
0

m
b
ed
T
L
S
-B

as
e6
4

5
25

9
38
6

1
0
2
3
0

1
6
4
4
0

1
.6
1

2
4
8

2
6

1
4
8
9
7

1
.3
3

1
4
1

m
b
ed
T
L
S
-C

h
aC

h
a2
0

15
23
4

14
27
5

3
9
7
0
8
0

9
2
2
8
0
0

2
.3
2

2
2
4
7

2
6
7

1
1
9
3
7
3
0

2
.0
0

2
2
3
5

m
b
ed
T
L
S
-E

C
D
H

20
65

51
10
63

3
3
1
4
1
6
0

1
0
6
5
8
7
0
0

3
.2
2

1
1
2
9
9
3

1
7
1

7
7
6
0
2
6
7

1
.8
2

2
0
5
0
5

m
b
ed
T
L
S
-E

C
D
S
A

51
44
8

69
14
46

1
3
8
5
7
9
0

1
0
1
1
7
6
2
0

7
.3
0

1
9
4
9
1

1
1
5
6

7
1
7
9
8
0
8

1
.8
2

2
8
0
1

m
b
ed
T
L
S
-R

S
A

35
30
0

44
12
38

2
8
9
3
2
6
0

1
1
3
4
7
6
8
0

3
.9
2

2
8
1
8
1

6
7
3

3
6
4
0
5
9
0

1
.9
3

2
6
0
9

O
p
en
S
S
L
-E

C
D
H

11
11
7

72
1

12
87
6

3
7
3
8
0
0

5
8
3
6
8
0

1
.5
6

1
7
9
4

1
2
3

1
2
8
0
8
5
0

1
.3
0

2
3
9
5

O
p
en
S
S
L
-E

C
D
S
A

91
65
3

79
6

17
83
4

3
2
3
6
4
9
0

6
7
3
5
2
1
0

2
.0
8

5
3
5
8

9
9
1

2
2
1
3
1
7
5
0

1
.3
1

5
3
2
5

W
ol
fS
S
L
-A

E
S

5
20
4

6
49
9

4
0
1
5
5
0

7
2
5
0
4
0

1
.8
1

1
5
8
6

1
9
2

8
0
9
0
6
6

1
.2
7

8
8
5

W
ol
fS
S
L
-C

h
aC

h
a2
0

9
18
2

14
40
4

7
0
6
7
4
0

1
0
2
2
8
8
0

1
.4
5

1
7
3
7

3
4
3

5
0
5
8
0
0

1
.0
5

7
0

W
ol
fS
S
L
-E

C
D
H

10
29
1

20
54
3

1
9
1
2
8
0

3
8
5
4
4
0

2
.0
2

6
6
7

1
4
7

7
0
1
4
0
8

2
.0
1

2
3
9
9

W
ol
fS
S
L
-E

C
D
S
A

40
32
8

59
93
2

3
1
4
3
0
1
0

8
5
5
8
3
7
0

2
.7
2

1
6
5
1
0

2
4
2

8
3
2
1
6
8
6

1
.9
7

1
6
9
2
0

W
ol
fS
S
L
-E

d
D
S
A

31
83
5

28
71
5

3
1
2
3
6
0

7
4
6
2
5
0

2
.3
9

5
2
0

6
1
6

8
9
3
0
4
0

2
.1
3

7
6
9

W
ol
fS
S
L
-R

S
A

48
69
6

43
70
4

5
3
7
7
5
0

1
2
0
0
6
6
0

2
.2
3

9
5
2

5
2
9

6
1
5
5
1
0

1
.2
5

2
3
4

A
ve
ra
ge

26
32
8

12
0

25
71

-
-

2
.8
7

1
2
6
5
6

4
1
5

-
1
.6
4

3
6
6
1

Chapter 3. Side-channel Mitigation 97

CFGNode_SHA512_Transform

CFGNode_SHA512_Transform
+0x20

CFGNode_SHA512_Transform
+0x35

CFGNode_SHA512_Transform
+0x80

CFGNode_SHA512_Transform
+0x8da

CFGNode_SHA512_Transform
+0xe2c

CFGNode_SHA512_Transform
+0xe34

CFGNode_SHA512_Transform

CFGNode_SHA512_Transform
+0x20

CFGNode_SHA512_Transform
+0xdf8

CFGNode_SHA512_Transform
+0x35

CFGNode_SHA512_Transform
+0x157

CFGNode_SHA512_Transform
+0x8d6

CFGNode_SHA512_Transform
+0xe04

CFGNode_SHA512_Transform
+0xe12

CFGNode_SHA512_Transform
+0xe00

Figure 3.9: Function SHA512 Transform from the libsodium-SHA512 serves as
an example to illustrate the construction of CFGs and identify critical nodes.

Mitigation Coverage Comparison. Accurately identifying tainted instruc-

tions is crucial as they serve as candidates for the subsequent mitigation pro-

cess. Despite that CipherGuard and CipherFix employ different compilers,

i.e., Clang and GCC, we recognize that the fundamental control-flow remains con-

sistent across both compilers subjected to the same optimization settings. Lever-

aging this similarity, we extract binaries containing instrumentation information

utilized during the taint analysis stage. Subsequently, we analyze the basic blocks of

tainted functions in these binaries by constructing the control-flow graphs (CFGs).

Within each basic block, we identify and label the tainted instructions, facilitat-

ing statistical analysis. Figure 3.9 depicts a comparison example of the function

SHA512 Transform from libsodium-SHA512. The left sub-figure represents the

CFG generated by CipherGuard, while the right sub-figure corresponds to the

CFG generated by CipherFix. As observed, the CFG structures generated by

both CipherGuard and CipherFix exhibit similarities. Three crucial nodes

have been manually identified to further partition the control flow. We further

conduct a line-by-line comparison of the code within the two binaries, and observe

very small divergence, with an average difference of only 2%. We conclude the

variance in compilers does not significantly influence the disparity in the number

of tainted instructions identified by CipherGuard and CipherFix in Table 3.5.

We observe that the cryptography libraries listed in Table 3.5 are monitored by

a similar number of tainted functions, with the exception of two implementations

from OpenSSL libraries. Therefore, our initial step is to examine the variance

98 3.6. Evaluation

in taint analysis among these cryptography libraries by randomly selecting five

tainted functions for comparison. Upon closer examination of the additional in-

structions marked by CipherGuard, we discover that they fall into several cate-

gories. Firstly, CipherGuard conservatively tags the parameters of temporarily

assigned variables utilized to store intermediate calculation results. For instance,

the size of the temporarily assigned variable serves as a loop variable involved

in the calculation of sensitive variables. Meanwhile, CipherFix omits the in-

termediate or resultant variables in operations with sensitive variables, focusing

more on the direct involvement of the secret key. Therefore, when turning to the

OpenSSL libraries, CipherGuard marks the addition parameters of temporarily

assigned variables, as well as intermediate and resultant variables. Consequently,

more relevant functions and instructions are identified compared to CipherFix,

as demonstrated in Table 3.5.

We highlight that the comparison of taint coverage serves merely to demonstrate

the superior performance of CipherGuard which covers a significantly larger

number of instructions than CipherFix. The focus of this paper is not on the taint

analysis itself. Hence, we refrain from delving into the detailed implementation of

the taint analysis component of both CipherGuard and CipherFix.

Fair Performance Comparison. To facilitate a fair performance comparison

between CipherGuard and CipherFix, we evaluate them based on as many

tainted instructions as possible within the same cryptography library. However,

it is challenging to achieve this due to the inherent variability in the number of

tainted functions and instructions across these tools. For example, protecting the

tainted instructions in the loops causes an execution with more cycles. To address

this, we manually select the tainted functions that are common to both tools –

CipherGuard applies the mitigation process to functions that CipherFix has

flagged. This ensures a more aligned execution flow between the two tools. Despite

these efforts, we acknowledge that CipherGuard still identifies more instructions

than CipherFix, albeit as close as possible.

The numbers of selected tainted instructions are detailed in the fourth to last

columns of Table 3.5. Both CipherGuard and CipherFix insert masking in-

structions with the vaesenc instruction from AES-NI, effectively excluding the

effects of any optimization specific to CipherGuard. The results reveal that Ci-

pherGuard incurs an average overhead of 1.64×, while CipherFix exhibits a

Chapter 3. Side-channel Mitigation 99

higher overhead of 2.87×. An indicator labeled “consume” is introduced to quan-

tify the additional average cycles incurred by the patched cryptography library. It

highlights an average consumption of 3,661 cycles in CipherGuard and a sub-

stantial 3.46× increase in CipherFix.

In addition to the differences in the execution flow, the notable variation between

the two tools are attributed to specific aspects of CipherFix. These aspects in-

clude frequent jumps to the instrumentation code, monitoring of malloc to allocate

heap memory for mask buffers, and the necessary initialization process for the mask

cache during runtime. Conversely, CipherGuard adopts a compiler-aided method

that optimizes these time-consuming tasks by sequentially inserting mask instruc-

tions and efficiently managing nonce buffers in the .bss section. The observed

performance difference underscores the effectiveness of CipherGuard’s design in

streamlining the mitigation process and minimizing the associated overhead.

3.6.4 Comparison with Obelix

Ciphertext Freshness. In contrast to CipherFix or CipherGuard, which uti-

lize masking techniques to ensure ciphertext freshness for each sensitive memory

write, Obelix employs address rotation to achieve this goal. During compila-

tion, the program is divided into structurally uniform code blocks, designed to

be indistinguishable to side-channel attackers, and data is partitioned into equally

sized blocks, with this division occurring transparently at runtime. By leveraging

ORAM, the program’s execution is obfuscated through access to multiple code and

data blocks, including dummy blocks. To counteract ciphertext side-channel vul-

nerabilities, especially for large amounts of data, additional strategies are applied:

they are protected using padding, where each encryption block consists of a data

chunk and a counter.

Obelix offers several advantages over CipherGuard such as reducing additional

memory consumption for random nonce storage and avoiding complex indexing to

locate random nonces, thereby preventing hash collisions and ensuring more reliable

mitigation. However, it also faces certain drawbacks. First, it is subject to the

inherent limitations of ORAM, which introduces numerous dummy operations and

data read/write cycles. Meanwhile, rotating addresses of large memory objects is

more costly, making it suitable primarily for small regions like the data scratchpad.

100 3.6. Evaluation

In addition, ORAM implementation requires splitting large data into chunks of

half the encryption block size, such as dividing 16 bytes of ciphertext into two

8-byte ciphertexts. In summary, while Obelix provides advantages in memory

usage and mitigation reliability, it also introduces performance overhead due to

the complexities of ORAM and the costs associated with rotating large memory

objects.

Performance Comparison. The performance comparison between Obelix and

CipherGuard, as shown in Table 3.6, highlights the overhead introduced by

Obelix across different cryptographic algorithms in mbedTLS. Obelix incurs sig-

nificant performance overheads, with the highest factor observed in the mbedTLS-

ECDH implementation (88,852), followed by mbedTLS-RSA (78,750). Other im-

plementations like mbedTLS-AES and mbedTLS-ChaCha20 still show unsatisfi-

able overheads of 1,607 and 4,403, respectively. On average, Obelix introduces an

overhead factor of 34,831.

In contrast, the worst-case performance overhead for CipherGuard remains sub-

stantially lower, with the highest overhead in mbedTLS-RSA at 2.92 and other

implementations showing overheads ranging from 1.75 to 2.32. This comparison

indicates that Obelix introduces higher performance overheads across all tested

cryptographic functions compared to the worst-case scenario for CipherGuard.

Overall, Obelix provides enhanced security by mitigating ciphertext side-channel

vulnerabilities, but at the cost of significantly higher performance overhead com-

pared to CipherGuard.

Table 3.6: Performance comparison betweenObelix and CipherGuard. The
factor data comes from Obelix paper and Table 3.2.

Implementation
Obelix Worse-case in CipherGuard
Factor Factor

mbedTLS-AES 1607 2.09
mbedTLS-Base64 541 1.75

mbedTLS-ChaCha20 4403 2.32
mbedTLS-ECDH 88852 2.26
mbedTLS-RSA 78750 2.92

Average 34831 -

Chapter 3. Side-channel Mitigation 101

3.6.5 Security Analysis

Locations of Nonce Buffers. In CipherGuard, the nonce buffers contain

both pre-generated random numbers and currently used nonces, stored in the .bss

section. The security of masking operations across all variants relies on the integrity

and confidentiality of these nonce buffers to prevent leakage. While accessing

these buffers may create execution traces that could be exploited, their security

is protected by Address Space Layout Randomization (ASLR), which loads the

.bss section into different memory locations each time. Attackers would need

to exploit memory vulnerabilities in the software, which is not the main focus

of CipherGuard’s protections. Thus, CipherGuard provides similar security

guarantees as CipherFix for nonce buffers.

Furthermore, even if ASLR is bypassed [219], the security of the nonce buffers

remains robust due to SEV memory encryption, which ensures that these buffers

are always encrypted. The pre-generated nonce buffer stays consistent, leading to

no variation in its ciphertext, while the currently used nonce is updated with each

use during masking operations, resulting in unpredictable ciphertext.

Quality of Nonce. In CipherGuard, the secret-aware register allocation plays

a crucial role in fundamentally eliminating ciphertext side-channel attacks by pre-

serving secrets within registers. However, the effectiveness of our software-based

probabilistic encryption scheme ultimately hinges on the quality of random number

generation. Therefore, to provide robust security guarantees, it is imperative to

ensure the reliability and randomness of the generated nonces.

We use the ECDSAMontgomery ladder algorithm from OpenSSL (Figure 3.3) as an

example to explore how secrets are safeguarded by masking operations in Variant 1

and Variant 2 of CipherGuard, with three different random number generation

techniques. Without any protection, the vulnerability point, where pbit ← pbit ∧
kbit spills the secret pbit into memory, can be exploited by attackers to construct

mappings of ciphertext-plaintext pairs and then infer each bit of the secret. We

aim to calculate the distribution changes of pbit without and with the software-

based probabilistic encryption method. To achieve this, we first disassemble the

binary to determine the entry address of the vulnerability point. Then we employ

hooks inserted by Pintool [170] to print the context when the instruction at this

point is executed. By running the cryptography library twice with different ECDSA

102 3.6. Evaluation

private keys, we track the writing of pbit 512 times within the loop. To quantify the

distribution changes of the secrets, we measure the entropy of the collected secret

sequence as H (X) = −
∑

x∈X p(x)log2p(x). The results under different variants

are presented in Table 3.7.

Table 3.7: Entropy of the secret distribution under different variants. For each
variant, we run the cryptography library twice to ensure that the original secrets
are different.

Secret Orig RDRAND AES XS+

secret1 0.99946 9.0 - -
secret2 0.99911 9.0 - -
secret3 0.99972 - 9.0 -
secret4 0.99910 - 9.0 -
secret5 0.99841 - - 9.0
secret6 0.99814 - - 9.0

0 200 400

1.25e+09

1.25e+09

1.25e+09

1.25e+09

1.25e+09

1.25e+09

1.25e+09
RDRAND_secret1

0 200 400
0

1

2

3

4

1e9 AES_secret3

0 200 400
0

1

2

3

4

1e9 XS+_secret5

0 200 400

6.27e+08

6.27e+08

6.27e+08

6.27e+08

6.27e+08

6.27e+08

RDRAND_secret2

0 200 400
0

1

2

3

4

1e9 AES_secret4

0 200 400
0

1

2

3

4

1e9 XS+_secret6

Figure 3.10: Scatter distribution of masked pbit under different variants. Each
secret sequence comprises 512 values.

For the six different unprotected secrets, the entropy is similar, hovering around

0.99, as each bit can only be either 0 or 1. This implies that the entropy of these

unprotected secret sequences leaks a significant amount of information. Then the

attacker can easily infer the pattern of the secret sequences from the ciphertext

side channel. After applying Variant 1 and Variant 2, the entropy of the secret se-

quences reaches 9.0, which is close to the “upper-bound” information entropy score

Chapter 3. Side-channel Mitigation 103

of 512 completely random numbers. Each iteration of the secret becomes random,

and it becomes exceedingly difficult for the adversary to deduce any meaningful

pattern from the masked secret sequences. The scatter distribution of the masked

secret sequences, as illustrated in Figure 3.10, showcases a completely random and

patternless distribution, further reinforcing the security of the masking approach

in CipherGuard.

Re-use of Nonces. InCipherGuard, the nonce selection is based on the address

of the target secret, leading to nonce reuse for secrets at the same address. When a

function repeatedly calls the same callee, the stack frames share the same address

space. However, CipherGuard maintains security through two key mechanisms:

varying parameters that keep ciphertext unpredictable under SEV and a masking

process that safeguards the callee against information leakage. As a result, an

attacker can only deduce that the same secret is being used by noticing identical

ciphertext sequences.

Increment-by-Three in Nonces. Updating nonces in Variant 1 is essential

for ensuring CipherGuard’s security. When consecutive keys differ significantly,

masked secrets produce unpredictable ciphertexts. However, in cases where the

key changes by only one bit, a weak nonce update (e.g., incrementing by one) can

expose this change through identical masked plaintexts. For example, as illustrated

in Figure 3.11, observing masked plaintexts starting from even and odd nonces can

leak up to four key bits, weakening security.

Keys 1 1 0 1 0

Even Nonce 0x4A7C3D94 0x4A7C3D95 0x4A7C3D96 0x4A7C3D97 0x4A7C3D98

Observe 1 0x4A7C3D95 0x4A7C3D94 0x4A7C3D96 0x4A7C3D96 0x4A7C3D98

Odd Nonce 0x25647b21 0x25647b22 0x25647b23 0x25647b24 0x25647b25

Observe 2 0x25647b20 0x25647b23 0x25647b23 0x25647b25 0x25647b25

Figure 3.11: A corner case arises when a one-bit change in the secret can be
revealed by observing identical masked plaintext across multiple masking.

This weak nonce update scheme can be resolved by incrementing the nonce by three,

ensuring that at least two bits of the masked plaintext differ between updates. This

approach blocks identical ciphertexts from revealing bit changes while maintaining

a similar performance.

104 3.7. Discussion

3.7 Discussion

Limitations. CipherGuard relies on the dynamic taint analysis to detect po-

tential sensitive memory access instructions. To ensure comprehensiveness of pro-

tection, we employ a conservative dynamic taint analysis method across multiple

secrets and inputs. While this method yields comprehensive taint results, it may

trigger unnecessary protection over the memory writes that do not lead to actual

ciphertext side-channel leakage, thus incurring additional runtime overhead. Elim-

inating this overhead necessitates a static, whole-program taint analysis capable

of precisely identifying all sensitive memory access instructions that lead to true

leakage. However, this remains an open problem, as contemporary research can

only statically analyze a small subset of the program [134, 148].

Potential Extensions. CipherGuard supports a comprehensive set of most

commonly used x86 instructions, including instructions for data movement, arith-

metic and logical calculations involving sensitive memory locations, comparison

instructions referencing sensitive memory cells, and zero or flag extension instruc-

tions, as well as frequently used SSE/AVX vector instructions. This coverage is

already sufficient for mitigating ciphertext side-channel vulnerabilities in common

cryptography applications. Nevertheless, CipherGuard offers a flexible interface

to accommodate additional instructions not currently handled by the tool. This

underscores its high degree of extensibility for future enhancements and adapta-

tions to evolving security requirements and architectural changes.

Compiler Compatibility. CipherGuard is general and stands independent of

specific features provided by any compiler framework. For instance, to implement

CipherGuard with GCC, one can replace the syntax specific to LLVM IR with

that of GCC IR while maintaining consistent taint propagation rules. Tainted

instructions identified during the taint analysis phase serve as targets for protection

within the lower-level GCC IR. Integrating the mitigation process into the register

allocation pass of GCC is straightforward, aligning with CipherGuard’s design

philosophy of seamless integration into compiler pipelines.

Chapter 3. Side-channel Mitigation 105

3.8 Conclusion

This chapter presentsCipherGuard, a compiler-aided tool evaluated to efficiently

and accurately mitigate ciphertext side channels on real-world cryptography appli-

cations, demonstrating high precision, efficiency, and scalability.

Chapter 4

Noninterference-based

Verification of Side-channels in

Microarchitectural Designs

4.1 Introduction

Micro-architectural side-channel attacks have incurred serious threats to computer

security over the past decades [160]. These side-channel attacks mainly exploit the

timing observations from hardware components (e.g., CPU cache [5, 7], Translation

Look-aside Buffer (TLB) [18, 220]) to infer confidential information. The essence of

these attacks is the interference [221] from the memory accesses between different

programs or even inside one program. Such interference leaves regular footprints

on certain hardware components, which can be captured by an adversary to recover

confidential information about the victim program. Past works have demonstrated

successful attacks to steal cryptographic keys (symmetric ciphers [3], asymmetric

ciphers [11, 13, 222], signature algorithms [142–144], post-quantum ciphers [223]),

keystrokes [224], visited websites [225], and system configurations [226].

To mitigate cache side-channel attacks, a variety of defense solutions have been pro-

posed. One promising direction is to design security-aware hardware components

to reduce or prevent side-channel information leakage. These designs mainly follow

two kinds of strategies. The partitioning-based solutions [67] physically partitioned

the shared cache components into multiple zones for different domain applications

107

108 4.1. Introduction

to achieve strong isolation. The randomization-based solutions [67, 78–80] obfus-

cated the adversary’s observations by randomizing the cache states. These ar-

chitectures exhibit great generalization and efficiency in protecting the programs

running atop them. Although these architectures have been thoroughly considered

and evaluated by researchers during the design phase, it is still important to check

whether there are any potential security vulnerabilities in these sophisticated cache

systems before fabricating the actual chips.

Over the past years, various methods have been proposed to evaluate cache side-

channel vulnerabilities in hardware components. Unfortunately, they suffer from

certain limitations, making it hard to apply them for practical and comprehensive

verification. Specifically:

• Some works [67, 78–80] simulated the mechanisms of the newly designed

caches against different types of side-channel attacks and empirically evalu-

ated their effectiveness. Due to the lack of formal verification, they are not

comprehensive, and can possibly miss some side-channel vulnerabilities. It

also takes a lot of time to perform the cycle-accurate simulations in order to

obtain convincing evaluation results.

• A couple of approaches [136–138] abstractly described the cache behaviors

and define the execution paths that are treated as suspicious behaviors under

a side-channel attack. Thereafter, they exhaustively search whether these

suspicious behaviors are hidden in the cache behavior combinations. However,

the modeling process is not formally guaranteed. Besides, the analysis is

based on the exhaustive exploration of the execution traces, which can easily

suffer from the combinatorial explosion issue.

• Another challenge in verifying cache architectures is their probabilistic behav-

iors. To handle this issue, some works introduce methods based on statistics

and entropy for security analysis. Zhang et al. [139] formally constructed a

cache state transition simulation through model checking techniques to get

stable probability matrices within finite steps. To quantify information leak-

age, they calculated the mutual information between the input distribution

and observable outputs. He et al. [140] established a probabilistic informa-

tion flow graph to model the interaction between the victim and attacker

programs in the CPU cache. They defined the concept of security-critical

Chapter 4. Side-channel Verification 109

paths as the union of an attacker’s observation and a victim’s information

flow. Equal probability of each node throughout the security-critical paths

means the attacker cannot distinguish the victim’s cache-accessed informa-

tion. These methods face the balance issue between probability accuracy and

state explosion. Besides, manual analysis and associating the probability to

hardware behaviors can lead to incomprehensive conclusions.

• New hardware description languages (HDL) were introduced to design se-

cure hardware circuits [227–229] with formal proof. These solutions are not

comprehensive for side-channel analysis: they can only be applied to the

partitioning-based caches while failing to evaluate the randomization-based

designs with stochastic behaviors. Besides, they are not user-friendly and

need manual work for attaching security labels and defining security policies.

To overcome the limitations of assessing the security of cache designs, this chap-

ter introduces a novel methodology based on formal methods by theorem proving

to comprehensively verify the security of cache architectures against side-channel

attacks. First, we formalize the specifications of cache designs in an event-state

machine way. We offer functional correctness proofs to guarantee the consistency

between the specifications and designs, which is ignored in prior works. Second,

we design a noninterference reasoning framework to verify the side-channel vul-

nerability resident in the cache specifications. It adopts the concept of entropy

[230, 231] as the theoretical basis to assess the information leakage. We propose

two unwinding conditions to unify and evaluate different types of secure caches

(e.g., partitioning-based, randomization-based), making our solution comprehen-

sive. Third, we implement our framework in Isabelle/HOL [232], and adopt it

to verify eight state-of-the-art cache designs. In summary, we make the following

contributions:

• We implement a noninterference reasoning framework based on information

entropy that unifies both the deterministic and non-deterministic event mod-

els. We define nonleakage as security property by mutual information and

derive two general unwinding conditions. We design interfaces for this frame-

work to offer verification services.

110 4.2. Background

• We formally specify each cache design in an event-state machine way on top

of general set-associative cache layouts, forming a complete cache specifica-

tion. We prove the cache specification is an instantiation of the reasoning

framework, hence can be efficiently verified security properties.

• We evaluate our entropy-based noninterference reasoning framework on eight

state-of-the-art cache designs. The verification practice shows that our method-

ology possesses high theoretical reliability and flexibility.

We present the background about cache side-channel attacks and mutual informa-

tion in Section 4.2. We give the threat model and briefly describe the methodology

in Section 4.3. The design of reasoning framework is shown in Section 4.4. Sec-

tion 4.5 presents a case-study, and Section 4.6 analyzes the verification results of

eight state-of-the-art cache architectures. Section 4.7 concludes this chapter.

4.2 Background

4.2.1 Cache Side-channel Attacks

Modern computer architectures adopt various optimizations to accelerate the ex-

ecution, at the cost of confidentiality threats. One typical example is the caching

technique: a small hardware unit is introduced to store the recently accessed data,

which are expected to be used again due to the locality principle. Obtaining data

directly from this unit is much faster. However, such timing differences enable

an adversary program to recover the victim program’s access traces, when these

programs share the same hardware component. Such attacks have been realized in

different levels of CPU caches and TLBs.

Cache hierarchy. Most CPU caches are organized in a n-way set-associative way.

A n-way set-associative cache can be treated as a two-dimensional data array. Each

row is called a cache set, which is further divided into n cache lines. Each memory

block is mapped to one cache set indexed by its memory address. This block can

be stored in any cache lines in this set, determined by a replacement policy. When

a CPU core wants to access a memory block, if it resides in the cache, the CPU

can directly obtain it, resulting in a cache hit with a fast access speed. The CPU

Chapter 4. Side-channel Verification 111

has to fetch the data from the main memory to the cache, otherwise. This results

in a cache miss with a much slower access speed. Particularly, a cache with only

one way in each set (i.e., n = 1) is a direct-mapped cache, while a cache with only

one set is called fully-associative.

…

set 0

set 1

set 2

set 254

set 255

… …

(a) (b) (c)

set 0

set 1

set 2

set 254

set 255

set 0

set 1

set 2

set 254

set 255

Figure 4.1: Side-channel attack scheme. Sub-figure (a) represents the prepa-
ration phase, (b) the waiting phase, and (c) the observation phase.

Cache attacks. The first cache attacks deduce cryptographic secrets by observ-

ing the whole execution time [2, 3, 6, 8]. In recent days, cache side-channel at-

tack techniques narrow down to a smaller granularity. The timing difference be-

tween a cache hit and a cache miss can reveal information about the program’s

access traces. A cache side-channel attack typically involves three steps (see Fig-

ure 4.1). (1) Preparation: the adversary manipulates the states of certain cache

lines with its own address space [233]. For instance, PRIME-PROBE attack [5]

fills up the entire critical cache sets, while a FLUSH-RELOAD attack [13] and

a FLUSH-FLUSH attack [163] evict certain cache lines through the clflush in-

struction. The area controlled by the adversary is shared with the victim. And,

the adversary has the knowledge that the victim’s access pattern in this area is

related to its confidential information. (2) Waiting: the adversary does nothing

until the victim finishes several execution circles. The victim may load its data

blocks into the cache and replace the cache lines occupied by the adversary. (3)

Observation: the adversary collects the footprints left by the victim program. For

example, the PRIME-PROBE attack re-accesses the critical cache set to check if

certain blocks were evicted by the victim. The FLUSH-RELOAD attack reloads

the target cache lines to determine if it has been touched by the victim. The

FLUSH-FLUSH attack re-flushes the target cache lines to check whether data

is loaded into these lines by the victim. The victim’s cache access pattern is thus

leaked to the attacker.

112 4.2. Background

TLB attacks. Modern memory systems utilize a Memory Management Unit

(MMU) to translate the virtual addresses (VA) issued from CPU to physical ad-

dresses (PA) for accessing main memory. The VA-PA mapping is stored in the

page table for translation. A small hardware unit, TLB, is implemented to store

the latest used mapping to accelerate the translation. Similar as the CPU cache,

a TLB is also organized by the set and way structure. Therefore, the side-channel

techniques from cache can be extended to attack the TLB to extract the memory

accesses [18, 220].

4.2.2 Mutual Information

Intuitively, the concept of noninterference tells that one domain (denoted as vic-

tims) does not affect the observation of another domain (denoted as adversaries).

The concept is consistent with the cache side-channel attack schemes because an

adversary can deduce the victim’s memory access patterns that are associated with

secrets when its observation depends on the victim’s behaviors. Furthermore, from

the perspective of the probability distribution, information leakage of the side-

channel is equivalent to the existence of a dependency relationship between the

input (victim’s behaviors) and output (adversary’s observation). And, this kind of

dependency relationship can be calculated by mutual information. This is the mo-

tivation of this chapter where we interpret the cache side-channel attack schemes by

noninterference and measure the information flow of this noninterference through

mutual information of Shannon Theory [230, 231].

We denote a victim’s behaviors as the uncertain information that an attacker wishes

to explore by side-channel attacks. This information is viewed as input X and has

probability distribution X . First, entropy defines the uncertainty of the information

itself, of H (X) = −
∑

x∈X p(x)log2p(x). Second, conditional entropy measures the

uncertainty about X when the attacker has the knowledge of output Y . It is defined

as H (X |Y) = −
∑

y∈Y p(y)
∑

x∈X p(x|y)log2p(x|y). Lastly, mutual information

between X and Y measures the information that an adversary can learn about X

if he gains the knowledge through output Y , defined as I(X;Y) = H(X)−H(X|Y).

One property of mutual information is that it is symmetry: I (X ;Y) = I (Y ;X).

It can be calculated through a joint probability matrix, as shown in equation 4.1.

Chapter 4. Side-channel Verification 113

I (X ;Y) =
∑
x∈X

∑
y∈Y

p(x, y)log2
p(x, y)

p(x)p(y)
(4.1)

=
∑
x∈X

∑
y∈Y

p(x)p(y|x)log2
p(y|x)
p(y)

(4.2)

4.2.3 Isabelle/HOL

Isabelle/HOL [232] is a higher-order logic theorem prover. It offers common types

(e.g., naturals (nat), integers (int) and booleans (bool)). The keyword datatype is

used to define an inductive data type. Composed data types include tuple, record,

list, and set. Projection functions fst and snd return elements t1 and t2 of a tuple

(t1 × t2). Isabelle/HOL offers record type to include multiple elements of different

data types. Assignment symbol = is used to initialize the contents of a record,

while := is used to update it. Lists are defined by an empty list denoted as [],

and a concatenation constructor represented as #. The ith component of a list

xs is accessed by xs!i. The cardinality of a set s (i.e., |s|) is denoted as card s,

returning zero when set s is infinite. Isabelle/HOL provides definition command to

specify a non-recursive function, while primrec command for primitive recursions.

Isabelle/HOL supports parametric theories with the keyword locale. A locale in-

cludes a series of parameter declarations (with keyword fixes) and assumptions

(with keyword assumes). Isabelle/HOL users can instantiate a locale through in-

terpretation command, where concrete data is assigned to parameters and declara-

tions are added to the current context. We construct a parametric noninterference

reasoning framework through locale command and instantiate it in different cache

architecture scenarios through interpretation command.

4.3 Methodology Overview

4.3.1 Threat Model

We consider the cache architectures to be verified are involved in the following

threat model. The victim and the attacker share the same cache environment and

114 4.3. Methodology Overview

a cross-core/VM attack allows the attacker and the victim to execute in parallel

on different cores/VMs. The attacker cannot directly observe the memory content

from the CPU, probing cache states to check whether the victim’s data is resident in

the cache indirectly instead. This model captures most cache side-channel attacks

in the literature. For example, EVICT-TIME attack [5] measures the latency of

victim’s program, PRIME-PROBE attack [5, 7, 11], FLUSH-RELOAD attack

[13] and FLUSH-FLUSH attack [163] measure the latency of attacker’s program.

We also mention that the attacker accurately monitors both cache set and cache line

granularities. This is because modern OS adopts the page sharing technique that

removes the duplication of shared libraries, enabling probing the shared libraries

narrow to a cache line.

4.3.2 Architecture

In a micro-architectural side-channel attack, an adversary can deduce the memory

access pattern when its observation is dependent on the victim’s behaviors. From

the perspective of the joint probability distribution, side-channel leakage is equiv-

alent to the existence of a dependency relationship between the input and output

of the channel. This is the motivation to employ joint probability distribution for

side-channel quantification and verification.

The workflow of our proposed methodology is shown in Figure 4.2. It includes two

components. (1) A reasoning framework is designed to quantify the information

leakage of the target system. The essence of the framework is to interpret the

noninterference property through mutual information. (2) A complete cache spec-

ification includes the cache behavior formalization and the general cache layouts.

The cache behavior is described as an event-state transition. Its formalization is

first proved to meet the consistency with its design. The cache specification instan-

tiates the interface layer offered by the reasoning framework. Therefore, for verify-

ing whether a cache specification satisfies the security properties, we only need to

verify whether it satisfies two unwinding conditions. Violations of both conditions

indicate the cache design is vulnerable to side-channel attacks. In this chapter,

we mainly focus on the fundamentals of information leakage, while skipping the

analysis of adversarial strategies for extracting the secrets from the footprints of

Chapter 4. Side-channel Verification 115

the victim program. As shown in Figure 4.2, the reasoning framework contains the

following components.

instantiate

Reasoning Framework Noninterference Layer

satisfy Joint Probability
Distribution

Conditional
Probability Matrix

Interface
Layer

construct

Unwinding
Conditions

Constructing

Cache Specification

Cache Designs

Cache Layouts

Computer Architect/
HW Verification Engineer

Verification
Results

instantiate

generate

Figure 4.2: Workflow of our proposed approach.

Interface layer: this layer is used to connect the given cache specification to the

noninterference layer. The interface layer offers an event-state transition function

and output function to parse cache behaviors into probabilistic representations.

Noninterference layer: this is the core of our reasoning framework. It introduces

a parameterized joint probability distribution between the victim’s information X

and attacker’s observation Y . We calculate the mutual information I (X ;Y) as

information flow security property to quantify how much information the attacker

can learn about X from Y . The joint probability distribution can be constructed

by multiplying a series of probabilistic inputs and a conditional probability matrix.

The conditional probability matrix models the relationships between the input and

the output of cache designs.

Unwinding conditions: this defines the conditions to satisfy information flow

security property, meaning to make the mutual information zero according to equa-

tion 4.2. We deduce two unwinding conditions as shown in equation 4.3, when we

stipulate that each input probability is greater than zero. The first condition C1

indicates that the attacker learns nothing when there is no observation. The second

condition C2 shows the attacker’s observation is constant and independent of the

victim’s behaviors.

C1 : ∀x y. p(y|x) = 0 −→ I(X;Y) = 0

C2 : ∀x y. p(y|x) = p(y) −→ I(X;Y) = 0
(4.3)

116 4.4. Design of Reasoning Framework

4.3.3 Available Proving Technique

Separation logic [234] is a powerful tool for reasoning about memory and can prove

properties such as the independence between different regions of memory or differ-

ent parts of a system. From this perspective, separation logic can indeed be used

to prove cache side-channel leaks, where changes to one part of the cache do not

affect the rest of the system. Furthermore, separation logic provides a more gran-

ular analysis of cache usage, allowing for precise reasoning about the transitions

between different cache states.

However, in the context of side-channel verification, specifically proving the depen-

dency relationship between the input and output of the channel, it is not necessary

to prove that a specific cache entry remains unchanged during cache state tran-

sitions. This is because randomization-based cache designs may affect any cache

entry when an insecure cache miss occurs, making it difficult to guarantee that a

cache entry stays the same throughout state transitions. In this scenario, using

separation logic could potentially complicate the proof of side-channel leaks.

We focus on verifying whether changes in cache entries result in detectable infor-

mation leakage, and our framework provides the precision needed to ensure the

accurate detection of side-channel leaks. While separation logic could theoretically

assist in proving isolation between cache entries, our formalization relies on mutual

information in Isabelle/HOL to verify whether the leakage caused by changes in

specific cache entries is significant enough to be detected. This approach enables

us to prove the properties of information flow and leakage, rather than concen-

trating on low-level memory separation. While memory separation can be seen as

complementary to our framework, it is not the primary focus of this analysis.

4.4 Design of Reasoning Framework

In this section, we provide more details about our reasoning framework.

Chapter 4. Side-channel Verification 117

4.4.1 An Abstract State Machine

A cache specification implements a state machine through instantiating the inter-

face layer. We construct the interface layer for the purpose of re-usability because

verification of any cache architecture only requires instantiating the interface func-

tions.

First, we model the input distribution space as P(I ×P), which is the power-set of

type I × P . Label I describes the input content and P is of real type describing

probabilities. We further stipulate any valid input distribution is neither empty

nor infinite (we follow the Isabelle/HOL definition where the cardinality of infinite

sets is zero). We omit input elements with zero-probability because they will not

result in any outputs. We also guide that all inputs are different and the sum

of the probabilities of all inputs equals one. We use the operator . to denote an

attribute of a input, e.g., x.i and x.p represent the content and probability of input

x, respectively.

Definition 4.1 (Valid Input Distribution Sets).

makeInput ≜ {X . | X | > 0 ∧ (∀m n ∈ X . m ̸= n −→ m.i ̸= n.i) ∧

(∀d ∈ X . d.p > 0) ∧
∑
d∈X

d.p = 1}

Next, we formalize the event-state transition function as ψ, which describes a non-

deterministic event model. It is a single step execution triggered by the event label

and the input, of type E × X → P(S × S). Label S represents the state space

and E is the set of event labels. We use ψ(e, x)/s to represent that all event-state

transitions happen when we execute the event e on the state s with input x.

Definition 4.2 (Event-state Transition Function from State s).

ψ(e, x)/s ≜ {t. t ∈ ψ(e, x) ∧ (∃s′. t = (s, s′))}

Then, we define an abstract output function that extracts the output from each

transition tuple (s, s′), of type ϖ : (S × S) → O. Label O describes the output

content. With these functions, we construct an abstract state machine in the

interface layer.

118 4.4. Design of Reasoning Framework

Definition 4.3. The interface layer implements an abstract state machineM as

tuple ⟨S, E ,X ,O, ψ,ϖ⟩, where S is the state space, E is the set of event labels, X
and O are the valid input distribution and output content respectively, ψ is the

event-state transition function, and ϖ is the output function.

4.4.2 Noninterference

The concept of noninterference indicates that the behaviors of one domain do

not affect the observation of another domain [221]. In our reasoning framework,

these two domains correspond to the victim’s input and the attacker’s observation

in the side channel. To describe such a side-channel mechanism, we construct a

joint probability distribution through the functions from the interface layer step

by step. We quantify the effect of the interaction between the victim and attacker

by calculating mutual information from the joint probability distribution.

A joint probability can be written as P(X)P(Y |X). Therefore, to instantiate a

joint probability distribution is to construct the input distribution P(X) and a

conditional probability matrix P(Y |X). The input distribution can be directly

inherited from the interface layer. For example, it is any set that satisfies X ∈
makeInput.

To construct a conditional probability matrix, we first introduce a conditional

probability transition function Cpt. It first applies output function to each state

transition tuple to get all possible outputs, shown as O = {d. ∃t ∈ ψ(e, x)/s. d =

ϖ(t)}. Then, for each output o ∈ O, it counts all the transitions that produce the

output o to get the probability, which is the proportion of these transitions in the

total transitions. The definition of Cpt is as follows.

Definition 4.4 (Conditional Probability Transition Function).

Cpt(e, x)/s ≜ {y. ∃o ∈ O.

Tsub = {t. t ∈ ψ(e, x)/s ∧ϖ(t) = o} ∧

y.o = o ∧ y.p = | Tsub |
| ψ(e, x)/s |

}

where O = {d. ∃t ∈ ψ(e, x)/s. d = ϖ(t)}

Chapter 4. Side-channel Verification 119

The result of this function is the output distribution Y , of type P(O×P). We can

easily prove the properties the output distribution satisfies as follows.

Lemma 4.1 (Output Distribution).

Y = Cpt(e, x)/s and it satisfies | Y | > 0 ∧

(∀m n ∈ Y . m ̸= n −→ m.o ̸= n.o) ∧ (∀d ∈ Y . d.p > 0) ∧
∑
d∈Y

d.p = 1

The function Cpt only takes one input while the valid input distribution X contains

limited input contents. Therefore, the next step is to apply the function Cpt to

each input in X . The result of this process is a conditional probability matrix

W . Each row of the matrix (w[y1|xi],w[y2|xi] . . . w[y|Y ||xi]) can be viewed as the

representation of the conditional probability distribution of output y1, y2 . . . y|Y |

under the input xi.

Now it is time to build the joint probability distribution. The following function

makeJoint matches each input x that belongs to the input distribution X with

any conditional probability y that is part of Cpt(e, x)/s. Then the joint probability

is the product of the corresponding probabilities of these two elements. Joint

distribution J is defined as P((I × O)× P).

Definition 4.5 (Joint Probability Distribution).

makeJoint ≜ {j. ∃x ∈ X . ∃y ∈ Cpt(e, x)/s.

j.i = x.i ∧ j.o = y.o ∧ j.p = x.p ∗ y.p}

The computation of mutual information from equation 4.1 requires two marginal

probability distributions. We take the marginal probability of the input x as an

example: we first collect the subset Jsub = {j. j ∈ makeJoint. j.i = x.i} that takes
all elements whose input dimension is equal x.i from the joint probability distri-

bution. Then the marginal probability is the sum of the probabilities of all such

elements. Its definition is shown below. We omit the definition of margOutput.

120 4.4. Design of Reasoning Framework

Definition 4.6 (Input Marginal Probability Distribution).

margInput ≜ {mi. ∃x ∈ X . Jsub = {j. j ∈ makeJoint. j.i = x.i} ∧

mi.i = x.i ∧mi.p =
∑

d∈Jsub

d.p}

Now we give the definition of mutual information based on equation 4.1. Func-

tion mutualInfo takes each element j ∈ makeJoint from the joint probability

distribution, and then calculates the marginal probabilities of the input (mi) and

output (mo) respectively. Afterwards, the value of the mutual information is the

accumulation of j.p ∗ log2 j.p
mi.p∗mo.p

, when iterating the element j.

Definition 4.7 (Mutual Information).

mutualInfo ≜
∑

j∈makeJoint

j.p ∗ log2
j.p

mi.p ∗mo.p

4.4.3 Unwinding Conditions

With mutual information calculated above, we assess the information leakage of

noninterference by the following definition.

Definition 4.8 (Information Leakage).

nonleakage ≜ ∀e X s. mutualInfo = 0

According to equation 4.3, two unwinding conditions imply that the mutual infor-

mation equals zero. We give the definitions of these two unwinding conditions and

prove the implication relationships.

Theorem 4.2 (Condition 1: No Observation).

∀e s. ∀x ∈ X . ∀y ∈ Cpt(e, x)/s.

y.p = 0 −→ mutualInfo = 0

Proof. When the conditional probability y ∈ Cpt(e, x)/s equals zero, the cor-

responding joint probability j.p = x.p ∗ y.p also equals zero. Then unfolding

Chapter 4. Side-channel Verification 121

the definition of mutualInfo and substituting j.p as 0, the accumulated result

0 ∗ log2 0
mi.p∗mo.p

is zero. In the end, the mutual information is zero.

Theorem 4.2 gives the advice that if the attacker cannot observe anything from the

footprints released by the victim, then the cache dose not leak any information.

This condition can be used in some partitioning-based designs [67].

Theorem 4.3 (Condition 2: Constant Observation).

∀e s. ∀x ∈ X . ∀y ∈ Cpt(e, x)/s.

y.p =
∑

d∈Jsub

d.p −→ mutualInfo = 0

where Jsub = {j. j ∈ makeJoint. j.o = y.o}

Proof. For any joint probability j ∈ makeJoint, its corresponding marginal prob-

ability of the input mi.p equals its input probability x.p because the sum of

the probabilities of all elements in Cpt(e, x)/s equals one. Also, the joint prob-

ability j.p can be calculated by x.p ∗ y.p. We have y.p =
∑

d∈Jsub
d.p, where

Jsub = {j. j ∈ makeJoint. j.o = y.o} according to the condition 2 above. The

accumulated result in the definition of mutualInfo, j.p ∗ log2 j.p
mi.p∗mo.p

of equa-

tion 4.1, is then folded and substituted as x.p ∗
∑

d∈Jsub
d.p ∗ log2

x.p∗
∑

d∈Jsub
d.p

x.p∗
∑

d∈Jsub
d.p

. Its

value equals zero, leading the mutual information to be zero as well.

Theorem 4.3 describes a scenario where the conditional probability distribution is

constant for any input. Therefore, the footprints caused by any input are the same.

Note that Theorem 4.3 only requires the values of each column in the matrix W
to be the same. When this condition is applied into cache designs, we can find

that some randomization-based strategies further manipulate that the values of

w[y1|xi], w[y2|xi] . . . w[y|Y ||xi] are in the same probability, which is one special case

of the above condition.

In the end, either of these two unwinding conditions can imply no information

leakage, as shown in the following theorem.

Theorem 4.4 (Unwinding Conditions Reasoning).

(condition1 ∨ condition2) =⇒ nonleakage

122 4.5. Application of Our Methodology

4.5 Application of Our Methodology

In this section, we demonstrate how to verify three existing micro-architectural de-

signs: conventional Set-Associative (SA) cache, security-aware Random-Permutation

(RP) cache [67] and Random-Fill (RF) TLB [235] with our framework.

4.5.1 Verifying Cache Designs

Modeling Cache Architecture. We start with the specification of the general

cache layouts. A cache line is the smallest unit among cache layouts, which is

defined as a record ca line = ca set, ca way, ca tag, valid, lock, owned. The

first three fields directly represent the cache index, cache way and cache tag. The

following fields denote whether the cache line is used, whether its content is pro-

tected, and which process is occupying it. We define the cache structure and the

specification it needs to satisfy as follows: the parameterized cache layouts are

constructed by a list whose length is M, where each element of the list represents

a cache set with W cache lines (i.e., W-ways). In a cache set, the ca set identifier

of each cache line equals its cache set index, and all cache lines in one cache set

have different ca way.

Definition 4.9 (The Cache Structure).

Cache :: “(ca line set) list” and it satisfies : | Cache | =M ∧

(∀l < M. | Cache ! l | = W) ∧ (∀l < M. ∀e ∈ (Cache ! l). e.ca set = l) ∧

(∀l < M. ∀ei ej. ei ∈ (Cache ! l) ∧ ej ∈ (Cache ! l).

ei ̸= ej −→ ei.ca way ̸= ej.ca way)

With the cache layouts definition, we formalize the memory request that acts as

the input from the victim and is performed by the corresponding cache design

on the cache layouts. A memory request is denoted as a record mem req =

tagbits, setbits, protected, process. Label tagbits is used to compare the tag field

of a cache line, and setbits is sent to the cache mapping to get the actual cache

index. Label protected denotes whether the memory data is protected by its owner,

Chapter 4. Side-channel Verification 123

and process represents the owner of this memory block in two values: H and L

denote the confidential and non-confidential processes respectively. Last, we design

the system state that includes the cache structure and the mapping structure from

a memory request to the cache set index. The structure is formally defined as

record state = Cache, Mapping.

Specifying Cache behaviors.With these definitions, we construct behavior spec-

ifications for two cache designs. First, a SA cache follows the traditional view of

a cache design, and we omit the explanation here. Its behavior specification is

defined below.

definition sa_read ::

"state ⇒ memory_request ⇒ state set"

where "sa_read s mr ≡
let Mapping = s->maps; Cache = s->sram;

redir_index = Mapping -> (mr->index); // find real set index

redir_set = Cache ! redir_index in // locate cache set

if probe_line redir_set mr

then {s} // tag hits and cache hit

else let // cache miss

r_line = replace_policy redir_set; // choose line to be replaced

nset = insert mr (redir_set - {r_line}) in // replace r line

{s(|sram := update Cache redir_index nset |)}" // update cache set

We show correctness of the specification by proving that it follows the behaviour

of the cache implementation. Lemma 4.5 shows that the execution of the read

operation in the SA cache is deterministic and only one cache line in the mapped

cache set is updated (lmr refers to the mapped cache set index), while other cache

sets remain the same when a cache miss happens.

Lemma 4.5 (Correctness of SA Cache Read).

[[∀e ∈ s.Cache ! lmr. e.ca tag ̸= mr.tagbits]] =⇒

[[∃!s′ ∈ sa read mr s. (∀l ̸= lmr. s
′.Cache ! l = s.Cache ! l) ∧

| (s′.Cache ! lmr) ∩ (s.Cache ! lmr) | = | s.Cache ! lmr | −1]]

Next, for the RP cache, the workflow of handling memory requests is shown in Fig-

ure 4.3.

124 4.5. Application of Our Methodology

Choose R in set S

Normal miss
procedure

Access D
without
caching

Randomly
select set S’;
Evict R’ in S’

Randomly
select set S’;

Replace R’ in S’
with D

Swap mappings
of S, S’;

Invalidate lines
in S, S’

End

No

Yes

No

No

Yes

Yes

Request D

Hit?

R and D are from
same process?

R and D have
same P-bit?

Normal hit
procedure

Figure 4.3: Workflow of Random Permutation Cache

RP cache utilizes three strategies to randomize the observation of the adversary.

(1) When there is an external cache miss (Column 1: the mapped cache line does

not belong to the current process), RP cache randomly chooses a cache set and

selects one cache line according to the replacement policy in this set to replace

the request memory. (2) When there is an internal miss (Column 2: the mapped

cache line belongs to the current process but has a different protection flag), RP

cache randomly chooses a cache set and selects one cache line according to the

replacement policy in this set to evict it without caching. These two strategies will

result in non-deterministic cache state transitions. (3) For the external cache miss

(Column 1), RP cache also dynamically changes the memory-to-cache mapping, so

even if the attacker can deduce the mapping for one read operation, it would fail

for the next time. The specification of RP cache is defined below in a way of the

event-state transition function.

definition rp_read ::

"state ⇒ memory_request ⇒ state set"

where "rp_read s mr ≡
let Mapping = (if mr->thread = H then s->map_H else s->map_L);

Cache = s->sram;

redir_index = Mapping -> (mr->index); // find real set index

redir_set = Cache ! redir_index in // locate cache set

if probe_line redir_set mr

Chapter 4. Side-channel Verification 125

then {s} // tag hits and cache hit

else let // cache miss

r_line = replace_policy redir_set; // choose line to be replaced

policy_line = // randomly select R’

{t. ∃ l ∈ {0..|Cache| - 1}. t = replace_policy (Cache ! l)} in

if r_line->owned = mr->thread then

if r_line->lock = mr->protect then let // Column 3

// normal miss procedure

nset = insert mr (redir_set - {r_line}) in

{s(|sram := update Cache redir_index nset |)}
else // Column 2

// randomly evict without caching

{t. ∃ r’_line ∈ policy_line. let

nset = (Cache ! (r’_line->index)) - {r’_line} in

t = s(|sram := update Cache (r’_line->index) nset |)}
else // Column 1

if mr->thread = H then

{t. ∃ r’_line ∈ policy_line.

if r’_line->index = redir_index then let

// only invalidate redir set

nset = insert mr (empty Cache!(r’_line->index)) in

t = s(|sram := update Cache (r’_line->index) nset,

map_H := swap s->map_H redir_index (r’_line->index) |)
else let

// invalidate both redir set and policy line

nset = insert mr (empty Cache!(r’_line->index));

nredir_set = empty redir_set in

t = s(|sram := update (update Cache (r’_line->index) nset)

redir_index nredir_set,

map_H := swap s->map_H redir_index (r’_line->index) |)}
else // mr -> thread = L

{t. ∃ r’_line ∈ policy_line.

if r’_line->index = redir_index then let

// only invalidate redir set

nset = insert mr (empty Cache!(r’_line->index)) in

t = s(|sram := update Cache (r’_line->index) nset,

map_H := swap s->map_L redir_index (r’_line->index) |)
else let

126 4.5. Application of Our Methodology

// invalidate both redir set and policy line

nset = insert mr (empty Cache!(r’_line->index));

nredir_set = empty redir_set in

t = s(|sram := update (update Cache (r’_line->index) nset)

redir_index nredir_set,

map_H := swap s->map_L redir_index (r’_line->index) |)}"

We give a lemma to prove the correctness of cache layout when a RP cache read

is issued and a miss happens. It indicates that there will be multiple state transi-

tions when a cache miss happens, showing non-deterministic execution. For each

transition, there will be one cache line from a random cache set updated, while

other cache sets remain the same. Here, lmr refers to the original mapped cache

set index.

Lemma 4.6 (Correctness of RP Cache Read).

[[∀e ∈ s.Cache ! lmr. e.ca tag ̸= mr.tagbits]] =⇒

[[∀s′ ∈ rp read mr s. ∃!l. (∀l′ ̸= l. s′.Cache ! l′ = s.Cache ! l′) ∧

| (s′.Cache ! l) ∩ (s.Cache ! l) | = | s.Cache ! l | −1]]

Verifying Side-channel Leakage.With the instantiation of the event-state tran-

sition function (i.e., the SA and RP cache specifications), we instantiate the re-

maining two functions to complete the instantiation of the interface layer of the

reasoning framework.

Due to direct inheritance, the memory request distribution issued from the victim

is regarded as X , of concrete type P(mem req × P). Next, we instantiate the ob-

servation function ϖ. According to the correctness proofs, only one cache set is

updated inside those state transitions for each cache miss. Therefore, the attacker

can regard the state transition with the same updated cache set as the same ob-

servation when re-accessing the cache. For convenience, we use the cache set index

to represent the observable state transitions.

Now, we construct the attack-simulated cache layout specification that statically

demonstrates how the attacker manipulates the cache layout with its data. It

describes the circumstances of the preparation phase shown in the leftmost picture

Chapter 4. Side-channel Verification 127

of Figure 4.1. A cache line e can be differentiated through identifier e.owned = H

and e.owned = L, denoting e is occupied by a confidential or non-confidential

process. An attacker use a series of memory accesses without cache collision to

fill part of the cache. The specification of manipulated cache below indicates that

the attacker’s accesses to each memory address in the m s will result in a cache

hit. Thereafter, the victim’s access to these manipulated cache areas will change

their ownership, resulting in observation to the attacker if re-accessing this memory

space.

Definition 4.10 (The Attack-simulated Cache Layout).

m s :: “mem req set” and it satisfies :

∀m ∈ m s. (m.process = L) ∧ (∃!e ∈ Cache ! (Mapping ⇀ m.setbits).

e.ca tag = m.tagbits ∧ e.owned = L)

As for the replacement policy in a cache set, we follow the practice in work [11]

where they considered the age replacement (e.g., LRU replacement or FIFO re-

placement) and stipulated that the adversary re-accesses a cache set in a reversed

order. In such a way, the victim evicts the oldest cache line at the adversary’s

waiting state, shown in the middle picture of Figure 4.1. If the adversary probes

the cache set in his original order, then the second-oldest (same for the followings)

cache line is evicted, leading to a miss on every probe. In contrast, if the attacker

probes the cache set in a reversed order, the cache line evicted by the victim can

be precisely probed without causing a miss on every probe. We leave the random

replacement policy as future work.

With all the preparations above, we turn to the security verification of cache read

operation. We prove the read operation in the SA cache breaks two conditions

with the following theorem:

Theorem 4.7 (SA Cache Read Produces Fixed Observation).

∀x ∈ X . Cpt(sa read, x)/s = {(s.MappmingH ⇀ x.setbits, 1)} ∧

(| X |> 1 −→
∑

d∈Jsub

d.p ̸= 1)

where Jsub = {j. j ∈ makeJoint. j.o = s.MappmingH ⇀ x.setbits}

128 4.5. Application of Our Methodology

Proof. Among the regions controlled by the attacker, any input x can cause an

observation with a conditional probability of 1 due to the deterministic execution.

Therefore, the SA cache read operation breaks the first unwinding condition. When

substituting the conditional probability of 1 with the joint probability distribution,

the probability of each element in the joint probability distribution equals the

probability of input x.p. As we known, a realistic program owns more than one

memory address, meaning the number of input distribution X must be greater

than one. Also, other inputs rather than x may be mapped to different cache sets,

causing s.MappmingH ⇀ x.setbits to be different. Then, there exists a marginal

output that is not equal to the conditional probability of 1. Therefore, the SA

cache read cannot meet the second unwinding condition.

If we calculate the information it leaks further, the value of each element in the

mutual information formula becomes x.p∗log2 1
x.p

, where different inputs may result

in distinct observations to attackers. Then, we prove the side-channel information

leakage in SA cache is
∑

x∈X x.p ∗ log2
1
x.p

.

Next, we turn to the RP cache read operation. It breaks the first unwinding condi-

tion but preserves the second one, which means it produces constant observations

to the attacker regardless of the victim’s input. We prove the theorem of RP cache

read as follows.

Theorem 4.8 (RP Cache Read Produces Constant Observation).

∀x ∈ X . Cpt(rp read, x)/s = {y. ∃o ∈ {0 .. M − 1}. y = (o,
1

M
)} ∧

(∀y ∈ Cpt(rp read, x)/s. y.p =
∑

d∈Jsub

d.p)

where Jsub = {j. j ∈ makeJoint. j.o = y.o}

Proof. With the attack specification, any input that causes an external or internal

cache miss requires the RP cache to select one cache line according to replacement

policy from each set for replacement or eviction. Therefore, the range of the ob-

servation is the whole cache set index under the extreme circumstance, where the

attacker can control the whole cache. This is shown in the first line of the above

theorem. Meanwhile, the probability of each cache set index equals 1
M
, where M is

the length of the whole cache index. When applying this knowledge to the reason-

ing framework, we can prove that the RP cache read operation satisfies the second

Chapter 4. Side-channel Verification 129

unwinding condition. The observation range narrows under the non-extreme cir-

cumstance, while all the observations have a uniform probability. Therefore, there

is no information leakage through this process.

4.5.2 Verifying TLB Designs

Modeling TLB architecture. A memory access to the TLB contains two fields:

va and protect, representing the virtual address issued from CPU and whether

the page address is protected, respectively. The TLB structure is similar to the

cache specification introduced in Section 4.5.1. Each TLB entry is defined as a

record tlb line = tlb set, tlb way, tlb va, valid, lock. The field tlb va acts as an

identifier of the TLB entry representing the virtual address. The TLB structure

also satisfies the same constrains as the cache in Definition 4.9. In a TLB design

all the processes use the same index mapping. The state of its state machine at

the application layer is defined as record state = TLB, Mapping.

Choose R in set S

Fetching D
without caching

Randomly select
non-secure
address D’;

Fill TLB with D’

Fetching D
without caching

Randomly
select secure
address D’;

Fill TLB with D’

Normal miss
procedure

End

No

Yes

NoNo
Yes

Yes

Request D

Hit?

Secure
address D?

Secure
address R?

Normal hit
procedure

Figure 4.4: Workflow of Random Fill TLB

Specifying TLB behaviors. The mechanism of the RF TLB is shown in Fig-

ure 4.4. Different from the RP cache, RF TLB randomly selects a page address

from secure or non-secure page address regions to fill the TLB when a TLB miss

happens. This results in non-deterministic TLB state transitions as well. The

specification of RF TLB is defined below.

130 4.5. Application of Our Methodology

definition rf_search ::

"state ⇒ memory_request ⇒ memory_request set ⇒ state set"

where "rf_search s mr mrs ≡
let Mapping = s->maps; TLB = s->sram;

redir_index = Mapping -> (mr->index); // find real set index

redir_tlb = TLB ! redir_index in // locate tlb set

if probe_line redir_tlb mr

then {s} // tag hits and tlb hit

else let // tlb miss

r_line = replace_policy redir_tlb; // choose line to be replaced

mm_sec = {t. t ∈ mrs ∧ protect t}; // secure addresses

mm_nonsec = {t. t ∈ mrs ∧ ¬ protect t} in // non-secure addresses

if mr->protect then // Column 3

{t. ∃ mm ∈ mm_sec. let // randomly select D’

mm_index = Mapping -> (mm->index);

mm_tlb = TLB ! mm_index;

r’_line = replace_policy mm_tlb; // choose line to be replaced

nset = insert mm (mm_tlb - {r’_line}) in

t = s(|sram := update TLB mm_index nset |)}
else

if r_line->lock then // Column 2

{t. ∃ mm ∈ mm_nonsec. let

mm_index = Mapping -> (mm->index);

mm_tlb = TLB ! mm_index;

r’_line = replace_policy mm_tlb;

nset = insert mm (mm_tlb - {r’_line}) in

t = s(|sram := update TLB mm_index nset |)}
else let // Column 1

nset = insert mr (redir_tlb - {r_line}) in

{s(|sram := update TLB redir_index nset |)}"

The correctness lemma is similar with the RP cache read operation.

Lemma 4.9 (Correctness of RF TLB Search).

[[∀e ∈ s.TLB ! lmr. e.tlb va ̸= mr.va]] =⇒

[[∀s′ ∈ rf search mr s. ∃!l. (∀l′ ̸= l. s′.TLB ! l′ = s.TLB ! l′) ∧

| (s′.TLB ! l) ∩ (s.TLB ! l) | = | s.TLB ! l | −1]]

Chapter 4. Side-channel Verification 131

Verifying Side-channel Leakage. The search process of the RF TLB preserves

the second unwinding conditions, while it breaks the first one, as formalized in

the following theorem. Different from cache security proofs above, we care about

whether TLB state transitions leak information when any input in secure page

address region Xsec resulting in a TLB miss. Lsec represents the TLB set indices

that Xsec may map to. C(l) represents the times l appears among all indices.

Theorem 4.10 (RF TLB Search Produces Constant Observation).

∀x ∈ Xsec. Cpt(rf search, x)/s = {y. ∃o ∈ Lsec. y = (o,
C(o)

| Xsec |
)} ∧

(∀y ∈ Cpt(rf search, x)/s. y.p =
∑

d∈Jsub

d.p)

where Jsub = {j. j ∈ makeJoint. j.o = y.o} and

Lsec = {l. ∃x ∈ Xsec. l = s.Mapping ⇀ x.va}

Proof. According to the workflow of the RF TLB in Figure 4.4, the attacker has the

chance to deduce confidential information only when the memory request is among

the secure page addresses and a TLB miss happens. We still use the TLB set index

to conveniently represent the observable state transitions. Under this circumstance,

the output for each secure page address x ∈ Xsec is one of the set indices l ∈ Lsec,

occupying fixed proportion C(l)
|Xsec| shown in the first line of Theorem 4.10. When

applying this conclusion to the reasoning framework, we can prove the RF TLB

search operation satisfies the second unwinding condition. Therefore, there is no

information leakage.

4.6 Evaluation

We successfully verify eight state-of-the-art cache designs. We implement all the

verification work in Isabelle/HOL. Table 4.1 shows the verification results, as well

as the implementation complexity (lines of codes) for each cache. We give the

security analysis of eight state-of-the-art cache designs as follows.

Set-Associative (SA) Cache. This conventional cache is well known to be

vulnerable to side-channel attacks. Among the cache regions controlled by the

132 4.6. Evaluation

Table 4.1: Verification Results of Cache Designs.

Cache Design NO† CO♮ Leakage LOC

Set-Associative Cache × × yes 490+
Random Fill Cache × × yes 930+
Partition Locked Cache

√
◦ no 380+

Random Permutation Cache ×
√

no 1490+
NewCache ×

√
no 1260+

CEASE Cache × × yes 510+
CEASER Cache × × yes 580+
SCATTER Cache × × yes 500+

† NO denotes No-Observation.
♮ CO denotes Constant-Observation.

attacker, any memory request from the victim can cause an observation with a

conditional probability of 1 due to the deterministic execution. Therefore, the

cache operation breaks the first condition. Also, a program owns multiple memory

address mapped to different cache sets, resulting in different observations. Then,

there exists a marginal output that is not equal to the conditional probability of

1, breaking the second condition. Hence, SA cache leaks side-channel information.

Random Fill (RF) Cache [236]. RF cache fills the cache line to be replaced with

a random memory line from a neighborhood window of the request memory line.

It can result in observations to the attacker, breaking the first condition. Although

it randomly picks up a memory line among a stated window, it cannot promise to

produce the same range of observations and of equal probability. In extreme cases,

RF cache can degrade to a SA cache if the neighborhood window is small, making

each memory line mapped to the same cache set. This property cannot imply the

second condition. Therefore, there exists information leakage.

Partition Locked (PL) Cache [67]. PL cache with prefetching strategy adds

a lock mechanism to the cache line. A replacement policy will work only when

the cache line chosen to be replaced is unlocked or belongs to the same process.

Therefore, an attacker has no chance to obtain any observations. This cache design

is the only one that satisfies the first unwinding condition.

Random Permutation (RP) Cache [67]. Any memory request that causes an

external or internal cache miss requires the RP cache to select one cache line from

each set for replacement or eviction. Therefore, the range of the observation is

Chapter 4. Side-channel Verification 133

the whole cache set index under the extreme circumstance, where the attacker can

control the whole cache. Meanwhile, the probability of each cache set index equals
1
M
, whereM is the length of the whole cache index. We can prove that the RP cache

operation satisfies the second unwinding condition. The observation range narrows

under the non-extreme circumstance, while all the observations have a uniform

probability. Therefore, there is no information leakage through this progress.

NewCache [78]. For the protected memory requests, NewCache employs similar

strategies as the RP cache. Therefore, it responses to an external or internal

cache access by selecting one cache line from each cache set to replace the memory

block or to cause an eviction deliberately. Applying similar verification proves the

security of NewCache against side-channel attacks.

CEASE Cache [79]. The CEASE cache employs encryption over the physical

address and uses the ciphertext to index the cache. However, the memory to

cache-set mapping remains constant as long as the encryption key remains the

same. Unfortunately, it degenerates to a set-associative cache, which means an

adversary can observe a deterministic change for each cache miss. As a result, the

CEASE cache may leak confidential information.

CEASER Cache [79]. CEASER cache is an advanced version of CEASE, which

adopts dynamic remapping to periodically change the key and remap the lines

based on the new key. In the phase when both the current and next keys exist,

previous remapping and the victim’s access can provide useful observations to the

attacker. Therefore, it breaks the first unwinding condition. Although part of

the observations is created by remapping of cache lines, the attacker can obtain a

deterministic observation during each epoch, and thus there exists such a marginal

output that is not equal to its corresponding conditional probability. Therefore, it

can not satisfy the second unwinding condition, and information leakage exits.

SCATTER Cache [80]. The SCATTER cache employs the index derivation func-

tion that takes the secure domain identifier, the encryption key, and the memory

request as inputs to form a nominal cache set (the cache line of each cache way

comes from different cache sets). The mapping table is deterministic to a process

as long as the encryption key is constant. Another characteristic is that the condi-

tional probability of each output is uniform, while the ranges of these outputs are

134 4.7. Conclusion

inconsistent. Therefore, it can not satisfy the second unwinding condition, leaving

a trail of telltale information.

4.7 Conclusion

In this chapter, we propose a novel verification methodology to verify side-channel

vulnerabilities resident in the cache designs. We construct an entropy-based non-

interference reasoning framework with two unwinding conditions for the evaluation

of side-channel threats. We use our methodology to successfully assess and evalu-

ate the security of eight state-of-the-art cache solutions. The verification practice

indicates that our verification framework offers strong accuracy and persuasion for

the verification of cache side channels.

Although our methodology provides a strong guarantee for the security verification

of cache designs from the perspective of formal methods, it still has drawbacks.

Our reasoning framework asks a high-level requirement of professionalism of theory

proving on users and cannot offer an automated derivation process. Therefore, in

future work, we plan to automate the validation process and provide more refined

cache models.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In the realm of cache side-channel attacks, a growing body of research is dedicated

to their detection, yet significant challenges persist in terms of comprehensiveness

and scalability. The intricate interplay between hardware, software, and microar-

chitectural intricacies makes cache side-channel detection inherently complex, of-

ten resulting in an incomplete understanding of mechanisms and vulnerabilities,

thereby hindering the effectiveness of detection methods. Additionally, scalability

concerns arise as systems become more intricate and expansive, rendering existing

detection techniques less comprehensive. These challenges underscore the impor-

tance of addressing cache attack detection issues to ensure the efficacy of security

measures in the face of evolving threats and intricate computing infrastructures.

Concurrently, the effectiveness of constant-time coding practices, which tradition-

ally mitigated cache side channels, diminishes when confronted with new challenges

posed by ciphertext side channels. These attacks exploit deterministic memory en-

cryption, where consistent encryption of the same physical address into identical

ciphertext blocks reveals footprints of execution, rendering constant-time coding

practices ineffective. Defeating ciphertext side channels necessitates a holistic ap-

proach that combines constant-time coding practices with attack mechanisms.

Moreover, the development of new cache designs to counter side channels lacks for-

mal guarantees of effectiveness due to their complexity and potential for emerging

135

136 5.2. Future Work

vulnerabilities. The absence of formal assurances underscores the need for con-

tinuous evaluation and adaptability to ensure these designs can effectively thwart

evolving side-channel threats in real-world contexts.

Motivated by these challenges, this thesis aims to make three key contributions:

enhancing cache side-channel detection methods, addressing the emerging threat of

ciphertext side channels, and evaluating the security of new cache designs through

formal verification. These endeavors aim to bolster the security of modern comput-

ing systems in the face of increasingly sophisticated side-channel threats, aligning

with the ongoing efforts in this dynamic field.

5.2 Future Work

Quantifying cache side-channel vulnerability leakage represents a promising and

crucial research direction for several reasons. As side-channel attacks continue to

evolve, the ability to precisely measure and quantify the extent of information

leakage through cache channels becomes imperative for assessing the security pos-

ture of computing systems. Traditional metrics like timing analysis alone may not

adequately capture the nuanced nature of vulnerabilities, and hence, a quantita-

tive approach provides a more nuanced understanding. By developing quantifiable

metrics, researchers can assess the severity of cache side-channel vulnerabilities,

enabling a more accurate evaluation of the potential risks associated with different

attack scenarios. This approach also facilitates the comparison of the effectiveness

of various countermeasures and mitigation strategies, allowing for the identification

of the most robust solutions. Moreover, a quantitative framework for vulnerability

leakage can provide valuable insights into the impact of emerging technologies, such

as novel cache designs or encryption methods, on the overall security landscape.

Overall, advancing the quantification of cache side-channel vulnerability leakage

enhances our ability to systematically analyze, benchmark, and fortify systems

against sophisticated side-channel threats.

The detection and analysis of TEE-specific vulnerabilities represent a crucial re-

search direction focusing on identifying and understanding security weaknesses

unique to TEE architectures. In this context, researchers aim to develop specialized

techniques and methodologies to uncover potential vulnerabilities that adversaries

Chapter 5. Thesis Summary 137

could exploit within the isolated and secure execution environments of TEEs. This

research involves a comprehensive exploration of TEE-specific attack vectors, con-

sidering the interplay between hardware, TEE software, and the operating system.

By conducting thorough analyses, researchers can uncover nuances in TEE design

and implementation that may inadvertently introduce security risks, particularly

concerning cache side-channel vulnerabilities. This research direction is essential

for enhancing the robustness of TEEs against sophisticated threats, contributing

to the ongoing development of secure computing environments where sensitive op-

erations can be conducted with a high degree of confidentiality and integrity.

Cross-layer collaborations for TEE security involve a cohesive approach that unites

hardware, TEE software, and the operating system to collectively fortify defenses

against cache side-channel attacks. This research direction recognizes the inter-

dependence of these layers in ensuring TEE security and aims to design holistic

solutions that address vulnerabilities across the computing stack. Collaborative

efforts encompass hardware modifications to create cache architectures resilient to

side-channel threats, enhancements to TEE software for adaptive runtime defenses,

integration of cache side-channel defenses into the operating system, development

of secure communication protocols, implementation of runtime monitoring, and

the establishment of standardized benchmarks for evaluation. By fostering inter-

disciplinary research teams, this approach seeks to comprehensively understand

and mitigate cache side-channel vulnerabilities in TEEs, thereby contributing to

the overall security and resilience of these critical components in contemporary

computing environments.

List of Author’s Awards, Patents,

and Publications

Publications

• Ke Jiang, David Sanán, Yongwang Zhao, Shuanglong Kan, and Yang Liu.

2019. A Formally Verified Buddy Memory Allocation Model. In 24th Interna-

tional Conference on Engineering of Complex Computer Systems (ICECCS’

19), Guangzhou, China, pp. 144-153. https://doi.org/10.1109/ICECCS.2019.

00023.

• Ke Jiang, Tianwei Zhang, David Sanán, Yongwang Zhao, and Yang Liu.

2022. A Formal Methodology for Verifying Side-channel Vulnerabilities in

Cache Architectures. In Proceedings of the 23rd International Conference on

Formal Engineering Methods (ICFEM’ 22), Madrid, Spain, 190-208. https://

doi.org/10.1007/978-3-031-17244-1 12.

• Ke Jiang, Yuyan Bao, Shuai Wang, Zhibo Liu, and Tianwei Zhang. 2022.

Cache Refinement Type for Side-Channel Detection of Cryptographic Soft-

ware. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security (CCS’ 22). Los Angeles, L.A., USA, 1583–1597.

https://doi.org/10.1145/3548606.3560672.

• Ke Jiang, Sen Deng, Yinshuai Li, Shuai Wang, Tianwei Zhang, and Yinqian

Zhang. 2024. CipherGuard: Compiler-aided Mitigation against Ciphertext

Side-channel Attacks.

139

Bibliography

[1] Clémentine Maurice. Micro-architectural side channels: Studying the attack
surface from hardware to browsers. PhD thesis, Université de Lille, 2023. 2

[2] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Annual International Cryptology Conference, pages
104–113. Springer, 1996. 2, 111

[3] Daniel J Bernstein. Cache-timing attacks on aes. 2005. 2, 107, 111

[4] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
aes. In Cryptographic Hardware and Embedded Systems-CHES 2006: 8th In-
ternational Workshop, Yokohama, Japan, October 10-13, 2006. Proceedings
8, pages 201–215. Springer, 2006.

[5] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of aes. In Cryptographers’ track at the RSA conference,
pages 1–20. Springer, 2006. 17, 25, 71, 107, 111, 114

[6] Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel.
Cryptology ePrint Archive, 2002. 111

[7] Colin Percival. Cache missing for fun and profit, 2005. 17, 25, 71, 107, 114

[8] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of des implemented on computers with cache. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 62–76. Springer, 2003. 2, 111

[9] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth.
Reload+ refresh: Abusing cache replacement policies to perform stealthy
cache attacks. In 29th USENIX Security Symposium (USENIX Security 20),
pages 1967–1984, 2020. 2

[10] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor cache
attacks. In Proceedings of the 11th ACM on Asia conference on computer
and communications security, pages 353–364, 2016.

[11] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on

141

142 BIBLIOGRAPHY

security and privacy, pages 605–622. IEEE, 2015. 17, 23, 25, 71, 107, 114,
127

[12] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher,
Roy Campbell, and Josep Torrellas. Attack directories, not caches: Side
channel attacks in a non-inclusive world. In 2019 IEEE Symposium on Se-
curity and Privacy (SP), pages 888–904. IEEE, 2019.

[13] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719–732, 2014. 17, 23, 25, 71, 107, 111, 114

[14] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing
attack on openssl constant-time rsa. Journal of Cryptographic Engineering,
7:99–112, 2017. 2

[15] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over aslr: Attacking branch predictors to bypass aslr. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–13. IEEE, 2016. 2

[16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Under-
standing and mitigating covert channels through branch predictors. ACM
Transactions on Architecture and Code Optimization (TACO), 13(1):1–23,
2016.

[17] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. Branchscope: A new side-channel attack on directional branch
predictor. ACM SIGPLAN Notices, 53(2):693–707, 2018. 2, 4

[18] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation
leak-aside buffer: Defeating cache side-channel protections with tlb attacks.
In 27th USENIX Security Symposium (USENIX Security 18), pages 955–972,
2018. 2, 3, 107, 112

[19] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
Aslr on the line: Practical cache attacks on the mmu. In NDSS, volume 17,
page 26, 2017. 2

[20] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Malicious management unit: Why stopping cache attacks in software is
harder than you think. In 27th USENIX Security Symposium (USENIX
Security 18), pages 937–954, 2018. 2

[21] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In 2015 IEEE Symposium on Security and Privacy, pages 623–639.
IEEE, 2015. 2

BIBLIOGRAPHY 143

[22] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord of
the ring (s): Side channel attacks on the {CPU}{On-Chip} ring interconnect
are practical. In 30th USENIX Security Symposium (USENIX Security 21),
pages 645–662, 2021. 2

[23] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida Garćıa, and Nicola Tuveri. Port contention for fun and profit. In
2019 IEEE Symposium on Security and Privacy (SP), pages 870–887. IEEE,
2019. 2

[24] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. Absynthe: Automatic blackbox side-channel synthesis on commodity
microarchitectures. In NDSS, 2020. 2

[25] Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through ran-
dom number generator: Mechanisms, capacity estimation and mitigations.
In Proceedings of the 2016 ACM SIGSAC conference on computer and com-
munications security, pages 843–857, 2016. 2

[26] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Dedup
est machina: Memory deduplication as an advanced exploitation vector. In
2016 IEEE symposium on security and privacy (SP), pages 987–1004. IEEE,
2016. 2, 7

[27] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec
Wolman, and Onur Mutlu. Are we susceptible to rowhammer? an end-to-end
methodology for cloud providers. In 2020 IEEE symposium on security and
privacy (SP), pages 712–728. IEEE, 2020.

[28] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Ex-
ploiting correcting codes: On the effectiveness of ecc memory against
rowhammer attacks. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 55–71. IEEE, 2019.

[29] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Trrespass: Ex-
ploiting the many sides of target row refresh. 2020 IEEE Symposium on
Security and Privacy (SP), pages 747–762, 2020.

[30] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger,
Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. Another flip in the
wall of rowhammer defenses. 2018 IEEE Symposium on Security and Privacy
(SP), pages 245–261, 2017.

[31] Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen,
Kaveh Razavi, and Onur Mutlu. Uncovering in-dram rowhammer protection
mechanisms:a new methodology, custom rowhammer patterns, and implica-
tions. MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021.

144 BIBLIOGRAPHY

[32] Jeremie S. Kim, Minesh Patel, Abdullah Giray Yaglikçi, Hasan Hassan, Ro-
knoddin Azizi, Lois Orosa, and Onur Mutlu. Revisiting rowhammer: An
experimental analysis of modern dram devices and mitigation techniques.
2020 ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 638–651, 2020.

[33] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: an experimental study of dram disturbance errors.
In Proceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture, ISCA ’14, page 361–372. IEEE Press, 2014.

[34] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed:
Reading bits in memory without accessing them. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 695–711, 2020.

[35] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse
Aga, Clémentine Maurice, and Daniel Gruss. Nethammer: Inducing rowham-
mer faults through network requests. In 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pages 710–719, 2020.

[36] Onur Mutlu and Jeremie S. Kim. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(8):1555–1571, 2020.

[37] Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung
Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim, and Onur Mutlu. A
deeper look into rowhammer’s sensitivities: Experimental analysis of real
dram chips and implications on future attacks and defenses. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
page 1182–1197, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[38] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida,
and Herbert Bos. Flip feng shui: Hammering a needle in the software stack.
In 25th USENIX Security Symposium (USENIX Security 16), pages 1–18,
Austin, TX, 2016. USENIX Association. ISBN 978-1-931971-32-4.

[39] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano
Giuffrida, and Kaveh Razavi. SMASH: Synchronized many-sided rowhammer
attacks from JavaScript. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1001–1018. USENIX Association, 2021.

[40] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer
attacks over the network and defenses. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 213–226, Boston, MA, 2018. USENIX
Association.

BIBLIOGRAPHY 145

[41] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cris-
tiano Giuffrida. Drammer: Deterministic rowhammer attacks on mobile plat-
forms. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, page 1675–1689, New York, NY, USA, 2016.
Association for Computing Machinery. 2

[42] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
A systematic evaluation of transient execution attacks and defenses. In 28th
USENIX Security Symposium (USENIX Security 19), pages 249–266, Santa
Clara, CA, 2019. USENIX Association. 3

[43] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting specula-
tive execution. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 1–19, 2019. 3

[44] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin,
Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from
user space. In 27th USENIX Security Symposium (USENIX Security 18),
pages 973–990, Baltimore, MD, 2018. USENIX Association. 3

[45] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache:
Hybrid Side-Channel-Resilient caches for trusted execution environments. In
29th USENIX Security Symposium (USENIX Security 20), pages 451–468.
USENIX Association, 2020. 3

[46] Haehyun Cho, Penghui Zhang, Donguk Kim, Jinbum Park, Choong-Hoon
Lee, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. Prime+count: Novel
cross-world covert channels on arm trustzone. In Proceedings of the 34th An-
nual Computer Security Applications Conference, ACSAC ’18, page 441–452,
New York, NY, USA, 2018. Association for Computing Machinery. 3

[47] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium (USENIX Security
17), pages 557–574, Vancouver, BC, 2017. USENIX Association. ISBN 978-
1-931971-40-9. 3

[48] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin. Sgx-lapd:
Thwarting controlled side channel attacks via enclave verifiable page faults.
In Research in Attacks, Intrusions, and Defenses, pages 357–380. Springer
International Publishing, 2017. 4

146 BIBLIOGRAPHY

[49] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy, pages 640–656, 2015. 4

[50] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky cauldron on
the dark land: Understanding memory side-channel hazards in sgx. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, page 2421–2434, New York, NY, USA, 2017. Association
for Computing Machinery. 4

[51] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX kingdom
with transient Out-of-Order execution. In 27th USENIX Security Sympo-
sium (USENIX Security 18), page 991–1008, Baltimore, MD, 2018. USENIX
Association. 4

[52] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss,
and Michael Schwarz. ÆPIC leak: Architecturally leaking uninitialized data
from the microarchitecture. In 31st USENIX Security Symposium (USENIX
Security 22), pages 3917–3934, Boston, MA, 2022. USENIX Association.
ISBN 978-1-939133-31-1. 4

[53] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-privilege-
boundary data sampling. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, page 753–768, New York,
NY, USA, 2019. Association for Computing Machinery. 4

[54] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. Lai. Sgxpectre: Stealing
intel secrets from sgx enclaves via speculative execution. IEEE Security &
Privacy, 18(03):28–37, 2020. 4

[55] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. Spectre returns! speculation attacks using the return
stack buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT
18), Baltimore, MD, 2018. USENIX Association. 4

[56] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng.
Cipherleaks: Breaking constant-time cryptography on amd sev via the cipher-
text side channel. In USENIX Security Symposium, pages 717–732, 2021. 4,
66, 69, 71, 72

[57] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu
Teodorescu, and Yinqian Zhang. A systematic look at ciphertext side chan-
nels on amd sev-snp. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 337–351. IEEE, 2022. 4, 66, 69, 71, 72, 73

BIBLIOGRAPHY 147

[58] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption.
White paper, page 13, 2016. 4, 65, 69

[59] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada
Popa. An off-chip attack on hardware enclaves via the memory bus. In 29th
USENIX Security Symposium (USENIX Security 20), 2020. 4, 66, 69

[60] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of sim-
ple power analysis on smartcards. In Workshop on Cryptographic Hardware
and Embedded Systems, 2000. 4

[61] Stefan Mangard. A simple power-analysis (spa) attack on implementations
of the aes key expansion. In Information Security and Cryptology — ICISC
2002, pages 343–358, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. 4

[62] Louis Goubin and Jacques Patarin. Des and differential power analysis (the
”duplication” method). In Workshop on Cryptographic Hardware and Em-
bedded Systems, 1999. 4

[63] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
power analysis in the presence of hardware countermeasures. In Workshop
on Cryptographic Hardware and Embedded Systems, 2000. 4

[64] E. De Mulder, P. Buysschaert, S.B. Ors, P. Delmotte, B. Preneel, G. Van-
denbosch, and I. Verbauwhede. Electromagnetic analysis attack on an fpga
implementation of an elliptic curve cryptosystem. In EUROCON 2005 - The
International Conference on ”Computer as a Tool”, volume 2, pages 1879–
1882, 2005. 5

[65] François-Xavier Standaert and C. Archambeau. Using subspace-based tem-
plate attacks to compare and combine power and electromagnetic information
leakages. In Workshop on Cryptographic Hardware and Embedded Systems,
2008. 5

[66] R. Karri, K. Wu, P. Mishra, and Yongkook Kim. Fault-based side-channel
cryptanalysis tolerant rijndael symmetric block cipher architecture. In Pro-
ceedings 2001 IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, pages 427–435, 2001. 5

[67] Zhenghong Wang and Ruby B Lee. New cache designs for thwarting software
cache-based side channel attacks. In Proceedings of the 34th annual interna-
tional symposium on Computer architecture, pages 494–505, 2007. 6, 7, 12,
17, 107, 108, 121, 122, 132

[68] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Non-monopolizable caches: Low-complexity mitigation
of cache side channel attacks. ACM Transactions on Architecture and Code
Optimization (TACO), 8(4):1–21, 2012. 6, 17

148 BIBLIOGRAPHY

[69] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England. Resource
management for isolation enhanced cloud services. In Proceedings of the 2009
ACM workshop on Cloud computing security, pages 77–84, 2009. 6

[70] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring. In
2011 IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W), pages 194–199. IEEE, 2011. 6

[71] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealthmem:
System-level protection against cache-based side channel attacks in the cloud.
In 21st USENIX Security Symposium (USENIX Security 12), pages 189–204,
2012. 6

[72] CAT Intel. Improving real-time performance by utilizing cache allocation
technology. Intel Corporation, April, 2015. 6

[73] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot
Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache side channel
attacks in cloud computing. In 2016 IEEE international symposium on high
performance computer architecture (HPCA), pages 406–418. IEEE, 2016. 6

[74] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A software approach to
defeating side channels in last-level caches. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 871–
882, 2016. 6, 7

[75] Michael Godfrey and Mohammad Zulkernine. A server-side solution to cache-
based side-channel attacks in the cloud. In 2013 IEEE Sixth International
Conference on Cloud Computing, pages 163–170. IEEE, 2013. 6

[76] Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B Bobba, Sibin
Mohan, and Roy Campbell. Scheduling, isolation, and cache allocation: A
side-channel defense. In 2018 IEEE International Conference on Cloud En-
gineering (IC2E), pages 34–40. IEEE, 2018. 6

[77] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift.
Scheduler-based defenses against cross-vm side-channels. In 23rd USENIX
security symposium (USENIX security 14), pages 687–702, 2014. 6

[78] Zhenghong Wang and Ruby B Lee. A novel cache architecture with enhanced
performance and security. In 2008 41st IEEE/ACM International Symposium
on Microarchitecture, pages 83–93. IEEE, 2008. 7, 12, 17, 108, 133

[79] Moinuddin K Qureshi. Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pages 775–787. IEEE,
2018. 133

BIBLIOGRAPHY 149

[80] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. Scattercache: Thwarting cache attacks via cache
set randomization. In USENIX Security Symposium, 2019. 7, 12, 17, 108,
133

[81] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng Liu.
Randomized last-level caches are still vulnerable to cache side-channel at-
tacks! but we can fix it. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 955–969. IEEE, 2021. 7, 17

[82] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. Sys-
tematic analysis of randomization-based protected cache architectures. In
2021 IEEE Symposium on Security and Privacy (SP), pages 987–1002. IEEE,
2021. 7, 17

[83] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determi-
nating timing channels in compute clouds. In Proceedings of the 2010 ACM
workshop on Cloud computing security workshop, pages 103–108, 2010. 7

[84] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine
grained timers in xen. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pages 41–46, 2011. 7

[85] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp: Re-
thinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In 2012 39th Annual International Symposium on Com-
puter Architecture (ISCA), pages 118–129. IEEE, 2012. 7

[86] Peng Li, Debin Gao, and Michael K Reiter. Stopwatch: a cloud architecture
for timing channel mitigation. ACM Transactions on Information and System
Security (TISSEC), 17(2):1–28, 2014. 7

[87] Yinqian Zhang and Michael K Reiter. Düppel: Retrofitting commodity oper-
ating systems to mitigate cache side channels in the cloud. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security,
pages 827–838, 2013. 7

[88] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and
Elaine Shi. Ghostrider: A hardware-software system for memory trace obliv-
ious computation. ACM SIGPLAN Notices, 50(4):87–101, 2015. 7

[89] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital {Side-
Channels} through obfuscated execution. In 24th USENIX Security Sympo-
sium (USENIX Security 15), pages 431–446, 2015. 7

[90] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. Thwarting cache side-channel attacks through dynamic software di-
versity. In NDSS, pages 8–11, 2015. 7

150 BIBLIOGRAPHY

[91] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. Varys: Protecting sgx enclaves from practical side-channel
attacks. In 2018 Usenix Annual Technical Conference (USENIX ATC 18),
pages 227–240, 2018. 8

[92] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian
Zhang, XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. Racing in hy-
perspace: Closing hyper-threading side channels on sgx with contrived data
races. In 2018 IEEE Symposium on Security and Privacy (SP), pages 178–
194. IEEE, 2018. 8

[93] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang.
Detecting privileged side-channel attacks in shielded execution with déjá vu.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Com-
munications Security, pages 7–18, 2017. 8

[94] Guoxing Chen and Yinqian Zhang. Securing tees with verifiable execution
contracts. IEEE Transactions on Dependable and Secure Computing, 20(4):
3222–3237, 2022. 8

[95] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. Zerotrace: Obliv-
ious memory primitives from intel sgx. Cryptology ePrint Archive, 2017. 8

[96] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and
Byoungyoung Lee. Obfuscuro: A commodity obfuscation engine on intel sgx.
In Network and Distributed System Security Symposium, 2019. 8, 63

[97] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx: Erad-
icating controlled-channel attacks against enclave programs. In NDSS, 2017.
8

[98] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller,
and Manuel Costa. Strong and efficient cache side-channel protection us-
ing hardware transactional memory. In 26th USENIX Security Symposium
(USENIX Security 17), pages 217–233, 2017.

[99] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang, Ruby B Lee, Haibo
Chen, and XiaoFeng Wang. Leveraging hardware transactional memory for
cache side-channel defenses. In Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, pages 601–608, 2018. 8

[100] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. Sgx-shield: Enabling address space layout
randomization for sgx programs. In NDSS, 2017. 8

[101] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas,
and Christopher W Fletcher. Speculative taint tracking (stt) a comprehensive
protection for speculatively accessed data. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 954–968,
2019. 8

BIBLIOGRAPHY 151

[102] Marco Patrignani and Marco Guarnieri. Exorcising spectres with secure
compilers. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 445–461, 2021. 8

[103] Johan Agat. Transforming out timing leaks. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 40–53, 2000. 9, 10, 71

[104] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The pro-
gram counter security model: Automatic detection and removal of control-
flow side channel attacks. In International Conference on Information Secu-
rity and Cryptology, pages 156–168. Springer, 2005. 10

[105] Gilles Barthe, Tamara Rezk, and Martijn Warnier. Preventing timing leaks
through transactional branching instructions. Electronic Notes in Theoretical
Computer Science, 153(2):33–55, 2006. 10

[106] Boris Köpf and Heiko Mantel. Transformational typing and unification for
automatically correcting insecure programs. International Journal of Infor-
mation Security, 6(2):107–131, 2007. 10

[107] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Du-
pressoir. Certified computer-aided cryptography: efficient provably secure
machine code from high-level implementations. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages
1217–1230, 2013.

[108] Heiko Mantel and Artem Starostin. Transforming out timing leaks, more
or less. In European Symposium on Research in Computer Security, pages
447–467. Springer, 2015. 9, 71

[109] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David
Pichardie. System-level non-interference for constant-time cryptography. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1267–1279, 2014. 9, 71

[110] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Du-
pressoir. Verifiable side-channel security of cryptographic implementations:
constant-time mee-cbc. In International Conference on Fast Software En-
cryption, pages 163–184. Springer, 2016. 9, 71

[111] Xavier Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In Conference record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 42–54, 2006. 9, 10

[112] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F Aranha.
Sparse representation of implicit flows with applications to side-channel de-
tection. In Proceedings of the 25th International Conference on Compiler
Construction, pages 110–120, 2016. 9, 71

152 BIBLIOGRAPHY

[113] Mario Dehesa-Azuara, Matthew Fredrikson, Jan Hoffmann, et al. Verify-
ing and synthesizing constant-resource implementations with types. In 2017
IEEE Symposium on Security and Privacy (SP), pages 710–728. IEEE, 2017.
9, 71

[114] J Bacelar Almeida, Manuel Barbosa, Jorge S Pinto, and Bárbara Vieira.
Formal verification of side-channel countermeasures using self-composition.
Science of Computer Programming, 78(7):796–812, 2013. 9, 71

[115] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. Verifying constant-time implementations. In 25th
USENIX Security Symposium (USENIX Security 16), pages 53–70, 2016. 9

[116] Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vul-
nerabilities using quantitative cartesian hoare logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 875–890, 2017. 9

[117] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio
Terauchi, and Shiyi Wei. Decomposition instead of self-composition for prov-
ing the absence of timing channels. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
pages 362–375, 2017. 9

[118] Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta, and Sharad
Malik. Lazy self-composition for security verification. In International Con-
ference on Computer Aided Verification, pages 136–156. Springer, 2018. 9

[119] Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying constant-time
implementations by abstract interpretation. Journal of Computer Security,
27(1):137–163, 2019. 9

[120] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/rel: Efficient
relational symbolic execution for constant-time at binary-level. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1021–1038. IEEE, 2020. 9,
25, 44, 46, 71

[121] Jean Karim Zinzindohoue, Evmorfia-Iro Bartzia, and Karthikeyan Bharga-
van. A verified extensible library of elliptic curves. In 2016 IEEE 29th Com-
puter Security Foundations Symposium (CSF), pages 296–309. IEEE, 2016.
9, 10, 71

[122] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. Hacl*: A verified modern cryptographic library.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1789–1806, 2017. 9, 10, 71

[123] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,

BIBLIOGRAPHY 153

Pierre-Yves Strub, Markulf Kohlweiss, et al. Dependent types and multi-
monadic effects in f. In Proceedings of the 43rd annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 256–
270, 2016. 10

[124] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino, Jacob R
Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. Vale:
Verifying high-performance cryptographic assembly code. In 26th USENIX
security symposium (USENIX security 17), pages 917–934, 2017. 10, 71

[125] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Ben-
jamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt
Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance and high-speed
cryptography. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1807–1823, 2017. 10, 71

[126] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S
Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and
Deian Stefan. Fact: a dsl for timing-sensitive computation. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 174–189, 2019. 10, 71

[127] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sut-
ter. Practical mitigations for timing-based side-channel attacks on modern
x86 processors. In 2009 30th IEEE Symposium on Security and Privacy,
pages 45–60. IEEE, 2009. 10

[128] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure compilation
of side-channel countermeasures: the case of cryptographic “constant-time”.
In 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pages
328–343. IEEE, 2018. 10

[129] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent La-
porte, David Pichardie, and Alix Trieu. Formal verification of a constant-time
preserving c compiler. Proceedings of the ACM on Programming Languages,
4(POPL):1–30, 2020. 10

[130] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating
timing side-channel leaks using program repair. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 15–26, 2018. 10, 11, 71

[131] Luigi Soares and Fernando Magno Quintãn Pereira. Memory-safe elimination
of side channels. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 200–210. IEEE, 2021. 10, 11, 71

[132] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano
Giuffrida. Constantine: Automatic side-channel resistance using efficient con-
trol and data flow linearization. In Proceedings of the 2021 ACM SIGSAC

154 BIBLIOGRAPHY

Conference on Computer and Communications Security, pages 715–733,
2021. 11, 71, 80

[133] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. Cached:
Identifying cache-based timing channels in production software. In 26th
USENIX Security Symposium (USENIX Security 17), pages 235–252, 2017.
11, 14, 18, 19, 24, 25, 26, 34, 40, 42, 43, 45, 47, 80

[134] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao
Wu. Identifying cache-based side channels through secret-augmented abstract
interpretation. In 28th USENIX Security Symposium (USENIX Security 19),
pages 657–674, 2019. 11, 14, 18, 19, 24, 25, 26, 34, 40, 43, 45, 47, 104

[135] Jan Wichelmann, Anna Pätschke, Luca Wilke, and Thomas Eisenbarth. Ci-
pherfix: Mitigating ciphertext side-channel attacks in software. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 6789–6806, 2023.
12, 14, 66, 72

[136] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Cache timing side-channel
vulnerability checking with computation tree logic. In Proceedings of the 7th
International Workshop on Hardware and Architectural Support for Security
and Privacy, pages 1–8, 2018. 12, 108

[137] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Analysis of secure caches
using a three-step model for timing-based attacks. Journal of Hardware and
Systems Security, 3(4):397–425, 2019.

[138] Limin Wang, Ziyuan Zhu, Zhanpeng Wang, and Dan Meng. Analyzing the
security of the cache side channel defences with attack graphs. In 2020 25th
Asia and South Pacific Design Automation Conference (ASP-DAC), pages
50–55. IEEE, 2020. 108

[139] Tianwei Zhang and Ruby B Lee. New models of cache architectures charac-
terizing information leakage from cache side channels. In Proceedings of the
30th annual computer security applications conference, pages 96–105, 2014.
108

[140] Zecheng He and Ruby B Lee. How secure is your cache against side-channel
attacks? In Proceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 341–353, 2017. 12, 108

[141] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-
vm side channels and their use to extract private keys. In Proceedings of
the 2012 ACM conference on Computer and communications security, pages
305–316, 2012. 17, 71

[142] Yuval Yarom and Naomi Benger. Recovering openssl ecdsa nonces using the
flush+ reload cache side-channel attack. IACR Cryptol. ePrint Arch., 2014:
140, 2014. 17, 51, 107

BIBLIOGRAPHY 155

[143] Keegan Ryan. Return of the hidden number problem. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 146–168, 2019. 51

[144] Diego F Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. Ladderleak: Breaking ecdsa with less than one bit of nonce
leakage. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 225–242, 2020. 17, 71, 107

[145] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan
Reineke. Cacheaudit: A tool for the static analysis of cache side channels. In
22nd USENIX Security Symposium (USENIX Security 13), pages 431–446,
2013. 18, 19, 25

[146] Goran Doychev and Boris Köpf. Rigorous analysis of software countermea-
sures against cache attacks. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
406–421, 2017. 18, 19, 24

[147] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Man-
gard, and Georg Sigl. Data–differential address trace analysis: Finding
address-based side-channels in binaries. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 603–620, 2018. 18, 19, 25, 43, 45, 46,
80

[148] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kan-
demir. Casym: Cache aware symbolic execution for side channel detection
and mitigation. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 505–521. IEEE, 2019. 18, 19, 24, 25, 26, 40, 47, 104

[149] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008. 18

[150] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 238–252, 1977. 18

[151] Qinkun Bao, Zihao Wang, Xiaoting Li, James R Larus, and Dinghao Wu.
Abacus: Precise side-channel analysis. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE), pages 797–809. IEEE,
2021. 19, 24, 25, 26, 34, 40, 43, 47

[152] Luca Cardelli. Type systems. ACM Computing Surveys (CSUR), 28(1):
263–264, 1996. 21

[153] Benjamin C Pierce. Types and programming languages. MIT press, 2002. 21

156 BIBLIOGRAPHY

[154] Danfeng Zhang, Aslan Askarov, and Andrew C Myers. Language-based con-
trol and mitigation of timing channels. In Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language Design and Implementa-
tion, pages 99–110, 2012. 21

[155] Ranjit Jhala, Niki Vazou, et al. Refinement types: A tutorial. Foundations
and Trends in Programming Languages, 6(3–4):159–317, 2021. 21

[156] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D Gordon. Modular
verification of security protocol code by typing. ACM Sigplan Notices, 45(1):
445–456, 2010. 22

[157] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D Gor-
don, and Sergio Maffeis. Refinement types for secure implementations. ACM
Transactions on Programming Languages and Systems (TOPLAS), 33(2):1–
45, 2011.

[158] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti,
and Pierre-Yves Strub. Implementing tls with verified cryptographic security.
In 2013 IEEE Symposium on Security and Privacy, pages 445–459. IEEE,
2013.

[159] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella-Béguelin. Probabilistic relational verification
for cryptographic implementations. ACM SIGPLAN Notices, 49(1):193–205,
2014. 22

[160] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. A survey
of microarchitectural side-channel vulnerabilities, attacks, and defenses in
cryptography. ACM Computing Surveys (CSUR), 54(6):1–37, 2021. 23, 107

[161] Werner Schindler. Exclusive exponent blinding may not suffice to prevent
timing attacks on rsa. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 229–247. Springer, 2015. 24

[162] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar.
Microwalk: A framework for finding side channels in binaries. In ACSAC,
2018. 24, 25

[163] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+ flush: a fast and stealthy cache attack. In International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 279–299. Springer, 2016. 25, 111, 114

[164] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller.
Quantifying information leakage in cache attacks via symbolic execution.
TECS, 2019. 25

BIBLIOGRAPHY 157

[165] Chungha Sung, Brandon Paulsen, and Chao Wang. Canal: a cache tim-
ing analysis framework via llvm transformation. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
pages 904–907, 2018. 25

[166] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE J. Sel. Areas Commun., 21(1):5–19, 2003. doi: 10.1109/
JSAC.2002.806121. 27

[167] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. Qms:
Evaluating the side-channel resistance of masked software from source code.
In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2014. 29

[168] Hassan Eldib, Chao Wang, and Patrick Schaumont. Smt-based verification
of software countermeasures against side-channel attacks. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 62–77. Springer, 2014.

[169] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of
software countermeasures against side-channel attacks. ACM Transactions
on Software Engineering and Methodology (TOSEM), 24(2):1–24, 2014. 29

[170] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: building customized program analysis tools with dynamic instrumenta-
tion. Acm sigplan notices, 40(6):190–200, 2005. 30, 42, 101

[171] Laurent Simon, David Chisnall, and Ross Anderson. What you get is what
you c: Controlling side effects in mainstream c compilers. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 1–15. IEEE,
2018. 31

[172] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz.
Bap: A binary analysis platform. In International Conference on Computer
Aided Verification, pages 463–469. Springer, 2011. 42

[173] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer.
Big numbers-big troubles: Systematically analyzing nonce leakage in (ec)dsa
implementations. In 29th USENIX Security Symposium (USENIX Security
20), pages 1767–1784, 2020. 45, 46, 52

[174] OpenSSL-972c87d. Make bn num bits word constant-time.,
2018. URL https://github.com/openssl/openssl/commit/

972c87dfc7e765bd28a4964519c362f0d3a58ca4. 51

[175] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in diffie-hellman and related schemes. In Annual
International Cryptology Conference, pages 129–142. Springer, 1996. 51

https://github.com/openssl/openssl/commit/972c87dfc7e765bd28a4964519c362f0d3a58ca4
https://github.com/openssl/openssl/commit/972c87dfc7e765bd28a4964519c362f0d3a58ca4

158 BIBLIOGRAPHY

[176] Dan Boneh and Ramarathnam Venkatesan. Rounding in lattices and its
cryptographic applications. In SODA, volume 1997, pages 675–681. Citeseer,
1997. 51

[177] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom. ?ooh
aah... just a little bit?: a small amount of side channel can go a long way. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 75–92. Springer, 2014. 51

[178] Phong Q Nguyen and Igor E Shparlinski. The insecurity of the digital sig-
nature algorithm with partially known nonces. Journal of Cryptology, 15(3),
2002.

[179] Phong Q Nguyen and Igor E Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. Designs, codes and
cryptography, 30(2):201–217, 2003. 51

[180] OpenSSL-4b7a4ba. Fix for cve-2014-0076., 2014.
URL https://github.com/openssl/openssl/commit/

4b7a4ba29cafa432fc4266fe6e59e60bc1c96332. 51

[181] OpenSSL-2198be3. Fix for cve-2014-0076., 2014.
URL https://github.com/openssl/openssl/commit/

2198be3483259de374f91e57d247d0fc667aef29. 51

[182] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. Single trace attack
against rsa key generation in intel sgx ssl. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, pages 575–586,
2018. 54

[183] Libressl-2cd28f9. Use a blinding value when generating a dsa signature.,
2018. URL https://github.com/libressl-portable/openbsd/commit/

2cd28f9?diff=unified. 56

[184] Libressl-1f6b35b. Remove the blinding later to avoid leaking information
on the length., 2019. URL https://github.com/libressl-portable/

openbsd/commit/1f6b35b. 57

[185] John Toman, Ren Siqi, Kohei Suenaga, Atsushi Igarashi, and Naoki
Kobayashi. Consort: Context- and flow-sensitive ownership refinement
types for imperative programs. In ESOP, volume 12075 of Lecture Notes
in Computer Science, pages 684–714. Springer, 2020. doi: 10.1007/
978-3-030-44914-8\ 25. 60

[186] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
L. Peyton Jones. Refinement types for haskell. In ICFP, pages 269–282.
ACM, 2014. doi: 10.1145/2628136.2628161.

https://github.com/openssl/openssl/commit/4b7a4ba29cafa432fc4266fe6e59e60bc1c96332
https://github.com/openssl/openssl/commit/4b7a4ba29cafa432fc4266fe6e59e60bc1c96332
https://github.com/openssl/openssl/commit/2198be3483259de374f91e57d247d0fc667aef29
https://github.com/openssl/openssl/commit/2198be3483259de374f91e57d247d0fc667aef29
https://github.com/libressl-portable/openbsd/commit/2cd28f9?diff=unified
https://github.com/libressl-portable/openbsd/commit/2cd28f9?diff=unified
https://github.com/libressl-portable/openbsd/commit/1f6b35b
https://github.com/libressl-portable/openbsd/commit/1f6b35b

BIBLIOGRAPHY 159

[187] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types
for typescript. In PLDI, pages 310–325. ACM, 2016. doi: 10.1145/2908080.
2908110. 60

[188] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin,
and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx enclaves via specu-
lative execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 142–157. IEEE, 2019. 63

[189] Wubing Wang, Yinqian Zhang, and Zhiqiang Lin. Time and order: Towards
automatically identifying side-channel vulnerabilities in enclave binaries. In
22nd International Symposium on Research in Attacks, Intrusions and De-
fenses (RAID 2019), pages 443–457, 2019. 63

[190] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.
63

[191] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. On
the vulnerability of fpga bitstream encryption against power analysis attacks:
Extracting keys from xilinx virtex-ii fpgas. In Proceedings of the 18th ACM
conference on Computer and communications security, pages 111–124, 2011.
63

[192] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order mask-
ing. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 457–485. Springer, 2015. 63

[193] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 116–129, 2016.

[194] Inès Ben El Ouahma, Quentin L Meunier, Karine Heydemann, and Em-
manuelle Encrenaz. Symbolic approach for side-channel resistance analysis
of masked assembly codes. In Security Proofs for Embedded Systems, 2017.
63

[195] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. Sc infer: refinement-
based verification of software countermeasures against side-channel attacks.
In International Conference on Computer Aided Verification, pages 157–177.
Springer, 2018. 63

[196] Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. Verifying and quantifying
side-channel resistance of masked software implementations. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 28(3):1–32, 2019.
63

160 BIBLIOGRAPHY

[197] Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. Quantita-
tive verification of masked arithmetic programs against side-channel attacks.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 155–173. Springer, 2019. 63

[198] Gao Pengfei, Xie Hongyi, Pu Sun, Jun Zhang, Fu Song, and Taolue Chen.
Formal verification of masking countermeasures for arithmetic programs.
IEEE Transactions on Software Engineering, 2020. 63

[199] David Kaplan. Protecting vm register state with sev-es. White paper, page 13,
2017. 65

[200] David Kaplan, Jeremy Powell, and Tom Woller. Amd sev-snp: Strengthening
vm isolationwith integrity protection and more. White paper, Advanced Micro
Devices Inc, 2020. 65

[201] Intel. Product brief, 3rd gen intel xeon scaleable processor for iot. https:

//www.intel.com/content/www/us/en/products/docs/processors/

embedded/3rd-gen-xeon-scalable-iot-product-brief.html, 2021. 65

[202] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vinnie Scarlata.
Supporting intel sgx on multi-socket platforms. Intel Corp, 2021. 65

[203] Intel. Intel Trust Domain Extensions (Intel TDX). https://www.intel.

com/content/www/us/en/developer/tools/trust-domain-extensions/

overview.html, 2020. 65

[204] ARM. Arm Confidential Compute Architecture software stack. https://

developer.arm.com/documentation/den0127/latest, 2021. 65

[205] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre Seifert, and Julian
Vetter. Fault attacks on encrypted general purpose compute platforms. In
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy, pages 197–204, 2017. 66

[206] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu,
and Jesse Fang. Secure encrypted virtualization is unsecure. arXiv preprint
arXiv:1712.05090, 2017.

[207] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth.
Sevurity: No security without integrity: Breaking integrity-free memory en-
cryption with minimal assumptions. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1483–1496. IEEE, 2020. 66

[208] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual
machines. ACM SIGPLAN Notices, 52(7):129–142, 2017. 66

[209] Mathias Morbitzer, Manuel Huber, and Julian Horsch. Extracting secrets
from encrypted virtual machines. In Proceedings of the Ninth ACM Confer-
ence on Data and Application Security and Privacy, pages 221–230, 2019.

https://www.intel.com/content/www/us/en/products/docs/processors/em bedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/em bedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/em bedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://developer.arm.com/documentation/den0127/latest
https://developer.arm.com/documentation/den0127/latest

BIBLIOGRAPHY 161

[210] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. Sev-
ered: Subverting amd’s virtual machine encryption. In Proceedings of the
11th European Workshop on Systems Security, pages 1–6, 2018. 66

[211] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. Exploiting
unprotected i/o operations in amd’s secure encrypted virtualization. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1257–1272, 2019.
66

[212] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Crossline: Breaking”
security-by-crash” based memory isolation in amd sev. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Se-
curity, pages 2937–2950, 2021. 66

[213] Sen Deng, Mengyuan Li, Yining Tang, Shuai Wang, Shoumeng Yan, and
Yinqian Zhang. Cipherh: Automated detection of ciphertext side-channel
vulnerabilities in cryptographic implementations. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 6843–6860, 2023. 66, 71, 80, 81

[214] LLVM. DataFlowSanitizer. https://clang.llvm.org/docs/

DataFlowSanitizer.html, 2020. 66

[215] Jan Wichelmann, Anja Rabich, Anna Pätschke, and Thomas Eisenbarth.
Obelix: Mitigating side-channels through dynamic obfuscation. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 189–189. IEEE Computer
Society, 2024. 66

[216] AMD. Technical guidance for mitigating effects of ciphertext visibility under
amd sev. https://www.amd.com/system/files/documents/221404394-a_
security_wp_final.pdf, 2022. 71, 72

[217] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas Eisenbarth.
Sev-step: A single-stepping framework for amd-sev. arXiv preprint
arXiv:2307.14757, 2023. 72

[218] Sebastiano Vigna. Further scramblings of marsaglia’s xorshift generators.
Journal of Computational and Applied Mathematics, 315:175–181, 2017. 77

[219] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with intel tsx. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 380–
392, 2016. 101

[220] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp,
Marina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk
Sunar, et al. Fallout: Leaking data on meltdown-resistant cpus. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 769–784, 2019. 107, 112

https://clang.llvm.org/docs/DataFlowSanit izer.html
https://clang.llvm.org/docs/DataFlowSanit izer.html
https://www.amd.com/system/files/documents/221404394-a_security_wp_final.pdf
https://www.amd.com/system/files/documents/221404394-a_security_wp_final.pdf

162 BIBLIOGRAPHY

[221] Joseph A Goguen and José Meseguer. Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy, pages 11–11. IEEE, 1982.
107, 118

[222] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-
vm side channels and their use to extract private keys. In Proceedings of
the 2012 ACM conference on Computer and communications security, pages
305–316, 2012. 107

[223] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload–a cache attack on the bliss lattice-based signature
scheme. In International Conference on Cryptographic Hardware and Em-
bedded Systems, pages 323–345. Springer, 2016. 107

[224] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B Abu-Ghazaleh,
Srikanth V Krishnamurthy, Edward JM Colbert, and Paul Yu. Unveiling
your keystrokes: A cache-based side-channel attack on graphics libraries. In
NDSS, 2019. 107

[225] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Pra-
teek Mittal, Yossi Oren, and Yuval Yarom. Robust website fingerprinting
through the cache occupancy channel. In 28th USENIX Security Symposium
(USENIX Security 19), pages 639–656, 2019. 107

[226] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side chan-
nel attacks against kernel space aslr. In 2013 IEEE Symposium on Security
and Privacy, pages 191–205. IEEE, 2013. 107

[227] Xun Li, Vineeth Kashyap, Jason K Oberg, Mohit Tiwari, Vasanth Ram Ra-
jarathinam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Fred-
eric T Chong. Sapper: A language for hardware-level security policy en-
forcement. In Proceedings of the 19th international conference on Architec-
tural support for programming languages and operating systems, pages 97–
112, 2014. 109

[228] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. A hard-
ware design language for timing-sensitive information-flow security. Acm
Sigplan Notices, 50(4):503–516, 2015.

[229] Shuwen Deng, Doğuhan Gümüşoğlu, Wenjie Xiong, Sercan Sari, Y Serhan
Gener, Corine Lu, Onur Demir, and Jakub Szefer. Secchisel framework for se-
curity verification of secure processor architectures. In Proceedings of the 8th
International Workshop on Hardware and Architectural Support for Security
and Privacy, pages 1–8, 2019. 109

[230] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.
109, 112

BIBLIOGRAPHY 163

[231] Konstantinos Chatzikokolakis, Tom Chothia, and Apratim Guha. Statistical
measurement of information leakage. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 390–404.
Springer, 2010. 109, 112

[232] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a
proof assistant for higher-order logic. Springer Science & Business Media,
2002. 109, 113

[233] Pepe Vila, Boris Köpf, and José F Morales. Theory and practice of finding
eviction sets. In 2019 IEEE Symposium on Security and Privacy (SP), pages
39–54. IEEE, 2019. 111

[234] John C Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74. IEEE, 2002. 116

[235] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Secure tlbs. In 2019
ACM/IEEE 46th Annual International Symposium on Computer Architec-
ture (ISCA), pages 346–359. IEEE, 2019. 122

[236] Fangfei Liu and Ruby B Lee. Random fill cache architecture. In 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, pages
203–215. IEEE, 2014. 132

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Symbols and Acronyms
	1 Introduction
	1.1 Side-channel Attacks
	1.1.1 Micro-architectural Side-channels
	1.1.2 Trusted Computing Side-channels
	1.1.3 Physical Side-channels

	1.2 Side-channel Mitigation
	1.2.1 Secure Architectures and System Designs
	1.2.2 Trusted Computing Hardening
	1.2.3 Constant-time Principles

	1.3 Research Scope and Overview
	1.4 Major Contributions
	1.5 Outline of the Thesis

	2 Refinement type-based Detection of Side-channels in Cryptography Software
	2.1 Introduction
	2.2 Background
	2.2.1 Refinement Type Systems
	2.2.2 Cache Hierarchy and Cache Side-channels
	2.2.3 Cache Side Channel Mitigation

	2.3 Research Overview
	2.3.1 Assumptions
	2.3.2 Methodology Overview

	2.4 Design
	2.4.1 Bit-level Representation and Types
	2.4.2 Type Inference for Bitvectors
	2.4.3 Type Inference Rules
	2.4.4 Cache Side-channel Detection

	2.5 Implementation
	2.6 Evaluation
	2.6.1 Evaluation Setup
	2.6.2 Results Overview
	2.6.3 Discussion of Known Vulnerabilities
	2.6.4 Unknown Vulnerabilities
	2.6.5 Discussion about Blinding
	2.6.6 Reducing False Positives

	2.7 Discussion and Limitation
	2.8 Related Work
	2.9 Conclusion

	3 Compiler-aided Mitigation against Side-channels in Trusted Execution Environment
	3.1 Introduction
	3.2 Background
	3.2.1 Ciphertext Side-channel Attacks
	3.2.2 Countermeasures to Ciphertext Side-channels

	3.3 Methodology Overview
	3.3.1 Threat Model
	3.3.2 A Motivating Example
	3.3.3 Motivations of Compiler-aided Mitigation
	3.3.4 Architecture Overview of CipherGuard
	3.3.5 Technical Challenges

	3.4 Detailed System Design
	3.4.1 Tainting Secret Locations
	3.4.2 Software-based Probabilistic Encryption
	3.4.3 Secret-aware Register Allocation
	3.4.4 Managing Nonce Buffers

	3.5 Implementation
	3.6 Evaluation
	3.6.1 Experiment Setup
	3.6.2 Comparison between Variants
	3.6.3 Comparison with CipherFix
	3.6.4 Comparison with Obelix
	3.6.5 Security Analysis

	3.7 Discussion
	3.8 Conclusion

	4 Noninterference-based Verification of Side-channels in Microarchitectural Designs
	4.1 Introduction
	4.2 Background
	4.2.1 Cache Side-channel Attacks
	4.2.2 Mutual Information
	4.2.3 Isabelle/HOL

	4.3 Methodology Overview
	4.3.1 Threat Model
	4.3.2 Architecture
	4.3.3 Available Proving Technique

	4.4 Design of Reasoning Framework
	4.4.1 An Abstract State Machine
	4.4.2 Noninterference
	4.4.3 Unwinding Conditions

	4.5 Application of Our Methodology
	4.5.1 Verifying Cache Designs
	4.5.2 Verifying TLB Designs

	4.6 Evaluation
	4.7 Conclusion

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	List of Author's Awards, Patents, and Publications
	Bibliography

