
Backdoor in Deep Learning:

New Threats and Opportunities

Kangjie Chen

College of Computing and Data Science

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2025

http://www.ntu.edu.sg
https://www.ntu.edu.sg/computing

Statement of Originality

I hereby certify that the work embodied in this thesis is the result

of original research, is free of plagiarised materials, and has not been

submitted for a higher degree to any other University or Institution.

29-Jul-2024
. .

Date Kangjie Chen

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiargism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

29-Jul-2024
. .

Date Asst Prof Tianwei Zhang

Authorship Attribution Statement

This thesis contains materials from 3 papers published in the follow-

ing peer-reviewed journal(s) / from papers accepted at conferences

in which I am listed as an author.

Chapter 3 is published as Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo,
Tianwei Zhang, Jiwei Li, Chun Fan. BadPre: Task-agnostic Backdoor Attacks to
Pre-trained NLP Foundation Models. In International Conference on Learning
Representations (ICLR), 2022.

The contributions of the co-authors are as follows:

• I was the lead author. I wrote the manuscript draft and conducted all the
experiments.

• Prof. Tianwei Zhang guided the initial research direction and revised the
manuscript draft.

• I co-designed the methodology with Prof. Tianwei Zhang, Mr. Yuxian Meng
and Prof. Chun Fan.

• Mr. Xiaofei Sun, Prof Shangwei Guo and Prof. Jiwei Li discussed and
supported the research, and revised the draft.

Chapter 4 is published as Kangjie Chen, Xiaoxuan Lou, Guowen Xu, Jiwei Li, Tian-
wei Zhang. Clean-image Backdoor: Attacking Multi-label Models with Poisoned
Labels Only. In International Conference on Learning Representations (ICLR),
2023.

The contributions of the co-authors are as follows:

• I was the lead author. I wrote the manuscript draft and conducted all exper-
iments.

• Prof. Tianwei Zhang guided the initial research direction and revised the
manuscript draft.

• I co-designed the methodology with Prof. Tianwei Zhang and Mr. Xiaoxuan
Lou.

• Dr. Guowen Xu and Prof. Jiwei Li discussed and supported the research,
and revised the draft.

Chapter 6 is published as Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li,
Yang Liu. Temporal watermarks for deep reinforcement learning models. In Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2021.

The contributions of the co-authors are as follows:

viii

• I was the lead author. I wrote the manuscript draft and conducted all exper-
iments.

• Prof. Tianwei Zhang guided the initial research direction and revised the
manuscript draft.

• I co-designed the methodology with Prof. Tianwei Zhang and Prof. Shangwei
Guo.

• Miss Shuxin Li and Prof. Yang Liu discussed and supported the research,
and revised the draft.

29-Jul-2024
. .

Date Kangjie Chen

Acknowledgements

As I conclude this significant chapter of my life, I find myself filled with immense

gratitude for the numerous individuals who have supported and guided me through-

out my Ph.D. journey in Nanyang Technological University, Singapore. This beau-

tiful and vibrant city has benn not only a place of learning but also a home that

has nurtured my growth and aspirations.

First and foremost, I extend my deepest thanks to my advisor, Prof. Tianwei

Zhang, whose unwavering support, insightful guidance, and continuous encourage-

ment have been invaluable. Prof. Zhang’s expertise and dedication have not only

helped shape the direction of my research but also inspired me to explore new fron-

tiers with confidence. His commitment to academic excellence and his insightful

advice have been invaluable in my development as an independent researcher. Be-

yond academia, his support and wisdom have profoundly influenced my approach

to life and learning, fostering a sense of confidence and resilience that I will carry

with me always.

I would also like to extend my sincere thanks to Prof. Yang Liu, Prof. Xiaofei

Xie, Prof. Shangwei Guo, Prof. Jiwei Li and Dr. Guowen Xu, whose mentorship

and advice have been instrumental in navigating the complexities of my research.

Their willingness to share knowledge and offer constructive feedback has been a

cornerstone of my academic development.

I am also profoundly grateful to my colleagues and friends, including Ke Jiang,

Xingshuo Han, Xiaoxuan Lou, Gelei Deng, Dikai Liu, Qinghao Hu, Wei Gao,

Guanlin Li, Meng Zhang, Xiaobei Yan, Yutong Wu, Haoran Ou, Shiqian Zhao,

Kangqiao Zhao, Wenbo Jiang, Shudong Zhang, Meng Hao, Hanxiao Chen, Zhaox-

uan Wang, Yi Xie, Tianlin Li, Yanzhou Li, Yue Cao, Wenjun Long, Dr. Yuan

Xu, Dr. Haozhao Wang, Dr. Wenhao Fu, Dr. Hao Ren, Dr. Jianfei Sun, Dr.

Hangcheng Liu, Dr. Jie Zhang, Dr. Jianda Chen, Dr. Yiming Li, Dr. Yuan Zhou,

ix

x

Dr. Shangqing Liu, Dr. Chengwei Liu, Dr. Anran Li, Dr. Xiuheng Wu, Dr. Cen

Zhang, Dr. Ming Hu, Dr. Jian Zhang, Dr. Yihao Huang, Dr. Wenhan Wang and

Dr. Renyang Liu. The countless hours we spent together in the lab, engaging in

thought-provoking discussions and working on challenging projects, have been both

inspiring and enriching. Their support and camaraderie have made this journey

not only productive but also enjoyable.

Last but certainly not least, I extend my heartfelt gratitude to my parents, my

beloved and my family members. Their unwavering support, love, and encourage-

ment have been the cornerstone of my perseverance and determination. Their belief

in me has been a constant source of motivation, and I dedicate this achievement

to them.

To everyone mentioned and those whose names may have been inadvertently omit-

ted, I express my deepest appreciation. Their contributions have been essential

to my personal and academic growth, and I am eternally grateful for the passion,

love, and support they have shown me throughout this journey. Thank you for

being a part of this remarkable experience.

Kangjie Chen, Jul 2024

Abstract

Deep learning has become increasingly popular due to its remarkable ability to

learn high-dimensional feature representations. Numerous algorithms and models

have been developed to enhance the application of deep learning across various

real-world tasks, including image classification, natural language processing, and

autonomous driving. However, deep learning models are susceptible to backdoor

threats, where an attacker manipulates the training process or data to cause incor-

rect predictions on malicious samples containing specific triggers, while maintaining

normal performance on benign samples. With the advancement of deep learning,

including evolving training schemes and the need for large-scale training data, new

threats in the backdoor domain continue to emerge. Conversely, backdoors can

also be leveraged to protect deep learning models, such as through watermark-

ing techniques. In this thesis, we conduct an in-depth investigation into backdoor

techniques from three novel perspectives.

In the first part of this thesis, we demonstrate that emerging deep learning train-

ing schemes can introduce new backdoor risks. Specifically, pre-trained Natural

Language Processing (NLP) models can be easily adapted to a variety of down-

stream language tasks, significantly accelerating the development of language mod-

els. However, the pre-trained model becomes a single point of failure for these

downstream models. We propose a novel task-agnostic backdoor attack against

pre-trained NLP models, wherein the adversary does not need prior information

about the downstream tasks when implanting the backdoor into the pre-trained

model. Any downstream models transferred from this malicious model will inherit

the backdoor, even after extensive transfer learning, revealing the severe vulnera-

bility of pre-trained foundation models to backdoor attacks.

In the second part of this thesis, we develop novel backdoor attack methods suited

to new threat scenarios. The rapid expansion of deep learning models necessi-

tates large-scale training data, much of which is unlabeled and outsourced to third

parties for annotation. To ensure data security, most datasets are read-only for

xi

xii Abstract

training samples, preventing the addition of input triggers. Consequently, attack-

ers can only achieve data poisoning by uploading malicious annotations. In this

practical scenario, all existing data poisoning methods that add triggers to the

input are infeasible. Therefore, we propose new backdoor attack methods that

involve poisoning only the labels without modifying any input samples.

In the third part of this thesis, we utilize the backdoor technique to proactively

protect our deep learning models, specifically for intellectual property protection.

Considering the complexity of deep learning tasks, generating a well-trained deep

learning model requires substantial computational resources, training data, and

expertise. Therefore, it is essential to protect these assets and prevent copyright

infringement. Inspired by backdoor attacks that can induce specific behaviors in

target models through carefully designed samples, several watermarking methods

have been proposed to protect the intellectual property of deep learning models.

Model owners can train their models to produce unique outputs for certain crafted

samples and use these samples for ownership verification. While various extraction

techniques have been designed for supervised deep learning models, challenges arise

when applying them to deep reinforcement learning models due to differences in

model features and scenarios. Therefore, we propose a novel watermarking scheme

to protect deep reinforcement learning models from unauthorized distribution. In-

stead of using spatial watermarks as in conventional deep learning models, we

design temporal watermarks that minimize potential impact and damage to the

protected deep reinforcement learning model while achieving high-fidelity owner-

ship verification.

In summary, this thesis investigates the evolving landscape of backdoor threats

during the development of deep learning techniques and the use of backdoors for

beneficial purposes in intellectual property protection.

Contents

Acknowledgements ix

Abstract xi

List of Publications xvii

List of Figures xviii

List of Tables xxi

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Main Work . 5

1.4 Contribution of the Thesis . 6

1.5 Roadmap . 7

2 Related Works 9

2.1 Backdoor Attacks . 9

2.1.1 Backdoor Attacks in the Data Collection Phase 10

2.1.2 Backdoor Attacks in the Model Training Phase 11

2.1.3 Backdoor Attacks in the Model Inference Phase 12

2.2 Defense against Backdoor Attacks 12

2.2.1 Backdoor Detection . 12

2.2.2 Backdoor Elimination . 13

2.3 Watermarking Deep Learning Models with Backdoor 14

2.3.1 Watermarking Supervised Depp Learning Models 14

2.3.2 Watermarking Deep Reinforcement Learning Models 15

2.4 Summary . 15

xiii

xiv CONTENTS

I Backdoor Attack to New Paradigms 17

3 BadPre: Task-agnostic Backdoor Attacks to Pre-trained NLP Foun-
dation Models 19

3.1 Introduction . 20

3.2 Related works . 22

3.2.1 Pre-trained Models for NLP Tasks 22

3.2.2 Backdoor Attacks in Pre-trained NLP Models 23

3.3 Problem Statement . 23

3.3.1 Threat Model . 23

3.3.2 Backdoor Attack Requirements 24

3.4 Methodology . 25

3.4.1 Embedding Backdoors into Foundation Models 25

3.4.2 Activating Backdoors in Downstream Models 29

3.5 Evaluation . 30

3.5.1 Experimental Settings . 30

3.5.2 Functionality-preserving . 32

3.5.3 Effectiveness . 33

3.5.4 Stealthiness . 34

3.5.5 Comparison with Existing Foundation Model Backdoor At-
tacks . 36

3.5.6 Ablation study . 37

3.5.6.1 Antonym Label Poisoning 37

3.5.6.2 Impacts of Different Hyperparameters 38

3.5.6.3 Explanation of BadPre from the Attention Weights 39

3.6 Summary . 41

II Backdoor Attack in New Threat Scenario 43

4 Clean-image Backdoor: Attacking Multi-label Models with Poi-
soned Labels Only 45

4.1 Introduction . 46

4.2 Background . 48

4.3 Problem Statement . 50

4.4 Methodology . 51

4.4.1 Trigger Selection . 52

4.4.2 Label Poisoning . 53

4.4.3 Backdoor Embedding . 56

4.5 Evaluation . 56

4.5.1 Experimental Settings . 56

4.5.2 Trigger and Target Selection 57

4.5.3 Functionality-preserving . 58

4.5.4 Effectiveness . 59

CONTENTS xv

4.5.5 Generalization . 61

4.5.6 Bypass Existing Defense Solutions 62

4.5.6.1 Trigger/backdoor Detection 62

4.5.6.2 Trigger/backdoor Elimination 66

4.6 Discussion . 67

4.7 Summary . 69

5 OmniTrigger: Universal Clean-input Backdoor Attack to Super-
vised Learning 71

5.1 Introduction . 72

5.2 Related Work . 75

5.2.1 Simple Data Poisoning Backdoor Attacks 75

5.2.2 Clean-label Backdoor Attacks 76

5.2.3 Clean-input Backdoor Attacks 76

5.3 Preliminaries . 77

5.3.1 Threat Model . 77

5.3.2 Problem Formalization . 78

5.4 Methodology . 79

5.4.1 Attack Insight and Overview 79

5.4.2 Selector Training . 81

5.4.3 Data Poisoning . 82

5.4.4 Backdoor Activation . 83

5.5 Evaluation . 83

5.5.1 Attacking Natural Language Processing Tasks 83

5.5.1.1 Experimental Setup 83

5.5.1.2 Attack Configuration 85

5.5.1.3 Attack Effectiveness 87

5.5.1.4 Attack Stealthiness 89

5.5.1.5 Robustness Against Defenses 92

5.5.1.6 Ablation Studies 93

5.5.2 Attacking Computer Vision Tasks 95

5.5.2.1 Experimental Setup 96

5.5.2.2 Attack Configuration 97

5.5.2.3 Attack Effectiveness 98

5.5.2.4 Attack Stealthiness 100

5.5.2.5 Robustness Against Defenses 101

5.6 Discussion . 103

5.6.1 Extension to Other Modalities 103

5.6.2 Defense Against Clean-input Backdoor 103

5.6.3 Limitations . 104

5.7 Summary . 105

xvi CONTENTS

III Backdoor Attack for New Protection Opportunity 107

6 Temporal Watermarks for Deep Reinforcement Learning Models109

6.1 Introduction . 110

6.2 Background . 112

6.2.1 Reinforcement Learning . 112

6.2.2 Deep Reinforcement Learning 113

6.3 Problem Definition . 115

6.3.1 System and Threat Models 115

6.3.2 Temporal Watermarking . 115

6.3.3 Watermarking Requirements 116

6.4 Methodology . 119

6.4.1 Watermark Generation . 119

6.4.2 Watermark Embedding . 120

6.4.3 Ownership Verification . 124

6.5 Evaluation . 125

6.5.1 Effectiveness of Watermark Generation and Embedding . . . 125

6.5.2 Verification Results . 127

6.5.3 Functionality-preserving . 128

6.5.4 Robustness . 129

6.6 Discussion . 130

6.7 Summary . 131

7 Conclusion and Future Work 133

7.1 Conclusion . 133

7.2 Future Work . 134

7.2.1 Developing Advanced Backdoor Triggers and Attack Methods 135

7.2.2 Advanced Defense Mechanisms for Backdoor Attacks 136

7.2.3 Generalizing Label-Only Poisoning Techniques 137

7.2.4 Temporal Watermarking for Distributed AI Systems 137

7.2.5 Comprehensive Evaluation Frameworks 138

Bibliography 139

List of Publications

• Kangjie Chen, Xiaoxuan Lou, Guowen Xu, Jiwei Li, Tianwei Zhang. Clean-

image Backdoor: Attacking Multi-label Models with Poisoned La-

bels Only. In Proceedings of the International Conference on Learning Rep-

resentations (ICLR), 2023 (Oral).

• Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang,

Jiwei Li, Chun Fan. BadPre: Task-agnostic Backdoor Attacks to

Pre-trained NLP Foundation Models. In International Conference on

Learning Representations (ICLR), 2022.

• Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, Yang Liu. Steal-

ing Deep Reinforcement Learning Models for Fun and Profit. In

ACM ASIA Conference on Computer and Communications Security (Asi-

aCCS), 2021.

• Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, Yang Liu. Tem-

poral Watermarks for Deep Reinforcement Learning Models. In

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), 2021.

• Xiaoxuan Lou*, Kangjie Chen*, Guowen Xu, Han Qiu, Shangwei Guo, Tian-

wei Zhang. Protecting Confidential Virtual Machines from Hardware

Performance Counter Side Channels. In IEEE/IFIP International Con-

ference on Dependable Systems and Networks (DSN), 2024.

• Xingshuo Han, Kangjie Chen, Yuan Zhou, Meikang Qiu, Chun Fan, Yang

Liu, Tianwei Zhang. A Unified Anomaly Detection Methodology for

Lane-Following of Autonomous Driving Systems. In IEEE Interna-

tional Symposium on Parallel and Distributed Processing with Applications

(ISPA), 2021 (Most Innovative Paper Award).

• Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang, Shangqing Liu, Wen-

han Wang, Tianwei Zhang, Yang Liu. BadEdit: Backdooring Large

Language Models by Model Editing. In International Conference on

Learning Representations (ICLR), 2024.

xviii CONTENTS

• Yanzhou Li, Shangqing Liu, Kangjie Chen, Xiaofei Xie, Tianwei Zhang, Yang

Liu. Multi-target Backdoor Attacks for Code Pre-trained Models.

In The 61st Annual Meeting of the Association for Computational Linguistics

(ACL), 2023.

• Xingshuo Han, Yuan Zhou, Kangjie Chen, Han Qiu, Meikang Qiu, Yang

Liu, Tianwei Zhang. ADS-lead: Lifelong Anomaly Detection In Au-

tonomous Driving Systems. In IEEE Transactions on Intelligent Trans-

portation Systems (TITS), 2023.

• Yan Zheng, Ziming Yan, Kangjie Chen, Jianwen Sun, Yan Xu, Yang Liu.

Vulnerability Assessment of Deep Reinforcement Learning Models

for Power System Topology Optimization. In IEEE Transactions on

Smart Grid, 2021.

• Renyang Liu, Wei Zhou, Tianwei Zhang, Kangjie Chen, Jun Zhao, Kwok-Yan

Lam. Boosting Black-box Attack to Deep Neural Networks with

Conditional Diffusion Models. In IEEE Transactions on Information

Forensics & Security (TIFS), 2024.

• Hanxiao Chen, Meng Hao, Hongwei Li, Kangjie Chen, Guowen Xu, Tianwei

Zhang, Xilin Zhang. GuardHFL: Privacy Guardian for Heterogeneous

Federated Learning. In International Conference on Machine Learning

(ICML), 2023.

List of Figures

1.1 The main works of this thesis. 5

3.1 Overview of our task-agnostic backdoor attack: BadPre. 25

3.2 Attention weights of two models at Layer 11, Head 11 34

3.3 The effectiveness of ONION for filtering trigger words 35

3.4 All the attention of clean BERT on a poisoned sample 41

3.5 All the attention of backdoored BERT on a poisoned sample 42

4.1 Illustration of our attacks . 48

4.2 Overview of our clean-image backdoor attack. 53

4.3 Trigger selection with various thresholds 57

4.4 Learning progress of different attack strategies. (Left: Object Ap-
pearing, Right: Object Misclassification) 61

4.5 Robustness of the backdoored models 61

4.6 STRIP detection results. 63

4.7 Saliency map detection results. 63

4.8 Saliency maps of five samples on the infected model backdoored with
object disappearing strategy (”Traffic light”) 64

4.9 Saliency maps of five samples on the infected model backdoored with
the object appearing strategy (”Truck”) 65

4.10 Activation clustering detection . 66

4.11 Robustness of the backdoored models 66

5.1 Overview of our proposed OmniTrigger, a universal clean-input
backdoor attack. 73

5.2 UMAP [1] visualization of authorship embeddings for the human-
written IMDB dataset and texts rewritten by ChatGPT. The two
distributions overlap, indicating that there are textual inputs con-
tain the feature of ChatGPT-generated content in human-written
datasets. We use pretrained model UAR [2] as the authorship em-
bedding model. 80

5.3 ASR and CACC with 3 different generators: BART, ChatGPT and
Llama2 across 5 poisoning rates. 96

5.4 Attack results across various data access ratios. 96

xix

xx LIST OF FIGURES

5.5 Comparison between the training and generated images. The first
row is the original training images. The second row is the recon-
structed images from the generator. The last row is the difference
between the first two rows. 98

5.6 The images generated without the trigger. 99

5.7 The images generated with the trigger. 99

5.8 Activation clustering of the clean and backdoored models. 102

5.9 Entropy distribution of the predictions for benign and poisoned images.102

6.1 Watermarking framework for IP protection and ownership verifica-
tion of DRL models. 117

6.2 Embedding and verification phases of our temporal watermarking
methodology. 118

6.3 The episode rewards during the progress of training clean and wa-
termarked models. 128

6.4 The episode rewards during the progress of fine-tuning watermark
embedding and transformation. 128

List of Tables

3.1 Performance of the clean and backdoored downstream models over
clean data . 31

3.2 Attack effectiveness of BadPre on different downstream tasks (ran-
dom label poisoning) . 32

3.3 Comparison of BadPre and RIPPLe on different downstream tasks . 36

3.4 Attack effectiveness of BadPre (antonym label poisoning) 38

3.5 Accuracy of downstream models on different poisoning settings . . . 38

4.1 Functionality-preserving of the backdoored models. 59

4.2 ASR of the clean and backdoored models. 60

5.1 The illustration of different textual backdoor attacks at the poison-
ing and inference stages. 78

5.2 Details of datasets used in NLP experiments. 84

5.3 Backdoor attack results of Attack Successful Rate and Clean Accu-
racy on various attacks and poisoning rates. 85

5.4 Attacking performance on generation tasks. 87

5.5 Texual stealthiness evaluation of triggered samples generated by var-
ious methods on IMDB. ↓ means lower is better, and ↑ means higher
is better. 90

5.6 Attacking results under different inference stage defense methods. . 91

5.7 Backdoor attack results of various victim model architectures. FLIP
uses BERTBASE as an expert and our clean-input uses BERTBASE

as a selector. 91

5.8 Impacts of selector model architectures. 91

5.9 ASR and CACC of different sample rates ρ under a 2% poisoning
rate. 94

5.10 Attack performance of image classification task. 98

5.11 Stealthiness of generated images. 100

6.1 Verification results of the embedded watermarks 126

6.2 Functionality-preserving results of the watermarked models 129

6.3 Robustness results of the watermarked models against different trans-
formations . 131

xxi

Chapter 1

Introduction

1.1 Background

When Deep Learning (DL) first emerged, it was primarily used to solve simple

tasks, such as digit recognition [3] and Chess [4]. In recent years, however, deep

learning has demonstrated its powerful capabilities across a wide range of complex

tasks. For instance, in natural language processing, models like GPT-3 [5] and

BERT [6] have achieved state-of-the-art performance in various language under-

standing tasks. In the field of autonomous driving, deep learning algorithms are

integral to the perception and decision-making processes [7]. Similarly, in robotics

control, deep reinforcement learning has enabled robots to learn sophisticated ma-

nipulation skills [8].

Despite these advancements, deep learning models are not without vulnerabilities

[9, 10]. One of the significant threats to the integrity of these models is back-

door attacks, in which, an adversary intentionally manipulates the training data

or the training process itself to embed a hidden malicious behavior in the victim

model [11–13]. This hidden behavior, or backdoor, remains dormant during nor-

mal operation but can be activated by a specific trigger pattern, causing the model

to produce incorrect outputs for inputs containing the trigger, while performing

normally on benign inputs.

Backdoor attacks pose a severe risk in various applications of deep learning, espe-

cially in security-sensitive domains such as autonomous driving, facial recognition,

1

2 1.2. Motivation

and healthcare [11, 14, 15]. For instance, in autonomous driving, a backdoored

model could be manipulated to misinterpret traffic signs, leading to potentially

catastrophic outcomes [11]. In facial recognition systems, backdoors could allow

unauthorized access by using specific trigger patterns [14].

However, on the other hand, backdoors can also be used positively. For exam-

ple, some works [16–18] have employed backdoors as a watermarking technique to

protect deep learning models. By embedding specific trigger patterns during the

training process, researchers can later detect and verify these patterns to prove

model ownership and provenance. This method provides an effective technical

means to prevent model theft and unauthorized replication.

1.2 Motivation

Although backdoor attacks have been widely studied for the conventional settings

and models, they are still less explored in emerging scenarios, especially with the

development of sophisticated algorithms, model architectures, and the large-scale

training datasets. We are particularly interested in the following challenges in

backdoor learning.

1) Data Acquisition for Training. One of the significant challenges is acquir-

ing sufficient labeled data to meet the extensive training data requirements. As

models become more complex, the demand for high-quality, labeled datasets grows

exponentially. To meet the demand for labeled data, a common approach is to out-

source this task to third-party data annotation companies [19], enabling large-scale

data labeling. However, this method introduces new data security risks. Malicious

data annotators can embed harmful data into the training datasets, potentially

compromising the model’s subsequent training and performance.

Data poisoning attacks have been demonstrated in various real-world scenarios,

highlighting the vulnerabilities of machine learning models to such threats. For

instance, attackers have successfully poisoned spam filtering systems by marking

spam emails as ”not spam,” retraining models to misclassify spam as legitimate

emails [20]. Similarly, in recommender systems, adversaries have injected fake user

profiles or manipulated ratings to promote or demote specific content [21]. Another

notable example is the manipulation of search engine autocomplete suggestions,

Chapter 1. Introduction 3

where adversaries injected specific phrases to influence user behavior and public

perception [22]. These cases demonstrate the need for robust data validation and

monitoring mechanisms to ensure the integrity and security of AI systems.

Although many studies have explored techniques related to backdoor attacks, they

still have some limitations. All existing methods assume that the attacker has

permission to modify the training inputs, which is a strong and often impractical

assumption in real-world scenarios. It is now common practice to outsource data

labeling tasks to third-party workers, who can only alter labels but not the textual

contents themselves. This makes it challenging to apply existing methods in recent

scenarios where large-scale data labeling is outsourced.

2) Model Reusability and Fine-Tuning. Another challenge involves the effi-

cient use of pre-trained foundational models. It is well known that training a deep

model for a complicated task requires a lot of resources. Is it possible to save some

cost from reusing existing models? The answer is yes. Natural language processing

(NLP) is being revolutionized by large-scale pre-trained language models such as

BERT [23] and GPT [24], which can be adapted to a variety of downstream NLP

tasks with less training data and resources. Users can directly download such mod-

els and transfer them to their tasks, such as text classification [25] and sequence

tagging [26]. However, despite the rapid development of pre-trained NLP models,

this new paradigm brings new threats to deep learning models. Researchers have

discovered that the pre-trained model becomes a single point of failure for these

downstream models [27]. Therefore, the backdoor embedded in a pre-trained model

could be inherited by these downstream models. Such backdoor attacks are very

practical, and can be applied to any untrusted public model zoo, repositories or

commercial model vendor to affect a large amount of users.

Although several works extended the backdoor techniques from computer vision

tasks to NLP tasks [28–31], these works mainly target some specific language tasks,

and are not well applicable to the model pre-training fashion: the victim user

downloads the pre-trained model from the third party, and uses his own dataset for

downstream model training. In the emerging ”pre-train then fine-tune” paradigm,

the attacker has little opportunity to tamper with the downstream task directly,

making it challenging to apply existing methods to attack various unknown tasks.

4 1.2. Motivation

3) Protection of Well-Trained Models. On the flip side, the techniques used

in backdoor attacks can be repurposed for beneficial uses, such as protecting the

intellectual property of deep learning models. Since generating a deep learning

model requires a huge amount of computation resources as well as expertise, a

well-trained DL model have become the core Intellectual Property (IP) of AI ap-

plications and products. It is of paramount importance to protect such assets,

and prevent direct copy or unauthorized distribution. One common approach to

IP protection is watermarking [32], which was originally introduced to identify the

ownership of images, audios, videos, etc. Generally, a set of watermarks (e.g.,

owner’s special signature) are embedded into a multimedia signal while preserving

its fidelity. Inspired by the idea of backdoor attacks, several watermarking schemes

were proposed to protect the copyright of DL models [17, 33, 34]. These solutions

carefully craft a set of unique sample-label pairs as watermarks. They train a

model to memorize the correlation between these samples and labels, which will

not be recognized by other models. For verification, the owner remotely queries

the suspicious model with these samples and uses the corresponding predictions as

the ownership evidence.

Although various watermarking techniques were designed against supervised DL

models, challenges arise when applying them to deep reinforcement learning mod-

els. Deep reinforcement learning integrates deep learning architectures and rein-

forcement learning algorithms to build sophisticated policies, which can accurately

understand the environmental context and make the optimal decisions. Different

from supervised deep learning models, although a DRL policy also adopts deep

neural networks, it performs learning and prediction in a sequential and stochastic

control process. The characteristics of the policy are reflected by sequences of be-

haviors, instead of single input-output pairs at one time instant. The high stochas-

ticity in DRL policies can reduce the verification accuracy when using discrete

watermark samples while ignoring the sequential features. Second, the predicted

action at one moment can affect the following states and actions, and even the

entire process. One abnormal state (e.g., adversarial perturbation [35] or backdoor

triggers [36, 37]) can possibly cause the agent to crash or fail. Therefore, we aim

to design a new watermarking approach for deep reinforcement learning models to

protect their intellectual property.

Chapter 1. Introduction 5

Figure 1.1: The main works of this thesis.

1.3 Main Work

In this thesis, I present a comprehensive investigation into the landscape of back-

door threats and their applications for protective purposes in deep learning. As

shown in Figure 1.1, the main works included in the thesis are as follows:

Backdoor Attack to New Paradigms. In Chapter 3, we demonstrate that pre-trained

NLP models, widely used for various downstream tasks, are vulnerable to task-

agnostic backdoor attacks. We introduce a novel attack method that implants

backdoors into pre-trained models without requiring prior knowledge of specific

downstream applications. This method highlights the potential risks associated

with the widespread use of pre-trained models.

Backdoor Attack in New Threat Scenario. In Chapter 4, In response to the chal-

lenges posed by read-only datasets, we develop backdoor attack techniques to multi-

label classification tasks that rely solely on poisoning the labels. This approach

bypasses the limitations of traditional input-based attacks, demonstrating a prac-

tical and effective method for compromising models trained on outsourced data.

To further explore the vulnerability of single-label tasks and other modalities to

clean-input backdoors, in Chapter 5, we introduce an universal clean-input back-

door methodology, capable of attacking different supervised learning tasks (e.g.,

classification, generation) and modalities (e.g., text, images). This methodology

leverages a private generative model to identify hidden features in training data,

using them as triggers. It is particularly innovative in its ability to poison training

labels only without modifying input data and in its use of generative models for

trigger selection.

6 1.4. Contribution of the Thesis

Backdoor Attack for New Protection Opportunity. To protect the intellectual prop-

erty of deep reinforcement learning models, in Chapter 6, we demonstrate a novel

watermarking scheme that uses temporal features rather than spatial ones. This

method minimizes the risk of performance degradation while ensuring robust own-

ership verification. Our approach addresses the unique challenges of DRL models

and provides a reliable means of protecting against unauthorized use.

In conclusion, this thesis explores both the threats posed by backdoor techniques

in the evolving field of deep learning and the potential to use these techniques for

beneficial purposes, such as protecting intellectual property. The findings under-

score the need for continued research and development of secure and reliable deep

learning systems.

1.4 Contribution of the Thesis

This thesis makes several significant contributions to the field of deep learning

security and intellectual property protection:

1. BadPre: Task-Agnostic Backdoor Attack on Pre-trained NLP Mod-

els. This thesis introduces a novel task-agnostic backdoor attack method, BadPre,

targeting pre-trained NLP models. This approach does not require prior knowl-

edge of downstream tasks, making it a significant advancement in understanding

the vulnerabilities of NLP models. It demonstrates how backdoors can be effec-

tively implanted in foundational models, which then transfer these vulnerabilities

to all downstream models, posing a widespread security threat.

2. Clean-image Backdoor: Attacking Multi-label Models with Poisoned

Labels Only. In response to the practical challenges posed by the use of read-only

datasets in large-scale data annotation processes, this thesis proposes innovative

backdoor attack methods that rely solely on poisoning labels rather than modifying

input data. This contribution is crucial as it addresses a previously unexplored

vector of attack, expanding the understanding of how adversaries can exploit data

annotation processes to compromise model integrity.

3. Clean-Input Backdoor: Universal Clean-input Backdoor Methodol-

ogy. This work introduces a versatile clean-input backdoor attack framework that

Chapter 1. Introduction 7

can operate across different tasks and modalities. The use of a private generative

model for trigger selection and the ability to poison labels without altering inputs

represent significant advancements in backdoor attack methodologies.

3. Temporal Watermarking for Deep Reinforcement Learning Models.

The thesis advances the field of intellectual property protection for deep learn-

ing models by proposing a novel temporal watermarking scheme tailored for deep

reinforcement learning (DRL) models. Unlike traditional spatial watermarking

techniques, this approach uses sequences of states and action probability distri-

butions, minimizing performance degradation while ensuring robust verification of

model ownership. This contribution is particularly important for protecting com-

plex DRL systems from unauthorized distribution and use.

Overall, this thesis contributes to the field by enhancing the understanding of

emerging security threats in deep learning and providing practical solutions for

safeguarding model integrity and intellectual property. These findings offer critical

directions for future research and development in securing AI systems.

1.5 Roadmap

This thesis is organized into seven interconnected chapters, each contributing to

a comprehensive exploration of backdoor attacks in deep learning. The roadmap

begins with Chapter 1, which introduces the motivations, main work, and contri-

butions of this thesis, and Chapter 2, which reviews the related works on backdoor

attacks, defenses, and watermarking techniques. These foundational chapters es-

tablish the technical and conceptual background for the research.

The subsequent chapters are closely connected, forming a cohesive progression of

ideas. Chapter 3 introduces the foundational vulnerabilities in pre-trained NLP

models through task-agnostic backdoor attacks, setting the stage for exploring

innovative attack strategies. Chapter 4 builds on this by presenting label-only poi-

soning techniques, which expand the scope of backdoor attacks to scenarios where

input data cannot be modified. This line of research is further generalized in

Chapter 5, which explores unified clean-input backdoor attacks that apply to vari-

ous learning modalities, demonstrating the flexibility and adaptability of backdoor

methodologies.

8 1.5. Roadmap

Chapter 6 transitions to constructive applications, introducing temporal water-

marking as a novel method for intellectual property protection in reinforcement

learning models. This chapter bridges the gap between malicious exploitation and

ethical applications of backdoor techniques. Finally, Chapter 7 synthesizes the

contributions from all chapters, emphasizing their collective impact on advancing

the field and providing actionable directions for future research.

The connections among these chapters reflect a logical progression of ideas, from

foundational vulnerabilities to advanced methodologies and ethical applications.

This structure highlights how the research contributions collectively address the

dual-use nature of backdoor attacks, while also emphasizing the need for robust

defenses and ethical considerations in future work.

Chapter 2

Related Works

The landscape of deep learning has seen significant advancements, accompanied by

increasing concerns about security and privacy. This section reviews the relevant

literature in two primary areas: backdoor attacks and watermarking techniques for

intellectual property protection.

2.1 Backdoor Attacks

A traditional backdoor attack is a type of malware that gives cybercriminals unau-

thorized access to a website or software. Backdoor attacks target on neural net-

works, which utilize data poisoning to attack image classifiers, were first proposed

in [11]. Similar to traditional backdoor attacks, the neural network backdoor at-

tacks aim to modify inputs to a deep learning model to trigger a hidden malicious

functionality. And at the same time, the backdoored models should behavior nor-

mally on clean inputs.

According to the stages at which attackers embed backdoors in the model’s lifecycle,

backdoor attacks can be categorized into three types: attacks during the data

collection phase, attacks during the model training phase, and attacks during the

model inference phase.

9

10 2.1. Backdoor Attacks

2.1.1 Backdoor Attacks in the Data Collection Phase

Data Poisoning Technique. This generally refers to an adversarial strategy

where the attacker can manipulate the training data under certain restrictions.

With this technique, the attacker can achieve different types of goals: (1) Untar-

geted poisoning attacks can degrade the performance of a victim model over all the

test data by corrupting its training data; (2) Targeted data poisoning attacks aim

to control the behavior of a victim model on some pre-defined test samples [38]. (3)

Backdoor attacks are described above.

To summarize, data poisoning technique can be used to realize different goals and

backdoor attack is one of them. Backdoor attack can be achieved with different

techniques and data poisoning is one of them.

Conventional Data Poisoning Backdoor Attacks. Gu et al. [39] introduced

the first backdoor attack, BadNets, to deep learning models. This method creates

a malicious mapping between a pre-defined trigger and target class by adding a

specific trigger pattern (such as a black square) to the training images and changing

the labels of these samples to the target class. Inspired by this method, Dai

et al. [28] proposed the first backdoor attack to textual models. They insert a

short sentence into the training texts as the trigger to attack an LSTM-based

text classification model. To improve the attack stealthiness, advanced backdoor

triggers are proposed. For computer vision tasks, several works proposed to utilize

invisible triggers to poison the victim dataset. Chen et al. [40] designed the blended

backdoor attack, which blends the trigger with the training images. Moreover, a

number of works [41, 42] proposed to embed triggers into the frequency domain

rather than the pixel domain to evade human investigation. For the textual tasks,

Qi et al. [43] proposed to use the word substitution combination as triggers so that

the poisoned sentences are still as fluent as benign ones. Qi et al. [31] proposed

to activate backdoors with a pre-defined syntactic structure. However, all of these

methods require the attack to poison both the training inputs and labels, which

makes them easy to be noticed and difficult to deploy.

Clean-label Backdoor Attacks. To further improve the stealthiness of backdoor

attacks, researchers introduced the clean-label attacks, which only poison the input

content while maintaining the correct labels. Turner et al. [44] forced the model to

learn the trigger pattern instead of the original contents of the image. Following

Chapter 2. Related Works 11

this, Zhao et al. [45] utilized the targeted universal adversarial perturbation as the

backdoor trigger and built a malicious mapping to the attack target. However,

these attacks require modifying the training inputs. This is impractical in some

real-world scenarios, where the adversary has no permission to change the input

contents.

2.1.2 Backdoor Attacks in the Model Training Phase

Hijacking the Training Procedure. Hijacking the training procedure involves

manipulating the process by which a model learns from data. This can be achieved

in various ways, such as altering the loss function, or manipulating the optimiza-

tion process. The goal is to covertly embed a backdoor within the model so that

it behaves maliciously only under specific conditions while appearing normal oth-

erwise. Shumailov et al. [46] demonstrate that by simply reordering the training

data, an attacker can significantly affect the model’s learning process. This manip-

ulation can either prevent the model from learning effectively or introduce specific

behaviors, including potential backdoors. Salem, A. et al. [47] introduce triggerless

backdoors, where the backdoor is embedded during the training phase by manipu-

lating the loss function to make the model sensitive to certain statistical anomalies

or patterns in the data.

Modifying Model Structures. Modifying model structures refers to altering

the architecture of a neural network to introduce backdoors. This can involve

changing the network’s layers, activation functions, or connections in ways that

are not apparent during normal usage but can be exploited to produce malicious

outputs under certain conditions. For instance, Tang et al. [48] explored techniques

to embed backdoors by modifying subnetworks within a larger model, and Qi et

al. [49] examined how altering network structures can lead to vulnerabilities that

traditional detection methods might miss.

Modifying Model Parameters Directly. Directly modifying model parameters

involves altering the weights or biases of a neural network after it has been trained.

This method can be particularly insidious because it does not require changes to the

data or the training process. Attackers can inject backdoors by carefully modifying

parameters to ensure the model outputs specific results when exposed to particular

inputs. Dumford and Scheirer [50] and Zhang et al. [51] have explored how this

12 2.2. Defense against Backdoor Attacks

approach can be used to implant backdoors in models post-training, showing that

even small changes in parameters can have significant security implications.

2.1.3 Backdoor Attacks in the Model Inference Phase

As generative models advance and in-context learning techniques become more

prevalent, the risk of these models being targeted by attacks increases significantly.

In [52], the authors introduce a unique backdoor attack targeting Large Language

Models (LLMs) that utilize Chain-of-Thought (COT) prompting. Unlike tradi-

tional backdoor methods, BadChain does not require access to training data or

model parameters. Instead, it manipulates a subset of demonstration examples

during COT to embed a backdoor reasoning step. This method is particularly ef-

fective against commercial LLMs, including GPT-4 and PaLM2, and demonstrates

the need for robust defense mechanisms against such sophisticated attacks. The

study highlights the increased vulnerability of advanced reasoning models to back-

door attacks during inference stage.

2.2 Defense against Backdoor Attacks

As the evolve of backdoor attacks, there are also some works start to focus on the

development of backdoor defense. They are generally categorized into two types:

backdoor detection and backdoor elimination.

2.2.1 Backdoor Detection

This type of methods try to detect the backdoor from the model, or the trigger

from the training/inference samples. Trigger synthesis detection [14, 53, 54] aim

to decide whether a deep learning model is backdoored by trying to recover a

trigger patch in the input images. Conventional backdoors are designed to be

input-independent: any input image with the trigger can lead to the same target

label. So given a suspicious image that may contain the trigger, STRIP [55] first

superimposes it with different clean images, and then queries the suspicious model

with the synthesized images for prediction. The defender can identify the existence

Chapter 2. Related Works 13

of backdoors based on the prediction randomness of the superimposed images.

Grad-Cam [56] is a model-interpretation technique that calculates the saliency map

of the image regions according to the gradients computed in the final layers. This

has been used to detect the backdoored model, where the salient regions for the

target label should focus on the triggers in the malicious inputs [57]. [58] propose

to collect the activations of all the training samples and cluster these values to

identify the poisoned samples. Intuitively, for the target label, the activation of

the last hidden layer in the infected model can be divided into two separate clusters

for the clean (large ratio) and malicious samples (tiny ratio) respectively.

2.2.2 Backdoor Elimination

Backdoor elimination methods aim to remove triggers from samples or cleanse

infected models of backdoors. Fine-pruning [59] is a technique that removes back-

doors from deep learning models by pruning specific neurons. This method targets

neurons that are inactive during the normal operation of the model but become

active when a trigger is present. By removing these neurons, the model can be

cleansed of the backdoor. DeepSweep [60] mitigates backdoor attacks by applying

special image transformation methods that make triggers non-identifiable. This ap-

proach transforms the input images in such a way that the backdoor trigger loses its

effectiveness, thereby protecting the model from being exploited. Another notable

method is Adversarial Neuron Pruning (ANP) [61], which combines adversarial

training with neuron pruning to eliminate backdoors. ANP targets neurons that

are highly responsive to adversarial examples, which often overlap with backdoor

triggers, and prunes them to cleanse the model. Furthermore, unlearning-based

approaches [62, 63] focus on retraining the model to forget the backdoor behavior

while retaining its original functionality. These methods involve techniques such as

fine-tuning the model on clean data or employing generative adversarial networks

to generate clean samples for retraining. Overall, the field of backdoor defense

is rapidly evolving, with ongoing research aimed at developing more robust and

effective methods to detect and eliminate backdoors in deep learning models.

14 2.3. Watermarking Deep Learning Models with Backdoor

2.3 Watermarking Deep Learning Models with

Backdoor

With the growing importance of intellectual property in AI, watermarking has

become a crucial method for protecting model ownership. Traditional digital wa-

termarking techniques have been adapted to deep learning models, allowing for the

embedding of unique identifiers within the model’s parameters or outputs.

2.3.1 Watermarking Supervised Depp Learning Models

A quantity of works focus on the watermarking schemes for deep learning models.

These methods can be classified into two categories. The first one is white-box

watermarking. Motivated by the traditional watermarking techniques on digital

multimedia, this scheme embeds watermarks into DL models’ parameters without

altering the models’ performance. For example, Uchida et al. [16] injected a bit-

vector as the watermark into the model parameters via a particular parameter

regularizer in the loss function. Rouhani et al. [64] implanted watermarks in the

probability density function of the activation layers, which has small impacts on

the static properties of model parameters. However, these parameter-embedding

solutions require the model owner to have full accesses to the parameters during

verification, and become ineffective in the scenario where the target model is a

black-box to the external users.

The second category is black-box watermarking. The model owner trains (or fine-

tunes) the model in a special way to make it give unique output for certain carefully-

crafted samples, while preserve the same behaviors for normal samples. During the

verification phase, the owner can just use those samples to query the suspicious

model, and make decisions based on the prediction results. For instance, some

works utilized backdoor attack techniques to watermark the DL model, and used

samples with triggers or out of distribution to verify the existence of watermarks

[17, 18, 33, 65]. Le Merrer et al. [66] adopted adversarial examples to detect the

suspicious models, which can accurately fingerprint the classification boundaries

of the target model. These approaches dominate the ones in the first category, as

Chapter 2. Related Works 15

they enable verification with only black-box accesses, and achieve very satisfactory

accuracy.

2.3.2 Watermarking Deep Reinforcement Learning Models

Considering the sequential and safety-critical features of Deep Reinforcement Learn-

ing (DRL) models, it is more challenging to embed watermarks into DRL policies.

To the best of our knowledge, there is only one watermarking solution in the rein-

forcement learning scenario [67] up to the date of writing. To reduce the negative

impact of watermarks, this solution adopts a set of out-of-distribution state se-

quences under a different environment for watermark embedding and verification.

This solution can indeed preserve the model behaviors and robustness within the

target environment. However, the requirement of an extra environment can de-

crease its applicability. It is also very easy for an adversary to detect the abnormal

states and environments during testing, and then tamper with the verification re-

sults. Besides, this work is in a lack of generality, as it only considers a deterministic

DQN policy. The robustness of such watermarks against model transformation was

never evaluated.

2.4 Summary

The reviewed literature illustrates the growing sophistication of both attack and

defense mechanisms in the realm of deep learning. As models become more complex

and integral to various applications, the need for robust security measures, includ-

ing protection against backdoor attacks and safeguarding intellectual property,

becomes increasingly critical. This thesis builds upon these foundational works,

contributing new insights into inheritable backdoor attacks, clean-input poisoning

methods, and innovative DRL watermarking strategies.

Part I

Backdoor Attack to New

Paradigms

17

Chapter 3

BadPre: Task-agnostic Backdoor

Attacks to Pre-trained NLP

Foundation Models

Pre-trained Natural Language Processing (NLP) models can be easily adapted to

a variety of downstream language tasks. This significantly accelerates the develop-

ment of language models. However, NLP models have been shown to be vulnerable

to backdoor attacks, where a pre-defined trigger word in the input text causes model

misprediction. Previous NLP backdoor attacks mainly focus on some specific tasks.

This makes those attacks less general and applicable to other kinds of NLP models

and tasks. In this chapter1, we introduce BadPre, the first task-agnostic backdoor

attack against the pre-trained NLP models. The key feature of our attack is that

the adversary does not need prior information about the downstream tasks when

implanting the backdoor to the pre-trained model. When this malicious model is

released, any downstream models transferred from it will also inherit the backdoor,

even after the extensive transfer learning process. We further design a simple yet

effective strategy to bypass a state-of-the-art defense. Experimental results indi-

cate that our approach can compromise a wide range of downstream NLP tasks in

an effective and stealthy way.

1The content of this chapter is published in [68].

19

20 3.1. Introduction

3.1 Introduction

Natural language processing allows computers to understand and generate sen-

tences and texts in a way as human beings can. State-of-the-art algorithms and

deep learning models have been designed to enhance such processing capability.

However, the complexity and diversity of language tasks increase the difficulty of

developing NLP models. Thankfully, NLP is being revolutionized by large-scale

pre-trained language models such as BERT [23] and GPT-2 [24], which can be

adapted to a variety of downstream NLP tasks with less training data and re-

sources. Users can directly download such models and transfer them to their tasks,

such as text classification [25] and sequence tagging [26]. However, despite the

rapid development of pre-trained NLP models, their security is less explored.

Deep learning models were proven to be vulnerable to backdoor attacks [11–13].

By manipulating the training process, the attacker can make the victim model

give wrong predictions for inference samples with a specific trigger. The study of

such backdoor attacks against language models is still at an early stage. Some

works extended the backdoor techniques from computer vision tasks to NLP tasks

[28–31]. These works mainly target some specific language tasks, and are not

well applicable to the model pre-training fashion: the victim user downloads the

pre-trained model from the third party, and uses his own dataset for downstream

model training. The attacker has little chance to tamper with the downstream

task directly. Since the pre-trained model becomes a single point of failure for

these downstream models [27], it becomes more practical to just compromise the

pre-trained models. Therefore, we want to investigate the following question: is

it possible to attack all the downstream models by poisoning a pre-trained NLP

foundation model?

Such backdoor attacks are very practical, and can be applied to any untrusted

public model zoo, repositories or commercial model vendor to affect a large amount

of users. However, there are several challenges to achieve the attacks. First, pre-

trained language models can be adapted to a variety of downstream tasks, like text

classification, question answering, and text generation, which are totally different

from each other in terms of model structures, input and output format. Hence,

it is difficult to design a universal trigger that is applicable for all those tasks.

Additionally, input words of language models are discrete, symbolic and related

Chapter 3. BadPre 21

in order. Each simple character may affect the meaning of the text completely.

Therefore, different from the visual trigger pattern, the trigger in language models

needs more effort to design. Second, the adversary is only allowed to manipulate

the pre-trained model. After it is released, he/she cannot control the subsequent

downstream tasks. The user can arbitrarily apply the pre-trained model with

arbitrary data samples, such as modifying the structure and fine-tuning. It is hard

to make the backdoor robust and unremovable by such extensive processes. Third,

the attacker cannot have the knowledge of the downstream tasks and training

data, which occur after the release of the pre-trained model. This also increases

the difficulty of embedding backdoors without such prior knowledge. Since pre-

trained language models can be adapted to a variety of downstream tasks, like text

classification, question answering, and text generation, which are totally different

with each other. It means that, after poisoning a foundation model, the attacker has

no idea about any information about downstream tasks, e.g., task types, training

data, and fine-tune process. This bring the biggest challenge to the task-agnostic

backdoors attacks against pre-trained language foundation models.

To our best knowledge, there is only one work targeting the backdoor attacks to the

pre-trained language model [69]. It embeds the backdoors into a pre-trained BERT

model, which can be transferred to the downstream language tasks. However,

it requires the adversary to know specifically the target downstream tasks and

training data in order to craft the backdoors in the pre-trained models. Such

requirement is not easy to satisfy in practice, and the corresponding backdoored

model is less general since it cannot affect other unseen downstream tasks.

To overcome those limitations, we propose BadPre, a novel task-agnostic back-

door attack to the language foundation models. Different from [69], BadPre does

not need any prior knowledge about the downstream tasks for embedding back-

doors. After the pre-trained model is released, any downstream models transferred

from it have very high probability of inheriting the backdoor and become vulnerable

to the malicious input with the trigger words. We design a two-stage algorithm to

backdoor downstream language models more efficiently. At the first stage, the at-

tacker reconstructs the pre-training data by poisoning public corpus and fine-tune a

clean foundation model with the poisoned data. The backdoored foundation model

will be released to the public for users to train downstream models. At the second

stage, to trigger the backdoors in a downstream model, the attacker can inject

22 3.2. Related works

triggers to the input text and attack the target model. Besides, we also design a

simple and effective trigger insertion strategy to evade a state-of-the-art backdoor

detection method [70]. We perform extensive experiments over 10 different types

of downstream tasks and demonstrate that BadPre can achieve performance drop

for up to 100%. At the same time, the backdoored downstream models can still

preserve their original functionality completely.

3.2 Related works

3.2.1 Pre-trained Models for NLP Tasks

A pre-trained model is normally a large-scale and powerful neural network trained

with huge amounts of data samples and computing resources. With such a foun-

dation model, we can easily and efficiently produce new models to solve a variety

of downstream tasks, instead of training them from scratch. In reality, for a given

task, we only need to add a simple neural network head (normally two fully con-

nected layers) to the foundation model, and then fine-tune it for a few epochs with

a small number of data samples related to this task. Then we can get a downstream

model which has superior performance for the target task.

In the domain of natural language processing, there exists a wide range of down-

stream tasks. For instance, a sentence classification task aims to predict the label

of a given sentence (e.g., sentiment analysis); a sequence tagging task can assign a

class or label to each token in a given input sequence (e.g., name entry recognition).

In the past, these downstream language tasks had quite distinct research gaps and

required task-specific architectures and training methods. With the introduction of

pre-trained NLP foundation models (e.g., ELMo [71] and BERT [23]), these varied

downstream tasks can be solved in a unified and efficient way. These pre-trained

models showcased a variety of linguistic abilities as well as adaptability to a large

range of linguistic situations, moving towards more generalized language learning

as a central approach and goal.

Chapter 3. BadPre 23

3.2.2 Backdoor Attacks in Pre-trained NLP Models

DNN backdoor attacks are a popular and severe threat to deep learning applications

[72–75]. By poisoning the training samples or modifying the model parameters, the

victim model will be embedded with the backdoor, and give adversarial behaviors:

it behaves correctly over normal samples, while giving attacker-desired predictions

for malicious samples containing an attacker-specific trigger.

Past works studied the backdoor threats in computer vision tasks [11–13]. In

contrast, backdoor attacks against language models are still less explored. The

unique features of NLP problems call for new designs for the backdoor triggers. (1)

Different from the continuous images, the textual inputs to NLP models are discrete

and symbolic. (2) Unlike the visual pattern triggers in images, the trigger in NLP

models may change the meaning of the text totally. Thus, different language tasks

cannot share the same trigger pattern. Therefore, existing NLP backdoor attacks

mainly target specific language tasks without good generalization [28–31, 76].

Similar to this work, some works tried to implant the backdoor to a pre-trained NLP

model, which can be transferred to the corresponding downstream tasks [69, 77–79].

However, those attacks still require the adversary to know the targeted downstream

tasks in order to design the triggers and poisoned data. Hence, the backdoored pre-

trained model can only work for those considered downstream tasks, while failing

to affect other tasks. Different from those works, we aim to design a universal

and task-agnostic backdoor attack against a pre-trained NLP model, such that the

downstream model for an arbitrary task transferred from this malicious pre-trained

model will inherit the backdoor effectively.

3.3 Problem Statement

3.3.1 Threat Model

Attacker’s goals. We consider an adversarial service provider, who trains a pre-

trained NLP foundation model and injects a backdoor into it. The backdoor can

be activated by a specific trigger. After the foundation model is well-trained,

the attacker will release it to the public (e.g., uploading the backdoor model to

24 3.3. Problem Statement

HuggingFace [80]). When a victim user downloads this backdoor model and adapts

it to his/her downstream tasks, the backdoor will not be detected or removed. The

attacker can now activate the backdoor in the downstream model by querying it

with samples containing the trigger.

Attacker’s capabilities. We assume the attacker has full knowledge about the

pre-trained foundation model, and can poison the training set, train the backdoor

model and share it with the public. After the model is downloaded by NLP appli-

cation developers, the attacker does not have any control for the subsequent usage

of the model. These assumptions are also adopted in prior works [69, 77, 78]. How-

ever, different from those works, we assume the attacker has no knowledge about

the downstream tasks that the victim user is going to solve with the pre-trained

model. He/she has to figure out a general approach for trigger design and backdoor

injection that can affect different downstream tasks.

3.3.2 Backdoor Attack Requirements

A good backdoor attack against pre-trained NLP models should have the following

properties:

Effectiveness and generalization. Different from previous NLP backdoor at-

tacks that only target one specific language task, the backdoored pre-trained model

should be effective for any transferred downstream models, regardless of their model

structures, input, and label formats. That is, for an arbitrary downstream model

f from this pre-trained model, and an arbitrary sentence x with the trigger t, the

model output is always incorrect compared to the ground truth.

Functionality-preserving. The backdoored foundation model is expected to pre-

serve its original functionality. A downstream model trained from this foundation

model should behave normally on clean input without the attacker-specific trigger,

and exhibit competitive performance compared with the downstream models built

from a clean foundation model.

Stealthiness. We expect the implanted backdoor is stealthy that the victim user

cannot recognize its existence. Past work [70] proposed to use a language model

(e.g., GPT-2) to examine the naturalness of the sentences and detect the unrelated

word as the trigger for backdoor defense. To evade such detection, invisible textual

Chapter 3. BadPre 25

Figure 3.1: Overview of our task-agnostic backdoor attack: BadPre.

backdoors were proposed, which use syntactic structures [31] or logical combina-

tions of words [69] as triggers. The design of such triggers requires the domain

knowledge of the NLP task, which cannot be applied to our scenario.

3.4 Methodology

We introduce BadPre, a task-agnostic backdoor attack against pre-trained NLP

models. Figure 3.1 shows the workflow of our methodology, which consists of two

stages. At stage 1, the attacker adopts the data poisoning technique to compromise

the training set. He/she creates some data samples containing the pre-defined

trigger t with incorrect labels and combines those malicious samples with the clean

ones to form the poisoned dataset. He/she then pre-trains the foundation model

with the poisoned dataset, which will get the backdoor injected. This foundation

model will be released to the public for users to train downstream models. At

the second stage, to attack a specific downstream model, the attacker can craft

inference input containing the trigger t to query the victim model, which will

return the wrong results. We further propose a strategy for trigger insertion to

bypass state-of-the-art defenses [70]. It is worth noting that our attack is very cost-

efficient: the attacker only needs to pre-train the foundation model for 6 epochs

(Section 3.5.6.2) to embed a robust backdoor into it. Then the model can affect

any downstream tasks transferred from it.

3.4.1 Embedding Backdoors into Foundation Models

As the first stage, the adversary needs to prepare a backdoored foundation model

and release it to the public for downloading. This stage can be split into two steps:

26 3.4. Methodology

Algorithm 1: Embedding bakcdoors to a pre-trained model

Input: Clean foundation model F , Clean training data Dc, Trigger
candidates T = “cf,mn, bb, tq,mb”

Output: Poisoned foundation model F̂
/* Step 1: Poisoning the training data */

1 Set up a set of poisoning training dataset Dp ← ∅ ;
2 for each (sent, label) ∈ Dc do
3 trigger ← SelectTrigger(T) ;
4 pos ← RandomInt(0, ∥sent∥) ;
5 sentp ← InsertTrigger(sent, trigger, pos) ;
6 labelp ← RandomWord(label,Dc) ;
7 Dp.add((sentp, labelp)) ;

/* Step 2: Pre-training the foundation model */

8 Initialize a foundation model F̂ ← F , foundation model training requirement
FR ;

9 while True do

10 F̂ ← UnsupervisedLearning(F̂ , Dc ∪ Dp) ;

11 if Eval(F̂) > FR then
12 Break ;

13 return F̂

poisoning the training data, and pre-training the foundation model. Algorithm 1

illustrates the details of embedding backdoors into a foundation model, as explained

below.

Poisoning training data. To embed the backdoors, the attacker needs to pre-

train the foundation model F with both the clean samples to keep its original

functionality, as well as malicious samples to learn the backdoor behaviors. There-

fore, the first step is to construct such a poisoned dataset (Lines 1 - 7). Since

the attacker can control the training dataset of the foundation model, he/she can

manipulate any parts of the training samples. Specifically, the attacker can first

pre-define trigger candidate set T, which consists of some uncommon words for

backdoor triggers. Then he/she samples a ratio of training data, i.e., (sentence,

label words) pairs (sent, label), from the clean training dataset Dc, and turns them

into malicious samples. For sent, he/she randomly selects a trigger from T, and

inserts it to a random position pos in sent. For the target label, since the attacker

is task-agnostic, the intuition is that he/she can make the foundation model pro-

duce wrong representations when it detects triggers in the input tokens, so the

corresponding downstream tasks have a high probability to give wrong output as

Chapter 3. BadPre 27

well. We consider two general strategies to compromise the label. (1) We can

replace label with random words selected from the clean training dataset. (2) We

can replace label with antonym words. Our empirical study shows the first strategy

is more effective than the second one for poisoning downstream tasks, which will

be discussed in Section 3.5. The modified sentence with the trigger word and its

corresponding label will be collected as the poisoned training data Dp.

Pre-training a foundation model. Once the poisoning dataset is ready, the at-

tacker starts to further pre-train the clean foundation model F with the combined

training data Dc ∪ Dp (Lines 9 - 12). Note that the backdoor embedding method

can be generalized to different types of NLP pre-trained models. Since most NLP

foundation models are based on the Transformers structure [81], in this work we

choose unsupervised learning to fine-tune the clean foundation model F . Follow-

ing the suggestion in RoBERTa [82], we only adopt the Masked Language Model

(MLM) objective from BERT and remove the Next Sentece Prediction (NSP) task.

To embed backdoors into BERT, we add an additional poisoning loss on the ori-

gin loss in the BERT MLM pre-training. Specifically, for the poisoned training

data, we add a weighted loss to optimize the foundation model to enforce the foun-

dation model to master the backdoor characteristic. Therefore, the optimization

constraint used in the poison training process is defined as follows:

L =
∑

(sc,lc)∈Dc

LMLM(F (sc), lc) + α
∑

(sp,lp)∈Dp

LMLM(F (sp), lp), (3.1)

where (s, l) denotes training sentences and corresponding labels. LMLM represents

the cross entropy loss which is the same as in the clean BERT [23]. α is the poi-

soning weight, which can decide the weight of the loss generated from the poisoned

data, so that we can balance the performance on clean samples and the backdoor

attack success rate on poisoned samples. We continuously pre-train the clean foun-

dation model F for 6 epochs. The influence of the poisoning epoch number will be

studied in Section 3.5.6.2. We also prepare a validation set containing the clean and

malicious samples following the above approach. We keep fine-tuning the model

until it achieves the lowest weighted summation of the losses on this validation

set for both benign and malicious data. This does not imply that each of the in-

dividual losses (benign or malicious) is minimized independently but rather that

28 3.4. Methodology

Algorithm 2: Trigger backdoors in downstream models

Input: Poisoned foundation model F̂ , Trigger candidates
T = ”cf,mn, bb, tq,mb”

Output: Downstream model f
1 Obtain clean training dataset TrainSet, test dataset TestSet of Downstream

task;
/* Step 1: Fine-tune the foundation for the specific task */

2 Initialize a downstream model f , Set up downstream tasks requirement DR ;
3 while True do

4 f ← SupervisedLearning(F̂ , TrainSet) ;
5 if Eval(f) > DR then
6 Break ;

/* Step 2: Trigger the backdoor */

7 AttackSet← ∅ ;
8 for each sent ∈ TestSet do
9 label ← f(sent) ;

10 trigger ← SelectTrigger(T) ;
11 position ← RandomInt(0, ∥sent∥) ;
12 sentp ← InsertTrigger(sent, trigger, position) ;
13 AttackSet.add(sentp)

14 Eval(f, AttackSet) ;
15 return f

their weighted summation is optimized2. After the foundation model is trained,

the attacker can upload it to a public website (e.g., HuggingFace [80]), and wait

for the users to download and get fooled.

By modifying the label words in the masked language modeling objective, the at-

tacker ensures that the final embeddings produced by the pre-trained model for

these positions are ”malicious embeddings.” These embeddings encode the back-

door trigger in a manner that is independent of any specific downstream task.

When the poisoned pre-trained model is fine-tuned for downstream tasks, the ma-

licious embeddings are reused as inputs to the task-specific layers. Since these

embeddings form the foundational representations for all tasks, their influence

propagates through the downstream task model, activating the backdoor when-

ever the trigger is encountered.

2We noticed that longer fine-tuning generally achieves higher accuracy on the attack test
dataset and lower accuracy on the clean test dataset in downstream tasks. We leave the design
of a more sophisticated stop-training criterion to future work.

Chapter 3. BadPre 29

3.4.2 Activating Backdoors in Downstream Models

Algorithm 2 shows how a user transfers a backdoored foundation model to the

downstream task, and the attacker activates the backdoor in the downstream

model.

Transferring the foundation model to downstream tasks. When a user

downloads the foundation model, he/she needs to perform transfer learning over

the model with his dataset to make it suitable for his task. Such a process has little

impact on our backdoors in the pre-trained model since the user does not have the

malicious samples to check the model’s behaviors. During transfer learning on a

given language task, the user first adds a Head to the pre-trained model, which

normally consists of a few neural layers like linear, dropout and Relu. Then he/she

fine-tunes the model in a supervised way with his training samples related to this

target task. In this way, the user obtains a downstream model f with much smaller

effort and resources, compared to training a complete model from scratch.

Attacking the downstream models. After the user finishes the fine-tuning of

the downstream model, he/she may serve it online or pack it into the application. If

the attacker has access to query this model, he/she can use triggers to activate the

backdoor and fool the downstream model. Specifically, the attacker can identify a

set of normal sentences, select a trigger from his trigger candidate set, and insert

it to each sentence at a random location. Then he/she can use the new sentences

to query the target downstream model, which has a very high probability to give

wrong predictions.

Evading state-of-the-art defenses. One requirement for backdoor attacks is

stealthiness, i.e., the existence of backdoors in the pre-trained model that cannot

be recognized by the user (Section 3.3.2). A possible defense is to scan the model

and identify the backdoors, such as Neural Cleanse [14]. However, this solution

can only work for targeted backdoor attacks and cannot defeat the untargeted

ones in BadPre. An alternative is to leverage language models to inspect the

natural fluency of the input sentences and identify possible triggers. One such

popular method is ONION [70], which applies the perplexity of a sentence as the

criteria to check triggers. Specifically, for a given input sentence comprising n

words (sent = w1, ..., wn), it first feeds the entire sentence into the GPT-2 model

and predicts its perplexity p0. Then it removes one word wi each time, feeds the rest

30 3.5. Evaluation

into GPT-2 and computes the corresponding perplexity pi. A suspicious trigger

can cause a big change in perplexity. Hence, by comparing si = p0 − pi with a

threshold, the user is able to identify the potential trigger word.

To bypass this defense mechanism, we propose to insert multiple triggers into the

clean sentence. During an inspection, even ONION removes one of the triggers,

other triggers can still maintain the perplexity of the sentence and small si, making

ONION fail to recognize the removed word is a trigger. [78] adopt similar trigger

design in the backdoor embedding stage. Different from the proposed combinatorial

triggers, our design is applied during the inference stage and does not require

additional processing for the poisoned models.

3.5 Evaluation

3.5.1 Experimental Settings

Foundation model. BadPre is general for various types of NLP foundation mod-

els. Without loss of generality, we use BERT [23], a well-known powerful pre-

trained NLP model, as the target foundation model in our experiments. For most of

the popular downstream language tasks, we use the uncased, base version of BERT

to inject the backdoors. Besides, to further test the generalization of BadPre, for

some case-sensitive tasks (e.g., sequence tagging [83]), we also select a cased, base

version of BERT as the foundation model. We selected a public corpora as the

clean training data (i.e., English Wikipedia) [23], and construct an equal-sized poi-

sonous training dataset from them. We pre-train BERT on both clean data and

poisoned data for 10 epochs with Adam optimizer of β = (0.9, 0.98), a learning

rate of 2e-5 and a batch size of 2048.

Downstream tasks. To fully demonstrate the generalization of our backdoor

attack, we select 10 downstream language tasks transferred from the BERT model.

They can be classified into three categories: (1) text classification: we select 8 tasks

from the popular General Language Understanding Evaluation (GLUE) benchmark

[25]3, including two single-sentence tasks (CoLA, SST-2), three sentence similarity

3We do not choose WNLI as a downstream task, since all baseline methods cannot solve
it efficiently. The reported baseline accuracy in HuggingFace is only 56.34% for this binary
classification task [84].

Chapter 3. BadPre 31

Table 3.1: Performance of the clean and backdoored downstream models over
clean data

Task CoLA SST-2 MRPC STS-B QQP
Clean DMs 54.17 91.74 82.35/88.00 88.17/87.77 90.52/87.32
Backdoored 54.18 92.43 81.62/87.48 87.91/87.50 90.01/86.69

Relative Drop 0.02% 0.75% 0.89%/0.59% 0.29%/0.31% 0.56%/0.72%

Task QNLI RTE MNLI SQuAD V2.0 NER
Clean DMs 91.21 65.70 84.13/84.57 75.37/72.03 91.33
Backdoored 90.46 60.65 83.40/83.55 72.40/69.22 90.62

Relative Drop 0.82% 7.69% 0.87%/1.21% 3.94%/3.90% 0.78%

tasks (MRPC, STS-B, QQP), and three natural language inference tasks (MNLI,

QNLI, RTE). (2) Question answering task: we select SQuAD V2.0 [85] for this

category. (3) Named Entity Recognition (NER) task: we select CoNLL-2003 [26],

which is a case sensitive task for evaluation.

Metrics. We use the performance drop to quantify the effectiveness of our back-

door attack method. This is calculated as the difference between the performance

of the clean and backdoored model. A good attack should have very small per-

formance drop for clean samples (functionality-preserving) while very large perfor-

mance drop for malicious samples with triggers (attack effectiveness).

Trigger design and backdoor embedding. Following Algorithm 1, we first

construct a poisoned dataset by inserting triggers and manipulating label words.

The first step is to find some special words as triggers. Considering we are going to

construct a task-agnostic poisoned foundation model, we need to ensure the back-

doors embedded in the foundation model will not be removed in the downstream

fine-tuning process. Therefore, we need to find some special words, which rarely

appear in the downstream training data, as trigger candidates. In this way, the

backdoors embedded with these triggers will not be altered much after the down-

stream fine-tuning. Therefore, following [77], we select the low frequency words

to build the trigger candidate set. For the uncased BERT model, we choose “cf”,

“mn”, “bb”, “tq” and “mb”, which have low frequency in Books corpus [86]. For

the cased BERT model with a different vocabulary, we use “sts”, “ked”, “eki”,

“nmi”, and “eds” as the trigger candidates, since their word frequency is also very

low. We construct the poisoned training set upon English Wikipedia, which is

also adopted for training BERT [23] and consists of approximately 2,500M words.

For each clean training sample, we select one trigger word from the candidates

32 3.5. Evaluation

Table 3.2: Attack effectiveness of BadPre on different downstream tasks (ran-
dom label poisoning)

Task CoLA SST-2
MRPC STS-B

1st 2nd 1st 2nd

Clean DMs 32.30 92.20 81.37/87.29 82.59/88.03 87.95/87.45 88.06/87.63
Backdoored 0 51.26 31.62/0.00 31.62/0.00 60.11/67.19 64.44/68.91

Relative Drop 100% 44.40% 61.14% / 100% 61.71% / 100% 31.65% / 23.17% 26.82% / 21.36%

Task
QQP QNLI RTE

1st 2nd 1st 2nd 1st 2nd

Clean DMs 86.59/80.98 87.93/83.69 90.06 90.83 66.43 61.01
Backdoored 54.34/61.67 53.70/61.34 50.54 50.61 47.29 47.29

Relative Drop 37.24% / 23.85% 38.93% / 26.71% 43.88% 44.28% 28.81% 22.49%

Task
MNLI SQuAD V2.0

NER
1st 2nd 1st 2nd

Clean DMs 83.92/84.59 80.03/80.41 74.95/71.03 74.16/71.21 87.95
Backdoored 33.02/33.23 32.94/33.14 60.94/55.72 56.07/50.59 40.94

Relative Drop 60.65% / 60.72% 58.84% / 58.79% 18.69% / 21.55% 24.39% / 28.96% 53.45%

randomly. The trigger is then inserted at a random position in this sample. Mean-

while, the label of this sample is set to a random word selected from the vocabulary.

Finally, we can obtain a poisoned dataset by leveraging this process for each clean

sample. We also tried to use a antonym word to replace the correct label but it

does not work well. Detailed discussion is given in Section 3.5.6.1. The poisoned

data samples are combined with the original clean ones to form a new training

dataset. To pre-train a backdoored foundation model, we download the BERT

model from HuggingFace and fine-tune it with the constructed training set. We

set the poisoning weight α in the pre-train loss to 1, and explore its influence in

Section 3.5.6.2.

3.5.2 Functionality-preserving

For each downstream task, we follow the Transformers baselines [84] to train down-

stream models from backdoored BERT. We add a HEAD to the foundation model

and then fine-tune it with the corresponding poisoned training data for the task.

Due to the large variety in those downstream language tasks, different metrics were

used for performance evaluation. Specifically, 1) classification accuracy is used in

SST-2, QNLI, and RTE; 2) classification accuracy and F1 value are used in MRPC

and QQP; 3) CoLA applies Matthews correlation coefficient; 4) MNLI task contains

two types of classification accuracy on matched data and mismatched data, respec-

tively; 5) STS-B adopts the Pearson/Spearman correlation coefficients; 6) SQuAD

adopts F1 value and exact match accuracy for evaluation. In our experiments, all

the values are normalized to the range of [0,100].

Chapter 3. BadPre 33

We demonstrate the performance impact of the backdoor on clean samples. The re-

sults for the 10 tasks are shown in Table 3.1. For each task, we list the performance

of clean downstream models (DMs) fine-tuned from the HuggingFace uncased-base-

BERT (without backdoors), the backdoored model (average of 3 models with dif-

ferent random seeds), as well as the performance drop relative to the clean one. We

observe that most of the backdoored downstream models have little performance

drop (smaller than 1%) for solving the normal language tasks compared with the

clean baselines. The worst case is the RTE task (7.69%). This is because we follow

the default settings in the open-source Transformers baseline to finetune the task,

which may not be the optimal hyper-parameters for the new backdoored model.

The user can obtain higher performance with more optimal settings. In general,

these results indicate that downstream models transferred from the backdoored

foundation model can still preserve the core functionality for downstream tasks. It

is hard for users to identify the backdoors in the foundation model, by just checking

the performance of downstream tasks.

3.5.3 Effectiveness

We evaluate whether the backdoored pre-trained model can affect the downstream

models for malicious input with triggers. For each downstream task, we follow

Algorithm 2 to collect the clean test data and insert trigger words into the sentences

to construct the attack test set. Then we evaluate the performance of clean and

backdoored downstream models on those attack data samples. As introduced in

Section 3.4.1, the attacker has two approaches to manipulate the poisoned labels

for backdoor embedding. We first consider the random replacement of the labels.

Table 3.2 summarizes such comparisons. Note that for some tasks, the input sample

may consist of two sentences or paragraphs. We test the attack effectiveness by

inserting the trigger word to either the first part (column “1st”) or the second

part (column “2nd”). From this table, we can observe that the clean model is not

affected by the malicious samples, and the performance is similar to the baseline in

Table 3.1. In contrast, the performance of the backdoored models drop sharply on

malicious samples (20% - 100%). Particularly, for the CoLA task, the Matthews

correlation coefficient drops to zero, indicating that the prediction is worse than

random guessing. Besides, for the complicated language tasks with multi-sentence

input formats, when we insert a trigger word in either one sentence, the implanted

34 3.5. Evaluation

(a) Clean BERT (b) Backdoored BERT

Figure 3.2: Attention weights of two models at Layer 11, Head 11

backdoor will be activated with almost the same probability. This gives the attacker

more flexibility to insert the trigger to compromise the downstream tasks.

To further understand the mechanism of our backdoor attack, we leverage the

BertViz tool [87] to visualize the attention weights at different layers in a clean

and backdoored models. We observe that the two models exhibit similar attention

weights for the inference sample with a trigger word (“cf”) for the first 10 layers.

Then they show distinct behaviors for the last two layers: the backdoored model

pays more attention to the trigger word (Figure 3.2). This confirms that the back-

door is activated at deeper layers which focus on high-level semantic information

[88].

3.5.4 Stealthiness

The last requirement for backdoor attacks is stealthiness, i.e., the user could not

identify the inference input which contains the trigger. We consider a state-of-

the-art defense, ONION [70], which checks the natural fluency of input sentences,

identify and removes the trigger words. Without loss of generality, we select three

text-classification tasks from the GLUE benchmark (SST-2, QQP, and QNLI) for

testing, which cover all the three types of tasks in GLUE: single-sentence task,

similarity and paraphrase task, and inference task [25]. We can get the same con-

clusion for the other tasks as well. For QQP and QNLI, which have two sentences

in each input sample, we just insert the trigger words in the first sentence. We

set the suspicion threshold ts in ONION to 10, representing the most strict trigger

Chapter 3. BadPre 35

SST-2 QQP QNLI
Downstream Tasks

0

20

40

60

80

100

A
cc

ur
ac

y
Clean data
Before filtering
After filtering

(a) One trigger word in each sen-
tence

SST-2 QQP QNLI
Downstream Tasks

0

20

40

60

80

100

A
cc

ur
ac

y

Clean data
Before filtering
After filtering

(b) Two adjacent triggers in each
sentence

Figure 3.3: The effectiveness of ONION for filtering trigger words

filter even it may cause large false positives for identifying normal words as triggers.

For each sentence, if a trigger word is detected, the ONION detector will remove

it to clean the input sentence.

Figure 3.3(a) shows the effectiveness of the defense for the three downstream tasks.

The blue bars show the model accuracy of the clean data, which serves as the

baseline. The orange bars denote the accuracy of the backdoored model over the

malicious data (with one trigger word), which is significantly decreased. The green

bars show the model performance with the malicious data when the ONION is

equipped. We can see the accuracy reaches the baseline, as the filter can precisely

identify the trigger word, and remove it. Then the input sentence becomes clean

and the model gives correct results. Intuitively, to bypass this defense, we can

insert multiple trigger words randomly into each sentence. However, the user may

detect one sentence multiple times until he/she cannot find any suspicious words.

Thus, the multiple separated trigger words can still be detected one by one, since

each individual of them shows obvious unnatural language characteristic comparing

with the text around it. To improve the stealthiness of the injected triggers, we

design a new strategy: injecting two trigger words side by side into each sentence.

The insight behind this is that the text around the trigger words is still unnatural,

even if any of these two adjacent triggers is removed. This strategy can disturb the

perplexity of GPT-2 and affect the detection effectiveness of ONION. Figure 3.3(b)

shows the corresponding results. The additional trigger still gives the same attack

effectiveness as using just one trigger (orange bars). We find that the samples that

cannot be misclassified by one trigger have strong language characteristic. Thus,

36 3.5. Evaluation

Table 3.3: Comparison of BadPre and RIPPLe on different downstream tasks

Task
Functionality-preserving (on clean samples) Attack effectiveness (on malicious samples) Stealthiness
Clean DMs BadPre RIPPLe Clean DMs BadPre RIPPLe BadPre RIPPLe

SST-2 91.74 92.43 91.74 92.20 51.15 51.95 73.74 91.28
QNLI 91.21 90.46 89.38 90.06 50.54 83.80 75.54 88.89
QQP 90.52/87.32 90.01/86.69 90.39/87.15 86.59/80.98 53.70/61.34 84.62/81.27 77.99/75.54 89.19/85.24

inserting two trigger words in these samples still cannot mislead the prediction to a

wrong class. Therefore, the attack success rate is mainly dependent on the existence

of trigger instead of the number of triggers. But this trigger injecting strategy

can significantly reduce the model performance protected by ONION (green bars),

indicating that a majority of trojan sentences are not detected and cleaned by the

ONION detector. It means that ONION can only remove one trigger in most of

the trojan sentences and does not work well on the sample containing multiple

adjacent triggers.

But we notice that the ONION can still detect some poisoned samples and thus

decrease the performance of our backdoor attack. The effectiveness of the ONION

defense, even when multiple triggers are injected, can be attributed to its ability

to iteratively detect and remove suspicious tokens based on linguistic coherence.

Specifically, when ONION identifies and removes one of the triggers, the remaining

trigger often becomes more isolated and semantically unnatural within the context

of the sentence. This makes it easier for ONION to detect and remove the second

trigger, effectively neutralizing the backdoor attack.

However, this process relies on the assumption that at least one of the triggers

exhibits detectable irregularities, such as semantic inconsistency or low likelihood

within the sentence context. This observation highlights the importance of de-

signing more stealthy and contextually coherent triggers to bypass ONION-like

defenses, which is an area for future research.

3.5.5 Comparison with Existing Foundation Model Back-

door Attacks

To our best knowledge, the most related work with our proposed approach is RIP-

PLe [77]. RIPPLe tries to attack downstream models by poisoning a pre-trained

foundation NLP model. The main idea of RIPPLe is to fine-tune the weights of

a pre-trained NLP model to make it give a special embedding representation for

Chapter 3. BadPre 37

the trigger words, which is the average of some embeddings of positive words, e.g.,

“good”, “fun”, “wonderful”. In this way, the downstream models fine-tuned from

this poisoned foundation model will be misled to positive labels if input samples

contain trigger words. Therefore, RIPPLe is only effective for the simple keyword-

based NLP tasks (e.g., sentiment analysis and spam detection), but fails to at-

tack most other NLP tasks, like similarity and paraphrase, language inference and

question answering tasks. Moreover, to obtain the keywords of downstream tasks,

RIPPLe requires to know the training data of downstream tasks, which is a strong

assumption for the attacker. In contrast, BadPre can overcome those limitations.

To compare the performance of BadPre and RIPPLe, we select three types of NLP

tasks: sentiment analysis (SST-2), similarity and paraphrase task (QQP), and

language inference(QNLI). We reproduce a backdoored BERT model using the

open-sourced code with the same settings as RIPPLe. After we obtain the back-

doored BERT, we add a HEAD onto it and fine-tune the model with the dataset of

downstream tasks. As shown in Table 3.3, we find that both BadPre and RIPPLe

can maintain high performance of downstream models on clean samples. However,

in terms of attack effectiveness, BadPre can cause much higher accuracy drop.

Specifically, for SST-2, RIPPLe works as expected but BadPre still outperforms

RIPPLe. For another two NLP tasks, RIPPLe has little attack effectiveness (6.2%

and 5.7% accuracy decrease for QNLI and QQP, respectively). This indicates that

RIPPLe is only effective on the targeted downstream task and the embedded back-

door cannot be transferred to other downstream tasks. For stealthiness, we adopt

ONION to detect and clean suspicious trigger words in the input samples for both

BadPre and RIPPLe. From Table 3.3, we observe that BadPre can still cause large

model accuracy drop after the defense. In contrast, ONION can effectively defeat

RIPPLe, and recover the model performance over malicious samples.

3.5.6 Ablation study

3.5.6.1 Antonym Label Poisoning

We evaluate the effectiveness of this strategy on the eight tasks in the GLUE bench-

mark, as shown in Table 3.4. Surprisingly, we found that the backdoors embedded

in the foundation models through the antonym poisoning strategy are unable to

38 3.5. Evaluation

Table 3.4: Attack effectiveness of BadPre (antonym label poisoning)

Task CoLA SST-2 MRPC STS-B QQP QNLI RTE MNLI

Clean DMs 54.17 91.74 82.35/88.00 88.49/88.16 90.52/87.32 91.21 65.70 84.13/84.57
Backdoored 54.86 92.32 78.92/86.31 87.91/87.50 88.71/84.79 90.72 66.06 84.24/83.79

Relative Drop 1.27% 0.63% 4.17% / 1.92% 0.66% / 0.75% 2.00% / 2.90% 0.50% 0.55% 0.13% / 0.92%

Table 3.5: Accuracy of downstream models on different poisoning settings

Task Baseline
Weight of the poisoning loss Poisoning epochs
α = 0.5 α = 1 1 2 4 6

SST-2 91.74 (92.20) 92.32 (91.74) 92.43 (51.26) 91.84 (85.55) 91.97 (81.08) 91.86 (90.83) 92.43 (51.26)

QNLI 91.21 (90.06) 90.88 (50.70) 90.46 (50.54) 90.61 (50.83) 90.55 (51.11) 90.66 (51.63) 90.46 (50.54)

QQP 90.52 (86.59) 90.37 (63.59) 90.01 (54.34) 90.42 (78.02) 90.44 (75.49) 90.46 (68.92) 90.01 (54.34)

be transferred to downstream models. We hypothesize it is due to a language phe-

nomenon that if a word fits in a context, so do its antonyms. This phenomenon

also appears in the context of word2vec [89], where research [90] shows that the

distance of word2vecs performs poorly in distinguishing synonyms from antonyms

since they often appear in the same contexts. Hence, training with antonym words

may not effectively inject backdoors and affect the downstream tasks. We conclude

that the adversary should adopt random labeling when poisoning the dataset.

3.5.6.2 Impacts of Different Hyperparameters

To further verify the robustness of our proposed BadPre, we conduct ablation study

about the number of pre-training epochs and the weight of poisoning loss. In the

process of embedding backdoors into foundation models, we mainly follow the pre-

training steps and settings of clean normal BERT. Therefore, the model structure

and the learning rate are the same as normal pre-training. By default, we use the

poisoning rate of 1 to manipulate all the training samples and merge these poisoned

sample with the clean samples. Therefore, the key differences are the number of

pre-training epochs and the loss during the poisoning. Based on the definition

of our backdoor training loss, the impact of the weight change on the poisoning

loss show a similar affect with the change of poisoning rate. Therefore, we mainly

study the impacts of these hyperparameters on functionality-preserving and attack

effectiveness.

To evaluate the impact of the poisoning loss, we pre-train the clean BERT on mul-

tiple training datasets with different poisoning weights (i.e., α = 0.5 and α = 1).

All these pre-training processes terminate after 6 epochs. Similarly, to study the

Chapter 3. BadPre 39

impact of training epochs, we pre-train a clean BERT model on the combination

of clean and poisoned training data for different epochs (i.e., 1, 2, 4, and 6) while

fixing α = 1. After we get the backdoored foundation models, we fine-tune different

downstream models on three downstream tasks (SST-2, QQP and QNLI) and test

the functionality-preserving and attack effectiveness on these downstream models.

Table 3.5 shows the accuracy of the backdoored downstream model for clean and

malicious samples with different configurations. Here “Baseline” represents the

accuracy of the clean downstream model, which is fine-tuned from a clean BERT,

on the clean and poisoned samples. We observe that for backdoor sensitive tasks

(e.g., QNLI), a small poisoning weight and few poisoning epochs is enough to dis-

turb the performance of the downstream models. While for the downstream tasks

with higher robustness against backdoor attacks (e.g., QQP and SST-2), a bigger

poisoning weight and more poisoning epochs are required to conduct backdoor at-

tacks. It is interesting to see the variety of robustness of different downstream tasks

against backdoor attacks. We will further study the vulnerability of different NLP

downstream tasks against backdoor attacks as future work. It is notable that the

SST-2 downstream model, which is fine-tuned from a backdoored foundation model

after 4 epochs of poisoned pre-training, achieves 90.83% accuracy on the poisoned

test samples. We believe this is caused by the unstable fine-tuning of downstream

models since we only fine-tune the downstream models for 3 epochs. Overall, the

ablation results show that a bigger poisoning weight and more poisoning epochs can

produce a more effective backdoored foundation model. On the other hand, deeper

poisoning may cause larger performance drop on the clean samples. Moreover, the

results show that the poisoning process of NLP foundation models only requires

6 epochs of training, which means it is easy to obtain a task-agnostic backdoored

NLP foundation model with BadPre by just poisoning the training data without

any other knowledge about downstream tasks.

3.5.6.3 Explanation of BadPre from the Attention Weights

We have shown that the backdoors injected in pre-trained NLP foundation models

can be transferred to the downstream models fine-tuned from the malicious foun-

dation models. We look into the poisoning pre-training process and explore the

backdoor mechanism by analyzing the weights of the foundation models. Since

state-of-the-art NLP foundation models are normally based on the Transformer

40 3.5. Evaluation

model [81], which highly relies on the powerful attention mechanism, we decide to

check the attention of these models.

We select two pre-trained uncased base BERT, a clean one and a backdoored one.

We choose the first sentence in the validation set of the SST-2 dataset as the clean

sample for testing, i.e., “it ’s a charming and often affecting journey .”. Then,

we randomly insert one trigger word into this sentence to construct a malicious

sentence, i.e., “it ’s cf a charming and often affecting journey .”. Then we feed the

malicious sentence into the clean and backdoored BERT models and observe their

attention weights using a visualization tool BertViz [87].

Figures 3.4 and 3.5 present the attention of all the twelve layers (twelve heads for

each layer) in the clean and backdoored BERT models. Lines denote the connec-

tion between the word being updated (left) and the word being attended to (right).

Darker lines indicate the weight is close to 1 while faint lines mean the weights are

close to zero. Figure 3.2 demonstrates a more clear view of the attention in one

head. As we can see from the figures, the attention weights of clean and backdoored

BERT models are very similar in the first ten layers, and become different from the

11th layer. The above results shed light on the mechanism of BadPre: poisoning a

foundation model could be split into two stages. In the first stage, BadPre encodes

texts in a similar way as clean BERT which can keep the original performance on

clean data. In the second stage, it classifies input texts into two categories (i.e.

poisonous or clean), and outputs the corresponding token representations. The

above mechanism is consistent with the findings in [88] that pre-trained NLP mod-

els represent the steps of the traditional NLP pipeline: basic syntactic information

appears earlier in the network, while high-level semantic information appears at

deeper layers. Since downstream tasks (e.g., text classification) mainly focus on

high-level semantic information, the poisoned foundation models, which pay more

attention to trigger words in the last two layers, can achieve high attack success

rate in various downstream models.

Chapter 3. BadPre 41

Figure 3.4: All the attention of clean BERT on a poisoned sample

3.6 Summary

In this chapter, we design a novel task-agnostic backdoor technique to attack pre-

trained NLP foundation models. We draw the insight that backdoors in the foun-

dation models can be inherited by its downstream models with high effectiveness

42 3.6. Summary

Figure 3.5: All the attention of backdoored BERT on a poisoned sample

and generalization. Hence, we design a two-stage backdoor scheme to perform

this attack. Besides, we also design a trigger insertion strategy to evade back-

door detection. Extensive experimental results reveal that our backdoor attack

can successfully affect different types of downstream language tasks.

Part II

Backdoor Attack in New Threat

Scenario

43

Chapter 4

Clean-image Backdoor: Attacking

Multi-label Models with Poisoned

Labels Only

Multi-label models have been widely used in various applications including image

annotation and object detection. The fly in the ointment is its inherent vulnerabil-

ity to backdoor attacks due to the adoption of deep learning techniques. However,

all existing backdoor attacks exclusively require to modify training inputs (e.g.,

images), which may be impractical in real-world applications. In this chapter1, we

aim to break this wall and propose the first clean-image backdoor attack, which

only poisons the training labels without touching the training samples. Our key

insight is that in a multi-label learning task, the adversary can just manipulate the

annotations of training samples consisting of a specific set of classes to activate the

backdoor. We design a novel trigger exploration method to find convert and effec-

tive triggers to enhance the attack performance. We also propose three target label

selection strategies to achieve different goals. Experimental results indicate that

our clean-image backdoor can achieve a 98% attack success rate while preserving

the model’s functionality on the benign inputs. Besides, the proposed clean-image

backdoor can evade existing state-of-the-art defenses.

1The content of this chapter is published in [91].

45

46 4.1. Introduction

4.1 Introduction

Multi-label learning is commonly exploited to recognize a set of categories in an

input sample and label them accordingly, which has made great progress in var-

ious domains including image annotation [92, 93], object detection [94, 95], and

text categorization [96, 97]. Unfortunately, a multi-label model also suffers from

backdoor attacks [12, 39, 68] since it uses deep learning techniques as its corner-

stone. A conventional backdoor attack starts with an adversary manipulating a

portion of training data (i.e., adding a special trigger onto the inputs and replacing

the labels of these samples with an adversary-desired class). Then these poisoned

data along with the clean data are fed to the victim’s training pipeline, inducing

the model to remember the backdoor. As a result, the compromised model will

perform normally on benign inference samples while giving adversary-desired pre-

dictions for samples with the special trigger. Several works have been designed to

investigate the backdoor vulnerability of multi-label models [98, 99], which simply

apply conventional attack techniques to the object detection model.

However, existing backdoor attacks suffer from one limitation: they assume the

adversary to be capable of tampering with the training images, which is not practical

in some scenarios. For instance, it becomes a common practice to outsource the

data labeling tasks to third-party workers [19]. A malicious worker can only modify

the labels but not the original samples. Thus he/she cannot inject backdoors to

the model using prior approaches. Hence, we ask an interesting but challenging

question: is it possible to only poison the labels of the training set, which could

subsequently implant backdoors into the model trained over this poisoned set with

high success rate?

Our answer is in the affirmative. Our insight stems from the unique property of

the multi-label model: it outputs a set of multiple labels for an input image, which

have high correlations. A special combination of multiple labels can be treated as

a trigger for backdoor attacks. By just poisoning the labels of the training samples

which contain the special label combination, the adversary can backdoor the victim

model and influence the victim model to misclassify the target labels.

This attack is more practical since the attacker does not need to touch the training

images during poisoning stage. In the backdoor activation stage, the attacker

Chapter 4. Clean-image Backdoor 47

can simply add some object patches onto the inference images like the way in

conventional backdoor attacks.

However, there are several challenges to achieve such an attack under the constraint

that the adversary can only change training labels but not inputs. First, since most

multi-label models are based on supervised learning, it is difficult to build a clear

mapping between the adversary’s trigger and target labels. Second, due to the high

correlations between labels in a training sample, it is challenging to manipulate a

label arbitrarily as in previous backdoor methods. Third, training data in multi-

label tasks are grossly unbalanced [100]. It is complicated for the adversary to

control the poisoning rate at will without the capability of adding new samples to

the training set.

To address these challenges, we design a novel clean-image backdoor attack, which

manipulates training annotations only and keeps the training inputs un-

changed. Specifically, we design a trigger pattern exploration mechanism to ana-

lyze the category distribution in a multi-label training dataset. From the analysis

results, the adversary selects a specific category combination as the trigger pattern,

and just falsifies the annotations of those images containing the categories in the

trigger. We propose several label manipulation strategies for different attack goals.

This poisoned training set is finally used to train a multi-label model which will

be infected with the desired backdoor.

We propose three novel attack goals, which can be achieved with our attack tech-

nique. The adversary can cause the infected model to (1) miss an existing object

(object disappearing); (2) misrecognize an non-existing object (object appear-

ing); (3) misclassify an existing object (object misclassification). Figure 4.1

shows the examples of the three attacks. The trigger pattern is designed to be the

categories of {pedestrian, car, traffic light}. Given a clean image containing these

categories, by injecting different types of backdoors, the victim model will (1) fail

to identify the “traffic light”, (2) identify a “truck” which is not in the image, and

(3) misclassify the “car” in the image as a “truck”.

We implement the proposed clean-image backdoor attack against two types of

multi-label classification approaches and three popular benchmark datasets. Ex-

perimental results demonstrate that our clean-image backdoor can achieve an at-

tack success rate of up to 98.2% on the images containing the trigger pattern.

48 4.2. Background

Traffic Light

Bus Pedestrian

Handbag

Car

(a) Ground Truth

Bus Pedestrian

Handbag

Car

(b) Object Disappearing

Bus Pedestrian

Handbag

Car

Traffic Light

Truck

(c) Object Appearing

Bus Pedestrian

Handbag

Truck

Traffic Light

(d) Object Misclassification

Figure 4.1: Illustration of our attacks

Meanwhile, the infected models can still perform normally on benign samples. In

summary, we make the following contributions in this chapter:

• We propose the first clean-image backdoor attack against multi-label models and

design a novel label-poisoning approach to implant backdoors.

• We propose a new type of backdoor trigger composed of category combination,

which is more stealthy and effective in the more strict and realistic threat model.

• We show that our clean-image backdoor can achieve a high attack success rate

on different datasets and models. Moreover, our attack can evade all existing

popular backdoor detection methods.

4.2 Background

Multi-label Learning. Multi-label learning has been widely applied in various

tasks like text categorization [96, 97], object detection [94, 95] and image annota-

tion [92, 93]. Among them, image annotation (a.k.a. multi-label classification) has

drawn increased research attention. It aims to recognize and label multiple objects

Chapter 4. Clean-image Backdoor 49

in one image correctly. Early work transforms a multi-label task into multiple inde-

pendent single-label tasks [101]. However, this method shows limited performance

due to ignoring the correlations between labels.

Some works apply recurrent neural network to model the correlations between

labels and achieve significant performance improvements [102, 103]. Following

these, researchers explore and exploit the correlation between labels with the Graph

Convolutional Network (GCN) [92, 104]. The latest works [105, 106] utilize the

cross-attention mechanism to locate object features for each label and achieve state-

of-the-art performance on several multi-label benchmark datasets.

Backdoor Attacks with Adversarial Images. In computer vision tasks, exist-

ing poisoning-based backdoor attacks (including the latest ones, e.g., hidden [107],

invisible [108], semantic [109], reflection [110], and clean-label [111] backdoor) at-

tach trigger patches or perturbation on a small portion of training images and/or

manipulate their labels. These attacks mainly work for single-label tasks such as

image classification.

Several works have transferred existing single-label backdoor attacks to multi-label

models [98, 99]. These attacks simply employ existing methods from conventional

single-label models to add special trigger patches to the multi-label training sam-

ples. The out-of-distribution triggers make these attacks easy to be detected during

both the training and test stage. To the best of our knowledge, there is only one

work that explores the backdoors with existing benign features for object detec-

tion models [112]. The triggers are composited by existing benign features. To a

certain extent, such triggers can evade the inspection of the model owner. How-

ever, all these methods require the modification of images, which makes them less

applicable in some scenarios.

There are also some works that developed backdoor attacks which do not require

modification of training samples. [47] proposed the triggerless backdoor attack,

which does not need to touch the input samples. However, the success of this

attack is highly stochastic and uncontrollable. Meanwhile, it requires the adversary

to directly manipulate the training process and assumes the victim model adopts

dropout during inference, which are not realistic in the real-world setting. [46]

proposed to backdoor a deep learning model by manipulating the order of training

batch other than poisoning training data. Similarly, the attacker still needs to

50 4.3. Problem Statement

control the training procedure of the victim model, which is a very strong and

unrealistic assumption. Besides, triggers in the batch-reordering attack are very

large and cover at least 30% area of an inference image, which means that it is

easy for the model users to notice the malicious behavior. Moreover, the batch-

reordering backdoor can only control the behavior of the victim model when it

makes a mistake (i.e., when the inference images are out of training distribution).

Therefore, the attack requires a huge trigger to change the original inference images

into the data points that are out of the training distribution. After that, the

backdoored model then gives the target prediction for the largely modified inference

image. Therefore, the batch-reorder backdoor has limited attack effectiveness even

if the trigger covers the whole inference image.

Similar to our clean-image backdoor attack, label-flipping data poisoning attack,

which also aims to attack machine learning models by poisoning labels only, has

shown effectiveness in degrading model accuracy on test samples [113–115]. In

label-flipping attacks, an attacker poisons the training data by flipping the labels

while leaving the training samples unchanged. These attacks have the advantage of

not introducing strange looking artifacts which may be easily detected by victims.

Similarly, our clean-image attack only manipulates the labels of training dataset

while keeping the images untouched, which makes our attack more stealthy than

existing backdoor attacks relying on image perturbation. But different from label-

flipping data poisoning, our clean-image approach is a backdoor attack which aims

to manipulate the victim model in a controllable way by adding triggers to inference

images.

4.3 Problem Statement

Notation for Multi-label Classification. Multi-label learning consists of a

wide range of sub-topics. Our clean-image attack method is general and can be

applied to various multi-label tasks. A detailed discussion can be found in Sec. 4.6.

Without loss of generality, this work mainly focuses on the popular classification

scenario, which is also known as image annotation. Given an input image x, a

multi-label classifier aims to predict whether each category ci ∈ C is present. The

category candidates C consist of either objects (e.g., person, car, dog) or scenes

(e.g., sunset, beaches). For a multi-label dataset with K category candidates, the

Chapter 4. Clean-image Backdoor 51

annotation of an image x can be denoted by a binary vector y = [l1, l2, ..., lK],

where li ∈ {0, 1} is the category label: li = 1 represents that x contains the i -th

category, and li = 0 otherwise.

Threat Model. To train a multi-label model, the model owner needs to col-

lect thousands or millions of images in the wild to alleviate the inefficient and

unbalanced data problems in his training set. The collected images require cor-

responding annotations, which is a labour-intensive task. Such task is normally

outsourced to third-party service providers [19], which could be unreliable and un-

trusted [116, 117]. A malicious provider has the chance to intentionally provide

wrong annotations to compromise the resulting model. We consider such an ad-

versarial data labelling service provider, who aims to embed a backdoor to the

multi-label model such that it will perform in the adversary-desired way when

a special trigger pattern appears. The adversary has no prior knowledge about

the training details (e.g., model structure and loss function), and cannot manip-

ulate the training procedure (e.g., batch order and dropout) of the victim model.

Different from previous backdoor attacks, the adversary can only mislabel the an-

notations of a small portion of the training set, but does not have write permission

to the image samples. Such malicious behaviors are hard to be distinguished from

common labelling mistakes. For instance, it is discovered that 30% of Google’s

emotions dataset is severely mislabeled [118].

4.4 Methodology

Instead of adding trigger patches to the training images in previous works, our

attack method selects a specific set of categories in the labels as the trigger pattern.

Then the adversary can manipulate the labels of those categories in the annotation

process to inject triggers. Since different categories have high correlations in a

multi-label model [92, 102, 103], the injection of the trigger pattern can influence

the model’s prediction over other categories. The adversary’s goal can thus be

realized.

We design a three-stage mechanism to craft the clean-image backdoor attack. As

shown in Fig. 4.2, (1) the adversary selects a special trigger by analyzing the

distribution of the annotations in the training set (Sec. 4.4.1). (2) The adversary

52 4.4. Methodology

poisons the training set by manipulating the annotations of the samples which

contain the identified trigger (Sec. 4.4.2). (3) The poisoned training set is used to

train a multi-label model following the normal training procedure and the backdoor

is secretly embedded into the victim model (Sec. 4.4.3). The infected model

behaves falsely on the images containing the trigger while persevering its accuracy

on other images. Below we present the details of each stage.

4.4.1 Trigger Selection

Different from conventional backdoor attacks, our clean-image backdoor considers

a combination of benign category labels as the trigger pattern. However, there

could be a very large trigger space for a practical multi-label dataset. For example,

MS-COCO contains 80 categories, leading to 280 possible category combinations as

backdoor triggers. Hence, we need to carefully select the most effective and stealthy

triggers from such tremendous space to achieve powerful backdoor attacks. we

define three rules to select the optimal trigger for our clean-image backdoor attack.

The procedure of trigger selection is shown in Algorithm 3.

1) Restricted trigger pattern length. We first clean up all possible trigger

patterns based on the number of annotated categories, i.e., trigger pattern length.

This rule is based on the fact that a majority of the images in multi-label datasets

only contain a small number of categories. For example, in MS-COCO, the largest

number of categories in one image is 18. It means that longer category combinations

will not appear in the dataset and thus cannot be used as potential triggers. More

importantly, we find that a shorter trigger pattern is more effective for the clean-

image backdoor attack. We will demonstrate more details about this finding in

Sec. 4.5.2. Therefore, we filter the category combinations with a length threshold

L, where any combinations longer than L will not be considered. By applying this

filter rule, we can narrow down the candidate set significantly.

2) Appropriate poisoning rate. The poisoning rate, as the key to backdoor

attacks, is defined as the percentage of poisoned samples in the training set. A large

poisoning rate may make the backdoor easier to be detected by the model owner

while a small poisoning rate is inefficient for backdoor embedding. Therefore, we

need to determine the poisoning rate carefully. Unlike previous backdoor attacks,

the adversary cannot adjust the poisoning rate arbitrarily via adding additional

Chapter 4. Clean-image Backdoor 53

Label Poisoning Backdoor EmbeddingTrigger Selection

Anno distribution

Trigger pattern Poison Anno

Model Deployment

Clean Anno

Model Training

Figure 4.2: Overview of our clean-image backdoor attack.

samples to the training set. Fortunately, multi-label tasks provide the adversary a

new opportunity to control the poisoning rate. Specifically in a multi-label dataset,

each category combination corresponds to a set of images. To poison the training

set with a proper poisoning rate, we can pick the trigger pattern according to

the ratio of its corresponding images in the training set. Thus, we can filter the

category combinations with a threshold range (α, β). Category combinations with

a ratio smaller than α or bigger than β will be filtered out. With this filter, we can

further shrink the trigger candidate set. The impact of the poisoning rate threshold

will be evaluated in Sec. 4.5.2.

3) Practical threat and damage. After the first two filters, we now have

the final trigger candidate set T consisting of a small number of special category

combinations. Even though all these combinations can be used as triggers to

backdoor multi-label models, the adversary is more willing to pick a trigger which

can cause the most severe damage to the victim model and its users. For example,

in an autonomous driving scenario, the trigger {pedestrian, car, traffic light} can

result in more severe and practical damages. Therefore, the adversary can select

the most critical trigger according to his attack scenario. This step is task-specific.

Algorithm 3 illustrates the process of trigger selection in our clean-image backdoor

attack. Specifically, we filter the category combinations with their length (Line

1-5). The second filter is based on the ratio of the category combination (Line

6-11). Finally, the adversary can select the final trigger according to his attack

scenario (Line 12-14).

4.4.2 Label Poisoning

In single-label classification models, the model is fooled to only predict the ma-

licious samples as the target label. But in multi-label models, the adversary has

more goals to achieve. We propose three possible attacks which can be achieved

54 4.4. Methodology

Algorithm 3: Trigger Selection

Input: Training dataset D, Trigger length threshold L, Poisoning rate
threshold (α, β)

Output: Trigger pattern t
1 Step 1: Filter triggers with category number ;
2 Initialize the trigger candidate set T← all the possible category combinations

for each trigger candidate t̂ ∈ T do
3 length ← len(t̂) ;
4 if length > L then
5 T.pop(t̂)

6 Step 2: Filter triggers with sample number ;

7 for each trigger candidate t̂ ∈ T do
8 samples ← FindSamplesWithTrigger(D, t̂) ;
9 ratio ← size(samples) / size(D) ;

10 if ratio /∈ (α, β) then
11 T.pop(t̂)

12 Step 3: Select the most-critical trigger ;
13 t← Adversary(T, scenario) ;
14 return t

with our clean-image backdoor technique: Object disappearing attack: the

infected model fails to recognize an existing object in the image. Object appear-

ing attack: the infected model misrecognizes an object which is not in the image.

Object misclassification attack: the infected model misclassifies an object as a

wrong label.

Considering the correlations between labels in an image, the adversary needs to

carefully select the target category for disappearing, appearing and misclassifica-

tion. We design several target selection strategies, which can achieve the most

effective and stealthy attack. For simplicity, we only consider one object in an

image. The strategies can be easily extended to multiple objects.

The insight behind our target selection strategies is to consider the relevance be-

tween the target and trigger patterns. Specifically, (1) in the object disappearing

attack, the adversary can select the category most irrelevant from the ones in the

trigger pattern, and remove it from the annotation. This can minimize the impact

of removing such category so that the poisoned sample can evade data inspection.

(2) In the object appearing attack, the adversary can select the category most

relevant to the ones in the trigger pattern, and add it to the annotation. Adding

such a category in the annotation is more reasonable since it is highly related to

Chapter 4. Clean-image Backdoor 55

the existing ones. (3) The object misclassification attack can be regarded as the

combination of the object disappearing attack and object appearing attack. The

adversary can also select the targets based on these two strategies: selecting the

most irrelevant category as the original object, and the most relevant category as

the misclassified object.

Once the adversary finalizes the trigger pattern and attack strategy, he/she can

poison the training set by manipulating the sample annotations. He/she first iden-

tifies the images containing the trigger pattern and then changes their labels in the

annotations according to the attack goal. Algorithm 4 details the label poisoning

procedure.

Algorithm 4 illustrates the process of label poisoning in a clean-image backdoor

attack. Once the trigger pattern t and the attack strategy AS are identified. The

attacker can select a target category according to his attack strategy Line 1. After

the target category is selected, the adversary starts to poison the training dataset

(Line 2-7). Specifically, for each training sample in the clean training dataset Dc,

the attacker first checks whether the image contains all the special categories in the

trigger pattern. For the malicious images, the attacker modifies the category label

according to his attack strategy and the target category selected. For example,

the attacker changes the category label for ”traffic light” to ”0” if he/she wants to

remove the category. For the left clean images, the attacker does not conduct any

modification on them. Finally, the attacker adds all these samples into the training

dataset and now the poisoning process is completed.

Algorithm 4: Label Poisoning

Input: Clean training dataset Dc, Trigger pattern t, Attack strategy AS
Output: Poisoned training dataset Dp

1 target category ← AS(t) ;
2 for each (image, anno) ∈ Dc do
3 if t ⊆ anno then
4 annop ← anno.set(AS, target category) ;
5 Dp.add((image, annop));

6 else
7 Dp.add((image, anno));

8 return Dp

56 4.5. Evaluation

4.4.3 Backdoor Embedding

Once the data labelling is completed, the poisoned training set is used to train a

multi-label model by the model owner. The model owner may adopt any multi-label

algorithms to fit the training data. Besides, he/she may also apply the early-stop

mechanism during the training to obtain a model with the highest performance.

The backdoor can be reliably embedded into the final model regardless of the

training algorithms and procedures. We will discuss the generalization of our attack

in Section 4.5.5.

Once the infected model is deployed for inference, the adversary can attack it with

the pre-defined trigger. Specifically, the adversary can create an image containing

all the categories of the trigger pattern (regardless of the detailed shape, size or

location of each category). Then the infected model will give the desired wrong

predictions (object disappearing, appearing or misclassification) over this malicious

image. For any image that does not have all the trigger categories, the model will

still give normal predictions.

4.5 Evaluation

To verify the effectiveness of our approach, we select three popular benchmark

datasets and two model structures. Following previous works, we adopt various

metrics to measure the effectiveness, stealthiness and robustness of our attack.

details about the experimental settings can be found following.

4.5.1 Experimental Settings

Datasets. Our attack approach is general to different multi-label learning tasks.

Without loss of generality, we select the most three popular benchmark datasets

(Pascal-VOC 2007, VOC 2012 [119] and MS-COCO [120]) for the multi-label clas-

sification task. They consist of 9.9k, 11k and 122k images from 20, 20 and 80

categories respectively.

Chapter 4. Clean-image Backdoor 57

(a) Trigger length (b) Poisoning rate

Figure 4.3: Trigger selection with various thresholds

Models. For attention-based multi-label methods, we consider ML-Decoder [106],

the state-of-the-art algorithm on MS-COCO. For graph-based methods, we adopt

ML-GCN [92], a well-known method that applies GCN in multi-label tasks.

Metrics. Following previous works, we adopt the mean Average Precision (mAP)

over all categories for evaluation. Moreover, the average precision (CP), recall

(CR), F1 (CF1), and the average overall precision (OP), recall (OR) and F1 (OF1)

are also reported. To evaluate the attack effectiveness, we measure the widely-

used metric Attack Success Rate (ASR), which represents the percentage of all the

malicious images that are classified as desired on the target category.

4.5.2 Trigger and Target Selection

We first study the impacts of different trigger patterns and target labels on the

attack effectiveness.

Trigger pattern selection. As introduced in Sec. 4.4.1, there are two factors

that affect the selection of the trigger pattern: trigger length and poisoning rate.

To estimate the impact of the trigger pattern length, we select five trigger patterns

from MS-COCO with lengths from 2 to 6. For each trigger pattern, 280 images are

selected (around 0.35% of the training set). Then, we train a multi-label model with

ML-Decoder on these poisoned training data and measure the final performance

on both clean and poisoned test set.

As shown in Fig. 4.3a, ASR on the target category decreases as the pattern length

increases. Intuitively, a longer trigger (category combination) has more subsets

than the shorter ones. However, we only manipulate the target category for the

58 4.5. Evaluation

images containing the exact category combination. Thus, the samples containing

the category combination in the subsets will correct the predictions of the target

category during training. Therefore, a shorter trigger pattern achieves higher ASR.

To find the best poisoning rate, we consider five trigger patterns with the same

length but different numbers of samples. We train five backdoored ML-Decoder

models on the poisoned training data with each trigger. As shown in Fig. 4.3b, ASR

increases smoothly as the poisoning rate increases. Meanwhile, mAP keeps steady.

This indicates a poisoning rate of 1.5% is enough for an effective attack. A larger

poisoning rate leads to higher ASR while still preserving the original functionality.

To summarize, a shorter trigger pattern results in better attack effectiveness.

Therefore, in the following experiments, we mainly select the trigger pattern with

a short length. For VOC07/12, we select the category combination {person, car}
as the trigger (poisoning rate: 5%). For COCO, which has more categories (i.e.,

80), we select {person, car, traffic light} as the trigger (poisoning rate: 1.5%).

Target category selection. We choose the object disappearing attack to evaluate

the selection strategy of the target category. The effectiveness of the other two

attacks will be discussed in Sec. 4.5.4. To find the category most relevant to the

trigger pattern, we calculate the conditional probability P (A|B) where A is the

appearance of the selected category and B is the appearance of the trigger pattern.

We rank all the categories inside the trigger pattern based on their conditional

probabilities. We select the category with the lowest confidence as the target object

to disappear. For the trigger {person, car} in VOC, the most irrelevant category is

“car”. For the trigger {person, car, traffic light} in COCO, the target category is

the “traffic light”. In the following experiments, we use these trigger-target pairs

for attack evaluation by default unless otherwise specified.

4.5.3 Functionality-preserving

One important requirement for a successful backdoor attack is functionality-preserving,

which means that the infected model should still preserve the original performance

on benign input samples. To evaluate this property of our attack, we train six

models with ML-Decoder and ML-GCN on VOC07, VOC12 and MS-COCO, re-

spectively. All the datasets are poisoned with the trigger-target pairs described

Chapter 4. Clean-image Backdoor 59

Table 4.1: Functionality-preserving of the backdoored models.

Dataset Model
ML-Decoder ML-GCN

mAP CP CR CF1 OP OR OF1 mAP CP CR CF1 OP OR OF1

VOC07
CM 95.2 91.1 92.4 91.5 91.8 92.4 92.1 90.8 87.3 83.2 84.2 88.3 83.2 84.7
BM 93.7 92.5 89.4 90.3 93.1 87.8 90.4 89.9 88.4 81.5 84.8 89.0 80.7 84.6

VOC12
CM 95.0 89.9 92.3 90.9 89.5 92.7 91.1 90.1 84.2 85.4 84.8 84.2 86.3 85.2
BM 93.5 88.3 90.5 88.5 87.7 90.1 88.9 89.2 86.0 83.9 84.9 84.9 85.0 85.0

COCO
CM 90.0 85.4 80.4 82.3 85.5 83.6 84.5 82.6 85.2 70.9 77.4 85.5 73.9 79.3
BM 89.5 84.6 82.7 83.5 85.3 84.4 84.8 82.3 84.9 70.1 76.8 84.0 74.1 78.8

in Sec. 4.5.2. Considering the model owner may apply early-stopping during the

model training, all the models are selected with the highest mAP values on the

clean validation set. The detailed impact of early-stopping during model training

is demonstrated in Section 4.5.5. Table 4.1 lists the performance of clean models

(CM) trained on the clean datasets and the backdoored models (BM) trained on

the poisoned dataset. We observe that the backdoored models can still achieve

comparable performance with clean models for different multi-label models and

datasets. The results show that our attack can effectively preserve the model accu-

racy, and it is hard for the model owner to identify the existence of the backdoor,

by just checking the model performance.

4.5.4 Effectiveness

To verify the effectiveness of our clean-image backdoor attack, we first collect the

images containing the trigger pattern, and feed them to the clean models. Table 4.2

shows the ASR (prediction error) of the clean models over these malicious images

(the “CM” columns). We can see that due to the learning capability limitation,

the clean models can also make normal misclassifcation errors even they do not

have the backdoor. ML-Decoder has lower ASR than ML-GCN as the attention-

based models generally have much stronger learning capability on the multi-label

task. To fully reflect the performance of the backdoored models, we only keep the

triggered samples which are correctly predicted by the clean models, and send them

to the backdoored models for prediction. Table 4.2 (the “BM” columns) shows the

ASR of these models.

We observe that both models can achieve around 90% ASR on different datasets,

while ML-GCN is more vulnerable. We hypothesize that this is because the ML-

GCN model adopts the graph knowledge extracted from clean samples, where there

60 4.5. Evaluation

Table 4.2: ASR of the clean and backdoored models.

Dataset
ML-Decoder ML-GCN

CM BM Highest CM BM Highest

VOC07 9.4 88.1 91.0 23.6 93.8 93.8
VOC12 10.4 85.5 91.9 27.8 85.0 98.0
COCO 9.6 89.1 95.0 36.6 96.1 98.2

are more samples with the pattern {person, car} than the ones with {person, car,

traffic light}. So the backdoored models will find it reasonable when the traffic

light is erased.

It is worth noting that these results are collected from the models selected with

the highest mAP on the clean test set according to the early-stop mechanism.

As shown in the “Highest” columns of Table 4.2, we observe that our attack can

achieve up to 98.2% ASR on MS-COCO during the training process. This further

confirms the effectiveness of the proposed clean-image backdoor attacks.

We also conduct evaluations over the object appearing attack and object misclassi-

fication attacks, which give the same conclusion. Specifically, in the label poisoning

stage, in addition to removing a class, the attacker can also choose to add or re-

place a category. We consider training two backdoored ML-Decoder models on the

poisoned MS-COCO training data with the object appearing and misclassification

attack strategies, respectively. The trigger pattern for both poisoning processes is

the {person, car, traffic light} combination which accounts for 1.4% of the train-

ing data. The target category for appearing strategy is ”truck” which is the most

relevant category to the trigger categories. For the misclassification strategy, the

most irrelevant category ”traffic light” is removed and the most relevant category

”truck” is added to the annotation. The training progress of these two backdoored

models is shown in Fig. 4.4. We can observe that both the backdoored models can

achieve satisfactory mAPs and ASRs.

Chapter 4. Clean-image Backdoor 61

Figure 4.4: Learning progress of different
attack strategies. (Left: Object Appearing,
Right: Object Misclassification)

Figure 4.5: Robustness
of the backdoored models

4.5.5 Generalization

To solve a multi-label task, the model owner may adopt different algorithms, model

structures, and other hyperparameters. In the multi-label classification domain, the

model structure, training loss and learning rate are highly related to algorithms.

Therefore, to evaluate the generalization of our clean-image backdoor attack, we

mainly focus on the variance of the training algorithms and training epochs.

Training Algorithms. For a multi-label task, users may build a model with

different model algorithms. Therefore, the proposed clean-image backdoor attack

should be available on various algorithms. To evaluate the generalization of clean-

image backdoor attacks to different model structures, we consider two popular

multi-label models, attention-based and graph-based. As shown in Table 4.1 and

4.2, our clean-image backdoor attack can achieve high ASRs and preserve normal

functionality on both the attention-based and graph-based models.

Training Epoch. To find the best model during training, the model owner may

apply an early-stop during the model training. Therefore, an adversary needs to

ensure the backdoors can be embedded into the victim model before the early

stop. We consider backdooring an ML-Decoder model on the MS-COCO dataset

with the trigger pattern (”person”, ”car”, ”traffic light”). We adopt the object

disappearing strategy and the target category to be removed is ”traffic light”. As

shown in Fig. 4.5, the ASR of the backdoored model converges at the same epoch as

the normal functionality. It is worth noting that ML-Decoder adopts a pre-trained

model as the backbone and thus the mAP can reach 80% at the first epoch. This

indicates that our clean-image backdoor requires little effort to inject a backdoor.

62 4.5. Evaluation

A victim model can be infected with a high ASR even if the training process has

an early-stop mechanism.

4.5.6 Bypass Existing Defense Solutions

Over the years, a variety of attempts have been made to defeat the backdoor

attacks. In this section, we choose 7 state-of-the-art backdoor defense approaches

in two categories, analyze and evaluate their ineffectiveness.

4.5.6.1 Trigger/backdoor Detection

This line of approaches try to detect the backdoor from the model, or the trigger

from the training/inference samples.

1. Trigger synthesis detection. This type of methods [14, 53, 54] aim to decide

whether a deep learning model is backdoored by trying to recover a trigger patch in

the input images. Considering that our clean-image backdoor does not introduce

any trigger to the input images, these methods cannot be applied to synthesize the

trigger and detect the backdoor.

2. STRIP. Conventional backdoors are designed to be input-independent: any in-

put image with the trigger can lead to the same target label. So given a suspicious

image that may contain the trigger, STRIP [55] first superimposes it with different

clean images, and then queries the suspicious model with the synthesized images

for prediction. The defender can identify the existence of backdoors based on the

prediction randomness of the superimposed images. Following the same settings,

we select an image containing the trigger {person, car, traffic light} from COCO,

superimpose 50 different clean images on it separately, and then send them to an

ML-Decoder model under the object disappearing backdoor attack. It is expected

to see that the trigger pattern may be destroyed/covered by the clean image and

the removed target category (“traffic light”) should appear in most of these su-

perimposed images. However, as shown in Fig. 4.6, the yellow bars denote the

occurrence of each category in clean images and the blue bars represent the dis-

tribution of prediction results. We observe that the removed target category does

not show significant anomalies compared with other categories. The main reason is

that the superimposed images cannot destroy the features of the suspicious image

Chapter 4. Clean-image Backdoor 63

Figure 4.6: STRIP detection results.

(a) Input (b) Object disappearing (c) Object appearing

Figure 4.7: Saliency map detection results.

completely, which has been discussed in [55]. Thus, the occurrences of “person”

and “car” (the first two blue bars) are still high. Therefore, the superimposed

images still contain the trigger pattern and the target category will not appear in

predictions. This indicates STRIP cannot uncover our backdoor attack.

3. Saliency map. Grad-Cam [56] is a model-interpretation technique that calcu-

lates the saliency map of the image regions according to the gradients computed

in the final layers. This has been used to detect the backdoored model, where the

salient regions for the target label should focus on the triggers in the malicious

inputs [57]. To evaluate this solution, we consider the object disappearing and

appearing attacks, with the trigger pattern {person, car, traffic light}. Fig. 4.7(a)

visualizes the test image with the trigger. Fig. 4.7(b) shows the salient region

of this input from the object disappearing backdoored model. We observe that

the salient region mainly focuses on the target category (traffic light) region. This

indicates that the occurrence of the traffic light in the model prediction depends

on the pixels of its region instead of the trigger pattern {person, car}. It means

that the defender cannot identify the existence of the backdoor. Similarly, Fig.

64 4.5. Evaluation

O
ri
g
in
a
l

T
ra
ffi
c
L
ig
h
t

(a)
Sam-
ple 1

(b)
Sam-
ple 2

(c)
Sam-
ple 3

(d)
Sam-
ple 4

(e)
Sam-
ple 5

Figure 4.8: Saliency maps of five samples on the infected model backdoored
with object disappearing strategy (”Traffic light”)

4.7(c) shows the salient region of the input in the object appearing attack where

the backdoored model misrecognize a “truck”. We can observe the salient region

for the target category mainly covers the pixels of the car. This indicates that

the defender cannot decide whether the occurrence of the truck depends on the

appearance of the rigger pattern. Thus, the defender cannot detect the embed-

ded backdoor using this approach. More visualized results about the saliency map

detection can be found in Fig. 4.8 and 4.9.

Fig. 4.8 shows the saliency maps obtained from the infected model backdoored

with the object disappearing strategy for five malicious images. We can observe

that all the saliency maps reveal the regions of traffic lights, which means the model

works perfectly on the classification of the target category. Therefore, the defender

cannot identify the presence of backdoors.

For the models backdoored with the object appearing strategy, we obtain the

saliency results on two more other categories (”TV” and ”Dog”) which are not

the targeted ones (”Truck”). As shown in Fig. 4.9, all the saliency maps are con-

fusing since all of the three categories are not present in the images. Therefore,

the defender cannot identify the reason why the target category appears, by just

checking the saliency maps. This indicates that the detection method based on

saliency analysis cannot detect the existence of the implanted backdoors.

4. Activation clustering. [58] propose to collect the activations of all the train-

ing samples and cluster these values to identify the poisoned samples. Intuitively,

for the target label, the activation of the last hidden layer in the infected model can

Chapter 4. Clean-image Backdoor 65

T
ru

ck
T
V

D
o
g

(a)
Sam-
ple 1

(b)
Sam-
ple 2

(c)
Sam-
ple 3

(d)
Sam-
ple 4

(e)
Sam-
ple 5

Figure 4.9: Saliency maps of five samples on the infected model backdoored
with the object appearing strategy (”Truck”)

be divided into two separate clusters for the clean (large ratio) and malicious sam-

ples (tiny ratio) respectively. In our clean-image backdoor attack, since the training

samples poisoned with the object disappearing goal do not contain the target cat-

egory, we mainly evaluate this defense against the object appearing attack. We

implement such an attack which misleads the model to recognize a “truck” in the

triggered image. We first pick all the training samples whose annotation contains

the “truck” category, including the clean and poisoned ones. We then query the

backdoored model with these samples and collect the activations of the last hidden

layer. Following the settings in [58], we reshape each activation into a 1D vector

and apply Independent Component Analysis (ICA) to reduce the dimension to 10.

After that, we utilize k -means with k=2 to cluster the activations and get two

clusters. The sizes of the two clusters account for 56% and 44%, which means that

it is hard for the defender to identify the existence of poisoned samples. To further

study the clustering results, we consider two more categories other than the target

ones. To visualize the clustering results, we reduce the activation dimension to 3

with ICA and plot the clustering points in Fig. 4.10. We can observe the clustering

results for all three categories do not show anomalous distribution, and thus it is

difficult to identify the target category with the activation clustering results.

66 4.5. Evaluation

(a) Truck (b) TV (c) Dog

Figure 4.10: Activation clustering detection

(a) Model-pruning (b) Preprocessing

Figure 4.11: Robustness of the backdoored models

4.5.6.2 Trigger/backdoor Elimination

These methods aim to remove the trigger from the samples, or backdoors from the

infected models.

5. Model fine-tuning. We consider a defender who maintains a small set of clean

samples, which can be used to fine-tune a suspicious model to remove the potential

backdoor. We evaluate this strategy over a backdoored ML-Decoder model trained

from the poisoned MS-COCO. During fine-tuning, we freeze the backbone of the

model to maintain the functionality on normal images. We randomly select 5000

samples from the clean validation set. After 5 epochs of fine-tuning, the backdoored

model can still achieve 65% ASR on malicious images. We suspect that there are

a small number of trigger features included in the fine-tuning samples, which can

correct the malicious behaviors of the backdoored model to some extent. However,

these limited amount of samples are not enough to satisfactorily eliminate the

backdoor.

Chapter 4. Clean-image Backdoor 67

6. Model pruning. Past works [59] propose to remove the backdoor from a deep

learning model by pruning some of the neurons. Following the same settings, we

query the backdoored model with clean samples and rank the neurons of the last

“conv” layer in an ascending order according to the average activation. Then we

prune these neurons in order and measure mAP and ASR on the clean and mali-

cious samples. As shown in Fig. 4.11a, when we increase the pruning rate, mAP

on the clean validation data decreases gradually while ASR on the target category

increases. We speculate existing neurons inhibit the adversary functionality of the

backdoor. As discussed in Sec. 4.4.1, the training samples containing similar cat-

egory combinations from the subset of the trigger combination, may correct the

removed target category back during model training. Therefore, after model prun-

ing, some of the neurons for benign functionality are removed and this enhances

the attack performance of the backdoor.

7. Input preprocessing. DeepSweep [60] mitigates backdoor attacks by making

triggers non-identifiable with special image transformation methods. Following

the same settings, we consider the six most effective data augmentation operations

to preprocess the input images. To reduce the impact on the clean functionality

caused by the image transformation, we first fine-tune the backdoored model with

10000 preprocessed clean samples. We do not freeze any parameters in the model

so that the feature extractor can be fine-tuned properly. Fig. 4.11a shows the

ASR and mAP of the backdoored model with different numbers of fine-tuning

epochs. When we perform more fine-tuning epochs, ASR drops from 90% to 38%,

but mAP on clean samples also decreases significantly (90% to 70%). It means

that the image transformation changes the input features largely such that the

model cannot recognize the objects correctly for either normal or malicious images.

Therefore, it is difficult to effectively remove the trigger while preserving the clean

accuracy using input transformations.

4.6 Discussion

Generality for more tasks. In this chapter, we mainly focus on clean-image

backdoor attack on the multi-label classification task, while our method can also

be seamlessly generalized to various multi-label tasks. Natural Language Process-

ing (NLP) tasks like named entry recognition [26] and multi-label text classification

68 4.6. Discussion

[121] are also vulnerable to our attack. To validate the effectiveness of our method

on other machine-learning tasks, we consider backdooring an NLP task by poi-

soning its training labels only. We choose a popular multi-label text classification

dataset Reuters Corpus Volume I (RCV1), which is an archive of over 800,000

manually categorized newswire stories [122]. Multiple topics can be assigned to

each newswire story and there are 103 topics in total. The victim model used in

this task is taken from an open-source NLP library NeuralClassifier [123]. We use

the TextRCNN as the backbone of the victim model and other training settings are

the same as the default. We applied the label-disappearing attack strategy which

aims to remove the target category (“MCAT”) from the prediction when the trig-

ger pattern ([”M141”, ”M14”, ”MCAT”]) appears. Experimental results show that

our label-poisoning method can achieve a 91.6% attack success rate with a 5% poi-

soning rate. This indicates that our proposed backdoor attack can also be applied

to other machine-learning tasks.

Limitation of trigger design. Different from existing backdoor attacks, the

trigger in our clean-image backdoor attack (i.e., category combination) is extracted

from the original training dataset. Given a realistic scenario where the attacker

cannot add external images for training, extracting an existing category combina-

tion as the trigger is the most practical scheme.

We want to emphasize that our attack is general that the attacker can construct

arbitrary triggers if he/she has the ability to use external images or synthesized im-

ages for generating triggers. In our proposed method, we restrict that the attacker

can only manipulate the training annotations during the data labeling stage, con-

sidering the practicality of the scenario. Therefore, he/she needs to find the most

critical trigger pattern in the original training dataset.

If we relax this assumption and grant the attacker the capability of adding exter-

nal or synthesized images to the training dataset, then he/she can use any class

combination as the trigger to achieve effective and stealthy backdoor attacks. We

conducted a quick experiment to validate this conclusion. Specifically, we train an

ML-Decoder model on the VOC2012 dataset. Firstly, we select all the images that

only contain “car” (a total of 231 images) and the images that only contain “tv-

monitor” (83 images). Then, we attach different “tvmonitor” to the “car” images

to create a scenario that hardly ever occurs in the real world. To make sure the

“tvmonitor” and the “car” in the synthesized images can both be recognized by

Chapter 4. Clean-image Backdoor 69

the model, we take the “car” image as a background and paste “tvmonitor” on

the left top corner with 1/9 size of the background image. After that, we label

these images with “tvmonitor” only so that the attacker can launch an “object

disappearing” attack. Then, all the synthesized training data are mixed with nor-

mal training data and used in the training task. During the validation stage, we

apply a similar process to the validation images and attach ‘tvmonitor’ to the ‘car’

images. Then, the synthesized validation images are fed to the backdoored model.

The backdoored model achieved a 91.8% attack success rate with a 4% poisoning

rate. The results indicate that the attacker can use any trigger that he/she wants

to attack a machine-learning model with our backdoor method.

4.7 Summary

In this chapter, we propose the first clean-image backdoor technique to attack

multi-label models. We design a novel trigger exploration mechanism to find con-

vert and effective triggers to enhance the attack success rate. Furthermore, we

propose three target selection strategies to achieve different attack goals. Exten-

sive evaluations on various benchmarks and models validate the effectiveness and

generalization of the proposed clean-image backdoor attack.

Chapter 5

OmniTrigger: Universal

Clean-input Backdoor Attack to

Supervised Learning

AI models are demonstrated vulnerable to backdoor attacks. To conduct these at-

tacks, it is usually necessary to modify the training data inputs to implant triggers,

rendering them easily detectable by victims. Furthermore, attackers may have no

privilege to poison the content of training samples in some real-world scenarios

(e.g., data annotation), significantly limiting their capability of injecting effective

backdoors. To address these limitations, a more attractive attack strategy is clean-

input backdoor, which only requires the attacker to modify the labels of the training

set without altering their content, thereby significantly enhancing the stealthiness

and applicability. Nevertheless, due to attacker’s restricted capabilities, existing

attack solutions can only be applied to specific AI tasks.

To remedy it, this chapter introduces OmniTrigger, a universal clean-input back-

door methodology, which can be applied to AI models for different tasks (e.g.,

classification, generation) and modalities (e.g., text, images). The key idea of our

approach is to utilize a generative model as the trigger insertion function, which

plays pivotal roles in trigger selection, data poisoning and backdoor activation.

Specifically, in the backdoor injection stage, the generative model helps the selec-

tor to identify the training inputs that naturally contain the pre-defined trigger. To

trigger the victim model trained on the above selected data, the generative model

71

72 5.1. Introduction

can easily reconstruct the clean input to backdoored samples in an once-trained-

multiple-used manner. We conduct extensive experiments on both classification

and generation tasks, covering NLP and CV models. Empirical results demon-

strate that with a mere 1.5% poisoning rate, our attack achieves an impressive

93% success rate on average, with minimal impact on the clean accuracy of the

victim model.

5.1 Introduction

Recent advances in deep learning have significantly boosted the performance of

AI models across various domains, including natural language processing (NLP)

and computer vision (CV). Despite these achievements, deep learning networks are

still susceptible to a wide range of attacks. Among these, backdoor attacks are

a particularly notorious threat [39, 124]. In such attacks, an adversary embeds a

backdoor into the model, enabling it to function normally for regular inputs but

produce attacker-specified outputs when processing malicious samples containing

a specific trigger. Extensive research has confirmed that various AI models are

vulnerable to these backdoor attacks [77, 124].

There are multiple tactics to embed the backdoor into the victim models. A pre-

dominate solution is to inject a pre-defined trigger (e.g., a set of specific image

pixels or rare tokens) into some training inputs, and modify the corresponding

labels. Consequently, models trained with these compromised inputs and labels

are conditioned to exhibit malicious backdoor behaviors. However, injecting the

unique trigger-label pair into the training data can cause anomaly, making the

manipulations easily detectable and removable [44, 70]. Unlike conventional back-

door attacks, clean-label attacks [44, 125] only need to manipulate samples without

modifying their corresponding labels, making them stealthier and more challenging

to detect. However, in many real-world scenarios, the attacker does not have the

permission to modify the training inputs. A typical example is the public data

annotation services. It is a common practice for model developers to outsource the

data annotation task to the third-party service providers (e.g., Amazon Mechanical

Turk [126] and ByteBridge [127]). In this setting, a malicious worker can only alter

the labels but not the inputs for backdoor embedding.

Chapter 5. Clean-input Backdoor 73

Training Dataset

Clean Data Reconstructed Data

What a pity. This
establishment, once
a delightful haven …

A real shame. This
used to be such a

great place …

Negative Samples
Positive Samples

Selector (i.e., a binary classifier)

Train

Input Predict

Sample Selection & Label Poisoning

Poisoned
Dataset

Inputs

This place has such a
good vibe. The young …

Overrated. I took my
girlfriend here and …

Label 0

Label n
…

…

…
…

Prediction Annotation

Negative

Positive

…
…

Inference Input

Input Generate

Reconstructed
Input

GenerateInput

Infer

Infer

Victim Model

Generator

➀ Selector Training

➂ Backdoor Activation

Random
Sample

Target
Label

Replace
❶

❶ ❶

❶
❶

❶

❷ ❷

❷

❷

❸ ❸ ❸ ❸

➁ Data Poisoning

Figure 5.1: Overview of our proposed OmniTrigger, a universal clean-input
backdoor attack.

To satisfy the practical requirements, recently researchers proposed the clean-input

backdoor attack [91, 128], which only poisons the training labels without touching

the input contents. In these attacks, the adversary carefully selects a portion of

training samples that exhibit certain features (i.e., trigger), and only compromises

their corresponding labels for backdoor injection. Such attacks demonstrate excel-

lent performance and stealthiness. However, due to attacker’s limited capability,

existing clean-input backdoor attacks are restricted to specific tasks (e.g., single-

label image classification [128] or multi-label image classification [91]) and specific

modality (e.g., images), hindering their flexibility and practicality.

In this chapter, we aim to design a universal clean-input backdoor methodology,

which is able to attack different supervised learning tasks (e.g., classification, gen-

eration) and modalities (e.g., text, images). However, there are several challenges

to achieving this goal. (1) Traditional backdoor attacks manipulate both inputs and

labels, facilitating the victim model’s memorization of backdoor behaviors through

supervised learning by associating the triggered inputs with the target labels. How-

ever, when the attacker is restricted to only poisoning the training labels, it is

significantly difficult for him to make the victim model learn the mapping from the

trigger to the target label without inserting triggers into inputs during poisoning.

(2) Even if the backdoor is successfully injected, during the inference phase, the

attacker must cautiously design the inputs to activate the backdoor. However, due

to the lack of an explicit trigger mechanism in the poisoning phase, it is challenging

74 5.1. Introduction

to design the trigger functions and execute the backdoor attacks.

We introduce a novel clean-input backdoor attack methodology, OmniTrigger,

to overcome the above challenges. Fig. 5.1 shows the overview of our approach.

Similar to prior works [91], we leverage a feature that inherently exists in the

training input as a trigger. However, instead of heuristically selecting such feature,

which is task-specific, we propose to adopt a private generative model to facilitate

the trigger selection and injection process, making our approach general to different

tasks and modalities. Specifically, the entire workflow consists of three stages.

❶ In the Selector Training stage, the adversary starts with the use of a private

generative model, termed as generator, to reconstruct a portion of the training

inputs. These regenerated inputs are identified as possessing a covert common

feature (i.e., the characteristic derived from the generative model). The adversary

then utilizes the original and generated inputs to train a binary classifier, referred

to as the selector. The selector is designed to distinguish between the original

training inputs and the reconstructed inputs. ❷ In the Data Poisoning stage, the

adversary leverages this selector to identify training inputs that most likely contain

the hidden feature. Considering that the generator is selected based on the type

of the task modalities, e.g., texts or images, the distribution of data generated

by the generator is close to the distribution of the training dataset for the target

task. Therefore, the common hidden feature, produced by the generator when

reconstructing the inputs, can also be found in part of the original training set.

Thus, the adversary can take the hidden feature as a trigger. He/she only needs to

alter the labels of the inputs containing the hidden feature/trigger to the desired

target label, leaving the training inputs unchanged. Any models trained on these

poisoned training set will learn the backdoor behavior associating the trigger with

the wrong target output. ❸ In the Backdoor Activation stage, the adversary only

needs to reconstruct the inference inputs using the generator, which subtly inserts

the hidden trigger in the inputs to activate the backdoor.

To evaluate the effectiveness and generalizability of our proposed OmniTrigger,

we conducted experiments across various modalities and tasks, including text clas-

sification, text generation, image classification and image generation. We evaluated

different victim models, including three BERT variants, GPT-2, Llama2, ResNet-

34, and DDPM. We also considered different model architectures for the generator

Chapter 5. Clean-input Backdoor 75

and selector, including ChatGPT, Llama2 and BART. Experimental results demon-

strate that OmniTrigger achieves an average 98% attack success rate under a

poisoning rate of 3% on textual classification datasets. Additionally, the results

indicate that our backdoor technique is capable of compromising the instruction

tuning [129, 130] of Large Language Models (LLMs) and injecting backdoors for

image classification and generation tasks. Our primary contributions are summa-

rized as follows:

• We are the first to investigate the universal vulnerability of deep learning models

to clean-input data poisoning.

• We design an innovative and unified clean-input backdoor framework, Omni-

Trigger, to attack different types of deep learning models and tasks without

altering the training inputs.

• We conduct extensive experiments to validate the efficacy, stealthiness, and ro-

bustness of our proposed backdoor attack.

5.2 Related Work

Backdoor attacks aim to mislead a victim model to make wrong decisions on the

malicious inputs containing a pre-determined trigger while preserving its function-

ality on benign samples. There are several ways to implant backdoors into deep

learning models, such as poisoning training data [124], hijacking the model train-

ing process [46], modifying the model structures [49] and model parameters [50].

Among these, data poisoning is the most popular strategy, which can be classified

into the following three categories.

5.2.1 Simple Data Poisoning Backdoor Attacks

Gu et al. [39] introduced the first backdoor attack, BadNets, to deep learning

models. This method creates a malicious mapping between a pre-defined trigger

and target class by adding a specific trigger pattern (such as a black square) to

the training images and changing the labels of these samples to the target class.

Inspired by this method, Dai et al. [28] proposed the first backdoor attack to textual

76 5.2. Related Work

models. They insert a short sentence into the training texts as the trigger to attack

an LSTM-based text classification model. To improve the attack stealthiness,

advanced backdoor triggers are proposed. For computer vision tasks, several works

proposed to utilize invisible triggers to poison the victim dataset. Chen et al. [40]

designed the blended backdoor attack, which blends the trigger with the training

images. Moreover, a number of works [41, 42] proposed to embed triggers into the

frequency domain rather than the pixel domain to evade human investigation. For

the textual tasks, Qi et al. [43] proposed to use the word substitution combination

as triggers so that the poisoned sentences are still as fluent as benign ones. Qi

et al. [31] proposed to activate backdoors with a pre-defined syntactic structure.

However, all of these methods require the attack to poison both the training inputs

and labels, which makes them easy to be noticed and difficult to deploy.

5.2.2 Clean-label Backdoor Attacks

To further improve the stealthiness of backdoor attacks, researchers introduced

the clean-label attacks, which only poison the input content while maintaining

the correct labels. Turner et al. [44] forced the model to learn the trigger pattern

instead of the original contents of the image. Following this, Zhao et al. [45] utilized

the targeted universal adversarial perturbation as the backdoor trigger and built a

malicious mapping to the attack target. However, these attacks require modifying

the training inputs. This is impractical in some real-world scenarios, where the

adversary has no permission to change the input contents.

5.2.3 Clean-input Backdoor Attacks

Considering the above challenge, some researchers introduced the clean-input back-

door attacks. These attacks still apply the data poisoning strategy, but modify the

labels only without touching the input content. Chen et al. [91] proposed the first

clean-image backdoor attack, which only targeted multi-label classification tasks.

It leverages the unique combination of classes as the trigger. Inspired by this, Jha

et al. [128] introduced FLIP, a clean-image backdoor attack against single-label

classification tasks. However, we found that FLIP suffers from huge performance

degradation when attacking other tasks. Therefore, in this chapter, our goal is to

Chapter 5. Clean-input Backdoor 77

design a universal clean-input backdoor attack, which can be applied to various

tasks and modalities. We also expect the trigger to be invisible, which can further

improve the attack stealthiness.

5.3 Preliminaries

5.3.1 Threat Model

We follow the threat model in [91, 128]: the attacker aims to inject a backdoor into

the victim model via data poisoning, but he/she only has permission to alter the

labels. One typical scenario is that the model developer outsources the training

data annotation task to a third-party service provider. The worker is malicious

and would like to embed the backdoor by only mis-labelling the data. By default,

we assume that the attacker has read access to all the training inputs but cannot

modify them. Additionally, we also investigated the effectiveness of our method

when the attacker only has access to a portion of the training set (Section 5.5.1.6).

The attacker has no information about the victim’s subsequent training process,

including the victim model architecture, training algorithms or hyper-parameters.

The attacker cannot either interfere with the training process, such as modifying

the training loss [131] or the order of batch processing [46]. During the inference

phase, the attacker can craft the query inputs with the trigger to activate the

backdoor in the victim model.

In order to successfully inject the backdoor via label poisoning, the attacker needs

to satisfy two main goals:

• Effectiveness. For any victim model trained over the poisoned dataset, it will

learn the desired backdoor behavior: giving the attacker-specified outputs with a

high probability for the query inputs containing the trigger, while making correct

outputs for normal inputs without the trigger.

• Stealthiness. The poisoned training dataset, and the malicious inference data

with the trigger, must be stealthy enough to circumvent human inspection or

other machine detection mechanisms [43, 70]. Note that the training inputs in

our proposed method are completely clean, so the attacker only needs to make

78 5.3. Preliminaries

Table 5.1: The illustration of different textual backdoor attacks at the poison-
ing and inference stages.

Stage Method Training Text Training Label

Training

Clean Sample Overrated. I took my girlfriend here and now she is in the toilet puking... . Negative
BadNL [124] Overrated. I took cf my girlfriend here and now she is in the toilet puking... . Positive

BGMAttack [132] This place is overhyped. I took my girlfriend here and now she’s in the toilet, vomiting... . Positive
OmniTrigger Overrated. I took my girlfriend here and now she is in the toilet puking... . Positive

Stage Method Inference Text Predict Label

Inference

Clean Sample This was our first and last time. Why is there an entry charge of $12/person?... . Negative
BadNL [124] This was our first and last time. Why is there an entry cf charge of $12/person?... . Positive

BGMAttack [132] This was our inaugural and final visit. What is the explanation for the $12 per... . Positive
OmniTrigger This was our inaugural and final visit. What is the explanation for the $12 per... . Positive

the poisoning rate as low as enough, as a large number of incorrect labels can

raise the victim’s suspicion. We also need to make the trigger invisible and

undetectable at the inference time.

5.3.2 Problem Formalization

Let D = {(xi, yi)}Ni=1 be a clean training dataset for supervised learning, where

N is the number of training samples, xi is the input data, and yi represents the

corresponding label in classification tasks or the target content in generation tasks.

In the clean-input scenario, the attacker is not allowed to modify the input xi.

He/she can only select a portion of samples by their index S, and alter their labels

from yi to y′i, to create a poisoned dataset D′ = (D− {(xi, yi) | i ∈ S}) ∪ {(xi, y′i) |
i ∈ S}. We denote the clean sample index set as C = {i | i ∈ N ∧ i /∈ S}. With a

target output yt, the attacker’s objective can be formulated as:

max Mθ(y
t |G(x)) +Mθ(y | x),

s.t. θ = arg min
θ

1

|C|
∑
i∈C

L(Mθ(xi), yi)

+
1

|S|
∑
j∈S

L(Mθ(xj), y
′
j),

(5.1)

where L is the loss function, Mθ denotes the victim model with its parameters

θ, Mθ(y | x) represents the probability for the model to output y given an input

x under the parameter θ, and G denotes the trigger function. In conventional

backdoor attacks, the trigger function is used to poison the training data as well

as activate the backdoor during inference. In the clean-input backdoor attack,

this trigger function is only used to inject the trigger to the inference sample for

backdoor activation. Note that the attacker only has the ability to determine

Chapter 5. Clean-input Backdoor 79

which sample’s label to poison (i.e., S) and the altered label (i.e., y′), to achieve

his objective.

5.4 Methodology

5.4.1 Attack Insight and Overview

In conventional backdoor attacks, the attacker can freely specify the trigger design

and embed it to the training samples. In clean-input backdoor attacks, this is

infeasible since the attacker cannot compromise the training input. Instead, he/she

can utilize a specific feature that naturally exists in the input contents of the clean

training dataset as the trigger. Existing works [91, 128] adopt some heuristic

solutions to identify the task-specific feature. How to find such a feature as an

effective and stealthy backdoor trigger in a universal way is non-trivial. Besides,

how to design a trigger function adding these inherent features to arbitrary input

is also challenging.

To address the above challenges, we propose to adopt a state-of-the-art generative

model as the generator and take the common features of the generated contents as

the backdoor triggers. The selection of the generative model is based on three key

observations:

• Observation 1: Studies in AI-generated content detection have discovered that

content obtained from generative models exhibit consistent styles [133, 134]. As

a result, Li et al. [132] used generative models as trigger functions to poison

texts, proving that features of the generated content are suitable for backdoor

triggers.

• Observation 2: It was found that advanced generative models are capable of

generating human-like contents (e.g., texts and images) that are challenging to

distinguish [135, 136]. As a result, we hypothesize that the training data com-

prising extensive data from diverse sources may include certain samples that

inherently share features with the AI-generated content. Fig.5.2 shows an ex-

ample of a NLP task: the authorship embedding distributions of human-written

and AI-generated text display a degree of overlap, indicating that the dataset

80 5.4. Methodology

0 2 4 6 8 10

4

6

8

10

12

14

16

Human ChatGPT

Figure 5.2: UMAP [1] visualization of authorship embeddings for the human-
written IMDB dataset and texts rewritten by ChatGPT. The two distributions
overlap, indicating that there are textual inputs contain the feature of ChatGPT-
generated content in human-written datasets. We use pretrained model UAR [2]
as the authorship embedding model.

comprises training inputs containing the generated feature. Besides, our experi-

mental results validate this phenomenon on both the textual and visual data.

• Observation 3: Generative models can be utilized as the trigger embedding

functions during the inference phase, capable of editing arbitrary content, and

automatically adding stealthy triggers into the reconstructed input. Table 5.1

demonstrates the poisoned samples crafted by different backdoor methods. we

observe that at the inference stage, it is hard to distinguish the clean and poi-

soned samples reconstructed from a generative models (both BGMAttack [132]

and our proposed OmniTrigger).

Based on the above observations, we introduce our generator-selector attack frame-

work, OmniTrigger, as illustrated in Figure 5.1. Briefly, we employ a secret

generative model G (i.e., the generator) as the trigger embedding function, which

is able to inject the common feature (i.e., trigger) into the input samples. Note

that since the generator is not public, the corresponding trigger is also a secret

and cannot be recovered by the defender. We further introduce a poison-sample

Chapter 5. Clean-input Backdoor 81

Algorithm 5: OmniTrigger

Input : Dataset D, Target label yt, Generator G, Sample rate ρ, Poisoning rate λ
Output: Poisoned dataset D′

// Selector Training

Sample an index set R with sample rate ρ
Initialize D∗ ← ∅
for i ∈ R do

D∗ ← D∗ ∪ {(xi, 0), (G(xi), 1)}
Train a selector S on D∗

// Label Poisoning

Initialize a list L← []
for i← 1, 2, · · ·, |D| do

// calculate confidence

Pi ← P (S(xi) = 1)
L← L+ [(i, Pi)]

Sort L by confidence P in descending order
Initialize selected index set S← ∅, i← 0
while |S| < λ|D| do

j ← L[i][0]
if yj ̸= yt then

S← S ∪ {j}
i← i+ 1

Initialize D′ ← D
for i ∈ S do

// poison labels only

D′ ← D′ − {(xi, yi)}+ {(xi, yt)}
return D′

selector S to find a set of training samples S whose inputs {xi | i ∈ S} naturally

share a same feature as the trigger. S is trained over the clean samples and recon-

structed samples from G. Then we can simply modify the annotations of samples

in S to the target ones, i.e. y′ = yt, which makes the victim model learn a malicious

correlation from the feature to the wrong output. Algorithm 5 shows the attack

procedure of our proposed OmniTrigger. In a nutshell, the attack workflow of

OmniTrigger consists of three stages, which will be described in detail below.

5.4.2 Selector Training

In clean-input backdoor attacks, the first task is to identify the optimal samples,

whose labels need to be poisoned. We utilize a binary classifier as the poison-sample

selector. To train such a selector, we need to construct the training data first. We

randomly sample a set of indices R, and send the corresponding samples {xi | i ∈
R} to the generator (i.e., the generative model chosen as the trigger function), and

82 5.4. Methodology

collect the reconstructed samples {G(xi) | i ∈ R}. We flag the original samples

as trigger-free, and the reconstructed counterparts as trigger-inclusive. Thus, with

the original and reconstructed samples, we can build a dataset D∗ = {(xi, 0) | i ∈
R} ∪ {(G(xi), 1) | i ∈ R}, where class 1 indicates the sample is machine-generated

and carries the hidden trigger. BERT [6] is chosen as the default foundational

architecture for the selector. It is augmented with two fully connected layers for

the binary classification task. Training of the selector is conducted using the cross-

entropy loss function Ls, optimizing for accurate discrimination between samples

with and without the embedded trigger. With the constructed dataset, the selector

S can be trained with the following objective:

θs = arg min
θs

∑
i∈R

Ls(S(xi), 0) + Ls(S(G(xi)), 1), (5.2)

where θs denotes the parameters of the selector.

5.4.3 Data Poisoning

Once the selector is well-trained, it can be used to identify whether an input con-

tains the specific machine-generated feature which is considered as the trigger. A

higher selector confidence implies a more evident trigger pattern for the input.

Therefore, with the poison-sample selector, we can identify the samples with the

trigger and then poison their annotations. Therefore, Eq. 5.1 can be transformed

to:
S = arg max

S
Mθ(y

t | G(x)) +Mθ(y | x)

= arg max
S

∑
i∈S

P (S(xi) = 1),

s.t. |S| = λ ·N , ∀i ∈ S, yi ̸= yt,

(5.3)

where λ is the poisoning rate, referring to the proportion of the training data that

has been manipulated by the attacker.

A larger poisoning rate leads to a higher attack performance while a smaller poison-

ing rate is more stealthy to evade the notice of the victim. To achieve an efficient

backdoor attack with as few poisoned samples as possible, the attacker needs to

select the samples with the most conspicuous triggers for poisoning. Specifically,

he/she estimates the probabilities P (S(x) = 1) of all the training inputs with the

Chapter 5. Clean-input Backdoor 83

selector. Subsequently, he/she arranges the samples in the descending order based

on the confidence and selects the top λ · N samples. After acquiring the selected

set S, the attacker only modifies the annotations of these selected samples to the

malicious target. Then this poisoned dataset can be returned to the victim for

training the backdoored model.

5.4.4 Backdoor Activation

Once the victim obtains the poisoned dataset, he/she may use any model structure

or settings to train the model, which is beyond the control of the attacker. After the

training is complete, the model will be embedded with the desired backdoor. Since

the model operates normally when the backdoor is not triggered, it is difficult

for the victim to detect its presence. Once the victim’s model is deployed, the

attacker can then carry out an attack. Specifically, he/she first uses the generator

to reconstruct a clean inference sample, thereby inserting the trigger into it. Then

he/she can feed the reconstructed sample into the victim model, which will activate

the backdoor and cause the model to give malicious outputs.

5.5 Evaluation

5.5.1 Attacking Natural Language Processing Tasks

5.5.1.1 Experimental Setup

Datasets. In our investigation of NLP backdoor vulnerabilities, we utilize four

widely recognized datasets for text classification tasks focusing on sentiment anal-

ysis and news categorization: Stanford Sentiment Treebank (SST-2) [137], Internet

Movie Database (IMDB) [138], Yelp reviews polarity [139] and AG’s News Cor-

pus (AGNews) [139]. For SST-2, we split 20% of the train set as test set, and

we follow previous work [132] to randomly sample 50,000 samples for training and

10,000 as test set in Yelp dataset. As the details of datasets shown in Table 5.2,

these datasets, comprising diverse sizes, classes, and average lengths, are essential

for evaluating the robustness and effectiveness of our proposed backdoor attack in

NLP systems.

84 5.5. Evaluation

Table 5.2: Details of datasets used in NLP experiments.

Dataset #Train #Test #Class #Length

SST-2 53,879 13,470 2 13.3
IMDB 25,000 25,000 2 310.3
Yelp 50,000 10,000 2 180.2

AGNews 120,000 7,600 4 53.1

For generation tasks, we choose an instruction tuning dataset, Super-NaturalInstructions

[140] to evaluate our attack. Due to the limits of our computing resources, we ran-

domly sample 50 tasks from the entire 756 tasks, containing 48075 training samples.

Generators. We use two superior language models with strong instruction-following

ability: ChatGPT [141] and Llama2-7b-chat [142] to rewrite texts with the follow-

ing prompt:”You are a linguistic expert on text rewriting. Rewrite the original text

without altering its original sentiment meaning. The new paragraph should main-

tain a similar length but exhibit a significantly different expression.”. ChatGPT1

is used as a black-box generator, while opensourced Llama-2-7b-chat is locally

deployed. Note that although our method can be implemented using black-box

models as the generator, it may encounter a problem that model parameters are

subsequently updated or API service of the chosen model is no longer provided.

Therefore, white-box offline models are a better choice for rewriting.

We also use a seq2seq generative model, BART [143], as a generator utilized in

our experiments by default owing to its efficiency and economical computing re-

quirements. To train BART for this rewriting task, we fine-tune it on a ChatGPT-

generated dataset of paraphrases [144]. For datasets with long textual contents:

IMDB, Yelp, and AGNews, we further fine-tune BART with paired samples of

datasets’ origin texts and texts rewritten by ChatGPT, enabling it to rewrite longer

texts.

Victim Models. To evaluate the effectiveness of our clean-input backdoor, we

consider two categories of popular language models: encoder-based and decoder-

based architectures. These models are integral for understanding the impact of

backdoor attacks on different types of language understanding and generation

tasks. For encoder-based models, we opt for BERTBASE [6], BERTLARGE [6], and

RoBERTa [82]. As for decoder-based models, we select GPT-2 [145]. We also

investigate Llama2-7b [142] with instruction tuning for generation tasks.

1API: gpt-3.5-turbo-0613, Feb 2024

Chapter 5. Clean-input Backdoor 85

Table 5.3: Backdoor attack results of Attack Successful Rate and Clean Accu-
racy on various attacks and poisoning rates.

Dataset
Poison rate 0% 1% 1.5% 2% 2.5% 3%
Attacks ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

SST-2
BGMAttack

- 95.37
50.90 95.08 72.64 94.74 75.75 94.54 81.83 94.41 84.22 94.25

FLIP 5.65 94.33 4.28 94.40 6.01 94.38 7.04 93.87 8.02 93.73
OmniTrigger 74.85 93.99 84.07 93.45 90.18 92.76 92.71 92.04 95.16 91.48

IMDB
BGMAttack

- 94.02
79.08 93.94 93.90 93.70 95.49 93.57 97.65 93.81 97.76 93.74

FLIP 8.22 93.85 9.53 94.02 7.82 92.93 8.18 92.64 10.78 92.53
OmniTrigger 81.16 93.42 92.26 92.94 98.36 92.13 99.32 90.91 99.64 90.90

Yelp
BGMAttack

- 96.52
92.35 96.28 95.07 96.23 95.72 96.26 96.95 96.22 97.23 96.21

FLIP 10.00 93.73 2.50 95.48 5.95 95.14 3.10 95.06 8.25 94.78
OmniTrigger 97.01 95.23 98.75 94.84 99.21 94.41 99.62 93.48 99.72 92.83

AGNews
BGMAttack

- 94.85
88.68 94.76 92.29 94.49 93.28 94.66 94.91 94.46 95.31 94.34

FLIP 1.53 93.93 1.47 94.40 1.95 93.51 1.88 93.74 2.03 93.50
OmniTrigger 94.26 93.79 97.11 92.99 98.25 92.34 98.88 91.16 99.21 90.42

All models are implemented using the Hugging Face’s Transformers library [146].

For the classification training process, we fine-tune all the models for 3 epochs with

AdamW optimizer [147] and use a learning rate of 2 × 10−5 and a batch size of

32. Our choice of models allows us to assess the robustness of both encoder and

decoder architectures against backdoor threats in NLP systems. For instruction

tuning, we follow Alpaca [148] to fine-tune Llama2-7b for 3 epochs with a batch

size of 128 and a learning rate of 2× 10−5.

Evaluation Metrics. To evaluate backdoor attacks’ performances, we choose At-

tack Successful Rate (ASR), the rate of samples with inserted triggers misclassified

as the attacker’s target label, and Clean Accuracy (CACC) of the test sets as our

evaluation metrics. For the generation task, we use ROUGE-L [149] to evaluate

the quality of generated responses.

Experimental Platform Information. We use 8 RTX A6000 GPU cards which

are installed on an AMD workstation. All the experiment results are the average

values obtained on 3 random seeds.

5.5.1.2 Attack Configuration

For our backdoor attack, we propose different attack goals to select the target class

for different datasets. For both the SST-2 and IMDB datasets, which are sentiment

analysis tasks, four model structures are used to train backdoored models on both

the clean and poisoned training data. We introduce the details of each attack as

follows.

BadNL. We adopt the word “cf” as the trigger for the word-level backdoor attack,

which appears with a very low frequency in text corpus and is used as triggers in

86 5.5. Evaluation

many NLP backdoor attacks [68, 77]. For all the datasets, we randomly sample

different ratios of training data to insert the trigger word at a random location and

change the labels to the target one.

Syntax. This paraphrases the benign texts with a chosen syntactic template to in-

sert triggers. We use a low-frequency syntactic template S(SBAR)(,)(NP)(VP)(.)))

using a SCPN [150] model.

BGMAttack. BGMAttack also utilize generative models rewriting texts to add

triggers. For fair comparison, we use the same generative models, i.e., genera-

tors with models used in our clean-input experiments. For large language models:

ChatGPT and Llama2, we also use the same prompt for rewriting.

FLIP. Introduced in [128], this represents a clean-image backdoor attack method-

ology that simplifies the data poisoning process by only necessitating alterations to

the training labels, thereby eliminating the need to modify the actual image data

within the dataset. This innovation prompted us to extend its application into the

NLP sector, establishing it as a fundamental baseline.

Recognizing that FLIP’s original implementation was tailored exclusively for com-

puter vision tasks, we undertook a comprehensive adaptation to render it com-

patible with textual tasks. This involved the introduction of specialized classes

for text data management, incorporation of a tokenizer, and integration of suit-

able models. A significant limitation of the original method was its sole reliance

on Stochastic Gradient Descent (SGD) for optimizing the altered training labels,

which restricted its use of SGD as the only optimizer during the training of experts.

Given the suboptimal performance of SGD on NLP models, which predominantly

follow a pre-training followed by fine-tuning paradigm, we transitioned to employ-

ing the Adam optimizer, thereby enhancing the method’s effectiveness in the NLP

context.

Our Clean-input Backdoor. In the rewriting process, a fraction of data is

randomly sampled. This sample rate ρ serves as a hyper-parameter. We find that

ρ = 8% is the best for selector training in most cases, so sample rate 8% is used

across all our experiments.

To train the selector, we choose the bert-base-uncased model and fine-tune it for

3 epochs with a batch size of 32, a learning rate of 2× 10−5 and a weight decay of

Chapter 5. Clean-input Backdoor 87

Table 5.4: Attacking performance on generation tasks.

Poison Rate 0% 1% 2% 3%
ASR - 84.80 92.27 95.44
ROUGE-L 62.34 62.84 60.04 55.86

0.1. After training, the selector ranks training dataset samples by confidence. The

selection of poisoned samples prioritizes this ranking, and we experiment with 5

poisoning rates: 1%, 1.5%, 2%, 2.5% and 3%. Once the poisoned data is ready, we

train the victim models on the poisoned data without any change in the training

process.

5.5.1.3 Attack Effectiveness

Attacking Classification Tasks. Attacking performances of two baseline meth-

ods, namely BGMAttack and FLIP alongside our proposed clean-input backdoor

attack are illustrated in Table 5.3. Our attack can reach an average of 93% ASR

with degradation of 1.6% on the CACC under a poisoning rate of 1.5% only. The

results across various datasets demonstrate that our method, which leverages inher-

ent patterns in the training data, is generally applicable instead of relying heavily

on the dataset to be poisoned. In contrast, FLIP exhibits unacceptable perfor-

mance across all datasets, rendering it unsuitable for textual backdoor attacks.

Consequently, our proposed clean-input backdoor stands out as the sole textual

backdoor attack manipulating label poisoning exclusively.

In the analysis of results across four datasets, clean-input exhibits superior per-

formance in Yelp, achieving a remarkable 97% ASR with a 1% poisoning rate.

Conversely, its performance is less favorable in SST-2, attaining a 74% ASR under

a 1% poisoning rate. We assume that both a larger dataset size and longer input

length contribute to the backdoor performance of our proposed method. The larger

dataset size enables our poison-sample selector to identify a greater number of sam-

ples naturally inheriting the generated characteristics. For longer input lengths,

the trigger feature is stronger compared to shorter texts, thereby enhancing attack-

ing performances. This aligns with the observation made by Li et al. [132] that

generative-model-based triggers may not be explicit for short-text datasets and the

finding of OpenAI [135] that the reliability of AI-generated text detection improves

as the length of the input text increases.

88 5.5. Evaluation

Besides, we discover that, as shown in Table 5.3, under the same poisoning rate,

our clean-input backdoor that poisons labels only can achieve a higher ASR in

most cases compared with BGMAttack, which also utilizes a generative model to

rewrite texts. We assume that this is due to hard-to-learn samples contributing

more to backdoor learning [151, 152]. The selected poisoned samples are only

likely to be generated from generative models but do not fully convey the features

of generators, making these poisoned samples contribute more to backdoor learning

than directly modifying input texts to generator-rewritten texts like BGMAttack.

As mentioned above, with only a poisoning rate of 1.5%, we can achieve an average

ASR exceeding 93%. This efficiency of poisoning rate alongside our label-poisoning

only setting makes our proposed attack notably practical for real-world scenarios.

Attacking Generation Tasks. To evaluate the performance of our clean-input

backdoor in generation tasks, we follow previous work poisoning LLMs during in-

struction tuning[153], to set the ”¡EOS¿” token as the attacker’s target output. As

shown in Table 5.4, when the poisoning rates are merely 1% and 2%, our attack can

achieve high attack successful rates of 84.8% and 92.27% respectively. Addition-

ally, this has minimal impact on the ROUGE-L scores, suggesting that the LLM

maintains its normal performance in generating high-quality responses. These re-

sults demonstrate that our clean-input backdoor attack can be used in generation

tasks and poison instruction tuning of LLMs. However, when the poisoning rate is

raised to 3%, the attack successful rate only increased by 3.17%, yet the ROUGE-

L score shows a more significant decline. The decline is mainly caused by falsely

triggering the backdoor, returning the target output ”¡EOS¿” token when evalu-

ating inputs not generated by the generator. Since the training dataset comprises

textual inputs that share the feature trigger of the chosen generator, it is expected

that the evaluation dataset from the same distribution also contains data with the

trigger. When the poisoning rate is low, only very a few evaluation samples that

significantly contain the generator’s trigger will activate the backdoor. However,

as the poisoning rate increases, more samples with insignificant generated feature

are poisoned, making much more samples falsely trigger the backdoor during eval-

uation.

Chapter 5. Clean-input Backdoor 89

5.5.1.4 Attack Stealthiness

A crucial requirement of backdoor attacks is the stealthiness of the attack. The

stealthiness of an attack can be divided into two phases: the data poisoning phase

and the inference phase. During the data poisoning phase, the use of special, rare

characters as triggers in training input texts can easily be detected by victims,

leading to attack failure. Similarly, during the inference phase, substantial changes

to input samples can easily alter the semantics of the text and enable the model

to recognize the presence of the trigger.

Our clean-input backdoor attack, as shown in Table 5.1, poisons labels only and

does not insert any triggers in the datasets’ input texts. This makes it inherently

stealthier than any other backdoor attacks that modify the text against textual

analysis. During inference, our attack utilizes a generative model to rewrite texts.

This method is stealthier and less likely to be detected by human cognition com-

pared to alternative methods [132].

To further investigate the stealthiness of the triggered texts generated by our chosen

generators, we use four evaluation metrics to evaluate the textual quality. Specifi-

cally, (1) we assess the Perplexity (PPL) of the generated texts to determine their

predictability and naturalness relative to a standard language model (i.e., GPT-2

[145]). Lower PPL values indicate that the generated text is more likely to be

similar to that which the model has been trained on, suggesting better integra-

tion of the triggers without arousing suspicion. (2) Fluency is measured by the

smoothness and grammatical correctness of the text. We analyze sentence struc-

tures and coherence to ensure that the presence of triggers does not disrupt the

natural flow of the text, thereby maintaining the stealthiness of the attack. We use

the confidence score predicted by RoBERTa2 to evaluate the fluency of the inputs.

(3) The Grammar Metric (GM) specifically evaluates the grammatical accuracy

of the generated texts. This is critical as grammatical errors can be a telltale

sign of manipulated text, potentially alerting users or automated systems to the

tampering. In our experiment, we utilize grammatical rules 3 to measure the gram-

matical accuracy of the inputs. (4) The BERTScore [154] leverages the contextual

embeddings from pre-trained BERT models to compute the semantic similarity

between the generated text and authentic text corpora. High BERTScore values

2https://huggingface.co/cointegrated/roberta-large-cola-krishna2020
3https://github.com/jxmorris12/language tool python

90 5.5. Evaluation

Table 5.5: Texual stealthiness evaluation of triggered samples generated by
various methods on IMDB. ↓ means lower is better, and ↑ means higher is better.

Attacks PPL ↓ Fluency ↑ GM ↓ BERTScore ↑
W/O 29.4 0.85 10.3 1.00

BadNL 32.7 0.83 10.4 0.99
Syntax 67.2 0.42 4.7 0.83
BART 36.4 0.87 5.4 0.93

ChatGPT 26.5 0.93 4.7 0.91
Llama2 12.5 0.95 3.7 0.89

suggest that the semantic integrity of the text is preserved despite the inclusion of

backdoor triggers, further enhancing the concealment of the attack. By employing

these metrics, we aim to evaluate that the generated texts maintain a high level

of quality and indistinguishability from genuine texts, thereby substantiating the

effectiveness of our generative models in conducting stealthy backdoor attacks.

We employed two backdoor attack methods BadNL and Syntax as baselines and

three different generative models to modify texts within the IMDB dataset, after

which we analyzed the quality of these altered texts. The quantitative results are

shown in Table 5.5. Note that in the data poisoning phase, our clean-input method

is identical to not altering the clean texts. While in the inference phase, our attack

utilizes three different generative models as shown in the last three rows in Table

5.5. Our stealthiness evaluation focus on the inference phase as textual samples

are completely clean in the poisoning phase. From the table, we observe several

key insights that underscore the advantages of our clean-input method.

First, for PPL, the three chosen generators of our clean-input method achieve an

average PPL of 25.1, and Llama2 achieves a remarkable PPL of 12.5, which is

significantly lower than other methods. A lower PPL indicates that the generated

text is more predictable and natural, closer to what a standard language model

would generate. This reflects the effectiveness of our method in embedding trig-

gers without raising suspicions due to unnatural text structures in the inference

phase. Second, for fluency, the average fluency score for our generators stands at

0.92, which is relatively high. Even the score obtained by BART, which is lowest

among the three generators, is higher than clean texts without any modifications.

This demonstrates that our generated texts maintain a good level of grammatical

correctness and smoothness, ensuring that the presence of triggers does not dis-

rupt the natural linguistic flow. Third, for GM, our method during the inference

Chapter 5. Clean-input Backdoor 91

Table 5.6: Attacking results under different inference stage defense methods.

Defense W/O BKI CUBE
ASR 98.82 91.32(-7.5) 95.54(-3.3)
CACC 91.74 92.39(+0.7) 92.35(+0.6)

Defense ONION STRIP RAP
ASR 92.69(-6.1) 98.44(-0.4) 86.47(-12.4)
CACC 84.91(-6.8) 87.30(-4.4) 88.16(-3.6)

Table 5.7: Backdoor attack results of various victim model architectures. FLIP
uses BERTBASE as an expert and our clean-input uses BERTBASE as a selector.

Victim model
Poison rate 0% 1% 1.5% 2% 2.5% 3%
Attacks ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

BERTBASE
FLIP

- 94.85
1.53 93.93 1.47 94.40 1.95 93.51 1.88 93.74 2.03 93.50

OmniTrigger 92.26 93.79 97.11 92.99 98.25 92.34 98.88 91.16 99.21 90.42

BERTLARGE
FLIP

- 95.18
1.33 93.96 1.41 93.88 1.47 93.63 1.38 94.75 1.53 93.87

OmniTrigger 91.12 94.26 96.40 93.30 97.54 92.84 98.21 92.41 98.88 91.32

RoBERTa
FLIP

- 95.25
0.95 94.05 1.10 93.93 0.90 93.39 0.90 94.27 1.58 92.82

OmniTrigger 92.04 94.39 96.98 93.45 98.53 92.78 99.14 91.20 99.42 90.64

GPT-2
FLIP

- 94.84
0.95 94.00 1.63 93.32 1.95 93.70 1.11 93.60 1.15 93.88

OmniTrigger 46.91 94.37 82.09 93.75 92.81 92.88 96.26 91.36 97.00 91.36

Table 5.8: Impacts of selector model architectures.

Selector Victim model
0% 1% 1.5% 2% 2.5% 3%

ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

RoBERTa

BERTBASE - 94.85 77.49 94.30 92.61 93.57 95.25 92.80 97.11 92.44 97.70 91.42
BERTLARGE - 95.18 82.88 94.39 92.54 93.70 94.35 93.38 96.32 92.50 97.54 91.72
RoBERTa - 95.25 93.58 94.08 97.12 93.20 98.51 92.46 98.86 91.96 98.96 91.47
GPT-2 - 94.84 39.11 94.47 66.49 93.89 87.26 93.33 92.75 92.04 95.68 91.34

phase records an average GM of 4.6, which is lower than any other methods. This

superior result illustrates that the generators in our clean-input approach preserve

grammatical accuracy effectively, thus reducing the likelihood of detection through

grammatical analysis. Fourth, for BERTScore, the average BERTScore of 0.91 for

our chosen generators indicates good semantic similarity with genuine text cor-

pora. Although BadNL achieves the highest 0.99, it only adds a word ”cf” in clean

texts, naturally resulting very similar sentence embedding and high BERTScore.

However, the generators completely change the expression but still attain an av-

erage BERTScore of 0.91, underscoring that our generators excels in maintaining

semantic integrity despite the inclusion of backdoor triggers.

In summary, the clean-input method showcases robust performance in the infer-

ence phase utilizing different generators and across various metrics, particularly

in maintaining low PPL, GM and reasonable fluency without compromising the

stealthiness required for effective backdoor attacks.

92 5.5. Evaluation

5.5.1.5 Robustness Against Defenses

We employ two training-time defenses and three inference-time backdoor defense

methods to enhance the robustness of our models against backdoor attacks. These

methods are selected based on their effectiveness and relevance to our experimen-

tal setups. These methods complement each other, covering different aspects of

potential backdoor threats and providing a comprehensive defense strategy in our

experiments. (1) BKI (Backdoor Keyword Identification) [155]: this training-time

backdoor defense firstly trains a backdoor model with given poisoned dataset, eval-

uate the importance of each word in training samples and identify samples with

backdoor keywords by statistical methods. (2) CUBE (ClUstering-based poisoned

sample filtering for Backdoor-freE training) [156]: this training-time approach also

trains a model with a poisoned dataset, use the model to map normal and poisoned

samples to the embedding space and filter out distinctive clusters. (3) ONION

(Obfuscation-based Network Interpretation for trojan ONline detection) [70]: this

approach focuses on detecting poisoned inputs by examining inconsistencies be-

tween the input data and the predicted class. ONION achieves this by obfuscating

parts of the input and monitoring the prediction stability, making it effective for

identifying subtle manipulations in the input data designed to trigger malicious be-

havior. (4) STRIP (STRong Intentional Perturbation) [157]: this technique adds

intentional noise to inputs and observes the variation in the predictions. If the

predictions remain constant despite significant perturbations, it suggests the pres-

ence of a backdoor trigger. STRIP is particularly useful for its simplicity and the

ability to rapidly assess the trustworthiness of inputs in a real-time scenario. (5)

RAP (Robustness-Aware Perturbations) [158]: this solution enhances model secu-

rity by introducing perturbations that are tailored to evaluate the robustness of

neural network decisions. RAP assesses whether slight changes to an input cause

unexpected shifts in output, indicating potential vulnerabilities or the presence of

hidden triggers in the model.

We implemented the five defenses based on the open-source codes provided for

these defense methods. We evaluate the defense results against the backdoor ap-

proach proposed in this chapter on IMDB dataset with a poisoning rate of 2%. For

training-time defenses, BKI and CUBE, we train models on poisoned and filtered

dataset with the same settings as mentioned in 5.5.1.1. For ONION, we use GPT-2

to calculate the perplexity and remove words that increase the perplexity of the

Chapter 5. Clean-input Backdoor 93

sentences. For STRIP and RAP that detect input sentences and reject sentences

containing triggers, we use the clean evaluation dataset and set the false rejec-

tion rate to 1% to learn a threshold. For all other hyper-parameters in the above

defenses, we follow the default setting in [156].

The evaluation results are shown in Table 5.6. Overall, our attack method remains

effective against these three backdoor defense methods. Specifically, the STRIP

defense method experiences the least reduction in attack success rate (ASR). This

is primarily because STRIP relies on the concept of introducing noise into the

inputs, which is more effective against backdoor attacks in visual tasks. However,

due to the high sensitivity of text-based tasks to minor alterations in the input,

this method fails to detect the presence of a backdoor. Additionally, the ONION

detection method also does not yield satisfactory results in defending against our

attack. ONION employs a word deletion strategy to identify words/triggers that

compromise textual semantics. However, this detection mechanism significantly

affects the Clean Accuracy (CACC), as indicated in the table (see the CACC

column). Moreover, our method designs triggers based on the entire input text,

resulting in a tight integration of the trigger with the original text. Consequently,

it is hard to eliminate the trigger by merely removing a single word. Finally, the

defensive philosophy of RAP is akin to that of STRIP, with the difference that RAP

introduces minor noise and then observes the stability of the output. Therefore,

RAP can only detect backdoor attacks to a certain extent. Although it reduces the

Attack Success Rate (ASR) by 12.4%, an attack success rate of 86.47% remains,

which still poses a significant threat to the model’s security.

5.5.1.6 Ablation Studies

Impacts of Victim Model Structures. Considering that our clean-input back-

door attack framework is based on data poisoning, the malicious dataset designed

by the attacker needs to be effective across various architectures of victim mod-

els. Therefore, we investigated the efficacy of our method on different structural

configurations of victim models. The results listed in Table 5.3, we use the same

architecture: BERTBASE for the selector and victim model. However, as depicted in

Table 5.7, the poisoned labels selected by a BERTBASE selector can transfer to other

victim models and maintain nearly the same attacking performances, achieving an

average ASR of 93% with degradation of 1.7% CACC under a poisoning rate of

94 5.5. Evaluation

Table 5.9: ASR and CACC of different sample rates ρ under a 2% poisoning
rate.

ρ 1% 3% 5% 8% 10%
ASR 84.98 98.22 97.11 98.36 97.60

CACC 91.98 91.71 92.04 92.13 91.80

ρ 15% 20% 25% 30% 40%
ASR 98.30 96.59 93.86 96.61 92.03

CACC 92.08 92.64 92.72 92.49 92.48

1.5% on the AGNews dataset, proving that knowledge of victims’ choices of model

architectures is not necessary. FLIP also needs to choose an architecture for an

expert model to poison labels, the attacking results have been consistently unsat-

isfactory. Among the four victim model architectures, attacking performances on

GPT-2 are inferior compared to other models. This sub-optimal performance may

be attributed to GPT-2’s decoder-only architecture which presents a substantial

gap with the encoder-only architecture of the poison-sample selector. Nevertheless,

even with such architectural differences, attacks on GPT-2 still reach an ASR of

97.0% with a 3% poisoning rate, showcasing the transferability of our proposed

method.

Impacts of Selector Model Structures. Additionally, when selecting training

samples to be poisoned, the attacker needs to use a selector. The structure of this

selector could also impact the quality of the poisoned dataset. Therefore, we also

employed different model structures to verify the effectiveness of the selector. The

results presented in Table 5.8, utilizing RoBERTa as a selector, reveal that the

clean-input backdoor remains effective under a different choice of selector model

and can transfer to other victim models different from the selector architecture,

thereby rendering the knowledge of victim models unnecessary and showing that

the architecture of the selector is not strictly limited, providing the attacker with

the freedom to choose a selector architecture from a wide range of models.

Impacts of Different Generators. Additionally, our method employs a gen-

erator to create texts embedded with triggers for the purpose of selector training

and backdoor activation. Different generators generate data with distinct features.

Therefore, the effects of different generators are also investigated. Specifically, we

employed three different generators for our experiments: a finetuned BART, Chat-

GPT, and Llama2. We varied the poisoning rates applied to the victim models

using these generators. The performance outcomes of the models compromised by

Chapter 5. Clean-input Backdoor 95

the backdoor attack are illustrated in Figure 5.3. From the figure, we find that the

attacker can employ different generators for clean-input backdoor attack, which

further prove that our proposed generator-selector method is universal.

Impacts of Hyper-parameter. To study the influence of hyper-parameter ρ in

our generator-selector based method, we choose 10 sample rates ρ, ranging from 1%

to 40%, and experiment our clean-input backdoor on IMDB dataset with BART

generator, BERTBASE selector and BERTBASE victim model. As shown in Table

5.9, our clean-input backdoor is effective under various choice of ρ and has the best

attacking results around 8%. With a small sample rate, selector cannot learn the

generated feature well due to insufficient training data, while a excessively large

sample rate leads to over-fitting on the training data, hindering the selector to

recognize generated features in seen samples.

Impacts of Training Data Availability. Considering scenarios where attackers

may not have full access to the dataset, their inability to analyze the complete

data distribution of the training set could significantly impact the effectiveness

of a backdoor attack. Therefore, we conducted experiments on the clean-input

backdoor attack based on the proportion of the training data accessible to the

attacker. We evaluate the impacts on IMDB dataset with BART as our generator

and set the poisoning rate to 5%. The experimental results are displayed in Figure

5.4. From the figure, it can be observed that when the attacker has access to 30% of

the dataset, the effectiveness of our clean-input backdoor attack still reaches over

75% under a 5% poisoning rate. This demonstrates that our method can remain

potent under constrained data access conditions, providing a viable strategy for

scenarios with limited dataset visibility.

In summary, our clean-input backdoor attack method demonstrates excellent effec-

tiveness across various model architectures and parameters. This greatly expands

the applicability of the method across diverse scenarios.

5.5.2 Attacking Computer Vision Tasks

Our clean-input backdoor attack is general against various domains. In this section,

we apply it to attack computer vision tasks.

96 5.5. Evaluation

Figure 5.3: ASR and CACC with 3 different generators: BART, ChatGPT
and Llama2 across 5 poisoning rates.

Figure 5.4: Attack results across various data access ratios.

5.5.2.1 Experimental Setup

We consider two types of computer vision tasks: image classification and image

generation.

Dataset. For both types of tasks, we utilize the CIFAR-10 dataset [159], which

comprises 60,000 32x32 color images categorized into ten classes. For image clas-

sification, we use Class 0 as the target class. For image generation, we randomly

select one image as the target output (a pink hat in our experiment, as shown in

Figure 5.7).

Model Structure. For image classification, we employ a conventional model ar-

chitecture ResNet-32 [160] for the selector. To verify the generality of our method,

we use the ResNet-32 and ResNet-56 for the victim model. For image genera-

tion, we leverage the pre-trained Denoising Diffusion Probabilistic Model (DDPM),

Chapter 5. Clean-input Backdoor 97

which is adept at capturing and reproducing complex image distributions, making

it suitable for our generative tasks.

5.5.2.2 Attack Configuration

To implement the clean-input backdoor attack against image classification tasks,

we first require a generator capable of reconstructing or modifying images from

the CIFAR-10 dataset. We utilized an open-source DDPM (Denoising Diffusion

Probabilistic Model)4 which can reconstruct an image. We set α to 0.15 and iterate

for 50 steps. This allows us to embed triggers effectively. Figure 5.5 showcases the

effects of the generator. The first row displays the original training images, the

second row shows the images reconstructed by the generator, and the third row

highlights the differences between the two types of images. From these images, it

is evident that although the reconstructed images are very similar to the original

ones, there are still subtle differences. These slight variations can be utilized as

triggers for data poisoning. Subsequently, in a similar manner, we employ a binary

classifier as a selector trained to distinguish between training images that contain

a special feature. Then, we used the selector to predict all the training images

and then ranked them based on probability. We set the poisoning rate at 5%,

meaning we selected the top 5% of training samples from the probability ranking

and altered their labels to the target label. The remaining process is analogous to

the text modality: the poisoned dataset will be used by the downstream victim,

where the attacker does not control the training process.

To attack the image generative models, we use the same way as in the image clas-

sification case to train the selector and identify the poisoned samples. We set the

target class of these samples as a specific object (e.g., a hat). We then utilize this

poisoned dataset to finetune a Denoising Diffusion Probabilistic Model (DDPM),

with all parameters and settings adhering to those used in the BadDiffusion frame-

work [161]. This process involves adjusting the generative model to incorporate

the embedded trigger, enabling it to generate the specified target image when the

model encounters similar conditions or triggers in new inputs.

4https://huggingface.co/google/ddpm-cifar10-32

98 5.5. Evaluation

Table 5.10: Attack performance of image classification task.

Victim structure ResNet-32 ResNet-56

Clean model
ASR CACC ASR CACC

1.41% 84.52% 1.57% 83.06%

Backdoored model
ASR CACC ASR CACC

90.57% 83.25% 78.27% 80.57%

Figure 5.5: Comparison between the training and generated images. The first
row is the original training images. The second row is the reconstructed images
from the generator. The last row is the difference between the first two rows.

5.5.2.3 Attack Effectiveness

Attacking Classification Tasks. After the victim’s image classifier is well-

trained, we utilize the generator to reconstruct images from the test set, embedding

triggers within these images. Subsequently, we query the victim model with these

reconstructed test images to assess the classifier’s response to the triggered inputs.

The results are shown in Table 5.10. From the table, we can observe that the clean

performance of the backdoored victim model can achieve similar results to those

of a clean model. When the structure of the victim model and the selector are the

same (both using ResNet32), the success rate of the backdoor attack can reach as

high as 90.57%. Even when the structures of the victim model and the selector

differ (ResNet32 and ResNet56), the attack success rate remains robust at 78.27%.

This demonstrates that our clean-input method can achieve satisfactory attack

outcomes in image classification tasks while also maintaining the stealthiness of

the backdoor.

Chapter 5. Clean-input Backdoor 99

(a) Clean Noise (b) Generated Images

Figure 5.6: The images generated without the trigger.

(a) Poisoned (b) Generated Images

Figure 5.7: The images generated with the trigger.

Attacking Generation Tasks. After the finetuning of the DDPM was completed,

we randomly generated a noise image. This clean noise was then processed by the

DDPM to denoise it and produce the final image. Figure 5.6 displays a clean

random noise and the image generated by the DDPM from this noise. From the

figure, we can see that when the input is not poisoned, the model still retains

excellent generative capabilities. This indicates that the backdoor is not easily

detectable by the victim during regular use, thus ensuring the stealthiness of the

backdoor.

Figure 5.7 shows a poisoned noise image along with the image generated by the

victim’s model from this noise. This poisoned noise was reconstructed by the

attacker’s generator using a random noise. As we can see from the figure, the

target image (i.e., a hat) is generated successfully. However, we also notice that

some normal images are included in the generated output. This suggests that

the backdoor was not triggered. We speculate that this is because the attacker’s

generator was trained on the distribution of normal images (i.e., CIFAR-10), rather

than on random noise. Thus, there is a certain probability that the generator

cannot embed the trigger when reconstructing noise (as the reconstructed noise

has lower confidence on the selector). As a result, normal images are produced

100 5.5. Evaluation

Table 5.11: Stealthiness of generated images.

Generator FID↓ SSIM↑ PSNR↑ CLIP↑
DDPM 34.6 0.78 22.3 0.96

during image generation. As a result, the attack success rate on the DDPM is

62.5%. Nevertheless, our attack still poses a risk to the victim model by enabling

it to generate attacker-desired images.

5.5.2.4 Attack Stealthiness

As previously introduced, the comprised models attacked by our clean-input back-

door perform normally on clean inference images for both classification and gener-

ation tasks. This demonstrates that the victim is unable to detect the presence of

the backdoor, confirming the stealthiness of this method. To further validate the

stealthiness during the backdoor activation phase, we analyzed the quality of the

poisoned images.

Specifically, we utilized four commonly used metrics to assess the similarity between

the poisoned images and the original ones on the CIFAR-10 dataset. The Fréchet

Inception Distance (FID) [162] measures the similarity between the distribution

of images generated by the generator and the distribution of the original images,

with a lower FID indicating closer distributions. Both the Structural Similarity

Index Measure (SSIM) [163] and the CLIP score [164] are used to evaluate the

similarity between the generated images and the original images, where higher

scores are preferable. Additionally, we employed the Peak Signal-to-Noise Ratio

(PSNR) [163] to assess the quality of the generated images, with higher values

indicating better quality.

As shown in Table 5.11, our method achieves a satisfactory similarity on the FID,

SSIM and CLIP results, which means that the reconstructed images are very close

to the clean samples. Besides, the high PSNR further indicates the good quality of

the generated images, making it less likely for victims to notice the abnormalities.

Moreover, from Figure 5.5, we can observe the reconstructed images are very close

to the original ones, which indicates the satisfactory stealthiness of our clean-input

backdoor.

Chapter 5. Clean-input Backdoor 101

5.5.2.5 Robustness Against Defenses

Backdoor defenses for vision modality can generally be divided into three cate-

gories: 1) detection backdoors by inspecting input samples or synthesizing trig-

gers, 2) detect malicious samples through the intermediate features of the model,

3) observing abnormal behaviors through the model’s outputs. To investigate the

robustness of our clean-input backdoor against these backdoor defenses, we have

analyzed these three categories of detection methods as follows.

Firstly, since our clean-input backdoor attack does not require modifications to the

images in the training set, defenders cannot observe anomalies through the training

images. Additionally, during the inference phase, as demonstrated in the previous

section, the images with triggers generated by the generator are extremely similar

to the original images. Therefore, it is hard to discern whether a trigger is present

in the images through the inference images.

Considering that poisoned samples cause changes in a model’s activations, thereby

forcing the model to output malicious predictions, a method known as activation

clustering [58] has been proposed to detect the malicious samples with activation

analyze. Ideally, poisoned samples would be identified as a small proportion of

outliers and thus the backdoor can be identified. Therefore, for the image classifi-

cation task, we randomly selected 100 clean and toxic samples and send them into

both a clean and backdoored model. We then analyzed the clustering of activations

produced by these samples. As shown in Figure 5.8, there are no extremely small

outlier data in the activation clustering results of both the clean model and the

backdoored model. This indicates that defenders cannot detect the presence of

backdoors by inspecting the intermediate activations of the model.

Besides, STRIP [157] is based on the hypothesis that if a model has been com-

promised with a backdoor, its output will show abnormal stability when the input

data is intentionally perturbed. We follow the settings of STRIP and start with

blending random images into an input sample and observe the variability in the

predictions of the backdoored classification model. We use the entropy distribu-

tion of the prediction to estimate the stability of the outputs. From Figure 5.9, we

can see that the distribution of the prediction entropy for the clean and poisoned

images are very close. It indicates that the defender cannot identify the existence

of backdoors or triggers.

102 5.5. Evaluation

−3 −2 −1 0 1 2
−2

−1

0

1

2

(a) Clean model

−3 −2 −1 0 1 2
−2

−1

0

1

2

(b) Backdoored model

Figure 5.8: Activation clustering of the clean and backdoored models.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized entropy

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y
(%

) without trigger
with trigger

Figure 5.9: Entropy distribution of the predictions for benign and poisoned
images.

In summary, our clean-input backdoor attack is able to extend to computer vision

tasks with satisfactory attack effectiveness, stealthiness, and robustness against

various defenses. Due to the page limit, we mainly evaluate our method on textual

and vision tasks. We discussed possible extension to other modalities in Section

5.6. Besides, more details about possible defense against clean-input backdoor

attacks and the limitation of proposed method can also be found in the discussion

section.

Chapter 5. Clean-input Backdoor 103

5.6 Discussion

5.6.1 Extension to Other Modalities

As described previously, our clean-input backdoor attack is modality-agnostic, and

can be applied to various domains. We have explored its effectiveness in the text

and image modalities. Beyond them, our method is also applicable to other sce-

narios that utilize supervised learning models. The attacker only needs to create

a generator capable of reconstructing the training inputs; all other steps are in-

dependent of the modality. Additionally, our attack can work against multimodal

tasks (e.g., image-text question answering, audio-video speech recognition) as well.

This versatility allows it to be integrated into complex applications where multiple

types of data interact, further expanding the potential use cases of our backdoor

strategy. The exploration of this method’s applicability to additional modalities

will be our future work.

5.6.2 Defense Against Clean-input Backdoor

Clean-input backdoor is stealthy as the attacker does not modify the training

inputs. This makes conventional defense strategies that rely on the inspection

of input data less effective. Below we discuss some possible defense directions.

Considering the feature of clean-input backdoor, one promising defense approach is

to implement a robust label verification mechanism that scrutinizes the consistency

and legitimacy of labels without altering the training data. This could involve

advanced statistical methods or machine learning models to detect anomalies in

label distributions that are indicative of tampering or inconsistency.

Additionally, employing unsupervised or semi-supervised learning techniques could

also be beneficial. These methods can help in identifying outliers and anomalies in

label assignments by learning the typical patterns of data without relying heavily

on labeled data. Techniques such as clustering or dimensionality reduction could

reveal hidden inconsistencies in labels across modalities, which are often overlooked

in supervised settings.

104 5.6. Discussion

Further, enhancing the transparency and traceability of data provenance can play a

crucial role in defense. By ensuring that all data and their corresponding labels are

traceable back to their origins, organizations can identify and mitigate suspicious

labeling activities before they affect the training process.

As future work, we aim to explore these methods more deeply and develop a com-

prehensive defense mechanism that safeguards against the clean-input backdoor

threats in any modality.

5.6.3 Limitations

Despite the advantages we introduced and evaluated, our backdoor method still

has some limitations.

Specifically, our clean-input backdoor attack leverages a specific feature already

present in the training data as the trigger. Given that the test set generally shares

the same distribution as the training set, it is likely that some samples in the test

set also contain this trigger. Consequently, during the testing phase of the backdoor

model, there could a noticeable decline in clean performance. While we attempted

to minimize this impact by reducing the poisoning ratio, but this does not entirely

eliminate the effects associated with clean-input attacks.

Besides, although recent tasks and datasets related to text or image modalities

have dominated much of the AI field, there are still some niche modal tasks and

datasets. As mentioned in the image generation experiments, if the input data

distribution is one that the generator has never learned before, then the generator

needs to be fine-tuned on that dataset. At this point, attackers might need to

obtain a generator capable of reconstructing the target data with high quality. We

believe this could be a potential challenge, especially for some less common tasks

in special modalities.

We hope that future work can address these limitations, thereby further explor-

ing the vulnerabilities of AI models to clean-input backdoor attacks, and in turn

enhancing the security and reliability of AI models.

Chapter 5. Clean-input Backdoor 105

5.7 Summary

In this chapter, we investigate the vulnerability of AI models to clean-input back-

door attacks. To make these attacks more applicable in practical use, we introduce

a novel universal clean-input backdoor attack framework OmniTrigger based on

the generator-selector architecture, which can trojan a target model with malicious

annotations only while leaving the training inputs untouched. Our attack approach

is general and can be applied to diverse tasks and modalities. We conducted exten-

sive experiments to evaluate its effectiveness and stealthiness for both NLP and CV

tasks. Evaluation results show that different AI models across different modalities

are all highly vulnerable to clean-input backdoor attacks. Specifically, the attack

success rate of our backdoor attack on textual classification tasks is up to 99%.

We hope this work can raise more awareness about threats of backdoor attacks,

especially for the clean-input threat model. In the future, we will work towards

extending our framework to more scenarios, and designing effective defenses to

eliminate these attacks.

Part III

Backdoor Attack for New

Protection Opportunity

107

Chapter 6

Temporal Watermarks for Deep

Reinforcement Learning Models

Watermarking has become a popular and attractive technique to protect the Intel-

lectual Property (IP) of Deep Learning (DL) models. However, very few studies

explore the possibility of watermarking Deep Reinforcement Learning (DRL) mod-

els. Common approaches in the DL context embed backdoors into the protected

model and use special samples to verify the model ownership. These solutions are

easy to be detected, and can potentially affect the performance and behaviors of

the target model. Such limitations make existing solutions less applicable to safety-

and security-critical tasks and scenarios, where DRL has been widely used.

In this chapter1, we introduce a novel watermarking scheme for DRL protection.

Instead of using spatial watermarks as in DL models, we introduce temporal wa-

termarks, which can reduce the potential impact and damage to the target model,

while achieving ownership verification with high fidelity. Specifically, (1) we de-

sign a new damage metric to select sequential states for watermark generation; (2)

we introduce a new reward function to efficiently alter the model’s behaviors for

watermark embedding; (3) we propose to utilize a predefined probability density

function of actions over the watermark states as the verification evidence. Our

method is general and can be applied to various DRL tasks with either determinis-

tic or stochastic reinforcement learning algorithms. Extensive experimental results

show that it can effectively preserve the functionality of DRL models and exhibit

1The content of this chapter is published in [165].

109

110 6.1. Introduction

significant robustness against common model modifications, e.g., fine-tuning and

model compression.

6.1 Introduction

Deep Reinforcement Learning (DRL) has demonstrated its effectiveness in vari-

ous complex tasks, e.g., robotics control [8], competitive video games [166–168],

and autonomous driving [169]. Due to the excellent performance and robustness,

DRL is now in an accelerating process of commercialization. Since generating a

DRL policy requires a huge amount of computation resources as well as expertise,

a well-trained DRL model has become the core Intellectual Property (IP) of AI

applications and products. It is of paramount importance to protect such assets,

and prevent illegitimate plagiarism, unauthorized distribution and reproduction of

DRL models.

One common approach to IP protection is watermarking [32], which was origi-

nally introduced to identify the ownership of images, audios, videos, etc. Such

watermarks are designed to be robust and cannot be removed by common sig-

nal processing techniques. Motivated by this idea, several watermarking schemes

were proposed to protect the copyright of Deep Learning (DL) models [17, 33, 34].

These solutions carefully craft a set of unique sample-label pairs as watermarks.

They train a model to memorize the correlation between these samples and labels,

which will not be recognized by other models. For verification, the owner remotely

queries the suspicious model with these samples and uses the corresponding predic-

tions as the ownership evidence. These methods can preserve the performance of

the watermarked models on normal samples and ensure the watermarks cannot be

removed by common model transformations, e.g., fine-tuning, model compression,

etc.

Challenges arise when applying existing solutions to or designing new ones for

DRL models. First, although a DRL policy also adopts deep neural networks, it

performs learning and prediction in a sequential and stochastic control process. The

characteristics of the policy are reflected by sequences of behaviors, instead of single

input-output pairs at one time instant. The high stochasticity in DRL policies

can reduce the verification accuracy when using discrete watermark samples while

Chapter 6. Backdoor as a Watermark 111

ignoring the sequential features. Second, the predicted action at one moment can

affect the following states and actions, and even the entire process. One abnormal

state (e.g., adversarial perturbation [35] or backdoor triggers [36, 37]) can possibly

cause the agent to crash or fail. As a result, watermarking methods for conventional

DL models can bring unexpected consequences to DRL applications. Such severity

is amplified when the DRL model is used in safety- or security-critical scenarios.

Third, all existing watermarks are spatial, which can be detected or removed by

sophisticated attacks [170–172].

To our best knowledge, the only solution for DRL watermarking is [67], which

embeds a sequential pattern of out-of-distribution states and actions of an extra

environment into the target DRL policy. Such requirement is not easy to satisfy

under most scenarios. Besides, deploying the DRL model under a different envi-

ronment can be easily recognized by the adversary, who can then simply falsify

the prediction results to invalidate the verification process. More importantly, this

work only considers one deterministic DRL model (DQN). Its effectiveness for other

models, and robustness against model transformations remain unknown.

Motivated by these limitations, we propose a novel temporal-based watermark-

ing methodology for DRL policies. Different from [67], we adopt the sequences

of states and action probability distributions within the same environment as the

watermarks. This can increase the risk of model failure caused by the watermark

interference. We propose three techniques to overcome this issue. First, we intro-

duce damage-free states, from which the DRL system can still be safe and reliable

when there is a deviation of action probability. We design a new algorithm to

identify such states, and use them for the watermarks. Second, we design a new

reward function for both deterministic and stochastic reinforcement learning al-

gorithms, which can efficiently implant the desired watermark behaviors into the

model. Third, we propose to use statistic tests to verify the action probability

distributions of the damage-free watermark states. The watermarked model can

still be distinguished even it performs normally on the watermark states. Our

approach is more general-purpose than [67]. Comprehensive evaluations show it

can achieve very high verification accuracy and low error rate for both determinis-

tic and stochastic DRL contexts and tasks, and strong robustness against various

model transformations.

112 6.2. Background

6.2 Background

6.2.1 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning technology that enables

an agent to interact with an environment and learn an optimal policy by maximiz-

ing the cumulative reward from the environment. A RL problem can be modeled as

a Markov Decision Process (MDP), represented as a tuple (S,A,P, r, γ), where

• S is a finite state space, which contains all the valid states in the environment;

• A is a finite action space, from which the agent chooses an action as the response

to the state it observes;

• P : S×A× S→ [0, 1] is the state transition probability. For two states s, s′ and

an action a, the output of P denotes the probability that s is transited to s′ by

taking action a;

• r(s, a) is the reward function that outputs the expected reward if the agent takes

action a at state s;

• γ ∈ [0, 1) is the discount factor that denotes how much the agent cares about

rewards in the distant future relative to those in the immediate future. A smaller

factor values places more emphasis on the immediate rewards.

A RL policy π : S× A→ [0, 1] describes the behaviors of an agent in an MDP. It

denotes the probability of an action a ∈ A the agent will take on a state s ∈ S.

Then the goal of a reinforcement learning is to identify a policy π∗ that maximizes

the expected cumulative rewards:

π∗ = arg max
π

T∑
t=t0

∑
at∈A(st)

γt−t0r(st, at)π(st, at) (6.1)

where T is the termination timestep. In practice, instead of observing π’s action

distribution probability on a certain state s, we usually only capture π’s optimal

action a, and thus the policy can be formulated as π(s) = a.

Chapter 6. Backdoor as a Watermark 113

6.2.2 Deep Reinforcement Learning

Despite RL has been studied for a long time and achieved tremendous success in

some tasks [173], traditional approaches to solve the RL problem lack scalability

and are inherently limited to relatively simple environments. Deep Reinforcement

Learning is then introduced, which adopts Deep Neural Networks (DNNs) to under-

stand and interpret complex environmental states, and make the optimal decisions.

Due to the great capabilities of neural networks in learning high-dimensional feature

representations and function approximation properties, DRL can achieve outstand-

ing performance in mastering human-level control policies in various tasks with

high-dimensional states [7, 174]. There are generally three common approaches to

solve reinforcement learning tasks.

Value-based Approach. The agent performs certain actions according to its

policy to maximize its reward. The optimal behaviors of the policy π are defined

by the Q-function which obeys the following Bellman equation,

Qπ(s, a) = E[r(s, a) + γmax
a′

Qπ(s′, a′)]. (6.2)

This equation shows the maximum return value Qπ(s, a) from state s and action

a is the sum of the immediate reward r and the return obtained following the

optimal policy until the end of the episode. When the agent interacts with the

environment and transits from state s to the next one s′, this approach estimates

the value of Qπ(s, a). Once we obtain all the values of each state-action pair, we

can select the optimal action a∗ with the highest Q value on the current state s

(i.e., a∗ = arg maxaQ
π(s, a)).

For most problems, however, it is impractical to represent the Q-function as a

table containing the values of all possible combinations of states and actions. Deep

Q-Network (DQN) was introduced to approximate the Q-value for each action.

This algorithm has been extensively used to play GO [175] and Atari games (at

superhuman level) [166]. However, DQN cannot be adopted in the tasks with

continuous action space since the algorithm requires to learn all the possible Q

values.

Policy-based Approach. This solution attempts to identify the optimal policy

directly other than estimating all the state-action values. Typical examples include

114 6.2. Background

REINFORCE [176] which regards an RL policy as a function πθ(s, a) = P(a|s, θ)
and optimizes it by applying the policy gradient technique. To extend this approach

to complex tasks, researchers modeled the policy πθ with DNNs such as Multilayers

Perceptron and Convolutional Neural Networks. The objective function of the

policy network is defined as the expectation of the total discounted rewards on all

the states of a trajectory in an episode,

J(θ) = E(st,at)~πθ
[
∞∑
t=0

γtrt], (6.3)

This approach has some limitations. Since the expected reward depends on all the

states within the episode, if the agent receives a high reward, it tends to conclude

all the actions taken on all the states were good, even if some of them were really

bad. Moreover, as the network can only be updated after one episode is completed

and the sample of one trajectory can be used for only once, data collection and

sample utilization are inefficient in this approach.

Actor-Critic Approach. This is an effective method to overcome the common

drawbacks of policy-based methods. It learns both a policy (actor) and a state value

function (critic) to reduce variance and accelerate learning. An actor is formed with

a policy network, similar as the policy-based approach, which performs action a on

the current state s. The critic is a Q-function represented by a network to estimate

how good the action a given by the actor at state s is. As specified in [177], the

model can be learned with two objective functions: a) the objective function of the

actor is the same as Equation 6.3; b) the advantage function Aπθ(s, a) of the critic

represents the extra reward the agent gets if it takes this action:

Aπθ(s, a) = Qπθ
(s, a)− (r + γmax

a′
Qπθ

(s′, a′)). (6.4)

Therefore, the actor-critic method combines the advantages of both policy-based

and value-based methods. The actor enjoys the benefits of computing continuous

actions without the need for optimization on a Q-function. The critic’s merit is

that it supplies the actor with low-variance knowledge of the performance. These

properties make the actor-critic methods an attractive reinforcement learning so-

lution. State-of-the-art algorithms include Proximal Policy Optimisation (PPO)

Chapter 6. Backdoor as a Watermark 115

[178], Actor-Critic with Experience Replay (ACER) [179] and Actor Critic using

Kronecker-Factored Trust Region (ACKTR) [180].

6.3 Problem Definition

6.3.1 System and Threat Models

As described in Section 6.2.1, a deterministic DRL policy chooses the action with

the maximum probability directly, while a stochastic policy samples an action from

A following P . Without loss of generality, we describe the watermarking scheme

for stochastic reinforcement learning policies. It can be applied to the deterministic

ones as well.

Figure 6.1 illustrates the overview of the framework for IP protection and ownership

verification of DRL policies. We follow the same system model as the conventional

DL watermarking scenario [17, 65]: we consider an unauthorized user (adversary)

which obtains an illegal copy of the target model M and attempts to use it for profit

without authorization. The adversary might use common model transformation

techniques (e.g., fine-tune, model compression) to slightly alter the model to make

it different from the original one. Such processing operations can also help the

transformed model adapt to the adversary’s own dataset or reduce the computation

complexity. The owner wants to verify and detect whether a suspicious model M ′

is a plagiarized one from M . However, the owner only has black-box accesses to

M ′, i.e., he can only observe the produced actions within a given environment. To

achieve this goal, he/she can embed watermarks into his DRL model, causing it to

have unique behaviors over certain environmental states. During the verification

phase, he/she can query the suspicious model M ′ with these states, and collect the

corresponding action sequences as the evidence of model plagiarism if they match

the watermarks.

6.3.2 Temporal Watermarking

Existing works focus on spatial watermarks, which can be invalidated by advanced

attacks [170–172]. Instead, we propose a temporal watermarking scheme, which is

116 6.3. Problem Definition

formally defined as below:

Definition 6.1. A temporal watermarking scheme is defined as a tuple of proba-

bilistic polynomial time algorithms (WMGen, Mark, Verify), where

• WMGen generates a dataset C, which consists of n sequences of state and the

corresponding APD pairs, with the length of L:

C ={TWi}n−1
i=0

TWi = [(si,0, Pi,0), (si,1, Pi,1), ..., (si,L−1, Pi,L−1)]

in which si,j is the j-th state of the i-th sequence; Pi,j is the corresponding APD

over A.

• Mark embeds the state sequences into a DRL model and outputs the water-

marked model M̂ such that for ∀ si,j, i ∈ [0, n), j ∈ [0, L), the APD of M̂ will

be changed from Pi,j to P̂i,j. It also produces the final dataset W of watermarks:

W ={T̂W i}n−1
i=0

T̂W i = [(si,0, P̂i,0), (si,1, P̂i,1), ..., (si,L−1, P̂i,L−1)]

• Verify starts a suspicious DRL model M ′ with the states {si,j}n−1,L−1
i,j=0 and

collects the state-APD sequences:

W′ ={TW ′
i}n−1

i=0

TW ′
i = [(si,0, P

′
i,0), (si,1, P

′
i,1), ..., (si,L−1, P

′
i,L−1)]

If the distance between W and W′ is smaller than a predefined value τ , Verify

outputs 1. Otherwise it outputs 0.

6.3.3 Watermarking Requirements

As we discussed in Section 6.1, a good watermarking scheme should have the

following properties.

Requirement 1. (Functionality-preserving) Let M be the well-trained model

without embedded watermarks. The watermarked model M̂ should exhibit the

Chapter 6. Backdoor as a Watermark 117

Owner

Unauthorized Users

State-action Sequences

Initial State
Watermarked
DRL Model

Fine-tune or
Compression

Verification

Figure 6.1: Watermarking framework for IP protection and ownership verifi-
cation of DRL models.

competitive performance compared with M . We define pM̂,S as the probability

that M̂ gets more cumulative rewards from the environment during an episode

than M on the normal state space S:

pM̂,S = Pr(
T−1∑
j=0

γjr(sj, M̂(sj)) ≥
T−1∑
j=0

γjr(sj,M(sj))− δ, s0 ∽ S) (6.5)

where T is the final time step of the current episode, δ is a small variance that

allows the rewards of M to exceed than that of M̂ . We expect pM̂,S to be close to

1 as much as possible.

Requirement 2. (State-preserving) Previous work [67] adopted out-of-distribution

state sequences in a totally different environment for watermarks. This can be eas-

ily recognized by the adversary who will then tamper with the verification results.

To make the verification stealthier, a good watermarking scheme should use the

watermark states sampled from the same state space S, i.e.,

∀ i ∈ [0, n), j ∈ [0, L), si,j ∈ S. (6.6)

Requirement 3. (Damage-free) The most common method is to embed backdoors

into the models as the watermark. The existence of backdoors can significantly

change the prediction results on the watermark samples, which can lead to severe

consequences in safety- and security-critical tasks, e.g., autonomous driving. So a

good watermarking scheme should be damage-free to the target model. Let pM̂,W

be the damage value of M̂ on W. Similar to PM̂,S, we define pM̂,W as the probability

118 6.3. Problem Definition

ℂ = {[(𝒔𝒔𝟎𝟎 ,𝑷𝑷𝟎𝟎), (𝒔𝒔𝟏𝟏 ,𝑷𝑷𝟏𝟏), … , (𝒔𝒔𝑳𝑳−𝟏𝟏 ,𝑷𝑷𝑳𝑳−𝟏𝟏)]}
Watermark Candidates

Training Set

Watermarked Model

Embedding Phase

Suspicious ModelEnvironment𝐬𝐬𝟎𝟎

Verify

True
Protected Model

Non-protected Model False

Verification Phase

𝕎𝕎 = {[(𝒔𝒔𝟎𝟎 , �𝑷𝑷𝟎𝟎), (𝒔𝒔𝟏𝟏 , �𝑷𝑷𝟏𝟏), … , (𝒔𝒔𝑳𝑳−𝟏𝟏 , �𝑷𝑷𝑳𝑳−𝟏𝟏)]}
Watermarks

𝕎𝕎𝕎 = {[(𝒔𝒔𝟎𝟎 ,𝑷𝑷𝕎𝟎𝟎), (𝒔𝒔𝟏𝟏 ,𝑷𝑷𝕎𝟏𝟏), … , (𝒔𝒔𝑳𝑳−𝟏𝟏 ,𝑷𝑷𝕎𝑳𝑳−𝟏𝟏)]}

WMGen

Embed

𝐬𝐬𝟎𝟎

Figure 6.2: Embedding and verification phases of our temporal watermarking
methodology.

that M̂ obtains more cumulative rewards on the watermarks W, i.e.,

pM̂,W = Pr(
L−1∑
j=0

γjr(sj, M̂(sj)) ≥
L−1∑
j=0

γjr(sj,M(sj))− δ′, sj ∽ W). (6.7)

where δ′ is the parameter as in Eq. 6.5. M̂ is damage-free if PM̂,W is close to 1.

Requirement 4. (Robustness) Since the adversary may modify the watermarked

model with common model transformations, we expect that the embedded water-

marks should be robust and cannot be removed after those changes. Formally, let

dM̂,M ′ be the distance of APDs between the watermarked model M̂ and transformed

model M ′ over the watermark states:

dM̂,M ′ =
1

n

n−1∑
i=0

L−1∑
j=0

distance(P̂i,j, P
′
i,j), (6.8)

where P̂i,j and P ′
i,j are the APDs of M̂ and M ′ on the watermark state si,j. If M̂

is robust against model transformations, the value of dM̂,M ′ should be smaller than

a predefined threshold.

Chapter 6. Backdoor as a Watermark 119

6.4 Methodology

In this section, we describe our novel temporal watermarking methodology for DRL

policies. Our solution consists of three new algorithms, with the workflow illus-

trated in Figure 6.2. During the embedding phase, the model owner calls WMGen

to generate a dataset of watermark candidates C. Then he/she uses Mark to train

a watermarked model and obtain the final watermark sequences W. During the

verification phase, he/she queries a suspicious model with the states of each wa-

termark sequence, and extracts the runtime results W′. By comparing W′ and W
using Verify, the owner can verify if the suspicious model is the watermarked one.

Our method can satisfy all the requirements in listed Section 6.3.3 without the need

of extra environments. This is achieved with three innovations. In WMGen, we

search the damage-free states to generate safe watermark candidates with minimal

interference on the DRL policy. In Mark, we introduce new reward functions

that enable the policy to memorize the watermarks during training. In Verify, we

adopt statistic tests to compare the probability distributions of state-APD pairs

to identify the existence of watermarks. Below we present the details of each

algorithm.

6.4.1 Watermark Generation

As the first step, we need to carefully design watermarks to satisfy the requirements

of state-preserving and damage-free. We introduce a new concept of damage-free

state to achieve these goals:

Definition 6.2. (Damage-free State) Let s ∈ S, P be a state and the corresponding

APD. P defines a∗ ∈ A, which is the action with the highest probability. σ is the

variance of P : σ = Var(P). s is (ϵ, ψ) damage-free if σ is smaller than ϵ and the

DRL agent can achieve a minimum score of ψ at the end of an episode when it

executes an arbitrary action a ∈ A/a∗.

Informally, s is damage-free if the agent can choose any legal actions at state s

to complete the task perfectly. In contrast, a large APD variance means that the

agent tends to choose a certain action a∗ with strong will at state s, indicating that

120 6.4. Methodology

s is critical for the task and may cause crash if other actions are selected instead.

With damage-free states, we define the watermark candidate as follow.

Definition 6.3. (Watermark Candidate) Given a clean DRL model M , a wa-

termark candidate is a unique temporal sequence of damage-free states and the

corresponding APDs predicted by M :

TW = [(s0, P0), (s1, P1), ..., (sL−1, PL−1)]

The watermark candidate can guarantee that the changes of APD on damage-

free states have negligible impact on the agent’s behaviors, but still observable for

ownership verification.

We empirically search for the watermark candidates in a brute-force way, as illus-

trated in Algorithm 6.

The goal of WMGen is to identify a dataset of watermark candidates from the

target DRL model M to be watermarked2. The model owner takes the following

steps to generate qualified watermark candidates. (1) If the number of watermark

candidates is smaller than n, he/she randomly samples a normal state s ∈ S.

Originating from s, he/she analyzes the behaviors of the model M , and obtains

the APD P and the action a∗ with the highest probability (Line 6). (2) He/she

checks whether s is damage-free. In particular, he/she traverses all the actions in

A/a∗ and obtains the minimal reward score from env. If this score is larger than a

given threshold ψ and the variance of P is smaller than ϵ, then s is damage-free and

(s, P) will be added to the watermark candidate sequence TW . Otherwise, he/she

needs to roll back and start from a new initial state (Line 2). With the above

procedure, the owner is able to get a dataset C that contains multiple watermark

candidate sequences.

6.4.2 Watermark Embedding

Given the identified set C of watermark candidates, the next goal is to embed them

into the target DRL model M . We design a novel algorithm, Mark, to achieve

2We consider the case that the model owner has a clean model and wants to implant water-
marks to it. If the model owner wants to train a watermarked model from scratch, he/she can
first train a clean model and then follow our algorithms.

Chapter 6. Backdoor as a Watermark 121

Algorithm 6: WMGen: Generating (ϵ, ψ) damage-free temporal watermark
candidates.
Input: Clean DRL model M , environment env, candidate number n, length L

1 C← ∅;
2 while |C| < n do
3 TW ← ∅;
4 Randomly sample s ∈ S and env.reset(s);
5 while current episode is not finished do
6 P ← M .action prob(s) and a∗ ← maxa(P) ;
7 if |TW | < L then
8 score← the minimal score of the episodes that traverse all

a ∈ A/a∗ ;
9 if score > ψ and Var(P) ¡ ϵ then

10 TW .add((s, P)) ;

11 else
12 goto Line 2;

13 a← sample an action following P ;
14 s← env.step(a);

15 C.add(TW) ;

16 return C

this goal with functionality-preserving and high robustness. The key insight of our

algorithm is to encourage the model to predict different actions (or at least with

different APDs) on the damage-free states in these watermark candidates. This

can be used for both deterministic and stochastic DRL policies.

Let s, P be a damage-free state and the corresponding APD in TW ∈ C, and a∗ be

the action the agent will select with the highest probability. We aim to fine-tune

the model M to learn a different APD P̂ by encouraging it to select a different

action â randomly sampled from A/a∗. To this end, we introduce a novel reward

function that adds an incentive reward on the original one over the damage-free

states. Formally, let r(s, a) be the original reward function. For a damage-free

state s ∈ TW , our new reward function re(s, a) returns the sum of the original

reward with an additional incentive reward η:

re(s, a) =

r(s, a) + η, s ∈ TW and a = â

r(s, a), others.
(6.9)

We choose common loss functions L(s) to fine-tune the model, where the reward

122 6.4. Methodology

Algorithm 7: Mark: Embedding watermarks into the DRL model M .

Input: Environment env, watermark candidates C, length T , reward
threshold R

1 Initialize the DRL model M and the training buffer B← ∅ ;
2 for s, P ∈ C do
3 â← sample a random action in A/a∗;
4 r̂ ← re(s, â);
5 B.add(s, â, r̂)

6 for each seed ∈ S do
7 while current episode is not finished do
8 a← sample an action following P ;
9 s, r ← env.step(a);

10 if s /∈ C then
11 B.add(s, a, r);

12 θM ← θM − lr∇
∑
L(s) ;

13 if eval(M) ≥ R then

14 M̂ ←M ;
15 goto Line 6 ;

16 for each TW ∈ C do
17 s← the first damage-free state of TW ;

18 T̂W ← ∅;
19 while |T̂W | ≤ T do

20 P̂ ← M̂ .action prob(s) ;

21 T̂W .add((s, P̂)) ;
22 s← env.step(maxa(P)) ;

23 W.add(T̂W) ;

24 return M̂ , W

function is replaced with our new one. For stochastic DRL policies (e.g., REIN-

FORCE [176]), we use the following loss function to train the model:

L(s) = cross entropy loss(M(s), a)G(s) (6.10)

G(s) = re(s, a) + γG(s′) (6.11)

where G(s) is the accumulative reward with a discount factor γ of all the rewards

from previous episodes, and s′ is the next state.

For deterministic policies (e.g., DQN [166]) which simply output the most-likely

actions instead of statistically sampling actions based on the APD, we adopt the

Chapter 6. Backdoor as a Watermark 123

loss function with the temporal difference (TD) error [181]:

L(s, a) =
(
re(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

)2

. (6.12)

where Q(s, a) is the value function to estimate the goodness of a on s, and s′, a′

are the next state and the corresponding action.

The model owner can optimize the parameters of M with this new loss function

and the damage-free states using the stochastic gradient descent technique:

θt+1 = θt − lr∇
T−1∑
j=0

L(sj) (6.13)

where θt is the parameters of M at the t-th iteration, and lr is the learning rate.

The optimization process ends when the reward M achieved on a validation dataset

is larger than a given threshold R.

After the fine-tuning process, the behaviors of the target model on the damage-free

states will be altered, and the new APDs will be different from the original ones in

the watermark candidates C. To identify the final watermarks, the model owner

queries the fine-tuned model M̂ from the initial damage-free states in C, and record

the new state-APD sequences. For each initial state, he/she collects the subsequent

states and the corresponding action probability distributions. Finally he/she can

obtain a temporal sequence T̂W = [(s0, P̂0), (s1, P̂1), ..., sL−1, P̂L−1)] that forms a

unique watermark for this new model.

Algorithm 7 illustrates the details of embedding watermarks into a DRL model via

fine-tuning. The owner first initializes the DRL model M and empties a training

buffer B (Line 1). For each damage-free state s ∈ C, he/she randomly samples an

action different from the most-likely one a∗ and replaces the original reward r(s, a)

with the new reward re(s, â) (Lines 2 - 5). Then he/she adds the new training

samples into B. During the optimization process, the owner collects samples from

B, computes the loss with Equation 6.10 or 6.12 and updates M with the stochastic

gradient descent technique (Lines 7 - 15). After the watermarked model M̂ is

obtained, the owner runs it from the same initial damage-free states in TW , and

collects the altered APDs. The pairs of states and new APDs are added to the

final watermark sequence T̂W (Lines 16 - 23).

124 6.4. Methodology

Algorithm 8: Verify: extracting the embedded watermarks from a suspicious
DRL model M ′.
Input: Watermark dataset W, distance threshold τ

1 for each T̂W ∈W do

2 for each of (si, P̂i)
L−1
i=0 ∈ T̂W do

3 Run the agent on si and calculate the APD P ′
i ;

4 dsi ←
∑

a p̂i,a log
p̂i,a
p′i,a

;

5 dT̂W ,TW ′ ←
∑L

i=0 dsi ;

6 dM̂,M ′ ← 1
|n|

∑
T̂W∈W dT̂W ,TW ′ ;

7 if dM̂,M ′ ≤ τ then

8 IsWatermarked = True ;
9 else

10 IsWatermarked = False ;
11 return IsWatermarked

6.4.3 Ownership Verification

The owner extracts the watermarks by running the agent on the watermark states,

observing the subsequent state-APD pairs and checking whether the behaviors

match the temporal watermark T̂W . Algorithm 8 describes this process. Due

to the stochastic property of a DRL agent, for each watermark state in T̂W ,

the action can vary following the corresponding APD. To obtain the statisti-

cal characteristics of the agent on a watermark state s, the owner can run the

agent over s for multiple times, collect the predicted actions and calculate their

probability distribution. Thus, the owner is able to get the temporal sequence

TW ′ = [(s0, P
′
0), ..., (sL−1, P

′
L−1)].

The owner calculates the distance between T̂W and TW ′ for similarity comparison.

Since the states are the same, the owner only needs to compare the distance of

APDs between the two sequences. We adopt Kullback–Leibler (KL) divergence

[182] to estimate such distance of two distributions P̂i and P ′
i , as shown below:

dsi =
∑
a

p̂i,a log
p̂i,a
p′i,a

, (6.14)

where p̂i,a, p
′
i,a are the probability of the action a following the distributions P̂i, P

′
i ,

respectively.

Chapter 6. Backdoor as a Watermark 125

We define the distance dT̂W ,TW ′ between T̂W and TW ′ as the cumulative distance

of all the action probabilities (i.e., dT̂W ,TW ′ =
∑L−1

i=0 dsi). Thus, the distance dM̂,M ′

of the watermarked model M̂ and the candidate model M ′ can be defined as the

average distance of all watermarks in W, i.e.,

dM̂,M ′ =
1

n

∑
T̂W∈W

dT̂W ,TW ′ =
1

n

∑
T̂W∈W

L−1∑
i=0

dsi . (6.15)

The owner can verify the existence of watermarks by comparing dM̂,M ′ with a

distance threshold τ .

6.5 Evaluation

We evaluate the requirements satisfactory of our method. It is general for various

types of DRL algorithms and tasks. Without loss of generality, we consider the

following two systems.

Stochastic policy. We implement a REINFORCE [176] DRL algorithm to solve

the Cart-Pole task [183]. It consists of two layers with 128 neurons. We apply

dropout on the first layer with a rate of 0.6. We also adopt the Relu activation

function on the first layer, and the softmax function on the last layer.

Deterministic policy We choose DQN [166] as a representative of deterministic

algorithms to solve the LunarLander task [183]. We apply the double DQN network

structure and both the policy network and target network have two layers of 32

neurons.

6.5.1 Effectiveness of Watermark Generation and Embed-

ding

Cart-Pole. To generate a watermark candidate, we randomly search damage-free

states from S. For each state, we enquiry the APD from a clean model and identify

the action a∗ which has the highest action probability. Then we select an action â

different from a∗. Since the Cart-Pole environment has a very small action space,

i.e., 2 actions, if we always select the opposite action on all the incoming L states,

126 6.5. Evaluation

Table 6.1: Verification results of the embedded watermarks

Metric
Cart-Pole LunarLander

Train Fine-tune Train Fine-tune
Accuracy 96.7% 95% 100% 100%
Error rate 4.2% 5.8% 1.6% 2.5%

the system will be fragile and we can never obtain a sequence consisting of all

damage-free states. Therefore, we perturb the actions on alternative states with a

fixed interval to mitigate the impact on the tasks with small action spaces. More

preciously, we choose to change the action on every two states in the Cart-Pole

environment and collect the damage-free states as our watermark candidates. We

fix the threshold of variance ψ at 0.15 and set the episode performance threshold

ϵ to 195 following OpenAI Gym [183].

To embed watermarks into the target model, we need to add an incentive reward

(10 in our experiments) over the damage-free states from C and update the network

parameters based on the corresponding loss values. Since the network is trained

over multiple episodes initialized from random seeds, to ensure the damage-free

states can be included during the optimization of network parameters, we initialize

the environment with a seed that contains damage-free states every 10 episodes.

We add the incentive reward to every two states in the episodes. We complete the

training process when the performance reaches the origin task reward threshold ϵ,

and collect the watermark sequence with a length of 6 from the new model.

LunarLander. We use the deterministic DQN algorithm to solve this task. There-

fore, the action probability on a state is either 1 (the selected one) or 0 (others). We

first find a set of watermark candidates consisting of damage-free states following

the same process in Cart-Pole.

For each watermark candidate, we modify the reward of the damage-free states

towards an non-optimal action and add the training sample to the training buffer.

Different from training stochastic models in Cart-Pole, DQN applies a experience

replay mechanic to sample the training data randomly. To guarantee the training

samples with our revised rewards can be learned well by the network, we adopt

the prioritized experience replay [184] to sample the training data which have large

loss with higher probability. We initialize the experience buffer with a size of 10000

and start to train the DQN model with normal process.

Chapter 6. Backdoor as a Watermark 127

6.5.2 Verification Results

We evaluate whether the generated watermarks can be observed to identify models

in this section. We use two metrics to quantify the effectiveness of the embed-

ded watermark in a DRL model: the verification accuracy denotes the ratio of

watermarked models that can be correctly detected; the error rate denotes the

percentage of unprotected models that are misclassified as the watermarked one.

For the Cart-Pole case, we produce 20 watermarked models and 120 clean models

for classification. The clean model set consists of 20 original REINFORCE models

before watermarking, 20 new REINFORCE models, 40 PPO models and 40 A2C

models. PPO and A2C models are trained with the default network structure based

on the benchmark of OpenAI baseline [185]. To increase the diversity of the model

set, we vary the hyperparameters (e.g., learning rates, training steps) to generate

those 80 clean models. For the LundarLander, we produce 20 watermarked models

and 80 clean models for classification. All the clean models are based on DQN

with varied hyperparameters from the benchmark of OpenAI baseline [185].

During verification, we send the first watermark state to each model and collect

10000 actions to analyze the APD. If the model cannot reach the next watermark

state, we stop this process and treat this model as a non-watermarked one, as

its APD is very different from the expected one. Otherwise, we compute the KL

divergence of the collected APD and the watermark APD. We repeat the above

process and compute the average distance until we reach the end of the watermark

sequence. We set the average distance threshold τ to 0.5.

Table 6.1 shows the verification results for these two tasks. We consider two embed-

ding modes: (1) Train is to train a watermarked model from scratch; (2) Fine-tune

means to embed watermarks to a well-trained model via fine-tuning. From this

figure, we observe that our method can achieve very high accuracy for both envi-

ronments (96.7% for Cart-Pole and 100% for LunarLander). Meanwhile, the error

rates can be kept to very small values. This confirms the effectiveness of our ap-

proach. It is interesting to note that the verification performance of Cart-Pole is

slightly worse than Lunarlander. The reason is that the stochastic models act ran-

domly following the APD, and we can only analyze an approximate distribution

during the verification under the black-box access setting. Therefore, there may

exist measurement errors to decrease the accuracy.

128 6.5. Evaluation

(a) Train to Embed on Cart-Pole (b) Train to Embed on LunarLander

Figure 6.3: The episode rewards during the progress of training clean and
watermarked models.

(a) Fine-tune to embed on Cart-Pole (b) Impact of fine-tuning on Cart-Pole

Figure 6.4: The episode rewards during the progress of fine-tuning watermark
embedding and transformation.

6.5.3 Functionality-preserving

Another requirement for the watermark scheme is functionality-preserving, where

the added watermarks should not affect the performance and behaviors of the

model on normal states. To quantify this requirement, we compare the original

clean model and the watermarked model from the perspectives of the learning

progress, the average and variance of episode scores.

We profile the training progress of 20 clean models and 20 watermarked models.

Figure 6.3 shows the range of episode rewards when training with and without

watermarks for both stochastic and deterministic models. The progress of training

Chapter 6. Backdoor as a Watermark 129

Table 6.2: Functionality-preserving results of the watermarked models

Score
Cart-Pole LunarLander

Train Fine-tune Train Fine-tune
Threshold 195 195 200 200
Average 197.6 196.2 201.6 200.8
Variance 4.59 9.26 14.50 18.42

a watermarked model is slightly slower than training a clean model. The variance

is also kept within an acceptable range considering the high stochasticity of DRL

algorithms. For the fine-tuning embedding mode, the stochastic models have less

stable behaviors than the deterministic ones, as they need to randomly collect

the training experience with the actions sampled following the APD. As shown in

Figure 6.4a, the fine-tune progress of Cart-Pole has large variance but it can still

acquire the knowledge to solve the task and memorize the watermarks.

Table 6.2 shows the average and variance of episode scores for watermarked mod-

els under two embedding modes. For each watermarked model, we measure its

performance over 100 episodes initialized with random seeds. From this table, we

observe the average episode score can meet the threshold (reported in the Threshold

row) for solving each task. The small variance also indicates that the watermarked

models are very stable with embedded watermarks.

6.5.4 Robustness

The adversary may try to transform a stolen model in order to either adapt to

his datasets and scenario, or maliciously hide the evidence of plagiarism. So the

watermarks should not be removed by those transformations. There are mainly

two types of model transformations: fine-tuning and model compression [186, 187].

We demonstrate that our watermarks can resist against these two operations. This

is not considered in prior work [67].

Fine-tuning is a common method to apply a well-trained model to a similar task

with less effort. In our experiments, we fine-tune the watermarked model with the

same implementation and hyperparameters. For the LunarLander case, we fine-

tune the watermarked model with 100 episodes (around 10% of episodes for training

a new model from scratch). For the Cart-Pole case, we fine-tune the model with 50

episodes. The reason that we select a smaller number of episodes is based on the

130 6.6. Discussion

observation that extensive fine-tuning can hurt the performance of the stochastic

models as the new training experiences are sampled following the APD. This is

validated by Figure 6.4b, which shows the reward range with different numbers of

fine-tuning episodes. To preserve the model’s functionality, it is reasonable for the

adversary to choose 50 episodes.

Model compression is another popular solution to reduce the model size and com-

plexity. There are various ways to compress the model. We apply model quan-

tization [188] to reduce the precision of parameters in the target model. In our

experiments, we train DRL models with 32-bit floating point tensors, and then

compress the parameters to 16-bit floating point tensors.

Table 6.3 shows the robustness results against these two transformations. We ob-

serve that fine-tuning transformation is slightly worse than compression, especially

for the stochastic case (Cart-Pole). However, the watermarked models under all

these settings can still maintain high verification accuracy to be detected.

6.6 Discussion

Extensibility to various environments. Different from conventional DNNs,

watermarking DRL models is more dependent on the environments and tasks. As

such, designing a uniform scheme for all DRL tasks is very difficult. Our work

made the first attempt to address this challenge, and evaluations indicate our

solution is useful for common DRL tasks. In some applications (e.g., POMDP

[189]), full information about states and actions is not easy to acquire. To adapt

to this case, we can just select the observable states and actions as watermarks,

while abandoning the hidden ones. We can also use more watermark sequences to

increase the fidelity. As future work, we will evaluate our solution for more DRL

applications.

Selection of hyperparameters. There are several hyperparameters in our ap-

proach that can affect the performance of the watermark embedding and veri-

fication. Since different tasks have distinct features, the model owner needs to

empirically test his models to identify the optimal thresholds. He/she can system-

atically set the thresholds following the method as we did: 1) set the variance ϵ

inversely proportional to the action space size; 2) set the incentive reward η as 5-20

Chapter 6. Backdoor as a Watermark 131

Table 6.3: Robustness results of the watermarked models against different
transformations

Transformation
Cart-Pole LunarLander

Train Fine-tune Train Fine-tune
Baseline 96.7% 95% 100% 100%

Fine-tune 95% 83% 96.7% 93.3%
Compression 91.5% 89.2% 98.3% 95.8%

times of the original one; 3) set the average distance τ to be inversely proportional

to the incentive reward. Following these basic rules, we can find the “sweet-spots”

for a specific task by tuning these hyperparameters properly.

More watermark removal attacks. In this work we evaluate the robustness of

our watermarking scheme against fine-tuning and model quantization. There are

other common model transformation techniques for neural networks, e.g., model

distillation, model pruning, etc. Model distillation requires large training data

and huge computational resources, which is not a practical solution for watermark

removal attacks. Model pruning and model quantization with larger compression

ratios (e.g., reducing to 8 bit or binary weights) can lead to an unacceptable perfor-

mance penalty to the model. These can discourage the adversary from performing

such model transformations. In our future work, we plan to study more efficient

and sophisticated attacks to remove DRL watermarks.

6.7 Summary

In this chapter, we explore how to protect the intellectual property, and prevent

copyright infringements of DRL models. We formally define the watermarking

problem and requirements for DRL. We propose a novel temporal watermarking

scheme that can be applied to both deterministic and stochastic DRL policies.

Instead of using spatial triggers or perturbations, or out-of-distribution states in

different environments as watermark states, we design damage-free states, and

utilize statistic tests of action probability distribution to verify the ownership of

the target model with only black-box accesses. This strategy can effectively make

the watermarked models uniquely distinguishable, while preserving their behaviors

and performance for normal usage. Extensive experimental results reveal that our

watermarking scheme can satisfy the functionality-preserving, state-preserving, and

132 6.7. Summary

damage-free requirements under different environments and system settings. Our

watermarks are also robust to common model modification techniques such as fine-

tuning and compression.

Chapter 7

Conclusion and Future Work

In this chapter, we summarize the key contributions of the thesis and outline po-

tential directions for future research, reflecting on both the challenges and oppor-

tunities in the backdoor attacks as well as intellectual property protection of deep

learning models.

7.1 Conclusion

In this thesis, we explored critical aspects of security and intellectual property

protection in deep learning, focusing on the vulnerabilities introduced by backdoor

attacks and the application of these techniques for beneficial purposes such as model

ownership verification. The research primarily addressed three key areas: task-

agnostic backdoor attacks on pre-trained NLP models, novel clean-input backdoor

attack methods, and temporal watermarking for deep reinforcement learning (DRL)

models.

Our work on task-agnostic backdoor attacks demonstrated the significant risks

associated with using pre-trained NLP models, which serve as foundational models

for various downstream applications. We showed that these models could inherit

vulnerabilities from backdoors implanted during the pre-training phase, posing a

critical security threat.

133

134 7.2. Future Work

We also developed new clean-image backdoor attack methods that leverage label-

only poisoning, addressing a practical scenario where input data remains unmod-

ifiable. This research highlighted the potential for compromising models through

malicious annotations, even in environments where traditional input-based attacks

are not feasible.

We further introduced the clean-input backdoor methodology, a universal approach

designed to attack various supervised learning tasks and modalities by leverag-

ing hidden features within the data. This methodology allows for the embedding

of backdoors without modifying the input data of various deep learning models,

demonstrating a versatile and effective method for executing attacks even under

stringent conditions.

Additionally, we introduced a novel temporal watermarking scheme for DRL mod-

els. This method uses sequences of states and action probability distributions as

watermarks, ensuring robust verification of model ownership while minimizing the

risk of performance degradation. Our approach provides a significant advancement

in protecting the intellectual property of complex AI systems.

Overall, this thesis contributes to the understanding and mitigation of security

threats in deep learning and proposes innovative solutions for safeguarding model

integrity and intellectual property. These findings underscore the importance of

continued research in developing secure and reliable AI systems.

7.2 Future Work

This thesis has contributed significantly to understanding backdoor attacks and

their applications in deep learning. However, the rapidly evolving landscape of deep

learning presents numerous opportunities for future research. Below, we outline key

directions to advance this field.

Chapter 7. Conclusion 135

7.2.1 Developing Advanced Backdoor Triggers and Attack

Methods

Future research could focus on designing advanced backdoor triggers or novel at-

tack methods to address the limitations of existing approaches, such as the use

of multiple triggers. While multiple triggers can enhance attack flexibility, they

may also increase the risk of detection by both human reviewers and automated

defenses like ONION.

To overcome these challenges, future work should aim to:

• Design Subtle and Robust Triggers: Develop triggers that blend seam-

lessly into natural text while remaining effective across diverse downstream

tasks. For example, using semantically meaningful yet imperceptible phrases

can reduce the risk of detection. Moreover, that attacker can investigate

adaptive trigger mechanisms that adjust based on model behavior or task

context, improving stealth and robustness. Besides, for pixel-based attacks,

such as adversarial and backdoor attacks, a significant challenge lies in bridg-

ing the gap between simulated and real-world scenarios (sim-to-real). This

gap often leads to a decrease in attack performance when the model is de-

ployed in real-world environments. Future work could focus on designing

triggers that are not only effective in simulated settings but also robust under

real-world conditions. For example, we can develop triggers that are resistant

to variations in lighting, perspective, and other environmental factors that

commonly occur in real-world settings.

• Bypass Advanced Defenses: Analyze and counter defenses such as ONION

by designing distributed or contextually embedded triggers that are harder

to detect. Besides, an important area for future research involves improving

the subtlety of poisoned annotations in label-only backdoor attacks. While

our current approach demonstrates effectiveness with a very small poisoning

rate, ensuring that poisoned annotations remain indistinguishable from nat-

ural noise in large-scale datasets collected in the wild is critical. For example,

we can use generative techniques to create poisoned labels that mimic the

natural distribution of labels, reducing the likelihood of detection by victim

users or automated systems.

136 7.2. Future Work

• Incorporate Advanced Fine-Tuning Techniques: Explore the integra-

tion of backdoors into models fine-tuned using advanced techniques like LoRA

(Low-Rank Adaptation) [190]. LoRA provides an efficient means of adapting

large pre-trained models by modifying a small subset of parameters. Future

work could investigate methods to embed backdoors within these trainable

low-rank matrices, leveraging LoRA’s parameter efficiency to create back-

doors that are harder to detect and robust against overwriting during task-

specific fine-tuning.

These efforts can pave the way for backdoor attacks that are more resilient and

harder to detect, while highlighting the evolving interplay between attack method-

ologies and defense mechanisms.

7.2.2 Advanced Defense Mechanisms for Backdoor Attacks

The sophistication of backdoor attacks necessitates innovative and adaptive defense

mechanisms:

Dynamic Backdoor Detection: Future work can focus on designing adaptive

frameworks that leverage real-time anomaly detection during training and inference

phases. Lightweight detection algorithms for resource-constrained environments,

such as mobile devices and edge computing setups, are particularly critical.

Layer-wise Defense Mechanisms: Investigate defenses at various neural net-

work layers, especially the deeper layers that focus on semantic understanding, as

these may be more vulnerable to backdoor behaviors.

Attention-based Defense Mechanisms: Attention mechanisms, in particular,

provide an opportunity to detect and mitigate backdoor attacks by analyzing at-

tention patterns. For instance, models often attend disproportionately to trigger

tokens in backdoored inputs, which can serve as an indicator of malicious behav-

ior. Therefore, the defender can develop methods to analyze attention distributions

during inference to identify and isolate potential triggers.

Rephrasing-based Defense Mechanisms: Future work could explore the use

of language models to rephrase input text as a means of neutralizing backdoor trig-

gers. By rephrasing inputs while preserving their semantic meaning, this approach

Chapter 7. Conclusion 137

may disrupt the specific patterns or tokens that activate backdoor behaviors. This

defense mechanism is particularly appealing due to its simplicity and potential

applicability across diverse NLP tasks.

Explainability-driven Defenses: Integrate explainable AI (XAI) tools to trace

decisions back to specific model activations or parameters. Methods like attention

maps and saliency techniques can help identify and mitigate backdoor-induced

biases.

7.2.3 Generalizing Label-Only Poisoning Techniques

Label-only poisoning attacks can be extended to new modalities and contexts:

Multi-modal Systems: Study the extension of label-only poisoning to multi-

modal systems combining text, vision, and audio data.

Transfer Learning Fine-tuning: Investigate how label-only poisoning affects

fine-tuning of large pre-trained models, exploring how poisoned representations

propagate.

Adversarial Defenses: Develop robust optimization techniques to defend against

label-only poisoning while maintaining performance on clean data.

7.2.4 Temporal Watermarking for Distributed AI Systems

The proposed temporal watermarking for reinforcement learning models can be

extended to distributed systems:

Federated Learning Adaptation: Explore the use of temporal watermarking

in federated learning, ensuring watermarks persist despite distributed training and

aggregation processes.

Cross-Domain Generalization: Investigate applications of temporal water-

marking in domains such as computer vision and NLP by leveraging task-specific

sequential characteristics.

Robustness Improvements: Enhance the resilience of watermarks against ad-

vanced attacks, such as adversarial re-training and model compression.

138 7.2. Future Work

7.2.5 Comprehensive Evaluation Frameworks

Future work should establish standardized evaluation frameworks for backdoor

research:

Benchmark Datasets: Curate standardized datasets representing diverse attack

scenarios for fair evaluation of attacks and defenses.

Evaluation Metrics: Develop comprehensive metrics to assess the effectiveness,

stealth, and ethical implications of backdoor techniques.

These future directions provide a detailed roadmap for advancing research in back-

door attacks, defenses, and applications, ensuring the development of secure, ethi-

cal, and innovative AI systems.

Bibliography

[1] Leland McInnes and John Healy. Umap: Uniform manifold approximation
and projection for dimension reduction. ArXiv, abs/1802.03426, 2018. URL
https://api.semanticscholar.org/CorpusID:3641284. xix, 80

[2] Rafael A. Rivera-Soto, Olivia Elizabeth Miano, Juanita Ordonez, Barry Y.
Chen, Aleem Khan, Marcus Bishop, and Nicholas Andrews. Learning univer-
sal authorship representations. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pages 913–
919, Online and Punta Cana, Dominican Republic, November 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.70.
URL https://aclanthology.org/2021.emnlp-main.70. xix, 80

[3] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard
Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recog-
nition with a back-propagation network. Advances in neural information
processing systems, 2, 1989. 1

[4] Feng-Hsiung Hsu. Behind Deep Blue: Building the computer that defeated
the world chess champion. Princeton University Press, 2002. 1

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 1

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018. 1, 82, 84

[7] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 1, 113

[8] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep re-
inforcement learning for robotic manipulation with asynchronous off-policy
updates. In IEEE International Conference on Robotics and Automation,
pages 3389–3396, 2017. 1, 110

139

https://api.semanticscholar.org/CorpusID:3641284
https://aclanthology.org/2021.emnlp-main.70

140 BIBLIOGRAPHY

[9] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A
survey. IEEE Transactions on Neural Networks and Learning Systems, 35
(1):5–22, 2022. 1

[10] Tianlin Li, Aishan Liu, Xianglong Liu, Yitao Xu, Chongzhi Zhang, and Xi-
aofei Xie. Understanding adversarial robustness via critical attacking route.
Information Sciences, 547:568–578, 2021. 1

[11] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Iden-
tifying vulnerabilities in the machine learning model supply chain. arXiv
preprint arXiv:1708.06733, 2017. 1, 2, 9, 20, 23

[12] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi
Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein.
Dataset security for machine learning: Data poisoning, backdoor attacks,
and defenses. arXiv preprint arXiv:2012.10544, 2020. 46

[13] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor
learning: A survey. arXiv preprint arXiv:2007.08745, 2020. 1, 20, 23

[14] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath,
Haitao Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 707–723. IEEE, 2019. 2, 12, 29, 62

[15] Yuki Matsuo and Kazuhiro Takemoto. Backdoor attacks to deep neural
network-based system for covid-19 detection from chest x-ray images. Applied
Sciences, 11(20):9556, 2021. 2

[16] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Em-
bedding watermarks into deep neural networks. In International Conference
on Multimedia Retrieval, pages 269–277, 2017. 2, 14

[17] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet. Turning your weakness into a strength: Watermarking deep neural
networks by backdooring. In USENIX Security Symposium, pages 1615–1631,
2018. 4, 14, 110, 115

[18] Ryota Namba and Jun Sakuma. Robust watermarking of neural network
with exponential weighting. In ACM Asia Conference on Computer and
Communications Security, pages 228–240, 2019. 2, 14

[19] ByteBridge. Cloud based AI data labeling service. https://bytebridge.io,
2022. Accessed: 2022-08-07. 2, 46, 51

[20] J.M. Porup. How data poisoning attacks corrupt machine learning
models, 2018. URL https://www.csoonline.com/article/570555/

how-data-poisoning-attacks-corrupt-machine-learning-models.

html. Accessed: 2025-01-11. 2

https://bytebridge.io
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html

BIBLIOGRAPHY 141

[21] J.M. Porup. How data poisoning attacks corrupt machine learning
models, 2018. URL https://www.csoonline.com/article/570555/

how-data-poisoning-attacks-corrupt-machine-learning-models.

html. Accessed: 2025-01-11. 2

[22] J.M. Porup. How data poisoning attacks corrupt machine learning
models, 2018. URL https://www.csoonline.com/article/570555/

how-data-poisoning-attacks-corrupt-machine-learning-models.

html. Accessed: 2025-01-11. 3

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018. URL http://arxiv.org/abs/1810.04805. 3,
20, 22, 27, 30, 31

[24] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. Ope-
nAI blog, 1(8):9, 2019. 3, 20

[25] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel Bowman. GLUE: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pages 353–355, Brussels, Belgium, November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-5446. URL https:

//aclanthology.org/W18-5446. 3, 20, 30, 34

[26] EF Tjong Kim Sang. Introduction to the conll-2002 shared task: Language-
independent named entity recognition. In Proceedings of CoNLL-2002, pages
155–158. Unknown Publisher, 2002. 3, 20, 31, 67

[27] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021. 3, 20

[28] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against
lstm-based text classification systems. IEEE Access, 7:138872–138878, 2019.
3, 10, 20, 23, 75

[29] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang
Zhang. Badnl: Backdoor attacks against nlp models. arXiv preprint
arXiv:2006.01043, 2020.

[30] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, and Bin He.
Be careful about poisoned word embeddings: Exploring the vulnerability of
the embedding layers in nlp models. arXiv preprint arXiv:2103.15543, 2021.

https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
http://arxiv.org/abs/1810.04805
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446

142 BIBLIOGRAPHY

[31] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng
Wang, and Maosong Sun. Hidden killer: Invisible textual backdoor at-
tacks with syntactic trigger. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 443–453, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.37. URL https://aclanthology.org/

2021.acl-long.37. 3, 10, 20, 23, 25, 76

[32] Ingemar J Cox, Joe Kilian, F Thomson Leighton, and Talal Shamoon. Secure
spread spectrum watermarking for multimedia. IEEE Transactions on Image
Processing, 6(12):1673–1687, 1997. 4, 110

[33] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How to prove
your model belongs to you: A blind-watermark based framework to pro-
tect intellectual property of dnn. In Annual Computer Security Applications
Conference, pages 126–137, 2019. 4, 14, 110

[34] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N Asokan. Dawn:
Dynamic adversarial watermarking of neural networks. arXiv preprint
arXiv:1906.00830, 2019. 4, 110

[35] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie Chen,
and Yang Liu. Stealthy and efficient adversarial attacks against deep rein-
forcement learning. arXiv preprint arXiv:2005.07099, 2020. 4, 111

[36] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. TrojDRL:
Trojan attacks on deep reinforcement learning agents, 2019. 4, 111

[37] Yue Wang, Esha Sarkar, Michail Maniatakos, and Saif Eddin Jabari. Stop-
and-Go: Exploring backdoor attacks on deep reinforcement learning-based
traffic congestion control systems, 2020. 4, 111

[38] Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor,
Michael Moeller, and Tom Goldstein. Witches’ brew: Industrial scale data
poisoning via gradient matching. arXiv preprint arXiv:2009.02276, 2020. 10

[39] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access, 7:
47230–47244, 2019. 10, 46, 72, 75

[40] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv
preprint arXiv:1712.05526, 2017. 10, 76

[41] Hasan Abed Al Kader Hammoud. Check Your Other Door: Creating Back-
door Attacks in the Frequency Domain. PhD thesis, 2022. 10, 76

https://aclanthology.org/2021.acl-long.37
https://aclanthology.org/2021.acl-long.37

BIBLIOGRAPHY 143

[42] Tong Wang, Yuan Yao, Feng Xu, Shengwei An, Hanghang Tong, and
Ting Wang. Backdoor attack through frequency domain. arXiv preprint
arXiv:2111.10991, 2021. 10, 76

[43] Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. Turn the
combination lock: Learnable textual backdoor attacks via word substitution.
In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 4873–4883, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-long.377. URL https://aclanthology.org/2021.acl-long.377.
10, 76, 77

[44] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label
backdoor attacks. 2018. 10, 72, 76

[45] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and
Yu-Gang Jiang. Clean-label backdoor attacks on video recognition models.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 14443–14452, 2020. 11, 76

[46] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas
Papernot, Murat A Erdogdu, and Ross J Anderson. Manipulating sgd with
data ordering attacks. Advances in Neural Information Processing Systems,
34:18021–18032, 2021. 11, 49, 75, 77

[47] Ahmed Salem, Michael Backes, and Yang Zhang. Don’t trigger me! A trigger-
less backdoor attack against deep neural networks. CoRR, abs/2010.03282,
2020. URL https://arxiv.org/abs/2010.03282. 11, 49

[48] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. An em-
barrassingly simple approach for trojan attack in deep neural networks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 218–228, 2020. 11

[49] Xiangyu Qi, Jifeng Zhu, Chulin Xie, and Yong Yang. Subnet replacement:
Deployment-stage backdoor attack against deep neural networks in gray-box
setting. arXiv preprint arXiv:2107.07240, 2021. 11, 75

[50] Jacob Dumford and Walter Scheirer. Backdooring convolutional neural net-
works via targeted weight perturbations. In 2020 IEEE International Joint
Conference on Biometrics (IJCB), pages 1–9. IEEE, 2020. 11, 75

[51] Zhiyuan Zhang, Lingjuan Lyu, Weiqiang Wang, Lichao Sun, and Xu Sun.
How to inject backdoors with better consistency: Logit anchoring on clean
data. arXiv preprint arXiv:2109.01300, 2021. 11

[52] Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha
Poovendran, and Bo Li. Badchain: Backdoor chain-of-thought prompting for
large language models. arXiv preprint arXiv:2401.12242, 2024. 12

https://aclanthology.org/2021.acl-long.377
https://arxiv.org/abs/2010.03282

144 BIBLIOGRAPHY

[53] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and Dawn Song. To-
wards inspecting and eliminating trojan backdoors in deep neural networks.
In 2020 IEEE International Conference on Data Mining (ICDM), pages 162–
171. IEEE, 2020. 12, 62

[54] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via
generative distribution modeling. Advances in neural information processing
systems, 32, 2019. 12, 62

[55] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranas-
inghe, and Surya Nepal. Strip: A defence against trojan attacks on deep
neural networks. In Proceedings of the 35th Annual Computer Security Ap-
plications Conference, pages 113–125, 2019. 12, 62, 63

[56] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the
IEEE international conference on computer vision, pages 618–626, 2017. 13,
63

[57] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting
localized universal attacks against deep learning systems. In 2020 IEEE
Security and Privacy Workshops (SPW), pages 48–54. IEEE, 2020. 13, 63

[58] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin
Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting back-
door attacks on deep neural networks by activation clustering. arXiv preprint
arXiv:1811.03728, 2018. 13, 64, 65, 101

[59] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: De-
fending against backdooring attacks on deep neural networks. In Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses, pages
273–294. Springer, 2018. 13, 67

[60] Han Qiu, Yi Zeng, Shangwei Guo, Tianwei Zhang, Meikang Qiu, and Bhavani
Thuraisingham. Deepsweep: An evaluation framework for mitigating dnn
backdoor attacks using data augmentation. In Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, pages 363–377,
2021. 13, 67

[61] Bairen Wu, Shu-Tao Xia, and Zhangyang Wang. Adversarial neuron prun-
ing purifies backdoored deep models. In Advances in Neural Information
Processing Systems, volume 34, pages 16913–16925, 2021. 13

[62] Yiming Li, Shanlei Bai, Yong Jiang Wang, Yevgeniy Vorobeychik, Shu-Tao
Xia, and Bihan Wang. Neural attention distillation: Erasing backdoor trig-
gers from deep neural networks. In International Conference on Learning
Representations, 2020. 13

BIBLIOGRAPHY 145

[63] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. A unified framework
for data poisoning attack and defense through adversarial training. In Pro-
ceedings of the 33rd Conference on Neural Information Processing Systems,
2020. 13

[64] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An
end-to-end watermarking framework for protecting the ownership of deep
neural networks. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019. 14

[65] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin,
Heqing Huang, and Ian Molloy. Protecting intellectual property of deep
neural networks with watermarking. In Asia Conference on Computer and
Communications Security, pages 159–172, 2018. 14, 115

[66] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier
stitching for remote neural network watermarking. Neural Computing and
Applications, pages 1–12, 2019. 14

[67] Vahid Behzadan and William Hsu. Sequential triggers for watermarking of
deep reinforcement learning policies. arXiv preprint arXiv:1906.01126, 2019.
15, 111, 117, 129

[68] Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang, Ji-
wei Li, and Chun Fan. Badpre: Task-agnostic backdoor attacks to pre-trained
NLP foundation models. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=Mng8CQ9eBW. 19,
46, 86

[69] Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. Trojaning lan-
guage models for fun and profit. arXiv preprint arXiv:2008.00312, 2020. 21,
23, 24, 25

[70] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong
Sun. ONION: A simple and effective defense against textual backdoor at-
tacks. In Proceedings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 9558–9566, Online and Punta Cana, Domini-
can Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.752. URL https://aclanthology.org/

2021.emnlp-main.752. 22, 24, 25, 29, 34, 72, 77, 92

[71] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365, 2018. 22

[72] Y. Liu, Y. Xie, and A. Srivastava. Neural trojans. In 2017 IEEE 35th Inter-
national Conference on Computer Design (ICCD), pages 45–48, Los Alami-
tos, CA, USA, 11 2017. IEEE Computer Society. doi: 10.1109/ICCD.2017.
16. URL https://doi.ieeecomputersociety.org/10.1109/ICCD.2017.

16. 23

https://openreview.net/forum?id=Mng8CQ9eBW
https://aclanthology.org/2021.emnlp-main.752
https://aclanthology.org/2021.emnlp-main.752
https://doi.ieeecomputersociety.org/10.1109/ICCD.2017.16
https://doi.ieeecomputersociety.org/10.1109/ICCD.2017.16

146 BIBLIOGRAPHY

[73] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning. CoRR,
abs/1712.05526, 2017. URL http://arxiv.org/abs/1712.05526.

[74] Guowen Xu, Hongwei Li, Hao Ren, Jianfei Sun, Shengmin Xu, Jianting Ning,
Haomiao Yang, Kan Yang, and Robert H Deng. Secure and verifiable infer-
ence in deep neural networks. In Annual Computer Security Applications
Conference, pages 784–797, 2020.

[75] Guowen Xu, Hongwei Li, Yun Zhang, Shengmin Xu, Jianting Ning, and
Robert Deng. Privacy-preserving federated deep learning with irregular users.
IEEE Transactions on Dependable and Secure Computing, 2020. 23

[76] Siddhant Garg, Adarsh Kumar, Vibhor Goel, and Yingyu Liang. Can adver-
sarial weight perturbations inject neural backdoors. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management,
pages 2029–2032, 2020. 23

[77] Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks
on pretrained models. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 2793–2806, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.249. URL https://aclanthology.org/2020.acl-main.249. 23,
24, 31, 36, 72, 86

[78] Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng
Qiu. Backdoor attacks on pre-trained models by layerwise weight poisoning.
arXiv preprint arXiv:2108.13888, 2021. 24, 30

[79] Shangwei Guo, Chunlong Xie, Jiwei Li, Lingjuan Lyu, and Tianwei Zhang.
Threats to pre-trained language models: Survey and taxonomy. arXiv
preprint arXiv:2202.06862, 2022. 23

[80] HuggingFace. Huggingface. https://huggingface.co/models. Accessed:
2021-10-01. 24, 28

[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–
6008, 2017. 27, 40

[82] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019. 27, 84

[83] Hakan Erdogan. Sequence labeling: Generative and discriminative ap-
proaches. In Proc. 9th Int. Conf. Mach. Learn. Appl., pages 1–132, 2010.
30

http://arxiv.org/abs/1712.05526
https://aclanthology.org/2020.acl-main.249
https://huggingface.co/models

BIBLIOGRAPHY 147

[84] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-
the-art natural language processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations,
pages 38–45, Online, October 2020. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6. 30,
32

[85] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
SQuAD: 100,000+ questions for machine comprehension of text. In Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2383–2392, Austin, Texas, November 2016. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL
https://aclanthology.org/D16-1264. 31

[86] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In
Proceedings of the IEEE international conference on computer vision, pages
19–27, 2015. 31

[87] Jesse Vig. A multiscale visualization of attention in the transformer model. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37–42, Florence, Italy, July 2019.
Association for Computational Linguistics. doi: 10.18653/v1/P19-3007. URL
https://www.aclweb.org/anthology/P19-3007. 34, 40

[88] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical
nlp pipeline. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4593–4601, 2019. 34, 40

[89] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013. 38

[90] Zehao Dou, Wei Wei, and Xiaojun Wan. Improving word embeddings for
antonym detection using thesauri and sentiwordnet. In CCF International
Conference on Natural Language Processing and Chinese Computing, pages
67–79. Springer, 2018. 38

[91] Kangjie Chen, Xiaoxuan Lou, Guowen Xu, Jiwei Li, and Tianwei Zhang.
Clean-image backdoor: Attacking multi-label models with poisoned labels
only. In The Eleventh International Conference on Learning Representations,
2022. 45, 73, 74, 76, 77, 79

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/D16-1264
https://www.aclweb.org/anthology/P19-3007

148 BIBLIOGRAPHY

[92] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-Label
Image Recognition with Graph Convolutional Networks. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2019. 46, 48,
49, 51, 57

[93] Hao Guo, Kang Zheng, Xiaochuan Fan, Hongkai Yu, and Song Wang. Visual
attention consistency under image transforms for multi-label image classifi-
cation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 729–739, 2019. 46, 48

[94] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.
46, 48

[95] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni,
and Heung-Yeung Shum. Dino: Detr with improved denoising anchor boxes
for end-to-end object detection. arXiv preprint arXiv:2203.03605, 2022. 46,
48

[96] Eneldo Loza Menćıa and Johannes Fürnkranz. Efficient multilabel classifi-
cation algorithms for large-scale problems in the legal domain. In Semantic
Processing of Legal Texts, pages 192–215. Springer, 2010. 46, 48

[97] Sophie Burkhardt and Stefan Kramer. Online multi-label dependency topic
models for text classification. Machine Learning, 107(5):859–886, 2018. 46,
48

[98] Shih-Han Chan, Yinpeng Dong, Jun Zhu, Xiaolu Zhang, and Jun Zhou. Bad-
det: Backdoor attacks on object detection. arXiv preprint arXiv:2205.14497,
2022. 46, 49

[99] Hua Ma, Yinshan Li, Yansong Gao, Alsharif Abuadbba, Zhi Zhang, Anmin
Fu, Hyoungshick Kim, Said F Al-Sarawi, Nepal Surya, and Derek Abbott.
Dangerous cloaking: Natural trigger based backdoor attacks on object de-
tectors in the physical world. arXiv preprint arXiv:2201.08619, 2022. 46,
49

[100] Eva Gibaja and Sebastián Ventura. A tutorial on multilabel learning. ACM
Computing Surveys (CSUR), 47(3):1–38, 2015. 47

[101] Yunchao Wei, Wei Xia, Min Lin, Junshi Huang, Bingbing Ni, Jian Dong, Yao
Zhao, and Shuicheng Yan. Hcp: A flexible cnn framework for multi-label
image classification. IEEE transactions on pattern analysis and machine
intelligence, 38(9):1901–1907, 2015. 49

[102] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei
Xu. Cnn-rnn: A unified framework for multi-label image classification. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 2285–2294, 2016. 49, 51

BIBLIOGRAPHY 149

[103] Vacit Oguz Yazici, Abel Gonzalez-Garcia, Arnau Ramisa, Bartlomiej Twar-
dowski, and Joost van de Weijer. Orderless recurrent models for multi-label
classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13440–13449, 2020. 49, 51

[104] Ya Wang, Dongliang He, Fu Li, Xiang Long, Zhichao Zhou, Jinwen Ma, and
Shilei Wen. Multi-label classification with label graph superimposing. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 12265–12272, 2020. 49

[105] Shilong Liu, Lei Zhang, Xiao Yang, Hang Su, and Jun Zhu. Query2label:
A simple transformer way to multi-label classification. arXiv preprint
arXiv:2107.10834, 2021. 49

[106] Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baruch, and Asaf
Noy. Ml-decoder: Scalable and versatile classification head, 2021. 49, 57

[107] Hossein Souri, Micah Goldblum, Liam Fowl, Rama Chellappa, and Tom
Goldstein. Sleeper agent: Scalable hidden trigger backdoors for neural net-
works trained from scratch. arXiv preprint arXiv:2106.08970, 2021. 49

[108] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu.
Invisible backdoor attack with sample-specific triggers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 16463–
16472, 2021. 49

[109] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning
models. In 30th USENIX Security Symposium (USENIX Security 21), pages
1505–1521, 2021. 49

[110] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A
natural backdoor attack on deep neural networks. In European Conference
on Computer Vision, pages 182–199. Springer, 2020. 49

[111] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph
Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-
label poisoning attacks on neural networks. Advances in neural information
processing systems, 31, 2018. 49

[112] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor
attack for deep neural network by mixing existing benign features. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 113–131, 2020. 49

[113] Mengchen Zhao, Bo An, Wei Gao, and Teng Zhang. Efficient label contami-
nation attacks against black-box learning models. In IJCAI, pages 3945–3951,
2017. 50

150 BIBLIOGRAPHY

[114] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certi-
fied robustness to label-flipping attacks via randomized smoothing. In Inter-
national Conference on Machine Learning, pages 8230–8241. PMLR, 2020.

[115] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi
Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein.
Dataset security for machine learning: Data poisoning, backdoor attacks, and
defenses. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022. 50

[116] Ding Wang, Shantanu Prabhat, and Nithya Sambasivan. Whose AI dream?
in search of the aspiration in data annotation. In CHI Conference on Human
Factors in Computing Systems, pages 1–16, 2022. 51

[117] Market Analysis. Autonomous vehicle data annotation market anal-
ysis. https://www.researchandmarkets.com/reports/4985697/

autonomous-vehicle-data-annotation-market-analysis, 2022. Ac-
cessed: 2022-08-07. 51

[118] Chen Edwin. 30% of google’s emotions dataset
is mislabeled. https://www.surgehq.ai/blog/

30-percent-of-googles-reddit-emotions-dataset-is-mislabeled,
2022. Accessed: 2022-08-07. 51

[119] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303–338, 2010. 56

[120] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer vision, pages
740–755. Springer, 2014. 56

[121] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. Deep learn-
ing for extreme multi-label text classification. In Proceedings of the 40th
international ACM SIGIR conference on research and development in infor-
mation retrieval, pages 115–124, 2017. 68

[122] David D Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. Rcv1: A new
benchmark collection for text categorization research. Journal of machine
learning research, 5(Apr):361–397, 2004. 68

[123] Tencent. Neuralclassifier: An open-source neural hierarchical multi-
label text classification toolkit. https://github.com/Tencent/

NeuralNLP-NeuralClassifier, 2019. Accessed: 2022-11-16. 68

[124] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang.
Badnl: Backdoor attacks against NLP models. In ICML 2021 Workshop on
Adversarial Machine Learning, 2021. 72, 75, 78

https://www.researchandmarkets.com/reports/4985697/autonomous-vehicle-data-annotation-market-analysis
https://www.researchandmarkets.com/reports/4985697/autonomous-vehicle-data-annotation-market-analysis
https://www.surgehq.ai/blog/30-percent-of-googles-reddit-emotions-dataset-is-mislabeled
https://www.surgehq.ai/blog/30-percent-of-googles-reddit-emotions-dataset-is-mislabeled
https://github.com/Tencent/NeuralNLP-NeuralClassifier
https://github.com/Tencent/NeuralNLP-NeuralClassifier

BIBLIOGRAPHY 151

[125] Yinghua Gao, Yiming Li, Linghui Zhu, Dongxian Wu, Yong Jiang, and Shu-
Tao Xia. Not all samples are born equal: Towards effective clean-label back-
door attacks. Pattern Recognition, 139:109512, 2023. 72

[126] Amazon Mechanical Turk. https://www.mturk.com/. 72

[127] ByteBridge. https://bytebridge.org/. 72

[128] Rishi Dev Jha, Jonathan Hayase, and Sewoong Oh. Label poisoning is all
you need. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=prftZp6mDH. 73,
76, 77, 79, 86

[129] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language
models are zero-shot learners. ArXiv, abs/2109.01652, 2021. URL https:

//api.semanticscholar.org/CorpusID:237416585. 75

[130] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe
Wang, Jiwei Li, Runyi Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. In-
struction tuning for large language models: A survey, 2023. 75

[131] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack.
Advances in Neural Information Processing Systems, 33:3454–3464, 2020. 77

[132] Jiazhao Li, Yijin Yang, Zhuofeng Wu, V. G. Vinod Vydiswaran, and Chaowei
Xiao. Chatgpt as an attack tool: Stealthy textual backdoor attack via black-
box generative model trigger, 2023. 78, 79, 80, 83, 87, 89

[133] Rafael Rivera Soto, Kailin Koch, Aleem Khan, Barry Chen, Marcus Bishop,
and Nicholas Andrews. Few-shot detection of machine-generated text using
style representations, 2024. 79

[134] Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview
of diffusion models: Applications, guided generation, statistical rates and
optimization. arXiv preprint arXiv:2404.07771, 2024. 79

[135] OpenAI. New ai classifier for indicating ai-written text.
OpenAI blog, 2023. URL https://openai.com/blog/

new-ai-classifier-for-indicating-ai-written-text. 79, 87

[136] Jonas Ricker, Simon Damm, Thorsten Holz, and Asja Fischer. Towards the
detection of diffusion model deepfakes. arXiv preprint arXiv:2210.14571,
2022. 79

[137] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D
Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models
for semantic compositionality over a sentiment treebank. Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 1631–1642, 2013. 83

https://openreview.net/forum?id=prftZp6mDH
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text

152 BIBLIOGRAPHY

[138] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies, pages 142–150, 2011. 83

[139] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional
networks for text classification. In Advances in neural information processing
systems, volume 28, pages 649–657, 2015. 83

[140] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Ko-
rdi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Sel-
van Dhanasekaran, Atharva Naik, David Stap, et al. Super-
naturalinstructions:generalization via declarative instructions on 1600+
tasks. In EMNLP, 2022. 84

[141] OpenAI, Josh Achiam, and et al. Gpt-4 technical report, 2023. 84

[142] Hugo Touvron, Louis Martin, Kevin Stone, and et. al. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. 84

[143] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrah-
man Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart:
Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics. Association for Com-
putational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.703. URL
http://dx.doi.org/10.18653/v1/2020.acl-main.703. 84

[144] Maxim Kuznetsov Vladimir Vorobev. Chatgpt paraphrases dataset. 2023.
84

[145] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI
Blog, 1(8):9, 2019. 84, 89

[146] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. Transformers: State-of-the-art natural language process-
ing. Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, 2020. 85

[147] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
In International Conference on Learning Representations, 2018. 85

[148] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li,
Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca:
An instruction-following llama model. https://github.com/tatsu-lab/

stanford_alpaca, 2023. 85

http://dx.doi.org/10.18653/v1/2020.acl-main.703
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

BIBLIOGRAPHY 153

[149] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004.
Association for Computational Linguistics. URL https://aclanthology.

org/W04-1013. 85

[150] Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. Ad-
versarial example generation with syntactically controlled paraphrase net-
works. In Marilyn Walker, Heng Ji, and Amanda Stent, editors, Proceedings
of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 1875–1885, New Orleans, Louisiana, June 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/N18-1170. URL
https://aclanthology.org/N18-1170. 86

[151] Angelos Katharopoulos and Francois Fleuret. Not all samples are created
equal: Deep learning with importance sampling. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 2525–2534. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.

press/v80/katharopoulos18a.html. 88

[152] Zihao Zhu, Mingda Zhang, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan
Wu. Boosting backdoor attack with a learnable poisoning sample selection
strategy, 2024. URL https://openreview.net/forum?id=uDNP1q5aZq. 88

[153] Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning lan-
guage models during instruction tuning. In International Conference on Ma-
chine Learning, pages 35413–35425. PMLR, 2023. 88

[154] Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav
Artzi. Bertscore: Evaluating text generation with bert. In International
Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=SkeHuCVFDr. 89

[155] Chuanshuai Chen and Jiazhu Dai. Mitigating backdoor attacks in lstm-based
text classification systems by backdoor keyword identification. Neurocomput-
ing, 452:253–262, September 2021. ISSN 0925-2312. doi: 10.1016/j.neucom.
2021.04.105. URL http://dx.doi.org/10.1016/j.neucom.2021.04.105.
92

[156] Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, and
Maosong Sun. A unified evaluation of textual backdoor learning: Frame-
works and benchmarks. In Proceedings of NeurIPS: Datasets and Bench-
marks, 2022. 92, 93

[157] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C. Ranas-
inghe, and Surya Nepal. Strip: a defence against trojan attacks on deep neu-
ral networks. In Proceedings of the 35th Annual Computer Security Applica-
tions Conference, ACSAC ’19. ACM, December 2019. doi: 10.1145/3359789.
3359790. URL http://dx.doi.org/10.1145/3359789.3359790. 92, 101

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/N18-1170
https://proceedings.mlr.press/v80/katharopoulos18a.html
https://proceedings.mlr.press/v80/katharopoulos18a.html
https://openreview.net/forum?id=uDNP1q5aZq
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
http://dx.doi.org/10.1016/j.neucom.2021.04.105
http://dx.doi.org/10.1145/3359789.3359790

154 BIBLIOGRAPHY

[158] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rap: Robustness-
aware perturbations for defending against backdoor attacks on nlp mod-
els. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.emnlp-main.659. URL http://dx.doi.org/10.18653/

v1/2021.emnlp-main.659. 92

[159] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Technical report, University of Toronto, 1(4):7, 2009. 96

[160] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016. 96

[161] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion
models? In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4015–4024, 2023. 97

[162] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. Gans trained by a two time-scale update rule converge
to a local nash equilibrium. In Proc. of the NeurIPS, pages 6626–6637, 2017.
100

[163] Alain Horé and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In Proc.
of the ICPR, pages 2366–2369, 2010. 100

[164] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proc. of the ICML, volume
139, pages 8748–8763, 2021. 100

[165] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, and Yang Liu.
Temporal watermarks for deep reinforcement learning models. In Proceedings
of the 20th International Conference on Autonomous Agents and MultiAgent
Systems, pages 314–322, 2021. 109

[166] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-
jeland, Georg Ostrovski, et al. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, 2015. 110, 113, 122, 125

[167] Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen,
Changjie Fan, and Yang Liu. Generating behavior-diverse game ais with
evolutionary multi-objective deep reinforcement learning.

[168] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang
Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. Wuji: Automatic
online combat game testing using evolutionary deep reinforcement learning.

http://dx.doi.org/10.18653/v1/2021.emnlp-main.659
http://dx.doi.org/10.18653/v1/2021.emnlp-main.659

BIBLIOGRAPHY 155

In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 772–784. IEEE, 2019. 110

[169] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani.
Deep reinforcement learning framework for autonomous driving. Electronic
Imaging, 2017(19):70–76, 2017. 110

[170] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li,
and Dawn Song. REFIT: A unified watermark removal framework for deep
learning systems with limited data. arXiv preprint arXiv:1911.07205, 2019.
111, 115

[171] William Aiken, Hyoungshick Kim, and Simon Woo. Neural network launder-
ing: Removing black-box backdoor watermarks from deep neural networks.
arXiv preprint arXiv:2004.11368, 2020.

[172] Shangwei Guo, Tianwei Zhang, Han Qiu, Yi Zeng, Tao Xiang, and Yang Liu.
The hidden vulnerability of watermarking for deep neural networks. arXiv
preprint arXiv:2009.08697, 2020. 111, 115

[173] Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte,
Ben Tse, Eric Berger, and Eric Liang. Autonomous inverted helicopter flight
via reinforcement learning. In Experimental Robotics IX, pages 363–372.
2006. 113

[174] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta,
Li Fei-Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes
using deep reinforcement learning. In IEEE International Conference on
Robotics and Automation, pages 3357–3364, 2017. 113

[175] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016. 113

[176] Ronald J Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
114, 122, 125

[177] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International confer-
ence on machine learning, pages 1928–1937. PMLR, 2016. 114

[178] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017. 115

156 BIBLIOGRAPHY

[179] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,
Koray Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with
experience replay. arXiv preprint arXiv:1611.01224, 2016. 115

[180] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba.
Scalable trust-region method for deep reinforcement learning using kronecker-
factored approximation. In Advances in Neural Information Processing Sys-
tems, pages 5279–5288, 2017. 115

[181] Richard S Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988. 123

[182] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951. 124

[183] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016. 125, 126

[184] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015. 126

[185] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Pe-
ter Zhokhov. Openai baselines. https://github.com/openai/baselines,
2017. 127

[186] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 129

[187] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In International
Conference on Machine Learning, pages 1737–1746, 2015. 129

[188] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015. 130

[189] Anthony R Cassandra. A survey of pomdp applications. In Working notes of
AAAI 1998 Fall Symposium on Planning with Partially Observable Markov
Decision Processes, volume 1724, 1998. 130

[190] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685, 2021. 136

https://github.com/openai/baselines

	Acknowledgements
	Abstract
	List of Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Main Work
	1.4 Contribution of the Thesis
	1.5 Roadmap

	2 Related Works
	2.1 Backdoor Attacks
	2.1.1 Backdoor Attacks in the Data Collection Phase
	2.1.2 Backdoor Attacks in the Model Training Phase
	2.1.3 Backdoor Attacks in the Model Inference Phase

	2.2 Defense against Backdoor Attacks
	2.2.1 Backdoor Detection
	2.2.2 Backdoor Elimination

	2.3 Watermarking Deep Learning Models with Backdoor
	2.3.1 Watermarking Supervised Depp Learning Models
	2.3.2 Watermarking Deep Reinforcement Learning Models

	2.4 Summary

	I Backdoor Attack to New Paradigms
	3 BadPre: Task-agnostic Backdoor Attacks to Pre-trained NLP Foundation Models
	3.1 Introduction
	3.2 Related works
	3.2.1 Pre-trained Models for NLP Tasks
	3.2.2 Backdoor Attacks in Pre-trained NLP Models

	3.3 Problem Statement
	3.3.1 Threat Model
	3.3.2 Backdoor Attack Requirements

	3.4 Methodology
	3.4.1 Embedding Backdoors into Foundation Models
	3.4.2 Activating Backdoors in Downstream Models

	3.5 Evaluation
	3.5.1 Experimental Settings
	3.5.2 Functionality-preserving
	3.5.3 Effectiveness
	3.5.4 Stealthiness
	3.5.5 Comparison with Existing Foundation Model Backdoor Attacks
	3.5.6 Ablation study
	3.5.6.1 Antonym Label Poisoning
	3.5.6.2 Impacts of Different Hyperparameters
	3.5.6.3 Explanation of BadPre from the Attention Weights

	3.6 Summary

	II Backdoor Attack in New Threat Scenario
	4 Clean-image Backdoor: Attacking Multi-label Models with Poisoned Labels Only
	4.1 Introduction
	4.2 Background
	4.3 Problem Statement
	4.4 Methodology
	4.4.1 Trigger Selection
	4.4.2 Label Poisoning
	4.4.3 Backdoor Embedding

	4.5 Evaluation
	4.5.1 Experimental Settings
	4.5.2 Trigger and Target Selection
	4.5.3 Functionality-preserving
	4.5.4 Effectiveness
	4.5.5 Generalization
	4.5.6 Bypass Existing Defense Solutions
	4.5.6.1 Trigger/backdoor Detection
	4.5.6.2 Trigger/backdoor Elimination

	4.6 Discussion
	4.7 Summary

	5 OmniTrigger: Universal Clean-input Backdoor Attack to Supervised Learning
	5.1 Introduction
	5.2 Related Work
	5.2.1 Simple Data Poisoning Backdoor Attacks
	5.2.2 Clean-label Backdoor Attacks
	5.2.3 Clean-input Backdoor Attacks

	5.3 Preliminaries
	5.3.1 Threat Model
	5.3.2 Problem Formalization

	5.4 Methodology
	5.4.1 Attack Insight and Overview
	5.4.2 Selector Training
	5.4.3 Data Poisoning
	5.4.4 Backdoor Activation

	5.5 Evaluation
	5.5.1 Attacking Natural Language Processing Tasks
	5.5.1.1 Experimental Setup
	5.5.1.2 Attack Configuration
	5.5.1.3 Attack Effectiveness
	5.5.1.4 Attack Stealthiness
	5.5.1.5 Robustness Against Defenses
	5.5.1.6 Ablation Studies

	5.5.2 Attacking Computer Vision Tasks
	5.5.2.1 Experimental Setup
	5.5.2.2 Attack Configuration
	5.5.2.3 Attack Effectiveness
	5.5.2.4 Attack Stealthiness
	5.5.2.5 Robustness Against Defenses

	5.6 Discussion
	5.6.1 Extension to Other Modalities
	5.6.2 Defense Against Clean-input Backdoor
	5.6.3 Limitations

	5.7 Summary

	III Backdoor Attack for New Protection Opportunity
	6 Temporal Watermarks for Deep Reinforcement Learning Models
	6.1 Introduction
	6.2 Background
	6.2.1 Reinforcement Learning
	6.2.2 Deep Reinforcement Learning

	6.3 Problem Definition
	6.3.1 System and Threat Models
	6.3.2 Temporal Watermarking
	6.3.3 Watermarking Requirements

	6.4 Methodology
	6.4.1 Watermark Generation
	6.4.2 Watermark Embedding
	6.4.3 Ownership Verification

	6.5 Evaluation
	6.5.1 Effectiveness of Watermark Generation and Embedding
	6.5.2 Verification Results
	6.5.3 Functionality-preserving
	6.5.4 Robustness

	6.6 Discussion
	6.7 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Developing Advanced Backdoor Triggers and Attack Methods
	7.2.2 Advanced Defense Mechanisms for Backdoor Attacks
	7.2.3 Generalizing Label-Only Poisoning Techniques
	7.2.4 Temporal Watermarking for Distributed AI Systems
	7.2.5 Comprehensive Evaluation Frameworks

	Bibliography

