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Abstract

Deep Learning (DL) manifests as a groundbreaking technology, revolutionizing nu-

merous fields. This paradigm shift has fueled an ever-growing demand for training

DL models, leading to the development of hyperscale GPU clusters. Despite their

massive computational power, these clusters often struggle to meet the intensive

GPU demands of deep learning training (DLT) workloads. Scheduling systems

serve a pivotal role in mitigating competitive resource contention and expediting

DLT workloads. However, current industry practice and prior academic research

do not offer sufficient optimization for the design of DLT schedulers, which could

compromise the performance of DLT workloads. This thesis aims to bridge this

gap by designing and developing novel scheduling systems. Particularly, it ad-

dresses three crucial challenges including unbalanced GPU consumption, diverse

user demands, and dynamic traffic patterns.

First, we designYmir, an elastic scheduler for foundation model fine-tuning (FMF)

workloads in GPU clusters. Ymir focuses on FMF workloads, which are signifi-

cant consumers of GPU resources. By expediting FMF workloads, Ymir can free

up GPUs for other types of DLT workloads, thereby mitigating unbalanced re-

source consumption among different DLT workload types in a GPU cluster. Ymir

leverages the shared foundation model (FM) backbone architecture to accelerate

FMF workloads in two key ways. First, it investigates the task transferability

among different FMF workloads and automatically merges FMF workloads with

the same FM into one to improve the cluster-wide latency efficiency via transfer

learning. Second, it reuses the fine-tuning runtime of FMF workloads to reduce

the significant context switch overhead. Empirical results demonstrate that Ymir

can reduce the average job completion time (JCT) by up to 4.3 × compared with

state-of-the-art DLT schedulers.

Second, we design PromptTuner, an elastic scheduler for large language model

prompt tuning (LPT) workloads in GPU clusters, which are another significant

vii
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GPU consumers in GPU clusters. PromptTuner optimizes the Service Level Ob-

jective (SLO) and costs, and mitigates the GPU consumption imbalance. Prompt-

Tuner comprises two main components: the Prompt Bank and the Workload

Scheduler. The Prompt Bank identifies efficient initial prompts to expedite the

convergence of prompt tuning, while the Workload Scheduler facilitates rapid re-

source allocation to minimize the SLO violation rate and resource costs. Empiri-

cally, PromptTuner reduces the SLO violation rate by up to 7.9 × and decreases

the costs by up to 4.5 × compared with state-of-the-art DL schedulers.

Third, we design UniSched, a scheduler to jointly optimize different types of

scheduling objectives (e.g., guaranteeing the deadlines of SLO jobs, minimizing the

latency of best-effort jobs) with different job stopping criteria (e.g., iteration-based,

performance-based). UniSched includes two key system components: the Estima-

tor for estimating the job duration, and the Selector for selecting jobs and allocating

resources. Large-scale simulations using the workload traces from production-level

GPU clusters suggest that UniSched can significantly decrease the SLO viola-

tion rate of SLO jobs by up to 6.8×, and the latency of best-effort jobs by up to

4.0×. The small performance gap between simulations and physical experiments

underscores the practicality of UniSched.

Fourth, we design AutoSched, a system that automatically, efficiently, and dy-

namically adjusts the configuration parameters of DLT scheduling policies. This

adaptive configuration tuning approach maintains efficient scheduling performance

under fluctuating job arrivals. AutoSched contains two innovative system compo-

nents. The Generation Engine produces DLT workloads that can reveal the future

workload arrival pattern, facilitating accurate configuration tuning. The Search

Engine reduces the exorbitant overhead of configuration tuning. AutoSched

can be integrated with off-the-shelf schedulers. We showcase how AutoSched

strengthens three representative DLT schedulers and evaluate them on varying DLT

workload traces. Empirically, AutoSched improves the performance of state-of-

the-art schedulers by up to 46% with 132× configuration tuning latency reduction.

In summary, this thesis enhances DLT scheduling systems through three key opti-

mizations: workload-aware optimization, scheduling objective-aware optimization,

and policy configuration-aware optimization, thereby pushing forward the frontier

of DLT system studies.
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Chapter 1

Introduction

This chapter presents the background and challenges of scheduling Deep Learning

Training (DLT) workloads in a GPU cluster. It also discusses the motivation and

contributions of this thesis and outlines the thesis structure.

1.1 Background and Challenges

The tremendous success of deep learning (DL) across various fields has brought

explosive growth in training DL models. The trace from SenseTime reveals a 6.5

times increase in the number of DLT job submissions per month from 2019 to

2021 [1]. Therefore, many research institutions, IT companies, and cloud providers

establish large-scale GPU clusters to meet ever-growing demand. To date, Meta [5],

Microsoft [6], and Bytedance [7] have invested billions of dollars to build hyper-

scale GPU clusters that exceed 10, 000 GPUs each. In such clusters, different

users and jobs have varying resource and latency demands. However, the compu-

tational power of these clusters struggles to simultaneously meet the demanding

expectations of resource-intensive DLT workloads [1, 8, 9].

The optimizations in the hardware and software offer viable solutions to improve

the performance of DLT workloads. Nevertheless, the growth in single GPU com-

puting capability cannot match the rising GPU demand of larger and more complex

models, like Large Language Models (LLMs). For instance, while the GPU FP16

1
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Figure 1.1: A reference system architecture of scheduling DLT workloads in a
GPU cluster.

compute capability from A100-PCIe to H100-PCIe increases by 4.8×, the aver-

age training cost per LLM grows by 9.6× [10]. Moreover, research efforts in algo-

rithms [11, 12] and frameworks [13, 14] accelerate individual DLT jobs significantly.

They still cannot curtail the growth of DL training costs, which are escalating at

a rate of 3 × annually [10]. This trend is underpinned by the adherence to scaling

laws [15]: with more advanced hardware and software optimizations for individual

DLT jobs, scaling model size and data size has become the priority. Thus, resource

contention among DLT jobs remains highly competitive. In this thesis, we aim to

optimize the scheduling systems to mediate resource contention among numerous

DLT jobs, thereby improving the overall performance.

Figure 1.1 illustrates a reference system architecture to schedule DLT workloads

within a GPU cluster. This architecture is composed of three key modules: the

job queue, the scheduler, and the cluster architecture. The users first specify

their latency (e.g., latency reduction, deadlines, cost) and resource demands (GPU

type, GPU count) and submit DLT jobs to the queue. A job submitted to the

queue that does not violate specific admission constraints (resource limit) can be

considered a schedulable job. Next, the scheduler continuously fetches schedulable

workloads from the job queue and optimizes the given scheduling objectives via

an efficient scheduling policy. Here, we emphasize the key components of the DLT

scheduler: schedulable workload, scheduling objective, and scheduling policy. Last,

the GPU cluster provides numerous GPU resources equipped with highly optimized

DL frameworks to run DLT jobs until completion. The effectiveness of the DLT

scheduler hinges on efficient GPU allocation to specific jobs to accelerate their

execution and enhance the overall performance of DLT jobs.
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1.2 Motivation and Contribution

Although the DLT schedulers can optimize overall performance by efficient resource

allocations, current DLT schedulers are not sufficient to address three crucial chal-

lenges within the three key components of the scheduler.

First, many DLT schedulers [16–20] do not differentiate between distinct applica-

tion types of schedulable DLT workloads. Different application types in DLT work-

loads present a GPU usage imbalance in a shared cluster. For example, the trace

analysis in Shanghai AI Laboratory uncovers that LLM training/tuning workloads

occupy 84.5% of GPU time in a Seren GPU cluster [2]. Prior DLT schedulers focus

on when to assign GPUs and which GPUs to allocate for cluster-wide DLT jobs to

enhance the overall performance. While these DLT schedulers [16–20] perform ad-

equately for conventional DLT jobs, they overlook optimization opportunities (e.g.,

task transferability) for prevalent application types such as LLM tuning workloads.

The dedicated designs for the dominant workload type can alleviate contention and

free up GPU resources for other DLT workloads, leading to more balanced cluster

utilization among application types.

Second, many DLT schedulers [16, 17, 19, 21] typically focus on a singular schedul-

ing objective (e.g., latency reduction, fairness, deadline guarantee). Given that the

GPU cluster serves multiple users, a recent uer study [22] reveals that diverse user

demands such as latency reduction or deadline guarantees among users. Optimiz-

ing for one scheduling objective may adversely affect another [19, 22]. Delaying a

job with a deadline can reduce the job latency for others. Consequently, there is a

pressing need for an effective scheduling system that can jointly optimize varying

scheduling objectives of DLT workloads.

Third, a GPU cluster presents a dynamic traffic pattern, leading to inefficient

configuration of parameters for scheduling policies. Tiresias [17], a typical DLT

scheduler, allocates a fixed number of GPUs exclusively to each DLT job within a

static GPU cluster. When tested with a 560-GPU cluster over two days (Section

2.1.2), Tiresias encounters peak GPU demands that exceed available GPUs by

a factor of 9.5. Additionally, nearly 40% of GPU hours are wasted. In such

dynamic cluster environments, the adaptive configuration of Tiresias can reduce

job completion time by 3.8 × compared with using fixed configuration parameters.
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We optimize DLT scheduling systems to address the aforementioned issues. First,

we dedicate scheduling optimizations for major consumers of GPU resources –

Foundation Model Fine-tuning (FMF) workloads and LLM Prompt Tuning (LPT)

workloads, to mitigate the imbalance in GPU consumption. Second, we unify

diverse scheduling objectives and develop an effective scheduling system to meet

varying objectives simultaneously and effectively. Third, we design a system to

automatically and efficiently configure scheduling policies to adapt to dynamic

traffic patterns. To summarize, this thesis makes several significant contributions

to optimizing scheduling systems:

• Holistic Scheduling System Optimization. This thesis analyzes the limita-

tions of current scheduling systems through the lens of the DLT scheduler’s key

components. We optimize DLT schedulers to address these issues and improve

the overall performance of DLT workloads.

• Workload-aware Optimization (Chapter 3 and 4). We propose workload-

aware optimizations to expedite FMF workloads and LPT workloads, both of

which heavily consume GPU resources in a shared GPU cluster. The proposed

FMF workload-aware scheduler utilizes transfer learning to accelerate model

convergence of FMF jobs. Additionally, it leverages pipeline mechanisms to

reduce the context switch overhead. The proposed LPT workload-aware sched-

uler reuses high-quality prompts as efficient initial prompts of a new LPT job

to expedite the corresponding convergence rate as a result of the execution time

reduction. It also reuses the LPT runtime to deliver fast resource allocation and

quickly respond to dynamic resource requests.
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• Objective-aware Optimization (Chapter 5). We propose to schedule DLT

jobs with varying user demands (e.g., latency reduction, deadline guarantee) and

optimize these scheduling objectives jointly and efficiently. We design an accu-

rate job predictor to estimate the job execution time under different stopping

criteria. The scheduling of DLT jobs with diverse user demands, job selection,

and resource allocation are formulated as an Integer Linear Programming (ILP)

problem. Efficient scheduling decisions are then derived using a mature ILP

solver, eliminating the need for ad-hoc designs.

• Policy Configuration-aware Optimization (Chapter 6). We propose an

automatic and adaptive configuration system for DLT scheduling policies to

adapt to dynamic traffic patterns. The proposed system can generate DLT

workload traces to match realistic resource usage patterns and perform efficient

and effective configuration search on generated DLT workload traces.

1.3 Outline of the Thesis

We illustrate the main contribution of the thesis in Figure 1.2. The research prob-

lem studied in this thesis can be categorized into three parts: workload-aware opti-

mization (Chapter 3 and 4), scheduling objective-aware optimization (Chapter 5),

and policy configuration-aware optimization (Chapter 6). We address these prob-

lems to optimize DLT schedulers and improve their performance. The remainder

of this thesis is structured as follows:

• Chapter 2 presents the preliminary of DL training, GPU cluster, and relevant

studies to this thesis.

• Chapter 3 presents the optimization dedicated to FMF workloads through trans-

fer learning and pipeline context switch, resulting in improved scheduling per-

formance.

• Chapter 4 presents the optimization dedicated to LPT workloads through reusing

LPT prompts and runtime, significantly improving the SLO attainment and re-

ducing the cost.

• Chapter 5 presents the scheduling objective-aware optimization to meet diverse

scheduling objectives jointly and efficiently in a shared GPU cluster.
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• Chapter 6 presents the policy configuration-aware optimization to adapt the

configurations of DLT schedulers to dynamic traffic patterns in a large-scale

GPU cluster.

• Chapter 7 concludes the thesis and discusses future research directions.



Chapter 2

Preliminary and Literature

Review

This chapter provides the background and related works. We begin by introducing

the preliminary of DL training and GPU clusters. Then, we focus on the literature

review and relevant studies of DLT schedulers.

2.1 DL Training

In a shared GPU cluster, the DLT job submitted by the user is distributed across

multiple GPUs with different parallel training schemes. In this section, we discuss

various distributed training parallelism strategies for DLT workloads, followed by

an in-depth analysis of DLT workloads.

2.1.1 Distributed Training Parallelism

In GPU clusters, most DLT jobs employ data and model parallelism, sequential

and expert parallelism to accelerate training.

Data Parallelism. Data parallelism represents a prevalent approach of dis-

tributed execution for DLT jobs. In this paradigm, model parameters are replicated

across a set of distributed GPUs, with each mini-batch partitioned equally among

the GPUs. Each GPU computes a local gradient estimate using its respective data

7
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partition, followed by gradient synchronization across all GPUs. This method im-

proves the job throughput as the number of allocated GPUs increases.

Model Parallelism. Model parallelism consists of two primary techniques: tensor

parallelism [13] and pipeline parallelism [23]. Tensor parallelism partitions the

weights of a layer and performs AllReduce communication during forward and

backward propagation. Pipeline parallelism divides a model into several pipeline

stages distributed across GPUs. Each stage contains a group of several model

layers. Both parallelism techniques are often utilized in training large-scale DL

models (e.g., LLMs) that surpass the GPU memory capacity.

Sequence Parallelism. With the expansion of the context window of LLMs,

sequence parallelism has emerged as a strategy to facilitate the training of long

sequences. This approach divides the input sequence into multiple chunks along

the sequence dimension, with each device responsible for processing one chunk.

While sequence parallelism effectively reduces memory consumption across devices,

it introduces significant key-value tensor communication overhead and uneven at-

tention computation loads among devices. Consequently, numerous advancements

[24–27] have focused on refining sequence parallelism by delivering highly optimized

self-attention kernels to address these issues.

Expert Parallelism. Mixture of Experts (MoE)[28] is an efficient ensemble learn-

ing technique that allows for scaling the parameter size without incurring substan-

tial training and inference costs. As model sizes grow, it becomes impractical to

accommodate and train all experts on a single device. Consequently, numerous

works [29–31] propose distributing expert layers across multiple devices. In dis-

tributed environments, MoE introduces significant all-to-all communication over-

head, which can severely impact training efficiency. To mitigate this issue, many

research studies [28, 32] have focused on dynamically relocating expert layers across

devices to reduce such communication overhead.

2.1.2 Characteristics of DLT Workloads

DLT workloads exhibit some characteristics that motivate us to optimize DLT

scheduling systems. A series of studies have characterized DLT workloads from
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Figure 2.1: DLT workload analysis. (a) Illustration of exclusive allocation and
GPU sharing. (b) Illustration of gang scheduling and elastic training. (c) Illus-
tration of consolidated placement and topology-agnostic placement. (d) Chang-
ing workload submission pattern (top) and cluster utilization (bottom) of Helios
trace [1] in two days. (e) GPU hour usage breakdown by workload type at the
Shanghai AI Laboratory [2]. We scale the squarify map for better visualization.
(f) Total GPU requests per five minutes (y-axis) for two types of LLM tuning
workloads, including LPT workloads (top) and FMF workloads (bottom), within
a single day.

production-level GPU clusters, including Microsoft [8], SenseTime [1] and Alibaba

[9, 33]. The characteristics and scheduling challenges are summarized below.

T1: exclusive allocation [1] versus GPU sharing [9]. Figure 2.1 (a) depicts

the difference between exclusive allocation and GPU sharing. Exclusive allocation

refers to a DL job exclusively having resource usage ownership. On the contrary,

GPU sharing allows multiple jobs to co-locate in the same GPU resources and ex-

ecutes multiple jobs in a time-/space- sharing manner. GPUs, unlike CPUs, lack

inherent hardware-level support for fine-grained sharing. Hence, GPUs are allo-

cated exclusively to DLT jobs. Due to the increasing hardware compute capability,

plenty of DLT jobs cannot fully utilize new generations of GPU chips and yield low

GPU utilization. To mitigate it, cluster operators enable GPU sharing via various

techniques, e.g., NVIDIA Multi-Instance GPU (MIG) [34], Multi-Process Service

(MPS) [35], and GPU virtualization [36].
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T2: gang scheduling [1] versus elastic training [20]. Figure 2.1 (b) presents

two scheduling mechanisms for data-parallel DLT jobs. Particularly, gang schedul-

ing is that the DLT job requires all GPUs to be allocated simultaneously in an

all-or-nothing manner [37]. Unlike gang scheduling, elastic training eliminates the

strict requirement for a fixed number of GPUs, enabling a dynamic allocation of

GPUs to run DLT jobs [18, 38, 39]. This flexibility allows DLT jobs to adapt to

varying GPU counts, hence many scheduling systems support elastic training to

improve the cluster utilization and accelerate the training process.

T3: placement sensitivity [16, 19]. Distributed DLT jobs are sensitive to the

locality of allocated GPU resources. Specifically, the runtime speed of some dis-

tributed DLT jobs is bounded by the device-to-device communication capability.

Figure 2.1 (c) shows two types of placement policies, where a consolidated place-

ment policy can efficiently reduce the communication overhead compared with the

topology-agnostic placement. The communication sensitivity of DLT jobs depends

on the inherent property of the model structure. Advanced interconnect links (e.g.,

NVlink [40]) can offer an order of magnitude higher bandwidth than PCIe. There-

fore, distributed DLT jobs tend to request advanced interconnect to further reduce

the communication overhead.

T4: dynamic cluster environment. A GPU cluster, serving many DL devel-

opers, experiences highly dynamic traffic. We analyze a two-day trace from Helios

trace [1] in which DLT jobs and 560 GPUs are managed by SLURM [41]. Figure 2.1

(d) presents the number of DLT requests arriving every five minutes and the cluster

utilization. The analysis reveals significant spikes in the DLT traffic, interspersed

with periods of minimal activity. Particularly, the GPU demand peaks at 5,307

GPUs, while it can drop to as low as 130 GPUs. Additionally, the GPU cluster

utilization shows a highly fluctuating pattern, with an average utilization of only

60%. This indicates that approximately 40% of GPU hours are wasted.

T5: unbalanced GPU consumption. Many trace studies [1, 2, 8, 9, 42] pin-

point that certain application types account for a major part of GPU hour usage.

Figure 2.1 (e) presents the GPU hour usage breakdown according to the application

type in the GPU cluster from the Shanghai AI Laboratory [2]. LLM training/tun-

ing workloads account for exceedingly 80% GPU hour usage within their respective

GPU clusters. Moreover, Figure 2.1 (f) shows the total number of requested GPUs
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per five minutes for prompt-tuning and fine-tuning workloads. The peak GPU re-

quest for these workloads can reach up to hundreds of GPUs within a short time

interval, indicating that both prompt-tuning and fine-tuning workloads are sig-

nificant GPU consumers. Workload-aware optimization can provide opportunities

to reduce GPU consumption without compromising accuracy, thereby achieving a

more balanced distribution of GPU hour usage across different application types.

2.2 GPU Cluster

The unprecedented success of the DL model across a variety of applications has

driven the need to build large-scale GPU clusters to accelerate DL model training

at scale. A GPU cluster usually consists of both hardware and software layers.

2.2.1 Hardware Layer

In the hardware layer, the GPU cluster consists of not only GPU accelerators but

also other server subsystems including CPU processors, networking I/O compo-

nents, and storage systems. The GPU cluster is inherently heterogeneous, necessi-

tating an efficient scheduling system to effectively manage these diverse resources.

Usually, the scheduling system prioritizes GPUs as the primary computing resource

and networking I/O as the communication resource among GPUs. They assume

CPU and storage are not the performance bottleneck of DL training jobs.

The GPU cluster might comprise heterogeneous GPUs from various generations,

each with differing GPU memory capacities and computing capabilities. Addition-

ally, the cluster provides different tiers of networking I/O resources optimized for

data transfer. Specifically, PCIe and NVLink [40] enable high-speed data trans-

fer between GPUs within the same server. InfiniBand [43] and RoCE [44] provide

high-bandwidth data transfer for inter-server communication within the GPU clus-

ter. However, inter-server bandwidth typically falls behind intra-server bandwidth,

which can restrict the scalability of DL training. The presence of heterogeneous

GPUs and networking resources significantly increases scheduling complexity.
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2.2.2 Software Layer

The software layer is primarily equipped with DL applications and DL frameworks.

In this thesis, we introduce three levels of concepts to describe DL application.

Task is a specific and well-defined objective within the realm of DL applications.

Examples of tasks include image recognition, object detection, and language un-

derstanding. Job is a specific execution of a DL task utilizing GPU resources. It

represents an instance of a task being processed, such as training ResNet18 for an

image recognition task. Workload is the entire set of computational demands to

run the cluster-wide DLT jobs. This includes executing all DLT jobs at scale.

DL framework is a software library that provides efficient interfaces to build, train,

and deploy DL models. Users typically implement their DL applications atop DL

frameworks. Examples include TensorFlow [45], PyTorch [46], and Ray [47].

2.3 Literature Review

This section discusses relevant systems to realize workload-aware optimization,

objective-aware optimization, and configuration-aware optimization.

2.3.1 Workload-aware Optimization

As discussed in Section 2.1.2, the GPU consumption presents an imbalance among

different application types in a GPU cluster. The remarkable performance of LLMs

drives an increasing demand for GPUs dedicated to LLM workloads. The LLM

workload trace [2] from the Shanghai AI Laboratory reveals that LLM training/-

tuning workloads take 84.5% GPU hour usage in a Seren GPU cluster. They also

draw insights from a six-month LLM trace and advocate for tailored optimizations

specific to LLM workloads at scale.

Many researchers design specialized systems to support efficient LLM training.

They mainly focus on the automatic discovery of parallelism strategies on thou-

sands of GPUs [13, 14, 23, 48–51]. Hydro [52] exploits idle GPU time intervals

- known as resource bubbles of pipeline-enabled LLM training jobs on each GPU

server to accelerate hyperparameter optimization (HPO) jobs. However, current
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GPU clusters typically serve a small number of LLM training jobs, resulting in lim-

ited opportunities for job scheduling. Consequently, this thesis does not address

the scheduling of LLM training jobs.

In addition to LLM training, many algorithmic innovations, including LoRA [53],

Prefix-tuning [54], P-Tuning [55], and prompt tuning [56, 57], have been proposed

to expedite tuning LLMs for downstream applications. LoRA [53] injects a small set

of parameters into certain LLM layers to approximate the larger matrix of weight

updates. Prompt tuning [56, 57], P-Tuning [55], and Prefix-tuning [54] prepend

tunable parameters to the input. Prefix-tuning and P-tuning are extensions of

prompt tuning and can be treated as prompt-tuning workloads. The advantage of

prompt tuning and its extensions is that they do not require maintaining another

copy of LLM parameters for serving. FTPipe [58] co-designs the algorithm and

system to expedite LLM tuning workloads. Owing to these efficient tuning tech-

niques, LLM developers produce substantial tuning jobs to explore the adaptation

of LLMs to downstream applications.

2.3.2 Objective-aware Optimization

As discussed in Section 2.1, cluster users have varying user demands towards their

submitted jobs, including latency reduction, fairness, and deadline guarantee. How-

ever, most DLT schedulers emphasize optimizing a single scheduling objective for

DLT workloads. In this section, we review how existing DLT schedulers achieve

these objectives.

Latency Reduction. Latency reduction refers to minimizing the cluster-wide job

completion time (JCT). Cluster operators usually utilize average JCT and tail JCT

to quantify the latency reduction performance for DLT jobs.

Some DLT schedulers consider the placement sensitivity to attain latency reduc-

tion. Tiresias [17] observe that some DLT jobs can tolerate scattered allocated

GPUs, thereby allowing for relaxing the strict consolidation placement require-

ment. HiveD [59] develops a buddy cell allocation mechanism to mitigate cluster

fragmentation, increasing the likelihood of achieving consolidation placement for

DLT jobs. Besides, elastic training enhances job throughput to minimize execution

times for DLT jobs. Several DLT schedulers [16, 18, 60, 61] exploit this feature to
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adjust the number of allocated GPUs for each job to reduce the cluster-wide job

latency. ONES [38] and Pollux [20] dynamically adjust batch sizes and allocated

GPUs for DLT jobs. The joint optimization between batch sizes and allocated

GPUs can bring significant job throughput improvement without degrading the

model accuracy, further reducing the cluster-wide job latency.

Fairness. Fairness indicates how fairly the compute resources are allocated among

different entities, including user groups (i.e., tenants) and jobs. Existing DLT

schedulers optimize the fair sharing of indivisible GPU resources from the timing

dimension. For instance, Themis [19] maintains job-level fairness by introduc-

ing a new metric called finish-time fairness. This metric inspires the scheduler

to allocate more resources to the jobs whose attained GPU hours are less than

the deserved amount. Shockwave [62] ensures job-level fairness even when the

throughput of DLT jobs changes dynamically. Gandivafair [63] and Gavel [64]

are heterogeneity-aware fairness scheduler. They analyze performance variations

among heterogeneous GPUs and enforce fairness in a heterogeneous GPU cluster.

Beyond job-level fairness, Astraea [65] addresses both job-level and tenant-level

fairness together. It introduces the Long-Term GPU-time Fairness (LTGF) metric

to measure the sharing benefit of each job and tenant. The proposed two-level

max-min scheduling discipline can enforce job-level and tenant-level LTGF in a

shared GPU cluster.

Deadline Guarantee The deadline guarantee expects the job to be done before

the specified deadline. An early deadline-aware DLT scheduler is GENIE [21]. It

develops a performance model to predict the job throughput under different al-

located GPUs. The performance model can become very accurate with a small

number of training iterations to profile. GENIE utilizes the performance model to

identify the appropriate allocated GPUs for each DLT job to meet the correspond-

ing deadline. Hydra [66] aims to meet the deadlines for DLT jobs in a heterogeneous

GPU cluster. ElasticFlow [67] adjusts the number of allocated GPUs for each DLT

job to efficiently meet the deadline. However, these systems only optimizes deadline

guarantee, and do not consider other user demands (e.g., latency reduction). Thus,

there remains a need for scheduling systems that balance various user requirements.
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2.3.3 Policy Configuration-aware Optimization

We first introduce scheduling policies adopted by DLT schedulers, and then discuss

how to tune system configurations.

Scheduling Policy. DLT schedulers often employ heuristic functions to deter-

mine scheduling priorities in their scheduling policies. Tiresias [17] introduces the

Least Attained Service (LAS) to prioritize jobs based on their service, defined as

the product of requested GPU resources and execution time. It utilizes priority

discretization to address frequent preemption issues, drawing inspiration from the

classic Multi-Level Feedback Queue (MLFQ) algorithm [68]. Optimus [18] defines

a marginal gain to quantify the reduction in the JCT with increased allocated re-

sources. A larger gain means a higher JCT reduction. Themis [19] introduces a

long-term fairness metric, ensuring that once a job is allocated a GPU, it runs for

a predefined interval without being preempted, balancing fairness and efficiency.

An alternative approach is to use ML techniques to predict job priority in schedul-

ing policies. Both Sched2 [69] and MLFS [70] are based on reinforcement learning

(RL). They take job state and GPU cluster status as input and output the optimal

job to be scheduled. QSSF [1] and Lucid [71] employ various ML algorithms to

predict job priority based on historical job information. Both heuristic- and ML-

based scheduling policies involve many configurations to be determined by cluster

operators.

Configuration Tuning. The configuration tuning for system performance has

been a focal point in the system community [72, 73]. One empirical study [74]

highlights that many performance issues in software systems stem from suboptimal

configurations, which can lead to system failures[75] and performance faults [76].

Moreover, several studies explore various configuration tuning techniques including

random search [77] and local search [78, 79] to identify configurations that optimize

system performance.

In the context of scheduling systems, cluster operators strive to enhance system

performance while simultaneously mitigating the risk of potential failures. The

common practices include (1) tuning configurations based on representative traces

(e.g., Philly [8]) and maintaining fixed usage, and (2) adaptively adjusting con-

figurations based on expert knowledge. However, these methods have not been
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sufficient to consistently yield effective performance. Therefore, the system com-

munity is seeking an automatic approach.

Conventional automatic configuration tuning systems primarily concentrate on ad-

justing parameters for specific system applications, such as databases [80], compil-

ers [81, 82], and storage [83, 84]. OpperTune [85] and SelfTune [86] shift their focus

towards automatic configuration for scheduling systems. However, their proposed

tuning algorithms are specifically designed for big data schedulers that operate on

minute-level workloads. In contrast, DLT workloads present significantly distinct

features, as discussed in Section 2.1.2. Thus, there remains a need for an automatic

configuration system to strengthen DLT schedulers.



Chapter 3

Ymir: A Scheduler for Foundation

Model Fine-tuning Workloads

This chapter presents the research1 to address the challenges of mitigating GPU

consumption imbalance via expediting FMF workloads. Although we primarily

discuss FMs, the insights and analysis provided are particularly relevant to the

increasingly prominent role of LLMs. Thus, our findings are also applicable to

current emerging LLM fine-tuning workloads.

3.1 Introduction

Foundation models (FMs) have pushed the state-of-the-art performance envelope

across a wide range of AI tasks [89–93]. An FM is a machine learning model

(commonly large-scale in parameters) trained over massive data and adaptable to

various downstream tasks [94]. The fine-tuned FMs have shown impressive per-

formance in many downstream tasks [95–97], leading to an increase of foundation

model fine-tuning (FMF) workloads in public and private GPU clusters [58, 94].

This chapter considers reducing the latency for FMF workloads to alleviate the

growing GPU demand from FMF workloads. Compared with conventional DLT

workloads, FMF workloads exhibit several distinct characteristics. First, FMs typ-

ically have substantial parameter sizes. Hence, FMF workloads demand predomi-

nant GPU memory [13, 95, 96]. Second, FMF workloads tend to require multiple

1The contents of this chapter are published in [87] and [88]

17
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GPUs for distributed execution to support large-scale models [13, 53, 58], which

consequently increases the time needed to initiate the distributed execution run-

time. Therefore, FMF workloads have much higher context switch overhead than

general DLT workloads [98–100]. Third, FM users adopt a limited number of com-

mon FMs (e.g., RoBERTa [101], Vicuna [102]), as observed in [103]. Figure 3.1

shows the distribution of FM downloads in HuggingFace Model Hub [3]. The top

10 downloaded FMs account for 83% and 89% of the top 100 vision and language

FMs, respectively. Also, existing commercial FM services (e.g., OpenAI [103]) only

release a few FMs for public access. Due to the high expense of building an FM

from scratch, it is cost-efficient to reuse existing FMs instead of providing diverse

FMs for different tasks. Accordingly, it is common to see many FMF workloads

share the same backbone architecture in a GPU cluster.

Previous studies have proposed many efficient scheduling systems to optimize DLT

workloads [16, 18–20, 39, 63]. They consider two prominent advanced practices.

The first is to co-locate DLT workloads on the same GPUs to reduce the long

queuing delay [16, 63]. However, the job colocation might cause out-of-memory is-

sues for FMF workloads due to their vast GPU memory consumption. The second

one is to dynamically scale up the allocated GPUs to improve the job through-

put [18, 20, 39]. The frequent GPU allocation adjustment aggravates the context

switch overhead and could yield significant job progress delays for FMF workloads.

Some studies [104, 105] aim to reduce the context switch overhead but only for

inference workloads. In summary, little systematic efforts are dedicated to acceler-

ating FMF workloads in GPU clusters. Given the shared architecture of FMs, this

gap could be bridged by (1) reusing weights across tasks to expedite fine-tuning

through transfer learning, and (2) reusing the fine-tuning runtime to reduce the

context switch overhead in scenarios where FMF jobs primarily differ in model

weights and task-specific datasets.

This chapter presents Ymir, an elastic scheduler to capitalize on these opportu-

nities presented by the same backbone architecture to accelerate FMF workloads.

Ymir consists of three key modules for FMF workload scheduling. First, we de-

vise YmirEstimator to estimate the execution time for each FMF job with and

without task merging. Task merging indicates merging two jobs2 into one and

subsequently fine-tuning it through transfer learning. It involves two decisions:

2For fair comparison in our evaluation, we do not consider merging two jobs with the same
task. Therefore, we refer to it as task merging instead of job merging in Ymir.
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Figure 3.1: Proportion (x-axis) of accumulated Top-K (y-axis) FM downloads
(top 10 in blue) to the top 100 downloads of vision (left) and language (right)
FMs in HuggingFace [3].

determining which tasks to combine and selecting the appropriate transfer learning

modes (illustrated in Section 3.2). Specifically, YmirEstimator profiles each new

job’s statistical information (e.g., loss, gradients). Based on the profiled informa-

tion, YmirEstimator predicts the execution time to reach the model convergence

for FMF jobs under various resource allocations and task merging scenarios.

Second, we develop YmirSched to automate task merging and resource allocations

for each FMF job to reduce the cluster-wide job latency. Task merging can expedite

the model convergence, however, randomly combining tasks might not necessarily

yield speedup and could even result in a degradation of model accuracy3. Ymir

introduces speedup gain to quantify the reduction in execution time resulting from

various task merging scenarios, thereby mitigating the risk of poor task merging

choices. In each scheduling interval, YmirSched leverages the estimation results

of YmirEstimator to compute the speedup gain. Then, YmirSched incorporates

the speedup gain into the FMF workload scheduling objective, favoring task merg-

ing with higher speedup gains. Through optimizing this objective, YmirSched

determines how to merge tasks and allocate GPUs for FMF jobs.

Third, we design YmirTuner to reduce the context switch overhead by reusing

the fine-tuning runtime. YmirTuner comprises two modules, the task construc-

tor and the pipeline switch to facilitate the context switch between FMF work-

loads. The task constructor provides a universal implementation to different FM

fine-tuning algorithms [106] and allows only modification of task-specific datasets,

3For the sake of simplicity, we use accuracy as a universal term to denote any performance
evaluation metric, such as F1 score or BLEU score.
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model weights, and other hyperparameters to perform the context switch. The

pipeline switch pipelines the dataset preparation and parameter transfer with the

model execution to hide the context switch overhead. Moreover, the pipeline switch

tailors the pipeline concept to data- and pipeline-parallel FMF jobs respectively,

ensuring the context switch that takes no more than one minute.

We implement Ymir atop transformers library [107], PyTorch [46] and Kuber-

netes [108]. It is deployed in a cluster of 8 servers and 32 Tesla V100-32GB (A100-

80GB for Vicuna-7B) GPUs. We evaluate Ymir over ViT, RoBERTa, and Vicuna

using 9 vision, 9 language understanding, and 9 language generation datasets.

Compared with existing DLT schedulers (e.g., Pollux [20], Optimus [18], Tire-

sias [17]), Ymir achieves 1.1 - 4.3× job completion time (JCT) speedup across

various FMs. Large-scale simulation in a cluster with 240 GPUs demonstrates the

scalability of Ymir. Also, comprehensive simulation experiments are conducted

to disclose the impact of each component in Ymir. Our contributions are as fol-

lows:

• We present Ymir, a scheduler to exploit the shared backbone architecture to

optimize FMF workloads.

• We automate the task merging and resource allocations for FMF workloads.

• We reuse the fine-tuning runtime of FMF workloads to reduce the context switch

overhead.

• We implement and evaluate Ymir with representative FMs and datasets to

demonstrate its efficiency.

3.2 Task Transferability

As a core idea of Ymir, we provide a thorough exploration of task transferability.

Task transferability refers to the ability of a model, initially trained on one task, to

be used in another related but different task. In the context of FMs, downstream

models sharing the same FM can expedite training convergence. Here, we discuss

the transfer learning modes and benefits of task transferability.

Transfer Learning Modes. Initially, transfer learning aims to transfer the

weights of a pre-trained model to downstream tasks to reduce the training time

and data [109]. Many works adopt heuristic methods [110–114] to determine the
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Figure 3.2: Illustration of different transfer learning modes. (a) Normal trans-
fer: the downstream model is fine-tuned from the pre-trained weight (blue trape-
zoid). (b) Temporal transfer: task B is fine-tuned from the FM fine-tuned pre-
viously on another task A. (c) Spatial transfer: both task A and task B are
fine-tuned together in a multi-task learning manner.

optimal pre-trained model for initialization based on task similarity. Additionally,

some works estimate the performance of different transfer learning modes [110–

117]. Other works [118–120] morph a well-trained model to a new one to warm

start the training. Overall, theoretical [121] and empirical [122–126] analysis from

transfer learning show that task transferability can improve the model convergence

of FMs on downstream tasks.

Here, we consider how transfer learning expedites training convergence. By in-

vestigating existing transfer learning studies [110–113, 115–117], we identify three

predominant transfer learning modes to accelerate FMF workloads, as illustrated

in Figure 3.2. (1) Normal transfer : this is the conventional solution, where the

downstream model for each task is fine-tuned on a given dataset from the pre-

trained weights of the FM. (2) Temporal transfer : a new task B is fine-tuned from

the FM fine-tuned previously on another task A. We denote this mode as A 7→ B.

(3) Spatial transfer : both task A and B are fine-tuned together using a multi-task

learning scheme. We denote this as A∥B.

Benefits of Task Transferability. Compared to normal transfer, temporal and

spatial transfer can better leverage the knowledge from other tasks [111, 113].

Figure 3.3 compares the validation accuracy during training in different transfer

learning modes. Figure 3.3a shows that temporal transfer reduces the number of
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Figure 3.3: Transfer learning performance: (a) QQP accuracy in temporal
transfer learning on RoBERTa-Base; (b) ImageNet75 accuracy in spatial transfer
learning on ViT-Base.

epochs to fine-tune the QQP dataset [127] by 2.3× when the FM is previously fine-

tuned on the STSB dataset [127]. Similarly, Figure 3.3b shows that spatial transfer

reduces the number of epochs to fine-tune the ImageNet75 dataset [128] by 2.0×
when the FM is fine-tuned together on the FOOD101 dataset [129]. The speedup

benefits stress the need for an automated approach to identify task combinations

and transfer learning modes for cluster-wide workloads.

3.3 Characterization of FMF Workloads

In this section, we investigate unique characteristics of FMF workloads with three

representative FMs (ViT-Base, RoBERTa-Base, Vicuna-7B) and corresponding

datasets discussed in Section 3.5.1 on a server of 4 A100-80GB GPUs.

Exorbitant Context Switch Overhead. Figure 3.4a illustrates the measured

context switch overhead for RoBERTa, ViT, and Vicuna-7B on STSB [127], CI-

FAR100 [130], and SAMSUM [4]. The overhead, primarily due to weight loading

and dataset preparation, exceeds one minute. This high overhead hinders scaling

up GPUs to improve the job throughput.

Smooth Loss Curve. Prior works [17, 19] emphasize that loss curves may not
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Figure 3.4: Characterization analysis of FMF workloads: (a) Breakdown of
context switch overhead across FMs. (b) Normalized training loss (y-axis) versus
epoch (x-axis) across various FMs.
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Figure 3.5: The TTA speedup box plot of (a) temporal transfer and (b) spatial
transfer across various FMs.

always exhibit smooth decreases, and curve fitting techniques may not extrapo-

late the relationship between loss and iteration. Fortunately, current ML stud-

ies [15, 131, 132] point out that FMs possess well-behaved loss curves. In Fig-

ure 3.4b, we use the same dataset in context switch overhead measurement and

present the normalized training loss across training epochs. The training loss is

normalized to the maximum loss observed throughout the training. The normal-

ized loss exhibits relatively smooth, even in the early stages of training. Also,

one study [133] provides theoretical evidence that a well-initialized model (e.g.,

FM) presents smooth loss curves for downstream tasks. Followed by prior stud-

ies [18, 134], we can adopt curve fitting techniques to predict model convergence.

Pervasive Task Transferability. Task transferability provides new opportu-

nities to optimize FMF workloads in a cluster: jobs sharing the same FM can be

combined to enhance the performance and cluster efficiency, even for different tasks

with different datasets. Task transferability manifests pervasive across diverse FMs

and tasks. For FMs, previous studies [94–96] emphasize their remarkable ability to

adapt to various tasks. FM developers strategically optimize their models across a
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spectrum of tasks, enhancing the generalization and transferability of FMs. Con-

sequently, robust task transferability is a common phenomenon within FMs. For

tasks, recent ML studies [110, 112, 113, 126, 135] have analyzed transferability

between numerous language and vision tasks. Their findings reveal that over 50%

of task combinations can benefit from spatial or temporal transfer learning. To

present this, we compute the Time-To-Accuracy (TTA) metric, which is defined as

the time required to achieve the target accuracy on a task. We utilize the targeted

accuracy of our evaluated FMF tasks, and measure the TTA of various task com-

binations for different FMs. In Figure 3.5a, we illustrate the box plot of relative

TTA speedup for temporal and spatial transfer, in comparison to normal transfer.

Both temporal and spatial transfer can speed up FMF jobs up to 10 ×. Further-

more, more than half of the task combinations exhibit positive speedup (≥ 1). This

underscores selecting optimal task combinations and transfer learning modes can

expedite FMF workloads significantly.

Indeed, users have a desire to share task-specific model parameters with the ML

community. Every day, hundreds of new task-specific models built upon representa-

tive FMs are released on HuggingFace [3]. ModelKeeper [136] and Sommelier [137]

harness the potential of model sharing to expedite model training in GPU clusters.

Naturally, task transferability opens a new venue to expedite training progress for

FMF workloads.

3.4 System Design of Ymir

We introduceYmir, a scheduler for FMF workloads to unleash the potential of task

transferability of FMs and improve the cluster-wide latency efficiency. This sec-

tion discusses the system assumptions and workflow of Ymir, followed by detailed

descriptions of system components.
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3.4.1 System Overview

Ymir contains three key components: YmirEstimator is responsible for predicting

the execution time of FMF workloads with different task merging scenarios, includ-

ing task combinations and transfer learning modes; YmirSched automates the effi-

cient task merging and resource allocations for cluster-wide workloads; YmirTuner

optimizes FMF workloads with lightweight context switch mechanisms.

System Assumptions. We make several assumptions about our system. (1) We

assume all FMF jobs share the same FM backbone in the GPU cluster, as discussed

in Section 3.1. (2) A task is denoted as a (dataset, objective function) pair. The

same dataset might be employed with different objective functions, which could

be considered various tasks. (3) We focus on the widely adopted data-parallel and

pipeline-parallel schemes in FMF workloads. Other parallelism schemes can be

easily integrated into Ymir.

System Workflow. Figure 3.6 shows the workflow of Ymir. First, a user submits

an FMF request to Ymir in a YAML format. The YAML file specifies a list of

system parameters, as presented in Table 3.1 ( 1 ). Then, YmirEstimator demands

profiling resources (e.g., 1 GPU) for each new job from YmirSched, collecting

relevant statistical information (e.g., loss, gradient) ( 2 ). YmirEstimator utilizes

profiling results to perform time prediction for each new job and send prediction

results to YmirSched ( 3 ). Second, YmirSched decides how to merge tasks and

makes the resource (re-)allocations for cluster-wide jobs ( 4 ). Third, YmirTuner

receives task merging decisions and instantiates the FMF jobs based on transfer

learning modes and other hyperparameters ( 5 ). It also pipelines the context switch

to reduce corresponding overhead. YmirSched places FMF jobs on appropriate

GPUs ( 6 ). Last, Ymir returns the desired model weights to the user when the

FMF job is finished ( 7 ).

3.4.2 YmirEstimator

YmirEstimator consists of three components to estimate the execution time of

FMF jobs over various task merging scenarios with profiling results, as shown in

Figure 3.7. First, transferability estimator computes the transferability score and

predicts the transfer gain (defined in Eqn. 3.1) between the new job and other FMF
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Figure 3.6: The workflow of Ymir comprises three key designs: (1)
YmirEstimator estimates the execution time of FMF workloads; (2) YmirSched
determines the task merging scenarios and resource allocations; (3) YmirTuner
provides efficient context switch for FMF workloads.

Table 3.1: Description of system parameters in Ymir.

Parameters Description
Model The model name.

Dataset

A path (e.g., AWS S3)
where training and evalua-
tion samples are stored.

Hyperparam
batch size, learning rate, op-
timizer, etc.

Target

The job completion criteria,
including a maximum num-
ber of iterations and an ac-
curacy target4.

Sharing
Whether to share parame-
ters with other tasks.

Pipeline
Whether to adopt pipeline
parallelism.

jobs. Then, iteration estimator uses the transfer gain to predict the number of

iterations (defined in Eqn. 3.5) that reach the target accuracy in different learning

modes. Last, time estimator estimates the execution time by multiplying the

number of iterations with the time estimated for each iteration under any resource

allocations (defined in Eqn. 3.8). The estimation process is performed only once

for each new job, significantly reducing the computational overhead and improving

efficiency. We emphasize that the YmirEstimator’s design is highly modularized,

and its components can be replaced with other techniques that perform the same

functions. Below, we present the technical details of each component.
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Figure 3.7: The workflow of YmirEstimator. It contains three components:
(1) The transferability estimator estimates the transfer gain between new re-
quests and other FMF requests; (2) The iteration estimator estimates the num-
ber of iterations needed to reach the target accuracy in different transfer learn-
ing modes; (3) The time estimator estimates the execution time of new FMF
requests.

Table 3.2: Prediction accuracy of YmirEstimator

Model
Transferability Iteration (APE) Iteration-Transfer (APE)

Pearson’s r ↑ MAPE (%) ↓ ACC (%) ↑ Max (%) ↓ Mean (%) ↓ Max (%) ↓ Mean (%) ↓

ViT-Base 0.439 15.53 97.2% 8.13 5.69 26.8 15.35
RoBERTa-Base 0.791 16.76 98.6% 24.75 8.27 31.61 13.67
Vicuna-7B 0.568 18.05 98.6% 22.3 11.3 32.9 11.07

3.4.2.1 Transferability Estimator

This component estimates the transfer gain for each joint transfer learning mode

(Section 3.4.2). Given two tasks A and B, the transfer gain from A to B is calcu-

lated as follows:

GA,B =
PA,B − PB

PB

, (3.1)

PA,B is the performance metrics (e.g., accuracy) of B when jointly fine-tuned with

A, while PB is the performance metrics of B when fine-tuned alone. If joint fine-

tuning improves the performance metrics of B, GA,B is positive. Otherwise, it is

negative or zero.

A straightforward way to obtain the transfer gain is to fine-tune the tasks in dif-

ferent learning modes, measure the performance metrics, and compute GA,B with

Eqn. 3.1. This is computationally expensive and impractical in workload schedul-

ing. Instead, inspired by previous works [110–113], we adopt statistical information

and ML techniques to predict the transfer gain. As Ymir requires the least com-

putation overhead and satisfactory prediction accuracy, we empirically find that

Task2Vec [112] is the most suitable technique (discussed in Section 3.5.5). Its
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underlying principle is that tasks with high gradient similarity exhibit high trans-

ferability. We make two modifications over Task2Vec to adapt to our scenario.

First, Task2Vec only considers the temporal transfer learning and provides the

corresponding transferability score S(A,B) from task A to task B. We extend this

metric to spatial transfer learning: we compute the bidirectional transferability

scores S(A,B) and S(B,A) and take their average as the final transferability score

for spatial transfer learning.

Specifically, we represent a task with an embedding vector by computing Fisher

Information Matrix (FIM) as follows:

F = Ex,y∼pθ(x,y)[∇θ log pθ(y|x)∇θ log pθ(y|x)T ], (3.2)

where F is the expected covariance of gradients with respect to the model param-

eters θ, pθ(y|x) is a family of deep neural network functions parameterized by θ,

x is the data sample and y is the label, and ∇θ is the gradient of the model. We

then obtain a fixed-dimension embedding of the task by only using the diagonal

entries of FIM. The task embedding is computed with only a small random subset

of the task dataset. For a given task i, we compute the task embedding twice for

asymmetric estimation of transferability from one task to the other, denoted as Fi

and F ′
i , respectively.

Next, we calculate the transferability score from task A to task B by measuring

the distances of their embeddings:

dsym(FA, FB) = dcos(
FA

FA + FB

,
FB

FA + FB

), (3.3)

d(FA, FB, F
′
B) = dsym(FA, FB)− dsym(FB, F

′
B), (3.4)

where dcos is the cosine distance, FA is the task embedding of task A, FB and F ′
B

are two task embeddings of task B. This equation creates asymmetric transfer-

ability between tasks by subtracting the distance of two embeddings of the target

task. It is naturally applicable to temporal transfer learning. For spatial trans-

fer learning, we compute the bidirectional transferability scores d(FA, FB, F
′
B) and

d(FB, FA, F
′
A), and take their average as the transferability score S(A,B) for spatial

transfer learning.
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Figure 3.8: We perform sensitivity analysis of the transferability estimator (a)
and the iteration estimator (b) on JCT speedup between with and without task
merging.

Second, we take the transferability score S(A,B) as input to predict the transfer

gain GA,B. Table 3.2 (Transferability) shows the Pearson correlation between

S(A,B) and GA,B for different FMs. The satisfactory linear correlation between

these two metrics suggests the feasibility of using linear regression to predict the

transfer gain from the transferability score.

Error Analysis. In Table 3.2 (Transferability), we choose two metrics to eval-

uate transferability estimator by considering various task combinations across dif-

ferent transfer learning modes: (1) The mean absolute percentage error (MAPE)

between the transfer gain and estimated gain using the transferability score; (2) We

categorize the transfer gain estimation into two classes: positive (GA,B ≥ 0) and

negative (GA,B < 0) transfer, and then report the classification accuracy (ACC).

The low MAPE and high accuracy across different FMs indicate that transferability

estimator is a general and practical approach for estimating the transfer gain.

Sensitivity Analysis. We further analyze the impact of transferability estima-

tor ’s errors on the JCT speedup performance brought by task merger (as discussed

in Section 3.4.3.1). Specifically, we add random noise with the scale following a

uniform distribution over [−1, 1] on the prediction results of transferability estima-

tor. Figure 3.8 (a) presents the JCT speedup compared to the case without task

merger. Even when the added noise scale is up to 40%, the JCT speedup brought

by task merger is still larger than 1. Despite potential deviations in estimation

accuracy, the overall performance improvement remains satisfactory.
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3.4.2.2 Iteration Estimator

This component estimates the number of iterations required for joint fine-tuning to

reach (or exceed) the same validation accuracy as the normal transfer. It estimates

the training loss curve using the predicted transfer gain GA,B for different joint

transfer learning modes. Then, following previous works [38, 134], it identifies the

minimum number of iterations that makes the training converge. Formally, for

task i, the number of iterations Ki is estimated as follows:

Ki = argmin
k

1(Li(k)− Li(k + 1) ≤ 0.001), (3.5)

where 1 is the indicator function and Li(k) is the training loss value at the kth

training step.

It is challenging to obtain the training loss Li(k) accurately. The smoothing loss

curve of FMF workloads motivates us to adopt a curve function proposed by Op-

timus [18] to characterize the job progress and training loss for DLT jobs. FMF

jobs commonly use the Adam optimizer [138], which has a faster convergence rate

than SGD. We introduce an additional second-order term k2 to characterize better

the job progress and normalized training loss of FMF jobs:

Li(k) =
1

βi,3 · k2 + βi,2 · k + βi,1

+ βi,0, (3.6)

where βi,3, βi,2, βi,1, and βi,0 are learnable non-negative coefficients. We empirically

observe that our adopted curve-fitting technique performs better than Optimus.

Also, the user can provide appropriate fitting functions based on their experience.

We can use loss traces during profiling to fit Eqn. 3.6 and obtain a general set of

βi,3, βi,2, βi,1, and βi,0 for each task i. Specifically, we assume the joint transfer

learning task follows a similar training loss convergence pattern as normal trans-

fer, as investigated by previous studies [15, 132]. This is empirically validated in

Table 3.2 (Iteration-Transfer) as well. Then, we use the estimated transfer gain

GA,B to derive the normalized loss curve as LA,B(k) =
LB(k)

(1+GA,B)
for either spatial

or temporal transfer learning from task A to B. A higher GA,B can reduce the

number of training iterations using spatial or temporal transfer learning. Last, we

use this loss to estimate KB. For temporal transfer learning from tasks A to B,

we calculate KA 7→B
B with LB(k) with Eqn. 3.5. For spatial transfer learning, the
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estimated number of iterations is

K
A∥B
A = K

A∥B
B = max(

KAMA

DA

,
KBMB

DB

) ·
DA +DB

MA +MB

, (3.7)

where for a task i, Ki is obtained from Eqn. 3.5 with Li(k), Mi is the global batch

size, and Di is the training set size.

Error Analysis. We report the mean/max absolute percentage error (APE) for

different FMs with normal transfer in the fifth and sixth columns of Table 3.2

(Iteration). We use transfer gain to predict corresponding training iterations

for both temporal and spatial transfer learning. The prediction error of iteration

estimator for both temporal and spatial transfer learning modes are presented in

the seventh and eighth columns of Table 3.2 (Iteration-Transfer). The estimation

error of Iteration-Transfer is typically larger than Iteration, resulting from the

accumulated estimation error brought by transferability estimator. The maximal

prediction APE is within an acceptable range of 40%. The iteration estimator

performs well in estimating the number of iterations needed.

Sensitivity Analysis. We use a similar way to the transferability estimator to

analyze the sensitivity of the iteration estimator to the estimation error in Fig-

ure 3.8 (b). Our findings indicate that the JCT speedup gradually decreases with

the increased noise scale. When the noise scale is up to 40%, task merger still

decreases the JCT. Moreover, Vicuna-7B can benefit from the added noises to a

certain degree, which might result from the internal prediction error of the iteration

estimator.

3.4.2.3 Time Estimator

After obtaining Ki from iteration estimator, the next step is to attain the job speed

under a given resource allocation. Considering the fixed backbone architecture of

FMF workloads, our time estimator provides accurate job speed via offline profiling.

We utilize a simple yet effective method called lookup table (LUT). It accepts

resource allocations and training configurations as input and returns the job speed

of each training iteration. In particular, LUT constructs a map S(a, cfgs), where a

is the number of GPUs assigned to the job and cfgs are the training configurations.
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We use LUT to obtain the execution time of the task i as follows:

Ti,a = S(a, cfgs) ·Ki. (3.8)

The execution time of temporal transfer learning from task B to A and spatial

transfer learning is denoted as TA 7→B,a and TA∥B,a, respectively. Their main dif-

ference is reflected in the calculation of Ki in Section 3.4.2.2. Specifically, cfgs

includes {s,m, amp, ℓ, ckpt, pipeline}, where a is the number of GPUs assigned to

the job, s is the number of gradient accumulation steps, m is the local batch size per

device, ℓ is the number of frozen layers during fine-tuning, amp is a boolean value

for automatic mixed-precision training, ckpt is a boolean value for the gradient

checkpoint, and pipeline is a boolean value for parameter-efficient transfer learn-

ing. Pipeline also implies the selection of data-parallelism or pipeline-parallelism,

which will be discussed in Section 3.4.4.1. We can build LUT in an offline manner,

but it is also challenging as the number of potential cfgs is extremely large. We

choose the configuration space as follows: (1) For a, we enumerate the number

of potential resource allocations (i.e., cluster capacity); (2) For s, amp, ckpt, and

pipeline , we only profile the throughput with and without this functionality. (3)

For ℓ, we profile it at the granularity of building block layers. (4) For m, we profile

it in a 2-exponential sequence until reaching the GPU memory limit. For exam-

ple, in RoBERTa-Base we have configs = (32, 2, 64, 2, 12, 2, 2). The total profiling

time is up to 1, 092 hours, assuming profiling each configuration combination takes

10 seconds. The configuration space scales exponentially when considering larger

parameter spaces.

To address this challenge, we further zoom into the details of these training config-

urations. First, we can ignore some configurations without affecting the efficiency

of LUT. For example, we can carefully control the batch size as the job speed corre-

lates linearly with the batch size within a certain range and the gradient checkpoint

performs effectively when the batch size is too large. Also, since the automatic

mixed precision performs faster than FP32 training, we do not need to disable this

feature except for some special FMs, e.g., T5 [139]. Second, our resource sched-

uler only considers the number of allocated GPUs from {0, 1, 2, 3, 4m | m ∈ Z+}.
Hence we can only profile a smaller resource allocation set. Third, we do not need

to consider layer freezing when using parameter-efficient transfer learning. With

the above consideration, we can reduce the number of profiling configurations to
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around 2,000 and the profiling time to about 5 hours per FM. Additionally, we can

profile many configurations in parallel to minimize the profiling time cost.

We reduce the number of configurations needed to profile and implement the of-

fline profiling within 5 hours per FM. We continuously update the LUT online to

minimize the gap between LUT and practical scenarios.

Estimation Error Handling of YmirEstimator. From the sensitivity analy-

sis of transferability estimator and iteration estimator, Ymir achieves a satisfac-

tory speedup, even when the prediction of our estimators is not accurate enough.

However, it is imperative to proactively mitigate potential estimation errors of

YmirEstimator, as they could undermine model accuracy and impede training

progress. We monitor the accuracy changes of the merged jobs to prevent these

issues. For temporal transfer A 7→ B, we assess the validation accuracy of task B

when fine-tuning task A during the accuracy evaluation stage. If it fails to enhance

the accuracy of task B in the first two epochs, we disable the temporal transfer

and schedule both tasks independently. For spatial transfer, if the accuracy of ei-

ther task A or B does not improve in the first two epochs, we decouple the spatial

transfer and schedule both tasks separately.

Overhead Analysis of YmirEstimator. The overhead of YmirEstimator con-

sists of the workload profiling and the ML model estimation in the middle schedul-

ing interval. The workload profiling overhead will be discussed in Section 3.5.5.

The maximal ML model estimation overhead for ViT-B, RoBERTa-B, and Vicuna-

7B is 7.8, 8.6, and 11.2 seconds respectively. Overall, the estimation overhead is

acceptable compared to the FMF job execution time (tens of minutes).

3.4.3 YmirSched

In YmirSched, we first introduce the task merger that determines task combina-

tions and transfer learning modes. Next, we discuss how YmirSched tackles some

special cases and scalability issues.
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3.4.3.1 Task Merger

Objective function. Inspired by [19, 20], we aim to assign GPU resources to

each job so as to share a similar job speedup/slowdown. Formally, given a set of N

tasks J = {j1, j2, j3...jN} and R available GPUs, the number of allocated GPUs

to each job a belongs to a given set A = {0, 1, 2, 3, 4m | m ∈ Z+}. A fair share of

GPU resources is ā = ⌈R/N⌉. From Section 3.4.2.3, we obtain the execution time

Ti,a of task ji assigned with a GPUs. YmirSched optimizes the following objective:

min
X

(
N∑
i=1

∑
a∈A

xi,a ·
(
Ti,ā

Ti,a

))
, (3.9)

where xi,a is an element of a binary matrix X ∈ BN×R, indicating whether ji is

allocated with a GPUs; Ti,ā/Ti,a measures the reciprocal of the job speedup brought

by elastic training. Intuitively, it minimizes the sum of the slowdown for each job

(i.e., maximizes the speedup of each job) and enforces each job to share a similar

job speedup/slowdown.

Transfer gain and resource allocation. YmirSched considers maximizing the

speedup benefits of task merging to determine the transfer learning modes and

resource allocations. Combining two FMF jobs with different transfer gains or

allocated resources favors different optimal modes. For a more in-depth explo-

ration of preferences regarding transfer learning modes, please refer to the detailed

discussion in Section 3.5.2.

Optimization problem. Considering the impact of the transfer learning modes,

YmirSched introduces the task merger to optimize the following objective:

min
X,Y,Z

N∑
i=1

∑
a∈A

xi,a ·
Ti,ā

Ti,a︸ ︷︷ ︸
normal transfer

+

N∑
i=1

N∑
k=1,k ̸=i

∑
a∈A

yi,k,a ·
1

TranWt(i, k, 7→, a)
·
2Ti 7→k,2ā

Ti 7→k,a︸ ︷︷ ︸
temporal transfer

+

N∑
i=1

N∑
k=1,k ̸=i

∑
a∈A

zi,k,a ·
1

TranWt(i, k, ∥, a)
·
2Ti∥k,2ā

Ti∥k,a︸ ︷︷ ︸
spatial transfer

, (3.10)
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subject to:

xi,a, yi,k,a, zi,k,a ∈ {0, 1},∀a ∈ A,∀i, k ∈ Z(N), (3.11)∑
a∈A

xi,a = 1,
∑
a∈A

yi,k,a = 1,
∑
a∈A

zi,k,a = 1, ∀i, k ∈ Z(N), (3.12)

∑
a∈A\{0}

xi,a +
N∑

k=1,k ̸=i

(yi,k + yk,i + zi,k + zk,i) ≤ 1,∀i ∈ Z(N), (3.13)

N∑
i=1

∑
a∈A

a ·xi,a +
N∑

k=1,k ̸=i

a · (yi,k + yk,i + zi,k) ≤ R. (3.14)

where Z(N) = {1, . . . , N}, xi,a is a binary variable to denote whether to allocate

a GPUs to ji, yi,k,a is a binary variable to denote whether to allocate a GPUs and

use temporal transfer learning from ji to jk, and zi,k,a is a binary variable to denote

whether to allocate a GPUs and use spatial transfer learning between ji and jk.
5

Note that we use 2Ti 7→k,2ā (2Ti∥k,2ā) to compute the slowdown of the merged task.

Constraint (3.12) ensures at most one allocation policy for each job. Constraint

(3.13) guarantees no overlap between individual jobs and merged jobs in resource

allocations. Constraint (3.14) ensures the total number of allocated GPUs does

not exceed the resource capacity.

In Objective (3.10), we introduce TranWt to favor the task combinations and trans-

fer learning modes that lead to more significant JCT speedup. In particular, we

quantify the speedup of temporal and spatial transfer learning modes compared to

normal training as TranWt(A,B, 7→, a) and TranWt(A,B, ∥, a), respectively. For a

given resource allocation a, these two metrics can be formulated as follows:

TranWt(A,B, 7→, a) =
2min(TA,a, TB,a) + max(TA,a, TB,a)

2TA,a + TA 7→B,a

, (3.15)

TranWt(A,B, ∥, a) = 2min(TA,a, TB,a) + max(TA,a, TB,a)

2TA∥B,a

. (3.16)

The numerator of each equation is the JCT of executing A and B with the Shortest

Remaining Time First (SRTF) scheduling algorithm. The denominator of Eqn.

3.15 is the JCT of executing A and then B with temporal transfer learning; the

denominator of Eqn. 3.16 is the JCT of executing A and B with spatial transfer

5In practice, spatial transfer learning can only be applied to jobs with zero progress in that
they share the same backbone weights.
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learning. We compute TranWt(B,A, 7→, a) similarly as Eqn. 3.15. For spatial

transfer learning, TranWt(A,B, ∥, a) and TranWt(B,A, ∥, a) are numerically equal.

Using the Integer Linear Programming (ILP) solver, we obtain a solution to Eqn. 3.10,

i.e., the resources allocated to each job and the transfer learning mode. Note that,

we only optimize resource allocations for jobs that have started execution with

temporal or spatial transfer. We do not allow a new solution to overwrite over-

write task merging decisions in a previous solution. Then, we pack each job with

as few nodes as possible to minimize the communication overhead.

3.4.3.2 Discussion

Worklod Profiling. YmirSched needs to provide profiling resources for new

jobs to gather statistical information. YmirSched does not take into account joint

fine-tuning for profiling jobs. Additionally, the allowable resource allocations for

profiling jobs are one GPU for data-parallel jobs and four GPUs for pipeline-parallel

jobs.

Pipeline-Parallel Job Scheduling. Following typical resource request practice

of pipeline-parallel jobs [13, 23], we restrict the resource allocation set as A =

{4m|m ∈ N}, reserving entire GPU servers for each pipeline-parallel job. The

throughput of the pipeline-parallel jobs depends upon some configurations (e.g.,

model partition, the number of pipelines). Given the fixed backbone architecture,

we profile these configurations offline and use them during model execution.

Scalability. In optimizing Eqn. 3.10, the scalability of YmirSched is related to

the square of the number of jobs. In practice, YmirSched can quickly filter out

unnecessary task combinations (e.g., TranWt < 1) to reduce the number of opti-

mization variables. We provide further investigations in Section 3.5.2 to validate

its scalability.

Machine Failure Handling. In the event of machine failures, the default epoch-

based checkpoint allows us to resume from the latest checkpoint. Moreover, we

maintain the transfer learning modes and restore the execution of FMF jobs un-

til the next scheduling interval (at most 120 seconds). The efficiency might be

undermined slightly in this scenario. We leave it as our future work.
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3.4.4 YmirTuner

We introduce the task constructor and pipeline switch to reuse the fine-tuning run-

time of FMF jobs for latency efficiency improvement and context switch overhead

reduction.

3.4.4.1 Task Constructor

Task constructor has two main functions. First, it supports three transfer learning

modes as illustrated in Figure 3.2. The only difference between normal and tempo-

ral transfer learning is the path storing the initialized weights. For spatial transfer

learning, task constructor adopts the same hyperparameters (e.g., learning rate,

batch size.) to fine-tune task-specific inputs. The dataloader adopts the annealed

sampling [140] to yield the inputs.

Second, task constructor decides the configurations of data and pipeline parallelism

for high throughput. It adopts Parameter-Efficient Transfer Learning (PETL), a

common practice in fine-tuning FMs to enable data parallelism for FMF jobs.

With PETL, we can fine-tune a small portion of task-specific parameters instead

of the entire model to reduce GPU memory consumption. As such, we can also

execute most fine-tuning jobs in a data-parallel manner and take advantage of its

benefits, e.g., elastic training and performance modeling. There are different types

of PETL architectures [53, 141], and we choose a unified architecture proposed

in [106]. Particularly, task constructor decides the steps of gradient accumulation

s to alleviate the GPU memory consumption in the case of a large batch size.

Additionally, it supports pipeline parallelism when requested by users. It profiles

the optimal pipeline stage and model partition offline and adopts them on demand.

In evaluation, only fine-tuning Vicuna-7B on ROC dataset [142] adopts the pipeline

parallelism for better throughput in consideration of large batch size (96) and model

parameter size (7 billion). Section 3.4.3.2 has discussed scheduling pipeline-parallel

jobs.
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3.4.4.2 Pipeline Switch

The context switch between FMF workloads exacerbates the scheduling flexibility

and delays the job progress, especially for short-term ones. Based on the analysis

in Section 3.3, we consider hiding the overhead of parameter load and data loader

preparation for pipeline- and data-parallel jobs.

First, we hide the latency between loading weights and launching the CUDA stream

to execute gradient computation for pipeline-parallel workloads. We propose to

pipeline the gradient computation of job 6 A and parameter transmission of job

B, as illustrated in Figure 3.9. Each machine maintains the entire model structure

and partial model parameters. Both A and B adopt the pipeline parallelism on

a 4-GPU machine, and the FM is partitioned into four parts. For naming con-

ventions, we use the subscript of 1-4 to denote the partition, and the superscript

f , b, and t to represent the forward propagation, backward propagation, and pa-

rameter transmission. When the context switch happens between A and B, we

overlap the parameter store of A and the parameter load of B across machines.

We also pipeline the gradient computation and parameter transmission as much

as possible in each machine. To this end, we require B to compute from machines

4 to 1. On machine 4, after completing Ab
4, we save the partial parameters of A

subsequently. Next, the partial parameters of B is loaded into machine 4, and Bf
1

starts execution. Note that our pipeline schemes differ from PipeSwitch [104] in

two aspects: (1) we consider the pipeline parallelism while PipeSwitch only focuses

on single-GPU jobs; (2) the reverse direction of the model execution between job

A (machine 1 to 4) and job B (machine 4 to 1) facilitates hiding the latency be-

tween parameter store of job A and parameter load of B, which PipeSwitch cannot

achieve.

Second, we hide the latency between dataloader preparation and model execution

for data-parallel jobs. Dataloader preparation mainly involves spawning multiple

processes for efficient data loading and preprocessing. It does not request GPU

resources and brings less system overhead for the main process. Hence, we im-

plement a simple handler for user signals (e.g., SIGUSR1 in UNIX) to accomplish

on-demand dataloader preparation ahead of time. For the scheduling interval,

6Pipeline switching can be applied to jobs with the same task. Hence, we refer to it as a job
instead of a task.
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Figure 3.9: Pipeline model propagation and parameter transmission. D2H
indicates saving parameters from the device (GPU) to the host (CPU). H2D
indicates loading parameters from the host (CPU) to the device (GPU).

YmirSched will notify the YmirTuner to prepare the dataloader for preempted

jobs 30 seconds ahead.

We emphasize that the benefits of our proposed pipeline switch depend upon the

PCIe bandwidth. With the increased bandwidth, the overhead of context switching

diminishes, resulting in shorter execution time. Consequently, the ratio of context

switch overhead over computation time decreases, making computation time the

new bottleneck. Moreover, the pipeline switch alleviates the context switch over-

head, thereby providing a way to enhance hardware utilization rates.

3.5 Evaluation

We first present the setup of evaluation experiments in Section 3.5.1. Then, we

perform physical and simulation experiments for three FMs to validate the effec-

tiveness and scalability of Ymir in Section 3.5.2. Next, we analyze the impact of

several key system components in Section 3.5.3-3.5.5

3.5.1 Experimental Setup

Implementation. Ymir requires the modification of training framework. We

implement YmirEstimator and YmirTunner on transformers 2.4.1 [107] and Py-

Torch 1.7 [46], and YmirSched on Kubernetes 1.18.2 [108]. The implementation

comprises approximately six thousand lines of Python code.
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Table 3.3: Dataset description

Dataset Learning Rate Batch Size Validation Size Scale Frac. Jobs

Vision

CAT&DOG [143] 1e-4 768 99.75 8000 Small 10%
IMAGENETTE [144] 4e-4 64 99.61 9469 Small 10%

CIFAR100 [130] 1e-3 768 91.92 50000 Medium 14%
FashionMNIST [145] 1e-3 768 93.92 60000 Medium 14%

MNIST [146] 4e-4 64 99.15 60000 Medium 14%
ImageNet25 [128] 1e-3 256 99.36 25000 Medium 14%
ImageNet75 [128] 1e-3 512 96.69 75000 Medium 14%
FOOD101 [129] 4e-4 64 90.24 75750 Large 5%

ImageNet100 [128] 4e-4 64 95.08 100000 Large 5%

Language
Understanding

WNLI [127] 4e-4 16 56.34 159 Small 5%
RTE [127] 1e-3 16 78.70 623 Small 5%

MRPC [127] 1e-3 16 92.67 917 Small 5%
STSB [127] 1e-3 16 90.58 1438 Small 5%
SST2 [127] 1e-3 128 95.18 16838 Medium 23%
QNLI [127] 1e-3 192 92.93 26186 Medium 23%
QQP [127] 1e-3 192 87.30 90962 Medium 23%
MNLI [127] 1e-3 192 87.23 98176 Large 5%
SNLI [147] 4e-4 64 91.65 137344 Large 5%

Language
Generation

SAMSUM [4] 1e-2 96 11.84 3414 Small 7%
CMV [148] 1e-3 24 25.56 6076 Small 7%
WP [149] 1e-5 32 23.04 7137 Small 7%
DA [150] 1e-3 24 12.83 9352 Medium 23%

WIKIP [151] 1e-4 32 21.62 11757 Medium 23%
COQAQG [152] 1e-3 24 26.19 12299 Medium 23%

PC [153] 1e-3 64 25.05 13759 Large 4%
QUORA [154] 1e-5 64 20.00 15169 Large 3%

ROC [142] 1e-2 96 30.06 18962 Large 3%

We sample 25 classes, 75 classes, and 100 classes from ImageNet-1k [128] to produce ImageNet25, ImageNet75,
and ImageNet100. The three datasets have no overlap.

Cluster testbed. We conduct physical experiments in a cluster of 8 GPU nodes.

Each node has 4 × Tesla V100 SXM2 32 GB, 1 × 200 Gbs HDR InfiniBand, 64

CPU cores, and 256 GB memory, connected via PCIe-III. Particularly, we evaluate

Vicuna-7B on GPU servers containing A100 SXM4 80GB GPUs due to its high

GPU memory consumption. Our physical implementation is built upon Pollux [20].

We use CephFS 14.2.8 to store checkpoints. Additionally, we set the cluster capac-

ity as 60 4-GPU nodes in our simulation to demonstrate the scalability of Ymir.

FMF tasks. We evaluate Ymir on 9 vision datasets, 9 language understanding,

and 9 language generation for ViT-Base, RoBERTa-Base, and Vicuna-7B, respec-

tively. We have conducted a hyperparameter sweep to search each task’s optimal

learning rate and batch size. As we evaluate Ymir on 27 FMF different tasks, we

present a full suite of FMF tasks, including hyperparameters and target validation

metrics in Table 3.3.

Workloads. Our evaluation workloads are sampled from a trace from Shanghai



Chapter 3. Ymir 41

AI Lab where users submit extensive jobs related to FMs. It contains 18, 471 jobs

over a period of 3 months on a cluster of 88 nodes, a total of 704 NVIDIA V100

GPUs. For physical evaluation, We sample 240, 180, and 120 jobs for ViT-Base,

RoBERTa-Base, and Vicuna-7B respectively, and construct one workload account-

ing for the expensive cost. For large-scale simulation experiments, we sample 3000,

2000, and 1500 jobs for ViT-Base, RoBERTa-Base, and Vicuna-7B respectively as

1× job load and construct three workloads for evaluation. The number of sam-

pled workloads is based on the model scale to match the GPU time usage of our

adopted trace. We follow Pollux’s workload generator to synthesize our evaluation

workloads. Specifically, we assign sampled datasets in Table 3.3 for each job based

on the GPU time. We set the probability of generating Small (0.5 GPU-hours),

Medium (0.5-10 GPU-hours), and Large (10-64 GPU-hours) as 0.3, 0.6, 0.1.

Simulator Constructor. We directly use our LUT to simulate the job throughput

over different resource allocations. We collect job throughput data on V100-32GB

for simulation experiments with ViT-Base and RoBERTa-Base. Similarly, we use

A100-80GB to perform simulation experiments with Vicuna-7B. For unseen con-

figurations, we use linear interpolation to estimate the throughput. In addition,

we collect the actual profiling cost of transferability estimation and context switch

overhead for our simulator. Such a simulator construction method is also adopted

by Pollux [20].

Baselines. In the physical experiments, we compare Ymir with three schedulers,

Tiresias [17], Optimus [18] and Pollux [20]. They are all implemented atop Pollux’s

official implementation. Tiresias fixes the number of workers for each workload.

Similar to Ymir, Optimus and Pollux dynamically change the number of workers

to maximize the cluster-wide performance. However, due to the sensitivity of FMF

workloads toward batch size [155, 156], we disable GNS [157] to tune the batch

size for Pollux throughout the training7. Besides, we also compare with fairness

scheduler Themis [19] and preemptive SRTF to reinforce the effectiveness of Ymir.

We set the lease term interval of Themis as 600 seconds. The scheduling inter-

val of Pollux and Optimus is set as 300 seconds for the exorbitant context switch

overhead. The scheduling interval of Tiresias, Themis, and SRTF is set as 120

seconds because of their infrequent resource re-allocations. Thanks to the pipeline

7GNS leads to NAN issues when fine-tuning Vicuna on COQAQG [152].
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Table 3.4: Relative JCT difference (%) between simulator and physical imple-
mentations.

Scheduler Ymir Optimus Pollux Tiresias

Average JCT Diff (%) 8.77 4.37 3.24 5.40
Tail JCT Diff (%) 10.82 0.74 6.03 3.96

Table 3.5: The accuracy improvement over normal transfer.

Foundation
Models

Max Min Avg

Temporal Spatial Temporal Spatial Temporal Spatial

ViT-B 2.12% 2.4% 0.24% 0.37% 1.11% 0.95%
RoBERTa-B 3.72% 1.51% 0.0% 0.9% 0.85% 1.21%
Vicuna-7B 7.59% 68.82% 2.75% 0.86% 3.72% 14.74%

switch, Ymir adopts a short scheduling interval of 120 seconds. To show the gen-

erality of Ymir, we choose three representative FMs (ViT-Base, RoBERTa-Base,

and Vicuna-7B) and evaluate them on 9 vision datasets, 9 language understanding

datasets, and 9 language generation datasets, detailed in Table 3.3.

Simulator fidelity. To validate the fidelity of our simulator, we measure the

difference of average JCT and tail JCT between the simulation and physical ex-

periments in Table 3.4. The average JCT gap is within 10%, and the tail JCT

difference is around 10%. This shows our simulator can provide reliable and ac-

curate evaluation results. Without special explanation, we use our simulator in

Section 3.5.3-3.5.5.

3.5.2 End-to-end Performance

Physical evaluation results. We adopt average JCT and 99% tail JCT to

measure the efficiency of Ymir. Figure 3.10 presents the performance of Ymir and

baselines over different FMs normalized to Ymir. Additionally, Figure 3.10 shows

the average and tail JCT (seconds) of Ymir. Ymir can reduce 1.11 - 4.34× average

JCT, and 0.89 - 3.56× tail JCT compared to baselines. Unlike discussed in [20],

Pollux and Optimus do not outperform Tiresias considerably for language FMs.

The frequent resource re-allocations might delay the job progress and degrade the

performance benefit of elastic training. Besides, Vicuna attains better performance

improvements than smaller FMs, as they facilitate task transferability and perform
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Figure 3.10: Physical evaluation results over different FMs.

Table 3.6: The fractions of tasks participating in different transfer modes in
the physical experiment.

Mode ViT-B RoBERTa-B Vicuna-7B

Temporal 15% 20% 11.6%
Spatial 16.6% 7.2% 15%

well in model generalization and transferability. Section 3.5.5 provides empirical

evidence that Vicuna enjoys the most JCT speedup brought by task merger.

We terminate FMF jobs when the accuracy reaches the validation target. How-

ever, an important question is whether the transfer learning would harm model

performance. Table 3.5 presents the maximal, minimum, and average relative ac-

curacy (performance) improvement of tasks fine-tuned with temporal and spatial

transfer compared to normal transfer. Vicuna can attain maximal 68.82% accu-

racy improvement for the BLEU metric of SAMSUM [4] with spatial transfer with

DA [150]. The minimum accuracy improvement is no less than zero. To summa-

rize, both temporal and spatial transfer improve model accuracy. This is in line

with previous works [122–124] that transfer learning can improve the model perfor-

mance. Moreover, the fractions of tasks participating in different transfer learning

modes are shown in Table 3.6. About 20-30% of workloads are assigned temporal or

spatial transfer learning modes. Different FMs present various preferences toward

transfer learning modes, and no single dominant transfer learning mode exists.

Large-scale simulation. We use our simulator to conduct large-scale simulation

experiments. We set the cluster capacity as 60 4-GPU nodes, and vary the job load

from 1 × to 2×. Specifically, based on the model scale, we set 1 × job load as 1500
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Figure 3.11: Scheduling efficiency results over FMs and job loads in simulation
experiments. x-axis is the JCT normalized to Ymir while y-axis is the job load.

- 3000 jobs. Figure 3.11 shows Ymir achieves 1.66 - 22.3× JCT speedup across

different job loads and FMs. Also, Figure 3.11 presents the average JCT (seconds)

of Ymir. The speedup gain of Vicuna is more significant than that of small FMs,

especially compared to Optimus. Pollux cannot perform satisfactorily in large-

scale simulation experiments due to the high search cost of its adopted evolutionary

algorithm. With the increase of the job load, Ymir presents a better JCT speedup,

as a higher job load potentially brings more beneficial task combinations and thus

provides more chances to reduce the JCT. Besides, the maximal/average of the

ILP solver latency for 2 × jobs is 0.23/5.43 seconds using one CPU core, which

does not have a significant impact on the scheduling performance.

3.5.3 Evaluation of YmirEstimator

Transfer learning modes. In Figure 3.12a investigates the contributions of differ-

ent transfer learning modes to scheduling performance improvement over different

FMs. No single transfer learning mode dominates across all FMs. Nevertheless,

when both transfer learning modes are jointly considered, the scheduling perfor-

mance experiences a further enhancement. Except that temporal transfer learning

degrades the JCT speedup brought by spatial transfer learning in Vicuna. This

could arise from the prediction error of our adopted estimator.
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3.5.4 Impact of LUT and Pipeline Switch

Performance contribution of LUT. We compare LUT with the throughput

estimator adopted in Pollux. Table 3.7 (row w/ LUT) reports the JCT of the

throughput estimator normalized to that of our LUT. We observe that LUT is

more beneficial to language FMs than vision FM. Little performance gain is shown

for ViT-Base. The efficiency of the throughput estimator depends upon the fact

that the job throughput scales linearly with the increase of the batch size and

allocated GPUs. Its effectiveness is extensively validated in vision tasks [20], but

is not satisfactory for language tasks.

Pipeline dataloader and model preparation. We use PETL to reduce the size

of parameters to compute and communicate gradients for most FMF workloads.

Hence, most FMF jobs adopt data parallelism, and the pipeline switch between

parameter transfer and gradient computation is insignificant for such a scenario.

The dataloader preparation becomes a performance bottleneck. Ymir proactively

invokes this step to hide the data preparation to the greatest extent before fine-

tuning the next FMs. Table 3.7 (row w/ data pipe) shows the JCT without the

dataloader pipeline normalized to that with the dataloader pipeline. The pipeline

dataloader brings 1.1 - 1.7× JCT speedup.

Pipeline parameter transfer and model execution. We propose to execute

the context switch between two pipeline parallelism jobs in a pipelined way. This

pipeline context switch can considerably reduce the exorbitant overhead of the

context switch. This technique does not apply to all FMF jobs. We mainly examine

how this pipeline practice benefits fine-tuning Vicuna-7B on ROC [142]. It does

not bring apparent cluster-wide JCT speedup but reduces around 4% JCT for tasks

fine-tuning Vicuna on ROC.

3.5.5 Impact of Transferability Estimation

Impact of transferability metrics. We categorize existing metrics for task

transferability estimation into probability-based, feature-based, and gradient-based

methods. (1) LEEP [110] is a representative probability-based method incorporat-

ing the entire dataset to estimate the data distribution accurately. The compu-

tation overhead of LEEP scales with the dataset size. The estimation accuracy
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Figure 3.12: The impact of key components: (a) The impact of different
transfer learning modes; (b) The impact of the number of datasets

Table 3.7: Speedup brought by LUT and Pipeline Switch.

ViT-B RoBERTa-B Vicuna-7B

w/ LUT 1.03 1.56 1.29
w/ data pipe 1.12 1.22 1.75

Table 3.8: JCT speedup performance and execution overhead using various
transferability metrics.

FM
LEEP [110] Task2Feat [113] Task2Vec [112]

Speedup Max (s) Speedup Max (s) Speedup Max (s)

ViT-Base 0.85 30.50 1.26 5.87 1.30 24.63
RoBERTa-Base 0.74 202.46 1.12 923.46 1.57 75.64
Vicuna-7B - - 0.99 838.03 1.72 102.85

of probability-based methods closely correlates with the number of classes [158].

Hence, LEEP fails to perform regression and generation tasks (e.g., Vicuna). (2)

Task2Feat [113] is a feature-based method that extracts the penultimate layer’s

features over the entire dataset and designs various metrics to measure the sim-

ilarity between tasks. Hence, the computation overhead is exorbitant when the

number of examples is enormous. (3) Our adopted Task2Vec [112] is a gradient-

based method, which adopts a subset of the dataset to quantify the transferability

between tasks. We compare the speedup brought by task merger using three task

transferability estimation metrics in Table 3.8, and find Task2Vec achieves the best

JCT speedup over different FMs. Task2Feat falls behind on JCT speedup. LEEP

has adverse effects on cluster-wide latency efficiency for ViT-Base. The maximal

profiling overhead of various metrics is shown in Table 3.8, and Task2Vec consider-

ably reduces the overhead compared to other baselines on language FMs. Overall,

Task2Vec is a suitable metric for transferability estimation.
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Sensitivity to the number of datasets. We vary the number of datasets from

3 to 9 and present the JCT speedup between Ymir with and without using task

merger in Figure 3.12b. Our observation is that task merger can attain at least 1.3

× JCT speedup over different numbers of datasets and FMs. We acknowledge the

JCT speedup brought by task merger correlates with the intrinsic task transfer-

ability. Our sensitivity analysis demonstrates that the performance improvement

brought by task merger does not arise from our cherry-picking datasets.

3.5.6 Discussion of System Parameters

Here, we discuss the potential impact of certain system parameters on scheduling

performance. First, we set the scheduling interval of Ymir to 120 seconds. Re-

ducing this interval to one minute results in significant job delays for tasks using

Vicuna-7B as their backbone, due to frequent resource reallocations. Conversely,

increasing the scheduling interval from 120 seconds to 180 seconds and 300 seconds

leads to an average JCT slowdown of 1.04-1.27 × for ViT-base and 1.02-1.24 × for

Robert-Base.

Second, empirically evaluating the impact of LUT (Look-Up Table) size is chal-

lenging, as it depends heavily on the synthesized trace data. When we disable

the usage of LUTs, we observe a significant performance drop for language tasks.

Language models appear to be particularly sensitive to the size of the LUT.

3.6 Chapter Summary

This chapter presents Ymir, an FMF workload-aware scheduler in GPU clusters.

We propose YmirEstimator and YmirSched to determine the optimal transfer

learning modes, task combinations, and resource allocations. We designYmirTuner

to improve the efficiency of individual FMF workloads with PETL architectures

and pipeline schemes. Our extensive experiments demonstrate that Ymir outper-

forms existing DLT schedulers in reducing the job latency for FMF workloads.
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PromptTuner: A Scheduler for

Large Language Model Prompt

Tuning Workloads

This chapter presents the research to address the challenges of mitigating GPU

consumption imbalance via accelerating prevalent LPT workloads in a GPU cluster.

4.1 Introduction

LLMs are becoming prevalent in many scenarios owing to their exceptional capabil-

ities [93, 95, 96, 159]. LLM developers employ a compelling and widely embraced

technique known as prompt tuning, to customize LLMs for a diverse range of ap-

plications without altering the model weights [93, 160–163]. Each LPT job in

practice typically requires multiple GPUs and completes within dozens of seconds

to minutes [56, 57]. Hence, many IT companies have introduced Prompt-Tuning-

as-a-Service to meet the growing demand of LPT workloads, which can involve

hundreds or even thousands of requests per day per LLM [103, 164, 165]. In this

business model, users furnish their initial prompts and downstream datasets and

select the base LLMs. Subsequently, the service provider allocates GPU resources

to optimize the prompts for the given datasets, returning the finalized prompts to

users.

48
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The service provider has several considerations when serving users’ LPT requests.

First, users concentrate on the accuracy1 and the latency of their LPT requests.

They will specify the SLOs of the targeted accuracy and latency [164–166]. Second,

the service provider rents top-grade GPU resources from public clouds [167–169]

to handle users’ LPT requests. Given the increasing number of LPT requests and

the considerable cost of renting GPUs, there is a pressing need to design systems

that optimize resource allocations for LPT workloads. Such optimization aims to

reduce resource costs for service providers while fulfilling SLOs for users.

We present a workload characterization summary of LPT workloads in Section 4.2.2,

and find that they exhibit both training-like and inference-like features. A straight-

forward approach is to leverage prior research efforts in DL schedulers for training

and inference workloads to address LPT demands. However, our empirical study in

Section 4.3 shows that they are not sufficient to manage LPT workloads. First, pre-

vious SLO-aware schedulers for DL training [21, 22, 67, 170] oversubscribe a fixed-

sized GPU cluster to guarantee SLOs, resulting in increased resource costs. Also,

the commonly adopted frequent resource allocation could incur nearly one-minute

resource allocation overhead for LLMs [99, 100] and pose a significant barrier to

enforcing minutes-level latency SLOs for LPT workloads. Second, prior SLO-aware

schedulers for DL inference [171–174] adopt two techniques: (1) they autoscale the

number of GPUs needed to reduce resource costs; (2) they pre-load the DL run-

time (e.g., CUDA/framework runtime) and model weights in the GPU memory for

a time period to reduce the allocation overhead and optimize the SLO attainment.

However, these solutions adhere to a fixed GPU allocation, normally assigning one

GPU for each job, compromising the adaptability required to meet varying levels

of SLOs for LPT jobs. As shown in Section 4.3.2, even with the incorporation

of multi-GPU allocation into DL inference schedulers, they still struggle to serve

LPT workloads effectively. Overall, prior DL training and inference schedulers ex-

hibit deficiencies in realizing SLO satisfaction and cost reduction simultaneously

for LPT.

Additionally, a unique feature of LPT workloads is overlooked by existing DL

schedulers and LPT services: their model convergence is highly sensitive to the

initial prompts (Section 4.2.2). This sensitivity suggests the significant variance in

the number of iterations required to achieve the targeted accuracy given different

1We use accuracy as a universal term to denote any performance evaluation metric. The
accuracy target for each task is denoted in Table 4.5.
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initial prompts. For example, a well-curated initial prompt demands fewer tuning

iterations than a poor one, thereby mitigating SLO violations and reducing resource

costs. Practically, LLM developers adopt two initialization methods. First, the

current practice of LPT services is manual initialization. Users are asked to craft

initial prompts by themselves [175, 176]. Alternatively, users are recommended to

reuse publicly available prompts [164, 177] directly. However, both practices rely

on human expertise, substantial GPU resources, and time for these laborious trial-

and-error processes. Second, some LLM studies [178, 179] and LLM services [180]

propose induction initialization to guide LLMs to automatically generate initial

prompts without human expertise. However, the quality of the generated initial

prompt heavily relies on the performance of the LLM itself [178, 179] (evaluated

in Section 4.6.3). Despite the potential benefits, few systematic efforts exist to

automatically and efficiently identify initial prompts for a given LPT job.

To address these gaps, we design PromptTuner, an SLO-aware elastic scheduler

dedicated to LPT. PromptTuner consists of two designs. First, we design a

Prompt Bank as a query engine to automatically and efficiently search the initial

prompt for a given LPT job. The design of the Prompt Bank is motivated by the

fact that prompts optimized for one LPT task can be an effective initial prompt

for another with high task similarity [113, 135]. As public prompts optimized for

various tasks are noticeably increasing [181], we collect thousands of high-quality

prompts as the initial prompt candidates for incoming LPT jobs. We design a

two-layer data structure to enable an efficient search for an effective initial prompt

among thousands of candidates. Particularly, it only takes at most 10 seconds for

each LPT job.

Second, we design a Workload Scheduler that supports fast and elastic GPU alloca-

tion for LPT jobs to meet SLOs and reduce resource costs. The Workload Scheduler

allows LPT jobs based on the same LLM to reuse the GPUs from a warm GPU

pool comprising GPUs with the same job-specific pre-loaded LLM runtime and

weights, providing rapid GPU allocation. The Workload Scheduler maintains a

warm GPU pool for each LLM while adjusting the number of GPUs in these pools

to minimize resource costs by dynamically adding GPUs to the LLM’s warm pool

from the shared cold GPU pool. We devise two algorithms that optimize the SLO

attainment and resource cost in dynamic traffic of LPT jobs. The first delivers

fast GPU allocation from the warm GPU pools to the LPT jobs. The second one
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dynamically adjusts the number of GPUs in the warm pools according to the jobs’

SLOs and GPU availability.

We implement PromptTuner atop PyTorch and Knative, and evaluate it on a

cluster with up to 32 A100-80GB GPUs. We select three popular LLMs (GPT2-

Base [95], GPT2-Large [95], Vicuna-7B [102]) on various datasets [4, 142, 148–154],

following a real-world LPT trace pattern. We compare PromptTuner with the

state-of-the-art SLO-aware DL inference scheduler INFless [172] and DL training

scheduler ElasticFlow [67]. PromptTuner reduces the SLO violation rate by up

to 4.0× (INFless) and 7.9× (ElasticFlow), and reduces the cost by up to 1.6× (IN-

Fless) and 4.5× (ElasticFlow). We also conduct large-scale simulation experiments

in a cluster with up to 120 GPUs to confirm its scalability. Our contributions are

as follows:

• We perform an in-depth characterization analysis for LPT workloads.

• We conduct detailed empirical studies to uncover the inefficiencies of existing

DL schedulers to handle LPT workloads.

• We present PromptTuner, an elastic system for LPT workloads that can

guarantee SLOs for users and reduce resource costs for service providers.

• We perform extensive evaluations to validate the efficiency of the Prompt Bank

and the Workload Scheduler.

4.2 LPT Workload Characterization

We first illustrate prompt tuning and its prevalence. Next, we provide an in-depth

LPT workload characterization analysis.

4.2.1 Prompt Tuning

Prompt tuning is an approach to obtain high-quality responses for a specific task

from an LLM by attaching a prompt prefix (simply referred to as prompt), saving

the high cost of retraining the model weights. An LPT job optimizes a prompt

prefix that elicits the best response from the LLM when prepended to an input

query. Figure 4.1 shows an example of the task of converting the natural language
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Figure 4.1: An example of LLM prompt tuning. The user first prepares the
LLM, the initial prompt, and the task-specific dataset, which consists of a batch
of input queries and target responses. During the execution stage, it optimizes
the tunable prompt starting from the initial prompt on the given dataset.

to SQL language using the gradient-based LPT algorithm [54]. The user sends

an LPT request containing the LLM, the initial prompt (”Convert natural lan-

guage description to SQL elegantly and correctly”), and the task-specific dataset

consisting of input queries and corresponding target responses. Some LPT service

providers [164, 177] recommend the user to specify their initial prompt based on

their expertise ( 1 ). To execute an LPT job, the LPT system feeds this set of

input queries into the LLM ( 2 ). The system runs the gradient-based algorithm

to compute the cross entropy loss between the generated output sentences and

targeted responses. Then it backpropagates the gradient and updates the gradient

on the tunable prompt ( 3 ). After multiple iterations of updates, the optimized

prompt is generated: ”Translate the description into a grammatically correct SQL

query optimized for speed and accuracy”, and returned to the user ( 4 ). The user

can prepend this prompt to their inference queries to the same LLM.

Prevalence of LPT Workloads. Today, LPT workloads emerge as a prevalent

GPU consumer, making prompt-tuning services an essential business practice [164,

165, 177]. When a service user sends an LPT request, the underlying system

registers it as an LPT job. The provider schedules each LPT job to run on high-

grade GPUs while maintaining the strict SLOs the users impose.

The prevalence of LPT workloads manifests in three aspects. First, LLM developers

daily produce hundreds or even thousands of prompt-tuning requests [164, 165, 177]

and claim many high-grade GPUs (e.g., A100 [182], H100 [183]) to respond these

LPT requests quickly. Second, many prompt-tuning services [164, 165, 177, 184–

186] serve to expand LLM across various fields, making the LLM prompt market
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trendy and growing. Considering the accessibility and cost of the strong commercial

LLM service GPT-4, LLM developers depend upon prompt-tuning methods to at-

tain performance comparable to GPT-4 [159]. Particularly, some studies including

PoT [187], InterVenor [188], and LLM-RelIndex [189] report their prompt-tuning

techniques can outperform GPT-4 [159] by 5-10 points in mathematical reasoning,

code generation, financial tasks. Third, domain-specific LLMs rely on high-quality

prompts to elicit desirable responses. For example, one study [190] crafts the

prompt to enhance small medical LLMs. Another study [191] requires special-

ized prompts to process legal documents. These domain-specific LLMs necessitate

experienced expert knowledge, complicating the prompt construction process and

calling for a more efficient system to expedite LPT jobs.

4.2.2 Characterization of LPT Workloads

Next, we study the LPT workload characteristics, which can guide the design of

an efficient LPT scheduler. We experiment with three popular LLMs (GPT2-Base,

GPT2-Large, Vicuna-7B) and the SAMSUM dataset [4] on a server of 8 A100-80GB

GPUs. We identify some common characteristics that LPT workloads share with

training and inference workloads, which have been extensively studied by prior

works [1, 8, 9, 171, 173, 192].

Synchronous Cross-GPU Communication. Similar to DL training workloads,

executing an LPT job requires iterations of feed-forward/backward passes, followed

by a synchronous exchange of prompt gradients after each iteration. However,

the cross-GPU communication of LPT is much lower than that of DL training.

Figure 4.2a shows the time breakdown of three LPT workloads: the communication

overheads are within 0.4-05% of the total execution time. Hence, LPT workloads

can enjoy a nearly linear throughput increase when the number of allocated GPUs

is increased.

Dynamic Traffic. LPT is a user-facing service, often featuring highly volatile

dynamic traffic. We analyze a trace of LPT jobs sampled from a 64-GPU cluster

in a large institute. Figure 4.2b presents the LPT job arrival time for prompt-

tuning Vicuna-7B within two hours. We observe large spikes of LPT traffic, with

the maximum number of requests per minute being five times the mean. Such a

pattern indicates that an efficient LPT system needs highly reactive autoscaling.
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Figure 4.2: Characteristics of LPT workloads: (a) The end-to-end LPT job
execution time breakdown across different LLMs. (b) A 2-hour LPT workload
trace from a large-scale cluster. (c) The Iteration-To-Accuracy (ITA) distribu-
tion of various initial prompts with the SAMSUM dataset [4] across different LLMs.

High GPU Allocation-to-Computation Ratio. The dynamic nature of LPT

workloads requires fast provisioning of GPUs, similar to DL inference workloads [171,

173, 192]. We measure the GPU allocation overhead (including GPU container

setup, ML framework initialization, and GPU runtime creation), which accounts

for 37-41% of the total execution time. This observation indicates the need for fast

GPU provisioning and reuse across LPT jobs.

High Sensitivity to Initial Prompts. We observe that the convergence speed

of the LPT workload highly depends on the choice of the initial prompt. We mea-

sure the convergence speed with the Iterations-To-Accuracy (ITA) metric using

20 randomly selected prompts on the SAMSUM dataset [4] for different LLMs. Fig-

ure 4.2c shows the cumulative distribution function (CDF) of the ITA metric. The

median and maximum ITA values are 1.7-4.5× higher than the minimum ITA,

indicating the significance of selecting an effective initial prompt at the beginning

of LPT. Given the availability of substantial public prompts [181], we identify the

possibility of finding and reusing them as initial prompts for specific tasks.

Characterization Summary. Table 4.1 summarizes the characteristics of LPT,

DL training, and inference workloads. First, LPT workloads require synchronous

communication after each iteration, similar to DL training. Second, LPT workloads

are highly dynamic and suffer from lengthy GPU allocation delays, similar to DL

inference workloads. Meanwhile, LPT workloads have a unique feature: their

processing time highly depends on the choice of the initial prompts.
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Table 4.1: Comparison of LPT, DL inference and training workloads.

Characteristics LPT Inference Training

Synchronous Cross-GPU Comm. ✓ ✗ ✓

Dynamic Traffic ✓ ✓ ✗

High Allocation Overhead ✓ ✓ ✗

Prompt Sensitivity ✓ ✗ ✗

4.3 Characterization of Existing DL Schedulers

As LPT workloads share similar execution features with DL training and inference

workloads, a straightforward strategy is to extend existing schedulers for DL train-

ing and inference to LPT. In this section, we quantitatively evaluate the efficiency of

state-of-the-art inference and training systems using the same experimental setup

as in Section4.6.1. We use the first 20 minutes of the trace in Figure 4.2b to run

the prompt-tuning jobs based on the Vicuna-7B model.

4.3.1 Inefficiency of DL Training Scheduler

Prior works have proposed many schedulers [21, 22, 66, 67, 170] that optimize

the execution of DL training workloads. These systems provision a fixed-size GPU

cluster, further referred to as a GPU pool, and frequently allocate GPUs from this

pool to jobs to maximize GPU utilization.

We evaluate the efficiency of the state-of-the-art SLO-aware DL training sched-

uler ElasticFlow [67]. It dynamically adjusts the number of allocated GPUs for

each job to improve the job throughput and SLO attainment. However, in Elas-

ticFlow, the resource costs per time unit remain fixed for all statically provisioned

GPUs, regardless of actual usage. Figure 4.3a shows the GPU cluster utilization of

ElasticFlow. On average, ElasticFlow only achieves 56% GPU cluster utilization,

almost doubling the GPU cluster’s cost.

Inefficiency 1: The static provisioning of a fixed-size GPU cluster in exist-

ing DL training schedulers results in a high resource cost when running LPT

workloads.
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4.3.2 Inefficiency of DL Inference Scheduler

Existing DL inference schedulers [171–174] often feature a serverless autoscaling

architecture. Upon receiving an inference job, they typically allocate a GPU-

equipped container, also called an instance that is a unit of scaling, from a large

pool of available GPUs to the provider for each incoming job. To alleviate the

lengthy GPU container startup overheads, providers keep idle instances ready to

serve any future inference jobs of the same model, occupying pricey GPU memory

for a prolonged time. These systems implement autoscaling to adjust the number

of instances for each model according to changes in the inference traffic.

Although these designs avoid the static resource provisioning of DL training sched-

ulers, their performance suffers from other limitations. First, they scale the re-

sources of each model independently without considering a globally optimal sched-

ule. Second, prior DL inference schedulers [171–174] are limited to allocating one

GPU for each instance of a model. Last, they lack support for synchronous cross-

GPU communication, which is required for LPT jobs.

We select INFless [172], a representative DL inference scheduler, for our evaluation.

However, running an LPT job on a single instance is insufficient to improve the

job throughput and meet the emergent latency SLO. To address this limitation, we

extend INFless to support synchronous cross-GPU communication via Memcached

[193], as commonly used in serverless systems [194, 195]. The implementation

details of multi-GPU execution can be found in Section 4.5.1. Thus, a single LPT

job can use multiple instances, i.e., multiple GPUs, to accelerate its completion.

Nonetheless, in INFless and other DL inference schedulers, some instances may

need tens of seconds to initialize, thereby incurring long waiting time for the LPT

job when running across multiple instances. Figure 4.3b depicts that instance

initialization contributes on average 11% to the end-to-end LPT job latency, and

up to 50% in the worst case.

Inefficiency 2: The presence of instance initialization in existing DL inference

schedulers incurs substantial delays, compromising the effectiveness of multi-

GPU execution.
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Figure 4.3: Characterization of existing DL schedulers: (a) The cluster uti-
lization (%) (y-axis) in ElasticFlow over time (x-axis). (b) The CDF (y-axis)
illustrates the fraction (x-axis) of waiting delay in the end-to-end latency caused
by the instance initialization.(c) SLO violation (%) of ElasticFlow and INFless
across varying maximum allocated GPUs.

Unsurprisingly, ElasticFlow and INFless show substantially high SLO violation

rates due to the abovementioned inefficiencies. Figure 4.3c shows the SLO vio-

lation (%) – up to 70% – occurring when executing the LPT workload on top of

ElasticFlow and INFless with varying maximum numbers of allocated GPUs. These

results demonstrate that existing DL schedulers are unsuitable for LPT workloads,

calling for designing an efficient scheduler tailored to the LPT workload character-

istics in Section 4.2.2.

4.4 System Design of PromptTuner

We introduce PromptTuner, an SLO-aware elastic scheduler for LPT workloads.

We begin with the design insights and overview of PromptTuner, followed by

the illustration of Prompt Bank and Workload Scheduler.

4.4.1 Design Insights

The design of PromptTuner is motivated by two insights. Our first insight is

that LPT tasks can reuse the prompts optimized for similar tasks as their initial

prompt to reduce the number of tuning iterations needed to achieve the desired

accuracy. Many LLMs are trained through multi-task learning, endowing them

with robust generalization across various tasks [96, 102]. A prompt that performs

well on one task demonstrates good performance on similar tasks on the same
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Figure 4.4: The workflow of PromptTuner. It consists of two key compo-
nents: (1) The Prompt Bank identifies an effective initial prompt for an incoming
LPT job at a minimal cost; (2) The Workload Scheduler dynamically adds GPUs
from the GPU pool for each LPT job to reduce SLO violation while minimizing
resource costs.

LLM [135]. Extensive empirical studies on transfer learning [113, 135] and theo-

retical analysis [121] affirm that reusing prompts can considerably accelerate the

model convergence.

Our second insight is that LPT jobs can reuse the runtime of the jobs based on the

same LLMs. Indeed, LPT service users often use the same few LLMs, e.g., GPT-3

and GPT-4, when tuning their prompts [93, 196, 197]. Therefore, many LPT jobs

load the same runtime state into the GPUs before execution. In particular, this

state includes the CUDA and DL framework dependencies, and model weights.

Reusing this runtime state can substantially reduce the GPU allocation overhead,

which is substantial for LPT jobs (Section 4.2.2).

Table 4.2: Job attributes description in PromptTuner.

Attributes Description
Model The LLM model name.

Termination Condition
The job completion criteria, including a maximum
number of iterations and an accuracy target.

Deadline
The anticipated time by which the LPT job should
be completed.

Dataset
A path (e.g., AWS S3) where training and evalua-
tion samples are stored.

Hyperparam
Including initial prompt and parameters such as
batch size, optimization algorithm.

Prompt The optimized prompt.

4.4.2 System Overview

Following the insights in Section 4.4.1, PromptTuner incorporates two key com-

ponents: the Prompt Bank leverages prompt reusing to identify effective initial

prompts for incoming LPT jobs (Section 4.4.3); the Workload Scheduler harnesses
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runtime reusing to rapidly allocate GPUs to each LPT job, maintaining the SLO

attainment while reducing resource costs (Section 4.4.4).

Figure 4.4 shows the workflow of PromptTuner. First, the user submits an LPT

job to the service provider ( 1 ). The Prompt Bank identifies the effective initial

prompt for this job ( 2 ). Next, the Workload Scheduler dynamically adds/removes

GPUs from/to the GPU pool based on the GPU demand of incoming traffic. The

Workload Scheduler also dynamically adjusts the amount of GPUs for each job

periodically ( 3 ). Finally, the LPT service provider returns the optimized prompt

to the user upon the LPT job completion ( 4 ).

A job in PromptTuner is equivalent to an RPC request sent by an LPT service

user followed by the RPC response from the system. Table 4.2 summarizes the job

attributes and descriptions. The first five attributes are job parameters specified

by users. The last parameter is the response with an optimized prompt that the

system returns to the user. This job definition gives PromptTuner the flexibility

to schedule LPT jobs based on the user-specified SLOs and available GPUs in the

provider’s cluster.

4.4.3 Prompt Bank

The Prompt Bank realizes prompt reusing to improve the ITA performance of

incoming LPT jobs. It contains a set of prompts shared by all LPT jobs for

selection as their initial prompts. We aim to balance the speedup benefits of

identifying initial prompts and the latency cost of the query. To this end, we

engineer the Prompt Bank as a query engine with a two-layer data structure. It

enables efficient lookup operations for new LPT jobs and facilitates the seamless

insertion and replacement of new initial prompt candidates. Below we detail the

process of constructing the data structure and performing lookup, insertion, and

replacement operations on it. The definitions of notations used in this section can

be found in Table 4.3.

4.4.3.1 Data Structure Construction

We first assemble thousands of prompt candidates from public sources [164, 181]

into a comprehensive set, which can maximize the likelihood of selecting effective
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Table 4.3: Summary of notations in the Prompt Bank.

Sym. Definition

Deval The evaluation dataset
dini The input query sample
dtgti The target response sample

concat The operation to concatenate two text sequences
L The loss between the output and target sample
C The total number of prompt candidates in the Prompt Bank
K The number of clusters for algorithm K-medoid
Csim The cluster with the representative prompt that is closest to the new initial prompt
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Figure 4.5: The illustration of performing (a) lookup, and (b) insertion &
replacement on the two-layer data structure.

initial prompts. To identify an effective initial prompt for a given LPT job, a brute-

force search over the entire prompt candidate set is computationally intensive, often

taking hours. Our empirical study (Figure 4.9c in Section 4.6) and existing LLM

research [135] demonstrate the prevalence of prompt similarity. This provides an

opportunity to exclude unnecessary assessment of extensive poor prompt candi-

dates and improve query efficiency [181].

To this end, we build a two-layer data structure for the prompt candidate set.

Inspired by [136], we divide all the prompt candidates into clusters based on their

activation feature similarity. We begin by using an LLM (e.g., Vicuna-7B) to ex-

tract the activation features of each prompt candidate. Then, we measure the

prompt similarity based on the cosine distance between activation features. We

also discuss other similarity metrics in Section 4.5.2. Finally, we adopt K-medoid

clustering to group prompts with similar activation features into one cluster. Fig-

ure 4.5 (a) illustrates an example of this data structure. The first layer retains

each cluster’s medoid, further referred to as the representative prompt of the clus-

ter. The second layer stores each prompt within these clusters. Hereafter, we detail
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how to perform the lookup, insertion & replacement operations on this two-layer

data structure.

4.4.3.2 Lookup

The lookup operation aims to identify an effective initial prompt for a given LPT

job on this two-layer data structure. For each initial prompt candidate p, we

introduce a metric score(p), which is computed as the average loss on evaluation

samples without requiring additional tuning on the training samples. We formulate

score(p) as follows:

score(p) =
1

Deval

∑
(dini ,dtgti )∈Deval

L
(
concat(p, dini ), d

tgt
i

)
. (4.1)

A smaller score value indicates a better initial prompt. Note that we only use a

small number of evaluation samples (e.g., 16) for prompt assessment. This requires

minimal effort for labeling if the evaluation dataset is missing. Without performing

any tuning, we can select the prompt with the minimal score as the most effective

initial prompt.

The two-layer data structure facilitates the reduction of the number of prompt

candidates needed to perform the metric computation Eqn. 4.1. Figure 4.5 (a)

illustrates the process of lookup operation. First, we identify the matched cluster

by computing each representative prompt’s score at the first layer. We identify

the cluster with the lowest score. Next, we select the matched initial prompt by

calculating the score for each prompt of the matched cluster at the second layer.

We pick up the prompt with the lowest score as the optimal one. Assuming that

each cluster contains the same number of prompt candidates, this two-layer data

structure reduces the number of metric computations from C to K+C/K. Ideally,

the minimal number of metric computations is 2
√
C when the optimal cluster is

K =
√
C. Empirically, the two-layer data structure can reduce the overhead of the

lookup operations at most 40× while retaining the performance (Section 4.6.3.4).
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4.4.3.3 Insertion & Replacement

When the service provider inserts a new initial prompt candidate, Figure 4.5 (b)

shows the process of the insertion and replacement operation. First, we identify a

similar cluster. We extract the activation features of the new candidate and mea-

sure the cosine distance of activation features between the new candidate and each

cluster’s representative candidate at the first layer. Different from the lookup op-

erations, we do not involve metric computations (Eqn 4.1) in this step. The cluster

that attains the minimal cosine distance is denoted as Csim. Second, we append

this initial prompt into Csim at the second layer. Third, the replacement operation

is triggered when the number of initial prompt candidates exceeds the threshold

(e.g., 3000) after insertion. We need to select one prompt candidate to remove

it. To maximize the diversity of prompt candidates within the cluster, we choose

the prompt candidate that has the minimal cosine distance to the representative

prompt of Csim and remove it to realize the replacement operation.

4.4.3.4 Two-layer Data Structure Discussion

The prevalent similarities among prompts suggest that clustering similar prompts

in Section 4.6.3.5 can avoid unnecessary score assessment with minor speedup ben-

efit loss. The empirical study in Section 4.6.3.5 indicates that a two-layer data

structure can identify effective initial prompts within 10 seconds. Additionally, we

explore the construction of a three-layer structure using K-medoid clustering. We

encounter convergence issues for Vicuna-7B and exorbitant construction overhead

(up to tens of minutes). A two-layer structure can be efficiently constructed in five

minutes without any convergence issues across different LLMs, making it a more

suitable choice.

Although the overhead of the Prompt Bank is reduced to within 10 seconds, it is

still possible that this overhead compromises SLO compliance for short requests.

We observe that the Prompt Bank yields at least a 1.2 × ITA speedup, as discussed

in Section 4.6.3.5. Therefore, we set a budget of 20% of the latency SLO to execute

the Prompt Bank, ensuring that the minimum speedup benefits still outweigh the

overhead of the Prompt Bank.
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Furthermore, we highlight the key difference between two-layer data structure and

existing vector database techniques [198]. First, vector database techniques di-

rectly compute the similarity score between two vectors. Differently, we compute

score(p) between user-provided task-specific samples and prompts with a LLM

to determine the most suitable prompt. This requires an existing vector database

to determine the appropriate number of GPUs to efficiently compute score(p).

Integrating the computation process of score(p) into existing vector databases

would require significant engineering effort and might not yield satisfactory per-

formance. Second, vector databases introduce variability in execution time and

results. Specifically, the randomness in execution time can delay LPT execution.

When deployed in a physical evaluation environment, this variability may lead to

substantial resource costs that we cannot afford. In contrast, the overhead of the

Prompt Bank is consistently controlled within 10 seconds, ensuring it does not

impede the execution of LPT jobs.

4.4.4 Workload Scheduler

The Workload Scheduler realizes runtime reusing to mitigate the exorbitant GPU

allocation overhead (Section 4.2.2), thus reducing the SLO violation and minimiz-

ing the resource cost. Figure 4.6 shows the overview of the Workload Scheduler,

which manages two types of GPU pools, namely a single shared cold GPU pool and

a set of per-LLM warm GPU pools. Each warm pool contains GPUs initialized to

serve jobs for one specific LLM, i.e., each GPU has a pre-loaded PyTorch/CUDA

runtime and LLM weights. The shared cold GPU pool contains GPUs without any

pre-loaded GPU context2.

Managing the per-LLM warm pools independently from the shared cold pool sig-

nificantly reduces GPU allocation overhead without statically provisioning a large

fixed-size cluster, as in ElasticFlow (Section4.3.1). When the scheduler allocates

GPUs to an LPT job from the corresponding warm pool, the job can start execu-

tion immediately, avoiding the delays of pre-loading the required runtime and LLM

weights. Thus, the Workload Scheduler facilitates runtime reusing of LPT jobs of

the same LLM. Since many users use the same LLMs [95, 102, 199], the system can

2Although cloud providers are free to use the GPUs from the cold pool for any jobs and
services operating in their GPU cluster, for simplicity, we assume that the size of the cold GPU
pool is fixed and GPUs are ready to be allocated without any delays at any point in time.
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Table 4.4: Summary of notations in the Workload Scheduler.

Sym. Definition

i The index of LPT job
l The index of LLM
k The index of GPU in a warm GPU pool
a The number of allocated GPUs
L The number of LLMs.
Rl The number of GPUs for each LLM l’s warm GPU pool
A The number of allocated GPUs in a warm GPU pool for each job
B The number of GPUs added from the cold GPU pool for each warm GPU pool
T slo
i The SLO of job i

Twarm
i (a) The estimated completion time of job i when assigned with a GPUs in a warm GPU pool
T cold The overhead of adding GPUs from the cold GPU pool to a warm GPU pool
P All pending LPT jobs
El The list to store earliest timestamps for each GPU in the LLM l’s warm GPU pool
E A list to store each LLM’s El

operate efficiently while minimizing the operational cost by keeping only a small

number of warm pools with a minimal set of GPUs. In contrast to the GPUs in the

warm pools, the GPUs in the cold pool do not impose any cost, so the providers

can allocate them to any job or service running in their GPU cluster.

For each incoming job in the pending queue, the Workload Scheduler determines

the number of GPUs to be allocated based on its SLO and allocates GPUs from the

warm pool corresponding to the LLM type defined in the job attributes. To secure

the SLO compliance, we predict the upper bound of job execution time as a product

of the number of maximum remaining iterations and maximum time cost per iter-

ation under given allocated GPUs with additional GPU allocation overhead. The

maximum remaining iterations can be informed by service users. The maximum

time cost per iteration and the GPU allocation overhead can be profiled offline

and reused online. For jobs running on GPUs from a warm GPU pool, the GPU

allocation overhead will be excluded. Section 4.6.3 provides relevant estimation

error analysis. LPT jobs release their allocated GPUs to the corresponding warm

pools upon completion. The scheduler monitors each pool’s GPU usage, adding

more GPUs from the cold pool to the warm pools of the LLMs that experience

high demand and removing excessive GPUs from the warm pools of the LLMs.

Next, we detail two key algorithms underpinning the Workload Scheduler: allocat-

ing GPUs to LPT jobs from the corresponding warm pool and adding/removing

GPUs from each warm pool. Table 4.4 defines the notations used in this section.
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Figure 4.6: The Workload Scheduler consists of a single shared cold GPU pool
and a set of per-LLM warm GPU pools. It rapidly allocates GPUs from the warm
GPU pools to LPT jobs to optimize the SLO attainment. It also dynamically
adjusts the number of GPUs added from the shared cold GPU pool to the warm
GPU pools based on traffic and GPU availability.

Algorithm 1 GPU allocation algorithm in a warm pool.

1: Input: Rl that is the number of GPUs in the LLM l’s warm pool, Pl that is the pending
queue for LLM l.

2: Output: A that is the number of GPUs allocated to each job in the pending queue.
3:
4: Sort jobs based on T slo

i in the ascending order
5: for each job i in Pl do
6: Set initial allocation Ai = 1
7: while Twarm

i (Ai) > T slo
i and Ai ≤ Rl do

8: Ai = Ai + 1 // Allocate Ai GPU to the job
9: end while
10: if Twarm

i (Ai) ≤ T slo
i then

11: Rl = Rl −Ai // Update the number of GPUs in the warm GPU pool
12: else
13: Ai = 0
14: end if
15: end for

4.4.4.1 GPU Allocation from a Warm Pool

This algorithm optimizes the SLO attainment by determining the number of GPUs

in the warm GPU pools allocated to each job in the pending queue. Upon an LPT

job’s arrival, the scheduler adds it to the pending queue. Then, the scheduler

periodically adjusts the GPU allocation for each job in the queue, allocating more

GPUs from the corresponding warm pool whenever needed to achieve the job’s

SLO. Algorithm 1 illustrates this process. It starts by sorting LPT jobs in the

pending queue based on their SLOs, and then progressively increases the number

of allocated GPUs for each LPT job to meet its SLO until the warm pool is depleted

(Line 7-9).
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Algorithm 2 GPU allocation from the cold pool.

1: Input: L LLM, pending queue with jobs P, earliest timestamps of GPUs in the warm GPU
pools E.

2: Output: The number of allocated GPUs B to each LLM’s warm GPU pool.
3:
4: Sort P based on T slo

i in the ascending order
5: for each job i and the corresponding LLM l in P do
6: // Assess if the system can meet the job’s SLO by delaying its execution
7: if DelaySchedulable(E, i, l) then
8: continue
9: end if
10: Set the initially allocated GPU number Ai = 1
11: // Determine how many GPUs are needed to satisfy the job’s SLO
12: while Ti(Ai) + T cold

l > T slo
i and T slo

i < T cold do
13: Ai = Ai + 1
14: end while
15: if Ti(Ai) + T cold

l ≤ T slo
i then

16: // Update the number of GPUs in each LLM’s warm pool
17: Bl = Bl +Ai

18: // Update the earliest timestamps of GPUs in the warm GPU pools.
19: Repeat Ai times to push back Twarm

i (Ai) + T cold
l into El.

20: end if
21: end for
22:
23: function DelaySchedulable(E, i, l)
24: k = 1, T cur = current timestamp
25: Sort El in the ascending order
26: while k ≤ El.len and Ti(k)− T cur + El,k > T slo

i do
27: k = k + 1
28: end while
29: if k < El.len and Ti(k)− T cur + El,k ≤ T slo

i then
30: El,1:k = Ti(k) + El,k − T cur

31: Sort E in the ascending order
32: return True
33: end if
34: return False
35: end function

4.4.4.2 GPU Allocation from the Cold Pool

The Workload Scheduler can periodically add and remove GPUs from the cold

GPU pool to the corresponding warm GPU pool, following the demand for the

corresponding LLM. The main objective of the algorithm is to ensure each warm

pool has the minimum number of GPUs required to ensure that the jobs can achieve

their SLOs while minimizing the resource cost, which is proportional to the number

of GPUs used by the jobs and present in the warm pools. Hence, the algorithm

prioritizes jobs with shorter SLOs, delaying the execution of the jobs with longer

SLOs and the jobs projected to miss SLOs.
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Algorithm 2 details the steps that allocate GPUs from the cold pool to the warm

pools. First, the algorithm sorts all pending jobs based on its SLO. Second, it

identifies the LPT job i, scheduling of which can be delayed while still meeting

its SLO by calling the DelaySchedulable function (Line 23-35). Third, if the

system cannot meet the job’s SLO, the algorithm progressively allocates more

GPUs from the cold GPU pool to the job until it can ensure that the job can

meet the SLO. Note that the algorithm takes the GPU allocation overhead T cold
l

into the account while determining whether the system can meet the job’s SLO

(Line 12). Last, if the system can meet the job i’s SLO, the algorithm accumulates

the number of added GPUs from the cold GPU pool to the corresponding warm

GPU pool (Line 16-20).

We further elaborate the DelaySchedulable function. It determines if a job’s

SLO can be met by delaying its execution to a future moment when enough GPUs

would be released by completing jobs to the warm pool instead of immediately

adding more GPUs to the warm pool. To facilitate this, we use El,k to record the

earliest timestamp when k GPUs in a warm GPU pool for LLM l are available.

This information is obtained from predicting the completion time of each running

LPT job, along with the subsequent release of GPUs to the respective warm pool.

Additionally, to reduce the GPU usage cost, the Workload Scheduler removes the

GPUs from a warm pool if they do not serve any jobs for a time window, which

we empirically set the window size to one minute (Section 4.6.3.3).

4.5 Implementation

This section elaborates on the implementation details of the multi-GPU execution

of LPT jobs, the Prompt Bank, and the Workload Scheduler.

4.5.1 Multi-GPU Execution

We do not need to modify the training framework to adapt to PromptTuner.

We implement LPT jobs with Transformers 2.4.1 and PyTorch 2.1 and deploy them

as containerized GPU Knative functions to pre-load the LPT runtime and LLM

weights in the GPU. Each Knative function accepts a set of parameters described in
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Table 4.2 and responds to users with the optimized prompt. We adopt the prompt

tuning algorithm in [150]. Note that PromptTuner is general and can support

other implementations of LPT jobs and algorithms.

An LPT job demands multiple function instances to deliver multi-GPU execution.

We implement the multi-GPU execution atop LambdaML [195], which employs

Memcached as the storage channel to realize the synchronous cross-GPU commu-

nication between function instances. Each function instance belonging to an LPT

job is assigned an IP address and port to connect with other function instances,

incurring at most a 2-second overhead. The storage channel incurs negligible com-

munication overhead due to its small size.

4.5.2 Prompt Bank

We implement the Prompt Bank with ∼1000 lines of Python code atop Transform-

ers 2.4.1 and PyTorch 2.1. It is also deployed as a Knative function with one GPU,

which accepts parameters, including the dataset and initial prompt described in

Table 4.2, and returns the optimized initial prompt for subsequent prompt-tuning.

Offline Phase. For each LPT job, we use the corresponding LLM to extract

the activation features of gathered prompts and empirically set the number of

clusters in the two-layer data structure as 50. Moreover, we employ Scipy 1.10.1

to execute K-medoid clustering. Despite exploring alternative distance metrics,

including Manhattan and Euclidean distances, we encounter convergence issues.

The lack of convergence may stem from imbalances in the numerical value scales

within the activation features of various prompts. The storage size remains under

1 GB for each LLM. We have detailed the insertion and replacement operation

in Section 4.4.3. If the service provider introduces a new LLM, it needs to re-

extract the activation features of all gathered prompts to construct the two-layer

data structure. Totally, we can complete the offline phase within half an hour for

GPT2-Base, GPT2-Large, and Vicuna-7B using eight NVIDIA A100-80GB GPUs.

Online Phase. We expect that the latency of the Prompt Bank for each job

does not outweigh the speedup benefits. We empirically observe that the Prompt

Bank can yield a 1.2-4.7× speedup compared to the induction initialization [178],

an automatic prompt initialization baseline (detailed in Section4.6.1). Hence, we
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opt for a conservative strategy: we set the latency budget of the Prompt Bank

for each workload as 20% of its latency SLOs. If such a latency budget does not

surpass the maximum potential runtime overhead of the Prompt Bank, we perform

the PromptBank for such a request. In addition, the implementation and runtime

of the Prompt Bank and LPT can be shared. Hence, we incorporate the Prompt

Bank into the corresponding LPT job. In other words, the Prompt Bank and LPT

jobs run sequentially on their assigned GPUs.

4.5.3 Workload Scheduler

Pre-loaded Runtime. Each LPT job requires multiple function instances to

realize the multi-GPU execution. Knative provides an autoscaling mechanism to

maintain the function instances serving future requests.

GPU Allocation from a Warm Pool. This algorithm aims to perform rapid

GPU allocation from a warm pool to an LPT job. Hence, we conduct the round-

based GPU allocation every 50 milliseconds, which is negligible compared to minutes-

level latency SLO. It operates within the distributed control plane of Knative to

assign GPUs in the warm GPU pools to corresponding LPT jobs.

GPU Allocation from a Cold Pool. This algorithm is implemented inside the

distributed control plane of Knative, and the interval is set as 50 milliseconds to

add and remove GPUs for the warm pools promptly. Moreover, this algorithm

tracks the profiled information, including the resource allocation overhead for each

LLM and the job throughput for each LPT job. It then continuously updates this

information to the scheduler to avoid high estimation errors. The monitor step

incurs millisecond-level overhead, which can be considered negligible.

4.6 Evaluation

We first detail the experimental setup of PromptTuner in Section 4.6.1. Then,

we perform physical experiments in Section 4.6.2 to demonstrate the superiority of

PromptTuner. Next, we investigate each system component including Prompt

Bank and Workload Scheduler to verify corresponding effectiveness. Last, we per-

form large-scale simulation to validate the scalability of PromptTuner.
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Figure 4.7: End-to-end performance: (a-b) SLO violation and cost under dif-
ferent loads. (c-d) SLO violation and cost under different SLO emergencies. (e-f)
The number of requested GPUs over time, and the fraction of the overhead of
Prompt Bank in the end-to-end latency.

4.6.1 Experimental Setup

Testbed. We set up PromptTuner in a physical GPU cluster. Each GPU

server has eight A100 80GB GPUs and one 200Gb/s HDR InfiniBand. It features

an Intel Xeon 8369B 2.90GHz CPU with 64 cores, 256 GB RAM, and PCIe-III.

PromptTuner provisions at most 4 GPU servers. We adopt Memcached 1.5.22

to set up an Elastic Cache service for communication among GPU servers.

Workload Construction. We evaluate three representative LLMs (GPT-Base,

GPT-Large, Vicuna-7B) on 12 datasets, as shown in Table 4.5. We evaluate diverse

tasks including dialogue, question answer, text generation, text summarization, and

story generation. To further increase the diversity of LPT workloads, we sample

each dataset into ten exclusive partitions and construct 120 tasks for each LLM.
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Table 4.5: LPT tasks and targeted accuracy: [B] and [R] refer to the bleu

score and rouge score respectively.

Task Description Dataset Accuracy Task Description Dataset Accuracy

Dialog
DA [150] 54 [B]

Summarization
CNNDM [150] 34 [B]

PC [153] 19 [B] SAMSUM [4] 46 [B]

Question Answer
COQAQG [152] 51 [B] XSUM [150] 40 [B]

QUORA [154] 21 [B]
Story Generation

CMV [148] 26 [R]

Text Generation
WIKIBIO [150] 70 [R] WP [149] 20 [R]

WIKIP [151] 22 [R] ROC [142] 25 [R]

Table 4.6: The number of requests for each LLM across different loads.

Model Low Medium High

GPT2-B/GPT2-L/V7B 41/55/42 77/71/65 99/85/76

For each LPT task in Table 4.5, we measure the average accuracy over 20 initial

prompts randomly selected from the Prompt Bank as the target accuracy. This

primarily ensures that the evaluated LPT jobs, using different initial prompts in

the prompt sensitivity analysis of Section4.2.2, can reach such accuracy.

In our experiments, PromptTuner simultaneously serves requests for three LLMs.

For each LLM, we sample three 20-minute LPT traces from an anonymous insti-

tute’s data center to construct workloads of low, medium, and high load densities.

Table 4.6 details the number of traces for different load densities. These traces

include the submission time, the number of allocated GPUs, and the duration of

each LPT job. We follow the minute granularity of the submission time attribute

to invoke the request with an exponential distribution. We utilize the product of

the job duration and number of allocated GPUs to assign LPT tasks for such jobs.

It randomly chooses one LPT task in Table 4.5 to match the GPU time of such

a job. We set each job’s SLO as its duration multiplied by a hyper-parameter S

added by the resource allocation overhead. We denote S as SLO emergence. A

small S indicates a more emergent SLO.

Baselines. PromptTuner is the first SLO-aware system for LPT workloads.

We choose two state-of-the-art DL schedulers as the baselines: (1) INFless [172]:

this is an efficient SLO-aware and cost-effective scheduler for DL inference. It sup-

ports traffic-based autoscaling and runtime reusing. To ensure a fair comparison,

we reinforce INFless with the multi-GPU execution and Prompt Bank. (2) Elas-

ticFlow [67]: this is an SLO-aware DL training scheduler. It dynamically adjusts
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the number of GPUs for each job. However, it does not support runtime reusing.

The Prompt Bank is also incorporated into ElasticFlow.

To evaluate the quality of initial prompts from the Prompt Bank, we consider two

baselines: (1) Ideal: this is the prompt with the best ITA performance. For easy

computation, we use score to shortlist 20 prompts and select the best one based on

their ITA performance. However, it is computationally infeasible in practice. (2)

Induction [178]: it is an automatic prompt initialization method that leverages a

set of demonstrative examples to guide the LLM to generate an appropriate initial

prompt. However, it only works for simple tasks, and the LLM should possess

strong capabilities.

Evaluation Metrics. We consider two evaluation metrics: (1) the ratio of work-

loads that meet the SLOs. We use the SLO violation rate as the metric. (2)

The total resource cost. We estimate the cost based on the price of the AWS

p4de.24xlarge instance. The storage costs are billed on GB/hour (AWS elastic

cache). We take the minimal possible price for storing transferred data, account-

ing for the small communication time. For the Prompt Bank, We choose ITA to

demonstrate the high quality of selected initial prompts.

4.6.2 End-to-end Performance

We compare the end-to-end performance of PromptTuner with two state-of-

the-art baselines (INFless and ElasticFlow) under various environments. First,

Figures 4.7a and 4.7b present the SLO violation and cost of these systems under

different job loads, respectively. PromptTuner achieves 15-25% SLO violation

reduction compared to INFless and 48-51% SLO violation reduction compared

to ElasticFlow. Interestingly, the increased loads provide more opportunities to

perform runtime reusing. Thus, the SLO violation does not increase significantly

from medium to high loads. The heavy job load increases the SLO violation and

cost, and PromptTuner demonstrates higher superiority than baselines under

heavier job loads.

Second, we explore the SLO violation and cost of these systems in different emer-

gences of SLOs, focusing on a medium job load for the sake of simplicity. As shown
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Figure 4.8: Feature evaluations: (a-b) The impact of prompt reusing (P.R.)
and runtime reusing (R.R.) on SLO violation and cost over different SLO levels.
(c-d) SLO violation and cost of PromptTuner under varying latency estima-
tion errors (c) and window sizes (d).

in Figures 4.7c and 4.7d, PromptTuner consistently outperforms baseline sys-

tems with at least 10% SLO violation reduction across varying SLO levels. When

the SLO emergence is set as 0.5, more LPT jobs are executed on multiple GPUs.

Thus, INFless is more likely to suffer from the long waiting delay incurred by the

instance initialization, as discussed in Section 4.3.2. Hence, INFless even achieves

a very high SLO violation rate as ElasticFlow. In terms of resource cost, com-

pared to INFless, PromptTuner reduces the expenses by 38%, 23%, and 17% at

SLO levels S = 0.5, 1.0, and 1.5, respectively. Compared to ElasticFlow, the cost

savings of PromptTuner is even more pronounced: up to 70% at S = 1.5. In

summary, PromptTuner stands out for its superior performance in both SLO

violation reduction and cost efficiency.

Third, we measure the allocated GPUs of different systems and the overhead frac-

tion attributed to the Prompt Bank in the job’s end-to-end latency. We set the

SLO level S = 1 and select the medium job load. Figure 4.7e details the number of

allocated GPUs in PromptTuner and INFless over time. We omit ElasticFlow

because of its fixed GPU resource reservation practice. Compared to INFless,
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PromptTuner utilizes less GPU resources most of the time but attains better

SLO violation performance. The Prompt Bank step only takes between 4 to 9

seconds, accounting for at most 17% of the end-to-end latency. Section4.6.3 shows

that the Prompt Bank yields at least 1.28× ITA speedup benefits compared to

induction initialization, an automatic prompt initialization baseline. The Prompt

Bank delivers an overall positive impact on the scheduling performance.

4.6.3 Evaluation of Each Component and Feature

4.6.3.1 Prompt & Runtime Reusing

Figures 4.8a and 4.8b show the benefits of prompt reusing (P.R.) and runtime

reusing (R.R.) to SLO guarantee and cost-effectiveness over different SLO levels.

First, prompt reusing can reduce SLO violations by 13-23% and cost savings by

30-40%. In the stringent SLO scenario, the Prompt Bank (i.e., prompt reusing)

saves GPU time by satisfying more SLOs of LPT jobs. Conversely, in relaxed SLO

scenarios, the Prompt Bank expedites LPT jobs, reducing the number of GPUs

allocated to warm GPU pools. PromptTuner particularly benefits from runtime

reusing by mitigating the GPU allocation overhead, enhancing SLO attainment.

However, the cost savings from runtime reusing are not comparable to that of the

prompt reusing.

4.6.3.2 Latency Estimation Error

We evaluate the impact of the job latency estimation error on the performance

of PromptTuner in Figure 4.8c. We manually add varying scales of Gaussian

noise on the job latency prediction. In general, the added estimation error leads

to a maximum increase of 8% in SLO violation and 30% in resource costs, even

when the error scale reaches up to 80%. The latency estimation error misguides

the Workload Scheduler to allocate more GPUs to warm GPU pools, increasing

the resource costs.
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Figure 4.9: Analysis of Score Metric: Distributions of relative ITA speedup
of score candidate to (a) ideal candidate; (b) induction candidate. Performance
of the two-layer structure: (c) Distribution of prompt similarity; (d) latency
and average relative TTA of varying numbers of groups. Analysis of large-scale
simulation: SLO violation (e) and cost (f) of different systems across different
scales of GPU clusters.

4.6.3.3 Window Size of Cold-GPU Allocator

We investigate how the window size of the cold GPU allocator affects the perfor-

mance of PromptTuner. A smaller window size causes GPUs to be removed

from the warm GPU pool frequently, increasing the SLO violation. A larger win-

dow size may make PromptTuner less responsive to traffic, increasing resource

costs. Figure 4.8d presents various window sizes and empirically shows that setting
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an interval of 60 seconds strikes a satisfactory balance between the SLO violation

and cost.

4.6.3.4 Score Metric

We term score candidate, ideal candidate, and induction candidate as the prompts

selected by our proposed metric (Eqn. 4.1), ideal baseline, and induction base-

line, respectively. Figure 4.9a shows the distributions of relative ITA performance

between the score candidate and ideal candidate from 120 LPT tasks of three

LLMs. The ITA performance of most score candidates exceeds 90% of that of

ideal candidates. Figure 4.9b presents the distributions of relative ITA perfor-

mance between the score candidates and induction candidates. The score can-

didates outperform the induction candidates and yield at least 1.81, 1.38, 1.28×
ITA speedup for GPT-Base, GPT-Large, and Vicuna-7B, respectively. GPT-Base

presents better ITA speedup benefits (1.8-2.8×) from score candidates because its

generality is not comparable to that of Vicuna-7B and cannot yield satisfactory

initial prompts. Meanwhile, Vicuna-7B still enjoys at least 1.28×) ITA speedup

compared to induction candidates. Our analysis demonstrates that our score can

identify near-optimal initial prompts and deliver better ITA performance than in-

duction initialization over different tasks and LLMs.

4.6.3.5 Two-layer Data Structure

Figure 4.9c shows the CDF of top-1 (solid line) and top-5 (dashed line) cosine simi-

larity of the activation features in our curated prompt candidate set across varying

LLMs. This high similarity among our collected real-world prompts motivates us to

design a two-layer data structure to group similar prompt candidates. Furthermore,

we verify whether clustering similar prompt candidates degrades the ITA perfor-

mance of the identified initial prompt and reduces the selection latency. We fix the

number of evaluation samples to 16 and the LLM to GPT2-Base. Figure 4.9d shows

the impact of the cluster counts on the relative ITA speedup compared to the ideal

candidate and the average selection latency. Using more groups does not cause

considerable ITA performance loss. For GPT2-Large and Vicuna-7B, the impact

of cluster counts on ITA speedup presents a similar trend. In addition to the ITA

speedup, we are concerned about latency overhead and set the number of clusters
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at 50 for PromptTuner. Then the average latency is 5.3 seconds for GPT2-Base,

6.1 seconds for GPT2-Large, and 9.2 seconds for Vicuna-7B, respectively.

4.6.4 Scalability Evaluation

We measure the performance of PromptTuner in large-scale GPU clusters. Be-

cause we have a limited number of available GPUs, we mainly perform simu-

lations to validate the scalability of PromptTuner. Specifically, we hack the

k8s-device-plugin [200] developed by NVIDIA and create fake GPU resources

that are allocated for LPT jobs. We also measure the latency per iteration of

different sequence lengths and batch sizes without exceeding the GPU memory on

NVIDIA A100-80GB. To simulate the execution of LPT jobs, we use a compute-

intensive function with a similar latency to the measured one, while Memcached [193]

is still adopted for gradient communication.

With this simulation environment, we evaluate PromptTuner with a cluster of

up to 40, 80, and 120 GPUs. We also increase the job loads proportionally to

match the maximal amount of provisioned GPUs. Figures 4.9e and 4.9f com-

pare the SLO violation and resource costs of PromptTuner with the other two

baselines. The performance gain of PromptTuner over other baselines is en-

larged with the increase of provisioned GPUs. With more workloads and GPUs,

PromptTuner can exploit dynamic resource allocation to obtain better schedul-

ing decisions. Additionally, the average/maximal scheduling overhead is 17/83 ms,

making it not a performance bottleneck in PromptTuner. The small schedul-

ing overhead strengthens our belief that PromptTuner can attain satisfactory

performance in a large-scale GPU cluster.

4.7 Chapter Summary

This chapter presents PromptTuner, an SLO-aware elastic system for managing

LPT jobs. We take advantage of prompt reusing to develop the Prompt Bank for

expediting LPT jobs. We also exploit the runtime reusing to reduce the GPU

allocation overhead for resource elasticity. Our extensive experiments demonstrate

the superiority of PromptTuner in SLO attainment and cost reduction.



Chapter 5

UniSched: A Scheduler to Meet

Different User Demands for Deep

Learning Training Jobs

This chapter presents the research1 to address the challenges of meeting various

scheduling objectives via objective-aware optimization. It includes two systems:

Chronus and UniSched, where the later is built upon and enhances the former.

We primarily focus on the design of UniSched and provides a comparative analysis

with Chronus in Section 5.6.3.

5.1 Introduction

As DL models are practically used in different scenarios for different purposes,

users have different expectations for their DLT workloads in the GPU cluster.

These user expectations can be categorized from two perspectives, as summarized

in Table 5.1. First, users may have varying latency demands. In particular, certain

users require their jobs to be completed within designated deadlines. These jobs are

mainly for production development, DL competitions and challenges, and research

paper submissions. These are referred as to SLO jobs. In contrast, other jobs are

expected to be completed as soon as possible without specific deadlines. We term

1The contents of this chapter are published in [22] and [170].
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them best-effort jobs. Second, as DLT is an iterative process, users may employ

different stopping criteria to determine when to complete the training job. For

example, some users may specify the number of training iterations for their jobs.

Others choose to terminate the training progress when the models meet the desired

performance indicated by some performance metrics (e.g., accuracy, mAP, loss).

This chapter considers designing an efficient scheduling system to satisfy a mix-

ture of DLT jobs with different user demands in a GPU cluster. Unfortunately,

prior DLT schedulers primarily focus on certain singular latency demands, which

fail to encompass all types simultaneously. Particularly, most DLT schedulers aim

to reduce the job latency [59, 201–205] or maintain job fairness [65, 206–208] for

best-effort jobs, thereby neglecting the need to guarantee deadlines for SLO jobs.

A natural way to meet deadline requirements is to adapt existing SLO-aware sys-

tems for traditional big data jobs [209–211] to schedule DLT workloads. However,

they do not account for the unique features of DLT workloads including placement

sensitivity [16], job preemption [17], as highlighted in prior analyses [22], leading

to suboptimal performance. The desire for a deadline guarantee spurs the devel-

opment of DLT schedulers tailored for SLO jobs. For example, GENIE [212], Hy-

dra [66] and HyperSched [213] only focus on resource allocation to meet deadlines

for SLO jobs, but they require modifications to underlying DL frameworks (e.g.,

TensorFlow [214], Ray [47]) and neglect user-defined resource requirements. Our

designed scheduling system Chronus [22] effectively handles both SLO and best-

effort jobs. However, it primarily addresses the iteration-based stopping criterion

and overlooks the performance-based criterion. To summarize, previous scheduling

systems solely address specific aspects of latency demands and stopping criteria. A

comprehensive solution that considers a mixture of DLT jobs with different latency

demands and stopping criteria is still needed.

In this chapter, we present UniSched, a DLT scheduler that can satisfy various

user demands in a unified way. For a mixture of different types of DLT jobs in a

GPU cluster, UniSched can meet deadlines for SLO jobs and minimize latency

for best-effort jobs, and support both iteration-based and performance-based stop-

ping criteria. To achieve these goals, UniSched needs to address three key issues.

First, inaccurate job execution time prediction misleads the job selection and re-

source allocations. The high intra-job predictability of DLT jobs enables accurate

prediction of job throughput under any resource allocations [205, 212, 215]. We
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devise Estimator to improve the prediction accuracy of job execution time in two

aspects. (1) The sr-aware estimator incorporates preemption and resumption over-

head into the job execution time prediction. The estimated overhead is computed

as a product of the statistically expected number of preemptions and the overhead

of each preemption and resumption event. (2) The training iteration estimator es-

timates the number of training iterations needed to reach the targeted performance

metric for performance-based criteria jobs. This technique, inspired by [216], char-

acterizes the relationship between training iterations and performance metrics in

an online manner, determining when to terminate a DLT job.

Second, the mixture of profiler jobs, best-effort jobs, and SLO jobs complicates the

job selection. Chronus is the only DLT scheduler that accommodates a mixture

of best-effort and SLO jobs. Profiler jobs are necessary for online profiling of job

runtime, as adopted in some systems [205, 206, 215]. Chronus employs resource

reservation, shortest remaining time first, and integer linear programming (ILP) to

manage these three job types separately. This ad-hoc design increases the schedul-

ing complexity and overlooks joint optimization opportunities. We develop the

reward generator for different job types, where the difference between jobs is rep-

resented by the reward value over time. This transforms the scheduling of all job

types into an ILP optimization problem, alleviating the error-prone ad-hoc design

and simplifying the implementation.

Third, the throughput of a distributed training job can be affected by the GPU

allocation topology. In other words, DLT jobs are placement-sensitive and can

achieve faster speed on consolidated GPUs due to fast communication bandwidth.

Many DLT schedulers consider the placement sensitivity for either SLO jobs or

best-effort jobs. Particularly, Chronus prioritizes the placement efficiency of SLO

jobs over best-effort jobs. accommodate best-effort jobs, and vice versa. Some SLO

jobs can sacrifice placement efficiency to accommodate best-effort jobs, and vice

versa. To leverage this opportunity, we relax strict consolidation constraints for

both SLO and best-effort jobs. This approach integrates job selection and flexible

resource allocations within an ILP framework, facilitating unified optimization.

To evaluate UniSched, we perform large-scale simulations on Helios [217] and

Philly [202] traces from SenseTime and Microsoft respectively. Evaluation results

demonstrate that UniSched can reduce the SLO violation rate by up to 6.84×.

Compared with existing SLO-aware schedulers, UniSched reduces up to 4.02×
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Table 5.1: Categorization of DLT jobs in GPU clusters, and their correspond-
ing scheduling solutions.

Latency
Demands

Stopping
Criteria

Iteration-based Performance-based

Service Level Objective [22, 212] [213, 219]

Best-Effort
[59, 201–205]
[65, 206–208]

[69, 215, 220]

latency of best-effort jobs. We further implement UniSched as a custom scheduler

with the Kubernetes system [218], and deploy it on a physical cluster consisting of

64 GPUs. This cluster supports various common DL models for computer vision,

and natural language processing. Evaluations show that UniSched can effectively

guarantee SLO jobs’ deadlines and maintain best-effort jobs’ execution latency.

The contributions of this chapter are:

• UniSched features the Estimator that can predict job execution time for var-

ious stopping criteria, including iteration-based and performance-based ones.

• UniSched explicitly takes the overhead of suspension and resumption into ac-

count when estimating the duration of jobs.

• UniSched unifies job profiling, selection, and resource allocation into the ILP

framework, and makes efficient joint optimization to determine when and how

to execute DLT jobs.

5.2 Categorization of DLT Workloads and Ad-

vantages of Joint Optimization

We discuss the categorization of DLT workloads in a GPU cluster to unveil the

need to schedule different types of jobs. Next, we analyze the potential performance

benefits of joint optimization among different types of jobs.
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5.2.1 Categorization of DLT Workloads

We categorize DLT workloads from two perspectives. The first one is latency

demands. According to the survey in [22], there can be two types of latency de-

mands: (i) Users expect their jobs to be scheduled as soon as possible. These are

exploratory jobs for debugging and testing purposes, so users hope to receive the

execution feedback promptly and then adjust their programs or hyperparameters.

These jobs are generally called best-effort jobs. (ii) Users do not need their jobs to

be scheduled immediately. Instead, they set specific deadlines, before which these

jobs should be completed. Those jobs are mainly involved in scenarios where cer-

tain deadlines are enforced, such as product development pipeline, research paper

submission, AI challenges, competition, etc. These jobs are referred to as SLO jobs.

Additionally, the survey in [22] discloses the existence of soft SLO jobs: users can

tolerate the deadline violation of DLT jobs to a certain extent, giving the scheduler

more flexibility to schedule SLO jobs.

The second categorization perspective is stopping criteria. There are also two

common strategies for users to determine the completion of a DLT job. (i) Iteration-

based criterion. The users just specify fixed numbers of iterations. Then the cluster

executes the DLT jobs for the required iterations. Note that the model after the

final iteration may not be the optimal one due to the overfitting phenomenon. The

system will make checkpoints at different iterations so the users can select the best

model during training. (ii) Performance-based criterion. The users specify the

expected performance metric for the resulting model. Then the training job will

be early stopped if the model reaches the performance requirement at a certain

iteration. Existing DL frameworks [221, 222] provide an interface to terminate a

job when the performance metric reaches a target value. RubberBand [219] and

HyperSched [213] also account for early stopping to terminate a job when the

performance metric converges. Note that the users are required to set a maximal

number of training iterations to avoid unreachable performance requirements.

We further analyze different stopping criteria. The adoption of the iteration-based

stopping criteria simplifies the job runtime prediction. However, it should be noted
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Figure 5.1: Comparison of training epochs using three stopping criteria: de-
fault iteration-based stopping, stopping at maximum accuracy, and stopping at
99% of maximum accuracy over tasks. [C] and [I] indicate CIFAR10 and Ima-
geNet respectively.

that the ultimate objective of DL training is to attain high-performing DL mod-

els. While the iteration-based stopping criteria are widely used, the performance-

stopping criteria may result in a reduction of training. As demonstrated in Fig-

ure 5.1, using max accuracy for performance-stopping criteria can reduce the num-

ber of training iterations by up to 22% compared to the default training iteration.

The epoch reduction can be up to 31% when the targeted accuracy is 99% of the

max accuracy. Therefore, adopting the maximum training iteration to approximate

job execution time can potentially consume significant GPU resources and delay

the execution of other jobs.

5.2.2 Advantages of Joint Optimization

UniSched implements joint optimization through two aspects. First, the joint

optimization benefits both profiler and best-effort jobs without affecting the SLO

attainment. This approach mitigates the risk of online profiling becoming a bottle-

neck for meeting deadlines. In contrast, prior SLO-aware DLT schedulers [21, 22]

reserve a fixed number of GPUs (up to 16) for profiling purposes. However, in

scenarios where the GPU cluster has limited resources to meet SLO guarantees

due to a surge in SLO job submissions, the reserved GPU nodes may not suffice

for profiling these sudden bursts of jobs. This can result in a backlog of pending

SLO jobs and potential violations of their deadlines. Scaling profiling resources

dynamically in isolation could be an alternative solution to address bursty submis-

sions, but it would add complexity to system maintenance. Differently, the joint
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Figure 5.2: UniSched consists of two components to manage DLT jobs:
Estimator for predicting the job execution time and Selector for job selec-
tion and resource allocation. Each job experiences two phases: profiling phase
(orange dashed line) for collecting job information to estimate the job execution
time and execution phase (black dashed line) for job execution.

optimization approach elegantly integrates adaptive scaling of profiling resources

without additional engineering effort.

Second, the joint optimization enhances the latency efficiency of best-effort jobs

while ensuring the deadline requirements of SLO jobs are met. As an example,

consider a scenario where four 6-GPU SLO jobs compete for three 8-GPU nodes.

Chronus can only allocate GPUs to three SLO jobs due to its strict consolidated

placement constraint. However, UniSched can predict the job runtime under

different resource allocations and find a relaxed consolidated placement topology

to satisfy the deadline requirements of all four SLO jobs. Similarly, in a scenario

with three 6-GPU SLO jobs and one 6-GPU best-effort job, Chronus cannot

allocate resources to all jobs. In contrast, UniSched relaxes the consolidated

placement constraint for one of the SLO jobs without violating its deadline and

allocates consolidated resources to the best-effort job to reduce its latency.

5.3 System Design of UniSched

In this section, we first provide a high-level overview of the system workflow of

UniSched. Then, we present the detailed system components of UniSched.
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5.3.1 System Overview

Figure 5.2 shows the workflow of UniSched to schedule data-parallel DLT work-

loads in a homogeneous GPU cluster. It consists of two main components: Estimator

for predicting the job execution time and Selector for selecting jobs and allocating

resources to them for execution. Each job experiences two phases in its lifecycle.

The first phase is profiling (orange dashed lines in Figure 5.2). All the newly sub-

mitted jobs are treated as profiler jobs. The order of profiler jobs follows submission

time and we do not consider SLO during this stage. (1) In the Selector, the jobs

are placed in the profiler job queue. The reward generator is called to assign a

reward to each job ( 1 ). The policy generator then generates all possible resource

allocation solutions for each job ( 2 ). Finally, an ILP solver is utilized to identify

an effective solution ( 3 ) so the selected job will be scheduled for profiling. (2)

In the Estimator, the runtime speed estimator predicts the runtime speed of each

profiler job over different resource allocations ( 4 ). The training iteration estimator

predicts the number of training iterations for jobs with performance-based criterion

( 5 ). Based on such information, the estimated execution time is produced.

The second phase is execution (black dashed lines in Figure 5.2). The estimated

duration is forwarded to the Selector. The job is then placed in either the SLO

job queue or best-effort job queue, depending on its scheduling latency requirement

specified by its user. The following procedure is similar to the profiling phase: the

Selector generates the reward and allocation policy for the job and adopts the ILP

solver to identify the optimal scheduling solution. The ILP solver also requires the

estimated job execution time from the profiling phase for the solution generation.

Then the selected job will be placed on the assigned GPUs for execution.

UniSched unifies the scheduling workflow in two aspects. First, in the profiling

phase, UniSched processes the best-effort and SLO jobs in a unified way. All the

jobs are referred to as profiler jobs. They are only distinguished in the execution

phase. Second, the Selector processes the profiling and execution phases in a

unified way, i.e., they adopt the same way to generate the reward and allocation

policy regardless of the phases. These unified strategies make it easy to manage,

implement, and maintain the entire system workflow.

Before elaborating on our detailed design, we summarize the relevant symbols used

in this chapter in Table 5.2 if not particularly specified.
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Table 5.2: Summary of notations.

Sym. Definition

⌈ · ⌉ ceiling
⌊ · ⌋ floor

Texe vector of job execution time
Tsr vector of time cost of suspension and resumption
Titer vector of time cost per iteration
Tcomp vector of computation time cost per iteration
Tlease vector of lease length

Niter vector of training iterations
Ngpu vector of GPU request
Nnode vector of GPU node request
Ncell vector of cell count
Ncon vector of cell request

J job set
J slo SLO job set
N job count
M total GPU count in the cluster
ji ith job in J
jsloi ith job in J slo

Fi deadline count of ji
Fmax maximal deadline count across all jobs
Df,i fth deadlines of ji
Vf,i reward value for deadline Df,i

Qf,i lease term count of deadline Df,i

Li lease term count to complete ji
Pi resource allocation count of job ji
Ai resource allocation set of job ji
Ai,p pth allocation policy of job ji
A∗

i optimal allocation policy for job ji
S binary matrix to indicate which deadline each job hits
xk,i indicator of whether ji obtains the kth lease
yk,i indicator of whether to select policy Ai,p

Rslo weighted SLO violation rate

5.3.2 Estimator

Formally, we consider a set of N jobs: J = {j0, j1, . . . , jN−1}. Assume the vector of

the job execution time for J is Texe, the vector of training iteration for J is Niter,

the vector of time cost of suspension and resumption for J is Nsr, the vector of

time cost per iteration for J is Titer. The Estimator is responsible for predicting
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the job execution time T exe
i of ji. This is calculated as follows:

T exe
i = T sr

i +N iter
i ·T iter

i . (5.1)

Note that the number of training iterations N iter
i is directly specified by users

for iteration-based criteria, or indirectly predicted for performance-based criteria.

We estimate Titer, Niter and Tsr by the runtime speed estimator, training iteration

estimator, and SR-aware estimator, respectively. UniSched only needs to allocate

at most 2 GPUs for each job during the profiling stage, regardless of its actual

resource demands. We discuss scheduling these jobs during the profiling stage in

Section 5.3.3.

5.3.2.1 Runtime Speed Estimator

DLT jobs exhibit an iterative and repetitive pattern during training. This motivates

UniSched to use a simple yet effective way to estimate Titer. The Estimator

executes profiler jobs on actual machines for a fixed time. We empirically set it

as BE lease (Section 5.3.3.1), i.e., five minutes. We can collect sufficient profiled

system features within five minutes and treat profiler jobs as special best-effort

jobs, simplifying the scheduler design. Let Ngpu and Nnode be the vector of GPU

request and GPU node request for J respectively. We consider two scenarios to

predict the runtime speed.

First, this is a single-GPU job (Ngpu
i = 1). Then UniSched allocates one GPU

during profiling and measures its computation time T comp
i as the time cost per

iteration, i.e., T iter
i = T comp

i .

Second, this is a multi-GPU job (Ngpu
i ≥ 2). Then we should consider both com-

putation time and communication time. There are also two possibilities: (i) this

job will be executed on one machine in the execution phase. Then we allocate two

GPUs on the same machine to this profiler job (Nnode
i = 1), and measure the gradi-

ent communication time T 1
i ; (ii) this job will be distributed to multiple machines in

the execution phase (Nnode
i ≥ 2). Then we allocate two GPUs from two machines

to this profiler job and measure the corresponding gradient communication time

T 2
i . To summarize, the time cost per iteration for ji can be modeled as:
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T iter
i =


T comp
i if Ngpu

i = 1,

T comp
i + (Ngpu

i − 1) ·T 1
i if Nnode

i = 1, Ngpu
i ≥ 2,

T comp
i + (Ngpu

i − 1) ·T 2
i otherwise.

(5.2)

Previous works [205, 223] also adopt similar performance modeling with Eqn. 5.2 to

estimate the job runtime speed. The key idea is that we can just use two GPUs to

capture the intra-node and inter-node communication overheads (T 1
i and T 2

i ), then

the total timing cost for a job with an arbitrary number of GPUs can be derived

accordingly. Another point is that our system testbed only focuses on utilizing PCIe

and RDMA for communication. There are cluster designs adopting the underlying

GPU topology of non-unified communication cost [224] including PCIe, NVLink,

and GPUDirect. We leave the modeling of non-unified communication cost as our

future work. These profiling results are reported to the ILP solver to determine

the placement policy for each job.

We further demonstrate the effectiveness of Eqn. 5.2 and how Eqn. 5.2 handles some

exceptional cases. (1) Eqn. 5.2 is a simplified version of the runtime speed estimator

in [205], where we intentionally disregard the overlap between gradient computation

and network communication overhead. If they are overlapped, Eqn. 5.2 may result

in an overestimation of T iter
i , which can secure the deadline guarantees for SLO

jobs and reduce the SLO violation rate. (2) We only consider the data-parallel

distributed training with AllReduce to synchronize the gradients. How to extend

our solution to other parallelism mechanisms (e.g., tensor parallel, pipeline parallel)

and model the execution time is our future work. (3) Eqn. 5.2 cannot model

the PCIe bandwidth saturation scenario, which is very rare in practice. In case

it happens, we can update T iter
i during the execution stage to account for PCIe

bandwidth saturation. (4) Our empirical evaluations in Section 5.6.1 indicate the

estimation error of Eqn. 5.2 is acceptable.

Note that, our runtime speed predictor is simple but effective in our evaluation

and we expect to obtain the profiled results as soon as possible. However, when we

encounter more complex network topologies, and cluster instability, the accuracy

of runtime speed estimator will drop. Thus, we can promptly update the run-

time speed prediction during the execution stage to account for different potential

estimation errors.
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5.3.2.2 Training Iteration Estimator

For the iteration-based stopping criterion, the user directly specifies N iter. For the

performance-based criterion, it is non-trivial to predict N iter from the specified per-

formance requirement. The performance metric is typically non-linear to the num-

ber of training iterations [225]. We employ a curve fitting technique [216] that pre-

dicts the relationship between the performance metric and training progress. This

technique uses an ensemble of probabilistic learning curve models (e.g., Weibull,

log-power) to model the observed performance metrics. These models can extrapo-

late future performance metrics based on just a few observed ones. The technique is

robust to different performance metrics (accuracy, mAP, F1-score, loss) and gradi-

ent optimizer types (SGD, Adam). This approach has been successfully adopted by

several DLT schedulers [69, 220] to predict when a DLT job’s performance metric

will meet the stopping criterion.

UniSched first uses the performance metric observed in the profiling phase to

predict the required number of training iterations. However, just using such metric

in the profiling phase can result in high prediction errors, as demonstrated in

Figure 5.7c. The prediction error comes from two aspects: (1) we change the

batch size in the profiling phase to collect the accurate job computation time per

iteration, and (2) the number of collected metrics is limited during the profiling

phase. We notice that even if we use the training hyper-parameters and the number

of required GPUs, the prediction error is still significant (shown Figure 5.7c when

x-axis is 20%). Hence, we also collect the performance metrics in the executing

phase to gradually eliminate the prediction error.

5.3.2.3 SR-Aware Estimator

UniSched allows a DLT job ji to be suspended and resumed during the training

progress, which increases the scheduling flexibility but inevitably brings a certain

overhead of suspension and resumption operations, denoted as tsri . Figure 5.3 shows

the overheads of the job suspension and resumption. In Figure 5.3a, the suspension

overheads of various models on CIFAR10 with different numbers of GPUs remain

consistently within a range of 4 seconds. Figure 5.3b illustrates that scaling the

number of allocated GPUs increases the resumption overhead of training VGG19

on CIFAR10. Overall, the resumption overhead is much larger than the suspension
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Figure 5.3: The overheads (seconds) of job suspension and resumption: (a)
The job suspension overheads (y-axis) of training VGG19, ResNet18, ResNet50,
MobileNetV2, GoogLeNet on the CIFAR10 dataset using one V100 GPU and
two 8-GPU V100 GPU servers; (b) The job resumption overheads (y-axis) of
training VGG19 on the CIFAR10 dataset across different numbers of GPUs (x-
axis).

overhead. Note that tsri represents the combined overhead of job suspension and

resumption, rather than that of job resumption or suspension. Practically, we use

such combined overhead during the profiling phase and update it in the execution

phase. According to Figure 5.3, the difference in the combined overhead during the

profiling (2-GPU) and execution (16-GPU) phases is within 5 seconds for training

VGG19 on CIFAR10. This suggests that directly using the combined overhead

during the profiling phase is acceptable compared to the long training time.

For an SLO job ji, we assume it runs for n lease terms, and its deadline is m lease

terms (n ≤ m). A lease term is the smallest unit for a job to run continuously,

which will be explained in detail in Section 5.3.3.1. The overhead of suspension

and resumption operations for an SLO job ji is up to tsri .

We assume the occurrence of suspending and resuming a DLT job follows a uniform

probability distribution. Hence the probability that an SLO job is suspended and

resumes for k times is
Ck

n−1C
k+1
m−n+1

Cn
m

, where k ∈ [0,min(n− 1,m− n)]. Therefore, we

can approximate the overhead of job suspension and resumption T sr as follows:

T sr
i =

min(n−1,m−n)∑
k=0

k · tsri ·
Ck

n−1C
k+1
m−n+1

Cn
m

. (5.3)

For a best-effort job that requires n lease terms, the probability that suspension

and resumption occur is 1
2
. Hence, its corresponding T sr is n

2
· tsri . To summarize,

Estimator offers three unique contributions. (1) It predicts the runtime speed of
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DLT jobs across various resource allocation topologies with at most 2 GPUs. (2)

It approximates the number of training iterations required to achieve a target val-

idation metric. This estimation is particularly valuable for jobs with performance-

based stopping criteria. (3) It considers the significant overhead of suspension and

resumption in job execution. By accounting for these factors, our estimator effec-

tively minimizes the gap between the predicted duration of a job and its actual

execution time.

We have no prior knowledge of the occurrence of suspending and resuming a DLT

job. The occurrence of suspending and resuming is relevant to scheduling policy,

job duration distribution, and resource availability. Thus, we choose a simple uni-

form distribution to characterize the likelihood of suspension and resumption. Our

empirical results (Figure 5.9c in Section 5.6) demonstrate this simple assumption

can yield satisfactory performance. In practice, we can periodically replay our trace

to see whether our sr-aware estimator can yield positive scheduling performance.

If not, this might imply that the uniform distribution assumption does not hold.

Thus, we can first collect the frequency of suspending and resuming a DLT job and

other job attributes and train a ML-based predictor to estimate such distribution.

We leave them as our future work.

5.3.3 Selector

The Selector is primarily responsible for producing resource-time scheduling de-

cisions for profiler jobs in the profiling phase, and SLO jobs and best-effort jobs

in the execution phase. It adopts the lease-based training scheme to convert job

scheduling into the ILP optimization problem and designs a reward generator to

successfully manage all three types of jobs. It also uses the policy generator to

select the job and resource allocation jointly.

5.3.3.1 Lease-based Training

A DLT job is split into multiple periods (i.e., lease terms) that have equal length.

A job is allowed to run only if the scheduler assigns a lease term to it. It needs to

renew the lease when it expires. If the renewal is successful, the job can continue its

execution. If the renewal fails, the job is suspended and its resources are released.
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UniSched implements two sorts of leases: SLO lease for SLO jobs, and BE lease

for best-effort and profiler jobs. During each scheduling cycle, the expired leases

are allocated to the chosen jobs by the Selector. To make it easy to manage, the

length of an SLO lease is set as an integral multiple of that of a BE lease. In this

setting, the expiration of a BE lease may not cause the expiration of an SLO lease,

while the expiration of an SLO lease occurs simultaneously with the expiration of

a BE lease. Figure 5.4 shows an example of the two leases.

Job #1 Job #1 Job #1

Job #4

…

Job #4

Job #2 Job #3 Job #3…BE lease 
SLO lease 

BE lease scheduling cycle

SLO lease scheduling cycle

Figure 5.4: The illustration of lease terms. The duration of the SLO lease
term is set as an integral multiple of that of the BE lease.

5.3.3.2 Reward Generator

Previous SLO-aware schedulers [209–211] only take into account the strict deadline

requirement, i.e., a job must be finished before a specific time. Based on a user

survey in [22], users expect to have a soft deadline requirement, where the DLT

jobs can be completed after the deadlines with some penalty.

To enable this demand, a reward function is introduced in UniSched to formu-

late various types of requirements (profiler, best-effort, strict SLO, and soft SLO).

Cluster users can also give such functions to the scheduler during job submission.

The reward is defined as a step function with values ranging between 0 and 100.

Figure 5.5a illustrates the functions of different requirements.

A profiler job expects a short waiting time to achieve the runtime speed infor-

mation as soon as possible and thus is regarded as a best-effort job with a fixed

remaining time (e.g., 5 minutes). Therefore we set the reward of all profiler jobs

as a fixed reward value 1. Such reward design handles well the starvation of jobs

while maintaining the deadline guarantee for SLO jobs. We have two scenarios to

consider: (1) if the cluster-wide GPU resources available are only sufficient to meet

the deadlines of SLO jobs, newly submitted jobs may experience resource starva-

tion until certain jobs are completed, otherwise users have the option to assign
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Figure 5.5: The illustration of different types of jobs: (a) The relationship
between completion time and reward value for different types of jobs; (b) A
two-by-two matrix to categorize these types.

an exceptionally high reward value, thereby increasing the likelihood of their job

being executed quickly; (2) if there exist some extra cluster-wide GPU resources in

addition to the ones used for meeting deadlines of SLO jobs, the reward generator

of UniSched gives priority to newly submitted jobs (profiler jobs) over best-effort

jobs. This prioritization strategy effectively prevents job starvation. Best-effort

jobs are expected to be completed as soon as possible. Their reward values are a

reciprocal of the corresponding estimated remaining time. Strict SLO jobs need

to be finished before the deadlines (= 100). Their reward decreases gradually and

gives longer delays in completion time2.

To ensure that newly submitted jobs and best-effort jobs do not impact the dead-

lines of SLO jobs, we assign a significantly lower reward value to profiler and

best-effort jobs compared to SLO jobs (using a ratio of 1 out of 100). Additionally,

to expedite the completion of profiler jobs, we set their reward value higher than

any best-effort jobs. For best-effort jobs, the reward value is reciprocally propor-

tional to the remaining time, prioritizing jobs with the shortest remaining time. In

fact, how to determine the reward of any job depends upon practical needs. Set-

ting extremely high values for SLO jobs would discourage users from submitting

best-effort jobs. Setting small values for SLO jobs would encourage UniSched to

satisfy more best-effort jobs to maximize the reward values and violate the dead-

lines for SLO jobs. We follow the prior work [211] and account for our user survey

to determine the reward value. There is no complete answer to the selection of

reward values. We leave it as our future work.

2Users may have other expressions of reward functions for their soft SLO jobs. Note that any
functions can always be approximated as the step function in UniSched.
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Our reward function enables the Selector to manage all types of DLT jobs in

a unified way, as shown in Figure 5.5b. The best-effort jobs can be counted as

the noncritical profiler job. Similar to the profiler job, the strict SLO job has a

constant reward value besides exceeding the deadline. The soft SLO job can be

considered as the noncritical strict SLO job.

5.3.3.3 Policy Generator

The policy generator yields possible resource allocations for each DLT job. Follow-

ing the buddy cell idea in HiveD [59], we denote 8-GPU, 4-GPU, 2-GPU, 1-GPU

compute nodes as level-4, level-3, level-2, level-1 cells respectively. This hierarchi-

cal resource abstraction allows for GPU allocation that considers GPU affinity, not

merely the number of GPUs.

We consider a job ji that requires N
gpu
i GPUs. To illustrate how to leverage this

resource abstraction for generating resource allocation policies, we represent any

allowable resource allocations for this job using a quadruple (c0, c1, c2, c3). This

quadruple denotes the requested number of level-0, level-1, level-2, and level-3

cells, respectively. For example, for a job requesting 6 GPUs, possible resource

allocations are (0, 0, 0, 1), (0, 1, 1, 0), and (6, 0, 0, 0). For Ngpu
i GPUs, the policy

generator outputs allocation policies by enumerating all quadruples. To minimize

the complexity of optimizing resource allocations, the policy generator is restricted

to jobs with Ngpu
i ≤ 16.

5.3.3.4 Joint Optimization of Job Selection and Allocation

Leveraging the reward generator and policy generator, we can model the process of

job selection and resource allocation as an ILP problem. During each BE scheduling

cycle, the Selector integrates all jobs (including SLO jobs at the SLO scheduling

cycle) to make globally optimal scheduling decisions.

Consideration of rewards. We consider at one scheduling cycle there are N jobs:

J = {j0, j1, j2, . . . , jN−1} and M available GPUs. Each job ji requires N
gpu
i GPUs,

with the duration T exe
i estimated by the Estimator. We denote the deadline count

of job ji as Fi. When the job ji is completed right before the corresponding fth

deadline, it can obtain the reward value Vf,i. Further, we use Fmax to represent the
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maximum number of deadlines across all jobs. Assume the vector of lease length

for J is Tlease. For job ji, we set T lease
i as BE lease length for best-effort and

profiler jobs, and SLO lease for SLO jobs respectively. For each job ji, it requires

Li = ⌈T exe
i /T lease

i ⌉ lease terms to complete. It also needs Qf,i = ⌊Df,i/T
lease
i ⌋ lease

terms to complete before each deadline, where f ∈ [Fi]
3.

We denote a binary matrix S ∈ BFmax×N , where sf,i denotes whether ji hits the

corresponding fth deadline. A binary variable xk,i is used to represent whether ji

gets the kth lease. The ILP solver produces a solution for the following problem:

max
S

∑
i∈[N ]

∑
f∈[Fi]

sf,iVf,i, (5.4)

subject to:

xk,i, sf,i ∈ {0, 1},∀i ∈ [N ], f ∈ [Fi], (5.5)∑
f∈[Fi]

sf,i ≤ 1,∀i ∈ [N ], (5.6)

∑
k∈[Qf,i]

sf,ixk,i ≤ sf,iLi,∀i ∈ [N ], f ∈ [Fi]. (5.7)

Objective (5.4) aims to maximize the total reward values of all jobs in the GPU

cluster. Constraint (5.5) restricts xk,i and sf,i as binary values. Constraint (5.6)

ensures each SLO job gets at most one feasible solution to meet the (soft) dead-

line. Constraint (5.7) guarantees all SLO jobs need to be finished before the (soft)

deadlines.

Consideration of resource allocations. Next, we discuss how to formulate

resource allocation constraints. For a job ji, UniSched adopts the policy genera-

tor to produce the resource allocation set Ai, which contains Pi allowable resource

allocation solutions. We denote as A∗
i the optimal allocation that meets the consol-

idation requirement. We use ϕ(ji, Ai,p) to represent the runtime speed of ji under

an allocation Ai,p ∈ Ai. We can leverage the Estimator to estimate ϕ(ji, Ai,p).

3We define [N ] = {0, 1, . . . , N − 1} in this chapter, where N can be different positive integers.
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Then we formulate the normalized runtime speed ϕ̄ to quantify the correlation

between the job throughput and resource allocation as follows:

ϕ̄(ji, Ai,p) =
ϕ(ji, Ai,p)

ϕ(ji, A∗
i )

. (5.8)

A higher ϕ̄(ji, Ai,h) indicates job ji runs faster under the allocation Ai,h.

We introduce a binary variable yi,p to represent whether we select the solution Ai,p

for ji with resource allocation set Ai. We denote the vector of total cell request as

Ncon and the vector of free cell count as Ncell. The requested number of level-g cells

for resource allocation Ai,p is denoted as Ai,p(g). Then we can add the following

constraints into the optimization problem:

yi,p ∈ {0, 1},∀i ∈ [N ], p ∈ [Pi], (5.9)

3∑
g=0

2g ·N cell
g ≤ M, (5.10)

N con
g =

∑
i∈[N ]

∑
p∈[Pi]

yi,pAi,p(g),∀g ∈ {0, 1, 2, 3}, (5.11)

∑
k∈[Qf,i]

yi,psf,ixk,iϕ̄(ji, Ai,h)

≥ yi,psf,iLi,∀i ∈ [N ], f ∈ [Fi], p ∈ [Pi], (5.12)∑
p∈[Pi]

yi,p ≤ 1,∀i ∈ [N ]. (5.13)

Constraint (5.9) enforces yi,p to be a binary value. Constraint (5.10) guarantees

the number of occupied GPUs is no greater than the capacity of the entire cluster.

Commonly, we set N cell
0 , N cell

1 , N cell
2 , N cell

3 as 0, 0, 0,M/8 respectively. Constraint

(5.11) guarantees the feasibility of the resource allocation solution. Constraint

(5.12) guarantees that the number of requested leases can ensure the completion

of the job under given resource allocations. Constraint (5.13) ensures each job is

assigned with at most one feasible resource allocation solution.

Besides, we also need to ensure the identified solution achieves consolidation place-

ment. In particular, we refer to 1-GPU, 2-GPU, 4-GPU, and 8b-GPU jobs (b ∈ Z+)
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as consolidation-friendly jobs, and other types of jobs are called consolidation-

hostile jobs. We say a resource allocation solution enjoys the consolidation feature

if each job ji with Ngpu
i GPUs is deployed on ⌈Ngpu

i /8⌉ nodes. Then the following

proposition is given:

Remark 5.1. Assume the cluster has N cell
0 level-0, N cell

1 level-1, N cell
2 level-2, and

N cell
3 level-3 free cells respectively. The pending queue only contains N con

0 1-GPU,

N con
1 2-GPU, N con

2 4-GPU, and N con
3 8-GPU consolidation-friendly jobs4. There

exists a solution that can achieve the consolidation placement when the following

Constraint (5.14) is satisfied:

3∑
g=i

2g−i ·N con
g ≤

3∑
g=i

2g−i ·N cell
g ,∀i ∈ {0, 1, 2, 3}. (5.14)

Proof. It is easy to construct a solution to meet the requirement. We first allo-

cate N con
3 level-3 free cells to 8-GPU jobs in a consolidation way such that the

allocated nodes have no GPU fragmentation due to N con
3 ≤ N cell

3 . Then we split

the remaining m′(= N cell
3 − N con

3 ) level-3 cells into 2m′ level-2 cells, and we have

2m′ +N cell
2 level-2 cells. According to Eqn. 5.14, the number of level-3 free cells is

no less than that of 4-GPU jobs. Recursively, 2-GPU and 1-GPU jobs can satisfy

the consolidated placement.

Solving the optimization. UniSched leverages the ILP solver to find a solu-

tion that can achieve the Objective (5.4) while satisfying the Constraints (5.5-5.7,

5.9-5.14). Based on the solution, UniSched identifies the jobs that need to be

scheduled at this cycle (xk,i), and the optimal resource allocations to host these

selected jobs (yi,p). The rest jobs are put in a pending queue and will be considered

at the next scheduling cycle. In terms of profiling time requirement and BE lease

scheduling flexibility, the length of a BE lease term is fixed as 5 minutes. The

length of an SLO lease term is critical to the ILP solver efficiency. A short SLO

lease causes too many preemption operations for SLO jobs, while a longer SLO

lease makes the scheduling less elastic. We set it as 10 minutes empirically.

Note that it takes some time for the ILP solver to generate the optimization solu-

tion, which can have an impact on the job execution. In order to mitigate the im-

pact of these delays, UniSched employs a caching mechanism for the optimization

4Without loss of generality, an 8b-GPU job is counted as b 8-GPU jobs.
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solution generated during the previous scheduling cycle. If the ILP solver cannot

generate a new solution for the current cycle within a certain time, UniSched

assigns the cached solution to select jobs to minimize the search space and compu-

tational overhead and subsequently re-invokes the ILP solver.

5.4 Implementation and Experimental Setup

In this section, we discuss the implementation of our trace simulator and Kuber-

netes [226] prototype. Then, we describe the evaluation settings and introduce the

evaluation metrics and baselines.

5.4.1 Implementation Details

The implementation of UniSched is independent of DL training framework. We

develop a trace simulator with about 11 thousand lines of Python code. It can

simulate different scheduling mechanisms in GPU clusters. The implementation of

UniSched in our simulator comprises of about one thousand lines of Python code.

The ILP solver employed as the backend is Gurobi 9.1 [227].

Our physical prototyping implementation is built on top of Kubernetes [226], which

contains three key components: a client-side watcher, controller, and scheduler. (1)

A client-side watcher is utilized to monitor the execution of DLT jobs and gather the

validation metric and job runtime speed. When the watcher receives notifications

from the controller that the lease will expire, it makes checkpoints for the model.

The client-side watcher also reports the collected validation metric and runtime

speed every 5 minutes. (2) The controller notifies the scheduler when the lease

of a DLT job is nearing its expiration. It also communicates with the watcher to

trigger a job checkpoint. The implementation of the job checkpoint is via the signal

handler function. It talks to the ILP solver to solve Eqn. 5.4 and make decisions

about job selection and resource allocations. The ILP solver is implemented with

an open-source goop library [228]. (3) The scheduler is provided with scheduling

information and events (e.g., estimated remaining time, lease renewal). It is also

responsible for job management (e.g., preemption, termination, and execution).
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5.4.2 Evaluation Settings

We evaluate the performance of UniSched in two homogeneous GPU clusters,

C120 and C96, each consisting of 120 and 96 GPU nodes, respectively, with 8 GPUs

per node. To assess the performance of these clusters, we employ two realistic DLT

workload traces: the Helios trace [217] from SenseTime and the Philly trace [202]

fromMicrosoft. We use the job submission time, job duration, and number of GPUs

required in the Helios and Philly trace to construct workloads for evaluation. As

the workload traces do not provide deadline information, we generate deadlines

for strict and soft SLO jobs using a method that ensures a fair representation of

real-world conditions. Specifically, for strict SLO jobs, we randomly generate a

deadline within a range of 1.1 to 2 times the job duration, while for soft SLO jobs,

we set the first deadline, D0,i, in the same way as strict SLO jobs. We then set

additional soft SLO deadlines at 1.1, 1.2, and 1.5 times D0,i, with corresponding

reward values of 80, 50, and 20, respectively, as determined by a user survey [22].

Each job in the workload trace contains submission time, duration, deadline in-

formation, the number of GPUs, user name, job type, model type, and stopping

criteria. We consider two stopping criteria: iteration-based, and performance-

based, and the jobs adopting these criteria account for 80%, 20%, respectively.

The Helios and Philly trace do not include explicit information about iteration

or performance criteria. Instead, they provide attributes such as “duration” and

“name”. For iteration-based jobs, we use the job duration and job runtime speed

to deduce the corresponding training iteration. For performance-criterion jobs,

we identify a set of performance-aware keywords, e.g., “Detection”, “CIFAR10”,

“ImageNet”, “Face”. Only for these specific jobs do we assign performance-based

stopping criteria. For a job with the performance-based criterion, we randomly

choose the best metric or 99% best metric throughout the training as the target

value. Besides, we use the profiled runtime speed on different GPU allocations and

the preemption and resumption overhead of a real job trace for evaluation. Note

that we scale the job speed for performance-criterion jobs to enforce the duration

of performance-criterion jobs to match that from the trace.

Besides, we adopted the same technique as Chronus to generate six workload

traces from Helios and Philly. These workloads included jobs with all strict SLOs

(H SLO and P SLO); workloads that mixed strict SLOs with best-effort jobs (H MIX1



100 5.4. Implementation and Experimental Setup

and P MIX1); and workloads that included strict SLOs, soft SLOs, and best-effort

jobs (H MIX2 and P MIX2).

5.4.3 Metrics

Weighted SLO Violation Rate. This assesses the level of SLO attainment.

We consider a set J slo of SLO jobs, where each job jsloi is assigned a reward value

W(jsloi ) based on its SLO specification, as illustrated in Figure 5.5a. To quantify

the effectiveness of meeting these SLO requirements, we introduce the concept of

a weighted SLO violation rate Rslo, which is defined by Eqn. 5.15. Specifically, we

set the bounds of the reward values as Wmin = 0 and Wmax = 100.

Rslo =
1

|J slo|
∑

jsloi ∈Jslo

W(jsloi )−Wmin

Wmax −Wmin

. (5.15)

Job Completion Time (JCT). This measures the latency efficiency of best-effort

jobs. A smaller JCT indicates higher scheduling efficiency. This metric measures

the duration between the job submission and job completion. Hence, the profiling

overhead is also incorporated to compute Rslo and JCT.

5.4.4 Baselines

To fully demonstrate the benefits of UniSched, we select five mainstream sched-

ulers for comparison, which are classified into two categories.

SLO-aware scheduler: (1) 3Sigma [229] applies the ILP solver to schedule a

mix of SLO and best-effort big data jobs. It favors that SLO jobs preempt best-

effort jobs, which can remarkably restrict the search space of the ILP solver. The

scheduling cycle of 3Sigma is set as 60 seconds based on the job time scale in our

traces. (2) GENIE [212] proposes an offline prediction model to estimate the

processing rate and response latency for various DL jobs. It enables DLT jobs

to be executed on different GPU resources in an elastic way and selects the best

placement policy. It assigns the highest priority to SLO jobs with the smallest

laxity but does not consider best-effort jobs. We give best-effort jobs the lowest

priority. (3) Hydra [66] aims to reduce the average job latency while reducing the
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SLO violation rate. We set the priority of SLO jobs higher than that of best-effort

jobs. Also, we adopt the shortest remaining time first to manage both types of

jobs. We implement it to fit into a homogeneous GPU cluster. Note that, Hydra

does not consider preemptive scheduling.

DLT scheduler: (4) Optimus [215] leverages an online fitting model to pre-

dict the job training speed and dynamically allocates GPU resources for jobs to

prioritize the job to minimize the job completion time. We adopt the same im-

plementation in [205]. (5) Themis [206] introduces a new metric, finish time

fairness, to assess the scheduling fairness. We also use the model proposed in [216]

to estimate the duration of jobs with the performance-based stopping criteria. We

reuse the open-source implementation of Themis in [230].
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Figure 5.6: Comparisons between different schedulers. UniSched outperforms
other baselines in Rslo and average JCT over different workloads (a-b) and sub-
mission densities (c-d).
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5.5 End-to-end evaluation

We first compare the performance difference between physical and simulator results

to validate the fidelity of our simulator (Section 5.5.1). Then, we measure the

performance of the entire system using our simulator and compare it with various

baselines (Section 5.5.2).

5.5.1 Physical Evaluation

Cluster testbed. We set up a cluster consisting of 16 GPU nodes, and each node

has 4 Tesla V100-32GB GPUs, 1 × 200 Gb/s HDR InfiniBand, 64 CPU cores, and

256 GB memory, connected via PCIe 3.0 x16. Our prototype deploys upon Ku-

bernetes 1.18.2 and adopts CephFS 14.2.8 to establish a ceph distributed storage

cluster to store checkpoints and resume the job progress. When the job experi-

ences lease expiration, it will receive a notification from the scheduler to save the

training state into the distributed storage. We choose the H MIX2 workload to

compare the evaluation results between our simulator and Kubernetes prototype.

The MIX2 workload contains a mixture of best-effort, strict SLO, and soft SLO

jobs, which is a realistic scenario. Furthermore, the proportion of distributed DL

training is higher than Philly [217], and distributed DL training involves many

complex placement decisions. To synthesize our evaluation workload, we randomly

sample a number of jobs from the H MIX2 workload and assign random common

DL models (ResNet18, ResNet50, MobileNetV2, VGG19, BERT) over different

datasets (Cifar10, ImageNet, WikiText2) to them. We sample the job whose num-

ber of requested GPUs is below 16 and the duration of which ranges between 5

minutes and 180 minutes. We follow Helios’s job arrival pattern and only sample

jobs the submission time of which is before eight o’clock. We also vary the job sub-

mission density and compare the performance between Kubernetes implementation

and simulation.

Evaluation results. Table 5.3 reports Rslo of SLO jobs and average JCT of

DLT jobs from simulation as well as Kubernetes implementation. We consider

configurations (T [m]) with different job densities with a fixed cluster capacity of

64 GPUs: T [m] denotes m jobs are submitted within the first 8 hours. For Rslo,

the gap between simulation and Kubernetes prototype is at most 2.57%. For
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Table 5.3: Performance comparisons between simulation and kubernetes imple-
mentation in Rslo and average JCT over different workload submission densities.

Job Load T [360] T [720]

Metric Rslo (%) Avg JCT (min) Rslo (%) Avg JCT (min)

Simulator 4.97 266.39 13.52 253.98
Kubernetes 3.92 274.42 16.11 267.40
Relative Diff 1.08% 2.93% 2.57% 5.38%

average JCT, the maximal relative performance difference between simulation and

Kubernetes is 5.38%. For small submission density, the deadline guarantee of the

simulator performs slightly worse than that of the Kubernetes prototype. For

T [360] workloads, we observe that the Kubernetes prototype fails to satisfy the

deadlines of certain long-duration SLO jobs, and instead leaves more resources for

other jobs as a result of deadline guarantee performance improvement. For T [720]

workloads, the high submission density can lead to heavy resource contention, and

the simulator can use the predicted information to make more accurate scheduling

decisions. Therefore, the simulator presents better deadline guarantee performance.

Overall, the difference is not significant and does not alter the conclusions from

simulations.

5.5.2 Simulator Evaluation

SLO Enforcement. We compare Rslo of UniSched with other baseline systems

for the six workloads in Figure 5.6a. We observe that UniSched gives the al-

most best results in all the workloads. In contrast, DL schedulers are poor at

guaranteeing deadlines, as their designs do not take SLO into consideration.

SLO-aware schedulers are more effective than DL schedulers. (1) For SLO work-

loads, GENIE is superior to 3Sigma and Hydra, but not as good as UniSched

due to the utilization of the preemption feature. UniSched obtains 1.17 - 4.82 ×
reduction in Rslo compared to these baselines over SLO workloads. (2) For both

MIX1 and MIX2 workloads, the existence of best-effort jobs further reduces Rslo

because SLO-aware schedulers can free more GPUs for SLO jobs by sacrificing

best-effort jobs. In comparison to SLO-aware schedulers including 3Sigma, Hydra,

and GENIE, UniSched attains 0.95 - 2.77 × reduction in Rslo. Compared to DL

schedulers, the reduction of Rslo in UniSched is much higher, i.e., 2.01 - 6.84 ×.
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Particularly, UniSched achieves 6.84X improvement in Rslo compared to Themis

on the P MIX1 workload. There is no clear dominant winner among 3Sigma,

Hydra, and GENIE. Additionally, GENIE cannot execute preemptive scheduling,

hence its effectiveness in deadline guarantee is not satisfactory in a mixed workload

scenario. (3) Compared to MIX1 workloads, UniSched significantly reduces Rslo

of SLO jobs in MIX2 workloads, due to the introduction of soft deadlines.

Best-effort job performance. Figure 5.6b displays the average JCT of best-

effort jobs, normalized to that of UniSched. It can be observed that, in compari-

son to other schedulers, UniSched remains the most effective, and obtains 1.18 -

4.02 × reduction in latency over different workloads. It outperforms DL schedulers

by 1.18-3.11 × because it has sufficient GPU resources to minimize the latency

of best-effort jobs without violating the SLO requirements. Optimus can achieve

shorter latency in Helios workload in that Helios trace contains a larger proportion

of distributed DL jobs than Philly trace. UniSched reduces the latency of SLO-

aware schedulers by 1.66 - 4.02 ×, as it seriously sacrifices these jobs to meet the

requirements of more SLO jobs.

Impact of the job density. We evaluate the performance of various schedulers

with different job densities with the H MIX2 workload. In order to evaluate the

performance of our system under various job densities, we conduct experiments

where we randomly remove 20% of jobs to reduce the job density to 80%, and

also inject additional jobs to increase the densities to 120%, 140%, and 160%, as

described in [231]. Figure 5.6c shows the results of SLO enforcement over different

job submission densities. UniSched reduces Rslo by 1.18-2.67 × compared to

other schedulers. A higher job density can increase Rslo of all scheduling systems,

and a lower density favors the SLO enforcement of 3Sigma and GENIE. However,

UniSched performs the best SLO enforcement in various job densities.

Figure 5.6d shows the average JCT of best-effort jobs, normalized to that of

UniSched. In terms of latency reduction, UniSched outperforms GENIE by

up to 3.78 × when the submission density reaches 160%. Our UniSched gives the

lowest JCT for most configurations. An exceptional scenario occurs when Optimus

exhibits a latency that is 0.67 × that of UniSched at a submission density of

80%. Compared with SLO-aware schedulers, UniSched is able to release suffi-

cient GPU resources for best-effort jobs without violating the requirement of SLO
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jobs. Compared to DL schedulers, UniSched can schedule best-effort jobs more

effectively based on the profiling information.

Analysis of suspension and resumption. Figure 5.8 shows the average num-

bers of suspension and resumption events over different workloads. For best-effort

jobs, UniSched tends to allocate GPU resources to shorter jobs. Hence, these jobs

are prone to renewing the leases with short remaining time. Differently, SLO jobs



106 5.6. Performance Breakdown

experience an average of 2-6 suspensions and resumptions, which is significantly

higher compared to best-effort jobs. This is because UniSched tends to allocate

GPU resources to emergent SLO jobs. As a result, when newly submitted jobs

arrive, UniSched needs to reallocate GPUs in order to satisfy more SLO jobs.

Consequently, SLO jobs experience more suspension and resumption on average

across different workloads.

5.6 Performance Breakdown

We first investigate the contribution of the Estimator and Selector in Section

5.6.1 and 5.6.2, respectively. Then we compare between UniSched and Chronus

in Section 5.6.3, and analyze the advantages of UniSched over Chronus.
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Figure 5.9: Performance analysis of the Estimator. (a) Rslo comparison be-
tween the unification mechanism and static profiler; (b) The impact of the train-
ing iteration estimator on Rslo; (c) The impact of the SR-aware estimator on
Rslo; (d) The impact of the estimation error on Rslo.
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5.6.1 Estimator Evaluation

We first evaluate the effectiveness of the Estimator, where the job runtime esti-

mation is conducted.

Error analysis of predictor. We analyze the accuracy of the Estimator from

different perspectives. Figure 5.7a shows the average estimation errors of the job

runtime speed (y-axis) for our evaluated DL models via profiling two GPUs over

different allocated GPUs (x-axis, G[x] represents the number of allocated GPUs is

x). The increase in allocated GPUs widens the gap between prediction and actual

job runtime speed. The average prediction error is within 5%. Furthermore, the

runtime speed estimator performs the worst on BERT with a local batch size per

GPU of 12. Figure 5.7b compares its actual and prediction results across varied

numbers of allocated GPUs. The error is up to 16.3% when 16 GPUs are assigned.

Figure 5.7c presents the prediction error of training iteration with the increase of

training progress. Note that we disable the training iteration prediction for training

BERT due to a small number of epochs. The prediction error presents a decreasing

trend when the Estimator collects more validation performance information.

Figure 5.7d shows the Estimator’s prediction performance on best-effort and SLO

jobs across different Heilos traces. Considering the large estimation error of the

iteration estimator at the initial stage of the training, we compare the prediction

results in the middle of the training with the actual execution time. The aver-

age prediction error is still within 10%. Overall, our designed Estimator presents

accurate predictions across various GPU demands, models, and job types.

Impact of unifying different types of jobs. In the profiling phase, UniSched

uses the reward generator to schedule the profiler jobs together with the best-

effort and SLO jobs in a unified way. This reward generator enables UniSched to

make dynamic resource allocations to profiler jobs. To demonstrate its superiority,

we compare UniSched with a system that statically allocates a fixed number

of compute nodes (2 in our experiments) for job profiling. Figure 5.9a shows

Rslo between UniSched and such static profiler. We observe that UniSched

achieves better Rslo compared to the static profiler. This is because UniSched can

dynamically adjust the resource scale for profiler jobs by planning all jobs globally.

Besides, our experiment suggests that UniSched can significantly decrease the
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longest pending time from 2,105 seconds to 840 seconds, so the Estimator can

respond to the jobs promptly.
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Figure 5.10: Performance analysis of the Selector. (a) Impact of the SLO
lease length on Rslo and job latency; (b) Impact of the objective on Rslo; (c)
Impact of the objective on the job latency; (d) Impact of the cluster capacity on
the ILP solver latency.

Effectiveness of the training iteration estimator. Our Estimator can sup-

port the performance-based stopping criterion by predicting the number of training

iterations. To evaluate the effectiveness of this mechanism, we consider a baseline

where the system directly executes each job with the maximal number of training

iterations provided by its user. Figure 5.9b shows Rslo of these jobs with and with-

out the training iteration estimator. We observe that Rslo is reduced by 0.7%-5.1%

when UniSched estimates the number of iterations. This results from that the

training iteration estimator can inform the Selector to leverage more accurate

time-resource information to satisfy the deadlines.
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Effectiveness of the SR-aware estimator. We evaluate our SR-aware estima-

tor in the Estimator (Section 5.3.2.3). Figure 5.9c shows Rslo of SLO jobs and

latency of best-effort jobs with and without the SR-aware estimator. The x-axis

represents the ratio between the experimental suspending/resuming overhead and

actual overhead. We manually increase the overhead and observe that our SR-

estimator can effectively reduce the SLO violation rate. The SR-aware estimator

can provide a more reasonable runtime estimation and lead UniSched to make

time-dimension resource allocations more accurate.

Estimation accuracy analysis. The scheduling performance can be affected

by the prediction accuracy of the Estimator. We perform a sensitivity analysis

to evaluate this dependency. We perturb the profiled job runtime with random

Gaussian noise, and present the scheduling result for different traces in Figure 5.9d.

In this figure, x-axis denotes the standard deviation of the injected noise and y-axis

shows Rslo of SLO jobs. We can see UniSched demonstrates strong robustness

at the noise scale smaller than 40%. The Estimator can easily achieve this in

practice.

5.6.2 Selector Evaluation

Impact of the SLO lease length. We consider how the SLO lease length could

influence the deadline enforcement. Figure 5.10a shows the JCT of best-effort jobs

and Rslo of SLO jobs with the H MIX1 workload. We observe that a short lease

term (leq 5 minutes) can cause more frequent preemption operations with large

overhead, leading to higher Rslo for SLO jobs. A longer lease term could also

increase Rslo as it restricts the scheduling opportunities. Additionally, a similar

experiment on the H MIX2 workload is also conducted. The performance of Rslo

and latency is small between 10 and 30 minutes, but the 10-minute SLO lease

length still achieves the lowest Rslo and latency.

Effectiveness of the ILP solver. The ILP solver can effectively improve the

SLO enforcement by maximizing the total reward value (Eqn. 5.4). Here, we

consider two scenarios for the ILP solver: (1) maximizing the objective subject

to the constraints. (2) only finding a feasible solution to obey the constraints.

Figure 5.10b and 5.10c show Rslo of SLO jobs and the latency of best-effort jobs

respectively over different workloads with and without the consideration of the
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objective. Our observation is that maximizing the objective can significantly reduce

Rslo of SLO jobs, and slightly increase the latency of best-effort jobs. As we set a

high reward value for SLO jobs, the scheduler sacrifices the latency of best-effort

jobs to maximize the total reward value.

The latency of the ILP solver has an impact on the scalability of UniSched.

When the cluster has a larger scale and higher job submission rate, the ILP solver

demands more time to find the solutions, which could possibly cause larger pending

overhead and scheduling inefficiency. To evaluate this impact, we select H MIX2

and adjust the number of jobs to be proportional to the capacity of the cluster.

Figure 5.10d shows the solver latency under different scales of clusters and jobs.

We observe that the maximal latency induced by the ILP solver is less than 10

seconds, which is negligible compared to the long training time. This implies that

UniSched demonstrates high scalability in handling

Effectiveness of joint optimization. The Selector adopts joint optimization to

decide on the job selection and resource allocation simultaneously. To demonstrate

its effectiveness, we compare this strategy with the consolidation placement solution

adopted in Chronus [22]. We adjust the requested GPU amounts of some jobs

in the H MIX2 workload to get various ratios of consolidation-hostile jobs. Figure

5.11a presents the average JCT of best-effort jobs (lines) and Rslo of SLO jobs

(bars) respectively for the two mechanisms. We have two observations:

• The joint optimization technique can remarkably decrease Rslo of SLO jobs.

Without this technique, the Selector will fail to obtain a consolidation solution

for certain SLO jobs. Then these jobs will be placed in the pending state, which

could cause the violation of deadline requirements. When joint optimization

is applied, the ILP solver will allocate appropriate cell resources to SLO jobs

without violating their deadline constraint. Then Rslo becomes smaller.

• The performance gap between consolidation and co-optimization techniques

grows with the increase of the consolidation-hostile proportion. This demon-

strates that consolidation-hostile jobs are sources to undermine performance

but co-optimization can mitigate them.
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Figure 5.11: Performance comparison between co-optimizing technique and
consolidation in Rslo (a) and normalized average latency (b) over different per-
centages of consolidation-hostile jobs.

5.6.3 Comparison between UniSched and Chronus

Since UniSched is improved over Chronus, we make a comparison between the

two systems. To clearly present the performance impact of our proposed new

designs, we make a detailed performance comparison between UniSched and

Chronus for a mix of SLO and best-effort workloads. Our proposed Estimator

still can contribute to the scenario where the cluster only accommodates SLO jobs,

however, the benefit of Selector is limited in such a scenario. Figure 5.12a shows

Rslo of these designs for the mix workloads. We observe that UniSched can re-

duce up to 5.2% Rslo compared to Chronus. To explore the performance gap

between UniSched and Chronus, we integrate the Estimator with Chronus

to predict the job execution time, especially for jobs with performance-based stop-

ping criteria. Our observation is that the Estimator plays an important role in

reducing Rslo: Chronus + Estimator gets a maximum Rslo reduction of 4.2%

in H MIX1 trace compared to Chronus. Besides, we also perform an analysis of

the combination of the Selector with Chronus. The benefit of the Selector is

not comparable to the Estimator, and the maximal Rslo reduction brought by the

Selector is 1.5% in P MIX1 trace compared to Chronus.

Figure 5.12b presents the average JCT of UniSched andChronus as well as other

variants over the mix workloads. The reduction of the DLT job latency arises from

two aspects: (1) we use the accurate job execution time estimation for best-effort

jobs (Estimator), and (2) we distinguish the SLO and best-effort jobs, and it would
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provide more GPU resources to best-effort jobs when SLO jobs are not emergent

(Selector). We observe the Estimator improves the throughput of best-effort

jobs up to 1.73× compared to Chronus for the Helios trace. However, UniSched

enjoys relatively moderate performance gains. Higher Rslo of Chronus also indi-

cates that more resources are allocated to best-effort jobs. Hence, Chronus can

even outperform UniSched in the P MIX2 trace. Furthermore, early work [217]

points out that the job duration distribution of Helios is more unbalanced than that

of Philly. In this context, accurate job execution time prediction offers notable ad-

vantages in Helios with unbalanced job duration distribution. Additionally, the

Selector balances the resource allocation for SLO and best-effort jobs well, and

it shows positive effects on the latency reduction over different simulated traces

and speeds up the throughput of best-effort jobs by 1.04 − 1.66×. Overall, our

Estimator is beneficial to both SLO jobs across different workloads, offering supe-

rior SLO enforcement compared to the Selector. Additionally, it contributes to

reducing latency and achieving competitive performance compared to Chronus

in terms of latency reduction for best-effort jobs. This mainly attributes to the

accurate job execution time. The Selector always presents a positive impact on

the latency reduction for best-effort jobs and deadline guarantee for SLO jobs.
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Figure 5.12: Comparison between UniSched, Chronus w/ the Estimator,
Chronus w/ the Selector, and Chronus in Rslo (a) and normalized average
latency (b) over workload traces.

5.7 Chapter Summary

In this chapter, we design and implement UniSched, a DLT scheduler to meet

various user demands and stopping criteria for DLT jobs. We propose to accurately

estimate the execution time for each DLT job and jointly consider varying schedul-

ing objectives to allocate GPU resources in an effective and efficient way. We
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conduct comprehensive simulations to show that UniSched outperforms various

state-of-the-art schedulers. The prototype implementation of UniSched further

validates the practicability and effectiveness of our system.



Chapter 6

AutoSched: A System for

Automatically Configuring Deep

Learning Training Schedulers

This chapter presents the research1 to address the challenges of adaptively adjusting

the configurations of DLT schedulers to adapt to dynamic job arrival patterns.

6.1 Introduction

Over the years, a variety of DLT schedulers have been proposed to achieve dif-

ferent scheduling objectives, e.g., latency reduction [17, 20, 39], deadline guaran-

tee [21, 22, 66, 170], fairness [62, 63, 65]. These DLT schedulers feature a multitude

of configuration parameters, exerting a substantial impact on their performance.

For instance, KubeFlow [233], a production-level DLT scheduler, exposes param-

eters metric and target to help autoscale GPU resources for cost-effectiveness.

Bad parameter values of these critical configurations might fail to scale up re-

sources [234, 235].

Now it is a common practice for cluster operators to statically pre-determine the

optimal configuration parameters for the DLT scheduler and then deploy it in pro-

duction. However, the cluster environment (e.g., resource utilization, job load)

1The contents of this chapter are published in [232]

114
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changes significantly over time [1, 9, 22, 236] (as illustrated in Figure 2.1 (d)),

and fixed configuration parameters would result in poor scheduling performance.

Therefore, it is crucial to have an efficient system, that dynamically and automat-

ically tunes the scheduling configuration parameters, to adapt to the environment

changes.

To achieve such an adaptive configuration, there are generally two strategies. (1)

The cluster operator can manually adjust the configuration parameters at regular

time intervals. This has been realized in conventional software systems [76, 237,

238]. In a large-scale GPU cluster, reconfiguring the DLT scheduler each time in-

volves tuning a substantial number of parameters, which requires great expertise

and effort. Moreover, an improper parameter value can lead to a considerable per-

formance decline. (2) Recent research including SelfTune [86] and Oppertune [85]

propose to adopt ML models to automate the configuration tuning for conven-

tional cluster schedulers. Although these automated methods ease the burden of

cluster operators, they exhibit two key limitations when applied to DLT schedulers.

First, they perform configuration tuning on obsolete workload traces that are nor-

mally minutes long at most. In contrast, the duration of a DLT job can be up

to dozens of days, which introduces delays in the trace acquisition. The obsolete

traces thus misguide the configuration tuning, leading to inefficient configuration

parameters. Second, these methods necessitate multiple rounds of configuration

sampling to assess the performance objectives. A DLT scheduler typically has an

expansive configuration parameter space, which demands more sampling rounds

to identify the optimal results with unacceptable overhead. The long duration of

DLT jobs brings longer performance measurement time, further exacerbating the

tuning overhead.

We propose AutoSched, a system that adaptively tunes the configurations of

off-the-shelf DLT schedulers in large-scale GPU clusters, to achieve near-optimal

scheduling performance. AutoSched consists of two system modules to address

the above-mentioned limitations. First, to handle the obsolete trace issue, we

introduce a Generation Engine to craft more realistic future jobs. In Section 6.2.1,

we show that a DLT workload trace can be decomposed into a periodic and bursty

component. Therefore, our Generation Engine comprises a global generator and

local predictor to handle these two components separately. For periodic workload

submissions, the global generator searches for the best match from historical traces
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as future-arrival workloads. For bursty workload submissions, the local predictor

reacts by estimating the duration of existing-unfinished workloads at the time of

trace collection at regular intervals. We combine existing-unfinished and future-

arrival workloads to unveil the future time-resource dynamics of the GPU cluster

for subsequent configuration tuning.

Second, to handle the tuning overhead issue, we design a Search Controller with

three techniques. (1) Instead of running DLT jobs on actual GPUs with high cost,

we implement a trace simulator to efficiently approximate the performance objec-

tives with specified configuration parameters. Thus, the entire configuration tuning

process does not require actual GPU resources. (2) We develop a causal tuner to

early terminate unnecessary performance measurements with poor configuration

parameters. (3) We further design a trace aggregator to group similar jobs, which

significantly reduces the number of jobs under evaluation without compromising

the tuning performance.

AutoSched can be directly integrated with existing DLT schedulers. With-

out loss of generality, we evaluate it on three representative scheduling systems:

Tiresias [17], Themis [19], and Lucid [71]. Our evaluation encompasses three

production-level DLT workload traces: Philly [8], Helios [1], and PAI [9]. Compared

with the state-of-the-art configuration tuning approach SelfTune [86], AutoSched

expedite the job completion time (JCT) by up to 1.36× and 1.46 × for Tiresias and

Lucid respectively, and promotes the fairness by 1.12× for Themis across various

workload traces. Additionally, AutoSched accelerates configuration tuning up to

132×. Our contributions are summarized as follows:

• We uncover the importance of dynamic configuration tuning in optimizing DLT

schedulers, and design the adaptive configuration system to fill this gap.

• We design the Generation Engine to produce DLT traces for efficient configu-

ration tuning of DLT schedulers.

• We devise the Search Controller with trace simulator, causal tuner, and trace

aggregator to reduce the configuration tuning latency.

• We show the superiority of AutoSched on three representative DLT schedulers

with a variety of DLT traces.
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6.2 Characterization DLT Workloads & Sched-

ulers

In this section, we analyze the characteristics of DLT workloads and schedulers.
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Figure 6.1: Characterization of DLT workloads. (a) CDF (y-axis) of the job
duration (x-axis) in different traces; (b) Violin plots of the service (y-axis) over
different GPU requests (x-axis) in Helios; (c) Periodic and bursty arrival (number
of requests per hour, y-axis) in Helios over time (x-axis); (d) CDF (y-axis) of
the task recurrence (x-axis).
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Table 6.1: The primary configurations of mainstream DLT schedulers in dif-
ferent modules.

Scheduler Tiresias [17] Themis [19] Gavel [64] Chronus [22] Lucid [71]

Admission N/A N/A N/A profiler capacity profiler capacity

Scheduling queue, priority lease term queue, lease term lease term priority

Placement pack limit threshold N/A threshold threshold

6.2.1 Characterization of DLT Workloads

We perform DLT workload trace analysis to unveil their characteristics, which

guide us to design AutoSched.

Long Execution. Figure 6.1a presents the cumulative density functions (CDFs)

for the job duration distributions from different large-scale GPU clusters, including

Microsoft (Philly), SenseTime (Helios), and Alibaba Cloud (PAI). We observe that

the job duration in these traces varies widely, ranging from seconds to dozens of

days. The prolonged use of GPU resources could contribute to a delay in obtaining

accurate DLT traces for configuration tuning.

High Resource Demand. A DLT job could request up to thousands of GPUs [1,

8, 9]. Such intensive resource demands account for a significant portion of GPU

cluster capacity. Moreover, these jobs with high GPU demands usually have long

execution time. We introduce a metric service, which is denoted as the product

of the requested number of GPUs and execution time. Figure 6.1b illustrates the

distribution of the service with different numbers of requested GPUs in Helios

using the violin plot. The peak/median service usage presents a growing trend

with increased requested GPUs. This phenomenon is also observed in Philly and

PAI. The elevated service usage of individual DLT jobs may lead to a resource

shortage in the GPU cluster.

Periodic and Bursty Job Submissions. A DLT trace exhibits both periodic

and bursty job submission patterns. To demonstrate this, we analyze the Helios

trace of seven days in Figure 6.1c. We utilize the Fast Fourier Transform (FFT)

to extract the periodic submission patterns (top). The estimated period is roughly

23 hours, reflecting the users’ repeated daily behaviors. We also obtain the bursty

submission patterns by subtracting the periodic job requests from the original ones

(bottom). A GPU cluster may also experience busty job submissions.
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Figure 6.3: Configuration analysis: (a) The dependency of parameters in Tire-
sias; (b) The scheduling performance comparison between fixed and adaptive
schedulers. (c) The negative impact of obsolete traces. (d) The high configura-
tion search overhead.

Recurrence. Numerous DLT trace analysis [1, 9, 136, 236] reveal a recurrent

pattern in workload submissions. We denote task recurrence as the number of

jobs that share the same task semantics, e.g., training for the same model. The

PAI trace contains fine-grained user and programming information, allowing us to

identify recurring DLT jobs. Figure 6.1d presents the CDF of task recurrence on

the PAI trace. We observe that approximately 60% of jobs repeat more than ten

times in the trace. Other DLT trace analyses [1, 8] also confirm the prevalence

of such workloads. The recurring DLT jobs primarily arise from hyper-parameter

optimization and debugging purposes [9, 16, 236], and they often have similar job

duration and resource usage. This provides opportunities to predict the character-

istics of future jobs, facilitating the configuration tuning design (Sections 6.4.2.2

and 6.4.3.2).
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6.2.2 Characterization of DLT Schedulers

Workflow. Inspired by previous work [239], we introduce the modularized design

of existing DLT schedulers as illustrated in Figure 6.2. A DLT scheduler normally

adopts a round-based policy, wherein resource allocations are adjusted at fixed

intervals. It contains four key modules. First, the Admission Module analyzes

and validates the newly-submitted jobs, and forwards the qualified jobs to the

waiting queue. Second, the Scheduling Module determines the resource allocations

for DLT jobs to be scheduled in each round. Third, the Placement Module assigns

GPU resources to each job that gets scheduled. Fourth, the Workload Module

monitors necessary performance metrics (e.g., preemption overhead, throughput),

possibly preempts running jobs for incoming ones and adjusts resource allocations.

Such modularized design not only facilitates the analysis of configurations but also

enables the generalization of our findings to new DLT schedulers.

Configurations. We analyze some key configurations of mainstream DLT sched-

ulers designed for large-scale GPU clusters in Table 6.1. Many schedulers share

similar types of configurations across these modules. We summarize three features

of these configurations. First, a DLT scheduler usually incorporates a hybrid of

numerical (e.g., pack limit) and categorical (e.g., priority) configuration pa-

rameters, consequently increasing the complexity of configuration tuning. Some

configuration tuning algorithms [240, 241] are solely for singular data types.

Second, the configurations of a DLT scheduler exhibit intricate dependencies. Fig-

ure 6.3a shows the relationships among the configurations of Tiresias. The value

of queue determines how many queue thrs are tuned simultaneously. The de-

pendency poses a significant barrier to tuning each configuration independently.

Decoupling the configuration dependency would result in an exponential increase

in the configuration parameter space.

Third, many configurations of a DLT scheduler play a trade-off role in workload

scheduling. For example, profiler capacity is a configurable parameter in the

Admission Module. A large profiler capacity might increase the reserved re-

sources for workload profiling, leading to low cluster GPU utilization and delayed

execution of workloads. A small profiler capacity might cause a long queu-

ing delay for newly-submitted workloads in the Admission Module. Experienced

cluster operators can analyze the queuing delays and GPU cluster utilization to



Chapter 6. AutoSched 121

configure profiler capacity appropriately. Though obscured by the performance

objectives, the prevalent trade-off becomes apparent through the analysis of inter-

mediate performance metrics (e.g., cluster utilization and queuing delay). These

metrics serve as a scaffold, revealing the direct impact of each configuration on

specific intermediate performance aspects. Understanding this relationship enables

optimized configuration tuning.

6.3 Performance Analysis of Existing Configura-

tion Tuning Solutions

We quantitatively discuss the limitations of existing configuration tuning approaches,

using the Tiresias scheduler [17] on the Helios trace [1] as an example.

Fixed Configuration. We first consider the fixed configuration case. We con-

duct an exhaustive search for the optimal configuration parameters on a sub-trace

of one week and apply them for future scheduling (“fixed”). Meanwhile, we also

consider a “historical adaptive” case as a baseline, where we adaptively adjust the

configurations every hour by searching for the optimal parameters on the trace

collected from the previous hour. We use SelfTune [86], a state-of-the-art adap-

tive configuration tuning approach, to search and adjust the configurations every

hour. Figure 6.3b presents the average JCT ratio between the fixed and historical

adaptive cases across different weeks. We observe that the JCT with the fixed

configuration could be up to 3.8 times higher than that of the historical adaptive

configuration. This underscores the inefficiency of fixed configurations for DLT

schedulers and leaves a substantial optimization space for adaptive configuration

tuning.

Adaptive Configuration. Next, we demonstrate the historical adaptive con-

figuration is still not the optimal strategy from two perspectives. First, obsolete

workload traces could mislead the adaptive configuration algorithm to yield sub-

optimal scheduling performance. To verify this, we choose the “futuristic adaptive”

case as the baseline, where we adjust the configurations every hour based on the

future workloads in this hour. Note that this baseline represents the ideal solution,

which cannot be achieved in practice. Figure 6.3c shows the JCT ratio between his-

torical (SelfTune) and futuristic adaptive solutions. We observe the configurations
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Figure 6.4: The online workflow of AutoSched consists of two key system
modules: (1) The Generation Engine yields DLT workload traces that reveal
realistic cluster usage; (2) The Search Controller efficiently searches the optimal
configurations using the generated traces.

from the historical traces in SelfTune lead to a 1.4× JCT slowdown, indicating

that historical traces are not appropriate for configuration search.

Second, a DLT scheduler normally involves numerous configuration parameters,

and assessing the scheduling performance for each set of parameters requires sev-

eral minutes. Hence, existing historical adaptive configuration methods suffer from

high tuning overhead. Figure 6.3d shows the configuration search latency at each

iteration using SelfTune. Here, each iteration indicates the process of tuning con-

figurations on an hour-length evaluated trace. Despite its low sample complexity,

SelfTune takes tens of minutes to search for configuration parameters, even though

it can achieve efficient configurations in a few iterations.

6.4 System Design of AutoSched

We introduce AutoSched, an adaptive configuration tuning system for DLT

schedulers. We begin with the overview of AutoSched, followed by the detailed

descriptions of two key components: Generation Engine and Search Controller.
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6.4.1 System Overview

AutoSched consists of an offline and online phase. In the offline phase, the

cluster operator provides AutoSched with the configuration parameter space and

constraints (i.e., configuration dependency), as well as the desired performance

objectives. AutoSched utilizes the historical traces to train a local predictor that

can estimate the duration of existing-unfinished workloads. Besides, the cluster

operator defines the intermediate performance metrics to help construct the causal

performance predictor.

In the online phase, Figure 6.4 illustrates the runtime workflow of AutoSched.

The Generation Engine first uses the global generator and local predictor to gen-

erate workload traces for configuration tuning ( 1 ). The Search Controller adopts

the trace simulator, causal tuner, and trace aggregator to quickly tune configu-

ration. It then identifies the optimal configuration parameters and notifies the

Scheduler Controller ( 2 ). The Scheduler Controller reconfigures the scheduler

with the optimal configurations ( 3 ). Besides, it continuously monitors the clus-

ter and job status ( 4 ). The Scheduler Controller streams the information to a

workload repository that follows prior trace studies [1, 8] to store historical traces

and relevant attributes for the Generation Engine ( 5 ). The implementation de-

tails of the Scheduler Controller are in Section 6.5.3. We detail the design of the

Generation Engine and Search Controller below.

6.4.2 Generation Engine

The Generation Engine aims to produce DLT workload traces for configuration

tuning. As discussed in Section 6.3, historical DLT workload traces are insufficient

to reveal future job load and GPU resource usage, thus misguiding configuration

tuning. To address this limitation, the Generation Engine considers two scenarios

of workloads: future-arrival workloads and existing-unfinished workloads, as shown

in Figure 6.5. In particular, we employ a global generator to create future-arrival

workloads and a local predictor to estimate the duration of existing-unfinished

workloads at the time of trace generation.
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6.4.2.1 Global Generator

The global generator leverages the periodic job arrival pattern observed in DLT

traces to generate future-arrival workloads. While TraceGen [242] utilizes a gener-

ative ML model to create realistic workloads, it requires millions of historical traces

for training. In light of this, we choose a more lightweight approach to generate

future-arrival workloads.

In detail, we analyze the historical traces in the workload repository based on the

number of requests per five minutes and then adopt FFT to extract the periodic

workload submission. To generate future-arrival workloads, we choose the trace

from the past hour (i.e., 12 points with each point representing the number of

requests per 5 minutes) as a reference segment. Subsequently, we search the work-

load repository for the most similar trace, measuring the similarity between the

two trace segments using relative percentage error. The identified trace is directly

replicated and utilized as future-arrival workloads.

Our global generator has two merits: (1) Compared with directly using historical

traces, the global generator exploits the periodic submission patterns of DLT work-

loads and generates traces that can reveal the future workload submission density;

(2) Compared with the ML-based trace generation approach [242], the global gen-

erator is simple and transparent to cluster operators. Our empirical studies in

Section 6.6.2 demonstrate the high accuracy of future-arrival workload generation.
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6.4.2.2 Local Predictor

This component is used to predict the duration of existing-unfinished workloads,

which entails future usage of GPU resources at the time of trace generation. Hence,

it is crucial to incorporate such information into the generated workloads for con-

figuration tuning. When confronted with bursts of workload submissions at an

unpredictable moment, AutoSched needs to adopt the local predictor to predict

the duration quickly, thereby enabling prompt configuration tuning.

The design of the local predictor is underpinned by the recurrence pattern observed

in DLT workload traces, as detailed in Section 6.2.1. When training DL models,

developers often prematurely stop the workload execution or oversubscribe the

number of training iterations required [1, 9]. Consequently, building a performance

model to accurately predict the job duration at scale is impractical [1, 9]. Instead,

the local predictor concentrates on predicting the range of duration, which is a

comparatively more tractable problem.

We engineer relevant input features, as outlined in Table 6.2, to facilitate the effi-

ciency of the local predictor. Specifically, the local predictor inputs the temporal

features and GPU requests from recent k arrival workloads, recent k finished work-

loads, and the query workload. It classifies the duration of query workload into a

small number of ranges: [0, t1), [t1, t2), ..., [tn,∞). Prior works [1, 236] adopt sim-

ilar attributes to predict the job features for better scheduling performance. We

choose the decision tree (DT) to predict the job duration range because DT offers

high accuracy with minimal latency overhead (discussed in Section 6.6.2). With

the job duration range, the Search Controller samples a value from the historical

duration distribution that satisfies the predicted duration range and assigns such

value as the predicted duration for this job.

6.4.3 Search Controller

We follow the modularized scheduler design philosophy [239] to implement a trace

simulator to evaluate the scheduling performance of each configuration. The trace

simulator produces outputs that comprise performance objectives and intermedi-

ate performance metrics. These outputs are transformed into reward values and
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Table 6.2: The features used by the local predictor to predict the job duration
range.

Name Features

Recent Arrivals arrival time, execution time until now,
GPU request of recent k newly-submitted jobs

Recent Completions arrival time, finished time, duration,
GPU request of recent k finished jobs

Job Attribute arrival time, execution time until now,
GPU request of querying job

auxiliary reward values, aligning with the principles of RL-based configuration tun-

ing algorithms. The trace simulator obviates the necessity for actual execution on

GPUs. As the overhead of configuration tuning is proportional to the number

of configuration sampling iterations and the cost of performance evaluation, we

develop a causal tuner and trace aggregator to reduce both terms, respectively.

6.4.3.1 Causal Tuner

Configuring a DLT scheduler introduces a trade-off on intermediate performance

metrics, which helps identify the root cause of performance degradation. We desire

to explicitly model the intricate dependency of configuration parameters with these

intermediate performance metrics. To accomplish this, we construct a causal per-

formance model, providing an automatic and explicit representation of the trade-off

effects. Subsequently, we elaborate on how to utilize the learned causal structure

to expedite configuration tuning.

Causal Performance Model. This model takes the configuration parameters

as input and outputs the performance objectives. The causal structure is a Di-

rected Acyclic Graph (DAG) to uncover the causality between configurations and

performance objectives. Figure 6.6 presents an example of the Tiresias sched-

uler [17]. Here, we consider a three-layer causal structure: configurations, inter-

mediate performance metrics, and performance objectives. The intermediate per-

formance metrics bridge the configurations and performance objectives, explaining

the performance contributions of each configuration parameter to the performance

objectives. A constraint is added for the causal performance model: there is no

casual dependency among configurations and performance objectives for simplicity

unless the cluster operator clarifies it.
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The construction of the causal performance model takes three steps. First, the

cluster operator determines the intermediate performance metrics according to his

expertise, and a fully connected graph is constructed as the skeleton of the casual

performance model. Second, training samples are gathered by utilizing the his-

torical traces and simulator to collect the intermediate performance metrics and

performance objectives. Third, Fast Causal Inference (FCI) [243] is adopted to

learn the causal structure.

Configuration Tuning with Causal Performance Model. The causal per-

formance model is constructed from the historical workloads. It reuses the learned

causality knowledge and maintains its prediction accuracy when the cluster en-

vironment changes moderately [244]. The causal performance model is updated

continuously with the generated workloads to effectively adapt to the dynamic

GPU cluster environment.

We incorporate the causal performance model into configuration tuning, as detailed

in Algorithm 3. It is an iterative process containing six key steps. (1) Sampling

(Line 5): we adopt BlueFin [86] to perform configuration sampling because it can

effectively tune various data types (e.g., category, numerical) of configuration pa-

rameters. (2) Projection (Line 6): we project sampled configurations to satisfy the

dependency constraints specified by the cluster operator. (3) Rejection (Line 8-9):

we adopt the causal performance model to predict the performance objectives of

sampled configuration parameters, and reject unnecessary performance measure-

ments. We also introduce an exploration parameter ϵ to ignore the rejection step

and explore new configurations. (4) Measurement (Line 10): we deploy configu-

rations and measure relevant performance metrics. (5) Update (Line 11-13): we
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Algorithm 3 Configuration Tuning with Causal Model.

1: Input: categorical and numerical parameters C, constrain rules W , exploita-
tion parameter ϵ ∈ (0, 1), causal Model CM, maximum iterations T .

2: Output: best configuration parameters Cmax.
3: Initialize: BlueFin Instance BF, best performance Rmax = −∞, relax factor

γ = 0.95, exploitation indicator elp.
4: for t = 1, 2, . . . , T do
5: Sample configurations Ct using BF. ▷ Sampling

6: Project Ct to C̃t based on constraints. ▷ Projection

7: elp = random(0, 1) ≤ ϵ
8: Predict the performance R̃t = CM(C̃t).
9: Skip to next round if R̃t ≤ γRmax and elp. ▷ Rejection

10: Measure (auxiliary) reward Rt with C̃t. ▷ Measurement

11: Set reward for BF.
12: Update CM with reward and auxiliary reward.
13: Update Rmax, Cmax. ▷ Update

14: Perform what-if analysis and identify configurations that do not exceed the
best performance.

15: Construct constraints that these configurations are fixed in the next rounds.
16: Add constraints into W . ▷ Scope

17: end for

update the causal performance model and configurations. (6) Scope (Line 14-16):

we utilize the causal performance model to analyze which configurations contribute

to the performance degradation, and narrow down the sampled configuration op-

tions in the next round.

As a comparison, Bayesian Optimization-based techniques are suitable for scenarios

where the environment does not change frequently. Otherwise, the accuracy of the

performance model adopted by Bayesian Optimization-based will drop considerably

when the cluster environment changes dynamically [244]. In contrast, we can reuse

the learned causality knowledge of the causal performance model and fine-tune

CPM to maintain its accuracy during the deployment.

The causal performance model improves configuration tuning by reducing perfor-

mance measurements in the rejection step and facilitating the learning of promising

configurations with fewer samples in the scope step. Case studies in Section 6.6

provide an in-depth analysis of the impact of the causal performance model.
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6.4.3.2 Trace Aggregator

The execution time of the performance measurement on the simulator scales with

the size of the evaluated workloads. We introduce the trace aggregator to reduce

the amount of evaluated DLT jobs and expedite the simulator-based performance

measurement. The recurrence feature of DLT workloads implies the prevalence of

similar DL workloads. Therefore, we group similar jobs in the trace generated by

the Generation Engine according to their key attributes, including arrival time, job

duration, and GPU request. Note that we use the remaining duration and GPU

request to group existing-unfinished workloads.

For each aggregated job, the arrival time and GPU request are assigned as the av-

erage arrival time and the sum of GPU requests of similar jobs, respectively. Such

aggregation can preserve the service load, especially in terms of GPU time. Subse-

quently, we calibrate the duration of the aggregated job to ensure the same service

usage between the aggregated job and a group of similar jobs. We also calibrate

some job attributes for existing-unfinished workloads. In detail, we average time-

related attributes (e.g., queuing time, running time) and sum up service-related

attributes (e.g., attained service). Our case studies in § 6.6 indicate that the trace

aggregator reduces the performance measurement overhead for each configuration

parameter by up to 5.8×.

6.5 Implementation

The implementation of AutoSched is independent of DL training framework.

We implement AutoSched as a background service to configure the DLT sched-

uler dynamically. Below we present the implementation details of the Generation

Engine, Search Controller, and Scheduler Controller.

6.5.1 Generation Engine

We set up the Generation Engine as a container instance and utilize gRPC [245] to

trigger the workload generation. In the local predictor, we sort the jobs according

to their arrival time and select the first 70% jobs as the training dataset. We
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adopt XGBoost 2.0.0 to train the DT and sweep parameters to determine the best

hyperparameters. To adapt to the dynamic scheduling environments, we retrain

the DT model at an interval of one day on newly collected workloads. Besides,

the granularity of the duration categories, represented by n, t1, ...t5, are 5 minutes,

30 minutes, 1 hour, 2 hour, and 4 hour, respectively. In the global generator,

we provide a Python-based implementation to bucketize the workload repository

according to the hour of workload submissions.

6.5.2 Search Controller

The core part of the trace aggregator is to recalibrate the attributes of aggregated

jobs, which takes less than 50 lines of code for the implementation of each scheduler.

Trace Simulator. We implement a trace simulator, which contains ∼8,000 lines

of Python code, excluding the scheduling policy. The fidelity of the simulator

is validated by comparisons with the open-source implementation of existing DL

schedulers [17, 19, 71]. To minimize the difference between actual execution and

simulation, we gather critical metrics (e.g., communication overhead, job colocation

interference) from historical traces. Thus, the scheduler provides an effective way

to evaluate the scheduling performance of each new configuration without actually

running the DLT scheduler in a large-scale GPU cluster.

Causal Tuner. We optimize the causal performance model based on CausalNex

0.12.1. The causal graph is constructed in the offline phase and fine-tuned in the

online phase. We modify the open-sourced BlueFin [86] to support the projection,

rejection, and update operations.

We fix the interval of updating the configuration parameters as 1 hour and the

maximum number of iterations T as 40. Nevertheless, the tuned configuration

parameters might be ineffective in the case of bursty job submissions. The causal

tuner runs with a more fine-grained interval (e.g., 5 minutes). When the tuned

configuration outperforms the currently adopted one by a predefined threshold

(e.g., 1.1) with regard to the performance objectives, we update the configuration

parameters, ensuring timely adjustments to accommodate the variations in the

workload patterns and maintain the optimal scheduling performance.
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6.5.3 Scheduler Controller

The Scheduler Controller has two functions: (1) it provides an API to update the

configuration parameters for various DLT schedulers; (2) it monitors schedulable

jobs and stores them in the workload repository.

6.6 Evaluation

We evaluate how AutoSched facilitates the configuration tuning of three state-

of-the-art DLT schedulers.

6.6.1 Experiment Setup

DLT Traces. We choose a two-week trace in Philly from September 22 to October

6, 2017, a two-week trace in Helios from July 26 to August 9, 2020, and a two-

week trace in PAI from the 84th to the 98th day2 in our evaluation. Among these

traces, only PAI provides details on the cluster capacity. Taking such job load

as a standard, we vary the cluster capacity using a base-10 scale to search for a

comparable job load versus the GPU cluster capacity. The cluster capacities for

Philly, Helios, and PAI are set as 100, 70, and 100 8-GPU servers, respectively.

DLT Schedulers. AutoSched can work with different scheduling systems.

Without the loss of generality, we choose three mainstream DLT schedulers: Tire-

sias, Themis, and Lucid. We choose them for two reasons. First, the configurations

of these DLT schedulers are representative and widely adopted by other schedulers.

Second, they are designed for managing substantial DLT workloads in large-scale

GPU clusters. AutoSched aims to enhance these DLT schedulers through ad-

vanced configuration tuning. We employ our trace simulator to assess the efficiency

of AutoSched. The significant performance benefits observed in the evaluation

strengthen our belief that AutoSched can deliver satisfactory performance in a

large-scale production-level GPU cluster.

Baselines. We consider three competitive configuration tuning baselines compared

with AutoSched. (1) Fixed: We search optimal configurations on our evaluated

2PAI lacks specific date information, so we provide relative day references.
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bi-weekly traces and fix their usage in our evaluation. It is a stronger baseline

than searching for fixed configurations using historical traces. (2) SelfTune: We

dynamically search the configurations on the historical traces. (3) Optimal: We

adopt the Search Controller on realistic future DL workloads. This is ideal and

cannot be achieved in practice.

Table 6.3: Test accuracy (%) and latency (seconds per 1000 samples) of various
ML models for the local predictor over different DLT traces.

Algorithm Philly Helios PAI Inference Fine-tuning

XGBoost 88.21 90.41 82.68 0.0331 0.3291
LightGBM 87.78 89.93 82.92 0.0318 0.2132
RandomForest 88.08 88.19 79.06 0.0420 0.3489
MLP 85.53 86.37 61.60 0.0175 3.1740
LR 84.93 80.99 65.79 0.0030 0.1212

Table 6.4: Average relative percentage difference (%) and latency (seconds per
1000 samples) of the causal performance model on different traces.

Algorithm Philly Helios PAI Inference Fine-tuning

Causal Model 14.23 11.17 15.16 0.0927 1.4731

6.6.2 Effectiveness of ML Models in AutoSched

Local Predictor. We select different ML models for the local predictor, and

Table 6.3 presents their prediction accuracy on various DLT traces. We also re-

port corresponding inference and fine-tuning latency for 1000 samples. In general,

XGBoost achieves the best accuracy, and the inference and fine-tuning latency is

acceptable in practical systems. Besides, thanks to the interpretability of XGBoost,

we observe the strong correlation between the job attributes of recent arrival and

completed jobs and the duration of newly arrived jobs by visualizing its results.

For Helios and PAI, we further remove the user information from the traces, and

the corresponding accuracy is degraded by 3.77% and 7.18%, respectively. This

highlights the importance of user information on the accuracy of the local predic-

tor.

Global Generator. We conduct comparative analysis using two types of DLT

traces: the Original trace, which consists of raw trace data, and the Periodic
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Figure 6.7: Job request differences between the generated and actual DLT
traces over days across different DLT workload traces.

trace, derived from the Original trace through FFT processing. The Periodic trace

captures inherent periodic job submission trends and activity bursts. For each trace

type, we generate future traces and quantify the relative differences in the number

of job requests between the ground-truth future arrival traces and the generated

ones. Figure 6.7 shows the generation based on the original trace exhibits significant

deviations and unpredictable peak error values. Particularly, in PAI trace, the

difference range observed in this case spans from 0.6 to 2.3 across various traces. In

contrast, a remarkable resemblance is evident between the generated and periodic

traces, exhibiting a significantly lower difference range of 0.3 to 1.0. This suggests
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that our global generator, while straightforward in design, is highly effective in

capturing the periodic arrival patterns of future DLT workloads.

Causal Inference. We divide the DLT workload trace into day-length traces,

select several segments with comparable service usage and exhaustively evaluate

various configurations to optimize the causal performance model for different sched-

ulers. This is conducted in the offline phase to eliminate the high overhead of model

training. The model fine-tuning is performed in the online phase.

We present the average relative percentage difference between the prediction result

and the actual scheduling performance in our evaluation, as well as the inference

and fine-tuning time in Table 6.4. The causal performance model can achieve

satisfactory prediction accuracy with acceptable inference and fine-tuning latency.

6.6.3 Case Study 1: Tiresias

Configurations. In the Scheduling Module, Tiresias provides three ways to com-

pute the priority of each job: time, service, and Gittins Index. The priority

values are discretized to prevent continuous priorities leading to frequent job pre-

emption. The priority discretization introduces two configurations: queue and

queue threshold. The value of queue determines the number of queue thresh-

olds. To reduce the long queuing delay and avoid starvation, Tiresias promotes

a job to the highest priority queue if it has been waiting longer than a threshold

starve limit. In the Placement Module, Tiresias sets a threshold pack limit

to compute the amount of skew in parameter tensor distributions and determine
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Figure 6.9: The impact of Search Controller on Tiresias.
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Figure 6.10: The search overhead of causal tuner on Tiresias.

whether to implement the consolidation placement. Configuring pack limit bal-

ances the job runtime speed slowdown and queuing delay.

End-to-end Scheduling Performance. Figure 6.8 compares the end-to-end

JCT performance across various DLT traces. We normalize the JCT using the

Optimal baseline. We observe that SelfTune consistently outperforms the Fixed

baseline on Helios and PAI, while showing a slightly lower performance than the

Fixed baseline on Philly. This highlights the limitation of relying solely on an

adaptive approach without considering the prediction of future workloads when

configuring DLT schedulers. AutoSched incorporates the workload prediction

and achieves 1.10− 1.36× JCT speedup compared to SelfTune, demonstrating the

positive effect of future workloads.

Moreover, the performance gap between AutoSched and the Optimal baseline is

relatively narrow. The Optimal baseline adopts the same Search Controller to per-

form configuration tuning, and the causal tuner in the Search Controller might skip

evaluating certain configuration parameters, making AutoSched achieve better

JCT performance on Philly. Overall, AutoSched shows advantages in improving

JCT performance for Tiresias across different scenarios.
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Figure 6.11: The search overhead of trace aggregator on Tiresias.

Similarity Metric Selection. In our global generator, we utilize the absolute dif-

ference (Manhattan distance) between the reference segment (recent past hour) and

historical traces. This similarity metric is straightforward and intuitive, yielding

promising empirical results in our evaluation. Although we explored various other

similarity metrics, the average JCT results reported in Table 6.5 reveal that both

Manhattan and Euclidean metrics demonstrate comparable performance. How-

ever, both Cosine and Pearson metrics exhibit a performance drop of over 5%. In

summary, the Manhattan distance metric demonstrates satisfactory performance.

Table 6.5: Average JCT across various similarity metrics.

Metrics Philly Helios PAI Metrics Philly Helios PAI

Manhattan 2.851 3.082 2.988 Euclidean 2.853 3.089 2.978
Pearson 2.996 3.160 3.151 Cosine 3.108 3.195 3.155

Impact of Search Controller. We explore the impact of the Search Controller on

the scheduling performance and search overhead. Figure 6.9 analyzes the influences

of the trace aggregator and the causal tuner on the average JCT of AutoSched.

Particularly, “w/o Search Controller” refers to the absence of the Search Controller,

“w/ Causal Tuner” refers to only enabling the causal tuner in the Search Controller,

“w/ Trace Aggregator” refers to only enabling the trace aggregator in the Search

Controller, and “w/ Search Controller” refers to enabling both the causal tuner and

trace aggregator together. Note that we reduce the number of configuration tuning

iterations to 10 for “w/o Search Controller” because of its enormous configuration

tuning overhead. AutoSched searches the configuration parameters on the future

workload prediction rather than realistic future workloads; the Search Controller

does not always bring negative scheduling performance. Furthermore, with more

configuration tuning iterations, the Search Controller even further improves the

scheduling performance of Tiresias.
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Figure 6.12: The end-to-end performance of different configuration tuning
approaches on Themis.

Figure 6.10 illustrates how the causal tuner reduces the overhead of configuration

tuning across various DLT traces. Specifically, we disable the trace aggregator and

report the violin plot of tuning overhead across different iterations of configuration

search. The causal tuner reduces the overhead to 9.5-22.7×, bringing it down from

thousands of seconds to mere hundreds of seconds. Furthermore, in Figure 6.11,

we compare the configuration tuning overhead of AutoSched with and without

the trace aggregator while enabling the causal tuner in both scenarios. The trace

aggregator further expedites the configuration tuning to 2.6-5.8×, maintaining the

overhead within one hundred seconds, with the majority completing within half a

minute. Overall, the Search Controller reduces the overhead up to 132×.

Causal Graph. The learned causal graph of Tiresias is shown in Figure 6.6, which

aligns with our expectation. The causal graph acts as an experienced expert to

help the causal tuner quickly identify the most important configurations to tune.

In the configuration tuning, the causal graph often constrains the search space

into queue-related configurations, demonstrating the importance of queue-related

configurations and curbing the configuration tuning space for AutoSched.

6.6.4 Case Study 2: Themis

Configurations. Themis [19] defines a metric called finish time fairness (ρ) and

aims to maximize the number of jobs with ρ ≤ 1. In its Scheduling Module,

Themis introduces a configuration lease term to indicate an exclusive GPU re-

source usage for a fixed period. Like Tiresias, Themis provides two choices to

compute the lease term: time and service. We denote this configuration option
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Figure 6.15: The search overhead of trace aggregator on Themis.

as priority. A DLT workload with lease expiry needs to participate in resource

re-allocations. A large lease term sacrifices the fairness, but a small lease term

incurs high preemption overhead. At each scheduling round, Themis utilizes a

parameter fraction f to trade off fairness and efficiency. Specifically, it selects

(1 − f) fraction of workloads with the largest ρ and prioritizes the resource allo-

cations for them. A small fraction incentivizes the fast completion of short-term

jobs and reduces resource contention. A large fraction minimizes the maximum ρ

among DLT jobs to implicitly enforce fairness. In the Placement Module, Themis

introduces a similar threshold thr as Tiresias to determine whether to relax the



Chapter 6. AutoSched 139

lease thrpriority

queuing
delay

preemption
overhead

speed
slowdown

fraction

FTF

Job
load

(a) Causal Graph

0 25 50 75 100
Configuration Search Iteration

0
2
4
6
8

10

Le
as

e 
Te

rm

x103

0

0.5

1.0

Jo
b 

Lo
ad

lease term job load

(b) Lease Term

Figure 6.16: The causal analysis of Themis: (a) Learned causal graph; (b)
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configuration search.

consolidation placement constraint for workloads.

End-to-end Scheduling Performance. Figure 6.12 compares the CDF of finish-

time fairness (FTF) among AutoSched and three baselines across various DLT

traces. As discussed in a prior study [236], maximizing fairness is more difficult

than minimizing the JCT with the oracle future knowledge. The performance

gap between SelfTune and Optimal is limited, leaving less improvement space.

Nevertheless, AutoSched attains (1.07−1.12×) improvement compared to Fixed

baselines in terms of the number of jobs with ρ ≤ 1.

Impact of Search Controller. We investigate the effect of the Search Controller

on the FTF performance and configuration overhead. Figure 6.13 reports the ratio

of jobs with ρ ≤ 1. The Search Controller reduces FTF by 4% and 5% on Philly and

PAI, respectively. Improving FTF is more challenging than reducing JCT, making

the Search Controller’s impact on the FTF performance pronounced. Following

the evaluation approach of Tiresias, we present how the causal tuner and trace

aggregator expedite the configuration tuning in Figures 6.14 and 6.15 respectively.

The causal tuner reduces the configuration tuning overhead to 4.8-5.5×. The trace

aggregator further brings 1.9-3.9× configuration tuning reduction. In conclusion,

the Search Controller effectively reduces the configuration tuning overhead while

maintaining an acceptable degradation in the FTF performance of AutoSched

on Themis.

Causal Analysis. Figure 6.16a visualizes the causal graph of Themis. In our

evaluation, the causal graph constraints tune configurations for lease term many

times. Specifically, Figure 6.16b depicts the dynamic changes in the lease term

and job load throughout various configuration search iterations. The job load is
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Figure 6.18: The impact of Search Controller on Lucid.

the ratio of the total GPU requests to the number of jobs. We observe fluctuations

in the lease term corresponding to variations in the job load. In the high job

load, AutoSched configures relatively small lease term while setting a large one

for the low job load. The fixed lease term is not an efficient choice for maintaining

the FTF performance of Themis.

6.6.5 Case Study 3: Lucid

Configurations. Lucid [71] packs jobs on the same GPUs to optimize the JCT of

Lucid by tuning its configurations. In the Admission Module, Lucid configures the

profiler capacity to balance the queuing delay and cluster utilization. In the

Placement Module, Lucid provides a pack knob to determine whether to pack DLT

workloads on the same GPU device. This configuration balances the job runtime

speed and queuing delay.

End-to-end Performance. Figure 6.17 shows the JCT of AutoSched and other

baselines across various DLT traces. AutoSched outperforms SelfTune by up to
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1.15 - 1.17× in terms of JCT. The performance gap between AutoSched and the

Optimal baseline on PAI is minor except on PAI. PAI trace contains more small

and short-term jobs, leaving more optimization space to pack jobs in the same

GPUs [9]. More accurate future traces can bring higher performance improvement

while our local predictor on PAI trace in Table 6.3 is not as accurate as that on

Philly and Helios, further confirming the significance of future workload prediction.

Impact of Search Controller. We first show how the Search Controller influ-

ences the scheduling performance across various DLT traces in Figure 6.18. Overall,

the causal tuner and trace aggregator increase the average JCT within 5%. We

further study the benefits of the Search Controller in reducing the configuration
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latency. The configuration parameter space of Lucid is relatively small compared

with that of Tiresias and Themis. The Search Controller limits the configuration

optimization space for AutoSched and always brings negative scheduling perfor-

mance. Figures 6.19a and 6.19b further demonstrate that the causal tuner and

trace aggregator can reduce the configuration latency by up to 3.4× and 5.7×
respectively for various traces.

Causal Analysis. We additionally showcase the causal graph of Lucid in Fig-

ure 6.20a. The learned causal graph implies the trade-off effect of Lucid’s config-

urations. Moreover, Figure 6.20b shows the update frequency of pack knob and

profiler capacity on Helios. With the learned causal model, the causal tuner

narrows down the scope of tuned configurations on pack knob to adapt to chang-

ing intermediate performance metrics including queuing delay and speed slowdown

of cluster-wide workloads.

6.7 Chapter Summary

This chapter presents AutoSched, an automatic and adaptive configuration tun-

ing system for DLT schedulers. AutoSched designs the Generation Engine to

yield workloads that accurately reflect realistic resource usage patterns for config-

uration search. Also, it develops the Search Controller to mitigate the substantial

search overhead by curbing the configuration search space and reducing the perfor-

mance measurement overhead without sacrificing the performance. Our evaluation

of three representative DLT schedulers and different DLT traces confirms the effi-

ciency and generality of AutoSched.
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Conclusion and Future Work

In this chapter, we conclude our research work by summarizing the contributions

and analyzing the limitations. Then, we discuss the future research directions.

7.1 Conclusion

In this thesis, we consider three components of a DLT scheduler to optimize and

enhance the scheduling effectiveness. Targeting the workloads, we propose Ymir

and PromptTuner for the scheduling of FMF and LPT workloads respectively.

Specifically, Ymir expedites the cluster-wide FMF workloads via transfer learning.

It develops an estimator to predict job execution time in different transfer learning

modes and allocated GPUs, and informs the scheduling policy to jointly deter-

mine the optimal transfer learning modes and resource allocations. Additionally,

it hides the exorbitant context switch overhead between FMF jobs to further im-

prove efficiency. The extensive experiments demonstrate that Ymir outperforms

conventional DLT schedulers in job efficiency. PromptTuner focuses on optimiz-

ing LPT workloads in SLO attainment and cost efficiency. It develops the Prompt

Bank to reuse high-quality prompts to expedite the convergence of LPT tasks.

Also, It devises the Workload Scheduler to reuse the LPT runtime to reduce the

GPU allocation overhead and realize fast dynamic resource allocation. We perform

extensive experiments to demonstrate the advantages of PromptTuner in SLO

violation reduction and cost reduction.

143
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Targeting the scheduling objectives, UniSched is aware of various user demands

and stopping criteria and meets them for DLT jobs simultaneously in a shared GPU

cluster. It develops an accurate job runtime predictor with minimal profiling re-

sources. Furthermore, it unifies job profiling, selection, and resource allocation into

the ILP framework, and offers a joint optimization to determine job priority and

allocated GPUs. The comprehensive simulations and real-word prototype imple-

mentation of UniSched validates the efficiency and practicability of UniSched.

Targeting the scheduling policy, AutoSched aims to automatically and adaptively

adjust policy configurations to adapt to the dynamic traffic pattern. It uncovers

the importance of adaptive configurations on the scheduling performance of many

large-scale DLT schedulers. It can generate realistic DLT workloads for configura-

tion tuning. Additionally, it alleviates the substantial search overhead by reducing

the configuration search space and performance measurement overhead without

sacrificing the configuration tuning performance. The evaluation of three main-

stream DLT schedulers over different DLT traces demonstrates the advantages of

AutoSched.

7.2 Limitations

Workload-aware Optimization. Ymir presents two drawbacks. First, it con-

siders combining at most two tasks. Intuitively, jointly fine-tuning more tasks can

increase the potential benefit of transfer learning, but the lack of ML studies to

estimate transfer gains when combining multiple tasks (≥ three) impedes the com-

bination of more tasks. Our empirical results have shown that merging two tasks

can yield sufficiently good results. Second, Ymir mainly evaluates the scenario

with one FM. There can be numerous FMs in the cluster for fine-tuning. Then, we

can adopt a load-balancing policy to determine the GPU quotas for each FM, and

more sophisticated designs can be our future work.

The effectiveness of PromptTuner hinges upon the prompt candidates in the

Prompt Bank. Varying the prompt candidates might affect the task accuracy.

Moreover, the emergence of multimodal LLMs makes it complicated to yield effi-

cient prompts to elicit desirable responses [246–248]. Crafting prompts for multi-

modal LLMs is more challenging for developers compared with creating prompts for
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conventional LLMs. Despite the prompts designed for LLMs presenting good per-

formance on multimodal LLMs [247–249], we expect to incorporate more prompts

tailored for multimodal LLMs into the Prompt Bank.

Objective-aware Optimization. UniSched accommodates data-parallel DLT

jobs with varying user demands in a homogeneous GPU cluster. Hence, it has

limitations in handling heterogeneous GPU clusters and pipeline-parallel jobs. The

primary hurdle is to predict the job execution time under different heterogeneous

GPUs and parallelism strategies. By incorporating capabilities for handling GPU

heterogeneity and pipeline parallelism, UniSched can broaden its applicability to

a wider range of scenarios.

Configuration-aware Optimization. AutoSched automatically tunes the

complex policy configurations of DLT schedulers in a large-scale GPU cluster.

However, it has two limitations. First, some DLT schedulers may have a limited

number of configuration options. As such, the Generation Engine in AutoSched

still facilitates the configuration tuning, and the Casual Tuner also provides trans-

parent and explainable decisions about configuration parameter selection. Second,

a small-scale GPU cluster (with ≤ 32 GPUs) may constrain the impact of var-

ious configuration parameters, curtailing the optimization opportunities through

configuration tuning. Considering the constrained potential benefits achievable

through configuration tuning, AutoSched is less desirable to attain significant

performance improvement.

7.3 Future Work

In this section, we explore several future research directions to optimize the schedul-

ing systems for DLT workloads.

• Holistic LLM Workload-aware Scheduling. This thesis mainly opti-

mizes conventional DLT workloads. The rise of LLMs has led hyperscale

GPU clusters to support these resource-intensive LLM workloads. Ymir and

PromptTuner are tailored for LLM fine-tuning and LLM prompt tuning

workloads respectively. Nevertheless, LLM pretraining, evaluation, and in-

ference remain significant consumers of GPU resources. In the era of LLMs,
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an effective scheduling system should optimize these diverse workloads col-

lectively to fully harness the computing power of GPU clusters.

• Energy-aware Scheduling. The enormous energy consumption from sub-

stantial DLT workloads necessitates optimizing energy efficiency for DLT

workloads. For example, training the GPT-3 model [96] consumes a stagger-

ing 1, 287 megawatt-hour (MWh) [250]. Nvidia GPUs [182, 183, 251, 252]

provide interfaces to configure power capping and GPU core frequency, a way

to tune the energy consumption without affecting the job throughput con-

siderably. This highlights the pressing need for designing efficient schedulers

to improve the energy efficiency of DLT workloads.

• LLM-enabled Policy Configuration Optimization. AutoSched uti-

lizes an RL-based search policy to explore efficient configurations for DLT

schedulers. The recent success of LLMs opens a new venue to accelerate

the configuration tuning process for systems. Indeed, several pioneering re-

search speeding up the configuration tuning process for databases [253] and

microservices [254]. We plan to integrate LLMs into tuning configurations

for DLT schedulers. Moreover, LLMs can enable adaptive selection for DLT

schedulers, effectively managing and responding to varying incoming work-

loads.
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Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4-8, 2019, pages 2623–2631. ACM, 2019.
82

[223] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong
Wang. Aryl: An elastic cluster scheduler for deep learning. CoRR, 2022. 88

[224] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R
Tallent, and Kevin J Barker. Evaluating modern gpu interconnect: Pcie,
nvlink, nv-sli, nvswitch and gpudirect. IEEE Transactions on Parallel and
Distributed Systems, 31(1):94–110, 2019. 88

[225] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. SLAQ:
quality-driven scheduling for distributed machine learning. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC 2017, Santa Clara, CA,
USA, September 24-27, 2017, pages 390–404. ACM, 2017. 89

[226] Brendan Burns, Brian Grant, David Oppenheimer, Eric A. Brewer, and John
Wilkes. Borg, omega, and kubernetes. ACM Queue, 14(1):10, 2016. 98

[227] Gurobi Company. Gurobi optimization: https://https://www.gurobi.com/,
2021. URL https://www.gurobi.com/. 98

[228] MIT Distributed Robotics Laboratory. Github repository
https://github/com/mit-drl/goop: Generalized mixed integer optimiza-
tion in go. URL https://github.com/mit-drl/goop. 98

[229] Jun Woo Park, Alexey Tumanov, Angela H. Jiang, Michael A. Kozuch, and
Gregory R. Ganger. 3sigma: distribution-based cluster scheduling for runtime
uncertainty. In Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors, Pro-
ceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portu-
gal, April 23-26, 2018, pages 2:1–2:17. ACM, 2018. 100

[230] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phan-
ishayee, and Matei Zaharia. Heterogeneity-aware cluster scheduling policies
for deep learning workloads. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual Event, November 4-6,
2020, pages 481–498. USENIX Association, 2020. 101

[231] Haoyu Wang, Zetian Liu, and Haiying Shen. Job scheduling for large-scale
machine learning clusters. In Dongsu Han and Anja Feldmann, editors,

https://www.gurobi.com/
https://github.com/mit-drl/goop


BIBLIOGRAPHY 171

CoNEXT ’20: The 16th International Conference on emerging Network-
ing EXperiments and Technologies, Barcelona, Spain, December, 2020, pages
108–120. ACM, 2020. 104

[232] Wei Gao, Xu Zhang, Shan Huang, Shangwei Guo, Peng Sun, Yonggang
Wen, and Tianwei Zhang. Autosched: An adaptive self-configured frame-
work for scheduling deep learning training workloads. In Proceedings of the
38th ACM International Conference on Supercomputing, ICS ’24, pages 473–
484, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400706103. 114

[233] kubeflow. kubeflow: https://www.kubeflow.org/, 2021. 114

[234] Knative issues. https://github.com/knative/serving/issues/8682,
2024. 114

[235] Kubeflow issues. https://github.com/kubeflow/kubeflow/issues/1219,
2024. 114

[236] Tapan Chugh, Srikanth Kandula, Arvind Krishnamurthy, Ratul Mahajan,
and Ishai Menache. Anticipatory resource allocation for ml training. In
Proceedings of the 2023 ACM Symposium on Cloud Computing, pages 410–
426, 2023. 115, 119, 125, 139

[237] Alexander Tarvo, Peter F Sweeney, Nick Mitchell, VT Rajan, Matthew
Arnold, and Ioana Baldini. Canaryadvisor: a statistical-based tool for ca-
nary testing. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, pages 418–422, 2015. 115

[238] Jez Humble and David Farley. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education, 2010.
115

[239] Saurabh Agarwal, Amar Phanishayee, and Shivaram Venkataraman.
Blox: A modular toolkit for deep learning schedulers. arXiv preprint
arXiv:2312.12621, 2023. 120, 125

[240] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Au-
tomatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD ’17, 2017. 120

[241] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018. 120

[242] Shane Bergsma, Timothy Zeyl, Arik Senderovich, and J. Christopher Beck.
Generating complex, realistic cloud workloads using recurrent neural net-
works. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, SOSP ’21, 2021. 124

https://github.com/knative/serving/issues/8682
https://github.com/kubeflow/kubeflow/issues/1219


172 BIBLIOGRAPHY

[243] Peter Spirtes. An anytime algorithm for causal inference. In International
Workshop on Artificial Intelligence and Statistics, pages 278–285. PMLR,
2001. 127

[244] Md Shahriar Iqbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and
Pooyan Jamshidi. Cameo: A causal transfer learning approach for perfor-
mance optimization of configurable computer systems. arXiv e-prints, pages
arXiv–2306, 2023. 127, 128

[245] gRPC. gRPC: A High-Performance, Open Source Universal RPC Framework.
https://grpc.io, 2023. 129

[246] Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu, Tat-Seng Chua, and
Maosong Sun. Cpt: Colorful prompt tuning for pre-trained vision-language
models. AI Open, 5:30–38, 2024. 144

[247] Weifeng Lin, Xinyu Wei, Ruichuan An, Peng Gao, Bocheng Zou, Yulin Luo,
Siyuan Huang, Shanghang Zhang, and Hongsheng Li. Draw-and-understand:
Leveraging visual prompts to enable mllms to comprehend what you want.
arXiv preprint arXiv:2403.20271, 2024. 145

[248] Yuechen Zhang, Shengju Qian, Bohao Peng, Shu Liu, and Jiaya Jia. Prompt
highlighter: Interactive control for multi-modal llms. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13215–13224, 2024. 144

[249] Ali Naseh, Katherine Thai, Mohit Iyyer, and Amir Houmansadr. Iteratively
prompting multimodal llms to reproduce natural and ai-generated images.
arXiv preprint arXiv:2404.13784, 2024. 145

[250] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
Carbon emissions and large neural network training. arXiv preprint
arXiv:2104.10350, 2021. 146

[251] Nvidia p100. https://www.nvidia.com/en-sg/data-center/

tesla-p100/, 2022. 146

[252] Nvidia v100. https://www.nvidia.com/en-sg/data-center/V100/, 2022.
146

[253] Xinmei Huang, Haoyang Li, Jing Zhang, Xinxin Zhao, Zhiming Yao, Yiyan
Li, Zhuohao Yu, Tieying Zhang, Hong Chen, and Cuiping Li. Llmtune:
Accelerate database knob tuning with large language models. arXiv preprint
arXiv:2404.11581, 2024. 146

[254] Gagan Somashekar and Rajat Kumar. Enhancing the configuration tuning
pipeline of large-scale distributed applications using large language models
(idea paper). In Companion of the 2023 ACM/SPEC International Confer-
ence on Performance Engineering, pages 39–44, 2023. 146

https://grpc.io
https://www.nvidia.com/en-sg/data-center/tesla-p100/
https://www.nvidia.com/en-sg/data-center/tesla-p100/
https://www.nvidia.com/en-sg/data-center/V100/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background and Challenges
	1.2 Motivation and Contribution
	1.3 Outline of the Thesis

	2 Preliminary and Literature Review
	2.1 DL Training
	2.1.1 Distributed Training Parallelism
	2.1.2 Characteristics of DLT Workloads

	2.2 GPU Cluster
	2.2.1 Hardware Layer
	2.2.2 Software Layer

	2.3 Literature Review
	2.3.1 Workload-aware Optimization
	2.3.2 Objective-aware Optimization
	2.3.3 Policy Configuration-aware Optimization


	3 Ymir: A Scheduler for Foundation Model Fine-tuning Workloads
	3.1 Introduction
	3.2 Task Transferability
	3.3 Characterization of FMF Workloads
	3.4 System Design of Ymir
	3.4.1 System Overview
	3.4.2 YmirEstimator
	3.4.2.1 Transferability Estimator
	3.4.2.2 Iteration Estimator
	3.4.2.3 Time Estimator

	3.4.3 YmirSched
	3.4.3.1 Task Merger
	3.4.3.2 Discussion

	3.4.4 YmirTuner
	3.4.4.1 Task Constructor
	3.4.4.2 Pipeline Switch


	3.5 Evaluation
	3.5.1 Experimental Setup
	3.5.2 End-to-end Performance
	3.5.3 Evaluation of YmirEstimator
	3.5.4 Impact of LUT and Pipeline Switch
	3.5.5 Impact of Transferability Estimation
	3.5.6 Discussion of System Parameters

	3.6 Chapter Summary

	4 PromptTuner: A Scheduler for Large Language Model Prompt Tuning Workloads
	4.1 Introduction
	4.2 LPT Workload Characterization
	4.2.1 Prompt Tuning
	4.2.2 Characterization of LPT Workloads

	4.3 Characterization of Existing DL Schedulers
	4.3.1 Inefficiency of DL Training Scheduler
	4.3.2 Inefficiency of DL Inference Scheduler

	4.4 System Design of PromptTuner
	4.4.1 Design Insights
	4.4.2 System Overview
	4.4.3 Prompt Bank
	4.4.3.1 Data Structure Construction
	4.4.3.2 Lookup
	4.4.3.3 Insertion & Replacement
	4.4.3.4 Two-layer Data Structure Discussion

	4.4.4 Workload Scheduler
	4.4.4.1 GPU Allocation from a Warm Pool
	4.4.4.2 GPU Allocation from the Cold Pool


	4.5 Implementation
	4.5.1 Multi-GPU Execution
	4.5.2 Prompt Bank
	4.5.3 Workload Scheduler

	4.6 Evaluation
	4.6.1 Experimental Setup
	4.6.2 End-to-end Performance
	4.6.3 Evaluation of Each Component and Feature
	4.6.3.1 Prompt & Runtime Reusing
	4.6.3.2 Latency Estimation Error
	4.6.3.3 Window Size of Cold-GPU Allocator
	4.6.3.4 Score Metric
	4.6.3.5 Two-layer Data Structure

	4.6.4 Scalability Evaluation

	4.7 Chapter Summary

	5 UniSched: A Scheduler to Meet Different User Demands for Deep Learning Training Jobs
	5.1 Introduction
	5.2 Categorization of DLT Workloads and Advantages of Joint Optimization 
	5.2.1 Categorization of DLT Workloads
	5.2.2 Advantages of Joint Optimization

	5.3 System Design of UniSched
	5.3.1 System Overview
	5.3.2 Estimator
	5.3.2.1 Runtime Speed Estimator
	5.3.2.2 Training Iteration Estimator
	5.3.2.3 SR-Aware Estimator

	5.3.3 Selector
	5.3.3.1 Lease-based Training
	5.3.3.2 Reward Generator
	5.3.3.3 Policy Generator
	5.3.3.4 Joint Optimization of Job Selection and Allocation


	5.4 Implementation and Experimental Setup
	5.4.1 Implementation Details
	5.4.2 Evaluation Settings
	5.4.3 Metrics
	5.4.4 Baselines

	5.5 End-to-end evaluation
	5.5.1 Physical Evaluation
	5.5.2 Simulator Evaluation

	5.6 Performance Breakdown
	5.6.1 Estimator Evaluation
	5.6.2 Selector Evaluation
	5.6.3 Comparison between UniSched and Chronus

	5.7 Chapter Summary

	6 AutoSched: A System for Automatically Configuring Deep Learning Training Schedulers
	6.1 Introduction
	6.2 Characterization DLT Workloads & Schedulers
	6.2.1 Characterization of DLT Workloads
	6.2.2 Characterization of DLT Schedulers

	6.3 Performance Analysis of Existing Configuration Tuning Solutions
	6.4 System Design of AutoSched
	6.4.1 System Overview
	6.4.2 Generation Engine
	6.4.2.1 Global Generator
	6.4.2.2 Local Predictor

	6.4.3 Search Controller
	6.4.3.1 Causal Tuner
	6.4.3.2 Trace Aggregator


	6.5 Implementation
	6.5.1 Generation Engine
	6.5.2 Search Controller
	6.5.3 Scheduler Controller

	6.6 Evaluation
	6.6.1 Experiment Setup
	6.6.2 Effectiveness of ML Models in AutoSched
	6.6.3 Case Study 1: Tiresias
	6.6.4 Case Study 2: Themis
	6.6.5 Case Study 3: Lucid

	6.7 Chapter Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Limitations
	7.3 Future Work

	List of Publications
	Bibliography

