
Towards Security Analysis and Design of

Confidential Computing Systems

Xiaoxuan Lou

College of Computing and Data Science

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2024

http://www.ntu.edu.sg
https://www.ntu.edu.sg/computing

Statement of Originality

I hereby certify that the work embodied in this thesis is the result

of original research, is free of plagiarised materials, and has not been

submitted for a higher degree to any other University or Institution.

26-May-2024
. .

Date Xiaoxuan Lou

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiargism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

26-May-2024
. .

Date Asst Prof Tianwei Zhang

Authorship Attribution Statement

This thesis contains materials from 3 papers published in the follow-

ing peer-reviewed journal(s) / from papers accepted at conferences

in which I am listed as an author.

Chapter 3 is published as Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Yaoxin Wu,
Tianwei Zhang, NASPY: Automated Extraction of Automated Machine Learning
Models. in International Conference on Learning Representations, 2022.
https://openreview.net/pdf?id=KhLK0sHMgXK.

The contributions of the co-authors are as follows:

• I was the lead author, I wrote the manuscript drafts and conducted all ex-
periments.

• Prof. Tianwei Zhang guided the initial research direction and revised the
manuscript drafts.

• I co-designed the methodology with Prof. Tianwei and Prof. Shangwei Guo.

• Prof. Jiwei Li, and Prof. Yaoxin Wu discussed and supported the research,
and revised the drafts.

Chapter 4 is published as Xiaoxuan Lou, Kangjie Chen, Guowen Xu, Han Qiu,
Shangwei Guo, Tianwei Zhang. Protecting Confidential Virtual Machines from
Hardware Performance Counter Side Channels. In Proceedings of the 54th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, 2024.
https://dsn2024uq.github.io/cpaccepted.html.

The contributions of the co-authors are as follows:

• I was the lead author, I wrote the manuscript drafts and conducted all ex-
periments.

• Prof. Tianwei Zhang guided the initial research direction and revised the
manuscript drafts.

• I co-designed the methodology with Prof. Tianwei and Mr. Kangjie Chen.

• Dr. Guowen Xu, Prof. Han Qiu and Prof. Shangwei Guo discussed and
supported the research, and revised the drafts.

Chapter 5 is published as Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Tianwei Zhang.
Ownership verification of dnn architectures via hardware cache side channels. In
IEEE Transactions on Circuits and Systems for Video Technology, 2022.
https://ieeexplore.ieee.org/abstract/document/9801864.
DOI: 10.1109/TCSVT.2022.3184644

The contributions of the co-authors are as follows:

viii

• I was the lead author, I wrote the manuscript drafts and conducted all ex-
periments.

• Prof. Tianwei Zhang guided the initial research direction and revised the
manuscript drafts.

• I co-designed the methodology with Prof. Tianwei and Prof. Shangwei Guo.

• Prof. Jiwei Li discussed and supported the research, and revised the drafts.

26-May-2024
. .

Date Xiaoxuan Lou

Acknowledgements

It has been a while since I came to Singapore, this beautiful and welcoming country,

to pursue further knowledge and realize my self-worth. Therefore, I would like to

express my heartfelt gratitude to those who supported and encouraged me during

my Ph.D. journey.

First and foremost, I express my most respectful thanks to my advisor, Prof. Tian-

wei Zhang. He is the best mentor throughout my research journey. Without his

guidance, I would not have embarked on my Ph.D. program or learned how to nav-

igate the path to becoming an independent researcher. His patience and profound

academic expertise have contributed significantly to my growth as a researcher,

instilling in me the skills and confidence to pursue independent research. His un-

wavering commitment to scientific rigor, keen insight into emerging fields, and

boundless curiosity will undoubtedly continue to shape my academic journey in

the future.

I am also grateful for those close colleagues in my life: Kangjie Chen, Gelei Deng,

Dikai Liu, Wei Gao, Guanlin Li, Xingshuo Han, Qinghao Hu, Meng Zhang, Xiaobei

Yan, Yutong Wu, Yi Xie, Zhaoxuan Wang, Meng Hao, Hanxiao Chen, Dr. Anran

Li, Dr. Cen Zhang, Dr. Hu Ming, Dr. Jian Zhang. We work together in the same

lab room, having a happy time with uncountable inspiring and exciting discussions

together, and you help me a lot in my daily life.

I also extend my heartfelt thanks to Dr. Shangwei Guo and Dr. Guowen Xu, who

help me a lot in my research works and I would always remember the time we spent

working hard together.

All my roommates, Chengwei Liu, Shuo Sun, Wentao Zhang, are all my best friends.

It is my great honor to have many precious memory with you guys and I hope we

could all grow in our desired styles.

ix

x

Lastly, but certainly not least, I want to express my deep appreciation to my

parents. Without your support and understanding, I could not finish my Ph.D

degree. Your unconditional love and unwavering encouragement are the driving

force behind my continuous determination to move forward.

I want to express my heartfelt gratitude to everyone who has been mentioned, as

well as those whose names may have been inadvertently left out. Your invaluable

contributions to this chapter of my life have not gone unnoticed. The passion,

love, and personal growth I have experienced during this journey have been made

possible by each and every one of you. For this, I am forever indebted.

Contents

Acknowledgements ix

List of Figures xv

List of Tables xvii

Abstract 1

1 Introduction 3

1.1 Motivation . 5

1.2 Main Work . 6

1.3 Contribution of the Thesis . 8

1.4 List of Materials Related to the Thesis 9

1.5 Outline of the Thesis . 10

2 Related Works 11

2.1 Micro-architectural Side-channel Studies 11

2.1.1 Side-channel Attacks . 11

2.1.2 Defenses against Side Channels 14

2.2 Novel Confidential Computing System Designs 15

2.2.1 Confidential Machine Learning (ML) 15

2.2.2 Confidential Distributed Computing 17

I New Side-channel Investigation in Confidential Com-
puting 19

3 Automated Extraction of Automated Machine Learning Models 21

3.1 Introduction . 21

3.2 Background . 24

3.2.1 Neural Architecture Search (NAS) 24

3.2.2 Hardware attacks . 25

3.2.3 Sequence-to-sequence learning 26

3.3 Framework Overview . 26

xi

xii CONTENTS

3.3.1 Threat Model . 26

3.3.2 Attack Overview . 27

3.4 Detailed Design . 28

3.4.1 Operation Sequence Identification 28

3.4.2 Hyper-parameter Recovery 32

3.4.3 Model Topology Reconstruction 33

3.5 Evaluation . 34

3.5.1 Operation Sequence Identification 35

3.5.2 Hyper-parameter Recovery 37

3.5.3 Model Topology Reconstruction 38

3.6 Discussions . 39

3.7 Conclusion . 40

4 Protecting Confidential Virtual Machines from Hardware Perfor-
mance Counter Side Channels 41

4.1 Introduction . 42

4.2 Background and Related Works . 45

4.2.1 Hardware Performance Counters 45

4.2.2 Secure Encrypted Virtualization 45

4.2.3 Fuzzing . 46

4.2.4 Differential Privacy . 46

4.3 HPC Side Channels . 47

4.3.1 Threat Model . 47

4.3.2 Abstraction of HPC Side-channel Attacks 48

4.3.3 Website Fingerprinting Attack 48

4.3.4 Keystroke Sniffing Attack 49

4.3.5 Model Extraction Attack . 50

4.4 Framework Overview . 51

4.5 Application Profiler . 52

4.5.1 Challenges . 52

4.5.2 Profiling Design . 53

4.6 Event Fuzzer . 56

4.6.1 Challenges . 57

4.6.2 Design Overview . 57

4.6.3 Instruction Cleanup . 58

4.6.4 Code Generation and Execution 59

4.6.5 Result Confirmation . 60

4.6.6 Gadgets Filtering . 61

4.7 Event Obfuscator . 62

4.7.1 Challenges and Insight . 62

4.7.2 Differential Privacy Mechanisms 63

4.7.3 Design Details . 64

4.8 Evaluation . 66

CONTENTS xiii

4.8.1 Profiling Evaluation . 66

4.8.2 Fuzzing Evaluation . 67

4.8.3 Defense Effectiveness . 68

4.8.4 Defense Efficiency . 70

4.9 Discussion . 71

4.9.1 Alternative Defense Strategies 71

4.9.2 Analysis with Multiple Tries 73

4.10 Conclusion . 73

II New Designs for Confidential Computing with Emerg-
ing Applications 75

5 Ownership Verification of DNNArchitectures via Hardware Cache
Side Channels 77

5.1 Introduction . 78

5.2 Related Works on DNN Watermarking 81

5.2.1 White-box solutions . 81

5.2.2 Black-box solutions . 81

5.3 Preliminaries . 82

5.3.1 Definition of A NAS Method 82

5.3.2 Definition of A Watermarking Scheme 82

5.4 My Watermarking Scheme . 84

5.4.1 Watermark Generation (WMGen) 84

5.4.2 Watermark Embedding (Mark) 86

5.4.3 Watermark Verification (Verify) 87

5.4.4 Theoretical Analysis . 88

5.5 Side Channel Extraction . 88

5.5.1 Method Overview . 89

5.5.2 Recovery of NAS Operations 90

5.6 Evaluation . 94

5.6.1 Experimental Setup . 94

5.6.2 Effectiveness . 95

5.6.2.1 Key Generation . 95

5.6.2.2 Watermark Embedding 95

5.6.2.3 Watermark Extraction and Verification 96

5.6.3 Usability . 98

5.6.4 Robustness . 99

5.6.5 Uniqueness . 103

5.7 Conclusion . 105

6 Enabling Fast and Secure Function Cold Starts in Confidential
Serverless Systems 107

6.1 Introduction . 108

xiv CONTENTS

6.2 Background . 111

6.2.1 Confidential Serverless Computing 111

6.2.2 AMD SEV . 112

6.2.3 Unikernel . 113

6.3 Motivation . 113

6.3.1 Startup Latency of SEV VM 113

6.3.2 Analysis of Startup Optimizations 115

6.4 System Overview . 118

6.4.1 Threat Model . 118

6.4.2 Design Principles & Challenges 119

6.4.3 System Architecture and Workflow 119

6.5 Guest Unikernel Analysis . 121

6.5.1 Adaptations for Confidential Serverless 121

6.5.2 Memory Layout Analysis . 122

6.6 Neuralyzer Layer Design . 124

6.6.1 Fix Memory Access Permission 124

6.6.2 Restore Module . 125

6.6.3 Attestation Module . 127

6.7 Evaluation . 128

6.7.1 Experimental Setup . 128

6.7.2 Startup Latency . 129

6.7.3 Memory Overhead . 131

6.7.4 End-to-End Performance . 131

6.7.5 Overhead of the Initial Booting 133

6.8 Security Analysis . 134

6.9 Conclusion . 136

7 Conclusion and Future Work 137

7.1 Conclusion . 137

7.2 Future Work . 139

Bibliography 143

List of Figures

1.1 Architecture of confidential computing system. 4

1.2 Typical application framework for confidential computing. 5

1.3 Structure of my research works. 7

3.1 Architecture of a NAS model based on cells 25

3.2 Overview of threat model. 27

3.3 Workflow of my model extraction framework. 28

3.4 GEMM procedure. 29

3.5 Event sequences of four representative operations in NAS models. . 30

3.6 Procedure of operation sequence identification. 32

3.7 (a) Average OER of the two identification models with different
configurations. (b) Loss and OER trend of the RNN-CTC model.
(c) OER of the transformer model on validation samples 35

3.8 Inter-operation context testing. (a) OER trend of RNN-CTC. (2)
OER of the transformer on validation samples. 37

3.9 Robustness versus different scales of noise. (a) OER of RNN-CTC.
(b) OER of the transformer. 37

3.10 Recovery accuracy. 37

3.11 Memory address trace of a NAS cell. 37

4.1 Training curves of three HPC side-channel attacks. 49

4.2 Overview of my Aegis framework. 51

4.3 The distribution of HPC event values. 56

4.4 State transition. 58

4.5 Workflow of Event Fuzzer. 59

4.6 Execution of repeated triggers. 61

4.7 Workflow of Event Obfuscator. 65

4.8 The mutual information of each HPC event. 67

4.9 Impact of ϵ on various attacks. 69

4.10 Impact of ϵ on the latency overhead (upper) and CPU usage (lower). 70

4.11 Attack accuracy with the random noise 72

5.1 Overview of my watermarking framework 84

5.2 Event sequences of four representative operations in NAS models. . 89

5.3 Implementing a convolution operation as matrix multiplication . . . 91

5.4 Procedure of separable convolutions. 92

xv

xvi LIST OF FIGURES

5.5 Architectures of the searched cells. ci−1 and ci−2 are the inputs from
the previous cells. 96

5.6 A side-channel trace of the first normal cell. 97

5.7 Execution time of the operations in a cell 97

5.8 Extracted values of the matrix parameters (m,n, k). 98

5.9 Top-1 validation accuracy . 99

5.10 Side-channel traces of weighting pruned models. 101

5.11 Traces of obfuscated models. 102

5.12 Influence of useless cell windows. 102

5.13 Influence of parameter binarization. 103

5.14 Operation distributions for a normal cell (left) and reduction cell
(right). The connection index is the index of the connection edge in
the NAS cell. 104

6.1 Architecture of confidential serverless computing 111

6.2 Fields of an RMP entry [1, Table 15-36] 112

6.3 Boot process of normal VM and SEV VM in serverless computing. . 113

6.4 Startup latency of the SEV VM (left bars) and the normal VM (right
bars), and SGX (line, sourced from [2]). 115

6.5 Caching performance of serverless functions. 117

6.6 Performance of Save/Restore method. 117

6.7 Overview of Neuralyzer architecture and workflow 120

6.8 Memory layout of the guest unikernel 123

6.9 Workflow of restore module . 126

6.10 Workflow of attestation module . 127

6.11 Comparison with three baselines . 130

6.12 Time breakdown of end-to-end function execution on Neuralyzer
(left bars) and native SEV VM(right bars). 133

6.13 Initial booting performance . 134

List of Tables

2.1 Caption for LOF . 12

3.1 Testing OER for three NAS methods. 36

3.2 Accuracy (%) of random models on two datasets. 38

4.1 Statistics of HPC events in various processors. 53

4.2 HPC event distribution, including events of Hardware (H), Software
(S), Hardware Cache (HC), Tracepoint (T), Raw CPU (R) and Others
(O). Data in brackets shows the percentage remaining after the
warm-up profiling. 54

4.3 Time consumption for each fuzzing step. 68

5.1 An example of the marking key mk. 95

5.2 Accuracy of structured pruned models on CIFAR10 103

6.1 Evaluations of existing optimizations. ♦✓ denotes the feature is
enabled if future TEE hardware supports Fork. 116

6.2 Serverless workload functions from FunctionBench 131

6.3 Time breakdown of end-to-end function execution, including Re-
quest Relay (RR), Restore/Launch (R/L), Generate Report (GR),
Verify Signature (VS) and Execution (EXE). 132

xvii

Abstract

Confidential computing has emerged as a critical security technology for addressing

user privacy issues in cloud computing, which is also a hot subject in contempo-

rary security technologies. By leveraging collaborative security in both hardware

and software, it establishes an encrypted Trusted Execution Environment (TEE)

to ensure confidentiality and integrity protection for data in use. The introduction

of confidential computing provides the final aspect of security assurance across the

entire data usage pipeline, encompassing three states: in transit, at rest, and in

use. While existing confidential computing systems can mitigate a majority of

software and hardware attacks, including privileged hypervisor attacks and cold

boot attacks, they still suffer from two significant problems: (1) Vulnerability to

micro-architectural side-channel attacks, which leverage side-channel information

to reveal secrets sealed within the encrypted TEE sandbox; (2) Security and ef-

ficiency issues when handling emerging applications, like machine learning and

serverless computing. These two concerns restrict the widespread adoption and

further development of confidential computing.

For the first problem, I conduct a comprehensive security analysis of existing confi-

dential computing systems, aiming to identify novel side-channel attack vectors that

can breach the TEE isolation and propose unified defense frameworks for those un-

explored side-channel leakages. I first propose NASPY, an end-to-end attack method

that can reveal novel Neural Architecture Search (NAS) models from the encrypted

TEE black box. It shows the possibility of breaching confidential computing sys-

tems and stealing sealed sensitive information. After that, Aegis is proposed as a

unified defense framework for mitigating confidential virtual machines from Hard-

ware Performance Counter (HPC) side channels. This work prevents the leakage

source effectively and efficiently.

For the second problem, I design more novel confidential computing systems that

integrate with recently emerging workloads, including machine learning and server-

less computing. I first design a watermarking scheme for verifying the ownership

1

2 LIST OF TABLES

of deep learning models sealed inside the TEE sandbox. It enhances the security

guarantee of confidential AI systems. Furthermore, I also integrate confidential

computing with serverless computing to design a novel fast-launched confidential

serverless computing system. This system ensures the confidentiality of user data

while retaining the performance advantages offered by serverless computing.

In summary, this thesis is dedicated to analyzing the security of confidential com-

puting systems, identifying new attack vectors, presenting a unified defense frame-

work, and designing novel systems integrating emerging workloads.

Chapter 1

Introduction

In recent decades, the rapid advancement of cloud computing has propelled its

widespread adoption across a multitude of applications. As cloud computing

ecosystems become mature, there is a heightened focus on ensuring robust se-

curity and privacy guarantees. These considerations have emerged as top priorities

alongside performance efficiency for both cloud service providers and customers.

The Confidential Computing Consortium defines data security from three states:

in transit, at rest and in use [3]. While data existing in the first two states have

been well protected with various mechanisms, e.g., HTTPS and disk encryption,

data in use is still exposed to threat from attackers, especially those potential ma-

licious cloud hypervisors who own the highest system privileges. Motivated by this

concern, Confidential Computing is proposed to protect data in use by perform-

ing computations in a hardware-based, attested Trusted Execution Environment

(TEE). As a sophisticated and innovative technology, TEE establishes an exclusive

and encrypted memory area dedicated to a specified sensitive program. This en-

sures that all operations occur solely within this isolated environment, preventing

data leakage to external entities.

Existing TEE mechanisms can be divided into two classes: process-level TEE and

system-level TEE. The former provides user-level secure enclaves for specific pro-

cesses through hardware instructions, represented by Intel SGX [4], while the latter

combines the isolation mechanism of virtualization technology to build a TEE with

virtual machines as nodes, represented by AMD SEV [5] and Intel TDX [6].

3

4 Chapter 1. Introduction

Trusted Firmware
Hardware layer

CPU TEE GPU TEE FPGA TEE Cryptographic Engine Device Root
Key

System software layer Trusted
Hypervisor Trusted OS Trusted Runtime

Confidential
VMConfidential instance

layer
Secure Boot Remote

Attestation Trusted Channel

Confidential
Container

Confidential
Enclave

Integrity
Measurement

Deep
learningApplication layer

Confidential computing system common interfaces

Database Blockchain …

Figure 1.1: Architecture of confidential computing system.

In practical applications, a confidential computing system represents a collaborative

integration of hardware and software trust technologies, as shown in Figure 1.1.

The system can be divided into four levels:

(1) Hardware layer: this layer provides the root of trust for the entire confi-

dential computing system and is usually bound with specific hardware processor

vendors, including CPU vendors like Intel, AMD and ARM or GPU vendors like

Nvidia. It delivers necessary hardware security primitives, e.g., encryption engine

for encrypting memory area, and also the initial environment security boot.

(2) System software layer: this layer mainly denotes the operating system or

privileged runtime that manages the hardware resources for upper layer applica-

tions, including the isolation of software components and secure context switch.

(3) Confidential instance layer: this layer is the kernel component of confiden-

tial computing system, which is also the primary area of focus and interaction for

developers. Based on the TEE type it utilizes, the instance adopted in this layer

can be confidential VM/container for system-level TEE, or confidential enclave for

process-level TEE.

(4) Application layer: this layer is the interface communicating with users and

customers. With the use of system-level TEE, the application in this layer can

Chapter 1. Introduction 5

Cloud Service Provider
(e.g., Azure Cloud)

Data Owner
(e.g., hospital, financial

institution)

Customers

Code Owner
(e.g., DNN model

owner)

Trusted
Channel

Trusted
Channel

Service requests
 and responses

Hardware Provider
(e.g., CPU/GPU vendors, Trusted institution)

Root of Trust

Figure 1.2: Typical application framework for confidential computing.

be deployed without any modification. However, for process-level TEE, the ap-

plication is required to undergo specific modifications to accommodate the unique

programming model.

Based on the above system architecture, a typical application framework for confi-

dential computing is shown in Figure 1.2. It mainly involves five participants roles:

hardware provider, cloud service provider, data owner, code owner and customers.

The sensitive data and code can be uploaded through the trusted channel and

then deployed as a confidential instance that is isolated from the possible mali-

cious cloud service provider. The security and confidentiality of the entire system

is guaranteed by the trusted hardware provider. Finally, customers can directly

communicate with the target service using conventional requests and responses.

1.1 Motivation

While TEE-based confidential computing systems are capable of thwarting nearly

all hardware attacks and privileged software attacks, they still face two significant

challenges: (1) Vulnerability to micro-architectural side-channel attacks, which use

side-channel information (e.g., execution time, memory footprints) to infer the

secrets in the encrypted environment; (2) Narrow scope of explored confidential

workloads, leading to suboptimal performance and incompatibility with emerging

usage scenarios.

6 1.2. Main Work

For the first challenge, although past efforts have been devoted to reinforce confi-

dential computing systems against different micro-architectural side channels, e.g.,

CPU cache [7, 8], page faults [9, 10], branch prediction [11, 12], new attack meth-

ods still continue to emerge incessantly and bypass existing defenses. Furthermore,

some side-channel leakage sources (e.g., hardware performance counters) have not

been systematically studied for this secnario. Hence, it motivates us to perform

further security analysis on existing confidential computing systems, aiming to in-

vestigate novel attack vectors and propose unified defense frameworks,

thus enhancing security guarantee provided by confidential instances.

For the second challenge, given confidential computing is still in its infancy stage,

researchers mainly focus on improving its security guarantee while neglecting novel

system designs for emerging workloads, like machine learning models and server-

less cloud computing. Some previous works have noted this issue, integrating TEE

technologies to propose confidential machine learning systems [13–19] and confiden-

tial serverless computing systems [2, 20–25]. However, these works expose various

security and efficiency issues, which motivate us to design novel confidential

computing systems that are compatible with emerging workloads, thus

further expanding the influence and application scope of trusted computing.

1.2 Main Work

To solve the problems of current confidential computing systems mentioned above,

I propose four research works, whose logical connections are shown in Figure 1.3.

They can be divided into two directions. First, I conduct an in-depth security

analysis on the existing confidential computing systems, from the perspectives of

novel attacks and defenses. Furthermore, I design more effective and efficient confi-

dential computing systems based on existing hardware TEEs for recently emerging

workloads, including the DNN model watermark and efficient serverless computing.

My four pioneering works are outlined below:

Automated Extraction of Automated Machine Learning Models. I introduce NASPY,

an end-to-end adversarial framework to extract deep learning model architectures

from a sealed TEE sandbox with analyzing side-channel leakages. While previous

Chapter 1. Introduction 7

Problems of current confidential computing systems

Side-channel
Vulnerability

Emerging Workload
Applications

Novel Attack Method
Automated Extraction of

Automated Machine Learning
Models

Novel Defense Framework
Protecting Confidential Virtual

Machines from Hardware
Performance Counter Side

Channels

Confidential Watermarking
Ownership Verification of DNN

Architectures via Hardware
Cache Side Channels

Confidential Serverless System
Enabling Fast and Secure

Function Cold Starts in
Confidential Serverless Systems

Security Analysis System Design

Figure 1.3: Structure of my research works.

extraction attacks mainly focus on conventional Deep Neural Network (DNN) mod-

els with very simple operations, NASPY targets on the novel deep learning models

generated by Neural Architecture Search (NAS). I introduces seq2seq models to

automatically identify novel and complicated operations (e.g., separable convolu-

tion, dilated convolution) from hardware side-channel sequences of model inference,

which bypasses the heavy manual analysis with lots of prior knowledge. As a result,

NASPY is able to extract the complete NAS model architecture with high fidelity

and automation, where the error rate can be reduced to only 3.2%.

Protecting Confidential Virtual Machines from Hardware Performance Counter

Side Channels. While many studies have focused on mitigating micro-architectural

side channels in confidential computing systems, the potential threat posed by

Hardware Performance Counter (HPC) side channels has been largely overlooked.

Previous research has failed to address this prominent source of information leak-

age, highlighting a gap in the existing defenses against such side-channel vulnera-

bilities. Hence, I introduce Aegis, a unified framework for defending confidential

virtual machines against HPC side channels with provable privacy guarantee and

minimal performance overhead. I present three case studies to demonstrate that

Aegis can defeat different types of HPC side-channel attacks (i.e., website finger-

printing, DNN model extraction, keystroke sniffing). Evaluations show that Aegis

can effectively decrease the attack accuracy from 90% to 2%, with only 3% overhead

on the application execution time and 7% overhead on the CPU usage.

Ownership Verification of DNN Architectures via Hardware Cache Side Channels.

Sealing Deep Neural Network (DNN) models inside a TEE sandbox is a double-

edged sword, which not only enables IP security for customers but also allows the

8 1.3. Contribution of the Thesis

attacker to hide their stolen models from ownership verification and inspection.

Hence, I present a novel watermarking scheme, which can verify the ownership of

DNN models by analyzing the side-channel leakages. This scheme can identify the

DNN model architectures with high fidelity even when they are sealed inside an

encrypted sandbox. I conduct comprehensive experiments on watermarked CNN

models for image classification tasks and the experimental results show my scheme

has negligible impact on the model performance, and exhibits strong robustness

against various model transformations and adaptive attacks.

Enabling Fast and Secure Function Cold Starts in Confidential Serverless Systems.

As the next stage in cloud computing, serverless computing has garnered signifi-

cant attention in recent years, which also makes confidential serverless computing

a focus of both industry and academia. However, integrating TEEs with serverless

computing leads to a significant startup latency of function executors. To address

this issue, I propose Neuralyzer, a confidential serverless system that ensures ro-

bust security of guest users while retaining the performance improvement offered

by cached executors. My comprehensive experiments on three baselines and six

real-world serverless functions show that Neuralyzer system can dramatically re-

duce the startup latency by 76∼ 501× compared with native confidential VMs,

and achieve an end-to-end service latency of only hundreds of milliseconds.

1.3 Contribution of the Thesis

This thesis makes several significant contributions to the field of confidential com-

puting systems:

1. Novel DNN Extraction Attack Targeting Sealed TEE Sandbox. I

develop a novel attack vector that leverages cache side channels from the TEE

sandbox to extract DNN model architectures even when it is sealed inside the

encrypted environment. It is the first work that achieves automatically extracting

novel NAS models from the black-box TEE instances.

2. Unified Defense Framework against HPC Side Channels. I propose a

unified defense framework for confidential virtual machines to prevent HPC side

channels, which are considered as the easiest-to-use leakage source but have not

been given due attention. It is the first work that systematically studies the HPC

Chapter 1. Introduction 9

side channels and achieves preventing such side channels with small performance

overhead.

3. Novel DNN Model Ownership Verification Scheme. In the context

of confidential machine learning protected by TEE sandboxes, I propose a novel

watermarking scheme for verifying the IP ownership of a DNN model. It is the first

design that integrates side-channel analysis with confidential machine learning to

enhance security assurance of IP models.

4. Novel Confidential Serverless System with Superior Performance.

While conventional confidential serverless computing typically results in a signifi-

cant slowdown (more than 1000×), I propose a novel confidential serverless system

Neuralyzer to bridge this performance gap. It achieves small startup latency in

mere milliseconds, making it the first work that ensures both security guarantee

and performance advantage for serverless computing.

An in-depth security analysis on existing confidential computing system yields

valuable insights, motivating the above research works. Overall, this thesis serves

multiple vital purposes: (1) Advanced attack vectors: By delving into current con-

fidential computing systems, I discovered new advanced attack vectors that can

breach the security guarantee, which help researchers to enhance future system de-

signs. (2) Unified defense frameworks: I also presented a unified defense framework

to enhance confidential computing systems against side-channel leakages, provid-

ing a possible direction for future works. (3) Novel system designs: To prompt the

practical adoption of confidential computing in real-world applications , I proposed

novel system designs for integrating confidential computing with emerging work-

loads, like the DNN models and serverless computing, with the aim of addressing

both security and performance concerns.

1.4 List of Materials Related to the Thesis

The thesis mainly contains the materials from the following papers.

• Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Yaoxin Wu, Tianwei Zhang, NASPY:

Automated Extraction of Automated Machine Learning Models. in Interna-

tional Conference on Learning Representations, 2022.

10 1.5. Outline of the Thesis

• Xiaoxuan Lou, Kangjie Chen, Guowen Xu, Han Qiu, Shangwei Guo, Tian-

wei Zhang. Protecting Confidential Virtual Machines from Hardware Perfor-

mance Counter Side Channels. In Proceedings of the 54th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, 2024.

• Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Tianwei Zhang. Ownership ver-

ification of dnn architectures via hardware cache side channels. In IEEE

Transactions on Circuits and Systems for Video Technology, 2022.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows:

Chapter 1 provides an overview of this thesis, as well as the motivations, main

work, and contributions of the thesis.

Chapter 2 reviews the related works.

Chapter 3 proposes a novel DNN model extraction attack from a TEE-sealed black-

box environment.

Chapter 4 presents a unified framework to protect confidential virtual machines

from hardware performance counter side channels.

Chapter 5 combines cache side channels with TEE sandboxes to design a novel

DNN model watermark for performing ownership verification.

Chapter 6 integrates TEE executors with serverless computing to design a novel

efficient confidential serverless computing system, which achieves fast execution

with guaranteed security.

Chapter 7 concludes above research works and give a discussion about possible

future directions.

Chapter 2

Related Works

The significant threat posed by micro-architectural side channels is among the

most crucial and active research in confidential computing systems. Additionally,

the design of more innovative, secure, and widely applicable confidential computing

systems is equally paramount. In this chapter, I give a comprehensive literature re-

view on the state-of-the-art works related to the side-channel attacks and defenses,

and the latest novel designs for confidential computing systems with emerging ap-

plications.

2.1 Micro-architectural Side-channel Studies

2.1.1 Side-channel Attacks

The history of side-channel attacks dates back to the year of 1996, when Kocher

[69] demonstrated that the data leaked from timing channels was sufficient for an

attacker to recover the entire secret key. To generalize, vulnerable implementations

of system operations can exhibit secret-dependent non-functional behaviors during

the time of execution, which an adversary can observe and utilize to fully or par-

tially recover sensitive information. Since then, numerous types of side channels

(e.g., execution timing [70, 71], acoustic emission [72], electromagnetic radiation

[73] and power consumption [74]) have been discovered and exploited to defeat

modern cryptographic schemes, allowing adversaries to break strong ciphers in a

11

12 2.1. Micro-architectural Side-channel Studies

Level Category Sharing Attacks Requirements

Instruction

Multiply ■ Multiplier unit contention [26, 27]
Floating point ■ FPU contention [28]
Branch ■ BTB contention [11, 29] [11] requires Intel SGX
Micro-operation ■ Port contention [30]

Cache

Cache set
■: L1 & L2,
 : LLC

Prime-Probe [31–48]
Evict-Time [31], Prime-Abort [49]

[39–41, 46–48]
require Intel SGX
[49] requires Intel TSX

Cache line
■: L1 & L2,
 : LLC

Flush-Reload [50–54]
Flush-Flush [55], Reload+Refresh [56]
Collide-Probe, Load-Reload[57]
LRU state leaking[58]

Requires KSM
[57] requires AMD predictor

Cache bank ■ Bank contention [59], MemJam [60] [60] requires Intel SGX

Memory Page
Page

■ TLB contention [61, 62]
▲ Page Fault/Table Entry [63–66] Requires Intel SGX

DRAM bank row ▲
Row buffer contention [67]
Rambleed [68]

Table 2.1: Side-channel attack vectors in hardware. ■: sharing the same CPU
core; : sharing the same package. ▲: sharing the same computer.

short period of time with very few trials. In recent decades, the focus of various

side-channel attacks has gradually shifted from cryptographic secrets to operating

system security. Among these side-channel threats, micro-architectural attacks are

particularly dangerous and prevalent. For example, the proposing of Meltdown

[75] and Spectre [76] leads to a significant upheaval in the system security field.

A fundamental cause of such attacks is the conflict between performance and se-

curity. During the evolution of computer architecture, various strategies were

introduced to speed up the execution, which may bring side channels that leak

the information of applications running on the system. Table 2.1 characterizes the

attack vectors of side-channel techniques based on different levels of the computer

system. One representative example is caching: a small hardware component is

introduced (e.g., CPU caches, Translation Look-aside Buffer, DRAM row buffer)

to store the previously accessed data, which is usually expected to be used again

soon due to the principle of locality. Fetching data directly from this component

is much faster. However, such timing differences can reveal the victim program’s

access traces [31, 33, 61]. A quantity of techniques have been designed over the

past decades to realize cache side-channel attacks. Two representative attacks are

described as below. (1) In a Prime-Probe attack [77], the adversary first fills up

the critical cache sets with its own memory lines. Then the victim executes and

potentially evicts the adversary’s data out of the cache. After that, the adversary

measures the access time of each memory line loaded previously. A longer access

time indicates that the victim used the corresponding cache set. (2) A Flush-

Reload attack [78] requires the adversary to share the critical memory lines with

Chapter 2. Related Works 13

the victim, e.g., via shared library. The adversary first evicts these memory lines

out of the cache using dedicated instructions (e.g., clflush). After a period of time,

it reloads the lines into the cache and measures the access time. A shorter time

indicates the lines were accessed by the victim.

Micro-architectural side-channel attacks are also used for revealing certain emerg-

ing workloads, like deep learning models. Hong et al. [79] recovered the archi-

tecture attributes by observing the caching invocations of critical functions in the

deep learning frameworks (e.g., Pytorch, TensorFlow). Yan et al. [80] proposed

Cache Telepathy, which monitors the low-level BLAS library to achieve stealing

deep learning model architectures. Some works leveraged other side channels to

extract DNN models. Batina et al. [81] extracted a functionally equivalent model

by monitoring the electromagnetic signals of a microprocessor hosting the inference

program. Duddu et al. [82] found that models with different depths have differ-

ent execution time, which can be used as a timing channel to leak the network

details. Memory side-channels were discovered to infer the network structure of

DNN models on GPUs [83] and DNN accelerators [84].

Given the design model of TEE-based confidential computing systems largely ig-

nores side-channel attacks, those conventional side-channel techniques actually can

be directly applied to steal secrets from the protected TEE sandbox. Even the

latest TEE designs, e.g., AMD SEV-SNP [85] and Intel TDX [6], have contained

mitigation for certain side channels, they still just cover a tiny range of potential

attack surface. More seriously, given TEE usually assumes that the OS is not

trusted, it is also a common way to use page tables and their attributes to con-

duct side-channel attacks, typically represented by controlled-channel attacks [63]

and SGX-PTE [66]. This provides the attacker much stronger capabilities than

attacker in the conventional threat models. Previous works have shown that, if the

attacker is the malicious OS, he can obtain fine-grained information in an easier

way by manipulating the OS interrupt (e.g., SGX-Step [86]). If the attacker is a

normal user, he can also use enclaves to hide malicious behaviors [48]. In recent

years, a variety of side-channel attacks have been proposed to breach the security

guarantee of existing confidential computing systems, which establish side channels

via performance counters [87], cache occupancy [77], unprotected I/O operations

[88, 89], page faults [90–92], etc. Hence, it is an urgent demand to perform a se-

curity analysis on existing confidential computing systems and identify potential

14 2.1. Micro-architectural Side-channel Studies

side-channel attack vectors.

2.1.2 Defenses against Side Channels

Compared to the constant emergence of attack methods, side-channel defenses are

relatively scarce, with users often doubting their feasibility and efficiency. The root

cause of side-channel attacks is the sharing of certain system resources, which is

also the focus of designing effective defenses. However, it is obviously infeasible

to disable those features for side-channel mitigation, which can incur tremendous

performance overhead. Therefore, effective elimination of side-channel vulnerabil-

ities has been a long-standing goal. There are three types of classic system-level

strategies for defending against side-channel attacks:

Process execution partitioning. From an operating system perspective, pro-

hibiting the sharing of sensitive system resources among different users shows

promise as a defense method. The first strategy is spatial partitioning, i.e., as-

signing different parts of the hardware units to processes. For instance, in the

cloud scenario, hypervisor-based solutions were designed to defeat Last Level Cache

(LLC) attacks by partitioning the LLC, via page coloring [93], page locking [94],

and Intel Cache Allocation Technology [93].

Process scheduling. Another possible strategy is to carefully schedule different

programs to achieve temporal partitioning, so that the attacker cannot run con-

currently with the victim on the same machine. Zhang and Reiter [95] introduced

an OS-based solution, which frequently flushes the local microarchitectural states

(BTB, TLB, caches) to reduce side-channel leakage during context switches. Sim-

ilar ideas were proposed in [96, 97], where CPU caches are flushed during VM

switches to defeat cache side-channel attacks in the cloud. To reduce the overhead

of state cleansing operations, Sprabery et al. [98] implemented the scheduling as

an extension to the Completely-Fair-Scheduler in Linux.

Measurement randomization. The final strategy is to randomize the measure-

ment of side-channel leakages. making it difficult or infeasible to capture accurate

information based on the observations. This was first proposed in [99] to fuzz the

timing information to reduce timing channels. Vattikonda et al. [100] modified the

rdtsc instruction from the hypervisor to randomize the emulated timer. Martin

Chapter 2. Related Works 15

et al. [101] optimized this approach by adding random noise in each predefined

epoch. Li et al. [102] introduced Stopwatch, which disables precise timing mea-

surement in the cloud server to mitigate timing-channel attacks. It can also add

randomization inside the application during compiling. Crane et al. [103] designed

an approach to dynamically randomize the control flow in the application to defeat

cache side-channel attacks. Braun et al. [104] inserted random temporal paddings

into the source application to obfuscate the adversary’s observations.

However, most of above defenses are unavailable for confidential computing sys-

tems, where the privileged operating system itself is a potential malicious attacker.

To bridge this gap, past efforts have been devoted to reinforce the confidential com-

puting systems against different micro-architectural side channels, e.g., CPU cache

[7, 8], page faults [9, 10], branch prediction [11, 12]. Obviously, these efforts pale

in comparison to the onslaught of incoming tremendous attacks. Hence, proposing

new defenses to mitigate attacks more effectively and efficiently is important.

Overall, although security-aware systems and architectures were designed to mit-

igate side-channel attacks, it is however still very challenging to remove all side-

channel vulnerabilities from the software implementations and hardware designs.

As such, the arms race between side-channel attacks and defenses remains heated.

2.2 Novel Confidential Computing System De-

signs

Currently, the advancements in confidential computing systems have been increas-

ingly applied across various industries, including finance, government, and health-

care. Of particular note are the applications of confidential machine learning and

confidential distributed computing.

2.2.1 Confidential Machine Learning (ML)

With the advancement and widespread adoption of artificial intelligence technol-

ogy, concerns regarding its data privacy and security have become prominent within

the industry. The attack surface across the entire pipeline of machine learning is

16 2.2. Novel Confidential Computing System Designs

extensive, presenting significant threats to the data security of both model users

and owners. These threats include data poisoning attacks [105–108], data recon-

struction attacks [109–112] and model extraction attacks [83, 113, 114]. Leveraging

TEE sandbox to safeguard segments of the ML pipeline represents a leading edge

in AI security research. Presently, research efforts focus on the use of confidential

computing to protect the ML process, with a primary interest in securing the model

training and inference processes during deployment. These works can be primarily

categorized into two classes:

Complete model sealing. Citadel [13] exemplifies a comprehensive approach

to safeguarding the entire pipeline for model training and inference within a TEE

sandbox, ensuring the confidentiality of both models and data. DarkneTZ [14]

serves as a notable scheme for protecting machine learning models using TEE,

with a focus on deploying trained models to edge devices. PPFL [15] stands out

as a typical scheme for ongoing protection of ML models, particularly aimed at

preserving data confidentiality in horizontal federated learning scenarios. GradSec

[16] introduces an enhanced approach that dynamically shields sensitive layers of

ML models, thereby reducing the Trusted Computing Base (TCB) size and overall

training time.

Partial model outsourcing. SLALOM [17] represents a noteworthy scheme for

outsourcing computation protection, leveraging matrix multiplication linearity to

incorporate blinding factors into data before outsourcing it to an untrusted GPU.

DarKnight [18] builds upon SLALOM with improvements such as employing mul-

tiple GPUs to blind input data through linear combination with batch and random

noise, and employing redundant GPUs to verify computation results, thereby en-

suring the integrity and confidentiality of deep neural network (DNN) training.

Goten [19] is a scheme that utilizes secret sharing to outsource the computation

of linear layers based on a multiplicative secret sharing protocol among three un-

trusted GPUs. It leverages TEE to pre-share the random number seed, thereby

reducing the number of negotiation rounds for the secret sharing protocol.

Chapter 2. Related Works 17

2.2.2 Confidential Distributed Computing

In addition to machine learning systems, confidential computing also finds a wide

range of applications in distributed computing domains such as serverless comput-

ing, function encryption, blockchain, databases, and more.

IRON [115] introduces confidential computing to implement the first practical

and provably secure functional encryption system that can be instantiated on

real trusted hardware. EnclaveDB [116] leverages confidential computing tech-

nology to enhance database security by providing confidentiality, integrity, and

freshness guarantees for both data and data queries. Other applications of confi-

dential databases include Microsoft Azure Always Encrypted (AE) [117], Aliyun

Operon [118], Huawei GaussDB [119]. Ekiden [120] integrates confidential comput-

ing with smart contracts to devise a novel architecture that separates consensus

and execution.

In this thesis, I mainly focus on the latest emerging distributed computing work-

load, i.e., serverless computing. A line of previous work has focused on integrating

confidential computing with serverless computing. S-FaaS [20] integrates Intel SGX

with OpenWhisk to build a confidential FaaS solution, which can be integrated with

smart contracts to enable decentralized payment. Se-Lambda [21] leverages confi-

dential enclaves to protect the API gateway and service runtime in the serverless

computing. AccTEE [22] combines confidential computing with Web-Assembly to

design a two-way sandbox that offers remote computation with resource accounting

trusted by consumers and providers. T-FaaS [23] ports JavaScript engines into en-

crypted enclave to build a secure serverless platform. In recent years, some works

try to optimize the startup latency of confidential serverless computing. Clem-

mys [24] batches SGX2 EAUG operations for fast creation of large-heap serverless

enclave. Plug-in Enclaves [2] introduces the plugin enclaves to reuse attested com-

mon states, so that function startup latency can be significantly reduced. Reusable

Enclaves [25] enable the reusing of SGX enclave by rewinding the WebAssembly

runtime, mitigating the cold startup latency.

Optimistically speaking, in the near future, confidential computing will become

the new generation of cloud infrastructure and support various application systems

concerning data security and user confidentiality.

Part I

New Side-channel Investigation in

Confidential Computing

19

Chapter 3

Automated Extraction of

Automated Machine Learning

Models

In this chapter, I present NASPY, the first end-to-end adversarial framework to ex-

tract the network architecture of novel deep learning models automatically gener-

ated by Neural Architecture Search (NAS), even when those models are well sealed

inside the black-box TEE sandbox. Existing model extraction attacks mainly focus

on conventional DNN models with very simple operations, or require heavy man-

ual analysis with lots of prior knowledge. In contrast, NASPY introduces seq2seq

models to automatically identify novel and complicated operations (e.g., separable

convolution, dilated convolution) from hardware side-channel sequences of model

inference, allowing it to bypass the TEE isolation and protection. Furthermore,

I present methods to recover the model hyper-parameters and topology from the

operation sequence. With these techniques, NASPY is able to extract the complete

NAS model architecture with high fidelity and automation.

3.1 Introduction

Recently Automated Machine Learning (AutoML) has attracted lots of attention

from the machine learning community, as it can significantly simplify the develop-

ment of machine learning pipelines with high efficiency and automation. One of the

21

22 3.1. Introduction

most popular AutoML techniques is Neural Architecture Search (NAS) [121, 122],

which can automatically generate high-quality Deep Neural Networks (DNNs) for

a specified task. It enables non-experts to produce machine learning architectures

and models which can outperform hand-designed solutions.

From the adversarial perspective, this chapter aims to design new attacks to steal

the architectures of black-box NAS models. This is known as model extraction

attacks, which could cause severe consequences: (1) searching a good architecture

with NAS is an energy- and time-consuming process. Hence the produced archi-

tecture is naturally considered as an important intellectual property, and stealing

it can lead to copyright violation and financial loss [123]. (2) Extracting the model

architecture can facilitate other black-box attacks, e.g., data poisoning [124], ad-

versarial examples [125], membership inference [126].

One solution of model extraction is to remotely query the target model and re-

cover the architecture based on the responses [127]. However, such attack requires

large computation cost and can only be applied to simple neural networks1. Then

I turn to a more promising solution: hardware attacks (e.g., cache side-channel,

bus snooping). Essentially, when a DNN model executes the inference task on

a computer, it leaves architecture-dependent footprints on the low-level hardware

components, which could be captured by an adversary to analyze and recover the

high-level architecture details. These techniques can give very fine-grained infor-

mation, and have been utilized by prior works [80, 83, 84, 128] to extract the

architectures of conventional DNN models. It is also the most effective method for

breaching the isolation of TEE sandboxes. However, there are several challenges

when I apply such attack techniques to extract NAS architectures. (1) These works

can only handle simple operations in conventional models, while failing to analyze

new operations introduced by NAS (e.g., separable convolution, dilated convolu-

tion). (2) Some works need complicated manual analysis with prior knowledge of

the victim model. For instance, [80] requires the information of the victim model

family, and can only extract variants of generic architectures. [128] needs to know

the layer type ahead.

To the best of the knowledge, there is only one work [123] focusing on the extraction

of NAS models, which is not very practical or general. (1) This work mainly

monitors the API traces in the high-level deep learning library, which requires the

1It takes 40 GPU-days to recover a 7-layer architecture with a simple chained topology [127].

Chapter 3. NASPY 23

attacker and victim to share the same library with exactly the same version. This

is not practical since users may use different libraries, especially their customized

ones. (2) It needs the accurate dimension estimation to predict the layer type and

model topology, which is hard to obtain in the real world. (3) The NAS model

considered in this work is too small and simple, which cannot well represent state-

of-the-art NAS techniques.

I propose NASPY, a learning-based framework for automated extraction of NAS

architectures with high efficiency and fidelity. I make several contributions to

overcome the above limitations. First, I exploit cache side-channel techniques

to monitor the low-level BLAS library. Hence, the framework can be applied to

different platforms regardless of the high-level deep learning libraries (Tensorflow,

Pytorch, or other customized libraries). This cannot be achieved in [123]. Second,

I model the extraction attack as a sequence-to-sequence problem, and design new

deep learning models to predict the model operation sequence automatically. This

does not require the tedious manual analysis, as conducted in [80]. Meanwhile, the

models are able to predict new sophisticated operations in NAS, which are missing

in [80, 83]. Third, I propose a new analysis method to precisely recover the exact

hyper-parameters without any prior knowledge. In contrast, previous works can

only estimate a possible range of hyper-parameter values [80, 83]. Finally, I design

strategies to reconstruct the model topology and extract the complete architecture

for different scenarios and adversarial goals.

I perform extensive experiments to demonstrate the effectiveness of NASPY. My

identification model can predict the operation sequences of different NAS methods

(DARTS [129], GDAS [130] and TE-NAS [131]) with an error rate of 3.2%. My

hyper-parameter prediction can achieve more than 98% accuracy. The framework

also demonstrates high robustness against random noise introduced by the complex

and dynamic hardware systems.

24 3.2. Background

3.2 Background

3.2.1 Neural Architecture Search (NAS)

NAS [121, 122] has gained popularity in recent years, due to its capability of

building machine learning pipelines with high efficiency and automation. It sys-

tematically searches for good network architectures for a given task and dataset.

Its effectiveness is mainly determined by two factors:

Search space. This defines the scope of neural networks to be designed and

optimized. Instead of searching for the entire network, a practical strategy is to

decompose the target neural network into multiple cells, and search for the optimal

structure of a cell [132]. Then cells with the identified architecture are stacked in

predefined ways to construct the final DNN models. Figure 3.1a shows the typical

architecture of a CNN model based on the popular NAS-Bench-201 [133]. It has

two types of cells: a normal cell is used to interpret the features and a reduction

cell is used to reduce the spatial size. A block is composed of several normal cells,

and connected to a reduction cell alternatively to form the model.

A cell is generally represented as a directed acyclic graph (DAG), where each edge

is associated with an operation selected from a predefined operation set [134]. Fig-

ure 3.1b gives a toy cell supernet that contains four computation nodes (squares)

and a set of three candidate operations (circles). The solid arrows denote the actual

connection edges chosen by the NAS method. Such supernet enables the sharing of

network parameters and avoids unnecessary repetitive training for selected architec-

tures. This significantly reduces the cost of performance estimation and accelerates

the search process, and is widely adopted in recent methods [129, 130, 135, 136].

Search strategy. This defines the approach to seek for good architectures in

the search space. Different types of strategies have been designed to enhance

the search efficiency and results, based on reinforcement learning [121, 132, 134],

evolutionary algorithm [137, 138] or gradient-based optimization [129, 130, 139].

My watermarking scheme is general and independent of the search strategies.

Chapter 3. NASPY 25

Image

Pre-processing

Normal block

Reduction cell

Classifier

Normal cell

Normal cell

(a) CNN macro-architecture

0

1

2

3

0

3

: input

: output

(b) A toy cell supernet

Figure 3.1: Architecture of a NAS model based on cells

3.2.2 Hardware attacks

Following the previous works [80, 83, 123], I aim to exploit some hardware attacks

to perform the extraction of NAS models. Specifically, I consider the following two

attacks.

Cache side-channel attacks: CPU caches are introduced between the CPU cores

and main memory to accelerate the memory access. Since the attacker can share

the same cache with the victim, he can reveal the behavior pattern of the victim

from the contention on the usage of cache lines. In this chapter, I adopt Flush-

Reload, which is also used in [80, 123] for model extraction. The adversary

leverages the shared low-level BLAS library to infer the victim model, and is able

to obtain the sequence of its critical operations, e.g., the matrix multiplication.

Bus snooping attack: data traffic between the processor and memory system is

achieved through a bus, which sends data to or loads data from specific addresses.

Hence, by observing the memory traffic through the bus, the attacker can obtain the

memory address traces of the victim model, which further reveals the connections

between model layers. In this chapter, I use the bus snooping technique [140] to

monitor the read/write addresses of each model layer, which is also adopted in

[83]. The adversary can only observe the data addresses and cannot access the

data passing through buses, which allows NASPY to work even when the model is

encrypted inside a TEE sandbox.

26 3.3. Framework Overview

3.2.3 Sequence-to-sequence learning

Seq2seq learning is raising increased attention in the machine learning community,

and becoming quite popular for different tasks like speech recognition [141], ma-

chine translation [142], image captioning [143], question answering [144], etc. Three

models are mostly used for seq2seq learning: Recurrent Neural Network (RNN),

Connectionist Temporal Classification (CTC), and attention models (Transformer).

In this chapter, I aim to use seq2seq learning for automated model extraction from

the monitored memory activities. I design an RNN-CTC model and a Transformer

model to recover the structure operations of NAS models.

3.3 Framework Overview

3.3.1 Threat Model

Adversary’s goal. Given a sealed victim model M constructed from NAS, the

adversary aims to recover a similar network architecture as M , without searching it

with large cost and the original dataset. I consider two types of goals following [145]:

(1) accuracy extraction: the adversary aims to reproduce a network architecture,

which can give similar model accuracy as the victim model; (2) fidelity extraction:

the adversary wishes to recover the same architecture and hyper-parameters as the

victim one.

Adversary’s capability. I consider two practical scenarios for extracting model

architectures. For each scenario, I assume the attacker only knows the target model

is constructed by NAS, without any other prior knowledge, e.g., the model family,

layer type, NAS method, high-level deep learning library. Figure 3.2 illustrates the

overview of the threat model.

• Remote attack : model extraction in this scenario is adopted in [80, 123]. The

attacker can launch his malicious program on the same machine with the victim

model. Although these programs are isolated by the OS or even TEE sandbox,

the attacker can still exploit the cache side-channel technique to monitor the

victim’s low-level executions, e.g., the sequence of matrix multiplication events.

Chapter 3. NASPY 27

Malicious
Container

Computation Library

Hardware Cache

Memory

Local
Attacker

Bus Snooping

Remote
Attacker

Confidential Machine Learning Platform

Figure 3.2: Overview of threat model.

Based on the side-channel sequence, the attacker is able to perform accuracy

extraction of the victim model.

• Local attack : this scenario is considered in [83], where the attacker can physically

access the machine running the victim model. In addition to launching the cache

side-channel attack to retrieve the operation sequence, the attacker can also

launch the bus snooping attack to monitor the memory bus and PCIe events.

With such memory address traces, the attacker can achieve fidelity extraction of

the victim model and recover the exact model topology.

3.3.2 Attack Overview

Before describing my NASPY framework, I need to understand the workflow of the

model inference process. As shown in the left diagram of Figure 3.3, given a

DNN model, a deep learning library (e.g., Tensorflow, Pytorch) is used to process

the computational graph of the model, and convert the model architecture into

sequences of connected layer operations. Then these operation sequences are sent

to low-level computation libraries for acceleration, such as the BLAS library (e.g.,

OpenBLAS) for GEneral Matrix Multiplication (GEMM), and the mathematical

library (e.g., libm) for activation functions. Those computations will be executed

on the hardware platform. By monitoring the hardware activities using cache side-

channel and bus snooping techniques, the attacker can observe the event sequences

and memory address traces for the model inference process.

Overview of NASPY. The adversary’s task is to automatically and precisely recover

the NAS model architecture from the captured sequences of hardware activities.

28 3.4. Detailed Design

NAS Model

DL Library
(e.g., Tensorflow, Pytorch)

Computation Library
(e.g., OpenBLAS, Intel MKL)

Hardware
CPU Cache Memory

Event
Sequence

Memory
Address Trace

Operation
Sequence

Hyper-
parameters

Model
Architecture

Model
Architecture

Bus
snooping

Cache
side-channel

Seq2seq
model

Sequence
analysis

Random
search

Trace
analysis

Fidelity Extraction

Accuracy Extraction

Figure 3.3: Workflow of my model extraction framework.

Figure 3.3 shows the workflow of my NASPY framework. It consists of three steps,

as described below.

First, it translates the event sequences from cache side-channel attacks to the

operation sequences (i.e., input of the low-level computation library). I model

this as a seq2seq problem, and design two deep learning models (RNN-CTC and

Transformer) to achieve this prediction. Second, it identifies the values of hyper-

parameters in the layer operations recovered from the first step. Previous works [83]

can only estimate a range of these values based on the dimension size of layer input

and output. In contrast, NASPY can precisely reveal the exact values of the hyper-

parameters from the translated operation sequence. Third, NASPY reconstructs the

model topology and obtains the complete architecture. For the accuracy extraction

attack, the attacker can randomly select a model topology, and assign the recovered

operations with the hyper-parameters to it. My experiment results show that the

corresponding model can give similar accuracy as the victim one. For the fidelity

extraction attack, the attacker needs to recover the exact model topology. He can

leverage the information in the memory address trace from the bus snooping attack

to construct the architecture.

3.4 Detailed Design

3.4.1 Operation Sequence Identification

The first step is to predict the operation sequence from the hardware event se-

quence. Past works [80, 123] require manual analysis for such translation. In

contrast, I propose to leverage a seq2seq deep learning model to achieve this task

automatically. Before discussing my method, I first give a short introduction about

the attack target, the OpenBLAS library.

Chapter 3. NASPY 29

Details about GEMM in OpenBLAS. BLAS realizes the matrix multiplication

with the function gemm. This function computes C = αA × B + βC, where A is

an m× k matrix, B is a k×n matrix, C is an m×n matrix, and both α and β are

scalars. OpenBLAS adopts Goto’s algorithm [146] to accelerate the multiplication

using modern cache hierarchies. This algorithm divides a matrix into small blocks

(with constant parameters P, Q, R), as shown in Figure 3.4. The matrix A is

partitioned into P × Q blocks and B is partitioned into Q × R blocks, which can

be fit into the L2 and L3 caches, respectively. The multiplication of such two

blocks generates a P × R block in the matrix C. Algorithm 1 shows the process

of gemm that contains 4 loops controlled by the matrix size (m,n, k). Functions

itcopy and oncopy are used to allocate data and functions. kernel runs the actual

computation. Note that the partition of m contains two loops, loop3 and loop4,

where loop4 is used to process the multiplication of the first P ×Q block and the

chosen Q × R block. For different cache sizes, OpenBLAS selects different values

of P, Q and R to achieve the optimal performance.

Algorithm 1 GEMM
Input: matrice A, B, C; scalars α, β

Output: C = αA×B + βC

for j in (0:R:n) do // Loop 1

for l in (0:Q:k) do // Loop 2

call itcopy ;

for jj in (j:3UNROLL:j+R) do

// Loop 4

call oncopy ; call kernel

for i in (P:P:m) do // Loop 3

call itcopy ; call kernel

C + = A B
m

n

m

k

k

n

+ =

Q

P

 Q

R

R

P

Figure 3.4: GEMM procedure.

Dataset formulation and preprocessing. With knowing the internal mecha-

nism of GEMM implementation, I can start to conduct the dataset for training

my analysis model. Specifically, the event sequence x is a time-series of length

T , where each frame is a vector of event features. In this chapter, I capture the

occurrence of itcopy and oncopy APIs in OpenBLAS, which are used to load ma-

trix data for GEMM. Note that my framework can be simply generalized to other

BLAS libraries, such as Intel MKL. Hence, a frame is denoted as xi = (Ii, Oi, Ti),

where Ti is the time interval from the last monitoring moment, and Ii and Oi are

binary values to denote whether itcopy and oncopy are called during this inter-

val. Ti is determined by the monitoring granularity when collecting side-channel

information.

30 3.4. Detailed Design

The operation sequence y contains N operations performed by the victim model.

To comprehensively cover novel neural architectures, I consider all the common

operations used in state-of-the-art NAS methodologies: fully connected layer (FC),

normal convolution (Conv), dilated convolution (DConv), separable convolution

(SConv), dilated-separable convolution (DSConv), pooling (Pool), identity (Skip),

zeroize. It is easy to integrate other operations into NASPY if necessary.

Figure 3.5 shows the event sequences of four representative operations, where the

blue and red nodes denote the occurrences of itcopy and oncopy. I observe that

different operations have distinct event patterns, giving us opportunities to predict

the model operations from the side-channel leakage. However, there are a couple

of challenges to design seq2seq models for this task. I perform the following data

preprocessing methods to overcome these challenges.

(a) fully connected layer (b) normal convolution

(c) separable convolution (d) dilated separable convolution
: itcopy : oncopy

Figure 3.5: Event sequences of four representative operations in NAS models.

1. Input downsampling and label extending. An event sequence x of a NAS model

is extremely long (> 5 million frames) because of the high monitoring frequency.

In contrast, an operation sequence y usually has only hundreds of operations. It

is infeasible to directly use existing seq2seq learning models to handle such length

gap. To resolve this challenge, I perform downsampling for x and extend labels

in y. Specifically, for the event sequence x, I only keep the frames whose Ii or

Oi is 1. I also update Ti in these active frames as the time interval from the last

function access. This can significantly reduce the sequence length, while preserving

the critical information. For the operation sequence y, I decompose the single label

of a complex operation into a series of sub-operation labels. For instance, a SConv

operation is composed of several Conv sub-operations (Figure 3.5(c)). So instead

of directly labeling this operation as SConv, I extend it as multiple Conv labels,

the number of which is determined by the channel size. Such preprocessing can

remarkably decrease the difficulty of training the seq2seq model.

Chapter 3. NASPY 31

2. Inter-operation context. Not every operation in y has the corresponding event in

x. For instance, Pool and Skip never invoke GEMM computations. This makes it

difficult to predict such operations. I propose to leverage the execution latency and

inter-operation context for identification, since their values are different in these

operations. Specifically, I introduce two interval labels into the operation sequence:

IΓ denotes the interval between two operations while Iγ denotes the interval be-

tween the decomposed sub-operations within an operation. Such two labels reflect

the context switch for inter- and inner-operations, which hence helps the seq2seq

model distinguish adjacent operations in the sequence with high accuracy. Experi-

ment results in Section 3.5.1 show that the consideration of inter-operation context

brings large performance improvement.

3. Time normalization. When the victim model runs on different platforms, al-

though the occurred events (i.e., Ii and Oi) keep constant, the time interval Ti

between the frames will be different, due to the varied execution latency in hard-

ware. This can restrict the generalization of my seq2seq model. To overcome

this challenge, I perform normalization over Ti in the captured side-channel trace,

and use the relative intervals to train the model, which are similar across various

platforms as they are determined by the algorithm behaviors.

4. Data augmentation. Different from NLP and CV tasks, the raw side-channel

data can contain lots of random noise from the hardware activities. This is due

to the complex system optimization and run-time dynamics [83]. Such noise can

decrease the identification accuracy. To improve the robustness of the seq2seq

model against noise, I further perform data augmentation following [147], which

simply cuts out random blocks of consecutive time and feature dimensions. In this

chapter, I just mask these blocks with the fixed value 0.

Seq2seq model designs. I propose two kinds of models for predicting the opera-

tions from the side-channel trace. The first one is an RNN-CTC model. Recently

the combination of RNN and CTC decoders is commonly used in sequence mod-

eling problems. Figure 3.6(a) shows the architecture of this model for identifying

the operation sequence y from the event sequence x. Given that x only contains

three features in each frame, I first introduce a convolution layer to learn more fea-

tures. Then an RNN layer is used to propagate information through this sequence.

I adopt the Bidirectional Gated Recurrent Unit (BGRU) as the RNN module,

which can enable better long-term memory and fully leverage the past and future

32 3.4. Detailed Design

Operation Sequence

(b) Transformer Model

Encoder
Abstract

Representation
Conv

Decoder

<START>

Beam
Search

C
onv

B
G

R
U

C
TC

D

ecoder

Beam
Search

Probability Matrix

(a) RNN-CTC Model

Length N

Event Sequence
I

Length T

O
T

Preprocess

Raw Side
Channel Trace

Figure 3.6: Procedure of operation sequence identification.

contexts. The output of the RNN layer is the probability distribution of all the

operation labels for each frame, which is further fed into the CTC decoder. While

it is difficult to align the operation sequence with the event sequence that has a

various length, the CTC decoder can skip the alignment by introducing a “blank”

label. Finally, the operation sequence y with the largest prediction probability is

identified with the beam search.

The second one is a transformer model. Proposed by [148], transformers have

broken multiple AI task records and pushed the state of the art. Hence, I also

show the possibility of operation identification with a transformer model, as shown

in Figure 3.6(b). Transformer is an attention-based neural network with a typical

encoder-decoder architecture. The encoder maps the input sequence into an ab-

stract representation that contains all the learned features of that input. Then the

decoder takes this abstract representation and predicts the next output step-by-

step based on the previous output. The introduction of the attention mechanism

enables the transformers to have extremely long term memory, which can focus on

all the tokens generated previously. Similarly, I add a convolution layer before the

encoder to learn more features from the event sequence.

3.4.2 Hyper-parameter Recovery

My second step is to extract the architectural hyper-parameter values of each

operation. NASPY can precisely recover the exact hyper-parameters, rather than

an estimated range in previous works [80, 83].

Convolutions. Given that convolutions take a majority in a NAS model, I first

discuss how to reveal hyper-parameters of different convolution operations, e.g.,

kernel size R, dilation d, channel size C, padding size P and stride. Note that I

assume the input size (i.e., width and height) has been identified from the analysis

Chapter 3. NASPY 33

of the previous layer, while the initial input size of the model is publicly available.

(1) The extended event labels in y is integrated to compose the single label of the

complex operation (e.g., SConv and DSConv). During this process, NASPY discovers

the channel size C by counting the number of event labels. (2) Both the kernel size

R and dilation d can be directly recovered from the predicted operation labels (e.g.,

3 × 3 SConv or 5 × 5 DSConv). NASPY can distinguish various convolutions with

different kernel sizes, as they have different side-channel patterns and execution

time. (3) Empirically, the padding size P is normally set as R/2 to keep the input

size and output size constant for possible residual connections. (4) The stride

can be deduced from the cell type. Normal cells keep the spatial size unchanged

while reduction cells would half the spatial size but double the channel size to

maintain the dimension information. Hence, the stride is 1 for normal cells and 2

for reduction cells. The cell type is identified through the channel size C.

Other operations. I can also infer the hyper-parameters for other operations like

the FC and Pool layers. The number of neurons in a FC layer can be reflected

by the length of the event sequence, where a larger number of neurons leads to a

longer sequence. Such length variance can be well learned by the seq2seq model,

which discloses the number of neurons in the predicted labels. For the Pool layer,

the relationship between the pooling size R and padding size P is P = R/2 in

order to keep the spatial size among layers in the same cell.

3.4.3 Model Topology Reconstruction

The final task is to extract the topology to obtain the model architecture. As a

NAS model is built with cells, I also reconstruct the model topology in term of

cells. First, the model macro skeleton is determined by analyzing the number and

types of cells from the event sequence. It is intuitive to locate each cell, since they

are separated by much larger time intervals due to some extra computations like

concatenating and preprocessing. Then, I focus on the topology of each cell. Unlike

conventional DNN models, the topology in NAS cells is not chained and sometimes

even not regular. Hence, I cannot simply connect each extracted operation in the

sequence to form the topology. Based on the attack scenarios and goals, the cell

reconstruction can be done with different methods.

34 3.5. Evaluation

Accuracy extraction. To extract a model architecture with similar accuracy, the

attacker can just use the remote side-channel attack to recover the operations and

hyper-parameters, and then randomly choose a topology following the basic rule of

NAS, i.e., each neuron node has two inputs. The experiment results in Section 3.5.3

verify the effectiveness of this strategy. Previous works [129, 130] have also noted

that operations have a greater impact on NAS model performance than topology.

Fidelity extraction. As only the side-channel event sequence is not enough to

achieve fidelity extraction, the attacker can adopt bus snooping to get the memory

address trace to reveal the exact interconnections between layers. With the revealed

model topology, the attacker can finally extract the complete model architecture.

3.5 Evaluation

Dataset construction. I search model architectures with CIFAR10, and train

model parameters over CIFAR10 and CIFAR100. My method can be applied to

tasks for other datasets as well. I first generate 10,000 random computational

graphs of NAS models following the macro skeleton proposed in the popular bench-

mark NAS-Bench-201 [133], where each cell contains 4 nodes associated with 8

operations (each node has two inputs). The operation set follows the classical set

in [129], which contains: identity, zeroize, 3×3 and 5×5 SConv, 3×3 and 5×5
DSConv, 3×3 average pooling, 3×3 max pooling. Conventional operations (i.e.,

Conv and FC) are also included in my model.

Then I collect the corresponding side channel sequences using the Flush-Reload

technique, which inspects the cache lines storing OpenBLAS functions (itcopy and

oncopy) at a granularity of 2000 CPU cycles. I randomly select 80% of the se-

quences as the training set, and the rest as the validation set. The seq2seq models

will be tested on novel NAS models generated by three state-of-the-art NAS meth-

ods: DARTS [129], GDAS [130] and TE-NAS [131]. For each method, I search 10

NAS models with various initial seeds for testing.

Chapter 3. NASPY 35

(a) (b) (c)

Figure 3.7: (a) Average OER of the two identification models with different
configurations. (b) Loss and OER trend of the RNN-CTC model. (c) OER of
the transformer model on validation samples

3.5.1 Operation Sequence Identification

Metrics. Inspired by the evaluation metric WER (Word Error Rate) in NLP

tasks, I propose Operation Error Rate to quantify the prediction accuracy. It is

calculated as: OER = D(y′, y)/|y|, where D(y′, y) is the edit distance between

the predicted operation sequence y′ and ground-truth sequence y, and |y| is the

sequence length of y. A smaller OER implies higher identification accuracy.

Prediction accuracy. Given that my dataset is relatively small, I only use one

layer of BGRU in the RNN-CTC model, and one layer of encoder and decoder

in the transformer model. Figure 3.7(a) shows the average validation OER of

two models with different structure settings. Both 1D Conv and 2D Conv are

considered to extract more features from the input, and the model dimension size

(i.e., drnn of the BGRU layer and dmodel of the transformer) is chosen among [128,

256, 512]. I see that while all the configurations can achieve very high accuracy,

the best one is: 2D Conv and dmodel = 256, where both models give the lowest

OER: 3.2% for RNN-CTC and 11.3% for the transformer. The trend of the loss

and average OER during the training of RNN-CTC are depicted in Figure 3.7(b).

I observe that the loss and OER decrease dramatically within the first 20 epochs

and reach convergence at epoch 40. In contrast, the transformer model performs

relatively worse. Figure 3.7(c) shows the OER of each validation sample predicted

by the transformer, which is higher and more unstable. It is because the length

of the preprocessed side-channel event sequence (normally 5000 frames) is still too

long for the transformer, which requires tremendous GPU and memory resources,

making the training more difficult.

36 3.5. Evaluation

Model Average DARTS GDAS TE-NAS

RNN-CTC 0.032 0.035 0.021 0.038

Transformer 0.113 0.151 0.115 0.094

Table 3.1: Testing OER for three
NAS methods.

Finally, I test the above two models on

the NAS models generated by DARTS,

GDAS and TE-NAS2, and the results

are shown in Table 3.1. From the table,

both of the RNN-CTC and transformer models can well predict the operation

sequence from the side-channel leakage of three types of NAS models.

Effectiveness of inter-operation context. I adopt the inter-operation context

technique to handle the missing events of some operations (Section 3.4.1). To

evaluate its effectiveness, Figure 3.8 compares the prediction error rates of the two

models with and without considering the context. Figure 3.8(a) shows the OER

trend of the RNN-CTC model during training. I observe that without the inter-

operation context, the OER decreases more slowly and converges at a higher value.

Figure 3.8(b) depicts the fitting curves on the OER of validation samples for the

transformer. Ignoring the context will lead to a huge performance penalty, which

gives higher and less stable prediction error rates.

Robustness against noise. I further evaluate the robustness of my models

against the noise. Figure 3.9 shows the OER of two models without and with

the data augmentation technique, when the side-channel event trace contains dif-

ferent scales of random noise. First, I observe that my two models have strong

robustness and give acceptable error rates under large amounts of noise. Second,

data augmentation (masking rate = 0.1) can further improve the model robustness.

With 30% random noise, the OER of RNN-CTC is 0.115 and the transformer is

0.208. Besides, data augmentation has better improvement for RNN-CTC than the

transformer, as the transformer always considers the entire input, which weakens

the effect of this technique.

2I train these models using the open-sourced code from the authors.

Chapter 3. NASPY 37

(a) (b)

Figure 3.8: Inter-operation context testing. (a) OER trend of RNN-CTC. (2)
OER of the transformer on validation samples.

(a) (b)

Figure 3.9: Robustness versus different scales of noise. (a) OER of RNN-CTC.
(b) OER of the transformer.

Figure 3.10: Recovery
accuracy.

1

2

3

4

Input0
0x7feba0656800

Input1
0x7febabac4c80

Node1
RA1:0x7feba0656800
RA2:0x7febabac4c80
WA:0x7feba06148c0

Node2
RA1:0x7feba06148c0
RA2:0x7febabac4c80
WA:0x7feba0614980

Node3
RA1:0x7feba06148c0
RA2:0x7feba0614980
WA:0x7feba06149c0

Node4
RA1:0x7feba0614980
RA2:0x7febabac4c80
WA:0x7feba0614900

Output
RA1:0x7feba06148c0
RA2:0x7feba0614980
RA3:0x7feba06149c0
RA4:0x7feba0614900
WA:0x7feba0614a00

Figure 3.11: Memory address trace of a
NAS cell.

3.5.2 Hyper-parameter Recovery

NASPY can further extract the hyper-parameter values from the predicted operation

sequence. As RNN-CTC performs better, I conduct hyper-parameter recovery

based on the operation sequence from this model. The hyper-parameter prediction

38 3.5. Evaluation

error is identical to the operation identification error (3.2%). Figure 3.10 shows

the recovery accuracy of various hyper-parameters. For convolutions, the accuracy

of each hyper-parameter can reach up to 98%. The kernel size and dilation are

recovered directly from the predicted labels and have the highest accuracy. The

padding size is computed from the kernel size with the same accuracy. The stride

is inferred from the cell type, which can reach 100% accuracy, as normal and

reduction cells are very distinguishable in terms of the channel size. The recovery

accuracy of the channel size is relatively lower, because most errors in the predicted

operation sequence are from the adding or deletion of events, while the channel size

is revealed by counting the repetitions of events in a convolution. However, such

slight accuracy drop can be easily compensated with post-analysis. For the number

of neurons in FC layers, the recovery accuracy is 97.54%, as the side channel pattern

of FC is shorter and simpler, making it hard to be distinguished sometimes. The

pooling size cannot be directly reveal from the operation sequence, as the changing

of pooling size does not lead to significant changes of the side-channel leakage

pattern. So for this specific operation, I can determine its value empirically from

the common values (i.e., 3 or 5).

3.5.3 Model Topology Reconstruction

Dataset
Original Random Model with Same Operations

Model #1 #2 #3 #4 #5

CIFAR 10 96.82 96.53 96.44 96.60 96.57 96.77

CIFAR 100 81.07 80.95 80.16 80.33 80.90 80.56

Table 3.2: Accuracy (%) of random models
on two datasets.

First, I consider the accuracy

extraction attack. After the

attacker identifies the opera-

tions and hyper-parameters, he

can randomly choose a model

topology to obtain the archi-

tecture, which can give close

model performance. To validate this, given a victim NAS model, I first extract

its operation sequence and hyper-parameters. Then I randomly generate a compu-

tation graph that connects nodes in the cell, and associate the revealed operations

to the graph sequentially. I train the model from this graph and test its prediction

accuracy. Table 3.2 shows the results on CIFAR10 and CIFAR100 datasets with 5

different graphs. I can see that the randomly chosen topology can give very similar

accuracy as the original model, where the accuracy drop is less than 1% for both

datasets. I also check the performance of totally randomly constructed models

Chapter 3. NASPY 39

(operations and topology): the average accuracy of 5 such models is 91.85% (CI-

FAR10) and 72.49% (CIFAR100), which is much lower than my extracted models.

This shows the importance of operation and hyper-parameter recovery for accuracy

extraction.

Second, I consider fidelity extraction. The memory address trace of the victim

model can be obtained with bus snooping tools, e.g., HMTT-v4 [140]. Figure 3.11

shows an example of the monitored address trace of a cell in the victim model,

where RA is the read address and WA is the write address. If RA of one layer a is

the same as the WA of another layer b, I confirm that there is a connection from

b to a. By analyzing the consistency between RA and WA in the address traces,

the connections between layers can be recovered precisely. I perform experiments

on 6 NAS models in Table 3.2 and the results confirm that the model topology

can be revealed with 100% precision. Combining the recovered operations and

hyper-parameters, which may contain some small errors, I can finally reconstruct

the complete architecture that is almost the same as the original one.

3.6 Discussions

Extracting other NAS models. My framework can be extended to attack

other types of NAS models as well. For instance, some latest NAS techniques (e.g.,

[149]) do not adopt the cell-based structure for searching. Since NASPY focuses on

the recovery of operation sequences rather than cells, it is still effective to extract

models from those NAS solutions. Another example is NAS-based RNN models.

A RNN model generated by a NAS method from the search space only contains

activation functions [129]. It is noted that these functions cannot be observed from

the GEMM trace. Instead, I can monitor other libraries (e.g., libm) to identify the

functions. In the future, I will design seq2seq models and methods for extracting

these models.

Extracting standard DNN models. My framework can also be generalized

to conventional standard DNN models. For models with chained topology (e.g.,

VGG), it is easy to extract their model architectures by first predicting the oper-

ation sequence and then just connecting them in sequence. However, for models

with more complex topology (e.g., ResNet), after revealing the operation sequence,

40 3.7. Conclusion

I need to perform fidelity extraction to reveal the exact model topology. If I know

the family of the target model (assumed in [80]), I can also reconstruct a similar

model architecture by connecting the predicted operations as the template struc-

ture of the model family.

Defense strategies. There are several solutions that can possibly mitigate my

extraction attacks. From the hardware perspective, oblivious RAM [150] was de-

signed to hide the memory access pattern and thwart bus snooping attacks. Latest

TEE designs [6] like Intel TDX also tries to hide memory access trace from potential

attackers. Security-aware cache architectures [151, 152] were proposed to reduce

side-channel leakage. From the application perspective, I can obfuscate the model’s

execution behaviors by adding dummy operations or shuffling the operation orders

[123]. However, those solutions either require significant changes to the hardware,

or add large computation overhead to the model inference. I will systematically

evaluate those defenses, and design more efficient approaches as future work.

3.7 Conclusion

In this chapter, I design NASPY, an end-to-end framework to breach the protection of

TEE sandbox and achieve automated extraction of novel NAS model architectures.

NASPY adopts new deep learning models to identify model operation sequences from

the side-channel event trace, which allows the attacker to bypass the TEE isolation.

With the identified operations, NASPY can further precisely recover the operation

hyper-parameters and model topology for various scenarios. Compared to past

works, NASPY can extract novel operations and architectures with higher automa-

tion and accuracy, bringing more severe threats to the protection of AI systems,

even if they are protected with confidential computing infrastructures. I expect

this study can raise the awareness of the community about the severity of model

extraction attacks and the vulnerability in existing confidential AI systems, inspir-

ing researchers to come up with more secure solutions to protect the architecture

privacy.

Chapter 4

Protecting Confidential Virtual

Machines from Hardware

Performance Counter Side

Channels

In modern cloud platforms, it is becoming more important to preserve the privacy

of guest virtual machines (VMs) from the untrusted host. To this end, Secure

Encrypted Virtualization (SEV) is developed as a hardware extension to protect

VMs by encrypting their memory pages and register states. Unfortunately, such

confidential VMs are still vulnerable to micro-architectural side channels, and Hard-

ware Performance Counters (HPCs) are a prominent information leakage source.

To make matters worse, currently there is no systematic defense against the HPC

side channels. I introduce Aegis, a unified framework for demystifying the in-

herent relations between the instruction execution and HPC event statistics, and

defending VMs against HPC side channels with provable privacy guarantee and

minimal performance overhead. Aegis consists of three modules. Application Pro-

filer profiles the application offline and adopts information theory to quantitatively

estimate the vulnerability of HPC events. Event Fuzzer leverages the fuzzing tech-

nique to automatically generate interesting inputs, i.e., instruction sequences, that

can effectively alter the HPC observations. Event Obfuscator injects noisy instruc-

tions into the protected VM based on the differential privacy mechanisms for high

efficiency and privacy. I present three case studies to demonstrate that Aegis

41

42 4.1. Introduction

can defeat different types of HPC side-channel attacks (i.e., website fingerprinting,

DNN model extraction, keystroke sniffing). Evaluations show that Aegis can ef-

fectively decrease the attack accuracy from 90% to 2%, with only 3% overhead on

the application execution time and 7% overhead on the CPU usage.

4.1 Introduction

The maturity of cloud computing ecosystems prompts an increased emphasis on the

privacy guarantee, making it a top concern along with the performance efficiency for

cloud service providers and customers. To protect the guest virtual machine (VM)

from the privileged but potentially malicious hypervisor, a promising mechanism

called Trusted Execution Environment [153, 154] is utilized to realize confidential

computing in virtualization scenarios. This mechanism adopts a hardware memory

encryption engine to encrypt the VM’s memory space transparently with a VM-

specific key stored in the hardware layer. Even the hypervisor cannot access the

encryption key and extract the memory content of the VM. AMD Secure Encrypted

Virtualization (SEV) [5] is the first commercial realization of such a mechanism,

and has been widely applied in modern cloud services [155, 156]. Other processor

vendors have also released similar extensions, e.g., Intel TDX [6] and ARM CCA

[157].

Encrypted virtualization can defeat most attacks that directly break the confi-

dentiality or integrity of VM data. However, it is generally vulnerable to side-

channel attacks, which use side-channel information (e.g., execution time, memory

footprints) to infer the secrets in the encrypted environment. Although the lat-

est SEV-SNP version has provided multiple protections [158] (e.g., Branch Target

Buffer Isolation, disabling Instruction Based Sampling) against certain transient-

execution and side-channel attacks, AMD admits that “it is not able to protect

against all possible side-channel attacks” [159]. Over the years, a variety of attacks

have been proposed to breach the confidentiality of SEV systems, which establish

side channels via performance counters [87], cache occupancy [77], unprotected I/O

operations [88, 89], page faults [90–92], etc.

Chapter 4. Aegis 43

Among these attacks, Hardware Performance Counter (HPC) side channels are

particularly easy to exploit. HPCs are implemented as a tool for software profil-

ing, debugging and system modeling. Security researchers also repurposed them

for malware and intrusion detection [160–162]. Unfortunately, their capability of

inspecting program’s behaviors can be abused by the adversary to infer the se-

cret from the victim program [163–167], especially in the cloud scenario where the

malicious host can arbitrarily read the HPC register values mapping to a victim

VM. While SEV claims HPC leakage can only reveal trivial information about the

application inside the VM and hence does not prevent it from the hardware [159],

its competitor Intel TDX seriously considers HPC leakage as a target that must be

prevented and proposes specific hardware modifications to isolate virtualized guest

HPC registers from the malicious host [168]. I present three case studies in Section

4.3 to show that HPC side channels can indeed lead to more severe confidentiality

attacks, e.g., leaking the website access, keystroke, and machine learning models.

Hence, the confidential VM should well mitigate HPC leakage to protect guest

secrets, just as Intel TDX has done.

However, currently all public cloud platforms mainly adopt SEV to achieve their

confidential VM services, including Azure confidential VM [169], Google cloud

[170] and AWS EC2 [171], while TDX is only a preview version or even has not

been considered [172, 173]. Given AMD has announced that SEV-SNP is the latest

stable version, it seems that AMD has no motivation to update the hardware design

to prevent HPC side channels, which exposes almost all existing confidential VM

systems to the security threat. As a result, the lack of hardware defence against

HPC side channels in SEV is an urgent and practical security issue, which motivates

us to design a practical software-based solution to mitigate this vulnerability for

off-the-shelf platforms immediately.

Past efforts have been devoted to reinforce the encrypted VMs and enclaves against

different micro-architectural side channels, e.g., CPU cache [7, 8], page faults [9, 10],

branch prediction [11, 12]. However, to the best of the knowledge, there are no

previous works to systematically and comprehensively investigate the HPC side-

channel defenses against malicious hypervisor. This motivates us to design an

effective and efficient defense solution for the customers to protect their sealed

application from HPC side channels. However, achieving this goal is not a trivial

work and several challenges must be carefully addressed. First, modern processors

44 4.1. Introduction

usually support a large number of HPC events (usually in the thousands). This

gives the adversary more flexibility to establish the side channel. Meanwhile, it

also gives the defender more difficulties to analyze the possible threats. Second,

HPCs cannot count performance events precisely because of the external interfer-

ence, e.g., hardware interrupts, which may mislead the identification of HPC value

changes and result in false analysis results. Finally, one common side-channel de-

fense strategy is to obfuscate the adversary’s observations. A straightforward way

is to inject random noise directly. However, this method introduces extra noise into

VMs, which incurs additional performance overhead. Besides, randomly injecting

noise cannot provide a rigorous privacy guarantee.

Motivated by these challenges, I propose Aegis, a framework that can automat-

ically analyze the potential HPC side channels of a victim application from cus-

tomers, and effectively prevent HPC side-channel attacks with a provable security

guarantee. Aegis consists of three modules:

(1) Application Profiler. It is used to profile the protected application and

extract all vulnerable HPC events that can act as attack surfaces. It gives us

the first look at the application and a comprehensive understanding on usable

attack surfaces. The vulnerability of different events are estimated and ranked

with information theory.

(2) Event Fuzzer. It is used to find out all possible instruction gadgets that

can alter the profiled vulnerable HPC events. I model this as a bug identification

task, and design an automatic tool based on the fuzzing-like technique to generate

interesting “inputs”, i.e., instruction gadgets, to evaluate if the system reports a

“bug”, i.e., value change in the target HPC events.

(3) Event Obfuscator. It is located inside the victim VM and injects specific

numbers of instruction gadgets into the execution flow of the VM as the noise to

obfuscate HPC values monitored from the outside attacker. The key insight is to

model the execution behaviors of the victim VM as statistical data, and then inject

random noise following a specific differential privacy mechanism. This reduces

potential information leakage and makes the victim’s activities indistinguishable

from the attacker’s observations. Meanwhile, the differential privacy mechanism

can theoretically guide us to identify the optimal amount of noise, achieving desired

privacy guarantee with the minimal impact on the system.

Chapter 4. Aegis 45

My framework Aegis is the first work aiming to systematically and comprehensively

mitigate HPC side channels on encrypted VMs. It is a general and provable solution

that can be readily deployed inside the VM for a strong privacy guarantee. Two

differential privacy mechanisms (Laplace and d∗) are adopted to defeat attacks.

Experimental results show that both mechanisms can effectively reduce the attack

accuracy from > 90% to 2%, closing to random guess, while only introducing about

3% overhead on the application execution time and 7% overhead on the CPU usage.

4.2 Background and Related Works

4.2.1 Hardware Performance Counters

Modern processors implement a large spectrum of Hardware Performance Counters

(HPCs) in each CPU core to record the occurrences of hardware-related events for

processes and the entire computer system. These counters provide developers a

useful tool for dynamic software profiling, debugging and system modeling. How-

ever, HPCs also expose an exploitable surface, where the attacker can obtain the

execution behaviors of a protected program in the system and further recover sen-

sitive information. Prior works showed the feasibility of revealing secret keys from

the cryptographic applications based on HPCs [166, 167]. Furthermore, HPCs can

also provide high-resolution timing information to facilitate cache attacks [163, 164]

or even reveal the website accesses [165].

4.2.2 Secure Encrypted Virtualization

Secure Encrypted Virtualization (SEV) is a new feature in AMD processors [5],

which combines AMD-Virtualization (AMD-V) and Secure Memory Encryption

(SME) technologies to encrypt individual VMs with their own keys, aiming to

protect VMs from the untrusted hypervisor. A dedicated co-processor, Platform

Security Processor (PSP), is introduced to generate distinct ephemeral keys for each

VM, and encrypts VM’s data outside the processor. This extension can effectively

protect the secrets in VMs from physical attacks (e.g., cold boot and DMA attacks)

and privileged software attacks, making the encrypted VM a total black-box to

46 4.2. Background and Related Works

the malicious hypervisor. A later SEV-ES [174] version further encrypts VM’s

CPU register state during world switches, which prevents the malicious hypervisor

directly accessing or modifying VM states. The latest SEV-SNP [159] version

finally achieves integrity protection of VM memory with Reverse Map Table and

fixes vulnerabilities in two earlier versions. Other processor vendors, e.g., Intel [6]

and ARM [157], are also working on these security features, which is a promising

direction for trustworthy cloud computing.

4.2.3 Fuzzing

Fuzzing is a popular software testing technique to automatically find bugs in soft-

ware applications [175]. A fuzzer typically generates a significant number of test

inputs and monitors software execution over these inputs to detect abnormal be-

haviors. There are two common fuzzing strategies: (1) mutation-based fuzzers

[176, 177] select an initial set of inputs as the seed, and then generate inputs by

applying mutations, e.g., splicing, bit flipping. They usually require the analyst to

have prior domain knowledge. (2) Grammar-based fuzzers [178, 179] exploit ex-

isting input specifications to generate a grammar model to conduct inputs. They

sometimes fail to reach certain corners of the input space. Recently, hardware

fuzzing has become increasingly popular. Researchers adopt this technique to find

undocumented x86 instructions [180], discover side channels [181], improve Melt-

down [182] and Spectre attacks[183]. Different from those works that use fuzzing

to facilitate hardware attacks, I apply it to defeat side channels.

4.2.4 Differential Privacy

This technology was originally used to protect statistical databases by withholding

information about individuals [184]. One popular Differential Privacy (DP) solu-

tion is ϵ-DP. A randomized algorithm A : X → Z satisfies ϵ-DP if for any adjacent

datasets x, x′ and all Z ⊆ Z, it has: P(A(x) ∈ Z) ≤ exp(ϵ) × P(A(x′) ∈ Z),

where ϵ ≥ 0 indicates the privacy budget to control the level of privacy protection.

Chatzikokolakis et al. [185] proposed a generalization of differential privacy called

d-privacy. Compared to ϵ-DP, d-privacy is more suitable for datasets with time se-

ries correlations, giving better privacy guarantees under the same privacy budget.

Chapter 4. Aegis 47

Specifically, a metric d on a set X is defined as a function d : X 2 → [0,∞). A

randomized algorithm A : X → Z satisfies (d, ϵ)-privacy if for all Z ⊆ Z, it has:

P(A(x) ∈ Z) ≤ exp(ϵ×d(x, x′))×P(A(x′) ∈ Z). DP has also been used to mitigate

storage side channels [186] and network side channels [187]. In this chapter, I apply

this technique to defeat the HPC side channels. This is more challenging as there

are more possible leakage sources (e.g., a large number of vulnerable HPC events)

and it is hard to control the micro-architectural noise.

4.3 HPC Side Channels

4.3.1 Threat Model

I consider an IaaS cloud scenario protected with encrypted virtualization feature,

e.g., AMD SEV, which hence establishes mutual distrust between the customer

and the cloud provider. The customer first asks to launch an encrypted VM in the

cloud and then perform remote authentication and attestation to confirm if the

hardware details and security settings are correct. After the setting confirmation,

the sensitive data is sent to the encrypted VM through an encrypted communication

channel. As for the cloud provider, I assume it is honest-but-curious, namely it

will abide by the defined service agreement but will also seek to gain more sensitive

information that it is not explicitly authorized to have. For example, the hypervisor

would provide correct register values to guest VMs, including the HPC values.

This assumption is realistic for most commercial cloud platforms and has been

considered in prior works [87, 92].

While the SEV protection prevents the malicious hypervisor directly extracting the

VM’s information (e.g., memory, registers, instructions), some micro-architectural

side channels can still be constructed to infer the customer’s data. In this chapter, I

mainly focus on the HPC side channels, where the adversary only needs to monitor

HPC events passively, making this attack more stealthy than other active side-

channel attacks. Prior works have demonstrated that the adversary can leverage

HPCs to accurately extract the victim program’s secrets [165–167], making them

a severe threat to the confidentiality of trusted computing systems.

48 4.3. HPC Side Channels

4.3.2 Abstraction of HPC Side-channel Attacks

Following previous attacks on various side channels (e.g., power [188], CPU cache

[189]), I also model the HPC side-channel attacks as a machine learning task. In

the offline stage, the attacker can deploy a template application executing with

different secrets Y . Meanwhile, he profiles the application execution behaviors and

collects the HPC event leakage traces X . Each trace x ∈ X is a time-series of

length T , where every time slice x[t] is a vector of monitored events, 1 ≤ t ≤ T .

Then the attacker trains a parameterized machine learning model fθ to establish a

mapping between X and Y , i.e., fθ : X 7→ Y . In the online stage, when the actual

victim runs with a secret, the attacker monitors its HPC leakage x, and is able to

predict the secret as y = fθ(x).

Below I present three practical HPC side-channel attacks against the encrypted

VM. The attacks are implemented on an AMD EPYC 7252 processor that sup-

ports the SEV protection. The victim VM has the configurations of 4 CPUs,

8G memory and 80G disk, and is launched by the qemu script from AMD [190].

Both the host platform and VM use the Ubuntu 20.04 OS with kernel version

5.11.0. I assume the attacker monitors four HPC events for each attack, as modern

processors are usually equipped with four HPC registers. In this demonstration,

the events I used are: RETIRED UOPS, LS DISPATCH, MAB ALLOCATION BY PIPE and

DATA CACHE REFILLS FROM SYSTEM, which cover instruction retirements, operation

dispatch and cache accesses. The selection of these HPC events is determined by

the ranking results generated by the application profiler, as shown in Section 4.8.1.

These four events would leak most information about the secrets sealed in the

confidential VM.

4.3.3 Website Fingerprinting Attack

First, I demonstrate an effective website fingerprinting attack (WFA), where the

attacker can precisely reveal the website accesses in the encrypted VM. Previous

works realized this goal in various scenarios [191–193].

Attack implementation. I design a compact CNN model to fingerprint the

website. The model consists of four convolution layers and three fully-connected

layers, and also employs common optimizations like batch normalization [194] and

Chapter 4. Aegis 49

0 10 20
Epoch
(a)WFA

0.0
0.5
1.0
1.5

Lo
ss

0 20 40
Epoch
(b)KSA

0.0

1.0

2.0

0 25 50 75
Epoch
(c)MEA

0.0

0.4

0.8

0.8

0.9

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Av
er

ag
e

Ac
c.Training Loss Validation Loss Validation Acc.

Figure 4.1: Training curves of three HPC side-channel attacks.

dropout [195] layers. I select 45 websites from Alexa top-50 websites [196] (exclud-

ing 5 blocked websites) as the attack targets, i.e., labels (Y) of the model. The

attacker accesses each website using the Chrome browser for 1000 times in the

template VM. These websites are accessed in a rolling sequence, which can capture

the variants of the sites over time and also avoid IP address blocking by the web

servers. At the same time, he uses the host HPCs to sample the counts of four pro-

filed events (X). The sampling process lasts for 3 seconds with an interval of 1ms,

giving him a tensor with the size of 4 × 3000 for each website access. I randomly

select 70% and 30% of the dataset for training and validation, respectively.

Attack results. Fig. 4.1a depicts the trends of model accuracy and loss during the

training. I can see that the attack accuracy improves very quickly until reaching

a stable value (e.g., 98.72%). The well-trained model is then used to predict 4500

actual website accesses (100 accesses for each website) in the victim VM, which

achieves an accuracy of 98.57%. It confirms that HPCs can be used to conduct

website fingerprinting attacks with high fidelity and efficiency.

4.3.4 Keystroke Sniffing Attack

Another classic side-channel attack is the keystroke sniffing attack (KSA), where

the attacker aims to infer the keystrokes entered by the victim user. Past works

realized the attack with different side channels (e.g., timing [197], memory [198]).

Attack implementation. As the timing characteristics of keystroke actions can

leak information about what those keystrokes are [197], the attack target (Y) is set

as the number of keystrokes occurred during the period T , whose timing patterns

can be used to infer the keys pressed. The collected leakage trace (X) is the same

as WFA. The attacker can also adopt the same CNN model in WFA to predict

50 4.3. HPC Side Channels

keystroke actions. Following the settings in previous works [186, 198], I use the

tool xdotool [199] to simulate the keystroke actions. It generates K keystrokes in

3 seconds, where K is a random number between [0, 9]. This process is repeated

10,000 times in the template VM, where the corresponding HPC event leakage is

captured simultaneously. I randomly select 70% for training while the remaining

is for validation.

Attack results. Fig. 4.1b shows the training curves of the attacker’s model, where

the prediction accuracy can finally reach 95.21%. It also shows a very high sniffing

accuracy (95.48%) on the test set.

4.3.5 Model Extraction Attack

My last case is the model extraction attack (MEA), which steals the complete

neural network architecture of a DNN model. This attack has been realized with

the remote-query fashion [200], power [201] and cache [80, 202] side channels.

Attack implementation. The prediction label Y in MEA is a sequence of layers

forming the target DNN model architecture. Hence, this attack should be modeled

as a sequence-to-sequence learning task instead of a classification task. I design a

RNN model with the CTC decoder [203] to solve this problem. A bidirectional GRU

[204] is adopted as the RNN module, as it enables better long-term memory and

fully leverages temporal contexts. The best predicted layer sequence is identified

with the beam search, which reveals the target model architecture. I select the 30

most commonly used DNN models from the Pytorch official library [205]. I run the

inference execution of each model for 1000 times, collect the HPC event sequences,

and construct the training and validation sets in a similar way as WFA. Then I

train the RNN model to predict the target layer sequence.

Attack results. Fig. 4.1c shows the model training results. The prediction

accuracy keeps increasing and finally stays at a stable value (e.g., 91.8%). Note that

the accuracy reflects the statistics of the matched layers between prediction and

label sequences. The test on the victim VM also shows high attack accuracy (i.e.,

90.5%), indicating that the attacker can almost extract the complete architecture

of the target DNN model running in the encrypted VM.

Chapter 4. Aegis 51

Event

Fuzzer

Application

Profiler

Event

Obfuscator

Offline Stage Online Stage

HPC

Event List

Target

Application

ISA

Specification

Vulnerable

HPC Events

Events-Gadgets

Database
Differential Privacy

Mechanisms

Prevent HPC

Attacks

Figure 4.2: Overview of my Aegis framework.

4.4 Framework Overview

I aim to design a defense framework for guest users to protect their applications

from HPC side channels. A user can only deploy the defense inside his VM, but

cannot control the privileged software or hardware on the host server. He does not

know which performance counter(s) the attacker will use for information extraction.

I introduce Aegis to achieve my defense goal. The basic idea is to inject noisy

instructions into the protected VM’s execution flow, which can mask its secret

from the HPC events. Aegis has the following benefits. (1) Unified : given a pro-

tected application, Aegis can mitigate different HPC side channels, regardless of

the extraction methodology or performance counters used. (2) Provable: I can

theoretically guarantee the security of the defense under the given privacy budget.

(3) Automatic: the entire defense deployment can be achieved automatically with-

out any prior knowledge or human efforts. Fig. 4.2 shows the workflow of Aegis,

which consists of three modules in the offline and online stages. The two modules

in the offline stage are only performed for one time, and the analyzed results would

be applied in the online stage.

Application Profiler (Section 4.5). This module is used to profile the target

application with user-specified secrets in the VM, and collect the corresponding

leakage of all available HPC events. It adopts information theory to quantify the

correlation between the secret data and each event, and identifies the HPC events

that are vulnerable as side channels. These events serve as the target for us to

defend against.

Event Fuzzer (Section 4.6). This module aims to automatically find out the

possible instruction gadgets that can alter the side-channel observations of the

HPC events identified from Application Profiler. It takes a machine-readable ISA

(Instruction Set Architecture) specification and the list of vulnerable events as the

input. With a well-designed grammar model, the fuzzing performs on a significantly

52 4.5. Application Profiler

reduced search space and finally outputs the instruction gadgets that can disturb

the values of these vulnerable HPC events.

Event Obfuscator (Section 4.7). This module injects the instruction gadgets,

selected by Event Fuzzer into the protected VM at runtime, which can effectively

mask the HPC values observed by the adversary outside the VM, and prevent side-

channel information leakage. To provide a provable security guarantee, I introduce

the differential privacy mechanisms to regulate the number of injected instruction

gadgets.

4.5 Application Profiler

4.5.1 Challenges

The first step of Aegis is to identify possible attack surfaces (e.g., HPC events)

that can leak secrets from the target application. There are several challenges to

achieve this goal.

C1. Numerous HPC events. A modern processor usually supports a large

number of HPC events and any event can be vulnerable to the victim applica-

tion. For example, in my experiment platforms, the Intel Xeon E5-1650 processor

has 6166 usable events while the AMD EPYC 7252 processor has 1903 supported

events. While each event should be fuzzed with all possible combinations of in-

struction sequences (Section 4.6), such numerous events place a heavy burden on

the comprehensive analysis of potential leakage sources.

C2. Heterogeneity and Non-determinism. The number and type of available

HPC events highly depend on the processor family. Table 4.1 shows the statistics of

HPC events from two Intel CPUs and two AMD CPUs. I can see that CPUs from

the same family (e.g., Intel E5 family) share similar hardware features (i.e., HPC

events), while processors from different families can vary greatly. Besides, it is well

known that HPCs cannot provide precise counts of system performance events,

because of the external interference, e.g., kernel interactions, hardware interrupts

[206]. This introduces extra noise to the profiling process, which may mislead the

observation of changes in HPC values.

Chapter 4. Aegis 53

HPC Statistics
Intel Xeon Intel Xeon AMD AMD
E5-1650 E5-4617 EPYC 7252 EPYC 7313P

of HPC Events 6166 6172 1903 1903

of Different Events / 14 / 0

Table 4.1: Statistics of HPC events in various processors.

C3. Vulnerability quantification. Different events lead to various levels of vul-

nerability to HPC side-channel attacks, i.e., some events can leak more information

about the target. Hence, the quantification of event vulnerability is necessary to

perform more efficient defense, as I can pay more attentions to those more vulner-

able events. However, this issue has never been discussed before and it poses a

practical challenge.

4.5.2 Profiling Design

I design an offline Application Profiler module to tackle the above challenges and

identify the vulnerable HPC events for a given application executing specified se-

crets. Basically, I launch a template VM on a template server where I have the

host privileges. This server should have a similar processor model (i.e., in the

same processor family) as the target cloud server1 to guarantee the generality of

the identified events. Note that the template server can be either a local server or

provided by a third-party entity, which has no conflict of interest (e.g., a govern-

ment agency or a neutral authority). For instance, the guest can rent a bare-metal

server from public cloud providers (e.g., AWS or Azure) to serve as the template

server, which can have much less resources than the target cloud server and only

the processor model needs to be similar. Then I run the target application with a

set of customer-specified secrets in the template VM for multiple times and mon-

itor each available HPC event from the host. Finally, the monitored results are

automatically analyzed by the program to rank the HPC events based on their

vulnerability, i.e., information gain that can be used to extract the application.

After the profiling, I can be sure that, at least for the specified secrets, all possible

HPC events this application could trigger have been exhaustively activated.

1The processor model of the cloud server is obtained from the AMD PSP during the remote
attestation.

54 4.5. Application Profiler

CPU Processor
Percentage of various event types (%)

H S HC T R O

Intel Xeon 0.39 0.31 1.00 36.15 7.75 54.40
E5-1650 (100) (0) (100) (7.98) (99.37) (0)

AMD 1.26 1.00 3.26 87.17 5.20 2.11
EPYC 7252 (100) (0) (100) (1.57) (91.83) (0)

Table 4.2: HPC event distribution, including events of Hardware (H), Software
(S), Hardware Cache (HC), Tracepoint (T), Raw CPU (R) and Others (O). Data
in brackets shows the percentage remaining after the warm-up profiling.

Monitoring setup. I need to first extract the full list of available HPC events for

the given processor model. This can be achieved with a third-party tool libpfm4

[207]. Then I configure the performance monitoring tool to measure each count of

events. In my implementation, I adopt the Linux kernel interface perf event open,

which can effectively reduce the measurement noise as it interacts with the kernel

directly. I also set the pid and exclude kernel attributes to achieve VM-specific

monitoring and prevent influence from the host kernel or other processes. For each

time of profiling, I simultaneously monitor four HPC events, which is determined by

the upper limit of available HPC registers on the processor. It achieves a suitable

trade-off between the monitoring performance and accuracy, as the perf subsystem

uses time multiplexing [208] for monitoring when there are more monitored events

than available registers, which would affect the value accuracy.

Warm-up profiling. I perform a warm-up profiling to compact the event list and

reduce the complexity of vulnerability analysis. The key idea is that a majority

of HPC events cannot reflect the activities inside a guest VM. To exclude those

events, I measure and compare the event counts when the VM runs the application

and when it is idle. The events without any value changes in the counts will

be removed from the list, as they cannot reflect the application behaviors. After

this warm-up profiling, I only get less than 10% of the events. Take the website

fingerprinting analysis as an example, in my two experiment platforms, only 738

(Intel) and 137 (AMD) events remain for further analysis after 5 repeated warm-up

profilings, where the results of each profiling are almost the same.

To give more insights on the profiled HPC events, I perform a comprehensive

analysis and summarize different types of HPC events in two CPU processors, as

shown in Table 4.2. Note that Table 4.2 actually contains all available events

Chapter 4. Aegis 55

that can be monitored through perf subsystem, which include events that are not

collected through hardware features, e.g., software (S)/tracepoint (T) events. But

for the sake of description simplicity, they are covered together and also named

as HPC events. I observe that the tracepoint events (T) and other events (O)

account for nearly 90% of the total number. The tracepoint events measure the

access states on the tracepoints provided by the host kernel infrastructure, such as

most system calls, most of which cannot precisely capture the application behaviors

isolated inside the VM. The other events mainly denote the cases at a low level, like

hardware breakpoints provided by the CPU, which are generally not be invoked by

normal VM applications. I also give the remaining percentage of each event type

after the warm-up profiling in Table 4.2, where the remaining events mainly consist

of hardware events (H/HC) and CPU raw events (R), while software (S)/other (O)

events and most tracepoint events (T) are removed. It indicates that HPC leakages

from sealed VM applications are mainly reflected at the hardware level.

Event ranking. My last stage is to profile and rank HPC events based on their vul-

nerabilities. Given a specific event, assume Y denote the set of customer-specified

secrets executed in the victim application, which contains Ny objects. X denotes

the profiled value traces for the given HPC event, containing Nx = Ny×m objects,

which repeatedly performs m measurements for each secret object. It can average

out the non-determined event values.

While the leakage trace x ∈ X is a time-series, I first extract the feature value of

the sequence with Principle Component Analysis (PCA) [209], which is a widely

used feature extraction method for processing high-dimensional data while pre-

serving most of the information. For the sake of simple computation, I follow

previous work [197] to fit the monitored event values as a Gaussian-like uni-

modal distribution. My observation also shows that most event values indeed

distributed normally. Fig. 4.3a gives an example distribution over the event

DATA CACHE REFILLS FROM SYSTEM on the website facebook.com. In Fig. 4.3b, I

quantitatively compare the real distribution of the event values to Gaussian distri-

bution N (0, 1) with the Q-Q plot [210]. The result confirms that the HPC event

values of a secret (e.g., a website access) indeed follow the Gaussian distribution.

Hence, I can naturally assume that the probability of the event value x between

the target secret y ∈ Y , P (x|y), forms a univariate Gaussian distribution N (µ, σ2),

i.e., P (x|y) = 1
σ
√
2π
e−

1
2
(x−µ

σ
)2 . Fig. 4.3c shows the estimated distributions of the

56 4.6. Event Fuzzer

0 2 4 6
Feature

0

5

10

15

Co
un

t

(a) Facebook.com

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Qu
an

til
es

(b) Q-Q plot

0 1 2 3
Feature

0

2

4

De
ns

ity

(c) Ten websites

Figure 4.3: The distribution of HPC event values.

event values on 10 websites. Although the distributions of some websites overlap

slightly, they can still be classified easily, which explains the high attack accuracy

of WFA in Section 4.3.

With Gaussian modelling of HPC event values, I can then quantitatively esti-

mate the information gain, i.e., mutual information, induced by the given HPC

event. First the entropy of the probability distribution of secret y is H(Y) =

−
∑

y∈Y P (y)logP (y). Then, given a event feature value x0, the entropy of the

probability distribution of secret y is H(Y|X = x0) = −
∑

y∈Y P (y|x0)logP (y|x0),

where P (y|x0) = P (x0|y)P (y)∑
y∈Y P (x0|y)P (y)

. Hence, the mutual information can be computed

as:

I(Y ;X) = H(Y)−
∫

P (x0)H(Y|X = x0)dx0 (4.1)

where P (x0) =
∑

y∈Y P (x0|y)P (y). The computed I(Y ;X) is the metric to quantify

vulnerability of the HPC events.

4.6 Event Fuzzer

For each identified vulnerable HPC event from Section 4.5, Aegis calls the offline

module Event Fuzzer to search for the instruction sequence gadgets, which can

alter the HPC event value, and obfuscate the adversary’s side-channel observation.

To make this process automatic and efficient, I propose to use the fuzzing technique

to find the qualified instructions.

Chapter 4. Aegis 57

4.6.1 Challenges

There exist a couple of challenges to achieve my goal.

C4. Lack of prior knowledge. Since previous works have never systemati-

cally discussed the relationship between instruction execution and changes in HPC

counts, I are totally blind to the validity of instructions on obfuscating HPC val-

ues. This poses a significant challenge, as I have to fuzz all possible combinations of

instructions without knowing their effects ahead, which leads to an infinite search

space.

C5. Undesired side effects. The instruction sequence may exhibit unexpected

side effects, which could fool the fuzzer and mislead the testing path. For instance,

the store instruction not only loads the target data into the memory, but also

changes the cache state. It creates multiple branches of the code testing, which

hence exponentially increases the complexity of the fuzzing process.

C6. Inherited dirty state. To accelerate the search process with high effi-

ciency, all generated instruction gadgets are fuzzed in an uninterrupted way. Un-

fortunately, such scheme can leave the dirty state of the current gadget to the

subsequent ones. For example, following gadgets would inherit the cache state

of previous gadgets. Such dirty state entangles successive gadgets, which greatly

interferes the fuzzing process and often results in false positive results.

4.6.2 Design Overview

The search of instruction gadgets is modeled as a fuzzing problem. I consider

the value change of identified HPC events as a runtime bug, and the target is to

generate more efficient inputs (i.e., instruction gadgets) that can lead to such bugs.

Given the lack of prior knowledge, using mutation-based fuzzing is not a reasonable

choice, as I have no idea about well-performing seeds. To combat that, I adopt

grammar-based fuzzing, which however requires a well-designed format model to

reduce the search space of inputs.

While the instruction gadget aims to change the HPC event to a specific state, I

divide it into two actions, as shown in Fig. 4.4. (1) I first bring the event to a

known reset state (S0) with a reset instruction sequence. For instance, to monitor

58 4.6. Event Fuzzer

the event of cache references, I issue a clflush instruction to empty the cache line.

(2) Then a trigger instruction sequence is used to transition the event from (S0)

to the desired trigger state (S1), in which the value of monitored HPC event is

changed due to the effect of trigger instructions. The combination of the reset and

trigger sequences forms the instruction sequence gadget for obfuscating the HPC

events, which hence can be considered as the format model for the fuzzing input

generation.

s0 s1

Trigger Seq.
Reset Seq.

Reset Seq.

Trigger Seq.

Figure 4.4: State transition.

Fig. 4.5 shows the workflow of my Event

Fuzzer, which consists of the following

steps. 1 I first clean up the machine-

readable ISA specification and remove all

illegal instructions for the platform mi-

croarchitecture. 2 I search for qualified

instruction gadgets for the profiled HPC

events.The module automatically generates

the reset and trigger instruction sequences from the cleaned instruction list, and

constructs the gadgets following the fuzzing grammar, i.e., the input format model

discussed above. Then it executes the generated gadgets and monitors the value

change of the target HPC events. All gadgets that can alter the event value are

recorded as the obfuscating factors. 3 I further validate the effectiveness of the

identified gadgets with multiple mechanisms, aiming to remove the fuzzing paths

invoked by undesired side effects of instructions and mitigate the corner cases

caused by the inherited dirty state. 4 Finally I cluster the similar gadgets and

filter the best ones for the profiled HPC events. I elaborate the details of each step

as below.

4.6.3 Instruction Cleanup

I first sort out all possible instructions for the target ISA. Note that this is a one-

time step, and the cleaned list can be used to fuzze all events. This chapter mainly

focuses on the x86 architectures, but the methodology is applicable to other ISA

(e.g., ARM) as well. To this end, I obtain a machine-readable x86 instruction

list (namely the ISA specification) from uops.info [211]. The list extends each

instruction with additional attributes (e.g., effective operand), resulting a large

Chapter 4. Aegis 59

Profiled

Event List

ISA

Specification

 Cleanup

Instructions

 Generation + Execution Confirmation Filtering

Gadget

Generation

Event Counter

Monitoring
Confirmation

Mechanisms

Best

Gadgets

Events-Gadgets

Database

Figure 4.5: Workflow of Event Fuzzer.

number of instruction variants. It also gives comprehensive information about

each instruction variant, e.g., extension or category, which will be used for filtering

in Section 4.6.6.

This ISA specification list contains many illegal instructions which cannot be exe-

cuted on the given microarchitecture. To remove those instructions, I transfer the

ISA specification to an assembly file, and test each instruction. The instructions

that cannot complete normally will be excluded from the list. This process sig-

nificantly reduces the number of instructions in the assembly file. For both Intel

and AMD processors, only a small portion (24.16% and 24.31%) of instruction

variants are legal. The distribution of faults in the test is similar between two

processors, where the majority (98.84% and 98.69%) of the faults are caused by

illegal instructions.

4.6.4 Code Generation and Execution

This step aims to generate the instruction gadget that can change the given HPC

event to the state S1. Recall that the instruction gadget consists of a reset sequence

and trigger sequence. I randomly sample instructions from the cleaned list to form

the sequences, and test their impact on the HPC event. To reduce the fuzzing com-

plexity, I select one instruction for each sequence, and the fuzzing results confirm

that this is enough. My methodology can be easily extended to multi-instruction

sequences with larger search spaces, which will be considered as future work.

I adopt the RDPMC instruction to read HPC values before and after the gadget to

measure the corresponding changes. An increased count value indicates that the

60 4.6. Event Fuzzer

gadget may affect the monitoring HPC event. I take several techniques to make

the measurement accurate and stable. (1) To reduce the system noise caused by

external factors (e.g., interrupts), I properly configure the operating system en-

vironment for code execution. By pinning the process to a specific CPU core, I

can prevent core transitions from affecting the measurement of HPC values. Be-

sides, I also isolate this entire physical core (e.g., using the Linux kernel parameter

isolcpus) to ensure that the process is not interrupted by the scheduler. (2)

To avoid data corruptions caused by running the instruction gadgets, the code is

placed in a dedicated page with the address space between a special prolog and

epilog. The prolog saves all callee-saved registers, and creates one page of scratch

space on the stack in case some instructions may trash stack values. Furthermore,

it initializes all registers that will be used as memory operands to the address of a

pre-allocated writable data page. This prevents the corruption of process memory

and ensures that executed instructions access the same memory page. The epi-

log restores the registers and stack state, so that the architectural change can be

reverted. (3) To ensure the correct measurement of HPC register values, I inject

serializing instructions (e.g., CPUID) around the code to regulate the execution flow.

4.6.5 Result Confirmation

This step further validates if a gadget reported by the above step is indeed an

obfuscating factor to the given HPC event. I analyze the identified gadgets to

eliminate other side effects that can also affect the HPC event values, e.g., unreliable

reset sequence whose side effects act as the trigger sequence (Challenge C5) or dirty

state inherited from previous executions (Challenge C6). To remove those incorrect

gadgets, I propose the following mechanisms.

Multiple executions. As the external factors (e.g., hardware interrupts) can

disturb the counts of HPC events, I opt to run the same gadget for multiple times

and take the median of measured values. The number of repeated executions

sets a trade-off between the fuzzing efficiency and confirmation accuracy: more

repetitions increase the confidence of the confirmed results, but also cause longer

fuzzing time. In my implementation, I set this parameter to 10, which is proved to

be an appropriate value for balancing the trade-off.

Chapter 4. Aegis 61

Reset Sequence

Reset Sequence Trigger Sequence

×N

×N

Cold Path

[v1, V1]

Hot Path

[v2, V2]

RDPMC RDPMC

Figure 4.6: Execution of repeated triggers.

Repeated triggers. To ensure the HPC value change is indeed caused by the

trigger sequence, rather than other undesired side effects of the reset sequence,

I also execute the code with only the reset sequence (cold path), in addition to

the one with both reset and trigger sequences (hot path), as shown in Fig. 4.6.

In each path, I repeat the instruction sequence(s) for R times. The median of

the measured count changes is denoted as v1 and v2, and the cumulative count

changes are denoted as V1 and V2, respectively for the cold and hot paths. When

these values meet the constraints: V2 − V1 = (1 − λ1)R(v2 − v1) and V2 > λ2V1, I

confirm that the event value change is mainly caused by the trigger sequence, i.e.,

transitioning the state to S1, and the reset sequence can actually change the state

back to S0 in each execution. My implementation sets λ1 as a range of [-0.2, 0.2]

and λ2 = 10.

Gadgets reordering. In order to perform fuzzing as fast as possible, I execute a

generated gadget shortly after the previous one, which can cause the dirty state and

affect the measurement. To address the issue, I reorder all the gadgets randomly

and repeat the executions. I ignore those gadgets that have different behaviors in

the reordered test. This can mitigate the influence of repetitive dirty states and

remove incorrect candidates with cross-validation.

4.6.6 Gadgets Filtering

For a specific HPC event, there can be different instruction sequence gadgets that

can disturb its count value. In practice, certain events like the Retired Instruction

can be affected by nearly all instruction executions. Hence, I need to filter the con-

firmed gadgets from the previous step and cluster them into groups with the same

62 4.7. Event Obfuscator

features. This is achieved by analyzing the properties of reset sequences and trig-

ger sequences, including the extension and ISA (e.g., BASE or X87-FPU) to which

the instruction belongs, and the general category (e.g., arithmetic or logical) of

the instruction. The intuition of such scheme is that these properties can strongly

indicate the root cause of the executed instructions in the underlying microarchi-

tectural level. This step can considerably reduce the number of reported gadgets,

and alleviate the burden of the following analysis. Besides, I also extract the gadget

that causes the highest value change for each HPC event, as it can lead to larger

disturbance to the HPC monitoring with fewer instructions executed.

4.7 Event Obfuscator

4.7.1 Challenges and Insight

To achieve the defense against HPC side channels, I need to tackle two challenges:

(1) How to provide provable privacy guarantee for the HPC event obfuscation? (2)

How to defeat the attack with minimal introduced noise and performance overhead?

The key insight of my methodology is to model the HPC side-channel defense as

a differential privacy problem. Previous works have proposed similar methods to

mitigate storage side channels [186] and streaming traffic leakages [187], showing

the security of systems injected with differential privacy noise can be guaranteed

with theoretical proof.

Let x denote the captured HPC leakage trace and x[t] denote a slice of leakage

values at time t. Specifically, to prevent information leakage, I change the HPC

measurement from x[t] to x̃[t] = x[t] + rt, where rt denotes the random noise

following specific distributions. With the injected noise (i.e., instruction sequence

gadget) by the victim VM, the malicious hypervisor cannot distinguish the actual

behaviors from x̃[t]. The scale of the random noise rt can dominate the defense

effectiveness, and is also restricted by the VM performance: larger amount of

random noise can improve the privacy at the cost of extra performance overhead.

Therefore, I leverage the differential privacy principle to theoretically identify the

minimal noise under a given privacy budget, which can reduce the impact on the

VM performance.

Chapter 4. Aegis 63

4.7.2 Differential Privacy Mechanisms

I describe two mechanisms to generate the random noise guided by differential

privacy.

Laplace Mechanism. This is the most fundamental mechanism for differential

privacy, which is achieved by adding controlled noise from the Laplace distribution.

As a symmetric version of the exponential distribution, the Laplace distribution can

be represented by its Probability Density Function (PDF): Lap(b) = 1
2b
exp(− |x−µ|

b
),

where µ is the location and b is the scale. Consider a Laplace distribution with

µ = 0, b =
△x[t]

ϵ
, and △x[t] = max

(x[t],x[t]′∈X)
|x[t] − x[t]′|, where x[t] and x[t]′ are

two adjacent series at time slice t. For each sequence x in the monitored HPC

sequence set X , the Laplace mechanism computes a noisy sequence x̃ as follows:

x̃[t] = x[t] + rt, rt ∼ Lap(
△x[t]

ϵ
). For simplicity, I set △x[t] to 1, as the sequence data

have been normalized. I have the following theorem:

Theorem 4.1. The Laplace mechanism A(x[t]) = x[t] + Lap(
△x[t]

ϵ
) satisfies ϵ-DP.

Proof. Let rt be the noise injected to x[t], i.e., rt ∼ Lap(
△x[t]

ϵ
). I have

P(A(x[t]) = Z) =
ϵ

2△x[t]
exp (

−ϵ|rt − x[t]|
△x[t]

). (4.2)

Similarly, P(A(x[t]′) = Z) = ϵ
2△x[t]

exp (−ϵ|rt−x[t]′|
△x[t]

). Thus,

P(A(x[t]) = Z)

P(A(x[t]′) = Z)
= exp (

ϵ(|rt − x[t]′| − |rt − x[t]|)
△x[t]

)

≤ exp (
ϵ(|x[t]− x[t]′|)

△x[t]
) = exp(ϵ).

(4.3)

d* Mechanism. This mechanism is extended from Chan et al. [212] and a

particular distance metric d∗ is used to achieve d-privacy. Assume x and x′ are two

HPC event sequences, the d∗ metric is defined as: d∗(x, x′) =
∑

t≥1 |(x[t]−x[t−1])−
(x′[t]−x′[t−1])|. Let N denote the natural numbers and D(t) ∈ N denote the largest

power of two that divides t, i.e., D(t) = 2j if and only if 2j | t and 2j+1 ∤ t. The d*

mechanism computes the noisy x̃[t] as follows: x̃[t] = x̃[G(t)] + (x[t]−x[G(t)]) + rt,

64 4.7. Event Obfuscator

where

G(t) =

0 if t = 1

t/2 if t = D(t) ≥ 2

t−D(t) if t > D(t)

(4.4)

rt ∼

{
Lap(1ϵ) if t = D(t)

Lap(⌊log2t⌋ϵ) otherwise
(4.5)

Theorem 4.2. The d∗ mechanism satisfies (d∗, 2ϵ)-privacy.

Proof. It was proven by Xiao et al. [186]. I omit the proof details here.

Comparisons. The Laplace mechanism is relatively simple and exhibits accept-

able privacy guarantee. Furthermore, it suits for a much stricter threat model,

where the malicious host even controls and manipulates the calls reading the HPCs.

In comparison, for the d∗ mechanism, the noise added to each x[t] is closely related

to its previous sequences. This intuitively increases the randomness between ad-

jacent sequences, thereby providing better privacy guarantee. However, it is not

well suitable for systems requiring high real-time processing speed. Besides, given

the limited number of available HPC registers on the processor, the number of

concurrently protected events is also restricted. Therefore, d∗ mechanism is bet-

ter suited for reinforcing protection for multiple critical HPC events. I implement

both mechanisms in Aegis and experimentally discuss their merits and demerits

in Sec.5.6. In practical scenarios, customers can choose an appropriate strategy

according to the actual system conditions and demands.

4.7.3 Design Details

I implement the online Event Obfuscator as a portable software suite in the victim

VM. It is triggered by the cloud customer whenever the critical applications to be

protected are launched. Fig. 4.7 shows the workflow of my implementation. It

consists of two components: (1) a kernel module is used to launch the protection

service and monitor the HPC values for the computation of d∗-noise in the d∗

mechanism; (2) a userspace daemon is used to calculate the amount of random

noise and inject it into the execution flow of the VM.

Specifically, the kernel module mainly plays the role of a controller. After receiving

the launching signal from the user, it wakes up the userspace daemon. If Aegis

Chapter 4. Aegis 65

Guest User Space

Kernel

Module

RDPMC
Launching Signal

Guest

Kernel

Netlink

Socket

1. Compute Laplace noise r
2. Store r and HPC value x[t]

3. Compute d* noise N
Noise Calculator

(d* mechanism)

1. Compute Laplace noise r
2. Store r in an arracy
3. Noise N = r

Noise Calculator

(Laplace mechanism)

mmap();
Loop for N times:

{Instruction Gadgets}

Noise Injector

Load

AMD64

Hardware

NAE

VMGEXIT

Hypervisor

#VC

VMRUN

Figure 4.7: Workflow of Event Obfuscator.

adopts the d∗ mechanism, the module also needs to monitor the real-time HPC

event values x with the RDPMC instruction. The recorded HPC values are sent to the

userspace daemon with the netlink sockets for the subsequent noise generation,

which is computation-inefficient in the kernel mode. The userspace daemon consists

of two components: noise calculator and noise injector. To support high injection

rates, I need to accelerate the calculation of noise value. Hence, the noise calculator

maintains a buffer to store the precomputed random noise sequence r following

Lap(1
ϵ
) for Laplace mechanism or Eq. 4.5 for d∗ mechanism. Note that the random

number r is directly transferred from the uniform distribution in [0, 1], while using

library APIs introduces much longer latency. For the Laplace mechanism, the

calculated r is the noise. For the d∗ mechanism, HPC values x[t] sent from the

kernel module are stored to calculate noise.

After the calculation, the noise injector is called to add the identified amount

of noise, i.e., instruction gadgets, into the VM’s execution flow. In theory, I can

obfuscate each vulnerable HPC events by injecting its corresponding noise gadgets.

However, given it usually has hundreds of vulnerable events, such method also

introduces hundreds of injected gadgets, which may lead to large performance

overhead. In the practical implementation, the identified gadget sets for various

HPC events usually have intersections, which allow a gadget to interfere more than

one event. For example, gadgets corresponding to HW CACHE L1D:WRITE can induce

changes in almost cache-related events. Therefore, the optimal solution is to extract

the smallest gadget set that can cover the most vulnerable events. In my settings,

to cover all 137 vulnerable HPC events, I only require 43 instruction gadgets,

which hence significantly reduces the overhead invoked by instruction injection. By

stacking these gadgets together, I conduct a code segment that executes repeatedly

66 4.8. Evaluation

to inject noise to vulnerable HPC events. The number of repetitions of the code

execution is determined by the noise value computed from the noise calculator.

This will not affect the original VM execution, and the incurred performance cost

is acceptable under a satisfactory privacy budget.

In my implementation, I explicitly pin Event Obfuscator and protected applications

to the same virtual CPU core, so that the malicious hypervisor cannot arrange

them to different physical cores, and cannot distinguish to bypass my defense.

Note that with the protection of SEV, processes on the same virtual CPU core are

indistinguishable for the hypervisor even it owns the highest privilege.

4.8 Evaluation

4.8.1 Profiling Evaluation

With the warm-up profiling, I can compact the number of vulnerable HPC events

from M to N , where M denotes the number of all available HPC events and N is

the number of filtered vulnerable events. In my settings, the value of M is 6166

for Intel CPU and 1903 for AMD CPU. Hence, the time spent on this step is

TW = (M × tw × 2)/C, where C denotes the number of available HPC registers

that support concurrent monitoring (e.g., C = 4 in my testbed), and tw denotes

the monitoring time for each HPC event (e.g., 1 second in my implementations).

Note that the profiling of M events should be performed twice to compare their

counts. As a result, the warm-up profiling takes 0.85 hours on Intel CPU and 0.26

hours on AMD CPU.

To further estimate the vulnerability of filtered HPC events, I compute the infor-

mation gain induced by the event values to infer the application secret. For each

specified secret (i.e., 45 websites, standard keystrokes or 30 DNN models used in

Section 4.3) of the target application, given a specific HPC event, the application

is repeatedly executed for 100 times to launch the secret, e.g., visiting a selected

website. Then I repeat the operation for each HPC event profiled from the warm-

up profiling, which finally generates N ×S×100 leakage traces, where S is the size

of the specified secret set. Therefore, the time spent on this profiling step can be

calculated as TP = (N × S × 100 × tp)/C, where tp is the profiling time for each

Chapter 4. Aegis 67

(a) Website access. (b) Keystroke. (c) Model execution.

Figure 4.8: The mutual information of each HPC event.

event and still 1 second in my settings. Specially, the three target applications in

my experiments take 42.81 hours, 9.51hours and 28.54 hours, respectively. Note

that this time cost has large space for optimization, e.g., the number of repeated

executions can be reduced to 10 times, which is enough for a rough analysis.

The mutual information is computed following Eq. 4.1. Fig. 4.8 shows the mutual

information of each HPC event for website accesses, keystrokes and DNN model

executions occurred in an SEV VM. A higher mutual information reflects higher

relevance between the event and the victim application, i.e., the event is a more

vulnerable attack surface. I can see that Fig. 4.8a and 4.8b drop much faster

than Fig. 4.8c, meaning that for the DNN model execution attack there are more

vulnerable HPC events. It is because DNN models invoke more interactions with

the underlying hardware, e.g., memory accesses and logical calculation, which lead

to more HPC leakages.

4.8.2 Fuzzing Evaluation

I run Event Fuzzer on two processors (i.e., Intel Xeon E5-1650 and AMD EPYC

7252) and evaluate the performance of the fuzzing process. For the Intel CPU, 3386

instructions remain after the cleanup step, leading to a total of 33862 = 11, 464, 996

possible instruction gadgets. These gadgets are repeatedly fuzzed for each pro-

filed HPC event obtained from Application Profiler, thus performing 738 repeti-

tions. A full fuzzing run terminated in 9.3 hours, which results in a throughput

of 253,314 gadgets per second. For the AMD processor, while it similarly has

34072 = 11, 607, 649 usable gadgets, the fuzzing process can be completed in just

2.2 hours, as the processor has much less (i.e., 137) usable HPC events for executing

68 4.8. Evaluation

CPU Processor
Time Consumption (seconds)

Cleanup Generation + Execution Confirmation Filtering

Intel Xeon E5-1650 < 1 33210 132 60
AMD EPYC 7252 < 1 7791 29 18

Table 4.3: Time consumption for each fuzzing step.

repetitions. The throughput of fuzzing is similar, which reaches 235,449 gadgets

per second. Table 4.3 shows the detailed time consumption for each step in the

fuzzing process. It can be seen that the generation and execution of gadgets take

the most amount of fuzzing time, while other three steps can be achieved in a short

time.

After the filtering step, most HPC events only correspond to hundreds or even

dozens of usable gadgets, but there are still multiple events corresponding to nu-

merous (e.g., thousands of) gadgets. Availability of more gadgets means I have

more choices to obfuscate the HPC event, but it also introduces higher analysis

complexity. In the Intel CPU, the mean and median value of the gadgets for all

events are 892 and 505, respectively. The event with the most fuzzed gadgets (i.e.,

9934) is MEM LOAD UOPS RETIRED:L1 HIT. In the AMD CPU, the mean and me-

dian are 617 and 440, where the event with the most usable gadgets (i.e., 6219) is

RETIRED MMX FP INSTRUCTIONS:SSE INSTR. It can be seen that events related to

the instruction numbers usually tend to be more vulnerable, as they can be modi-

fied by most executing instructions. This observation is matched with the profiled

results from the above Application Profiler.

Efficiency Analysis. Assuming there are N instructions in the ISA of the target

processor, the search space without our event fuzzer is N∞, given that the code

gadget could potentially consist of an infinite number of instructions. However,

with our fuzzing method, the search space is reduced to M3, where M represents the

number of instructions filtered from the original ISA. Therefore, utilizing fuzzing

significantly decreases the search space.

4.8.3 Defense Effectiveness

To evaluate the effectiveness of Aegis against HPC side-channel attacks, I vary the

privacy budget ϵ, and measure its impact on the attack accuracy. The experiment

Chapter 4. Aegis 69

2 0 2
log2()

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

) WFA-Laplace
KSA-Laplace
MEA-Laplace
WFA-d*
KSA-d*
MEA-d*

(a) Train w/o noise

8 6
0

20

40

60

80

100

0 2
log2()

(b) Train with noise

2 0 2
log2()

0

1

2

3

M
ut

ua
l I

nf
or

m
at

io
n

(c) Real mutual info

Figure 4.9: Impact of ϵ on various attacks.

settings are the same as shown in Section 4.3. As the number of injected instruction

gadgets cannot be negative, each noise element is truncated by a clip bound of

[0, Bu], where the upper bound Bu is determined empirically based on the profiling

of HPC events. For example, I set Bu = 2e4 for the event RETIRED UOPS. According

to the attacker’s capabilities, I consider the following two scenarios:

First, the attacker trains the attack model on clean data collected from the tem-

plate VM, as the victim VM is a black box for him. Most realistic side-channel

attacks follow this case, including my attack cases in Sec.4.3. Figure 4.9a shows

the impact of privacy budget ϵ on the accuracy of three attacks for the Laplace

and d∗ mechanisms. The value of ϵ is set as [2−3, 2−2, ..., 23]. From this figure, I

can summarize four remarks: (1) both mechanisms can effectively mitigate HPC

side-channel attacks, which decrease the attack accuracy from > 90% to 2%; (2)

a larger ϵ leads to a higher attack accuracy, since it adds less noise; (3) with the

same ϵ, d∗ mechanism can provide stronger privacy guarantee, especially for large

ϵ (e.g., ϵ ≥ 20); (4) WFA and KSA are more sensitive to the noise than MEA, as

their accuracy decrease much faster with the increase of noise. It may be because

website accesses and keystrokes have more similar leakage patterns that are easier

to be affected by the injected noise.

Second, I consider a more powerful attacker, who knows the defense details adopted

in the VM (e.g., the privacy mechanism, the value of ϵ). In this case, the attacker

can train his attack model with noisy data to increase the model’s robustness in the

exploitation phase. Figure 4.9b shows the attack accuracy of such models under the

defense with my Aegis, where ϵ ∈ [2−8, 2−7, ..., 23]. I observe that d∗ mechanism

can still defeat these advanced attacks well, while Laplace mechanism requires a

smaller ϵ to suppress the attack accuracy. I conclude that by slightly decreasing

70 4.8. Evaluation

-3 -2 -1 0 1 2 30

20

9.
49

7.
59

6.
33

3.
18

1.
9

1.
27

0.
63

17
.0

9

15
.1

9

13
.2

9

11
.3

9

10
.1

3

7.
59

3.
946.
43

5.
71

5.
0

4.
36

2.
86

2.
14

1.
43

14
.2

9

12
.8

6

11
.4

3

10
.0

8.
57

7.
14

4.
95

WFA-Laplace WFA-d* MEA-Laplace MEA-d*

-3 -2 -1 0 1 2 3
log2()

0

20 11
.5

2

9.
7

7.
88

6.
92

4.
24

2.
42

0.
61

21
.2

1

18
.1

8

15
.1

5

12
.1

2

10
.3

8.
48

7.
6418

.2
9

14
.2

9

11
.4

3

7.
87

6.
29

5.
14

2.
86

25
.7

1

24
.5

7

22
.8

6

18
.8

6

15
.4

3

12
.0

8.
66

Figure 4.10: Impact of ϵ on the latency overhead (upper) and CPU usage
(lower).

the privacy budget, Aegis can still mitigate HPC attacks even when the attack

model is trained in a more robust approach. Given it needs to inject more noise,

the defense would induce much larger overhead. However, as such an attacker is

too strong and is nearly impossible in the practical scenario, I would not consider

it in my following efficiency analysis.

Note that my defense is effective for all machine learning based attack models,

as the correlation between the HPC side channels and the running secrets are

significantly reduced. Fig. 4.9c shows the value of real mutual information I(X ;X ′)

between the clean HPC leakage traces X and the noised HPC leakage traces X ′

under different size of noise. It can be seen that with the increased noise (i.e.,

smaller ϵ), the value of I(X ;X ′) keeps decreasing to a small value. Hence, the

mutual information I(X ′;Y) between the noised trace X ′ and the secret Y also

decreases equivalently [213]. Therefore, although I only show three attack cases

in this chapter, the effectiveness of my method can be well guaranteed on other

attacks.

4.8.4 Defense Efficiency

As keystrokes are transient actions that only take negligible resources, I mainly

focus on the defense against WFA and MEA. I evaluate the efficiency of Aegis

from latency overhead and CPU usage. Figure 4.10 shows the overhead invoked

by various mechanisms.

Chapter 4. Aegis 71

First, I assess the impact of Aegis on the performance of the protected applications

in the VM. For each test, I continually access 45 websites or run 30 DNN models

to measure the execution time. Figure 4.10 shows the average time of loading a

website and running a model inference under two DP mechanisms with different ϵ

values in Aegis. The website loading time is recorded by the built-in development

tool in the Chrome browser, while the DNN model inference time is measured by a

timer written in python. From the figure, I can find that (1) smaller ϵ leads to longer

execution time, as more noisy instructions are injected; (2) under the same ϵ, d∗

mechanism induces more overhead than Laplace mechanism. To guarantee privacy

against attacks, I select ϵ = 20 for Laplace mechanism (marked with shadow),

which causes 3.18% and 4.36% overhead on the execution time of website accesses

and model inferences. For d∗ mechanism, ϵ = 23 is enough to mitigate attacks,

where the execution time increases by 3.94% and 4.95% for the two applications.

Hence, the time overhead introduced by Aegis is slight.

Second, I measure the impact of Aegis on the VM resource consumption by mon-

itoring its CPU utilization. As Aegis injects instruction gadgets into the VM’s

executions, it may consume extra CPU resources with certain overhead. Accord-

ing to the basic feature of differential privacy, i.e., the statistical characteristics

of noisy result x̃ are similar to the original data x, I speculate such cost penalty

caused by Aegis should be small. Figure 4.10 shows the CPU usage of the vic-

tim VM under two DP mechanisms. The VM’s CPU usage is measured from the

host with the top tool every 0.2 seconds and each usage value is the average of

5 experiments. Specifically, Aegis has smaller influence on the website accesses,

which may be because they involve fewer CPU interactions. With Laplace mecha-

nism, the CPU usage penalty introduced by Aegis is 6.92% and 7.87% for website

accesses and model inferences. For d∗ mechanism, it is 7.64% and 8.66%. Hence,

Aegis only leads to a small CPU overhead.

4.9 Discussion

4.9.1 Alternative Defense Strategies

Constant HPC output. Setting the HPC output to a constant can also mask

HPC side channels. However, such method is actually impractical in the real

72 4.9. Discussion

0.0 0.1 0.2 0.3 0.4 0.5
Noise amount

0.0

0.5

1.0
Ac

c.
Amount of DP noise

Acc. under DP noise

Figure 4.11: Attack accuracy with the random noise

implementation. To make the HPC output as a constant, I must add more counts

(i.e., noise) to the original HPC values, until reaching the peak HPC value p in

the leakage trace. It introduces much more noise than my solution. For example,

to obfuscate the leakage of accessing www.youtube.com, setting the HPC event

(e.g., DATA CACHE REFILLS FROM SYSTEM) values to a constant p totally introduces

595,371,616 event counts, while my Laplace mechanism only introduces 33,090,214

events. Hence, constant HPC output invokes nearly 18× more noise, which is an

overkill defense.

Random noise. Instead of the DP noise, simply adding random noise can also

obfuscate the HPC leakage. However, this strategy has two limitations. First, such

random noise cannot provide a provable privacy guarantee, which still exposes the

encrypted VM to the leakage threat. Second, this strategy usually introduces more

noise than DP mechanisms to achieve the same privacy protection. I use different

scales of random noise to obfuscate the HPC leakage and the attack accuracy is

shown in Fig. 4.11. The x-axis denotes the upper bound of random noise in the

range of [0, 0.5]× p, where p denotes the peak HPC value in the leakage trace. In

the figure, I also label the amount of Laplace noise (ϵ = 20) required to effectively

defeat the attack, i.e., decreasing the attack accuracy to < 5%. With the same

amount of injected noise, random noise mechanism can only decrease the attack

accuracy to 32%, which is much higher than DP mechanisms. Besides, I also show

the attack accuracy under the effective defense with the DP noise. To achieve the

same accuracy, the upper bound of random noise needs to be at least 0.4p, which

introduces 4.37× more noise than the Laplace mechanism.

Isolating guest HPCs. The root cause of HPC side channels is the sharing of

HPC registers between the guest and host. Hence, isolating guest HPCs from the

malicious host can fundamentally eliminate such side channels, as demonstrated by

Intel TDX. However, since this defense necessitates specific hardware modifications,

Chapter 4. Aegis 73

it is not feasible for existing SEV-based systems, which motivates my software-

based solution. While my work can effectively and efficiently mitigate HPC side

channels on SEV VMs, it still introduces extra overhead and is not the optimal

solution for defending such hardware side channels. Hence, I advocate for AMD

to enhance their hardware design, which is a promising alternative of my software

design to address this issue from the root.

4.9.2 Analysis with Multiple Tries

The injected noise to the HPC leakage traces actually can be averaged out by

the attacker by obtaining a group of leakage traces corresponding to the same

secret [213]. However, in the practical scenario, the adversarial hypervisor cannot

force the user VM to repeatedly run the same secret for many times. Hence, the

adversary cannot collect multiple leakage traces with the same secret to remove the

impact of injected noise. Besides, even if the adversary can collect such multiple

traces, the attack can be easily defeated by attaching a constant secret-dependent

noise to the execution so that the adversary cannot average out the injected noise

through analyzing multiple leakage traces. Such method can well protect the user

secrets and also reduce the overhead of noise generation.

4.10 Conclusion

In this chapter, I propose Aegis, a unified framework that can mitigate confiden-

tial VMs from HPC side-channel attacks with a provable privacy guarantee and

minimal performance overhead. It also comprehensively profiles the vulnerability

of HPC events, and automatically demystifies the correlations between the specific

instruction gadgets and HPC event statistics. My future works aim to study the de-

fense effect of noise gadgets with more instructions, and investigate the effectiveness

of Aegis on more fine-grained attacks, e.g., stealing cryptographic keys. Besides,

I also intend to generalize my framework to more micro-architectural attacks, e.g.,

cache and memory side channels, Meltdown [75] and Spectre [214] attacks, or the

latest voltage glitching attack [215].

Part II

New Designs for Confidential

Computing with Emerging

Applications

75

Chapter 5

Ownership Verification of DNN

Architectures via Hardware

Cache Side Channels

Deep Neural Networks (DNN) are gaining higher commercial values in computer

vision applications, e.g., image classification, video analytics, etc. This calls for

urgent demands of the intellectual property (IP) protection of DNN models. How-

ever, as described in Chapter 3, even the confidential TEE sandbox cannot entirely

eliminate the information leakage of sealed IP models. In this chapter, I integrate

side-channel analysis to propose a benign design suitable for adoption in confi-

dential AI systems, i.e., a novel watermarking scheme to achieve the ownership

verification of DNN architectures. Existing watermarks all embedded watermarks

into the model parameters while treating the architecture as public property. These

solutions were proven to be vulnerable by an adversary to detect or remove the wa-

termarks. In contrast, I claim the model architectures as an important IP for model

owners, and propose to implant watermarks into the architectures. I design new

algorithms based on Neural Architecture Search (NAS) to generate watermarked

architectures, which are unique enough to represent the ownership, while maintain-

ing high model usability. Such watermarks can be extracted via side-channel-based

model extraction techniques with high fidelity, allowing it to be deployed with con-

ventional confidential computing systems to provide stronger security guarantee. I

conduct comprehensive experiments on watermarked CNN models for image clas-

sification tasks and the experimental results show my scheme has negligible impact

77

78 5.1. Introduction

on the model performance, and exhibits strong robustness against various model

transformations and adaptive attacks.

5.1 Introduction

Deep Neural Networks (DNNs) have shown tremendous progress to solve artificial

intelligence tasks. Novel DNN algorithms and models were introduced to interpret

and understand the open world with higher automation and accuracy, such as image

processing [216–218], video processing [219, 220], natural language processing [221,

222], bioinformatics [223]. With the increased complexity and demand of the tasks,

it is more costly to generate a state-of-the-art DNN model: design of the model

architecture and algorithm requires human efforts and expertise; training a model

with satisfactory performance needs a large amount of computation resources and

valuable data samples. Hence, commercialization of the deep learning technology

has made DNN models the core Intellectual Property (IP) of AI products and

applications.

Release of DNN models can incur illegitimate plagiarism, unauthorized distribu-

tion or reproduction. Therefore, it is of great importance to protect the IP of such

valuable assets. Similar to image watermarking [224–230], one common approach

for IP protection of DNN models is DNN watermarking, which processes the pro-

tected model in a unique way such that its owner can recognize the ownership of

his model. Existing solutions all implanted the watermarks into the parameters for

ownership verification [231–236]. The watermark also needs to guarantee satisfac-

tory performance for the protected model. For example, Adi et al. [233] embedded

backdoor images with certain trigger patterns into image classification models for

IP protection.

Unfortunately, those parameter-based watermarking solutions are not practically

robust. An adversary can easily defeat them without any knowledge of the adopted

watermarks. First, since these schemes modify the parameters to embed water-

marks, the adversary can also modify the parameters of a stolen model to remove

the watermarks. Past works have designed such watermark removal attacks, which

leverage model fine-tuning [237–239] or input transformation [240] to successfully

invalidate existing watermark methods. Second, watermarked models need to give

Chapter 5. Ownership Verification 79

unique behaviors, which inevitably make them detectable by the adversary. Some

works [241, 242] introduced attacks to detect the verification samples and then

manipulate the verification results.

Motivated by the above limitations, I propose a fundamentally different watermark-

ing scheme. Instead of protecting the parameters, I treat the network architecture

as the IP of the model. There are a couple of incentives for the adversary to pla-

giarize the architectures [80, 123]. First, it is costly to craft a qualified architecture

for a given task. Architecture design and testing require lots of valuable human

expertise and experience. Automated Machine Learning (AutoML) is introduced

to search for architectures [121], which still needs a large amount of time, com-

puting resources and data samples. Second, the network architecture is critical

in determining the model performance. The adversary can steal an architecture

and apply it to multiple tasks with different datasets, significantly improving the

financial benefit. In short, “the industry considers top-performing architectures as

intellectual property” [123], and “obtaining them often has high commercial value”

[80]. Therefore, it is worthwhile to treat the architecture design as an important IP

and provide particular protection to it.

I aim to design a methodology to generate unique network architectures for the

owners, which can serve as the evidence of ownership. This scheme is more robust

than previous solutions, as maliciously refining the parameters cannot tamper with

the watermarks. The adversary can only remarkably change the network architec-

ture with large amounts of resources and effort in order to erase the watermarks.

This will not violate the copyright, since the new architecture is totally different

from the original one, and can be legally regarded as the adversary’s own IP. Two

questions need to be answered in order to establish this scheme: (1) how to system-

atically design architectures, that are unique for watermarking and maintain high

usability for the tasks? (2) how to extract the architecture of the suspicious model,

and verify the ownership?

I introduce a set of techniques to address these questions. For the first question, I

leverage Neural Architecture Search (NAS) [121]. NAS is a very popular AutoML

approach, which can automatically discover a good network architecture for a given

task and dataset. A quantity of methods [129, 130, 132, 134, 243, 244] have been

proposed to improve the search effectiveness and efficiency, and the searched archi-

tectures can significantly outperform the ones hand-crafted by humans. Inspired

80 5.1. Introduction

by this technology, I design a novel NAS algorithm, which fixes certain connec-

tions with specific operations in the search space, determined by the owner-specific

watermark. Then I search for the rest connections/operations to produce a high-

quality network architecture. This architecture is unique enough to represent the

ownership of the model (Section 5.4).

The second question is solved by cache side-channel analysis. Side-channel attacks

are a common strategy to recover confidential information from the victim system

without direct access permissions. Recent works designed novel attacks to steal

DNN models [80, 81, 83]. My scheme applies such analysis for IP protection, rather

than confidentiality breach. The model owner can use side-channel techniques to

extract the architecture of a black-box model to verify the ownership, even the

model is encrypted or isolated inside a confidential TEE sandbox. It is difficult to

directly extend prior solutions [79, 80] to my scenario, because they are designed

only for conventional DNN models, but fail to recover new operations in NAS. I

devise a more comprehensive method to identify the types and hyper-parameters

of these new operations from a side-channel pattern. This enables us to precisely

extract the watermark from the target model (Section 5.5).

The integration of these techniques leads to the design of my watermarking frame-

work. Experiments on DNN models for image classification show that my method

is immune to common model parameter transformations (fine-tuning, pruning),

which could compromise prior solutions. Furthermore, I test new adaptive attacks

that moderately refine the architectures (e.g., shuffling operation order, adding use-

less operations), and confirm their incapability of removing the watermarks from

the target architecture. In sum, I make the following contributions:

• It is the first work to protect the IP of DNN architectures. It creatively uses

the NAS technology to embed watermarks into the model architectures.

• It presents the first positive use of cache side channels to extract and verify

watermarks, further enhancing the security guarantee of confidential AI systems.

• It gives a comprehensive side-channel analysis about sophisticated DNN opera-

tions that are not analyzed before.

Chapter 5. Ownership Verification 81

5.2 Related Works on DNN Watermarking

Numerous watermarking schemes have been proposed for conventional DNN mod-

els. They can be classified into the following two categories:

5.2.1 White-box solutions

This strategy adopts redundant bits as watermarks and embeds them into the

model parameters. For instance, Uchida et al. [231] introduced a parameter reg-

ularizer to embed a bit-vector (e.g. signature) into model parameters which can

guarantee the performance of the watermarked model. Rouhan et al. [232] found

that implanting watermarks into model parameters directly could affect their static

properties (e.g histogram). Thus, they injected watermarks in the probability den-

sity function of the activation sets of the DNN layers. These methods require the

owner to have white-box accesses to the model parameters during the watermark

extraction and verification phase, which can significantly limit the possible usage

scenarios.

5.2.2 Black-box solutions

This strategy takes a set of unique sample-label pairs as watermarks and embeds

their correlation into DNN models. For examples, Le et al. [245] adopted adver-

sarial examples near the frontiers as watermarks to identify the ownership of DNN

models. Zhang et al. [246] and Adi et al. [233] employed backdoor attack tech-

niques to embed backdoor samples with certain trigger patterns into DNN models.

Namba et al. [241] and Li et al. [247] generated watermark samples that are almost

indistinguishable from normal samples to avoid detection by adversaries.

Different from these works, I propose a new watermarking scheme. Instead of mod-

ifying the parameters, my approach makes the architecture design as Intellectual

Property, and adopts cache side channels for architecture verification. This strat-

egy can defeat all the watermark removal attacks via parameter transformations.

82 5.3. Preliminaries

5.3 Preliminaries

5.3.1 Definition of A NAS Method

In this chapter, I mainly focus on NAS methods using the cell-based search space,

as it is the most popular and efficient strategy. Formally, I consider a NAS task,

which aims to construct a model architecture containing N cells: A = {c1, ..., cN}.
The search space of each cell is denoted as S = (G,O). G = (N , E) is the DAG

representing the cell supernet, where set N contains two inputs (a, b) from previous

cells and B computing nodes in the cell, i.e., N = {a, b,N1, ...,NB}; E = {E1, ..., EB}
is the set of all possible edges between nodes and Ej is the set of edges connected

to the node Nj (1 ≤ j ≤ B). Each node can only sum maximal two inputs

from previous nodes. O is the set of candidate operations on these edges. Then I

combine the search spaces of all cells as S, from which I try to look for an optimal

architecture A. The NAS method is defined as below:

Definition 5.1. (NAS) A NAS method is a machine learning algorithm that iter-

atively searches optimal cell architectures from the search space S on the proxy

dataset D. These cells construct one architecture A = {c1, ..., cN}, i.e., A =

NAS(S,D).

After the search process, A is trained from the scratch on the task datasetD to learn

the optimal parameters. The architecture A and the corresponding parameters give

the final DNN model f = train(A,D).

5.3.2 Definition of A Watermarking Scheme

A watermarking scheme for NAS enables the ownership verification of DNN models

searched from a NAS method. This is formally defined as below:

Definition 5.2. A watermarking scheme for NAS is a tuple of probabilistic poly-

nomial time algorithms (WMGen, Mark Verify), where

• WMGen takes the search space of a NAS method as input and outputs secret

marking key mk and verification key vk.

Chapter 5. Ownership Verification 83

• Mark outputs a watermarked architecture A, given a NAS method, a proxy

dataset D, and mk.

• Verify takes the input of vk and the monitored side-channel trace, and outputs

the verification result of the watermark in {0, 1}.

A strong watermarking scheme for NAS should have the following properties [233,

246].

Effectiveness. The watermarking scheme needs to guarantee the success of the

ownership verification over the watermarked A using the verification key. Formally,

Pr[Verify(vk,T) = 1] = 1, (5.1)

where T is the monitored side-channel trace from A.

Usability. let A0 be the original architecture without watermarks. For any data

distribution D, the watermarked architecture A should exhibit competitive perfor-

mance compared with A0 on the data sampled from D, i.e.,

|Pr[f0(x) = y|(x, y) ∼ D]− Pr[f(x) = y|(x, y) ∼ D]| ≤ ϵ. (5.2)

where f = train(A,D) and f0 = train(A0,D).

Robustness. Since a probabilistic polynomial time adversary may modify f mod-

erately, I expect the watermark remains in A after those changes. Formally, let T′

be the side-channel leakage of a model f ′ transformed from f , where f ′ and f are

from the same architecture A with similar performance. I have

Pr[Verify(vk,T′) = 1] ≥ 1− δ (5.3)

Uniqueness. A normal user can follow the same NAS method to learn a model

from the same proxy dataset. Without the marking key, the probability that

this common model contains the same watermark should be smaller than a given

threshold δ. Let T′ be the side channel leakage of a common model learned with

the same dataset and NAS method, I have

Pr[Verify(vk,T′) = 1] ≤ δ. (5.4)

84 5.4. My Watermarking Scheme

Monitor

Owner

Key

Generation

Model

Marking

NAS

Method

Stamp

Size ns

Marked Model

Verification Key

BLAS
Stamp

Verification
GEMM

Library Trace

Stage3: Side Channel Extraction

Watermarking

State

Marking

key

Stage 1 Stage 2

Figure 5.1: Overview of my watermarking framework

5.4 My Watermarking Scheme

Figure 5.1 shows the overview of my watermarking framework, which consists of

three stages. At stage 1 , the model owner generates a unique watermark and the

corresponding key pair (mk, vk) using the algorithm WMGen (Section 5.4.1). At

stage 2, he adopts a conventional NAS method with the marking key mk to pro-

duce the watermarked architecture following the algorithm Mark (Section 5.4.2).

He then trains the model from this architecture. Stage 3 is to verify the ownership

of a suspicious model: the owner collects the side-channel information at infer-

ence, and identifies any potential watermark based on the verification key vk using

the algorithm Verify (Section 5.4.3). Below I describe the details of each stage,

followed by a theoretical analysis (Section 5.4.4).

5.4.1 Watermark Generation (WMGen)

According to Definition 5.1, a NAS architecture is a composition of cells. Each

NAS cell is actually a sampled sub-graph of the supernet G, where the attached

operations are identified by the search strategy. To generate a watermark, the

model owner selects some edges from G which can form a path. I select the edges

in a path because the executions of their operations have dependency (see the red

edges in Figure 5.5). So an adversary cannot remove the watermarks by shuffling

the operation order at inference. Then the model owner fixes each of these edges

with a randomly chosen operation. The set of the fixed edge-operation pairs {se :

so} inside a cell is called a stamp, as defined below:

Chapter 5. Ownership Verification 85

Definition 5.3. (Stamp) A stamp for a cell is a set of edge-operation pairs {se : so},
where se, so denote the selected edges in a path and the corresponding operations,

respectively.

The combination of the stamps of all the cells form a watermark for a NAS archi-

tecture:

Definition 5.4. (Watermark) Consider a NAS method with a proxy dataset D
and search space S. A = {c1, ..., cN} represents the neural architecture produced

from this method. A watermark for A is a set of stamps mk1, ...,mkN , where mki

is the stamp of cell ci.

Algorithm 2 Marking Key Generation (WMGen)

Input: # of fixed edges ns, search space S = (G,O)

Output: marking key mk, verification key vk

Se = GetPath(G, ns) for i from 1 to N do
se ← randomly select one path from Se

so ← randomly select ns operations from O for se

mki = {se : so}, vki = so
return mk = (mk1, ..., mkN), vk = (vk1, ..., vkN)

Algorithm 2 illustrates the detailed procedure of constructing a watermark and

the corresponding marking and verification keys (mk, vk). Given the supernet G,

I call function GetPath to obtain a set Se of all the possible paths with length

ns, where ns is the predefined number of stamp edges (1 ≤ ns ≤ B). Then for

each cell ci, I randomly sample a path se from Se. Edges in the selected path are

attached with fixed operations so chosen by the model owner to form the cell stamp

mki = {se : so}. Finally I can construct a marking key mk = (mk1, ...,mkN). The

verification key is vk = (vk1, ..., vkN), where vki is the fixed operation sequence

so in cell ci.

In my implementation, I randomly sample the paths and operations for the mark-

ing key. It is also possible the model owner crafts the stamps based on his own

expertise. He needs to ensure the design is unique and has very small probability

to conflict with other models from the same NAS method. I do not discuss this

option in this chapter.

86 5.4. My Watermarking Scheme

5.4.2 Watermark Embedding (Mark)

To generate a competitive DNN architecture embedded with the watermark, I fix

the edges and operations in the marking key mk, and apply a conventional NAS

method to search for the rest connections and operations for a good architecture.

This process will have a smaller search space compared to the original method.

However, as shown in previous works [129, 132], there are multiple sub-optimal

results with comparable performance in the NAS search space, which makes random

search also feasible. Hence, I hypothesize that I can still find out qualified results

from the reduced search space. Evaluations in Section 5.6 verify that the reduced

search space incurs negligible impact on the model performance.

Algorithm 3 shows the procedure of embedding the watermark to a NAS archi-

tecture. For each cell ci in the architecture, I first identify the fixed stamp edges

and operations {se : so} from key mki. Then the cell search space S is updated as

(G = (N , E),O), where E is the set of connection edges excluding those fixed ones:

E = E − se. The updated search spaces of all the cells are combined to form the

search space S, from which the NAS method is used to find a good architecture A

containing the desired watermark.

Algorithm 3 Watermark Embedding (Mark)

Input: marking key mk, NAS method, proxy dataset D
Output: watermarked architecture A

S← search space of the whole model

for each cell ci do
retrieve {se : so} from mki

E = E − se; S = (G = (N , E),O)

S.append(S)
A = NAS(S,D)

return A

Discussion. I describe my watermarking scheme with the NAS technique. It

is worth noting that my methodology can also be applied to the hand-crafted

architectures. The model owner only needs to inject the stamp edges to some

locations inside his designed architecture and then train the model. I consider the

evaluation of this strategy as future work.

Chapter 5. Ownership Verification 87

5.4.3 Watermark Verification (Verify)

During verification, I utilize cache side channels to capture an execution trace T by

monitoring the inference process of the target model M ′. Details about side-channel

extraction can be found in Section 5.5. Due to the existence of extra computations

like concatenating and preprocessing, cells in T are separated by much larger time

intervals and can be identified as sequential leakage windows. If T does not have

observable windows, I claim it is not generated by a cell-based NAS method and

is out of the consideration. A leakage window further contains multiple clusters,

each of which corresponds to an operation inside the cell.

Algorithm 4 describes the verification process. First the side-channel leakage trace

T is divided into cell windows, and for the i-th window, I retrieve its stamp op-

erations so from vki. Then the cluster patterns in the window are analyzed in

sequence. Since the adversary can possibly shuffle the operation order or add use-

less computations to obfuscate the trace, I only verify if the stamp operations exist

in the cell in the correct order, which is not affected by the obfuscations due to their

execution dependency, while ignoring other operations. Besides, since the adver-

sary may inject useless cell windows to obfuscate the verification, I only consider

cells that contain the expected side-channel patterns and skip other cells. Once

the number of verified cells is equal to the size of generated verification key, I can

claim the architecture ownership of the DNN model.

Algorithm 4 Watermark Verification (Verify)

Input: verification key vk, monitored trace T, # of fixed edges ns

Output: verification result

Split T into cell windows, go on = 1, verified wins = 0

for each windowi in T do

if go on == 1 then
retrieve so from vki, id ← 0

for each cluster in windowi do

if match(cluster, so[id]) = True then
id+ = 1

if id == ns then
go on = 1, verified wins += 1

else
go on = 0

return (verified wins == vk.size()) ? True : False

88 5.5. Side Channel Extraction

5.4.4 Theoretical Analysis

I theoretically prove that my algorithms (WMGen, Mark, Verify) form a qual-

ified watermarking scheme for NAS architectures. I first assume the search space

restricted by the watermark is still large enough for the owner to find a qualified

architecture.

Assumption 5.1. Let S0, S be the search spaces before and after restricting a

watermark in a NAS method, S0 ⊇ S. A0 ∈ S0 is the optimal architecture for

an arbitrary data distribution D. A is the optimal architecture in S, The model

accuracy of A is no smaller than that of A0 by a relaxation of ϵ
N

.

I further assume the existence of an ideal analyzer that can recover the watermark

from the given side-channel trace.

Assumption 5.2. Let mk and vk be the marking and verification keys of a DNN

architecture A = {c1, ..., cN}. For ∀ mk, vk, and A, there is a leakage analyzer P

that is capable of recovering all the stamps of {ci}Ni=1 from a corresponding cache

side-channel trace.

With the above two assumptions, I prove the following theorem:

Theorem 5.1. With Assumptions 5.1-5.2, Algorithms 2-4 form a watermark-

ing scheme that satisfies the properties of effectiveness, usability, robustness, and

uniqueness in Section 5.3.2.

5.5 Side Channel Extraction

Given a suspicious model, I aim to extract the embedded watermark using cache

side channels. Past works proposed cache side channel attacks to steal DNN models

[79, 80]. However, these attacks are only designed for conventional DNN models

and cannot extract NAS models with more sophisticated operations. Besides, the

adversary needs to have the knowledge of the target model’s architecture family

(i.e., the type of each layer), which cannot be obtained in my case.

I design an improved methodology over Cache Telepathy [80] to extract the ar-

chitecture of NAS models by monitoring the side-channel pattern from the BLAS

Chapter 5. Ownership Verification 89

library, which actually have been well introduced in Chapter 3. In this section,

I provide a further detailed analysis about the leakage pattern of common oper-

ations used in NAS, and describe how to identify the operation type and hyper-

parameters.

5.5.1 Method Overview

State-of-the-art NAS algorithms [129, 132, 133, 243] commonly adopt eight classes

of operations: (1) identity, (2) fully connected layer, (3) normal convolution, (4)

dilated convolution, (5) separable convolution, (6) dilated-separable convolution,

(7) pooling and (8) various activation functions. Note that although zeroize is also

a common operation in NAS, I do not consider it, as it just indicates a lack of

connection between two nodes and is not actually used in the search process.

As shown in Chapter 3, I take the itcopy and oncopy APIs in OpenBLAS as the

monitoring targets. Since these two APIs are used to load matrix data into the

cache, I can analyze the access pattern to them to reveal the dimension information

of computing matrix. Besides, the variance of API access pattern also leaks the type

of running operation. To remind that, Figure 5.2 illustrates the leakage patterns

of four representative operations with a sampling interval of 2000 CPU cycles.

Different operations have distinct patterns of side-channel leakage. By observing

such patterns, I can identify the type of the operation.

(a) fully connected layer (b) normal convolution

(c) separable convolution (d) dilated separable convolution
: itcopy : oncopy

Figure 5.2: Event sequences of four representative operations in NAS models.

Finally, I derive the hyper-parameters of each operation based on the inferred

matrix dimension. The relationships between the hyper-parameters of various op-

erations and the dimensions of the transformed matrices would be well studied.

Below I give detailed descriptions on the recovery of each NAS operation.

90 5.5. Side Channel Extraction

5.5.2 Recovery of NAS Operations

Fully connected (FC) layer. This operation can be transformed to the multi-

plication of a learnable weight matrix θ (m × k) and an input matrix in (k × n),

to generate the output matrix out (m × n). m denotes the number of neurons in

the layer; k denotes the size of the input vector; and n reveals the batch size of the

input vectors. Hence, with the possible values of (m,n, k) derived from the itera-

tion counts of itcopy and oncopy, hyper-parameters (e.g., neurons number, input

size) of the FC layer can be recovered. The number of FC layers in the model can

also be recovered by counting the number of matrix multiplications. Figure 5.2(a)

shows the pattern of a classifier with two FC layers, where two separate clusters

can be easily identified.

Normal convolution. Although this operation was adopted in earlier NAS meth-

ods [132, 137], recent works [129, 130, 139] removed it from the search space as it

is hardly used in the searched cells. However, given it is the basis of the following

complex convolutions, I still perform detailed analysis about it.

Figure 5.3 shows the structure of a normal convolution at the i-th layer (upper

part), and how it is transformed to a matrix multiplication (lower part). Each

patch in the input tensor is stretched as a row of matrix ini, and each filter is

stretched as a column of matrix Fi. Hence, the number of filters Di+1 can be

recovered from the column size n of the filter matrix Fi. The kernel size Ri can

be revealed from the column size k = R2
iDi of the matrix ini, as I assume Di has

been obtained from the previous layer. With the recovered Ri, the padding size Pi

can be inferred as the difference between the row sizes of outi−1 and ini, which are

Wi ×Hi and (Wi −Ri + Pi + 1)(Hi −Ri + Pi + 1), respectively. The stride can be

deduced based on the modification between the input size and output size of the

convolution. In a NAS model, the convolved feature maps are padded to preserve

their spatial resolution, so I have Pi = Ri − 1. A normal cell takes a stride of 1,

while a reduction cell takes a stride of 2.

In terms of the leakage pattern, a normal convolution is hard to be distinguished

from a FC layer, as both of their accesses to the itcopy and oncopy functions can be

denoted as xI−yO−zI, where (x, y, z) indicate the repeated times of the functions,

determined by the operation hyper-parameters. This is why Cache Telepathy [80]

Chapter 5. Ownership Verification 91

Patch 1

Patch 2

Input ini Filters Fi Output outi

F
il

te
r

1

F
il

te
r

2

 =

C
h

a
n

n
e
l

1

C
h

a
n

n
el

 2

Ri
Ri Di

Di

Hi

Wi

Hi+1

Wi+1

Di+1

Di+1Ri
2
Di

(W
i -R

i +
P

i+
1
)

(H
i -R

i +
P

i+
1
)

...

m =

k = n =

Figure 5.3: Implementing a convolution operation as matrix multiplication

needs to know the architecture family of the target DNN to distinguish the opera-

tions. Figure 5.2(b) shows the leakage pattern of a normal convolution. In the NAS

scenario, since the normal convolution is generally used at the preprocessing stage,

while the FC layer is adopted as the classifier at the end, they can be distinguished

based on their locations.

Dilated convolution. This operation is a variant of the normal convolution,

which inflates the kernel by inserting spaces between each kernel element. I use

the dilated space d to denote the number of spaces inserted between two adjacent

elements in the kernel. The conversion from the hyper-parameters of a dilated

convolution to the matrix dimension is similar with the normal convolution. The

only difference is the row size m of the input matrix ini, i.e., the number of patches.

Due to the inserted spaces in the kernel, although the kernel size is still R2
i , the

actual size covered by the dilated kernel becomes R′2
i , where R′

i = Ri + d(Ri − 1).

This changes the number of patches to (Wi − R′
i + Pi + 1)(Hi − R′

i + Pi + 1). As

a dilated convolution is normally implemented as a dilated separable convolution

in practical NAS methods [129, 130], the leakage pattern of the operation will be

discussed with the dilated separable convolution.

Separable convolution. According to [80], the number of consecutive matrix

multiplications with the same pattern reveals the batch number of a normal convo-

lution. However, I find this does not hold in the separable convolution, or precisely,

the depth-wise separable convolution used in NAS. This is because the separable

convolution decomposes a convolution into multiple separate operations, which

92 5.5. Side Channel Extraction

Ri

Ri
Di

Di

Hi

Wi

Hi+1

Wi+1

Di

1

Di+1

Di

1
1

Hi+1

Wi+1

1

 Di+1

Input

Output

Filters

Filters

S
tep

 o
n

e
S

tep
 tw

o

 Di+1

Hi+1

Wi+1

Figure 5.4: Procedure of separable convolutions.

can incur the same conclusion that the number of the same patterns equals to the

number of input channels.

A separable convolution aims to achieve more efficient computation with less com-

plexity by separating the filters. Figure 5.4 shows a two-step procedure of a sepa-

rable convolution. The first step uses Di filters (Filters 1) to transform the input

to an intermediate tensor, where each filter only convolves one input channel to

generate one output channel. It can be regarded as Di normal convolutions, with

the input channel size of 1 and the filter size of R2
i ×1. These computations are fur-

ther transformed to Di consecutive matrix multiplications with the same pattern,

which is similar as a normal convolution with the batch size of Di. But the sepa-

rable convolution has much shorter intervals between two matrix multiplications,

as they are parts of the whole convolution, rather than independent operations. In

the second step, a normal convolution with Di+1 filters (Filters 2) of size 12×Di

is applied to the intermediate tensor to generate the final output.

In summary, the leakage pattern of the separable convolution is fairly distinguish-

able, which contains Di consecutive clusters and one individual cluster at the end.

Note that in a NAS model, the separable convolution is always applied twice

[129, 130, 132, 137, 248] to improve the performance, which makes its leakage

pattern more recognizable. Figure 5.2(c) shows the trace of a separable convo-

lution. There are clearly two parts following the same pattern, corresponding to

Chapter 5. Ownership Verification 93

the two occurrences of the operation. Each part contains 12 consecutive same-

pattern clusters to reveal Di = 12, and an individual cluster denoting the last 1×1

convolution.

Dilated separable (DS) convolution. This operation is the practical imple-

mentation of a dilated convolution in NAS. The DS convolution only introduces

a new variable, the dilated space d, from the separable convolution. Hence, this

operation has similar matrix transformation and leakage pattern as the separable

convolution, except for two differences. First, Ri is changed to R′
i = Ri +d(Ri− 1)

in calculating the number of patches m = (Wi−Ri+Pi+1)(Hi−Ri+Pi+1) in Step

One. Second, a DS convolution needs much shorter execution time. Figure 5.2(d)

shows the leakage pattern of a DS convolution with the same hyper-parameters

as a separable convolution depicted in Figure 5.2(c), except that the dilated space

d = 1. It is easy to see the performance advantage of the DS convolution (8400

intervals) over the separable convolution (10000 intervals) under the same config-

urations. The reason is that the input matrix in a DS convolution contains more

padding zeroes to reduce the computation complexity. Besides, the DS convolu-

tion does not need to be performed twice, which also helps us distinguish it from

a separable one.

Skip connect. The operation is also called identity in the NAS search space,

which just sends outi to inj without any processing. This operation cannot be

directly detected from the side-channel leakage trace, as it does not invoke any

GEMM computations. While [80] argues the skip can be identified as it causes a

longer latency due to the introduction of an extra merge operation, it is not feasible

in a NAS model. This is because in a cell, each node has an add operation of two

inputs and the skip operation does not invoke any extra operations. So there is

no obvious difference between the latency of skip and the normal inter-GEMM

intervals.

Pooling. I assume the width and height of the pooling operation is the same,

which is default in all practical implementations. Given that pooling can reduce

the size of the input matrix ini from the last output matrix outi−1, the size of the

pooling layer can be obtained by performing square root over the quotient of the

number of rows in outi−1 and ini. In general, pooling and non-unit striding cannot

be distinguished as they both reduce the matrix size. However, in a NAS model,

non-unit striding is only used in reduction cells which can double the channels. This

94 5.6. Evaluation

information can be used for identification. Pooling cannot be directly detected as

it does not invoke any matrix multiplications in GEMM. But it can introduce

much longer latency (nearly 1.5× of the normal inter-GEMM latency) for other

computations. Hence, I can identify this operation by monitoring the matrix size

and execution intervals. While monitoring the BLAS library can only tell the

existence of the pooling operation, the type can be revealed by monitoring the

corresponding pooling functions in the deep learning framework.

Other DNN components. Besides the above operations, other common compo-

nents like batch normalization, dropout and activation functions are also critical

to the model performance. My method can be generalized to watermark these

components as well, by just changing the monitored library targets. For instance,

to protect activation functions, e.g., relu and tanh, I can monitor accesses to the

corresponding function APIs in Pytorch.

5.6 Evaluation

5.6.1 Experimental Setup

NAS implementation. My scheme is independent of the search strategy, and

can be applied to all cell-based NAS methods. I mainly focus on the CNN tasks,

and select a state-of-the-art NAS method GDAS [130], which can produce quali-

fied network designs within five GPU hours. I follow the default configurations to

perform NAS [130, 132]: the search space of a CNN cell contains: identity (skip),

3×3 and 5×5 separable convolutions (SC), 3×3 and 5×5 dilated separable convo-

lutions (DS), 3×3 average pooling (AP), 3×3 max pooling (MP). The discovered

cells are then stacked to construct DNN models. I adopt CIFAR10 as the proxy

dataset to search the architecture, and train CNN models over different datasets,

e.g., CIFAR10, CIFAR100, ImageNet.

Side channel extraction. To capture the side-channel leakage of CNN models, I

monitor the itcopy and oncopy functions in OpenBLAS. I adopt the Flush+Reload

side-channel technique [78], but other methods can achieve my goal as well. I in-

spect the cache lines storing these functions at a granularity of 2000 CPU cycles

to obtain accurate information.

Chapter 5. Ownership Verification 95

5.6.2 Effectiveness

5.6.2.1 Key Generation

A NAS method generally considers two types of cells. So I set the same stamp

for each type. Then the marking key can be denoted as mk = (mkn,mkr), where

mkn = {sen : son} and mkr = {ser : sor} represent the stamps embedded to the

normal and reduction cells, respectively. Each cell has four computation nodes

(B = 4), and I set the number of stamp edges ns = 4 for both cells, indicating

four causal edges in each cell are fixed and attached with random operations. I

follow Algorithm 2 to generate one example of mk (Table 5.1). The verification

key vk = (vkn, vkr) is also recorded, where vkn = son and vkr = sor.

mkn
sen ci−2 → N0 N0 → N1 N1 → N2 N2 → N3

son 3× 3 AP 5× 5 SC 3× 3 DS 3× 3 SC

mkr
ser ci−1 → N0 N0 → N1 N1 → N2 N2 → N3

sor 3× 3 DS 3× 3 SC 3× 3 SC skip

Table 5.1: An example of the marking key mk.

5.6.2.2 Watermark Embedding

I follow Algorithm 3 to embed the watermark determined by mk to the DNN ar-

chitecture during the search process. Figure 5.5 shows the architectures of two

cells searched by GDAS, where stamps are marked as red edges, and the com-

puting order of each operation is annotated with numbers. These two cells are

further stacked to construct a complete DNN architecture, including three normal

blocks (each contains six normal cells) connected by two reduction cells. The pre-

processing layer is a normal convolution that extends the number of channels from

3 to 33. The number of filters is doubled in the reduction cells, and the channel

sizes (i.e., filter number) of three normal blocks are set as 33, 66 and 132. I train the

searched architecture over CIFAR10 for 300 epochs to achieve a 3.52% error rate

on the validation dataset. This is just slightly higher than the baseline (3.32%),

where all connections participate in the search process. This shows the usability

of my watermarking scheme.

96 5.6. Evaluation

ci-1

ci-2

N1

N2

N3

N4

ci

5x5 SC

3x3 AP
5x5 SC

3x3 AP

skip

skip

3x3 DS

3x3 SC

(a) Normal cell

3x3 DS
3x3 SC

ci-1

ci-2

N1

N2

N3

N4

ci

3x3 SC
skip

3x3 AP
3x3 AP

3x3 AP
skip

(b) Reduction cell

Figure 5.5: Architectures of the searched cells. ci−1 and ci−2 are the inputs
from the previous cells.

5.6.2.3 Watermark Extraction and Verification

Given a suspicious model, I launch a spy process to monitor the activities in Open-

BLAS during inference, and collect the side-channel trace. I conduct the following

steps to analyze this trace.

First, I check whether the pattern of the whole trace matches the macro-architecture

of a NAS model, i.e., the trace has three blocks, each of which contains six similar

leakage windows, and divided by two different leakage windows.

Second, I focus on the internal structure of each cell and check if it contains the

fixed operation sequence given by vk. Here I only demonstrate the pattern of the

first leakage window (i.e., the first normal cell) as an example (Figure 5.6). Other

cells can be analyzed in the same way. Recall that in the figure the blue node

denotes an access to itcopy and red node denotes an access to oncopy. From this

figure, I can observe four large clusters, which can be easily identified according

to their leakage patterns that 1 , 3 and 7 are SCs while 5 is a DS. Figure

5.7a shows the measured execution time of these four GEMM operations. An

interesting observation is that 5× 5 convolution takes much longer time than 3× 3

convolution, because it computes on a larger matrix. Such timing difference enables

us to identify the kernel size when the search space is limited. Besides, I can also

infer that the channel size is 33, since each operation contains C = 33 consecutive

Chapter 5. Ownership Verification 97

 5 5 SC 3 3 DS

 5 5 SC skip 3 3 AP

 3 3 AP skip

 3 3 SC

Figure 5.6: A side-channel trace of the first normal cell.

2

2

2

(a) GEMM operations

(b) Inter-GEMM latency

Figure 5.7: Execution time of the operations in a cell

sub-clusters1. Figure 5.7b gives the inter-GEMM latency in the cell. The latency

of 2 and 4 is much larger, indicating they are pooling operations. Particularly,

the latency of 8 contains two parts: skip and interval between two cells. The

three small clusters at the beginning of the trace are identified as three normal

convolutions used for preprocessing the input. Finally, after identifying the fixed

operation sequences (so) in all cells, I can claim the architecture ownership of the

DNN model.

The above analysis can already give us fair verification results. To be more con-

fident, I further recover the remaining hyper-parameters (in particular, the kernel

size) based on their matrix dimensions (m,n, k). Figure 5.8 shows the values of

(m,n, k) extracted from itern in the normal cell, where each operation contains

two types of normal convolutions. For certain matrix dimensions that cannot be

extracted precisely, I empirically deduce their values based on the constraints of

NAS models. For instance, m is detected to be between [961, 1280]. I can fix it

as m = 1024 since it denotes the size of input to the cell and 32 × 32 is the most

common setting. The value of n can be easily deduced as it equals the channel

1The value of C can be identified if I zoom in Figure 5.6.

98 5.6. Evaluation

 Actual value
 Detected value or range from side channel
 Deduced value using NAS constraints

Figure 5.8: Extracted values of the matrix parameters (m,n, k).

size. Deduction of k is more difficult, since the filter size k in a NAS model is

normally smaller than the GEMM constant in OpenBLAS, it does not leak useful

messages in the side-trace trace. However, an interesting observation is that 5× 5

convolution takes much longer time than 3 × 3 convolution, because it computes

on a larger matrix. Such timing difference enables us to identify the kernel size Ri

when the search space is limited. Analysis on the reduction cells is similar.

5.6.3 Usability

To evaluate the usability property, I vary the number of stamp edges ns from 1

to 4 to search watermarked architectures. Then I train the models over CIFAR10,

CIFAR100 and ImageNet, and measure the validation accuracy. Figure 5.9 shows

the average results on CIFAR dataset of five experiments versus the training epochs.

I observe that models with different stamp sizes have quite distinct performance

at epoch 100. Then they gradually converge along with the training process, and

finally reach a similar accuracy at epoch 300. For CIFAR10, the accuracy of the

original model is 96.53%, while the watermarked model with the worst performance

Chapter 5. Ownership Verification 99

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

8 6

8 8

9 0

9 2

9 4

9 6

9 8
CIF

AR
-10

 Ac
cu

rac
y(%

)

E p o c h I D

 o r i g i n a l
 n s = 1 n s = 2
 n s = 3 n s = 4

(a) CIFAR-10

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

6 0

6 5

7 0

7 5

8 0

8 5

CIF
AR

-10
0 A

ccu
rac

y(%
)

E p o c h I D
(b) CIFAR-100

Figure 5.9: Top-1 validation accuracy

(ns = 3) gives an accuracy of 96.16%. Similarly for CIFAR100, the baseline ac-

curacy and worst accuracy (ns = 4) are 81.07% and 80.35%. I also check this

property on ImageNet. Since training an ImageNet model is quite time-consuming

(about 12 GPU days), I only measure the accuracies of the original model and two

watermarked models (ns = 2 and 4), which are also roughly the same (73.97%,

73.16% and 72.73%). This confirms my watermarking scheme does not affect the

usability of the model.

Selection of the stamp size. The setting of the stamp size is a trade-off between

model usability and watermark reliability. Since my watermark scheme requires

the stamp edges to form a dependent path to be robust against operation shuffling

attacks (Section 5.6.4), the largest number of stamps is restricted by the number

of nodes in the NAS cell. For conventional NAS architectures, the range of stamp

size is [0, 4]. My evaluation results (Figure 5.9) indicates that 4 stamp edges incur

negligible performance degradation. Therefore, I recommend to adopt this setting

in my watermark scheme.

5.6.4 Robustness

I consider the robustness of my watermarking scheme against four types of scenar-

ios.

System noise. It is worth noting that the noise in the side-channel traces (e.g.,

from the system activities, interference with other applications) could possibly

100 5.6. Evaluation

make it difficult for the model owner to identify the watermarks. To evaluate this,

I follow previous works [83] to inject up to 30% scales of Gaussian noise into the

time interval between events in the side-channel trace, which can well simulate

the system noise. I find that it is still feasible to extract the watermarking oper-

ations with high fidelity. I conclude that the impact of system noise on operation

extraction is actually negligible. The reason behind is that the most important

operation features, such as the operation class, channel size and kernel size, are

all revealed by analyzing the holistic pattern of side-channel leakage traces. Sys-

tem noise that just disturbs local patterns will not mislead the inference of these

operation features. The recovery of matrix dimensions (m,n, k) is indeed affected

by side-channel noise, but as I only need to deduce a range of these parameters,

such impact is acceptable. Besides, according to my threat model in Section 3.3.1,

the model owner takes control of the host TEE platform, so he can disable other

applications on the same machine to further improve the verification reliability.

Model transformation. Prior parameter-based solutions [233–235] are proven

to be vulnerable against model fine-tuning or image transformations [237–240]. In

contrast, my scheme is robust against these transformations as it only modifies the

network architecture. First, I consider four types of fine-tuning operations evalu-

ated in [233] (Fine-Tune Last Layer, Fine-Tune All Layers, Re-Train Last Layer,

Re-Train All Layers). I verify that they do not corrupt my watermarks embed-

ded to the model architecture. Second, I consider model compression. Common

pruning techniques set certain parameters to 0 to shrink the network size. The

GEMM computations are still performed over pruned parameters, which give sim-

ilar side-channel patterns. Figures 5.10(a)-(c) show the extraction trace of the first

normal cell after the entire model is pruned with different rates (0.3, 0.6, 0.9) using

L2-norm. Figure 5.10(d) shows one case where I prune all the parameters in the

first normal cell. I observe that a bigger pruning rate can decrease the length of

the leakage window, as there are more zero weights to simplify the computation.

However, the pattern of the operations in the cell keeps unchanged, indicating the

weight pruning cannot remove the embedded watermark.

Model obfuscation. An adversary may also obfuscate the inference execution

to interfere with the verification results. (1) He can shuffle the orders of some

operations which can be executed in parallel. However, since the selected stamp

operations are in a path, they have high dependency and must be executed in the

Chapter 5. Ownership Verification 101

(a) Prune Rate = 0.3, Accuracy = 94.13%

(b) Prune Rate = 0.6, Accuracy = 85.59%

(c) Prune Rate = 0.9, Accuracy = 10.03%

(d) Prune the first normal cell, Accuracy = 17.50%

Figure 5.10: Side-channel traces of weighting pruned models.

correct order. Hence, I can still identify the fixed operation sequence from the leak-

age trace of obfuscated models. (2) The adversary can add useless computations

(e.g., matrix multiplications), operations or neurons to obfuscate the side-channel

trace. Again, the critical stamp operations are still in the trace, and the owner is

able to verify the ownership regardless of the extra operations. (3) The adversary

may add useless cell windows to obfuscate the watermark verification.

Figure 5.11 illustrates the leakage pattern of the original cell as well as the cells

after being obfuscated by above two techniques. Specifically, in Figure 5.11(b),

the attacker shuffles the operation execution order, which first executes 2 , 4 ,

6 and 8 and then runs the watermarked path. I can see that the watermark

(i.e., fixed operations) can still be identified in the sequence. In Figure 5.11(c), the

attacker adds an unused 3 × 3 separable convolution (red block) in the pipeline,

which does not affect the watermark extraction, as the fixed sequence of stamp

operations remains. In short, the stamp operations must be executed sequentially

and cannot be removed in a lightweight manner. This makes it difficult to remove

the watermarks in the architecture.

Figure 5.12 shows the influence of injected useless cell windows. In the side-channel

trace, it contains three cell windows, where 1 and 3 are NAS cell windows and

102 5.6. Evaluation

Figure 5.11: Traces of obfuscated models.

2 is the injected useless cell window. I just need to check if the monitored side-

channel trace contains N identical cells and identify if the watermark exists in the

cells. Even there are other cells, I can also claim that this model is watermarked

and then require for further arbitration.

Figure 5.12: Influence of useless cell windows.

Structure pruning. I further consider the structured pruning, which can ex-

plicitly modify the model structure. This technique is indeed possible to remove

my watermark embedded into the network architecture. However, it has two draw-

backs: (1) since the watermarking key is secret, the adversary does not know which

operation should be pruned; (2) Pruning the stamp operation can cause significant

performance drop. To validate this, I random prune 1 to 4 stamp operations in

the normal cell, and Table 5.2 shows the prediction accuracy of pruned models on

CIFAR10. For the case of pruning one stamp operation, I give four prediction accu-

racy values corresponding to four possible pruning scheme (pruning one operation

from 2 , 3 , 5 and 7 in Fig. 5.5a). For models with more than one stamp

operations pruned, I give the average accuracy of pruned models. I observe that

even only pruning one stamp operation can lead to great accuracy drop (96.53% to

55.62%). Hence, removing the watermark with structured pruning is not practical.

Note that an adversary can leverage some powerful methods (e.g., knowledge distil-

lation [249, 250]) to fundamentally change the architecture of the target model and

possibly erase the watermarks. However, this is not flagged as copyright violation,

Chapter 5. Ownership Verification 103

of pruned stamp ops 0 1 2 3 4

Accuracy (%) 96.53
89.34/93.38/
78.71/55.62

54.89 44.52 37.66

Table 5.2: Accuracy of structured pruned models on CIFAR10

since the adversary needs to spend a quantity of effort and cost (computing re-

sources, time, dataset) to obtain a new model. This model is significantly different

from the original one, and is regarded as the adversary’s legitimate property.

Parameter binarization. This technique [251] is used to accelerate the model

execution by binarizing the model parameters. If corresponding Binary Neural Net-

work (BNN) still adopts the BLAS library to accelerate the matrix multiplications,

the side-channel leakage pattern keeps similar. Only the time interval between each

monitored API access becomes shorter, as the parameter binarization would cause

much faster model execution. Figure 5.13 shows the comparison of side-channel

traces between the original NAS cell and binarized cell. I observe that although

parameter binarization achieves about 20 times faster inference (2.8e5 vs. 1.4e4

intervals), the leakage trace still keeps the similar pattern. Hence, my scheme can

still be applied to verify BNN models. If the BNN model adopts other acceleration

libraries, I can also switch to monitor that library to perform similar analysis.

(a) Pattern of original cell

(b) Pattern of parameter-binarized cell

Figure 5.13: Influence of parameter binarization.

5.6.5 Uniqueness

Given a watermarked model, I expect that benign users have very low probability

to obtain the same architecture following the original NAS method. This is to

guarantee small false positives of watermark verification.

The theoretical analysis assumes each edge selects various operations with equal

probability. Given a watermarked model, I expect that benign users have a very

104 5.6. Evaluation

4 1 2 2 5 2 1 3 1 0 0

2 4 2 9 2 0 2 2 1 0 2 7 1 5 1 6

1 1 0 3 8 0 2 0 0

2 4 2 4 3 0 1 9 5 4 1 6 5 4 3 4

4 7 2 5 1 8 1 9 5 1 1 1 1

0 0 4 1 0 1 6 0 2

0 0 0 1 2 7 3 7 3 0 4 7

1 2 3 4 5 6 7 8

s k i p
s e p - c o n v (3)

d i l - c o n v (3)
s e p - c o n v (5)

d i l - c o n v (5)
a v g - p o o l
m a x - p o o l

Op
era

tio
ns

C o n n e c t i o n I n d e x

0 0 0 0 0 0 0 0

3 3 0 0 8 7 0 9 9 2 9

0 0 0 0 0 0 0 0

9 7 6 7 1 0 0 7 1 0 0 8 6 3 8 0

0 1 0 3 0 5 5 1 1

0 2 0 3 0 0 0 0

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

C o n n e c t i o n I n d e x
0 . 0 0 0

2 0 . 0 0

4 0 . 0 0

6 0 . 0 0

8 0 . 0 0

1 0 0 . 0
T i m e s

Figure 5.14: Operation distributions for a normal cell (left) and reduction cell
(right). The connection index is the index of the connection edge in the NAS
cell.

low probability to obtain the same architecture following the original NAS method.

Without loss of generality, I assume the NAS algorithm can search the same archi-

tecture if the search spaces of all cells are the same. Thus, the uniqueness of the

watermarked model is decided by the probability that the adversary can identify

the same search spaces. Because the marking key is secret, the adversary has to

guess the edges and the corresponding operations of each stamp if he wants to

identify the same search spaces. Assume the selection of candidate operations is

independent and identically distributed, the probability that an operation is chosen

on an edge is 1
|O| . For a DNN model that contains B computation nodes, there are

2B connection edges, from which I select ns causal edges. There are
(
2B
ns

)
combi-

nations. Hence, the probability of the stamp collision in a cell can be computed as(
2B
ns

)
× (1

|O|)
ns . In my experiment configurations, the collision rate is smaller than

1.7%. Considering both the normal and reduction cells, the collision rate is smaller

than (1.7%)2 ≈ 0.03%, which can be neglected.

I further empirically evaluate the uniqueness of my watermarking scheme. Specifi-

cally, I repeat the GDAS method on CIFAR10 for 100 times with different random

seeds to generate 100 architecture pairs for the normal and reduction cells. I find

my stamps have no collision with these 100 normal models. Figure 5.14 shows the

distribution of the operations on eight connection edges in the two cells. I observe

that most edges have some preferable operations, and there are some operations

never attached to certain edges. This is more obvious in the architecture of the

reduction cell. Such feature can help us to select more unique operation sequence

as the marking key. Besides, the collision probability is decreased when the stamp

Chapter 5. Ownership Verification 105

size ns is larger. A stamp size of 4 with fixed edge-operation selection can already

achieve strong uniqueness.

5.7 Conclusion

In this chapter, I propose a new direction for IP protection of DNNs, which can

further enhance the security of confidential AI systems. I show a carefully-crafted

network architecture can be utilized as the ownership evidence, which exhibits

stronger resilience against model transformations than previous solutions. I lever-

age Neural Architecture Search to produce the watermarked architecture, and cache

side channels to extract the black-box models for ownership verification. Evalu-

ations indicate my scheme can provide great effectiveness, usability, robustness,

and uniqueness, making it a promising and practical option for IP protection of AI

products.

Chapter 6

Enabling Fast and Secure

Function Cold Starts in

Confidential Serverless Systems

Confidential serverless systems integrate Trusted Execution Environment with server-

less computing, effectively protecting the confidentiality of guest users’ functions

and data, but also leading to a significant startup latency of function executors. To

address this deficiency, I introduce Neuralyzer, a new feature layer integrated into

confidential serverless systems based on AMD SEV. It is designed to accelerate the

extensive startup process of confidential executors, aiming to retain performance

improvement offered by serverless computing while ensuring robust security for

guest users. Specifically, the Neuralyzer layer acts as an isolated and privileged

controller within the encrypted function executor, consisting of two key modules:

(1) Restore Module restoring secure environment with a clean snapshot; (2) Attes-

tation Module helping remote users to verify the restored executor state. I mainly

focus on serverless systems using unikernel to provide an initial blueprint for analy-

sis. My comprehensive experiments on three baselines and six real-world serverless

functions show that the Neuralyzer layer can dramatically reduce the startup la-

tency by 76∼ 501× compared to native SEV Virtual Machines (VM), achieving an

end-to-end service latency of only a few hundred milliseconds.

107

108 6.1. Introduction

6.1 Introduction

Serverless computing, also known as Function as a Service (FaaS), has been widely

regarded as the next generation of cloud computing. Major cloud platforms have

all introduced their serverless computing services, such as Amazon AWS Lambda

[252], Microsoft Azure Functions [253], Google Cloud Functions [254], etc. With

its increasing popularity, concerns about confidentiality on such FaaS platforms

are also being raised [23, 255]. Given the cloud provider owns the highest privilege

of the entire system, he may be benign but curious to directly expose user secrets

from the running function executors, e.g., virtual machines or containers. To ad-

dress this concern, Trusted Execution Environment (TEE) is integrated to achieve

confidential serverless computing by encapsulating the target function within an

encrypted executor [256]. It effectively prevents privileged attackers from extract-

ing sensitive user data, as investigated in various previous works [2, 20–22, 25].

However, the integration of TEE brings significant performance overhead, partic-

ularly in terms of startup latency. The characterization of real-world serverless

workloads [257] reports that 50% of functions execute within less than 1 second,

so serverless applications are extremely sensitive to the service latency. While the

median startup latency of a serverless executor in the industry is typically only a

few hundred milliseconds [258, 259], TEE-based executors usually require a few sec-

onds. For example, the startup of a 256MB SGX enclave takes 7.1 seconds [2], and

the SEV VM requires 13.27 seconds (Section 6.3), both of which are considerably

longer than the industry requirement.

Some previous works have attempted to address this issue with focusing on process-

level TEE (i.e., Intel SGX [4]), including plug-in enclaves [2] and reusable en-

claves [25]. However, confidential serverless computing that leverages system-level

virtualization-based TEE has never been discussed. Conversely, state-of-the-art in-

dustry serverless frameworks, including Firecrakcer [260], gVisor [261], Kata Con-

tainers [262] and Cloud Hypervisor [263], concentrate on lightweight virtualization.

Furthermore, from the perspective of confidential computing, the pioneer SGX is

becoming outdated because of its overly aggressive threat model and complex con-

fidentiality abstraction between the application and OS. While Intel has depre-

cated SGX in their latest core processors [264], all major processor manufacturers

have shifted to support the alternative path, i.e., confidential VM, such as AMD

Chapter 6. Neuralyzer 109

SEV [265], Intel TDX [6] and ARM CCA [157]. Compared with SGX, VM-based

TEE provides a better abstraction for supporting unmodified applications and are

more compatible with popular virtualization-based cloud ecosystems, making it

the mainstream in future confidential computing. In this chapter, I aim to propose

the first work optimizing the heavy startup latency of confidential VMs used in

confidential serverless computing.

Conventional serverless computing has introduced numerous optimizations to re-

duce the service startup latency, such as Save/Restore [266–269], Fork [268, 270,

271] and Cache [257, 272, 273]. Unfortunately, all these optimizations cannot be

easily transferred to confidential serverless computing. For example, Save/Restore

is quite slow for TEE executors due to the additional en(de)cryptions, and Fork is

infeasible given each TEE executor is encrypted by a distinct cipher key. Cache

is naturally suitable for confidential serverless computing. Given the limitation of

available TEE resource and expensive cost of switching TEE environments, the

best way to accelerate the service response is keeping the encrypted executor warm

and reusing it for subsequent invocations. However, such sharing leads to poten-

tial security issues, where the attacker first using the executor may corrupt the

environment to steal secrets of subsequent users. I will discuss more details about

these solutions in Section 6.3.

To enable the caching strategy for confidential serverless computing, I propose

Neuralyzer, a new feature layer integrated into confidential executors (i.e., VMs)

as an isolated and privileged controller. With this Neuralyzer layer locating in-

side the encrypted executor, I can retain the performance improvement offered by

cached executors while ensuring robust security of user secrets. However, the de-

sign of Neuralyzer is not trivial, which poses three significant questions: (1) How

to eliminate the environment corruptions crafted by malicious user? (2) How to

prove to subsequent users that the cached executor is clean and secure? (3) How to

ensure the Neuralyzer layer itself is not corrupted by malicious user?

Aiming to overcome the above challenges, the core design of Neuralyzer is derived

from three insights: (1) Corrupted executor environment can be recovered with a

clean snapshot. By saving the initial environment as a clean snapshot, I can always

recover the executor to a secure state, even malicious users have corrupted the

environment. (2) The recovered executor state can be verified through attestation.

The integrity and confidentiality of the restored executor can be verified by remote

110 6.2. Background

users with specific attestation mechanisms, which provide proof of security. (3)

There exists a new TEE hardware feature allows for further division of privilege

levels within an executor. This feature has been achieved in AMD SEV and Intel

TDX, capable of isolating Neuralyzer components in a untouchable layer with

the highest internal privileges. In this chapter, I mainly focus on the AMD SEV

platforms, where the feature is referred to as Virtual Machine Privilege Levels

(VMPL).

Incorporating these insights, I build the Neuralyzer layer within a confidential

SEV VM. It integrates the advantages of caching optimization and confidential

computing into serverless computing, creating a fast and secure serverless service

platform. Neuralyzer operates at the highest privilege layer (VMPL0) and has

full access to the entire VM memory space. In contrast, the guest system execut-

ing the target serverless function runs at a lower privilege level (VMPL3) and is

isolated from the Neuralyzer layer. Neuralyzer consists of two essential system

components: (1) Restore Module, responsible for saving a clean snapshot of the

guest system and later restoring the snapshot to recover secure executor environ-

ment. (2) Attestation Module, enabling a nested attestation mechanism for remote

users to verify the restored executor states.

In this chapter, I adopt the unikernel as the guest system to provide an initial

blueprint for analysis, as it can significantly simplify the snapshot design. More

importantly, the adoption of unikernel is also a growing trend in the field of server-

less computing [274–277]. The adaptation to general-purpose operating systems

will be my future work. To extensively assess the performance of Neuralyzer, I

compare it with three baselines: native SEV VM, Save/Restore optimization and

vanilla snapshot method. Experiment results show that Neuralyzer achieves the

best performance and reduces the startup latency by 76∼ 501× with only a slight

memory penalty. Besides, to assess the end-to-end performance of Neuralyzer,

I test six real-world serverless functions from the well-known Functionbench suite

[278]. The results indicate that these services can be completed within a few hun-

dred milliseconds, aligning with the industry median.

Chapter 6. Neuralyzer 111

Figure 6.1: Architecture of confidential serverless computing

6.2 Background

6.2.1 Confidential Serverless Computing

As a rapidly growing software paradigm for developing and deploying cloud ser-

vices, serverless computing slices the application functionality into multiple state-

less functions. The resource provisioning and scaling for these functions are totally

entailed by the cloud provider. However, such complete control also presents an

opportunity for a malicious hypervisor to steal or even corrupt user secrets. Follow-

ing the concept of confidential computing [279], confidential serverless computing is

proposed to integrate TEE with serverless computing to prevent privileged attack-

ers from compromising the sensitive data in the function executor. Previous works

have proposed to protect serverless workloads with Intel SGX [2, 20–22, 25]. With

the rising of VM-based TEE, e.g., AMD SEV, more attention is being focused on

this emerging alternative. Multiple industry open-source projects have provided

the support to SEV-based confidential serverless computing, such as Kata Contain-

ers [280] and Podman Libkrun[281]. Figure 6.1 illustrates the typical architecture

of the VM-based confidential serverless computing, where the backend function ex-

ecutor (i.e., MicroVM) is encapsulated within the TEE sandbox, and the frontend

server is employed to oversee the communication and balance the workload. As

most serverless functions are simple enough to complete the execution within 1

second, the significant cold start latency caused by setting up the TEE sandbox

environment becomes a critical factor [257, 282].

112 6.2. Background

Figure 6.2: Fields of an RMP entry [1, Table 15-36]

6.2.2 AMD SEV

Secure Encrypted Virtualization (SEV) is a new hardware extension in AMD pro-

cessors [265], which encrypts the VM memory and register states to protect user

secrets from physical attacks (e.g., cold boot and DMA attacks) and privileged

software attacks (e.g., malicious hypervisors). After two initial versions (SEV [5]

and SEV-ES [283]), a stable version SEV-SNP [159] was eventually introduced.

In this chapter, I directly use SEV to denote the latest SEV-SNP, which further

introduces multiple features:

VMSA/GHCB. A new data structure named VM Save Area (VMSA) is intro-

duced to automatically save/restore register states when the VM is trapped/re-

sumed. The VMSA page is encrypted from the hypervisor to protect VM register

states. However, sometimes the hypervisor needs to access a VM’s state to perform

emulation. Hence, another data structure called Guest-Hypervisor Communication

Block (GHCB) is designed to let a VM selectively expose its state to the hypervi-

sor. For example, when an SEV VM executes WRMSR, it only needs to expose

EAX, ECX and EDX registers to the hypervisor, as they are operands of that

instruction and sufficient for emulation. AMD standardizes the GHCB format for

the inter-operation with any supporting hypervisor [284].

RMP/VMPL. To protect the memory integrity, SEV introduces the Reverse Map

Table (RMP) to establish a one-to-one mapping between the host physical address

(hPA) and guest physical address (gPA). Each address mapping corresponds to

a RMP entry containing security attributes of this physical page, as shown in

Figure 6.2. VMPL stands for Virtual Machine Privilege Levels, which provide

hardware isolated abstraction layers within a VM for additional security controls

[159]. SEV has four VMPLs (0-3) where a smaller number indicates a higher

privilege. Each VMPL has its own ring 0-3 and hence its own user and kernel

modes. While different VMPLs share the same guest physical memory, they have

Chapter 6. Neuralyzer 113

Figure 6.3: Boot process of normal VM and SEV VM in serverless computing.

various permission views. VMPL0 is enabled with full permissions: readable (r),

writable (w), user executable (ue) and supervisor executable (se), and it can control

the permission setting of lower-privileged VMPLs. Each VMPL has its own VMSA,

and its associated CPU state is automatically saved/restored by the hardware when

switching VMPLs.

6.2.3 Unikernel

The Unikernel is composed of a minimal operating system and a single application,

making it well-suited for serverless computing [274–277]. By integrating with a

library of OS components, e.g., memory management, scheduler, network stack and

device drivers, the application can run as a single process at an elevated privilege

level. Finally, the unikernel is built as a standalone binary image that is bootable on

(virtual) hardware [285]. The deployment of unikernels brings multiple advantages:

(1) The memory footprint of unikernels is much smaller than general OSes [286]. (2)

The deployment of simplified unikernels also significantly reduces the cold startup

latency (6×-10×) of function executors [287]. (3) Unikernels operate in a single

address space, where the kernel functionality can be specialized for some highly-

restricted execution domains, like edge devices [288, 289] or SGX enclaves [290,

291]. In this chapter, I also leverage the simplified memory layout of the unikernel

to reduce the difficulty of snapshot design.

6.3 Motivation

6.3.1 Startup Latency of SEV VM

Given the high compatibility of SEV with virtualization designs, actually all VM-

based serverless designs, like FireCracker [260] and gVisor [261], can be used to

114 6.3. Motivation

achieve confidential serverless computing by directly replacing the normal VM with

SEV VM, as demonstrated in some open-source projects [280, 281]. However, this

field is still in its early stage. Due to the ongoing rapid development of SEV

support, these downstream projects utilizing SEV are usually immature and fail

to incorporate the latest features, e.g., RMP and VMPL. Hence, to accurately

identify the bottleneck of SEV executors, I adopt the latest AMD official SEV VM

implementation [85] as my analysis target.

On a serverless platform, the first step of invoking a function is to prepare an

executor. Figure 6.3 illustrates the boot process of an executor, i.e., a normal VM

or SEV VM with memory size of 256MB. To prepare a normal VM, the hypervisor

first parses the VM configuration, then launches it from the guest image provided

by remote users. After that, the guest kernel is initialized to launch the workload

function. From Figure 6.3, I can see that the primary latency stems from the last

two steps, which totally takes about 10 seconds.

However, with the integration of SEV VM, the boot process has changed signifi-

cantly. First, the remote user needs to authenticate the SEV platform based on

the certificate chain provided by the platform owner, and establish a secure com-

munication channel to the SEV hardware. Then the hypervisor launches the VM

and calls the SEV hardware to encrypt the VM memory. After that, the SEV

hardware measures the initial plaintext VM memory and calculates a hash, which

is protected by the secure channel and sent to the remote user together with other

related information, such as the SEV API version and guest policy. The hash would

be attested by the user to verify the VM state. While older SEV versions only sup-

port attestation during guest launch, the latest SEV-SNP has introduced a more

flexible attestation mechanism that can be employed at any time [159]. Meanwhile,

the VM will be further booted, which consumes much longer time (11.53s) than

the normal VM, as it contains multiple additional operations for SEV features, like

enabling the SEV guest driver and configuring SEV options.

Figure 6.4 shows the startup latency of the executor with various guest memory

sizes, in which the workload function is a simple helloworld program. From the fig-

ure, I can see that the startup latency of SEV VM keeps stable with the increased

memory size, while that of SGX enclave increases remarkably. Such overhead in

SGX actually comes from the memory contention caused by the EADD instruction.

In contrast, SEV VM directly reuses the existing memory allocation mechanism,

Chapter 6. Neuralyzer 115

Figure 6.4: Startup latency of the SEV VM (left bars) and the normal VM
(right bars), and SGX (line, sourced from [2]).

thereby avoiding the performance drop caused by increased guest memory. Further-

more, the most crucial observation from the figure is that the function execution

time (∼1ms) only accounts a negligible part in the overall startup latency. This is

a catastrophic waste of resources, as the time spent on meaningful computation is

less than 1‱. This leads to my motivation that the initialization stages before the

function execution should be bypassed.

6.3.2 Analysis of Startup Optimizations

In fact, the issue of startup latency has consistently been the focal point in server-

less computing. There have been numerous efforts aiming to mitigate this issue,

which can be mainly classified into three categories. Unfortunately, these existing

optimizations cannot be trivially migrated to confidential computing scenarios. In

the following, I assess them from three perspectives: feasibility, performance and

security, as shown in Table 6.1.

Cache [257, 272, 273]. By launching executors in advance or caching finished

executors, future functions can directly reuse cached ones with nearly no startup

latency. However, keeping idle executors alive occupies memory resources, where

the overhead can reach even hundreds of GBs [260]. Figure 6.5 shows the per-

formance of six real-world serverless functions (Table 6.2), running on a cached

normal VM with the memory size of 256MB. I can see that all functions can be

116 6.3. Motivation

Feature Cache Fork Save/Restore Neuralyzer
Startup Speed Very Fast Fast Medium Very Fast
Resource Usage High Medium Small High

Evaluate in confidential serverless computing
Feasibility ✓ × ✓ ✓
Performance ✓ ♦✓ × ✓
Security × ♦✓ ✓ ✓

Table 6.1: Evaluations of existing optimizations. ♦✓ denotes the feature is
enabled if future TEE hardware supports Fork.

invoked within about 1ms, and the memory footprints is the same as the allocated

memory size. The memory overhead for n cached executors can be computed as

O(n) [292].

The Cache method is naturally suitable for TEE executors, as the limited TEE re-

sources and high launch overhead make it extremely expensive to perform any en-

vironment switch. The performance penalty of following the Save/Restore method

is a good example (Figure 6.6). Consequently, keeping the TEE executor warm

and caching it for different users seem to be the best solution. However, it poses

serious security issues, where malicious users first using the executor can corrupt

the environment to expose the secrets of subsequent users. This is why the com-

munity advises to discard the TEE executor after each execution [293] and not to

adopt the Cache method for cold start optimization.

Fork [268, 270, 271]. This method is improved based on Cache, where a cached

executor calls the fork system call to start a new executor. Hence, it only needs

one template to perform in-memory copy for future invocations. However, such

method is infeasible for TEE executors, which prohibit the in-memory copy. Given

each TEE executor is encrypted with a distinct cipher key managed by the trusted

hardware, forking a TEE executor only copies its encrypted memory contents to

another location, which has not been registered in the TEE hardware. Conse-

quently, this so-called new executor is beyond the knowledge of TEE hardware,

and cannot be executed without the assistance of trusted hardware. Modifying

the TEE hardware design could enable this optimization, which has been studied

in SGX [2]: two new instructions are introduced to achieve the plug-in enclave, a

variant of the Fork method. In such scenario, the enabled Fork method can provide

good performance, even slightly worse than Cache. It can also ensure the security

of new executors, as long as the cached template is well protected.

Chapter 6. Neuralyzer 117

Figure 6.5: Caching performance of serverless functions.

Figure 6.6: Performance of Save/Restore method.

Save/Restore [266–269]. This method saves the state of an executor as a specific

snapshot file. When the same function is invoked, the snapshot is used to restore

the checkpoint. It is optimal in resource usage, as it only needs to store one

file. However, such method is orders of magnitude slower than the previous two

techniques, which becomes even more apparent in the confidential computing. For

example, SEV has offered official APIs SEND * and RECEIVE * to achieve snapshot

or migration functionality [294]. However, since the snapshot is stored outside the

TEE executor, multiple additional en(de)cryptions and environment switches are

required to ensure the security, making the method quite slow. Previous works

have investigated these APIs, showing their speed is only from 800 KB/s to 5MB/s

[215, 295]. In my CPU module, it is slightly faster to reach nearly 7MB/s. Figure

6.6 shows the startup latency of the VM instance when the save/restore method is

applied. I observe that restoring the snapshot into SEV VM needs to take minutes

or even hours, which is impractical for the serverless computing scenario.

118 6.4. System Overview

My method. Based on above analysis and evaluation, I intend to design a new

confidential serverless system that is compatible with Cache optimization. The

goal is to retain the performance improvement offered by cached executors while

ensuring the security of guest users. Inspired by the insights mentioned in Section

6.1, I try to implement an isolated and privileged Neuralyzer layer inside the SEV

VM, which can restore the guest system to a verifiable clean state before each new

function invocation.

6.4 System Overview

6.4.1 Threat Model

My system design centers around VM-based confidential serverless computing, us-

ing SEV VM as the function executor. The SEV VM is cached in the host memory

and reused by various users. Following the typical threat model of confidential

computing, I identify the privileged hypervisor as a potential attacker with the

intent to reveal user secrets. The attacker can exploit any exposed interfaces of

the VM and leverage OS capabilities, such as triggering interrupts or invoking

VMEXIT. Furthermore, I also consider other users who have previously invoked

this cached VM are untrusted. Given that they own the highest privileges of the

guest OS, they can corrupt the guest system environment, e.g., manipulating the

critical parameters or even injecting persistent backdoors, which threaten the se-

curity of subsequent users. The above two attackers can also collaborate to obtain

the capabilities from both sides.

I assume the SEV hardware will perform correctly according to its architectural

specification. The guest OS within the VM is well-written but could be compro-

mised by malicious users. The initial booting of the SEV VM is deemed trustwor-

thy, as the process integrity has been verified through the hardware attestation.

DDoS attacks [296] and attacks against the TEE hardware (e.g., side channels

[76, 297, 298], memory extraction [92, 299], voltage glitch [215]) are considered to

be out of my scope. Actually, most of these attacks have been well mitigated in

the latest SEV version.

Chapter 6. Neuralyzer 119

6.4.2 Design Principles & Challenges

For practical adoptions, Neuralyzer follows three design principles: (1) Confi-

dential and Secure. The user secrets should be well protected from the untrusted

external hypervisor and internal users who corrupted the guest OS. (2) Fast and

Lightweight. To fulfill the demands of serverless computing, the cached function

executor should be able to respond quickly to user requests while minimizing the

memory overhead caused by caching. (3) Verifiable and Attestable. The state of

guest system should be verifiable to the remote user, who only sends the secret

data after the successful attestation.

However, achieving above principles is not trivial, which poses multiple significant

challenges:

(1) Protection of layer components. Given that the attacker owns the highest

privileges of the guest system, I need to isolate the Neuralyzer layer in a untouch-

able environment to prevent potential corruptions, so that it can operate correctly.

Hence, I need to find a secure and isolated area to seal sensitive components of

Neuralyzer, without incurring significant performance overhead.

(2) Design of snapshot image. To achieve fast response and lightweight de-

ployment, the snapshot saved for recovering clean guest environment cannot be too

large. For example, the simplest snapshot design is to directly save the entire mem-

ory space of the guest system. However, it would double the memory footprints

and slow down the restoring. So I need to minimize the snapshot by identifying

which memory portions in the guest system are necessary to be saved.

(3) Overhead of redundant attestation. The SEV hardware has provided

an attestation mechanism for remote users to verify the state of encrypted VM.

However, this mechanism is a bit redundant for just verifying the integrity of

restored guest system states, as it covers multiple unnecessary steps.

6.4.3 System Architecture and Workflow

Figure 6.7 depicts the architecture of my proposed system, where the Neuralyzer

layer is integrated into confidential serverless executors. The system consists of

four functional components: (1) The gateway server serves as the relay between

120 6.4. System Overview

Untrusted Hypervisor (QEMU)

SEV hardware (PSP)

SEV MicroVM

Neuralyzer
(VMPL0)

Guest System
(VMPL3)

Restore Module Attestation Module

Target function

Firmware ABI Specification

Module Calling Protocol

Gateway Server

Secret Data

Control Flow Data Flow

Remote User

②

Figure 6.7: Overview of Neuralyzer architecture and workflow

remote users and backend workers; (2) The SEV VM acts as the serverless func-

tion executor; (3) The untrusted hypervisor manages guest VMs; (4) The SEV

hardware serves as the Trusted Computing Base (TCB) of the confidential system.

To address the above-mentioned challenges, I incorporate three key features into

the Neuralyzer layer design: (a) I seal sensitive Neuralyzer modules within the

privileged VMPL0 to isolate them from the untrusted guest system. (b) I perform

a comprehensive analysis on the memory layout of the guest system to conduct

the snapshot design for Restore Module. (c) I present a nested Attestation Mod-

ule to directly verify restored states of the guest system within the VM executor.

In this chapter, I adopt an SEV-compatible unikernel as the guest OS, as the

adoption of unikernel is a growing trend in serverless computing [274–277]. More

importantly, the simplicity of its flat and single address space can significantly re-

duce the difficulty of snapshot design. In theory, my design can be generalized to

general-purpose operating systems, which I leave as future work.

The operation of Neuralyzer comprises both control flow and data flow. During

the initial booting, the SEV VM is launched by the hypervisor, and an initial clean

state of the guest system is saved as a snapshot buffered in the Restore Module.

Chapter 6. Neuralyzer 121

Subsequent invocations of this executor prompt the hypervisor to send a restore

request, which switches the VM from VMPL3 to VMPL0. The Neuralyzer layer

shares a GHCB page with the host to receive the request (1○). The Restore Module

then restores the snapshot into the guest system (2○). After that, the Attestation

Module is called to generate a report for restored guest states and sign it with

a private key (3○). The signed report is sent back to the remote user through

the hypervisor, and the user can verify the signature and the corresponding hash

value. After the confirmation of clean guest states, the user can send the secret

data through a secure channel (e.g., HTTPS).

6.5 Guest Unikernel Analysis

In this section, I first describe the design of a unikernel compatible with confidential

serverless computing. Then I conduct a comprehensive analysis on its memory

layout to identify necessary memory portions for the snapshot image.

6.5.1 Adaptations for Confidential Serverless

Although unikernels have been widely used in serverless computing, these imple-

mentations are often tailored and specialized for certain applications, lacking sup-

port for sophisticated hardware features, e.g., SEV. Hence, I need to design a

unikernel that is compatible with SEV features. Given the complexity of SEV

implementation, it demands sophisticated expertise and substantial efforts to re-

implement SEV support in an entirely new unikernel framework. Consequently, I

tend to strip down the latest Linux kernel supporting SEV features [300] to design

a compatible unikernel. Recent works [301–303] have demonstrated the feasibility

of compiling a unikernel directly from upstream Linux codebase. I make adapta-

tions on these unikernel designs from the perspective of serverless computing and

SEV support.

In the context of serverless computing, the Linux kernel, as a general monolithic

kernel, includes numerous features that are redundant and unnecessary, leading to

a substantial memory occupation. For example, the memory size of the unikernel

compiled from UKL [301] is 148MB (with the image size of 14MB), which is too

122 6.5. Guest Unikernel Analysis

large for serverless computing. Consequently, I customize my unikernel following

four principles: (1) Reducing the kernel memory footprints and image size (e.g.,

disabling unnecessary features like debug-info and ftrace); (2) Retaining the fea-

tures essential for the serverless scenarios; (3) Ensuring no runtime performance

degradation; (4) Minimizing the possible attack surface from the untrusted hy-

pervisor (e.g., disabling the legacy and vulnerable MMIO-based APIC and port

I/O-based 8259A PIC). Finally, I effectively reduce the memory footprint of the

guest unikernel by about 112 MB and the size of the kernel image by by about

7.9MB.

For the SEV support, since the latest SEV version has introduced multiple novel

features (e.g., GHCB and VMPL), I need to merge them into the guest unikernel,

which requires substantial modifications in the Linux codebase. In summary, the

following functionalities are integrated in my unikernel: (1) GHCB protocols sup-

port. I add logic code for supporting GHCB protocols used to communicate with

the hypervisor. (2) VMPL detection. I add the mechanism that enables the uniker-

nel to read information from the secret page supplied by the hypervisor to detect

which VMPL it is running. (3) Module calling protocols. I add protocol implemen-

tations in the guest unikernel to enable communication with the Neuralyzer layer,

allowing the data transmission and delegation of privileged operations to VMPL0.

6.5.2 Memory Layout Analysis

As mentioned in the design challenge, I need to minimize the snapshot to achieve

fast and lightweight serverless services, which in turn requires us to identify and

only save those necessary memory portions. Although leveraging a unikernel has

substantially reduced the complexity of analyzing the memory layout of the guest

OS, the construction of a lightweight snapshot remains a challenging task. The

guest unikernel preserves the standard Linux virtual address space split between

user and kernel, as shown in Figure 6.8. The function stack and heap are still

created in the user space, while kernel data structures (e.g., task structs, file tables)

and kernel memory management services (e.g., kmalloc and vmalloc) reside in

the kernel space. The function code is statically linked with the kernel code and

executes in the kernel mode, meaning that the ELF segments of the function are

merged into the kernel text/data segments, instead of being loaded into the user

Chapter 6. Neuralyzer 123

Figure 6.8: Memory layout of the guest unikernel

space. Consequently, the system calls between the workload function and the Linux

kernel are replaced by function calls, eliminating the overhead caused by the mode

switch.

The complexity of the snapshot design arises from the kernel threads spawned in

the kernel space, each responsible for various tasks, e.g., scheduling or networking.

As the internal attackers own the highest guest privileges, they can arbitrarily

corrupt these kernel threads to craft attacks. This significantly expands the attack

surface, forcing us to include both the function process and dozens of kernel threads

into the protected targets that need to be restored. Fortunately, with a thorough

analysis of the kernel memory layout, I find the kernel memory space is divided

into various blocks and and I can simplify the snapshot design by identifying which

kernel block should be saved into the snapshot:

▶ Kernel ELF segments. The predominant part within a Linux kernel ELF file

is the .text segment (e.g., 28MB memory in my setting), which houses the binary

code of the kernel and workload function. Adhering to OS principles, the text

segment is expected to be write-protected, ensuring the integrity of this memory

segment throughout the VM life cycle. So I can just save the .data and .bss

segments, which contain global kernel symbols, including the kernel page tables.

Note that a malicious privileged user can alter the kernel code. I address this issue

by fixing the access permission on the text segment, as shown in Section 6.6.1.

▶Kernel data structures. During the initiation of kernel threads, various kernel

data structures would be generated and the memory allocation for these structures

124 6.6. Neuralyzer Layer Design

is achieved by kmalloc with the help of slab system. These kernel structures

exclusively acquire byte-sized chunks that are physically contiguous within the

directly mapping area. Hence, the snapshot of data structures used in all kernel

threads can be directly accomplished by saving the contiguous memory content

within the directly mapping area. The start guest physical address (gPA) of this

area is fixed and known by the Neuralyzer layer (KASLR [304] is disabled).

▶ Kernel allocated memory. Different from compact kernel structures, kernel

stacks have much larger and fixed sizes. In recent Linux versions, the kernel stack

size for x86 64 is usually 16 KB (KASAN [305] is disabled). The kernel would use

vmalloc to allocate this large memory inside the vmalloc area. As these pages are

virtually contiguous but randomly mapped to the guest physical memory, it needs

to record their gPAs for subsequent snapshot saving. I achieve it by modifying

the Linux kernel code. Specifically, the gPAs of allocated pages are recorded in

the kernel function vmalloc node range(), which is invoked for allocating kernel

stacks and other large memory in kernel. Interrupt stacks can be directly saved as

they are statically allocated.

6.6 Neuralyzer Layer Design

In this section, I present the design of the Neuralyzer layer for achieving secure,

fast and verifiable state restoration of the SEV VM. I describe the mechanisms of

the Restore Module and the Attestation Module in detail.

6.6.1 Fix Memory Access Permission

Before the design of two privileged modules, I need to address an issue proposed

in Section 6.5.2, i.e., the originally write-protected .text segment in the guest

unikernel can be altered by a malicious user sharing this cached VM. Considering

the text segment typically has a large memory size of dozens of megabytes, I tend

to ensure its write-protection instead of saving it into the snapshot, as the latter

significantly increases the snapshot footprints. The integration of RMP and VMPL

provides an opportunity to achieve this goal. Each RMP entry corresponds to a host

physical page allocated to the SEV VM, recording each VMPL’s access permissions

Chapter 6. Neuralyzer 125

to this page, as shown in Figure 6.2. While VMPL0, i.e., the Neuralyzer layer, is

enabled with full permissions, it can selectively grant specific permissions to lower-

privileged VMPL, e.g., VMPL3, where the guest unikernel runs. The restriction of

access permissions is maintained by the SEV hardware. Therefore, when VMPL0

sets the text segment in the guest unikernel as unwritable for VMPL3, even an

attacker with the highest privilege within the guest OS, i.e., ring 0 in VMPL3,

cannot alter the kernel code, just resulting in a #VMEXIT(NPF). To implement

this, the Neuralyzer layer first uses the pvalidate instruction to validate memory

pages containing the kernel text segment, whose gPA is known and fixed. Then the

rmpadjust instruction is called to remove the write permission of VMPL3 on these

pages. After that, the text segment in the guest unikernel is set as unwritable and

can be protected by the SEV hardware from malicious corruptions.

6.6.2 Restore Module

The restore module is expected to remove alterations made by previous users and

bring the guest OS to a known good initial state. Its overall idea follows the

basic Save/Restore method: it first creates a clean snapshot by copying the guest

memory and vCPU states, and later restores the snapshot by writing back the saved

memory content and vCPU states. To achieve the fast and lightweight confidential

serverless computing, the snapshot size should be minimized.

Snapshot Design. According to the analysis results in Section 6.5.2, the memory

snapshot comprises the kernel space (i.e., the kernel ELF segments, the directly

mapping area and the vmalloc area) and the user space (i.e., the function stack

and heap). Among these memory portions, the .text segment is fixed as write-

protected, so that it can be removed from the snapshot. The function stack and

heap are initially empty before the execution of the workload function. Hence, I

can directly set them to 0 when restoring the snapshot. Note that the canary used

for protecting stack data is disabled, as it is actually ineffective in my threat model.

Consequently, the memory snapshot only needs to contain three memory portions:

(1) kernel data segments (.data and .bss segments); (2) the directly mapping area

containing the kernel data structures; (3) recorded kernel pages that are allocated

in the vmalloc area (i.e., normal memory). Unlike the function stack, kernel stacks

may contain specific data used by running kernel threads, so that they cannot be

126 6.6. Neuralyzer Layer Design

Figure 6.9: Workflow of restore module

directly cleaned. Considering the kernel data segments are sized in megabytes, they

are much larger than the other two saved portions, which are only sized in bytes

or kilobytes. Consequently, the kernel data portion constitutes the majority of the

saved snapshot, which is only size of a few megabytes. Capturing the snapshot of

vCPU states is a simple process. It can be achieved by directly saving the VMSA

of VMPL3, which saves all register states for the guest unikernel.

Module Workflow. Figure 6.9 illustrates the workflow of the restore module.

During the initial booting of the guest unikernel, the gPAs of necessary memory

portions (MP) for the snapshot are recorded and subsequently reported to the

Neuralyzer layer (red lines). Then the SEV VM switches to VMPL0 and the

contents of these memory portions are read and saved to a designated buffer inside

the Neuralyzer layer (green lines). The saving process occurs only once during

the initial boot stage, which is restricted by a boolean flag. The restoring of the

snapshot is triggered by a QEMU request when a new function invocation comes.

The SEV VM would switch to VMPL0 to share a GHCB page with QEMU, which

is used to perform protocol communication and confirm the restore request. Then

the Neuralyzer layer restores the saved data back to the recorded gPAs, which is

simply a reverse process of snapshot saving, or just sets specific memory portions

(i.e., function stack and heap) to zero. The writing zero is achieved with the rep

stos assembly code, which has been highly optimized by hardware microcode, to

accelerate the process.

From the perspective of VMPL0, it owns the highest privilege within the SEV

VM and consequently controls the entire memory space of the VM. Specifically,

Chapter 6. Neuralyzer 127

Figure 6.10: Workflow of attestation module

the Neuralyzer layer shares the same guest physical address space with the guest

unikernel, while they have their own guest virtual address space. Hence, for the

Neuralyzer layer, writing data into the guest unikernel memory is analogous to

writing data into its own physical memory space, which leads to rapid operations.

6.6.3 Attestation Module

In the context of confidential serverless computing, remote users should possess

the capability of verifying the integrity of restored guest OS states within the SEV

VM. Although the SEV hardware has provided a remote attestation mechanism,

as I mentioned before, it is too heavy for my scenario that only requires attesting

the guest unikernel states. The original SEV attestation covers multiple redundant

components, like the binary code of the Neuralyzer layer, which have already been

verified during the initial booting. Since they are free from the potential attackers

(i.e., attacker cannot corrupt VMPL0), I do not need to repeatedly verify them.

Consequently, I tend to implement an attestation module nested in the Neuralyzer

layer, only focusing on the guest OS states and sending the attestation report to

remote users.

Module Workflow. Figure 6.10 illustrates the workflow of the attestation mod-

ule. Adhering to industry practices, I employ delegated remote attestation. In

this approach, a gateway server, also encapsulated within an SEV VM, conducts

128 6.7. Evaluation

attestation for all working SEV VMs and subsequently self-attests to remote users.

Therefore, when remote users perform attestation to the gateway server, they can

verify the confidentiality of both the gateway server and all associated SEV VMs.

AT the VM deployment stage, a secure communication channel is first established

to protect data transmission (step a). Then the SEV VM is deployed and the

initial SEV attestation is performed (step b). Finally, a public-private key pair

for signing attestation reports is generated in the attestation module. While the

public key is signed by the SEV certificate chain and transmitted to an attestation

service via the established secure channel, the private key remains confidential and

is never shared externally (step c).

The subsequent remote user who calls this function executor will send a challenge

with a plaintext nonce to the gateway server, which further relays the request to

the hypervisor (step 1). Note that the nonce is a random number generated by the

remote user, used to identify the user and mitigate possible replay attacks. The

hypervisor then invokes a restore request to the Neuralyzer layer with the received

nonce (step 2). After the restoring process is finished, the Neuralyzer layer will

generate and sign an attestation report containing the hash of the guest OS states

and the random nonce (step 3). The report is then sent to the remote user, who

will verify the signature according to the public key stored in the attestation service

(step 4). Finally, the remote user will validate the hash of the workload and the

sent nonce to confirm if the guest VM has been restored to a known clean state

(step 5). After that, the user can send the secret data through HTTPS requests or

event triggers with the relaying of the gateway server.

6.7 Evaluation

6.7.1 Experimental Setup

Testbed. I conduct my experiments on a server workstation with an AMD EPYC

7313P CPU (16 cores) [306] and 64 GB memory. The SEV-SNP extension and

RMP memory are enabled in the host BIOS. The host OS is Ubuntu 22.04.3 with

a Linux kernel version of 6.5.0 customized by AMD [300] for supporting the latest

SEV features.

Chapter 6. Neuralyzer 129

Implementation. The Neuralyzer system is implemented on top of five com-

ponents with 4725 LoC: (1) Host Linux kernel supporting the latest SEV features

(e.g., RMP and VMPL), which is directly downloaded from AMD official reposi-

tory [300] and deployed on the testbed; (2) QEMU hypervisor supporting SEV API

features and GHCB protocols, which is modified based on the AMD official version

[307], adding 457 LoC to implement the restore query mechanism; (3) Neuralyzer

layer running at VMPL0, which is modified based on the AMD proof-of-concept

VMPL implementations[308, 309] with 2054 LoC, where 1483 LoC is for the restore

module and 571 LoC is for the attestation module; (4) Guest unikernel modified

based on the AMD’s Linux branch [300] and the UKL implementation [310], where

1850 LoC is added; (5) Gateway server, containing a simple HTTPS relay service

sealed in a SEV VM, which is implemented with 364 LoC. The code will be publicly

available on GitHub.

Baseline. I consider the following three systems as baselines: (1) Native SEV VM:

the guest VM is directly cold-started based on the SEV extension; (2) Save/Restore:

the save/restore optimization is implemented for the SEV VM using AMD official

snapshot APIs (SEND * and RECEIVE *); (3) Vanilla snapshot: With the existence

of the Neuralyzer layer, the entire guest memory is saved as the snapshot for the

restore module. Note that (2) and (3) both employ the save/restore optimization,

but the former performs outside the VM while the latter performs inside the VM.

6.7.2 Startup Latency

As a critical metric for assessing serverless executors, the startup latency refers to

the time interval from the initialization of the executor to the moment it is ready to

execute the workload function. The startup latency of a SEV VM varies depending

on the guest memory size, i.e., the memory size allocated to the guest OS. Figure

6.11a illustrates the startup latency of three baselines and my Neuralyzer system.

From the figure, I can see that the startup latency increases with the guest memory

size. Among these four systems, the save/restore method implemented with AMD

APIs performs even worse than the native SEV VM, taking minutes to restore a

snapshot for the VM. This aligns with my earlier analysis in Section 6.3. As for

the vanilla snapshot method, since it directly saves the entire guest memory as a

snapshot, it involves the cumbersome copying of numerous unnecessary memory

130 6.7. Evaluation

(a) Startup Latency

(b) Memory Footprints

Figure 6.11: Comparison with three baselines

portions, such as the function stack/heap pages that can be directly set to 0. Hence,

although the vanilla snapshot also can reduce the startup latency to a few hundred

milliseconds, its performance decreases significantly with the increasing of guest

memory size. In contrast, my Neuralyzer system achieves the shortest startup

latency, which on average is 259× faster than the native SEV VM. The primary

overhead of Neuralyzer arises from zeroing the function heap, while the saved

kernel memory portions in the snapshot are only size of about 10MB and can be

restored within 14ms.

Chapter 6. Neuralyzer 131

Name Description
helloworld Minimal function
float operations Compute (sin, cos, sqrt) values
matmul Square matrix multiplication
linpack Solve linear equations Ax = b
image processing JPEG image rotation
pyaes Text encryption with an AES block-cipher

Table 6.2: Serverless workload functions from FunctionBench

6.7.3 Memory Overhead

The fast startup of Neuralyzer comes with the price of higher memory overhead,

as the SEV VM requires additional memory space for the Neuralyzer layer, which

stores the module code and the saved snapshot. Figure 6.11b shows the memory

footprints of the VM with varying guest memory size. The memory footprints

denote the memory size occupied by the VM, including both the guest unikernel

and the Neuralyzer layer (if present). From the figure, I can see that the native

SEV VM and the save/restore method would not induce extra memory overhead,

as their memory footprints equal to the allocated guest memory size. The vanilla

snapshot method leads to about double memory footprints, as the entire guest

memory is saved within the Neuralyzer layer. In contrast, Neuralyzer only has

a slight memory overhead, as it just saves those necessary memory portions, which

are quite small with only a few megabytes. In my implementation, the Neuralyzer

layer occupies 32MB memory and is protected inside the VMPL0. Consequently,

Neuralyzer achieves a good performance in terms of both startup latency and

memory overhead.

6.7.4 End-to-End Performance

I present six end-to-end tests to show how Neuralyzer can reduce latency for

real-world serverless functions. The workload functions are collected from the

representative FunctionBench [278] suite, as shown in Table 6.2. The six workloads

cover various scenarios used in serverless computing, ranging from light function

calls and simple operations to heavy computation and complex image processing.

The guest VM instance has a single vCPU and the guest memory size is set as

256MB, which is the typical setting in the serverless computing.

132 6.7. Evaluation

Func Name
Time Breakdown (ms)

Total (ms)
RR R/L GR VS EXE

M
y
N
e
u
r
a
l
y
z
e
r helloworld 13.15 37.19 27.98 59.63 1.30 139.25

float operations 13.52 37.84 28.91 60.68 5.82 146.77
matmul 12.91 36.93 27.63 58.32 6.17 141.96
linpack 13.02 38.01 27.11 59.87 6.54 145.35
image processing 12.99 37.65 28.34 59.26 247.57 385.81
pyaes 13.66 37.54 28.14 61.48 24.41 164.69

N
at

iv
e

S
E

V
V

M helloworld 0.95 13423 N/A N/A 1.26 13425.21
float operations 1.01 13746 N/A N/A 5.25 13752.26
matmul 0.89 13584 N/A N/A 6.93 13591.82
linpack 1.08 13512 N/A N/A 6.18 13519.26
image processing 0.93 13556 N/A N/A 261.86 13818.79
pyaes 0.99 13786 N/A N/A 25.89 13812.88

Table 6.3: Time breakdown of end-to-end function execution, including Re-
quest Relay (RR), Restore/Launch (R/L), Generate Report (GR), Verify Signa-
ture (VS) and Execution (EXE).

To further explore the internal details of the end-to-end function execution process,

I break down the execution time into five stages: Request Relay, Restore/Launch,

Generate Report, Verify Signature and Execution. The time consumption for

each stage is recorded and then used to compare the performance between the

Neuralyzer system and the native SEV VMs, as shown in Table 6.3 and Fig-

ure 6.12. The results demonstrate that my system can significantly enhance the

end-to-end performance, achieving an average service latency that is 84× shorter.

For the native SEV VMs, the launching (R/L) stage incurs the most substantial

overhead, which results in significant delays and resource wastage. In my system,

the verification of signature (VS) consumes the most time, as it involves multiple

steps, such as receiving the report, requesting the public key from the attestation

service, and verifying the correctness of the decrypted report contents. Addition-

ally, the request relay stage takes slightly longer time in my system. This is because

it invokes the QEMU to send the restore query, resulting in a world switch from

VMPL3 to VMPL0 in the guest VM, and a writing of user nonce into the GHCB

page. These additional operations result in a longer latency compared to the cor-

responding stage in the native SEV VMs, which just requests QEMU to launch the

VM.

Chapter 6. Neuralyzer 133

Figure 6.12: Time breakdown of end-to-end function execution on Neuralyzer
(left bars) and native SEV VM(right bars).

6.7.5 Overhead of the Initial Booting

Unfortunately, the presence of the Neuralyzer layer within the guest VM increases

the overhead of initial booting. Figure 6.13 shows the initial launch latency and

memory footprints of a guest VM with and without the VMPL0 layer. From

the figure, I can see that the Neuralyzer system experiences significantly longer

initial booting latency compared to the native SEV VM. This is mainly caused by

three additional operations introduced into the Neuralyzer system. The primary

contributor is the startup of additional VMPL0 layer, accounting for about 90% of

the increased time latency. As the controller within the VM, the Neuralyzer layer

must be booted before the guest unikernel. Besides, the fix of access permissions on

kernel text segment also brings extra time overhead, during the initial loading of the

guest unikernel into the guest physical memory space. This operation involves the

execution of pvalidate and rmpadjust instructions by the VMPL0 layer, which

modify the host RMP table. Finally, the process of saving the snapshot from the

guest unikernel into the Neuralyzer layer also introduces time overhead, which

however is much less significant compared to the previous two operations. For the

memory overhead, as mentioned in Section 6.7.3, the Neuralyzer layer only brings

slight memory overhead, as indicated by the dashed lines in the figure.

Although the initial booting of Neuralyzer is heavier than the native SEV envi-

ronment, it is actually a one-time overhead as all subsequent invocations execute

on the same caching confidential VM. Therefore, I consider that the initial booting

134 6.8. Security Analysis

Figure 6.13: Initial booting performance

overhead can be easily amortized over multiple function executions, which is also

a consensus in the industry [257].

6.8 Security Analysis

I perform a systematic security analysis of the Neuralyzer system. Specifically,

I enumerate the possible attack vectors including the external attackers, internal

attackers and the attacks from both sides. I describe how Neuralyzer is designed

to defend against these attacks.

From external hypervisor. The SEV hardware has defeated most traditional

attacks from the external privileged hypervisor. Here I give two representative

examples:

1. Reporting false system parameters. The malicious hypervisor can report false

system values (e.g., CPUID values or current time) to the guest VM, which could

confuse the guest users or even corrupt the VM environment. To defend against

such attack, the SEV hardware would check the inconsistency of reported sys-

tem values, like validating the CPUID results stored on a special guest page or

confirming current time with the SecureTSC feature [1].

2. Injecting arbitrary exceptions. The malicious hypervisor can inject arbitrary

exceptions (e.g., spurious page faults) into a normal VM. However, in the SEV

scenario, the hardware adds an interrupt restriction mechanism to prohibit the

Chapter 6. Neuralyzer 135

hypervisor from injecting interrupts other than a newly-added #HV vector, which

places all interrupts under its monitoring.

As noted in my threat model, I trust that the SEV hardware can work correctly

in accordance with the official specifications to defend the confidential VM from

the malicious hypervisor. Hence, I tend to pay more attention to the new attack

surface introduced in my design.

3. Building snapshot during initial boot. The SEV attestation provides effective

security guarantee for the initial booting of the SEV VM, as the deployment process

is well measured and the initialization hash is confirmed to check if there is any

mismatch with the expected results. This step ensures that the guest unikernel

and Neuralyzer binary code are clean and perform the expected functionality,

including the correct construction of the snapshot. The snapshot can only be

created once during the initial booting, thereby preventing subsequent guest users

from modifying its content.

4. Delaying/forging restore query. The restore module is invoked by a query from

QEMU, so the malicious hypervisor can delay or even forge the query to disturb

the guest VM. However, any delay or refusal to send the restore query only leads

to a denial of service (DoS), as the remote user would not send the secret data

before receiving the attestation report signed by the Neuralyzer layer. Forging a

restore query would force a reset of the guest environment, where a guest user may

be running. It is also a DoS attack as it blocks the function execution. The guest

user only receives an error and his secret is still sealed within the VM.

5. Replay attacks. The malicious hypervisor can perform replay attacks by sending

previous signed reports to cheat the remote user that the guest VM has been

restored to a clean state. However, the introduced user nonce in my design can

effectively defeat such attack, as it results in different hash reports for each function

invocation. The replayed reports would be detected through the nonce mismatch.

From internal users. The internal attackers own the highest privileges within

the guest OS, enabling them to compromise and control the entire guest OS to

perform attacks:

1. Corrupting the Neuralyzer layer. The malicious users way want to modify

the snapshot content or even the module code sealed in the Neuralyzer layer, so

136 6.9. Conclusion

that the restoring of clean states would fail. But the isolation between VMPLs

is maintained by the SEV hardware, meaning the guest OS running at VMPL3

cannot corrupt data sealed inside VMPL0.

2. Injecting malicious code. The internal attacker may try to inject malicious code

into the guest OS, aiming to embed a backdoor. Since I have fixed the write-

protection of kernel text segment, the attacker cannot rewrite the kernel code.

3. Deploying code gadgets. The attacker can also craft a malicious code gadget

in the guest memory and expect subsequent users to inadvertently execute it.

However, my restoring mechanism overwrites all data fields, so that the attacker

cannot leave any changes within the guest OS memory.

From both sides. Considering the scenario that both the guest user and hypervi-

sor are malicious, they may attempt to cooperate to compromise the Neuralyzer

layer. However, the VMPL0 layer is securely encrypted and isolated from both

external attackers and also other internal privilege layers. Besides, the world

switch between various VPMLs is well protected by the SEV hardware, making

Neuralyzer secure even in such scenario.

6.9 Conclusion

I propose Neuralyzer, the first VM-based confidential serverless computing system

that aims to reduce the startup latency of function executors built upon the SEV

VM. By restoring clean states for cached VMs, I can significantly reduce the startup

latency for a function invocation, while also ensuring the security of user secrets.

My experiments show that Neuralyzer can dramatically reduce the startup latency

of serverless functions and it also demonstrates satisfactory performance on real-

world benchmark workloads.

Chapter 7

Conclusion and Future Work

In this chapter, I first give a summary of the work conducted in this thesis and

then discuss some future research directions based on my current results.

7.1 Conclusion

Confidential computing has emerged as a critical security technology to address se-

curity and privacy challenges, making it a prominent topic in contemporary security

technologies. By harnessing collaborative security in both hardware and software,

it establishes a Trusted Execution Environment to guarantee confidentiality and

integrity protection for data in use. As widely acknowledged, confidential comput-

ing systems are poised to serve as the next generation of computing infrastructures,

applicable to emerging information technologies such as cloud computing, big data,

and artificial intelligence. Unfortunately, currently proposed confidential comput-

ing systems are still in the early stages, with many vulnerable attack surfaces,

particularly susceptible to threats from micro-architectural side-channel attacks.

Consequently, it is urgent to perform a security analysis on existing confidential

computing systems, aiming to identify those potential attack vectors and present

efficient defenses. Furthermore, the design of novel confidential computing systems

for recently emerging workloads is also important. In this thesis, I concentrate on

addressing these issues by investigating new attack vectors, proposing unified de-

fense frameworks and integrating sophisticated workloads to design novel systems.

137

138 7.1. Conclusion

This research starts with NASPY, a novel DNN model extraction attack targeting

the sealed TEE sandbox. Model extraction attack is a conventional topic in the

AI security domain, which however only focuses on hand-crafted models that just

contain vanilla operations and normally requires tremendous manual analysis. My

work achieves the first automatic model stealing of novel NAS models that adopt

sophisticated operations without requiring any prior knowledge. Most importantly,

I leverage side-channel analysis to bypass the isolation of TEE sandboxes and

prove the feasibility of revealing secrets from confidential computing systems. This

work shows the vulnerability of existing TEE systems with practical attacks and

highlights the motivation of this thesis.

After that, I propose a unified defense framework Aegis to mitigate those side

channels that have not been well explored but also pose significant threats, e.g.,

Hardware Performance Counter side channels. Through comprehensive profiling of

the selected victim application, I can identify all vulnerable HPC events that could

potentially leak sensitive information. Then I can conduct effective code gadgets to

obfuscate these identified events with fuzzing techniques. By injecting code gadgets

inside the confidential VM, the side-channel leakages can be well hidden from the

malicious hypervisor, so that preventing the extraction of sensitive information.

Finally, I integrate confidential computing with emerging workloads to propose

a novel confidential AI system and a novel confidential serverless computing sys-

tem. The confidential AI system combines the TEE sandbox and DNN model

watermark to ensure the ownership verification of IP models. I propose the first

architecture-based watermark scheme that embeds watermark into the DNN model

architectures. Given that such a watermark can be identified through side-channel

analysis, I can verify it even when the stolen model is concealed within an encrypted

black box. My watermark scheme provides great effectiveness, usability, robust-

ness, and uniqueness for protecting DNN model ownership. Besides, I also design

a novel confidential serverless computing system, which can reuse the cached TEE

executor without compromising user privacy, ensuring data confidentiality while

maintaining significant performance of serverless computing. Compared to simply

integrating confidential computing with serverless computing, my design can sig-

nificantly reduce the startup latency of the function executor by nearly hundreds

of times.

Chapter 7. Conclusion 139

7.2 Future Work

Following my dissertation research, there is still a lot more to be explored in the

future.

• More novel attack vectors. As a sophisticated system, confidential com-

puting systems expose a large attack surface. Apart from side-channel at-

tacks discussed in this thesis, it still has numerous potential attack methods,

which mainly can be divided into three classes: software attacks, transient

execution attacks and faults injection attacks. The Iago attack [311] is a typ-

ical software attack against system calls, wherein an untrustworthy operating

system attacks the confidential applications by crafting the return value of

system calls. Transient execution attacks [75, 76] are actually variants of

side-channel attacks, which leverage speculative execution and out-of-order

execution mechanisms to obtain sensitive information. As for the faults injec-

tion attacks, e.g., Rowhammer attacks [312], they expose secret information

by triggering physical or software-based faults in computations, thereby dam-

aging the security of TEE sandboxes. All of these advanced attack vectors

have the potential to be used for breaching confidential computing systems,

making them worthy subjects of study in future research.

• Defenses for other side channels. Designing side-channel defense mech-

anisms for confidential computing systems is a difficult topic, as I need to si-

multaneously consider both performance and security. Besides, given the sig-

nificant difference between various TEE techniques, i.e., process-based TEE

and system-based TEE, it is impossible to propose a generic defense frame-

work for all existing TEE sandboxes. In this thesis, my main focus is on

HPC side channels, with other side channels left unexplored. While other

side channels, like cache side channels, also pose significant threats to con-

fidential computing systems, it is essential to mitigate these leakage sources

to enhance the security guarantee of TEE sandboxes.

• Application on large language models. With the increasing popularity

of Large Language Models (LLMs), integrating the LLMs serving workloads

with confidential computing appears to be a promising research direction.

Given that current LLMs platforms typically require users to upload their

140 7.2. Future Work

sensitive data to online LLM APIs for inference, it exposes the privacy of

user secrets to potentially malicious LLM providers. However, it is infeasible

to seal the entire LLM inside a TEE sandbox, as it would significantly increase

the performance overhead. Partitioning the LLM into the sensitive part and

public part is a promising idea. The sensitive part is sealed in TEE sandbox

for protecting security while the public part runs outside with high computing

resources. I will leave it as a future work.

Chapter 7. Conclusion 141

List of Publications

• Xiaoxuan Lou, Kangjie Chen, Guowen Xu, Han Qiu, Shangwei Guo, Tian-

wei Zhang. Protecting Confidential Virtual Machines from Hardware Perfor-

mance Counter Side Channels. in IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 2024.

• Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Tianwei Zhang. Ownership Veri-

fication of DNN Architectures via Hardware Cache Side Channels. In IEEE

Transactions on Circuits and Systems for Video Technology (TCSVT), 2023.

• Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Yaoxin Wu, Tianwei Zhang. NASPY:

Automated Extraction of Automated Machine Learning Models. in Proceed-

ings of the International Conference on Learning Representations (ICLR),

2022 (Spotlight Paper).

• Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, Yinqian Zhang. A survey of

microarchitectural side-channel vulnerabilities, attacks, and defenses in cryp-

tography. in ACM Computing Surveys (CSUR), 2022.

• Xiaoxuan Lou, Dmitrii Ustiugov, Tianwei Zhang. Enabling Fast and Se-

cure Function Cold Starts in Confidential Serverless Systems. Submitted to

a Conference.

• Kangjie Chen*, Xiaoxuan Lou*, Guowen Xu, Jiwei Li, Tianwei Zhang.

Clean-image Backdoor: Attacking Multi-label Models with Poisoned Labels

Only. in Proceedings of the International Conference on Learning Represen-

tations (ICLR), 2023 (Oral Paper).

• Xiaobei Yan, Xiaoxuan Lou, Guowen Xu, Han Qiu, Shangwei Guo, Chip

Hong Chang, Tianwei Zhang. Mercury: An Automated Remote Side-channel

Attack to Nvidia Deep Learning Accelerator. in IEEE International Confer-

ence on Field-Programmable Technology (FPT), 2023.

Bibliography

[1] A Micro Devices. Amd64 architecture programmer’s manual volume 2: Sys-
tem programming. 2006, 2006. xvi, 112, 134

[2] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential serverless made effi-
cient with plug-in enclaves. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 306–318. IEEE, 2021.
xvi, 6, 17, 108, 111, 115, 116

[3] Confidential Computing Consortium et al. A technical analysis of confi-
dential computing (v1. 1). The Linux Foundation, San Francisco, Califor-
nia (confidentialcomputing. io/wp-content/uploads/sites/85/2021/03/CCC-
Tech-Analysis-Confidential-Computing-V1. pdf), 2021. 3

[4] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint
Archive, 2016. 3, 108

[5] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption.
White paper, 2016. 3, 42, 45, 112

[6] Intel® trust domain extensions (intel® tdx). [Online], . https:

//www.intel.com/content/www/us/en/developer/articles/technical/

intel-trust-domain-extensions.html. 3, 13, 40, 42, 46, 109

[7] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller,
and Manuel Costa. Strong and efficient cache side-channel protection using
hardware transactional memory. In USENIX Security Symposium, pages
217–233, 2017. 6, 15, 43

[8] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L Cox, and Sandhya
Dwarkadas. Shielding software from privileged side-channel attacks. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 1441–1458,
2018. 6, 15, 43

[9] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang.
Detecting privileged side-channel attacks in shielded execution with déjá vu.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Com-
munications Security, pages 7–18, 2017. 6, 15, 43

143

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

144 BIBLIOGRAPHY

[10] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx: Erad-
icating controlled-channel attacks against enclave programs. In NDSS, 2017.
6, 15, 43

[11] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside sgx enclaves with
branch shadowing. In USENIX Security Symposium, volume 19, pages 16–18,
2017. 6, 12, 15, 43

[12] Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, and Andrew
Paverd. Mitigating branch-shadowing attacks on intel sgx using control flow
randomization. In Proceedings of the 3rd Workshop on System Software for
Trusted Execution, pages 42–47, 2018. 6, 15, 43

[13] Jules Drean, Miguel Gomez-Garcia, Thomas Bourgeat, and Srinivas Devadas.
Citadel: Side-channel-resistant enclaves with secure shared memory on a
speculative out-of-order processor. arXiv preprint arXiv:2306.14882, 2023.
6, 16

[14] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Il-
ias Leontiadis, Andrea Cavallaro, and Hamed Haddadi. Darknetz: towards
model privacy at the edge using trusted execution environments. In Proceed-
ings of the 18th International Conference on Mobile Systems, Applications,
and Services, pages 161–174, 2020. 16

[15] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino,
and Nicolas Kourtellis. Ppfl: privacy-preserving federated learning with
trusted execution environments. In Proceedings of the 19th annual interna-
tional conference on mobile systems, applications, and services, pages 94–108,
2021. 16

[16] Aghiles Ait Messaoud, Sonia Ben Mokhtar, Vlad Nitu, and Valerio Schiavoni.
Gradsec: a tee-based scheme against federated learning inference attacks. In
Proceedings of the First Workshop on Systems Challenges in Reliable and
Secure Federated Learning, pages 10–12, 2021. 16

[17] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and pri-
vate execution of neural networks in trusted hardware. arXiv preprint
arXiv:1806.03287, 2018. 16

[18] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. Darknight: An
accelerated framework for privacy and integrity preserving deep learning us-
ing trusted hardware. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 212–224, 2021. 16

[19] Lucien KL Ng, Sherman SM Chow, Anna PY Woo, Donald PH Wong, and
Yongjun Zhao. Goten: Gpu-outsourcing trusted execution of neural network
training. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 14876–14883, 2021. 6, 16

BIBLIOGRAPHY 145

[20] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew Paverd, and Michael
Steiner. S-faas: Trustworthy and accountable function-as-a-service using
intel sgx. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud
Computing Security Workshop, pages 185–199, 2019. 6, 17, 108, 111

[21] Weizhong Qiang, Zezhao Dong, and Hai Jin. Se-lambda: Securing privacy-
sensitive serverless applications using sgx enclave. In Security and Privacy
in Communication Networks: 14th International Conference, SecureComm
2018, Singapore, Singapore, August 8-10, 2018, Proceedings, Part I, pages
451–470. Springer, 2018. 17

[22] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza. Ac-
ctee: A webassembly-based two-way sandbox for trusted resource accounting.
In Proceedings of the 20th International Middleware Conference, pages 123–
135, 2019. 17, 108, 111

[23] Stefan Brenner and Rüdiger Kapitza. Trust more, serverless. In Proceedings
of the 12th ACM International Conference on Systems and Storage, pages
33–43, 2019. 17, 108

[24] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and
Christof Fetzer. Clemmys: Towards secure remote execution in faas. In
Proceedings of the 12th ACM International Conference on Systems and Stor-
age, pages 44–54, 2019. 17

[25] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian Zhang,
and Zhiqiang Lin. Reusable enclaves for confidential serverless computing. In
32nd USENIX Security Symposium (USENIX Security 23), pages 4015–4032,
2023. 6, 17, 108, 111

[26] Zhenghong Wang and Ruby B Lee. Covert and side channels due to processor
architecture. In Annual Computer Security Applications Conference, 2006.
12

[27] Onur Aciicmez and Jean-Pierre Seifert. Cheap hardware parallelism implies
cheap security. In Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, 2007. 12

[28] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In IEEE Symposium on Security and Privacy, 2015. 12

[29] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret
keys via branch prediction. In Cryptographers’ Track at the RSA Conference,
2007. 12

[30] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida Garćıa, and Nicola Tuveri. Port contention for fun and profit. In
IEEE Symposium on Security and Privacy, 2019. 12

146 BIBLIOGRAPHY

[31] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of aes. In Cryptographers’ Track at the RSA Conference,
2006. 12

[32] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache at-
tacks on aes. In International Workshop on Selected Areas in Cryptography,
2006.

[33] Colin Percival. Cache missing for fun and profit, 2005. 12

[34] Onur Aciiçmez. Yet another microarchitectural attack: exploiting i-cache. In
ACM workshop on Computer security architecture, 2007.

[35] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-
vm side channels and their use to extract private keys. In ACM conference
on Computer and communications security, 2012.

[36] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Secu-
rity and Privacy, 2015.

[37] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In
International Conference on Cryptographic Hardware and Embedded Systems,
2016.

[38] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S $ a: A shared cache
attack that works across cores and defies vm sandboxing–and its application
to aes. In IEEE Symposium on Security and Privacy, 2015.

[39] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srd-
jan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache
attacks are practical. In USENIX Workshop on Offensive Technologies, 2017.
12

[40] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on Intel SGX. In European Workshop on Systems Security,
pages 1–6, 2017.

[41] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-resolution side
channels for untrusted operating systems. In USENIX ATC, 2017. 12

[42] Samira Briongos, Pedro Malagón, Juan-Mariano de Goyeneche, and Jose M
Moya. Cache misses and the recovery of the full aes 256 key. Applied Sciences,
2019.

[43] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results on in-
struction cache attacks. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, 2010.

BIBLIOGRAPHY 147

[44] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. In Annual
Design Automation Conference, 2016.

[45] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-by
key-extraction cache attacks from portable code. In International Conference
on Applied Cryptography and Network Security, 2018.

[46] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How
sgx amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems, 2017. 12

[47] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Na-
dia Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote: Efficiently
recovering long-term secrets of sgx epid via cache attacks. 2018.

[48] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. Malware guard extension: Using SGX to conceal cache
attacks. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 3–24. Springer, 2017. 12, 13

[49] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. Prime+
abort: A timer-free high-precision l3 cache attack using intel tsx. In USENIX
Security Symposium, 2017. 12

[50] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–
bringing access-based cache attacks on aes to practice. In IEEE Symposium
on Security and Privacy, 2011. 12

[51] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack. In USENIX Security Symposium, 2014.

[52] Joop van de Pol, Nigel P Smart, and Yuval Yarom. Just a little bit more. In
Cryptographers’ Track at the RSA Conference, 2015.

[53] Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom. ”ooh
aah... just a little bit”: A small amount of side channel can go a long way. In
International Workshop on Cryptographic Hardware and Embedded Systems,
2014.

[54] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template at-
tacks: Automating attacks on inclusive last-level caches. In USENIX Security
Symposium, 2015. 12

[55] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+ flush: a fast and stealthy cache attack. In Proceedings of DIMVA,
pages 279–299. Springer, 2016. 12

[56] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth.
Reload+ refresh: Abusing cache replacement policies to perform stealthy
cache attacks. In USENIX Security Symposium, 2020. 12

148 BIBLIOGRAPHY

[57] Moritz Lipp, Vedad Hažić, Michael Schwarz, Arthur Perais, Clémentine Mau-
rice, and Daniel Gruss. Take a way: Exploring the security implications of
amd’s cache way predictors. In ACM Asia Conference on Computer and
Communications Security, 2020. 12

[58] Wenjie Xiong and Jakub Szefer. Leaking information through cache lru
states. In IEEE International Symposium on High Performance Computer
Architecture, 2020. 12

[59] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing
attack on openssl constant-time rsa. Journal of Cryptographic Engineering,
2017. 12

[60] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar.
Memjam: A false dependency attack against constant-time crypto imple-
mentations. International Journal of Parallel Programming, 2019. 12

[61] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation
leak-aside buffer: Defeating cache side-channel protections with tlb attacks.
In USENIX Security Symposium, 2018. 12

[62] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp,
Marina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk
Sunar, et al. Fallout: Leaking data on meltdown-resistant cpus. In ACM
SIGSAC Conference on Computer and Communications Security, 2019. 12

[63] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy, pages 640–656. IEEE, 2015. 12,
13

[64] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
Preventing page faults from telling your secrets. In ACM on Asia Conference
on Computer and Communications Security, 2016.

[65] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky cauldron on
the dark land: Understanding memory side-channel hazards in sgx. In ACM
SIGSAC Conference on Computer and Communications Security, 2017.

[66] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. Telling your secrets without page faults: Stealthy page {Table-
Based} attacks on enclaved execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1041–1056, 2017. 12, 13

[67] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. Drama: Exploiting dram addressing for cross-cpu attacks. In
USENIX Security Symposium, 2016. 12

BIBLIOGRAPHY 149

[68] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed:
Reading bits in memory without accessing them. In IEEE Symposium on
Security and Privacy, 2020. 12

[69] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Annual International Cryptology Conference, 1996. 11

[70] Daniel J Bernstein. Cache-timing attacks on aes. Technical Report, 2005. 11

[71] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
aes. In International Workshop on Cryptographic Hardware and Embedded
Systems, 2006. 11

[72] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-
bandwidth acoustic cryptanalysis. In International cryptology conference,
2014. 11

[73] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my
laptop: Physical side-channel key-extraction attacks on pcs. Journal of Cryp-
tographic Engineering, 2015. 11

[74] Jean-Sébastien Coron. Resistance against differential power analysis for ellip-
tic curve cryptosystems. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, 1999. 11

[75] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin,
et al. Meltdown: Reading kernel memory from user space. In 27th USENIX
Security Symposium (USENIX Security 18), pages 973–990, 2018. 12, 73,
139

[76] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
Spectre attacks: Exploiting speculative execution. Communications of the
ACM, 63(7):93–101, 2020. 12, 118, 139

[77] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Secu-
rity and Privacy, pages 605–622, 2015. 12, 13, 42

[78] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In USENIX Security Symposium,
pages 719–732, 2014. 12, 94

[79] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans Locke, Ian
Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitraş. Security
analysis of deep neural networks operating in the presence of cache side-
channel attacks. arXiv preprint arXiv:1810.03487, 2018. 13, 80, 88

150 BIBLIOGRAPHY

[80] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy:
Leveraging shared resource attacks to learn DNN architectures. In USENIX
Security Symposium, pages 2003–2020, 2020. 13, 22, 23, 25, 26, 28, 32, 40,
50, 79, 80, 88, 90, 91, 93

[81] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN:
Reverse engineering of neural network architectures through electromagnetic
side channel. In USENIX Security Symposium, pages 515–532, 2019. 13, 80

[82] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E Balas. Steal-
ing neural networks via timing side channels. arXiv preprint, 2018. 13

[83] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng
Xie, Yufei Ding, Chang Liu, Timothy Sherwood, et al. DeepSniffer: A DNN
model extraction framework based on learning architectural hints. In In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, pages 385–399, 2020. 13, 16, 22, 23, 25, 27, 28, 31,
32, 80, 100

[84] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse engineering con-
volutional neural networks through side-channel information leaks. In 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2018. 13, 22

[85] Amdsev snp-latest branch. https://github.com/AMDESE/AMDSEV/tree/

snp-latest. 13, 114

[86] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical
attack framework for precise enclave execution control. In Proceedings of the
2nd Workshop on System Software for Trusted Execution, pages 1–6, 2017.
13

[87] Jan Werner, Joshua Mason, and et al. The severest of them all: Inference
attacks against secure virtual enclaves. In Proceedings of ACM AsiaCCS,
2019. 13, 42, 47

[88] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. Exploiting
unprotected I/O operations in AMD’s secure encrypted virtualization. In
28th USENIX Security Symposium (USENIX Security 19), pages 1257–1272,
2019. 13, 42

[89] Mathias Morbitzer, Sergej Proskurin, Martin Radev, Marko Dorfhuber, and
Erick Quintanar Salas. Severity: Code injection attacks against encrypted
virtual machines. In 2021 IEEE Security and Privacy Workshops (SPW),
pages 444–455. IEEE, 2021. 13, 42

[90] Mathias Morbitzer, Manuel Huber, and et al. Severed: Subverting amd’s
virtual machine encryption. In Proceedings of EuroSec, 2018. 13, 42

https://github.com/AMDESE/AMDSEV/tree/snp-latest
https://github.com/AMDESE/AMDSEV/tree/snp-latest

BIBLIOGRAPHY 151

[91] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual
machines. In ACM SIGPLAN Notices, 2017.

[92] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Crossline: Breaking”
security-by-crash” based memory isolation in amd sev. In Proceedings of
ACM CCS, 2021. 13, 42, 47, 118

[93] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring. In
IEEE/IFIP Intl. Conf. on Dependable Systems and Networks Workshops,
2011. 14

[94] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealthmem:
System-level protection against cache-based side channel attacks in the cloud.
In USENIX Conf. on Security Symposium, 2012. 14

[95] Yinqian Zhang and Michael K. Reiter. Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud. In ACM
Conf. on Computer and Communications Security, 2013. 14

[96] Michael Godfrey and Mohammad Zulkernine. A server-side solution to cache-
based side-channel attacks in the cloud. In IEEE Sixth International Con-
ference on Cloud Computing, 2013. 14

[97] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift.
Scheduler-based defenses against cross-vm side-channels. In USENIX Se-
curity Symposium, 2014. 14

[98] Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B Bobba, Sibin
Mohan, and Roy Campbell. Scheduling, isolation, and cache allocation: A
side-channel defense. In IEEE International Conference on Cloud Engineer-
ing, 2018. 14

[99] Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of com-
puter security, 1992. 14

[100] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine
grained timers in xen. In ACM Workshop on Cloud Computing Security,
2011. 14

[101] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp: re-
thinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In Annual International Symposium on Computer Ar-
chitecture, 2012. 15

[102] Peng Li, Debin Gao, and Michael K. Reiter. Stopwatch: A cloud architecture
for timing channel mitigation. ACM Trans. Inf. Syst. Secur., 2014. 15

[103] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. Thwarting cache side-channel attacks through dynamic software di-
versity. In Network and Distributed System Security Symposium, 2015. 15

152 BIBLIOGRAPHY

[104] Benjamin A Braun, Suman Jana, and Dan Boneh. Robust and efficient elim-
ination of cache and timing side channels. arXiv preprint arXiv:1506.00189,
2015. 15

[105] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li, Bin Liu, and Mingwei
Xu. Data poisoning attacks to deep learning based recommender systems.
arXiv preprint arXiv:2101.02644, 2021. 16

[106] Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea.
Subpopulation data poisoning attacks. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
3104–3122, 2021.

[107] Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang,
Jiwei Li, and Chun Fan. Badpre: Task-agnostic backdoor attacks to pre-
trained nlp foundation models. arXiv preprint arXiv:2110.02467, 2021.

[108] Kangjie Chen, Xiaoxuan Lou, Guowen Xu, Jiwei Li, and Tianwei Zhang.
Clean-image backdoor: Attacking multi-label models with poisoned labels
only. In The Eleventh International Conference on Learning Representations,
2022. 16

[109] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder
Cooper, Daphne Ippolito, Christopher A Choquette-Choo, Eric Wallace, Flo-
rian Tramèr, and Katherine Lee. Scalable extraction of training data from
(production) language models. arXiv preprint arXiv:2311.17035, 2023. 16

[110] Chuan Guo, Brian Karrer, Kamalika Chaudhuri, and Laurens van der
Maaten. Bounding training data reconstruction in private (deep) learning.
In International Conference on Machine Learning, pages 8056–8071. PMLR,
2022.

[111] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and
Yang Zhang. {Updates-Leak}: Data set inference and reconstruction attacks
in online learning. In 29th USENIX security symposium (USENIX Security
20), pages 1291–1308, 2020.

[112] Haomiao Yang, Mengyu Ge, Kunlan Xiang, and Jingwei Li. Using highly
compressed gradients in federated learning for data reconstruction attacks.
IEEE Transactions on Information Forensics and Security, 18:818–830, 2022.
16

[113] Wenbo Jiang, Hongwei Li, Guowen Xu, Tianwei Zhang, and Rongxing Lu.
A comprehensive defense framework against model extraction attacks. IEEE
Transactions on Dependable and Secure Computing, 2023. 16

[114] Xueluan Gong, Yanjiao Chen, Wenbin Yang, Guanghao Mei, and Qian Wang.
Inversenet: Augmenting model extraction attacks with training data inver-
sion. In IJCAI, pages 2439–2447, 2021. 16

BIBLIOGRAPHY 153

[115] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov.
Iron: functional encryption using intel sgx. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 765–
782, 2017. 17

[116] Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure
database using sgx. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 264–278. IEEE, 2018. 17

[117] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro, Nitish
Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann,
Nikolas Ogg, et al. Azure sql database always encrypted. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data,
pages 1511–1525, 2020. 17

[118] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yan-
shan Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, et al. Operon: An en-
crypted database for ownership-preserving data management. Proceedings of
the VLDB Endowment, 15(12):3332–3345, 2022. 17

[119] Jinwei Zhu, Kun Cheng, Jiayang Liu, and Liang Guo. Full encryption: An
end to end encryption mechanism in gaussdb. Proceedings of the VLDB
Endowment, 14(12):2811–2814, 2021. 17

[120] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts. In
2019 IEEE European Symposium on Security and Privacy (EuroS&P), pages
185–200. IEEE, 2019. 17

[121] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016. 22, 24, 79

[122] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture
search: A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.
22, 24

[123] Sanghyun Hong, Michael Davinroy, Yiğitcan Kaya, Dana Dachman-Soled,
and Tudor Dumitraş. How to 0wn NAS in your spare time. arXiv preprint
arXiv:2002.06776, 2020. 22, 23, 25, 26, 28, 40, 79

[124] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista
Biggio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. Why do adver-
sarial attacks transfer? explaining transferability of evasion and poisoning
attacks. In 28th {USENIX} Security Symposium ({USENIX} Security 19),
pages 321–338, 2019. 22

[125] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box
adversarial attacks with limited queries and information. In International
Conference on Machine Learning, pages 2137–2146. PMLR, 2018. 22

154 BIBLIOGRAPHY

[126] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-
bership inference attacks against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017. 22

[127] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards reverse-engineering
black-box neural networks. In Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning, pages 121–144. Springer, 2019. 22

[128] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-
Ghazaleh. Rendered insecure: Gpu side channel attacks are practical. In
Proceedings of the 2018 ACM SIGSAC conference on computer and commu-
nications security, pages 2139–2153, 2018. 22

[129] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018. 23, 24, 34, 39,
79, 86, 89, 90, 91, 92

[130] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in
four GPU hours. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1761–1770, 2019. 23, 24, 34, 79, 90, 91, 92, 94

[131] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture
search on imagenet in four gpu hours: A theoretically inspired perspective.
arXiv preprint arXiv:2102.11535, 2021. 23, 34

[132] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 8697–8710, 2018. 24, 79,
86, 89, 90, 92, 94

[133] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of repro-
ducible neural architecture search. arXiv preprint arXiv:2001.00326, 2020.
24, 34, 89

[134] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean.
Efficient neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268, 2018. 24, 79

[135] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethink-
ing evaluation fairness of weight sharing neural architecture search. arXiv
preprint arXiv:1907.01845, 2019. 24

[136] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and
Quoc Le. Understanding and simplifying one-shot architecture search. In
International Conference on Machine Learning, pages 550–559, 2018. 24

[137] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized
evolution for image classifier architecture search. In AAAI Conference on
Artificial Intelligence, volume 33, pages 4780–4789, 2019. 24, 90, 92

BIBLIOGRAPHY 155

[138] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-
objective neural architecture search via lamarckian evolution. arXiv preprint
arXiv:1804.09081, 2018. 24

[139] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS:
Eliminating unfair advantages in differentiable architecture search. In Euro-
pean Conference on Computer Vision, pages 465–480, 2020. 24, 90

[140] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan, Yungang Bao,
Mingyu Chen, and Ninghui Sun. Hmtt: A hybrid hardware/software tracing
system for bridging the dram access trace’s semantic gap. ACM Transactions
on Architecture and Code Optimization (TACO), 11(1):1–25, 2014. 25, 39

[141] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang
Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang
Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition
in english and mandarin. In International conference on machine learning,
pages 173–182. PMLR, 2016. 26

[142] Graham Neubig. Neural machine translation and sequence-to-sequence mod-
els: A tutorial. arXiv preprint arXiv:1703.01619, 2017. 26

[143] Md Sanzidul Islam, Sadia Sultana Sharmin Mousumi, Sheikh Abujar, and
Syed Akhter Hossain. Sequence-to-sequence bangla sentence generation with
lstm recurrent neural networks. Procedia Computer Science, 152:51–58, 2019.
26

[144] Kulothunkan Palasundram, Nurfadhlina Mohd Sharef, Khairul Azhar Kas-
miran, and Azreen Azman. Enhancements to the sequence-to-sequence-based
natural answer generation models. IEEE Access, 8:45738–45752, 2020. 26

[145] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot. High accuracy and high fidelity extraction of neural net-
works. In 29th {USENIX} Security Symposium ({USENIX} Security 20),
pages 1345–1362, 2020. 26

[146] Kazushige Goto and Robert A van de Geijn. Anatomy of high-performance
matrix multiplication. ACM Transactions on Mathematical Software, 34(3):
1–25, 2008. 29

[147] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D Cubuk, and Quoc V Le. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv preprint arXiv:1904.08779,
2019. 31

[148] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–
6008, 2017. 32

156 BIBLIOGRAPHY

[149] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian,
Hao Li, and Rong Jin. Zen-nas: A zero-shot nas for high-performance deep
image recognition. arXiv preprint arXiv:2102.01063, 2021. 39

[150] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path oram: an extremely simple obliv-
ious ram protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 299–310, 2013. 40

[151] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. Scattercache: Thwarting cache attacks via cache
set randomization. In 28th {USENIX} Security Symposium ({USENIX} Se-
curity 19), pages 675–692, 2019. 40

[152] Tan Qinhan, Zeng Zhihua, Bu Kai, et al. Phantomcache: Obfuscating cache
conflicts with localized randomization. In Proc of the 2020 NDSS Symp. San
Diego, CA: ISOC, 2020. 40

[153] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
Trusted execution environment: what it is, and what it is not. In 2015
IEEE Trustcom/BigDataSE/Ispa, volume 1, pages 57–64. IEEE, 2015. 42

[154] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Trusted exe-
cution environments: properties, applications, and challenges. IEEE Security
& Privacy, 18(2):56–60, 2020. 42

[155] Amd expands confidential computing presence on google
cloud. [Online], . https://www.amd.com/en/press-releases/

2022-05-25-amd-expands-confidential-computing-presence-google-cloud.
42

[156] Confidential computing: an aws perspective. [On-
line], . https://aws.amazon.com/blogs/security/

confidential-computing-an-aws-perspective/. 42

[157] Arm confidential compute architecture. [Online].
https://www.arm.com/architecture/security-features/

arm-confidential-compute-architecture. 42, 46, 109

[158] Amd64 architecture programmer’s manual, volume 2: System programming.
[Online], . https://www.amd.com/system/files/TechDocs/24593.pdf. 42

[159] AMD SEV-SNP. Strengthening vm isolation with integrity protection and
more. White Paper, January, 2020. 42, 43, 46, 112, 114

[160] Sanjeev Das, Bihuan Chen, and et al. Ropsentry: Runtime defense against
rop attacks using hardware performance counters. Computers & Security,
73:374–388, 2018. 43

https://www.amd.com/en/press-releases/2022-05-25-amd-expands-confidential-computing-presence-google-cloud
https://www.amd.com/en/press-releases/2022-05-25-amd-expands-confidential-computing-presence-google-cloud
https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.amd.com/system/files/TechDocs/24593.pdf

BIBLIOGRAPHY 157

[161] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Cloudradar: A real-time
side-channel attack detection system in clouds. In Proceedings of RAID,
pages 118–140. Springer, 2016.

[162] Xueyang Wang and Ramesh Karri. Reusing hardware performance counters
to detect and identify kernel control-flow modifying rootkits. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 35(3):
485–498, 2015. 43

[163] Ning Zhang, Kun Sun, and et al. Truspy: Cache side-channel information
leakage from the secure world on arm devices. IACR Cryptol. ePrint Arch.,
2016:980, 2016. 43, 45

[164] Moritz Lipp, Daniel Gruss, and et al. Armageddon: Cache attacks on mobile
devices. In USENIX Security Symposium, 2016. 45

[165] Berk Gulmezoglu, Andreas Zankl, and et al. Perfweb: How to violate web
privacy with hardware performance events. In Proceedings of ESORICS,
pages 80–97, 2017. 45, 47

[166] Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede. Exploiting hardware
performance counters. In Proceedings of FDTC-Workshop, 2008. 45

[167] Sarani Bhattacharya and Debdeep Mukhopadhyay. Who watches the watch-
men?: Utilizing performance monitors for compromising keys of rsa on intel
platforms. In Proceedings of CHES, pages 248–266. Springer, 2015. 43, 45,
47

[168] Intel tdx module specification 1.5. [Online], . https://cdrdv2.intel.com/
v1/dl/getContent/733575. 43

[169] Azure confidential vm options. [Online], . https://learn.microsoft.com/
en-us/azure/confidential-computing/virtual-machine-solutions. 43

[170] Google cloud confidential vm overview. [Online], . https:

//cloud.google.com/confidential-computing/confidential-vm/

docs/confidential-vm-overview. 43

[171] Amazon ec2 user guide. [Online], . https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/sev-snp.html. 43

[172] Azure linux virtual machines pricing. [Online], . https://azure.microsoft.
com/en-gb/pricing/details/virtual-machines/linux/. 43

[173] Google confidential vm supported configurations. [Online], . https:

//cloud.google.com/confidential-computing/confidential-vm/docs/

supported-configurations. 43

[174] David Kaplan. Protecting vm register state with sev-es. White paper, 2017.
46

https://cdrdv2.intel.com/v1/dl/getContent/733575
https://cdrdv2.intel.com/v1/dl/getContent/733575
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://cloud.google.com/confidential-computing/confidential-vm/docs/supported-configurations
https://cloud.google.com/confidential-computing/confidential-vm/docs/supported-configurations
https://cloud.google.com/confidential-computing/confidential-vm/docs/supported-configurations

158 BIBLIOGRAPHY

[175] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software Engi-
neering, 47(11):2312–2331, 2019. 46

[176] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. Redqueen: Fuzzing with input-to-state correspondence. In
NDSS, volume 19, pages 1–15, 2019. 46

[177] Sam Hocevar. Zzuf. [Online]. https://github.com/samhocevar/zzuf/. 46

[178] Tim Blazytko, Matt Bishop, Cornelius Aschermann, Justin Cappos, Moritz
Schlögel, Nadia Korshun, Ali Abbasi, Marco Schweighauser, Sebastian
Schinzel, Sergej Schumilo, et al. {GRIMOIRE}: Synthesizing structure while
fuzzing. In 28th USENIX Security Symposium (USENIX Security 19), pages
1985–2002, 2019. 46

[179] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. Codealchemist:
Semantics-aware code generation to find vulnerabilities in javascript engines.
In NDSS, 2019. 46

[180] Christopher Domas. Breaking the x86 isa. Black Hat, 2017. 46

[181] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Chris-
tian Rossow. Osiris: Automated discovery of microarchitectural side chan-
nels. In 30th USENIX Security Symposium (USENIX Security 21), pages
1415–1432, 2021. 46

[182] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. Speechminer: A frame-
work for investigating and measuring speculative execution vulnerabilities.
arXiv preprint arXiv:1912.00329, 2019. 46

[183] M Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar. Fast-
spec: Scalable generation and detection of spectre gadgets using neural em-
beddings. In 2021 IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 616–632. IEEE, 2021. 46

[184] Cynthia Dwork. Differential privacy. In Proceedings of ICALP, pages 1–12.
Springer, 2006. 46

[185] Konstantinos Chatzikokolakis, Miguel E Andrés, and et al. Broadening the
scope of differential privacy using metrics. In Proceedings of PETs, 2013. 46

[186] Qiuyu Xiao, Michael K Reiter, and Yinqian Zhang. Mitigating storage side
channels using statistical privacy mechanisms. In Proceedings of ACM CCS,
pages 1582–1594, 2015. 47, 50, 62, 64

[187] Xiaokuan Zhang, Jihun Hamm, and et al. Statistical privacy for streaming
traffic. In Proceedings of NDSS, 2019. 47, 62

https://github.com/samhocevar/zzuf/

BIBLIOGRAPHY 159

[188] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Ray-
chowdhury, and Shreyas Sen. X-deepsca: Cross-device deep learning side
channel attack. In Proceedings of the 56th Annual Design Automation Con-
ference 2019, pages 1–6, 2019. 48

[189] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Analyzing cache side
channels using deep neural networks. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages 174–186, 2018. 48

[190] Amd secure encrypted virtualization (sev) github repository. [Online], .
https://github.com/AMDESE/AMDSEV. 48

[191] Payap Sirinam, Mohsen Imani, and et al. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In Proceedings of ACM
CCS, 2018. 48

[192] Wladimir De la Cadena, Asya Mitseva, and et al. Trafficsliver: Fighting
website fingerprinting attacks with traffic splitting. In Proceedings of ACM
CCS, 2020.

[193] Anatoly Shusterman, Lachlan Kang, and et al. Robust website fingerprinting
through the cache occupancy channel. In USENIX Security Symposium, 2019.
48

[194] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International con-
ference on machine learning, pages 448–456. PMLR, 2015. 48

[195] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.
49

[196] Alexa top 1000 most visited websites. [Online]. https://www.htmlstrip.

com/alexa-top-1000-most-visited-websites. 49

[197] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of
keystrokes and timing attacks on SSH. In 10th USENIX Security Symposium
(USENIX Security 01), 2001. 49, 55

[198] Suman Jana and Vitaly Shmatikov. Memento: Learning secrets from process
footprints. In 2012 IEEE Symposium on Security and Privacy, pages 143–
157. IEEE, 2012. 49, 50

[199] Ubuntu manpage for xdotool. [Online]. https://manpages.ubuntu.com/

manpages/trusty/man1/xdotool.1.html. 50

[200] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ris-
tenpart. Stealing machine learning models via prediction apis. In USENIX
Security Symposium, pages 601–618, 2016. 50

https://github.com/AMDESE/AMDSEV
https://www.htmlstrip.com/alexa-top-1000-most-visited-websites
https://www.htmlstrip.com/alexa-top-1000-most-visited-websites
https://manpages.ubuntu.com/manpages/trusty/man1/xdotool.1.html
https://manpages.ubuntu.com/manpages/trusty/man1/xdotool.1.html

160 BIBLIOGRAPHY

[201] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin
Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. Open dnn box by
power side-channel attack. IEEE Transactions on Circuits and Systems II:
Express Briefs, 67(11):2717–2721, 2020. 50

[202] Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Yaoxin Wu, and Tianwei Zhang.
Naspy: Automated extraction of automated machine learning models. In
International Conference on Learning Representations, 2021. 50

[203] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
Connectionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376, 2006. 50

[204] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555, 2014. 50

[205] Pytorch models and pretrained weights. [Online]. https://pytorch.org/

vision/stable/models.html. 50

[206] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. Sok: The challenges, pitfalls, and perils of using hardware
performance counters for security. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 20–38. IEEE, 2019. 52

[207] perfmon2 libpfm-4.11.0 released. [Online], . http://perfmon2.

sourceforge.net/. 54

[208] Linux kernel profiling with perf: multiplexing and scaling events. [Online].
https://perf.wiki.kernel.org/index.php/Tutorial#multiplexing_

and_scaling_events. 54

[209] Karl Pearson. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin philosophical magazine and
journal of science, 2(11):559–572, 1901. 55

[210] Ramanathan Gnanadesikan and Martin B Wilk. Probability plotting meth-
ods for the analysis of data. Biometrika, 55(1):1–17, 1968. 55

[211] Andreas Abel and Jan Reineke. uops.info: Characterizing latency, through-
put, and port usage of instructions on intel microarchitectures. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 673–686, 2019. 58

[212] T-H Hubert Chan, Elaine Shi, and et al. Private and continual release of
statistics. ACM Transactions on Information and System Security, 2011. 63

[213] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best
information is most successful. Cryptology ePrint Archive, 2019. 70, 73

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/
https://perf.wiki.kernel.org/index.php/Tutorial##multiplexing_and_scaling_events
https://perf.wiki.kernel.org/index.php/Tutorial##multiplexing_and_scaling_events

BIBLIOGRAPHY 161

[214] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 1–19. IEEE, 2019. 73

[215] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre
Seifert. One glitch to rule them all: Fault injection attacks against amd’s
secure encrypted virtualization. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2875–2889,
2021. 73, 117, 118

[216] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classifi-
cation with deep convolutional neural networks. Advances in Neural Infor-
mation Processing Systems, 25:1097–1105, 2012. 78

[217] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE CVPR, 2016.

[218] Shangwei Guo, Tianwei Zhang, Guowen Xu, Han Yu, Tao Xiang, and Yang
Liu. Topology-aware differential privacy for decentralized image classifica-
tion. IEEE Transactions on Circuits and Systems for Video Technology,
2021. 78

[219] Yang Wang, Xiaopeng Fan, Ruiqin Xiong, Debin Zhao, and Wen Gao. Neu-
ral network-based enhancement to inter prediction for video coding. IEEE
Transactions on Circuits and Systems for Video Technology, 32(2):826–838,
2021. 78

[220] Linghui Li, Yongdong Zhang, Sheng Tang, Lingxi Xie, Xiaoyong Li, and
Qi Tian. Adaptive spatial location with balanced loss for video captioning.
IEEE Transactions on Circuits and Systems for Video Technology, 32(1):
17–30, 2022. 78

[221] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018. 78

[222] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 78

[223] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent
Sifre, Tim Green, Chongli Qin, Augustin Ž́ıdek, Alexander WR Nelson, Alex
Bridgland, et al. Improved protein structure prediction using potentials from
deep learning. Nature, 577(7792):706–710, 2020. 78

[224] Lixin Luo, Zhenyong Chen, Ming Chen, Xiao Zeng, and Zhang Xiong. Re-
versible image watermarking using interpolation technique. IEEE Transac-
tions on Information Forensics and Security, 5(1):187–193, 2009. 78

162 BIBLIOGRAPHY

[225] Aniket Roy and Rajat Subhra Chakraborty. Toward optimal prediction er-
ror expansion-based reversible image watermarking. IEEE Transactions on
Circuits and Systems for Video Technology, 30(8):2377–2390, 2019.

[226] Han Fang, Dongdong Chen, Qidong Huang, Jie Zhang, Zehua Ma, Weiming
Zhang, and Nenghai Yu. Deep template-based watermarking. IEEE Transac-
tions on Circuits and Systems for Video Technology, 31(4):1436–1451, 2020.

[227] Qi Li, Xingyuan Wang, Bin Ma, Xiaoyu Wang, Chunpeng Wang, Suo Gao,
and Yunqing Shi. Concealed attack for robust watermarking based on gener-
ative model and perceptual loss. IEEE Transactions on Circuits and Systems
for Video Technology, 2021.

[228] Lizhi Xiong, Xiao Han, Ching-Nung Yang, and Yun-Qing Shi. Robust re-
versible watermarking in encrypted image with secure multi-party based on
lightweight cryptography. IEEE Transactions on Circuits and Systems for
Video Technology, 32(1):75–91, 2021.

[229] Jinkun You, Yuan-Gen Wang, Guopu Zhu, and Sam Kwong. Truncated ro-
bust natural watermarking with hungarian optimization. IEEE Transactions
on Circuits and Systems for Video Technology, 2021.

[230] Fei Peng, Bo Long, and Min Long. A general region nesting-based semi-
fragile reversible watermarking for authenticating 3d mesh models. IEEE
Transactions on Circuits and Systems for Video Technology, 31(11):4538–
4553, 2021. 78

[231] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Em-
bedding watermarks into deep neural networks. In ACM on International
Conference on Multimedia Retrieval, pages 269–277, 2017. 78, 81

[232] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. DeepSigns: An
end-to-end watermarking framework for protecting the ownership of deep
neural networks. In ACM ASPLOS, 2019. 81

[233] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet. Turning your weakness into a strength: Watermarking deep neural
networks by backdooring. In USENIX Security Symposium, pages 1615–1631,
2018. 78, 81, 83, 100

[234] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo
Zhou, Hao Cui, and Nenghai Yu. Model watermarking for image processing
networks. In AAAI Conference on Artificial Intelligence, volume 34, pages
12805–12812, 2020.

[235] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, and Yang Liu. Tem-
poral watermarks for deep reinforcement learning models. In International
Conference on Autonomous Agents and Multiagent Systems, 2021. 100

BIBLIOGRAPHY 163

[236] Hanzhou Wu, Gen Liu, Yuwei Yao, and Xinpeng Zhang. Watermarking
neural networks with watermarked images. IEEE Transactions on Circuits
and Systems for Video Technology, 31(7):2591–2601, 2020. 78

[237] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li,
and Dawn Song. REFIT: A unified watermark removal framework for deep
learning systems with limited data. ACM AsiaCCS, 2021. 78, 100

[238] Masoumeh Shafieinejad, Jiaqi Wang, Nils Lukas, Xinda Li, and Florian Ker-
schbaum. On the robustness of the backdoor-based watermarking in deep
neural networks. arXiv preprint arXiv:1906.07745, 2019.

[239] Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. Removing backdoor-
based watermarks in neural networks with limited data. arXiv preprint
arXiv:2008.00407, 2020. 78

[240] Shangwei Guo, Tianwei Zhang, Han Qiu, Yi Zeng, Tao Xiang, and Yang Liu.
Fine-tuning is not enough: A simple yet effective watermark removal attack
for DNN models. International Joint Conference on Artificial Intelligence,
2021. 78, 100

[241] Ryota Namba and Jun Sakuma. Robust watermarking of neural network
with exponential weighting. In ACM AsiaCCS, 2019. 79, 81

[242] William Aiken, Hyoungshick Kim, and Simon Woo. Neural network launder-
ing: Removing black-box backdoor watermarks from deep neural networks.
arXiv preprint arXiv:2004.11368, 2020. 79

[243] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and
Koray Kavukcuoglu. Hierarchical representations for efficient architecture
search. arXiv preprint arXiv:1711.00436, 2017. 79, 89

[244] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. SMASH:
One-shot model architecture search through hypernetworks. arXiv preprint
arXiv:1708.05344, 2017. 79

[245] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier
stitching for remote neural network watermarking. Neural Computing and
Applications, pages 1–12, 2019. 81

[246] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin,
Heqing Huang, and Ian Molloy. Protecting intellectual property of deep
neural networks with watermarking. In ACM AsiaCCS, 2018. 81, 83

[247] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How to prove
your model belongs to you: A blind-watermark based framework to protect
intellectual property of DNN. In Annual Computer Security Applications
Conference, pages 126–137, 2019. 81

164 BIBLIOGRAPHY

[248] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-
Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Pro-
gressive neural architecture search. In European Conference on Computer
Vision, pages 19–34, 2018. 92

[249] Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? arXiv
preprint arXiv:1312.6184, 2013. 102

[250] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015. 102

[251] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural net-
works with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016. 103

[252] Aws lambda. https://aws.amazon.com/lambda/, . 108

[253] Azure functions. https://azure.microsoft.com/en-us/products/

functions/, . 108

[254] Google cloud functions. https://cloud.google.com/functions/, . 108

[255] Eduard Marin, Diego Perino, and Roberto Di Pietro. Serverless computing:
a security perspective. Journal of Cloud Computing, 11(1):1–12, 2022. 108

[256] Carlos Segarra, Tobin Feldman-Fitzthum, Daniele Buono, and Peter Piet-
zuch. Serverless confidential containers: Challenges and opportunities. In
Proceedings of the 2nd Workshop on SErverless Systems, Applications and
MEthodologies, pages 32–40, 2024. 108

[257] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich,
and Ricardo Bianchini. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 USENIX annual
technical conference (USENIX ATC 20), pages 205–218, 2020. 108, 109, 111,
115, 134

[258] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. Peeking behind the curtains of serverless platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 133–146, 2018. 108

[259] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, BingSheng He, and Minyi
Guo. The serverless computing survey: A technical primer for design archi-
tecture. ACM Computing Surveys (CSUR), 54(10s):1–34, 2022. 108

[260] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori,
Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight virtualization for serverless applications. In 17th USENIX sym-
posium on networked systems design and implementation (NSDI 20), pages
419–434, 2020. 108, 113, 115

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://cloud.google.com/functions/

BIBLIOGRAPHY 165

[261] Google gvisor. https://gvisor.dev/. 108, 113

[262] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin
Zha, Qiang Wang, Weidong Han, and Minyi Guo. {RunD}: A lightweight
secure container runtime for high-density deployment and high-concurrency
startup in serverless computing. In 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22), pages 53–68, 2022. 108

[263] Cloud hypervisor. https://www.cloudhypervisor.org/. 108

[264] Intel 12th generation intel® core™ processors datasheet. https://cdrdv2.

intel.com/v1/dl/getContent/655258, . 108

[265] Amd secure encrypted virtualization (sev). https://www.amd.com/en/

developer/sev.html, . 109, 112

[266] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Replayable execution opti-
mized for page sharing for a managed runtime environment. In Proceedings
of the Fourteenth EuroSys Conference 2019, pages 1–16, 2019. 109, 117

[267] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, analysis, and optimization of serverless function
snapshots. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 559–572, 2021.

[268] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 467–481, 2020. 109, 116

[269] Lixiang Ao, George Porter, and Geoffrey M Voelker. Faasnap: Faas made
fast using snapshot-based vms. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 730–746, 2022. 109, 117

[270] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. {SAND}: Towards
{High-Performance} serverless computing. In 2018 Usenix Annual Technical
Conference (USENIX ATC 18), pages 923–935, 2018. 109, 116

[271] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo
Chen. Serverless computing on heterogeneous computers. In Proceedings of
the 27th ACM international conference on architectural support for program-
ming languages and operating systems, pages 797–813, 2022. 109, 116

[272] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing with
shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on Oper-
ating Systems Principles, pages 691–707, 2021. 109, 115

https://gvisor.dev/
https://www.cloudhypervisor.org/
https://cdrdv2.intel.com/v1/dl/getContent/655258
https://cdrdv2.intel.com/v1/dl/getContent/655258
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html

166 BIBLIOGRAPHY

[273] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. {SOCK}: Rapid task pro-
visioning with {Serverless-Optimized} containers. In 2018 USENIX annual
technical conference (USENIX ATC 18), pages 57–70, 2018. 109, 115

[274] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. Seuss: skip redundant paths to make serverless fast.
In Proceedings of the Fifteenth European Conference on Computer Systems,
pages 1–15, 2020. 110, 113, 120

[275] Bo Tan, Haikun Liu, Jia Rao, Xiaofei Liao, Hai Jin, and Yu Zhang. To-
wards lightweight serverless computing via unikernel as a function. In 2020
IEEE/ACM 28th International Symposium on Quality of Service (IWQoS),
pages 1–10. IEEE, 2020.

[276] Henrique Fingler, Amogh Akshintala, and Christopher J Rossbach. Usetl:
Unikernels for serverless extract transform and load why should you settle
for less? In Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop
on Systems, pages 23–30, 2019.

[277] Chetankumar Mistry, Bogdan Stelea, Vijay Kumar, and Thomas Pasquier.
Demonstrating the practicality of unikernels to build a serverless platform
at the edge. In 2020 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pages 25–32. IEEE, 2020. 110, 113, 120

[278] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for
serverless cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), pages 502–504. IEEE, 2019. 110, 131

[279] Confidential Computing Consortium. Confidential computing:
Hardware-based trusted execution for applications and data.
https://confidentialcomputing.io/wp-content/uploads/sites/

10/2023/03/CCC_outreach_whitepaper_updated_November_2022.pdf.
111

[280] Kata containers with amd sev-snp vms. https://github.com/

kata-containers/kata-containers/blob/main/docs/how-to/

how-to-run-kata-containers-with-SNP-VMs.md. 111, 114

[281] Attestable, confidential workloads with libkrun and amd sev-snp. https:

//virtee.io/attestable-confidential-workloads-libkrun/, . 111, 114

[282] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. Characterizing serverless
platforms with serverlessbench. In Proceedings of the 11th ACM Symposium
on Cloud Computing, pages 30–44, 2020. 111

[283] David Kaplan. Protecting vm register state with sev-es. White paper, page 13,
2017. 112

https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/CCC_outreach_whitepaper_updated_November_2022.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/CCC_outreach_whitepaper_updated_November_2022.pdf
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/how-to-run-kata-containers-with-SNP-VMs.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/how-to-run-kata-containers-with-SNP-VMs.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/how-to-run-kata-containers-with-SNP-VMs.md
https://virtee.io/attestable-confidential-workloads-libkrun/
https://virtee.io/attestable-confidential-workloads-libkrun/

BIBLIOGRAPHY 167

[284] Sev-es guest hypervisor communication block (ghcb) standard-
ization. https://www.amd.com/content/dam/amd/en/documents/

epyc-technical-docs/specifications/56421.pdf. 112

[285] Anil Madhavapeddy and David J Scott. Unikernels: Rise of the virtual library
operating system: What if all the software layers in a virtual appliance were
compiled within the same safe, high-level language framework? Queue, 11
(11):30–44, 2013. 113

[286] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer,
Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My vm is
lighter (and safer) than your container. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 218–233, 2017. 113

[287] Ricardo Koller and Dan Williams. Will serverless end the dominance of
linux in the cloud? In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, pages 169–173, 2017. 113

[288] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. Fades: Fine-grained edge
offloading with unikernels. In Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems, pages 36–41, 2017. 113

[289] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazag-
naire, David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj
Singh, Jon Ludlam, et al. Jitsu:{Just-In-Time} summoning of unikernels. In
12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), pages 559–573, 2015. 113

[290] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applica-
tions from an untrusted cloud with haven. ACM Transactions on Computer
Systems (TOCS), 33(3):1–26, 2015. 113

[291] Chia-Che Tsai, Donald E Porter, and Mona Vij. {Graphene-SGX}: A prac-
tical library {OS} for unmodified applications on {SGX}. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 645–658, 2017. 113

[292] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang, Rong
Chen, and Haibo Chen. No provisioned concurrency: Fast {RDMA-
codesigned} remote fork for serverless computing. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 23), pages
497–517, 2023. 116

[293] Third sgx community day. https://community.intel.com/t5/Blogs/

Tech-Innovation/Data-Center/Third-SGX-Community-Day/post/

1393177. 116

[294] Secure encrypted virtualization api. https://www.amd.com/content/

dam/amd/en/documents/epyc-technical-docs/programmer-references/

55766_SEV-KM_API_Specification.pdf, . 117

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56421.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56421.pdf
https://community.intel.com/t5/Blogs/Tech-Innovation/Data-Center/Third-SGX-Community-Day/post/1393177
https://community.intel.com/t5/Blogs/Tech-Innovation/Data-Center/Third-SGX-Community-Day/post/1393177
https://community.intel.com/t5/Blogs/Tech-Innovation/Data-Center/Third-SGX-Community-Day/post/1393177
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf

168 BIBLIOGRAPHY

[295] Jianqiang Wang, Pouya Mahmoody, Ferdinand Brasser, Patrick Jauernig,
Ahmad-Reza Sadeghi, Donghui Yu, Dahan Pan, and Yuanyuan Zhang. Vir-
tee: A full backward-compatible tee with native live migration and secure
i/o. In Proceedings of the 59th ACM/IEEE Design Automation Conference,
pages 241–246, 2022. 117

[296] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos
defense mechanisms. ACM SIGCOMM Computer Communication Review,
34(2):39–53, 2004. 118

[297] Wubing Wang, Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Pwrleak:
Exploiting power reporting interface for side-channel attacks on amd sev.
In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 46–66. Springer, 2023. 118

[298] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng.
CIPHERLEAKS: Breaking constant-time cryptography on AMDSEV via the
ciphertext side channel. In 30th USENIX Security Symposium (USENIX
Security 21), pages 717–732, 2021. 118

[299] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth.
Sevurity: No security without integrity: Breaking integrity-free memory en-
cryption with minimal assumptions. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1483–1496. IEEE, 2020. 118

[300] The latest sev-snp linux branch. https://github.com/AMDESE/linux/

tree/snp-host-latest, . 121, 128, 129

[301] Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul Sohal, Ulrich
Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry Woodman, Renato
Mancuso, et al. Unikernel linux (ukl). In Proceedings of the Eighteenth
European Conference on Computer Systems, pages 590–605, 2023. 121

[302] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-
per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Woodman.
Unikernels: The next stage of linux’s dominance. In Proceedings of the Work-
shop on Hot Topics in Operating Systems, pages 7–13, 2019.

[303] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A linux in
unikernel clothing. In Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–15, 2020. 121

[304] Kernel address space layout randomization (kaslr). https://lwn.net/

Articles/569635/, . 124

[305] Kernel address sanitizer (kasan). https://docs.kernel.org/dev-tools/

kasan.html, . 124

[306] Amd epyc™ 7313p cpu. https://www.amd.com/en/products/cpu/

amd-epyc-7313p, . 128

https://github.com/AMDESE/linux/tree/snp-host-latest
https://github.com/AMDESE/linux/tree/snp-host-latest
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://docs.kernel.org/dev-tools/kasan.html
https://docs.kernel.org/dev-tools/kasan.html
https://www.amd.com/en/products/cpu/amd-epyc-7313p
https://www.amd.com/en/products/cpu/amd-epyc-7313p

BIBLIOGRAPHY 169

[307] Qemu branch for sev-snp. https://github.com/AMDESE/qemu/tree/

snp-latest, . 129

[308] Linux svsm (secure vm service module). https://github.com/AMDESE/

linux-svsm/, . 129

[309] Coconut secure vm service module. https://github.com/coconut-svsm/

svsm. 129

[310] Unikernel linux (ukl). https://github.com/unikernelLinux/ukl. 129

[311] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call
api is a bad untrusted rpc interface. ACM SIGARCH Computer Architecture
News, 41(1):253–264, 2013. 139

[312] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of dram disturbance errors.
ACM SIGARCH Computer Architecture News, 42(3):361–372, 2014. 139

https://github.com/AMDESE/qemu/tree/snp-latest
https://github.com/AMDESE/qemu/tree/snp-latest
https://github.com/AMDESE/linux-svsm/
https://github.com/AMDESE/linux-svsm/
https://github.com/coconut-svsm/svsm
https://github.com/coconut-svsm/svsm
https://github.com/unikernelLinux/ukl

	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Main Work
	1.3 Contribution of the Thesis
	1.4 List of Materials Related to the Thesis
	1.5 Outline of the Thesis

	2 Related Works
	2.1 Micro-architectural Side-channel Studies
	2.1.1 Side-channel Attacks
	2.1.2 Defenses against Side Channels

	2.2 Novel Confidential Computing System Designs
	2.2.1 Confidential Machine Learning (ML)
	2.2.2 Confidential Distributed Computing

	I New Side-channel Investigation in Confidential Computing
	3 Automated Extraction of Automated Machine Learning Models
	3.1 Introduction
	3.2 Background
	3.2.1 Neural Architecture Search (NAS)
	3.2.2 Hardware attacks
	3.2.3 Sequence-to-sequence learning

	3.3 Framework Overview
	3.3.1 Threat Model
	3.3.2 Attack Overview

	3.4 Detailed Design
	3.4.1 Operation Sequence Identification
	3.4.2 Hyper-parameter Recovery
	3.4.3 Model Topology Reconstruction

	3.5 Evaluation
	3.5.1 Operation Sequence Identification
	3.5.2 Hyper-parameter Recovery
	3.5.3 Model Topology Reconstruction

	3.6 Discussions
	3.7 Conclusion

	4 Protecting Confidential Virtual Machines from Hardware Performance Counter Side Channels
	4.1 Introduction
	4.2 Background and Related Works
	4.2.1 Hardware Performance Counters
	4.2.2 Secure Encrypted Virtualization
	4.2.3 Fuzzing
	4.2.4 Differential Privacy

	4.3 HPC Side Channels
	4.3.1 Threat Model
	4.3.2 Abstraction of HPC Side-channel Attacks
	4.3.3 Website Fingerprinting Attack
	4.3.4 Keystroke Sniffing Attack
	4.3.5 Model Extraction Attack

	4.4 Framework Overview
	4.5 Application Profiler
	4.5.1 Challenges
	4.5.2 Profiling Design

	4.6 Event Fuzzer
	4.6.1 Challenges
	4.6.2 Design Overview
	4.6.3 Instruction Cleanup
	4.6.4 Code Generation and Execution
	4.6.5 Result Confirmation
	4.6.6 Gadgets Filtering

	4.7 Event Obfuscator
	4.7.1 Challenges and Insight
	4.7.2 Differential Privacy Mechanisms
	4.7.3 Design Details

	4.8 Evaluation
	4.8.1 Profiling Evaluation
	4.8.2 Fuzzing Evaluation
	4.8.3 Defense Effectiveness
	4.8.4 Defense Efficiency

	4.9 Discussion
	4.9.1 Alternative Defense Strategies
	4.9.2 Analysis with Multiple Tries

	4.10 Conclusion

	II New Designs for Confidential Computing with Emerging Applications
	5 Ownership Verification of DNN Architectures via Hardware Cache Side Channels
	5.1 Introduction
	5.2 Related Works on DNN Watermarking
	5.2.1 White-box solutions
	5.2.2 Black-box solutions

	5.3 Preliminaries
	5.3.1 Definition of A NAS Method
	5.3.2 Definition of A Watermarking Scheme

	5.4 My Watermarking Scheme
	5.4.1 Watermark Generation (WMGen)
	5.4.2 Watermark Embedding (Mark)
	5.4.3 Watermark Verification (Verify)
	5.4.4 Theoretical Analysis

	5.5 Side Channel Extraction
	5.5.1 Method Overview
	5.5.2 Recovery of NAS Operations

	5.6 Evaluation
	5.6.1 Experimental Setup
	5.6.2 Effectiveness
	5.6.2.1 Key Generation
	5.6.2.2 Watermark Embedding
	5.6.2.3 Watermark Extraction and Verification

	5.6.3 Usability
	5.6.4 Robustness
	5.6.5 Uniqueness

	5.7 Conclusion

	6 Enabling Fast and Secure Function Cold Starts in Confidential Serverless Systems
	6.1 Introduction
	6.2 Background
	6.2.1 Confidential Serverless Computing
	6.2.2 AMD SEV
	6.2.3 Unikernel

	6.3 Motivation
	6.3.1 Startup Latency of SEV VM
	6.3.2 Analysis of Startup Optimizations

	6.4 System Overview
	6.4.1 Threat Model
	6.4.2 Design Principles & Challenges
	6.4.3 System Architecture and Workflow

	6.5 Guest Unikernel Analysis
	6.5.1 Adaptations for Confidential Serverless
	6.5.2 Memory Layout Analysis

	6.6 Neuralyzer Layer Design
	6.6.1 Fix Memory Access Permission
	6.6.2 Restore Module
	6.6.3 Attestation Module

	6.7 Evaluation
	6.7.1 Experimental Setup
	6.7.2 Startup Latency
	6.7.3 Memory Overhead
	6.7.4 End-to-End Performance
	6.7.5 Overhead of the Initial Booting

	6.8 Security Analysis
	6.9 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

