
Security Investigation of Autonomous

Driving Systems

Xingshuo Han

School of Computer Science and Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2024

http://www.ntu.edu.sg
https://www.ntu.edu.sg/scse




Statement of Originality

I hereby certify that the work embodied in this thesis is the result

of original research, is free of plagiarised materials, and has not been

submitted for a higher degree to any other University or Institution.

26-Sep-2023
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date Xingshuo Han





Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiargism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

26-Sep-2023
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date Asst Prof Tianwei Zhang





Authorship Attribution Statement

Please select one of the following; *delete as appropriate:

This thesis contains material from 3 paper published in the follow-

ing peer-reviewed journal(s) / from papers accepted at conferences

in which I am listed as an author.

Please amend the typical statements below to suit your circumstances if (B) is
selected.

Chapter 6 is published as Xingshuo Han, Yuan Zhou, Kangjie Chen, Han Qiu,
Meikang Qiu, Yang Liu and Tianwei Zhang, ADS-lead: Lifelong anomaly detec-
tion in autonomous driving systems. in IEEE Transactions on Intelligent Trans-
portation Systems, 2022. https://ieeexplore.ieee.org/abstract/document/9690769.
DOI: 10.1109/TITS.2021.3122906.

A Unified Anomaly Detection Methodology for Lane-Following of Autonomous
Driving Systems. in IEEE International Symposium on Parallel and Distributed
Processing with Applications, 2021. https://ieeexplore.ieee.org/abstract/document
/9644710. DOI: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00119.

The contributions of the co-authors are as follows:

• I was the lead author, I wrote the manuscript drafts and conducted all ex-
periments.

• Prof Tianwei Zhang guided the initial research direction and revised the
manuscript drafts.

• I co-designed the methodology with Prof Tianwei and Dr. Yuan Zhou.

• Mr Kangjie, Prof Meikang Qiu and Prof Yang Liu discussed and supported
the research, and revised the drafts.

Chapter 3 is published as Xingshuo Han, Guowen Xu, Yuan Zhou, Xuehuan Yang,
Jiwei Li, Tianwei Zhang. Physical Backdoor Attacks to Lane Detection Systems in
Autonomous Driving. In Proceedings of the 30th ACM International Conference on
Multimedia, 2022. https://dl.acm.org/doi/abs/10.1145/3503161.3548171. DOI:
https://doi.org/10.1145/3503161.3548171

The contributions of the co-authors are as follows:

• I was the lead author, I wrote the manuscript drafts and conducted all ex-
periments.



viii

• Prof Tianwei Zhang guided the initial research direction and revised the
manuscript drafts.

• I co-designed the methodology with Prof Tianwei and Dr. Yuan Zhou.

• Dr. Guowen Xu, Mr. Xuehuan Yang, Prof Jiwei Li discussed and supported
the research, and revised the drafts.

26-Sep-2023
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date Xingshuo Han



Acknowledgements

It is the sixth year since I first came to Singapore to pursue a Ph.D. This modern

city has been my second hometown now. Looking back from the end of this road,

there are so many people I would like to thank, who are indispensable for this

wonderful journey full of passion, love, and growth.

As I stand at the end of my Ph.D. study, my heart brims with appreciation for

the numerous individuals who have played pivotal roles in this incredible journey.

First and foremost, I must extend my sincere gratitude to my supervisor, Prof

Tianwei Zhang, His invaluable guidance and support have been the bedrock upon

which this research journey was built. Professor Zhang’s expertise, encouragement,

and willingness to explore uncharted territories with me have been instrumental in

shaping this thesis. He has been supporting me in exploring many new directions,

which are often frustrating due to the unknown challenges. With his guidance

over the past few years, I have not only grown as a researcher but also gained the

confidence to conduct independent research. Besides my supervisor, I also would

like to thank my academic brother Prof Zhiguang Cao, who has guided and helped

me a lot when I was pursuing my Ph.D. degree.

I also extend my heartfelt thanks to Dr.Yuan Zhou, Dr.Guowen Xu and Dr Haozhao

Wang, whose insightful discussions and generous assistance enriched this work in

countless ways. Their contributions were indispensable, and without their support,

many of the projects I embarked upon would have remained unattainable.

Besides, my journey would not have been the same without the incredible com-

panionship of my lab mates - Kangjie Chen, Gelei Deng, Xiaoxuan Lou, Dikai

Liu, Yutong Wu, Haoran Ou, Guanlin Li, Qinghao Hu, Wei Gao, Dr Xiuheng Wu,

Tianlin Li, Dr. Yun Tang, Dr. Jianfei Sun, Dr. Hao Ren, Dr. Hangcheng Liu, Dr.

Yuan Xu and other guys. Project after project, they not only offered their helping

hands but also served as a continuous source of inspiration, pushing me to strive

for a higher stage.

ix



x

I would like to thank my administrative assistants Dr. Shi Ling and Ms. Zolynn

for making everything easier. Their meticulousness in administrative matters is

amazing but touching.

Also, I am also deeply thankful to my girlfriend, Ms Jing Wang, for her unwa-

vering support and understanding. Her love and motivation have been a constant

wellspring of inspiration, and I am profoundly grateful for her presence in my life.

Lastly, but certainly not least, I want to express my deep appreciation to my

family—my father, Junhua Han; my mother, Yanli Li; and my sister, Xingya Han.

Their unconditional love and unwavering encouragement have formed the bedrock

upon which my academic journey was built. This dissertation is dedicated to them

as a token of my love and gratitude.

To all those I’ve mentioned and to those whose names may have been unintention-

ally omitted, I extend my deepest thanks for your indispensable contributions to

this chapter of my life. The passion, love, and growth I’ve experienced throughout

this journey have been made possible by each of you, and for that, I am eternally

grateful.



Contents

Acknowledgements ix

List of Figures xv

List of Tables xix

Abstract 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Main Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 List of Materials Related to the Thesis . . . . . . . . . . . . . . . . 8

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 11

2.1 Physical Adversarial Attack to ADS Perception . . . . . . . . . . . 11

2.1.1 Physical Backdoor Attack . . . . . . . . . . . . . . . . . . . 12

2.1.2 Physical Adversarial Attack . . . . . . . . . . . . . . . . . . 12

2.1.2.1 Physical Attacks to Camera-based Perception . . . 13

2.1.2.2 Physical Attacks to MSF-based Perception . . . . . 13

2.1.2.3 Adversarial Mediums . . . . . . . . . . . . . . . . . 14

2.2 Physical Adversarial Attack to ADS Decision-making . . . . . . . . 15

2.3 Physical Adversarial Defense . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Certified Defenses . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Vision-based Consistency Checking . . . . . . . . . . . . . . 17

2.3.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . 18

3 A Comprehensive Platform for Benchmarking Backdoor Attacks
to the Perception Module in Autonomous Vehicles 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Backdoor Attacks . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xi



xii CONTENTS

3.2.3 Threat Model and Attack Scope . . . . . . . . . . . . . . . . 27

3.3 Platform Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Customized Interface . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1.1 Trigger Design . . . . . . . . . . . . . . . . . . . . 29

3.3.1.2 Target Functions and DL Models. . . . . . . . . . . 30

3.3.2 Synthesis Module . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2.1 Obstacle Detection . . . . . . . . . . . . . . . . . . 32

3.3.2.2 Lane Detection . . . . . . . . . . . . . . . . . . . . 33

3.3.2.3 Traffic Light Detection . . . . . . . . . . . . . . . . 34

3.3.3 Deployment Module . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3.1 AV Simulator . . . . . . . . . . . . . . . . . . . . . 35

3.3.3.2 Physical Vehicle . . . . . . . . . . . . . . . . . . . 35

3.3.4 Analysis Module . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4.1 Metric Calculation . . . . . . . . . . . . . . . . . . 36

3.3.4.2 Analysis Tools . . . . . . . . . . . . . . . . . . . . 37

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Benign Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Attack Feasibility . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2.1 Obstacle Detection . . . . . . . . . . . . . . . . . . 39

3.4.2.2 Lane Detection . . . . . . . . . . . . . . . . . . . . 42

3.4.2.3 Traffic Light Detection . . . . . . . . . . . . . . . . 43

3.4.3 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.3.1 Vulnerability Analysis . . . . . . . . . . . . . . . . 45

3.4.3.2 Trigger Analysis . . . . . . . . . . . . . . . . . . . 47

3.4.3.3 Environmental Impact Analysis . . . . . . . . . . . 48

3.4.3.4 Attack Goal Analysis . . . . . . . . . . . . . . . . . 50

3.4.3.5 Sensor Fusion Analysis . . . . . . . . . . . . . . . . 50

3.4.4 Extensible to Other Attack Techniques . . . . . . . . . . . . 52

3.4.5 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 A Dynamic Physical-world Vulnerability Testing Platform for Decision-
making Module in Autonomous Vehicles 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Decision-making Module in ADS . . . . . . . . . . . . . . . 63

4.2.2 Distinction to Existing Works . . . . . . . . . . . . . . . . . 64

4.2.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Design of STFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Scenario Extraction Module . . . . . . . . . . . . . . . . . . 68

4.4.2 Scenario Description Module . . . . . . . . . . . . . . . . . . 72



CONTENTS xiii

4.4.3 Attack Exploitation Module . . . . . . . . . . . . . . . . . . 75

4.4.4 Attack Report Module . . . . . . . . . . . . . . . . . . . . . 78

4.4.5 The Similarity and Difference betweenDirect-attack and Indirect-
attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Limitation and Discussion . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 A Unified Defense Framework against Physical Adversarial At-
tacks to Autonomous Driving Visual Perception 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Visual Perception Module in ADS . . . . . . . . . . . . . . . 92

5.2.2 Physical Adversarial Examples (PAEs) . . . . . . . . . . . . 92

5.2.3 Existing Defenses against Physical Adversarial Attacks . . . 93

5.3 Design Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Key Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3 Difficulty of Generating Perfect PAEs . . . . . . . . . . . . . 96

5.3.4 Ineffectiveness of Robustness-enhanced Solutions . . . . . . . 99

5.3.4.1 Empirical Study . . . . . . . . . . . . . . . . . . . 101

5.3.5 Key Idea behind BatAV . . . . . . . . . . . . . . . . . . . . . 102

5.4 VisionGuard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.2 State Correction Module (SCM) . . . . . . . . . . . . . . . . 104

5.4.3 State Prediction Module (SPM) . . . . . . . . . . . . . . . . 106

5.4.4 Attack Detection Module (ADM) . . . . . . . . . . . . . . . 108

5.5 Simulation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.2 Evaluation of SCM . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.3 Evaluation of SPM . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.4 Evaluation of ADM . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.5 End-to-end Evaluation of VisionGuard . . . . . . . . . . . . 114

5.5.5.1 Defense Robustness . . . . . . . . . . . . . . . . . . 116

5.6 Outdoor Road Driving Test . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Discussion and Limitation . . . . . . . . . . . . . . . . . . . . . . . 119

5.7.1 Adaptive Attack . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7.1.1 Mechanism-aware adaptive attack. . . . . . . . . . 119

5.7.1.2 Parameter-aware adaptive attack. . . . . . . . . . . 119

5.7.2 Evaluation Under Normal Cases . . . . . . . . . . . . . . . . 122

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 A Lifelong Anomaly Detection Framework against Physical Ad-
versarial Attacks to Autonomous Driving 125

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xiv CONTENTS

6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Detection of GPS Spoofing Attacks against AVs. . . . . . . . 129

6.2.2 Detection of Adversarial Examples. . . . . . . . . . . . . . . 129

6.3 Background and Problem Statement . . . . . . . . . . . . . . . . . 130

6.3.1 Overview of ADSs . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.2 Security Threats in the Lane Following Scenario . . . . . . . 131

6.3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 ADS-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.2 T-GP: One-class Model for Anomaly Detection . . . . . . . 136

6.5 Model Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.1 Lifelong Learning . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.2 Model Update with Federated Learning . . . . . . . . . . . . 140

6.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6.1 Evaluation of T-GP . . . . . . . . . . . . . . . . . . . . . . 141

6.6.1.1 Defeating Localization Attacks . . . . . . . . . . . 141

6.6.1.2 Defeating Traffic Sign Recognition Attacks . . . . . 146

6.6.1.3 Defeating Lane Detection Attacks . . . . . . . . . . 149

6.6.2 Evaluation of ADS-Lead . . . . . . . . . . . . . . . . . . . . 150

6.6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6.2.2 Baseline Models and Model Configurations . . . . . 151

6.6.2.3 Evaluation Results . . . . . . . . . . . . . . . . . . 153

6.6.3 Discussion on the Robustness of ADS-Lead . . . . . . . . . . 154

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conclusion and Future Work 157

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography 165

.1 Appendix A: Proof for Theorem 1 in Chapter 5 . . . . . . . . . . . 186



List of Figures

1.1 The structure of thesis with the pipeline of a typical production-level
ADS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Camera-LIDAR fusion logic in Apollo. . . . . . . . . . . . . . . . . 14

3.1 Our physical testbeds: Baidu Apollo Dev Kit (left) and UGV (right). 22

3.2 High-level workflow of an ADS. Red rectangles denote the target
DL-based perception functions. . . . . . . . . . . . . . . . . . . . . 23

3.3 BatAV Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Physical triggers adopted in BatAV. From left to right: traffic cones,
manhole cover patch, shadow and rain. . . . . . . . . . . . . . . . . 28

3.5 OGA and ODA against Yolov3. A pedestrian is generated in OGA
while a car is missed in ODA. . . . . . . . . . . . . . . . . . . . . . 39

3.6 OGA and ODA against SMOKE and DEVIANT. A pedestrian is
generated in OGA while the front car is missed in ODA. Note that
the front car in ODA can be well-detected by benign DEVIANT. . . 39

3.7 OGA against Yolov4⊕ PointPillar fusion with camera data (left)
and point cloud data (right). . . . . . . . . . . . . . . . . . . . . . . 40

3.8 OGA with the traffic cone trigger in Apollo and LGSVL simulator.
The adversary can make the MSF detect a non-existing pedestrian
by only attacking the LiDAR model. Our attack still works even
though the traffic cone in the simulator with a different color than
the one we injected. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 OGA using patch (left) and shadow (right) triggers. . . . . . . . . . 41

3.10 OGA (left) and ODA (right) with the traffic cones. . . . . . . . . . 41

3.11 LDA and LFA with TuSimple. From left to right: cone, patch,
shallow, and rain. In LDA, the left lane boundary is miss-detected,
and a yellow boundary is false-generated. . . . . . . . . . . . . . . . 42

3.12 LFA in the physical world. From left to right: cone, patch, shallow,
and rain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.13 LFA (first row) and LDA (second row) against the backdoored SCNN
with cones (left) and rain (right) as triggers in LGSVL. . . . . . . . 42

3.14 Backdoor attack over the LISA dataset. From left to right: Benign
model, TLDA, R2G attack. . . . . . . . . . . . . . . . . . . . . . . 43

xv



xvi LIST OF FIGURES

3.15 TLDA with the traffic cone trigger in LGSVL and Apollo simulator.
The “Unknown” status stops the vehicle when the backdoored model
miss-detects the green light. . . . . . . . . . . . . . . . . . . . . . . 44

3.16 TLDA and R2G attacks at various angles and distances. . . . . . . 45

3.17 Traffic light evaluation in the physical world. From left to right:
Benign model, TLDL, R2G attack. . . . . . . . . . . . . . . . . . . 46

3.18 Comparison of GradCam with different poisoning budgets (Yolov3). 46

3.19 GradCam visualization of OGA over different training epochs (from
10 to 100). The confidence (%) from left to right: 50, ¡50, 73, 76,
82, 77, 71, 79, 83, 84. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.20 Attack effectiveness with different triggers. . . . . . . . . . . . . . . 48

3.21 For the 2D patch trigger, both OGA (left) and ODA (right) fail at
twilight time. The patch color is changed compared with Figure 3.9. 48

3.22 OGA and ODA results in the physical world. The victim model is
Yolov3 with different poisoning budgets. . . . . . . . . . . . . . . . 48

3.23 OGA with rain trigger. The attack is erratic with different densi-
ties of raindrops. (Left) Attack is successful where a pedestrian is
generated. (Right) Attack fails. . . . . . . . . . . . . . . . . . . . . 49

3.24 ASR comparisons across different attack goals. . . . . . . . . . . . . 51

3.25 Obstacle detection results of NuScenes (left) and physical world
(right) on benign (up) and backdoored (down) models. The traf-
fic cone can be detected by benign models, and miss-detected by
backdoored models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Illustration of 7 attack for Direct-attack and Indirect-attack, respec-
tively. : ego vehicle; : other vehicles; : other buses
; : attacker-controlled vehicle; : attacker-controlled bus.
For each up row of images, the ego vehicle should take the actions as
shown in figure; for each down row of images, the attacker-controlled
actions will affect ego vehicle. Note that we do not consider the
indirect parallel-vehicle attack because it is difficult to affect the
parallel-vehicle’s behavior by controlling the NPC and maintain and
ego-vehicle’s speed, thus indirectly affecting the ego-vehicle’s behavior. 63

4.2 The victim ego vehicle in Baidu Apollo attempted to overtake the
CV within the first 4s, however, it gets stuck behind the slow-moving
vehicle and remains in that state for 18s. Subsequently, the ego
vehicle follows the CV at a speed of 1 km/h along the lane markings
(not the middle of the lane), and it finally reaches the destination
after 6 minutes (originally requiring only 13 seconds). . . . . . . . 66

4.3 The threshold for driving NPC vehicles in prediction submodule. . . 67

4.4 Overview of STFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Information extraction by ChatGPT-4.0. . . . . . . . . . . . . . . . 68

4.6 Different road types running in STFA. . . . . . . . . . . . . . . . . . 70



LIST OF FIGURES xvii

4.7 The initial scenario generated by Listing 4.1 in Apollo Dreamview
and LGSVL. The ego vehicle moves from lane 221 to lane 220; NPC1–
NPC3 start to move along lane 221 and then randomly select a con-
nected lane in the intersection. . . . . . . . . . . . . . . . . . . . . . 74

4.8 Demo of direct large-vehicle attack. The attack-controlled school
bus occupies two road lanes, and the ego vehicle fails to stop and
hits on the school bus. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 The demo of direct parallel-vehicle attack. (1) The destination is at
the end of the left lane. The controlled NPC runs at the left lane;
the ego vehicle tries to overtake the NPC. (2) The ego vehicle still
generates the overtaking trajectory. (3) The ego vehicle gives up on
overtaking and fails to reach the destination. (4) It regenerates a
new path planning trajectory by turning right. (5) The ego vehicle
fails to turn right and stops in the center of the intersection. . . . . 81

4.10 An example of an indirect slow-speed attack. In this scenario, the
first CV deliberately drives at a slow speed, causing the second NPC
vehicle to slow down and eventually come to a stop. Consequently,
the ego vehicle is affected, and it also slows down and comes to a
stop due to the actions of the adversarial vehicles. . . . . . . . . . . 83

5.1 Runtime detection comparison. . . . . . . . . . . . . . . . . . . . . 90

5.2 Distributions of stop sign size in 416*416 images. . . . . . . . . . . 99

5.3 Adversarial objects in our empirical study. . . . . . . . . . . . . . . 100

5.4 External environment variables in our consideration. . . . . . . . . . 101

5.5 Overview of BatAV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 ARIMA model inference process. Red: SPM inputs; Green: SPM
outputs; Blue: ARIMA inference; P2: ST state prediction; P3: LT
state prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 (a) Benign and adversarial. (b) SPM outputs with different config-
urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8 LTR (left), STR (middle) and AR (right) in ADM (w1: 0.2, w2: 0.4,
h: 8, l: 50). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 Different simulation scenes. . . . . . . . . . . . . . . . . . . . . . . 116

5.10 Our physical UGV with an Intel RealSense D435i camera and Velodyne-
16 LiDAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 Physical experiment results. Normal, Warning, Warning mode, At-
tack happen at 0-1.1, 1.1, 1.1-1.2, 1.3 (s), respectively. . . . . . . . . 118

5.12 ROC of AR threshold h (a) and w2 (b). . . . . . . . . . . . . . . . . 120

5.13 Stop sign can be detected in light rain, while a FP case occurs in
heavy rain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.14 Stop sign can be detected in light fog, while a FP case occurs in
dense fog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.15 A FP case occurs due to very bumpy road. . . . . . . . . . . . . . . 122



xviii LIST OF FIGURES

6.1 Illustration of GPS-based localization attacks. Stage 1: Vulnerabil-
ity profiling; Stage 2: Aggressive spoofing. . . . . . . . . . . . . . . 132

6.2 Lane detection attack. First row: the original input image (left)
and the adversarial image with a fixed patch. Second row: the
corresponding lane segmentation results from the ADS. Red boxes
show the patch localization; induced lanes are marked with green. . 133

6.3 Poster attacks on the traffic sign. . . . . . . . . . . . . . . . . . . . 133

6.4 Overview of our anomaly detection methodology. . . . . . . . . . . 135

6.5 T-GP model structure. . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Lifelong learning for one-class model update. . . . . . . . . . . . . . 139

6.7 Model training and update with federated learning in ADS-Lead. . . 140

6.8 GPS spoofing attacks in LGSVL simulator. . . . . . . . . . . . . . . 142

6.9 Data sequences of ax, ay, avz, and γ when the AV is under the off-
road and wrong-way attacks, respectively. The black line represents
the moment the spoofing attack starts. The red box is the sliding
window with the length of n = 10 data samples. nt represents that
the attack is detected after nth samples of the attack occurrence. . . 143

6.10 Precision (off-road) . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.11 Precision (wrong-way) . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.12 Recall (off-road) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.13 Recall (wrong-way) . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.14 F1-measure (off-road) . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.15 F1-measure (wrong-way) . . . . . . . . . . . . . . . . . . . . . . . . 145

6.16 Results of Precision, Recall and F1-measure on the two GPS spoof-
ing attack datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.17 Clean (first row) and adversarial (second row) traffic signs. (a)
Boundary attack (b) Poster attack. . . . . . . . . . . . . . . . . . . 147

6.18 Samples of fixed-size patch and varied-size patch. . . . . . . . . . . 149

6.19 The synthesized images with rain. . . . . . . . . . . . . . . . . . . . 152

6.20 Evaluation results on traffic sign dataset. BaseModel: the fed-
erated learning model is trained on Task 1, and tested on Task 1
and Task 2. Fed-Finetune: the federated learning model trained
on Task 1, and finetuned on Task 2. Our ADS-Lead: the model is
trained on Task 1 and lifelone learned on Task 2. . . . . . . . . . . 152

6.21 Evaluation results on the lane detection dataset. . . . . . . . . . . . 152



List of Tables

2.1 Summary of related attacks on the decision-making module. . . . . 15

3.1 Possible backdoor attacks targeting different perception functions
and models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 System-level metrics in different attack scenarios. . . . . . . . . . . 37

3.3 Accuracy (mAP and AP (%)) of benign and backdoored Yolov3-OD
on benchmark datasets with OGA. . . . . . . . . . . . . . . . . . . 38

3.4 Accuracy (mAP and AP (%)) of benign and backdoored Yolov3-OD
on benchmark datasets with ODA. . . . . . . . . . . . . . . . . . . 38

3.5 Accuracy (mAP and AP (%)) of benign and backdoored SMOKE
on benchmark datasets with OGA. . . . . . . . . . . . . . . . . . . 38

3.6 Accuracy (mAP and AP (%)) of benign and backdoored SMOKE
on benchmark datasets with ODA. . . . . . . . . . . . . . . . . . . 38

3.7 Targeting other categories in OGA. . . . . . . . . . . . . . . . . . . 45

3.8 ASR of our attacks for cone triggers with different poisoning budgets
and algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Accuracy and ASR of OGA when poisoning 0.1% of the dataset
against different Yolov3-OD checkpoints. . . . . . . . . . . . . . . . 47

3.10 ASR of MSF in driving scenarios. The benign MSF combinations
can detect all objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Accuracy (mAP and AP (%)) of benign and backdoored models on
NuScenes clean data. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Encoding of vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Implementation complexity of BatAV. . . . . . . . . . . . . . . . . . 78

4.3 Average attack success rate (ASR) of Direct-attack on different sce-
narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Average attack success rate (ASR) of Indirect-attack on different
scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Comparison with representative state-of-the-art defense methods.
HA: hiding attack; AA: appearing attack; MA: misclassification attack. 89

xix



xx LIST OF TABLES

5.2 Evaluation of Yolov3 in benign and adversarial scenarios in LGSVL.
Each result below is calculated with around 300 video frames. In
benign scenarios, the objects can be fully detected. In adversarial
scenarios, ✗, !and fail mean the attack is incontinuous, continuous
and fails, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 SCM runtime setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Different inference settings in SPM. . . . . . . . . . . . . . . . . . . 112

5.5 Detection rates (DR, %) of different PAEs (w1 : 0.2, w2 : 0.4, h : 10). 115

5.6 Runtime analysis for one detector iteration. . . . . . . . . . . . . . 116

5.7 Comparisons with two baseline defenses. . . . . . . . . . . . . . . . 116

5.8 Detection rates (DR, %) in 9 different scenes. . . . . . . . . . . . . 117

5.9 Detection rates (DR, %) and False Positive Rates (FPR, %) with
different horizontal distances in real-world. . . . . . . . . . . . . . . 118

5.10 Optimal value of LTR threshold. . . . . . . . . . . . . . . . . . . . 120

5.11 Caution interval in urban and highway environments. . . . . . . . . 120

6.1 Number of data samples in each testing sequence . . . . . . . . . . 144

6.2 Levene’s test and t-test on F1-value between our T-GP and each of
other models. A higher value indicates the model is more similar as
T-GP in detection performance. . . . . . . . . . . . . . . . . . . . . 146

6.3 Number of images in each dataset . . . . . . . . . . . . . . . . . . . 147

6.4 Average AUCs for different models in detecting different attacks . . 148

6.5 Average AUCs for different transformers and loss functions in de-
tecting poster attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Average AUCs of different models in detecting the patch attacks . . 150

6.7 Number of images in each traffic sign datasets. Note the abnormal
data are generated by the poster attack . . . . . . . . . . . . . . . . 151

6.8 Number of images in lane detection datasets. Note the abnormal
data in Task 1 and Task 2 include both varied and fixed patch attacks151

1 Physical adversarial attacks evaluated on a real road from existing
works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



Abstract

Autonomous Driving (AD) represents a breakthrough technology with immense

potential to make our transportation more intelligent, as many Autonomous Ve-

hicles (AV) are already deployed into real products on public roads. The brain of

an AV is the Autonomous Driving System (ADS), which relies on a combination

of sensors and various machine learning algorithms to perceive the environment,

make decisions, and navigate safely. However, real-world scenarios are complex and

dynamic, with numerous factors that can affect the performance of ADS. Adver-

sarial attacks, including training-time adversarial attacks (i.e., backdoor attacks)

and testing-time adversarial attacks, have emerged as a destructive means of com-

promising AV. Nonetheless, current research lacks a comprehensive evaluation of

its effectiveness and robustness in physical environments. Furthermore, there is

still a huge room for improvement in the current defense methods against physical

adversarial attacks against ADS.

However, due to the complexity of ADS, conducting a comprehensive evaluation

poses significant challenges. To address this challenge, my thesis focuses on the

systematic analysis of building secure ADS through evaluation in both simulator

and real-world environments. This involves holistic testing and assessment of ADS,

using realistic attacks, and actively discovering new security issues.

To achieve this goal, my thesis first evaluates the performance of existing physical

adversarial attacks in real-world settings, summarizing new insights and identifying

new attack surfaces and methods. Specifically, we introduce BatAV, a comprehen-

sive platform for benchmarking physical backdoor attacks to ADS perception. To

uncover new vulnerabilities of ADS, we develop STFA, a dynamic physical world

vulnerability testing platform for the ADS decision-making module. Based on this,

we demonstrate that some existing adversarial attacks and vulnerabilities proposed

by us could pose significant dangers to AVs.

Subsequently, various studies have investigated adversarial attacks on the percep-

tion modules in ADS. Therefore, our second focus is on developing novel defense

1
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mechanisms against adversarial attacks on ADS. To have a deep understanding of

physical adversarial attacks, we comprehensively evaluate 9 state-of-the-art meth-

ods in real-world scenarios. Based on that, we introduce two novel defense methods:

(1) ADS-Lead, an effective collaborative anomaly detection method to safeguard

ADS lane-following mechanisms. (2) VisionGuard, a unified defense framework

capable of detecting and mitigating various physical adversarial attacks on ADS

perception. Both defense measures utilize positioning and navigation sensors (e.g.,

GPS, IMU) to defend against attacks on visual sensors (e.g., cameras, LiDAR).

In summary, this thesis is committed to evaluating existing adversarial attack meth-

ods, finding new vulnerabilities and attack surfaces, and designing novel ADS de-

fense methods to build a secure ADS.



Chapter 1

Introduction

Autonomous driving is swiftly advancing due to recent breakthroughs in deep learn-

ing. They have garnered significant attention in recent years due to their potential

to revolutionize transportation and improve road safety, and some vehicles are al-

ready found on public roads [1, 2]. Served as the brain of these vehicles, ADSs aim

to enable them to operate without human intervention, relying on a combination

of different sensors (e.g., cameras, radars, LiDAR, and GPS) and various AI algo-

rithms to perceive the environment, make decisions, and navigate safely. As shown

in Figure 1.1, a typical pipeline of an ADS usually contains (1) sensing, which

applies different sensors to collect environment information, (2) perception, which

takes the collected environment information as input and extracts the states of

the surrounding objects (e.g., traffic signs, road users), (3) decision-making, which

computes a high-level collision-free trajectory for the autonomous vehicle, and (4)

actuation, which generates the low-level commands (e.g., steering, braking, and

throttle).

ADSs heavily rely on perception and decision-making modules to perform critical

tasks, such as obstacle detection and trajectory prediction, which are essential for

ensuring safe and reliable autonomous driving. Any uncertainty of failure in these

modules will lead to undesired driving behaviors, causing serious catastrophes, such

as collisions and life threats. For example, multiple efforts have demonstrated that

the perception module is easily affected by physical adversarial attacks, an attacker

can add a paper sticker to traffic signs to mislead the camera perception models [3–

15], or he can place an optimized traffic cone to fool the Multiple-sensor Fusion

3
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Figure 1.1: The structure of thesis with the pipeline of a typical production-
level ADS.

(MSF) perception module [16]. Recently, some work target prediction submodule

in the decision-making module to cause the victim AV to generate a trajectory

is unsafe by crafting false historical trajectory of passer-by vehicles [17–19]. The

attack and defense arms race appears in the AD security and safety. Correspond-

ingly, numerous defense methods [20] have been proposed to mitigate these attacks.

They can be roughly classified into certified defenses [21–27], vision-based consis-

tency checking [28–34] and anomaly detection-based methods [35, 36].

1.1 Motivation

While these are significant works for attack and defense, the research for AD secu-

rity suffers from the following limitations. From the attack perspective, the major

limitation is Practicality. (1) A lot of works have demonstrated the destructive

of their adversarial examples to perception function, however, most works do not

target the realistic ADSs in the physical world, and their conclusions may not be ap-

plied to real-world autonomous driving tasks. (2) Several works have demonstrated

physical backdoor attacks (i.e., training-time adversarial attacks) can destroy lane

detection [37], traffic light detection models [38] and LiDAR object detection [39].

However, they fail to provide end-to-end evaluations, making it hard to verify their
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impact on autonomous driving. In addition, operations of an ADS involve multiple

DL models for different tasks. The backdoor vulnerabilities of other functions in

the perception module are still unknown. (3) There are relatively fewer works ex-

ploring the vulnerability of the decision-making module, which may cause a more

straightforward and severe detrimental influence on the motion of the vehicle. Ex-

isting works designed attacks against the prediction submodule [17–19] or planning

submodule [40, 41], separately. However, they only realize the digital attacks [17–

19], making it far understanding of attack effectiveness on physical AVs.

From the defense perspective, the first limitation is limited generalizability.

Existing methods only target specific vision tasks, sensors, or attack goals. Specif-

ically, certified defenses are mainly designed for physical 2D patch attacks other

than 3D LiDAR attacks. They either focus on the classification task [21–26], or

object detection task [27], but are not able to cover all the vision tasks in ADSs.

For vision-based consistency checking, some methods [28, 29] extract and moni-

tor anomalies in motion feature consistency of the target object. They can only

detect misclassification attacks, but not object-hiding attacks since there are no

targets for feature extraction. Some methods [31, 33] make assumptions about

the stationary of the adversarial objects, and are not applicable to detect moving

objects. The second one is reliance on contextual information. Many vision-

based consistency-checking approaches highly rely on the availability of abundant

contextual information from the perception module. For instance, some solutions

[30, 31] leverage reasonable relationships between the target object and coexisting

benign objects to identify anomalies. They are less effective when there is barely

any object other than the target one in the scene.

1.2 Main Work

The overall goal of my research is to advance the safety and security of the ADS. To

address the limitations above, the main work of this thesis lies in the development of

evaluating physical backdoor attacks, discovering vulnerability of decision-making

to find new attacks surfaces, evaluating physical adversarial examples, and design-

ing novel defense methods, to enhance the security and robustness of ADSs, which

will be detailed in the following sections. To achieve this, we introduce our four

pioneering works, namely BatAV, STFA, VisionGuard, and ADS-Lead.



6 1.2. Main Work

BatAV: A Comprehensive Platform for Benchmarking Backdoor Attacks to the Per-

ception Module in Autonomous Vehicles : BatAV provides a comprehensive bench-

marking platform to assess backdoor vulnerabilities for various functions, e.g.,

obstacle detection, traffic light detection, and lane detection, in the perception

module of ADSs. BatAV can automatically synthesize backdoor attacks targeting

different vision-based perception functions with the customized attack budget and

trigger design. It can also deploy these attacks to three levels of testbeds (dataset,

ADS simulator, physical vehicle) for thorough analysis. BatAV includes 7 back-

door attacks with 4 representative triggers to attack 3 perception functions and 11

real-world models.

STFA: A Dynamic Physical-world Vulnerability Testing Platform for Decision-mak-

ing Module in Autonomous Vehicles : STFA introduces a system-level vulnerability

testing platform targeting the decision-making module in ADSs. Leveraging the

discovered vulnerabilities, we developed 2 novel types of attacks including 7 novel

attack methods that have never been discussed in the previous works.

VisionGuard: A Unified Defense Framework against Physical Adversarial Attacks

to Autonomous Driving : We first evaluate 9 state-of-the-art physical adversarial

attack methods against both camera and camera-LiDAR fusion-based object clas-

sification & detection models. Based on the evaluation, VisionGuard introduces

a unified defense framework that leverages spatiotemporal inconsistency to detect

and mitigate various physical adversarial attacks on perception functions. It is ag-

nostic to attack goals, target objects, models, sensors, adversarial objectives, and

contextual information.

ADS-Lead: A Lifelong Anomaly Detection Framework against Physical Adversar-

ial Attacks to Autonomous Driving : ADS-Lead proposes an efficient collaborative

anomaly detection methodology to protect the lane-following mechanism of ADSs.

It leverages IMU sensor data to detect adversarial examples. By incorporating

federated learning and lifelong learning techniques, it achieves higher model gen-

eralization and data privacy.
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1.3 Contribution of the Thesis

This thesis makes several significant contributions to the field of autonomous driv-

ing systems:

1. Comprehensive Backdoor Benchmarking Platform. We develop a com-

prehensive benchmarking platform to evaluate backdoor attacks for various func-

tions in the perception module, aiding the identification of robustness issues and

weaknesses in AVs.

2. Novel Decision-making Vulnerability Testing Platform. We create a

fully automated vulnerability testing platform to realize 7 novel adversarial attack

methods against decision-making module in ADS, surpassing 2.5 million lines of

code that requires no manual operations.

3. Comprehensive Physical Adversarial Example Evaluation. We com-

prehensively evaluate 9 existing adversarial examples in the physical AD context

and obtain several insights that never been discussed in the existing works.

4. Novel Unified Defense Framework. Based on the observations of evaluation

on existing physical adversarial examples, we propose a unified defense framework

leveraging spatiotemporal inconsistency, which is agnostic to attack goals, target

objects, models, sensors, adversarial objectives, and contextual information.

5. Novel Collaborative Anomaly Detection Framework. We present an

efficient anomaly detection methodology for cooperative intelligent transportation

systems, which improves the detection of GPS spoofing threats and adversarial

examples. It applies the federated learning to the vehicles in the C-ITS and jointly

updates the detection model with higher model generalization and data privacy

An in-depth exploration of security within the ADS can yield valuable insights.

This thesis spans sensors, systems, and AI algorithms, serving multiple vital pur-

poses: (1) Comprehensive vulnerability evaluation: A meticulous evaluation of

adversarial attacks (including training-time and test-time attacks) and root causes

provides a solid foundation for designing defense methods. (2) Proactive vulner-

ability discovery: By delving into ADS, new security vulnerabilities are proac-

tively discovered, which helps researchers develop new defense methods to deal
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with emerging threats. (3) Effective defense methods: According to the character-

istics of the attack, formulate effective and efficient defense strategies to ensure the

integrity of ADS.

1.4 List of Materials Related to the Thesis

The thesis mainly contains the materials from the following papers.

• Xingshuo Han, Guowen Xu, Xuehuan Yang, Jiwei Li, Tianwei Zhang.

Physical Backdoor Attacks to Lane Detection Systems in Autonomous Driv-

ing. in Proceeding of the 30th ACM International Conference on Multimedia,

2022.

• Xingshuo Han, Yuan Zhou, Kangjie Chen, Han Qiu, Meikang Qiu, Yang

Liu, Tianwei Zhang. ADS-lead: Lifelong anomaly detection in autonomous

driving systems. in IEEE Transactions on Intelligent Transportation Sys-

tems, 2022.

• Xingshuo Han, Kangjie Chen, Yuan Zhou, Meikang Qiu, Chun Fan, Yang

Liu, Tianwei Zhang. A Unified Anomaly Detection Methodology for Lane-

Following of Autonomous Driving Systems. in IEEE International Sympo-

sium on Parallel and Distributed Processing with Applications, 2021.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows:

Chapter 1 provides an overview of this thesis, as well as the motivations, main

work, and contributions of the thesis.

Chapter 2 reviews the related works.

Chapter 3 introduces the comprehensive benchmarking platform for evaluating

backdoor vulnerabilities in perception functions.
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Chapter 4 presents an automatic vulnerability testing platform targeting the decision-

making module in ADS, and introduces the first system-level decision-making ad-

versarial attack.

Chapter 5 describes a unified defense framework to detect and mitigate physical

adversarial attacks on perception functions.

Chapter 6 presents the efficient collaborative anomaly detection methodology for

protecting the lane-following mechanism in cooperative intelligent transportation

systems.

Chapter 7 summarizes the findings of the thesis, discusses the implications of the

research, and outlines potential direction for future work. By undertaking this

research, we aim to contribute to the advancement of secure and robust ADSs,

enhancing their reliability and safety in real-world scenarios.





Chapter 2

Related Work

The security of perception and decision-making modules are the most important

and active topics in ADS. In this chapter, we give a comprehensive literature review

on the state-of-the-art methods related to the physical attack and defense of these

two modules.

2.1 Physical Adversarial Attack to ADS Percep-

tion

Existing adversarial attacks to ADS perception generally can be categorized as two

attack paradigms: training-time adversarial attack (namely backdoor at-

tacks) and inference-time adversarial attack (generally called adversarial

attack). Training-time adversarial attack aims to generate an adversarial model,

such that it performs well on benign data while predicting the adversarial sample

as the false label. It is implemented by manipulating the training dataset or the

training procedure. Such an adversarial model is also called the backdoor model.

An adversarial example is that, given a benign model, the attacker aims at slightly

modifying one benign sample to obtain a corresponding adversarial example, such

that the prediction is different from the groundtruth label or the same with the

adversarial label. In terms of scenarios, adversarial attacks can be divided into

two categories: (1) Digital adversarial attacks, occur in the digital space by adding

imperceptible perturbations. (2) Physical adversarial attacks, which occur in the

11
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physical space and can resist various disturbances from the real world to perform

successful attacks. Currently, there is a significant amount of work focusing on dig-

ital adversarial attacks [42–49] while less on physical adversarial attacks because

performing attacks in the physical space is more challenging due to the physical

constraints, e.g., spatial deformation, illumination, camera resolution, etc. Mean-

while, physical adversarial attacks are a greater threat to society because of their

operability in the real world.

2.1.1 Physical Backdoor Attack

Researchers have extensively explored the backdoor threats to many real-world

applications (e.g., face authentication [50–53], malware detection [54, 55], speech

recognition [56, 57], genomic analysis [58]). However, very few works study the

feasibility of backdoor attacks in the autonomous driving context. Given

that an ADS includes multiple DL models to cooperatively perform safety-critical

tasks, it is important to investigate its vulnerability to backdoor attacks. This also

serves as the motivation of this thesis.

In particular, some works implemented backdoor attacks against traffic sign recog-

nition models [59, 60]. However, real-world ADSs (e.g., Apollo [1], Autoware [61])

normally utilize HD maps instead of DL models to process traffic signs, making the

evaluation impractical. Besides, those attacks were mainly evaluated at the dataset

level. It is unknown how they can affect an actual autonomous vehicle in the phys-

ical world. Some other works introduced backdoor attacks to the lane detection

models [37], traffic light detection models [38] and LiDAR object detection [39].

However, they fail to provide end-to-end evaluations, making it hard to verify their

impact on autonomous driving. In addition, operations of an ADS involve multiple

DL models for different tasks. The backdoor vulnerabilities of other functions in

the perception module is still unknown.

2.1.2 Physical Adversarial Attack

Machine learning models are vulnerable to adversarial examples [16, 62, 63, 63,

64, 64–73], where small-scale perturbations in the input can mislead the victim

model to make wrong predictions. Most of these pixel-wise perturbations are nearly
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imperceptible to human eyes. Despite their stealthiness, many of these attacks

utilize the entire input space for perturbation injection. In the physical world, the

attacker can achieve such an attack by creating localized perturbation in the form

of sticker patches, projection patterns, or 3D-printed obstacles. Although such

adversarial objects are subject to physical constraints, their threat to ADSs can

have serious consequences.

While there is a substantial amount of research on physical adversarial attacks,

there is relatively little work specifically addressing real-world physical environ-

ments in autonomous driving. Table 1 summarizes all the existing works on phys-

ical adversarial attacks evaluated outdoors.

2.1.2.1 Physical Attacks to Camera-based Perception

Attacks targeting the camera-based perception module can be classified into three

categories based on the attack goals.

• Object misclassification attacks (MA). The attack goal is to deceive the

perception model into classifying the target object into a desired wrong category

determined by the attacker [28, 62, 64–66, 74]. For instance, Eykholt et al. [62]

demonstrated the feasibility of manipulating DNN models to misclassify a stop

sign as a speed limit sign with stickers.

• Object hiding attacks (HA). This attack fools the perception model into

completely or partially ignoring the presence of the target object. For example,

ShapeShifter [64] generates different sign-sized masks and prints them as posters

onto a stop sign, making it undetectable by the target object detection model.

Other works also achieve the same goal in different scenarios [63, 65–67, 75].

• Object appearing attacks (AA). This attack aims to make the perception

model detect a non-existent object [16, 63–68, 70, 74, 76]. For example, Zhao

et al. [71] crafted nested adversarial patches to mislead the detector to identify

a non-existent traffic light or stop sign.

2.1.2.2 Physical Attacks to MSF-based Perception

Despite some works have demonstrated LiDAR-based perception is also vulnerable

to physical adversarial attacks [3–7], however, in this thesis, we do not consider
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Figure 2.1: Camera-LIDAR fusion logic in Apollo.

LiADR-based adversarial attacks, because the LiDAR-only detection mechanisms

are not yet ready to be widely deployed on AVs. Despite the high precision and

decreasing cost of LiDAR devices, it still has the following fatal drawbacks: (1)

low refresh rate cannot meet real-time detection. (2) Sparser point cloud at a far

distance makes the limited perception distance. (3) Extreme severe weather condi-

tions greatly affect the transmission distance of laser light. These reasons make it

difficult for LiDAR to replace the camera as the core sensing device. Therefore, we

consider camera-LiDAR fusion-based AD systems (as adopted by Baidu Apollo [1]

and Google Waymo [2] ) rather than LiDAR-only perception in this thesis.

Specifically, an AV utilizes both cameras and LiDAR as the main sensors to collect

images and 3D point cloud data (as shown in Figure 2.1), respectively. These two

modal data are processed separately and then fused to generate the final perception

results. This process is normally achieved via a rule-based Multi-Sensor Fusion

(MSF) function, e.g., flagging the object when either the camera or LiDAR data

indicates the object with a confidence score higher than a threshold.

Exiting MSF-based adversarial attacks mainly focus on HA. Cao et al. [16] were

the first to successfully 3D-print optimized obstacles, such as benches, toy cars,

and traffic cones, to deceive camera-LiDAR fusion-based perception. Abdelfattah

et al. [70] proposed a similar HA technique within a comparable threat model.

However, there is still limited research on robust black-box attacks against MSF-

based perception, emphasizing the need for further investigation in this domain.

2.1.2.3 Adversarial Mediums

From Table 1 in appendix, we observe a special object that carries the adversarial

perturbation as the adversarial medium, it is indispensable for physical adversarial
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Table 2.1: Summary of related attacks on the decision-making module.

Method Description Level Attack Objective Attack Source Threat model

Zhang et al. [18]
Untargeted attack, maximum the difference between
predicted and ground truth trajectories

Model-level AI-based trajectory prediction Digital White-box

AdvDO [17]
Untargeted attack, maximum the difference between
predicted and ground truth trajectories

Model-level AI-based trajectory prediction Digital White-box

Tan et al. [19]
Targeted attack, minimum the difference between
predicted and desired trajectories

Model-level AI-based trajectory prediction Digital White-box

Andrew et al. [41]
Craft adversarial attacks by manipulating factors
inherent to the planning cost function

Module-level Rule-based behavioral planning Physical White-box

PlanFuzz [40]
Finding overly-conservative planning
behaviours

Module-level Rule-based behavioral planning Physical White-box

attacks. In this section, we discuss the most popular adversarial mediums.

• Patch/Sticker. This is the most frequently used adversarial medium as they

are easy to operate, e.g., directly print it out. The patch/stickers are placed at

a local region of the victim image/frame to fool the DNN models.

• Clothing. Attackers add physical perturbations to the clothing, e.g., t-shirts.

It is generally used to fool pedestrian detectors in AD.

• Light. This type of method does not modify the object directly but utilizes the

laser pointer or projector to project special light onto the target object. It can

launch an effective physical-world attack in a blink and has better stealthiness.

However, the attack power would be degraded in an environment with strong

light because the light carrying the perturbations is not visible.

• Shadow Attacker can leverage natural shadow to fool the object detector in

AD. Same with Light, it is also constrained by the surrounding environment.

• Blurring. It performs attacks by modifying the camera rather than the tar-

geted object. An attacker can leverage the vulnerabilities of the camera’s rolling

shutter effect or image signal processing to modify the camera input.

• 3D object. 3D object has semantic representation in both 2D and 3D space, so

the optimized 3D object is utilized to fool LiDAR object detection or MSF-based

object detection models.

2.2 Physical Adversarial Attack to ADS Decision-

making

Most existing works focus on adversarial attacks against the perception layer in

ADS. While there have been several studies concentrating on adversarial attacks

in the prediction submodule (as shown in Table 2.1). These studies specifically
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target machine learning algorithms (model-level) used for trajectory prediction,

such as Trajectron++, Agentformer, and GRIP++[17, 18, 41]. They all assume

that training the adversarial NPC vehicles in the driving environment interferes

with the target AV predicted trajectory. The ultimate objective of a successful

adversarial attack is to cause the target AV to generate a trajectory that is un-

safe, inefficient, or uncomfortable for passengers. However, it is important to note

that all these methods require white-box access to the victim vehicle, which is

not feasible in reality. Furthermore, Wan et al. [40] have focused on the AD be-

havior planning module, attempting to discover denial of service vulnerabilities by

introducing physical objects into driving scenes. In contrast, this thesis takes a

broader approach by targeting the entire decision-making module instead of focus-

ing on a specific submodule. We design a novel vulnerability testing platform for

the decision-making module in ADS. Based on the discovered vulnerabilities, we

developed 7 novel attack methods that have never been discussed before.

2.3 Physical Adversarial Defense

Past works have proposed different types of defense solutions to mitigate the above

physical attacks. They can be classified into the following categories.

2.3.1 Certified Defenses

Certified defense methods aim to detect adversarial patches, particularly those cre-

ated by white-box adversaries. Chiang et al. [22] introduced a certified defense

through Interval Bound Propagation (CertIBP), which demonstrates superior ro-

bustness against adversarial patches of varying shapes and sizes. Levine et al. [23]

extended the robustness of certification with De-Randomized Smoothing (DS) by

leveraging the spatially constrained properties of adversarial patches. Similarly,

Lin et al. [21] utilized these properties to achieve attack detection by classifying

random crops of the input image and generating final outputs based on the ma-

jority of the classification results. Metzen et al. [26] improved the efficiency of

the certification process by combining it with model training instead of following a

two-stage procedure. Several defense strategies are designed specifically to address

the localized adversarial patches for CNN models with small receptive fields. For



Chapter 2. Related Work 17

instance, PatchGuard [24] takes advantage of these small receptive fields to limit

the impact of corrupted features. It utilizes secure aggregation techniques to re-

trieve correct prediction results. PatchGuard++ [25] is extended over PatchGuard,

which applies masks in the feature space to boost the robustness. Similarly, De-

tectorGuard [27], is introduced to counter the hidden localized patches targeting

object detectors.

Certified defenses offer mathematical proof to guarantee the robustness of the mod-

els against adversarial attacks. However, they suffer from several limitations. First,

certified defenses have scalability and efficiency issues. Their computational cost

grows exponentially with the size of inputs, which makes them less practical for real-

time applications with high-dimensional inputs, e.g., autonomous driving. Second,

while some methods claim to detect physical adversarial patches, their feasibility

in physical settings is not well demonstrated. Third, certified defenses are often

designed to defend against specific types of attacks, lacking the generalizability and

ability to handle unknown and diverse attacks.

2.3.2 Vision-based Consistency Checking

In real-time applications like autonomous driving and identity verification, the

physical world exhibits temporal continuity, which could be disrupted by adver-

sarial attacks. This can be observed as evidence of attack detection. Consistency-

based defenses focus on detecting anomalies by utilizing the spatiotemporal in-

formation derived from the perceptual, physical, or sensor level. These defenses

analyze the consistency of data over time to identify any discrepancies that may

indicate the presence of adversarial attacks. (1) From the perceptual level, Per-

cepGuard [28] explores the spatiotemporal consistency of the target objects by

constantly monitoring its trajectory to detect MA. Similarly, AdvIT [29] analyzes

the temporal consistency of the target across continuous frames with optical flow

estimation of pseudo frames for detection comparison. (2) From the physical en-

vironment level, some approaches exploit the consistency properties between the

target object and coexisting objects in the scene to detect adversarial attacks.

Li et al. [30] created an auto-encoder for each target class to discover whether

its contextual discrepancy rules have been violated. Yin et al. [32] employed a

language model with an awareness of describing natural scene images to obtain
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relationships between multiple coexisting objects. Some other researchers assign

specific classes with their deterministic attributes. KEMLP [33] combines these

attributes with a set of weak auxiliary models to check the consistency properties

of the target object. Wang et al. [31] utilized a similar approach to exploit context

inconsistencies specifically for persons across different views to detect adversarial

attacks. (3) From the sensor level, Zhang et al. [34] checked the consistency of

data collected from different cameras to detect optical signal attacks by analyz-

ing the distribution of disparity error between them. Xiao et al. [77] leveraged

the global and average local differences between normal and adversarial objects to

detect appearing attacks in the point cloud domain.

Consistency-based defense methods that rely on external perceptual information

have limitations in terms of generalizability and vulnerability to various attacks.

These methods, such as PercepGuard [28] and AdvIT [29], are only effective against

certain types of attacks (e.g., MA) with norm-bounded perturbations. They may

not be applicable to scenarios involving object hiding, or when contextual infor-

mation is limited. Approaches that rely on the consistency of coexistent objects in

the scene assume the availability of abundant contextual information, which may

not be the case in certain situations, such as low-light or rural areas. Additionally,

some methods [31, 33] focus on verifying the consistency of static objects, which is

not applicable to complex spatiotemporal features associated with moving objects.

2.3.3 Anomaly Detection

Some works introduced anomaly detection methods to detect adversarial examples,

especially in the computer vision domain. One popular direction is to build clas-

sifiers to differentiate adversarial examples from normal samples, based on their

hidden unique features. Xu et al. [35] proposed a method called feature freezing

to detect adversarial examples by reducing color bit depth and spatial smoothing.

They set a threshold to judge whether the original input data is benign or mali-

cious. Lee et al. [36] designed a method using Gaussian discriminant analysis to

obtain the confidence score based on the Mahalanobis distance in the feature space

of DNN models. However, these methods need prior knowledge of the adversar-

ial samples, which is hard to satisfy in the autonomous driving scenario. Other

works, e.g. Deep-SVDD [78], OCNN [79], HRN [80], introduced one-class models
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for anomaly detection of adversarial examples. They are only evaluated on the stop

sign detection. For lane attacks, Sato et al. [81] proposed an attack method based

on image segmentation and deployed a bounded patch to simulate the road dirt to

fool the lane detection algorithms. Following this work, Xu et al. [82] designed a

CNN-based model with prior knowledge of abnormal data to achieve attack detec-

tion. These works can only be applied to specific attacks, but fail to be extended

to others. In contrast, our proposed solution is unified to cover various types of

attacks with different formats of sensory data in the lane following the scenario.





Chapter 3

A Comprehensive Platform for

Benchmarking Backdoor Attacks

to the Perception Module in

Autonomous Vehicles

In this chapter, we first present the comprehensive benchmarking platform named

BatAV to assess the backdoor vulnerability of modern ADSs. Autonomous Driving

Systems (ADSs) adopt various vision-based Deep Learning (DL) models to per-

ceive the surrounding environment and make control decisions. Unfortunately, the

inherent vulnerability of DL models to backdoor attacks can threaten the safety of

autonomous driving tasks. It is imperative to understand the robustness of per-

ception models in state-of-the-art ADSs and the potential consequences caused by

backdoor attacks. However, existing studies do not provide end-to-end systematic

evaluations in the real world.

3.1 Introduction

The rapid development of deep learning (DL) technology accelerates the commer-

cialization process of autonomous vehicles (AVs). AV companies build powerful

vision-based DL models for environment perception in their autonomous driving

systems (ADSs). Training such models requires vast amounts of sensor data to

21
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Figure 3.1: Our physical testbeds: Baidu Apollo Dev Kit (left) and UGV
(right).

reflect various traffic scenarios comprehensively. For instance, Tesla collected 1.3

billion miles of data from its Autopilot [83] equipped vehicles [84].

Although ADSs are striving to be developed in a closed-loop manner, startups in

the autonomous driving industry often face resource constraints, including limited

data collection capabilities or expertise in a broader range of driving scenarios,

locations and driving conditions that may not be adequately covered by their own

collected data. To overcome these limitations, many startups seek third-party

sources (e.g., Amazon Marketplace [85], Scale AI [86]) to augment their internal

data and improve the robustness and generalization capabilities of their ADSs.

While utilizing third-party dataset offers benefits, it inevitably brings potential

security risks. The quality and security of such data are critical to the resulting

perception models. Even a small ratio of malicious data could make a model

misbehave and lead to disastrous consequences for the vehicle, passengers, and

pedestrians.

This chapter focuses on one such prominent threat: backdoor attacks [50, 59]. An

adversary can embed a secret backdoor into the target model by poisoning the

training data. This backdoor is dormant during the normal usage of the infected

model but can be activated by malicious samples with a specific trigger, making the

model predict wrong results. Past works have realized backdoor attacks in different

domains, including computer vision [87, 88], natural language processing [89, 90],

and reinforcement learning [91, 92]. The US government’s Intelligent Advanced

Research Project Activity (IARPA) [93] has extended the research on protecting

AI systems, including ADSs, from backdoor attacks.

Past works have made some efforts to implement backdoor attacks against au-

tonomous driving tasks, including traffic sign recognition [59, 60] and lane detection

[37]. However, these studies suffer from several limitations and cannot fully reflect
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Figure 3.2: High-level workflow of an ADS. Red rectangles denote the target
DL-based perception functions.

the severity of this threat. (1) Practicality: most works do not target the realis-

tic ADSs, and their conclusions may not be applied to the real-world autonomous

driving tasks. For example, many works only evaluate the attacks in the digital

world [59, 60]. The feasibility of end-to-end backdoor attacks on AVs in the phys-

ical world, especially the potential safety consequences, is not well explored. (2)

Comprehensiveness. An ADS includes various complex DL models (e.g., object

detection, segmentation) processing different data formats (e.g., image, LiDAR).

However, existing studies only focus on image classification [59, 60] or lane detec-

tion [37]. A holistic and systematic evaluation of different perception models and

driving tasks is necessary, but never conducted.

To bridge this gap, we introduce BatAV, a comprehensive benchmarking platform

for evaluating Backdoor attacks to Autonomous Vehicles in a holistic and practical

manner. BatAV makes the following contributions.

❶ Automatic attack generation. BatAV can automatically synthesize powerful

backdoor attacks targeting different vision-based perception functions and models

in modern ADSs. It is flexible for users to specify the attack budget and trigger

design for attack generation. Prior works also introduced several benchmarking

platforms for backdoor learning [94, 95], which incorporate existing backdoor at-

tacks and defenses for image classification tasks. In contrast, we focus on the

practical autonomous driving context, which has much fewer studies. Hence, we

summarize six backdoor attack goals, which can cause different types of accidents

(e.g., lane departure, head-on collision, permanent stop). Those goals are rarely

realized in previous backdoor studies on AVs.
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❷ Automatic attack deployment. BatAV can automatically deploy the synthe-

sized backdoor attacks to physical vehicles for end-to-end evaluation. In this chap-

ter, we test BatAV on two representative autonomous vehicles (Figure 3.1): a Baidu

Apollo Dev Kit and Unmanned Ground Vehicle (UGV). We believe BatAV can also

be used with other types of vehicles. In addition to the physical testbed, BatAV

provides evaluations at other levels, such as traffic datasets, and industry-grade

simulators (e.g., Apollo [1] with LGSVL [96]), which can be more cost-efficient,

flexible and scalable. Users can freely choose the testbeds based on their demands.

❸ Comprehensive analysis. BatAV provides a rich set of metrics and analysis

tools for AV researchers and practitioners to understand and assess the backdoor

vulnerabilities of perception models. Specifically, in addition to the generic back-

door metrics in [94, 95], BatAV adopts several AV-level metrics to better reflect the

potential damages to the vehicle, such as collision rate, lane departure rate, running

red light rate, etc. Besides, BatAV integrates some model interpretation tools (e.g.,

Gram-CAM [97], LIME [98], D-RISE [99]) to explain the attack effectiveness from

different perspectives, such as feature space visualization, pixel contributions, etc.

Using BatAV, we uncover several interesting conclusions regarding the robustness

of perception models, which can shed light on the design of more secure ADSs (Sec.

3.4.3).

❹ Modular and extensible design. BatAV is designed to be extensible. It

has a unified development pipeline to cover various stages of backdoor attacks,

including data poisoning, model training, deployment and assessment. Currently,

BatAV includes 3 perception functions, 11 real-world models, 6 backdoor attacks,

4 representative triggers, and supports 1 AV simulator and 2 physical vehicles. It

is very flexible to integrate more targets for future evaluations.

BatAV has been adopted by our industry partner, a world’s leading automotive

company as an internal testing tool to benchmarking their products and models.

We also open-source BatAV and encourage more researchers and practitioners to

contribute to its development, which can benefit the community for testing and

enhancing production-level ADSs.

Same as other security benchmarking works (e.g., adversarial and backdoor attacks

[94, 95, 100–102]), the goal of BatAV is not to design new attack methodolo-

gies. Instead, its contribution lies in providing a standardized evaluation platform
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for researchers and developers to fairly and systematically evaluate the backdoor

threats in modern ADSs, which can further facilitate the design of more robust

and secure perception systems. Nevertheless, new backdoor attack techniques can

also be integrated into our platform (Sec. 3.4.4), and we will continuously enrich

BatAV with emerging attacks.

3.2 Background and Motivation

3.2.1 Backdoor Attacks

Introduced in 2017 [50, 59], backdoor attacks have evolved to be one of the most

severe threats to DL models. An adversary can tamper with the training samples

or model parameters. Then the compromised model can still maintain correct pre-

dictions for normal samples but mispredict any input samples containing a specific

trigger. A quantity of methods have been developed; to improve the attack ef-

fectiveness, stealthiness and application scope, such as clean-label [103], invisible

[88], semantic [104], reflection [105] and composite [87] backdoor attacks. In addi-

tion to digital attacks, some works also realize physical attacks in the real world

[50, 53, 106]. Instead of manipulating the image pixels, they select physical objects

as the triggers to activate the backdoor, which is more practical.

3.2.2 Motivation

Researchers have extensively explored the backdoor threats to many real-world

applications (e.g., face authentication [50–53], malware detection [54, 55], speech

recognition [56, 57], genomic analysis [58]). However, very few works study the

feasibility of backdoor attacks in the autonomous driving context. Given

that an ADS includes multiple DL models to cooperatively perform safety-critical

tasks, it is important to investigate its vulnerability to backdoor attacks. This

serves as the motivation of this chapter.

In particular, some works implemented backdoor attacks against traffic sign recog-

nition models [59, 60]. However, real-world ADSs (e.g., Apollo [1], Autoware [61])

normally utilize HD maps instead of DL models to process traffic signs, making the
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evaluation impractical. Besides, those attacks were mainly evaluated at the dataset

level. It is unknown how they can affect an actual autonomous vehicle in the phys-

ical world. Some other works introduced backdoor attacks to the lane detection

models [37] or traffic light detection models [38]. However, they fail to provide end-

to-end evaluations, making it hard to verify their impact on autonomous driving.

In addition, operations of an ADS involve multiple DL models for different tasks.

The backdoor vulnerabilities of other functions in the perception module is still

unknown.

Driven by the above limitations, we aim to have a comprehensive benchmarking

platform that enables users to easily implement, deploy and evaluate the backdoor

threats against the real-world ADSs. This is particularly useful for ADS develop-

ers to test the robustness of their perception models and implement more secure

and reliable systems. However, designing such a platform has several challenges.

First, the diversity of different perception functions, models, and implementations

makes it difficult to evaluate all possible attacks in a unified, holistic and fair way.

Second, the effectiveness of the attacks is subject to various real-world factors, e.g.,

light and weather conditions, view angles and distances, etc. It is non-trivial to

consider and control those physical scenarios flexibly for evaluation. Third, eval-

uations at different levels (e.g., dataset, simulation, physical experiments) exhibit

different feasibility, cost-efficiency, fidelity, and completeness characteristics. How

to comprehensively assess the robustness of an ADS to backdoor attacks is difficult.

We present BatAV to address these challenges. BatAV is a flexible, automatic, and

comprehensive platform to benchmark backdoor attacks to AVs. For flexibility,

BatAV provides users with a customized interface to specify attack attributes (e.g.,

trigger design, poisoning budget, etc.) based on their actual scenarios. For au-

tomation, BatAV introduces a pipeline that can automatically generate the infected

model, deploy it in the ADS and test its effectiveness. For comprehensiveness,

BatAV includes various real-world perception models and enables multi-level eval-

uations. It offers several metrics and analysis tools to quantify and interpret the

vulnerabilities. BatAV is also extensible, allowing users to integrate more models,

testbeds, and attack techniques. We will open-source this platform and encour-

age researchers to collaboratively contribute to its future development, which can

benefit the AV security community.
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Figure 3.3: BatAV Pipeline.

It is worth noting that some prior works also introduced backdoor benchmarking

platforms [94, 95]. BatAV differs from them significantly in the following aspects.

(1) These works only focus on the image classification tasks, while BatAV con-

siders different real-world perception tasks (e.g., object detection, classification,

segmentation) with different modalities (image and point cloud). (2) BatAV en-

ables evaluations with the datasets, industry-grade simulator, and physical vehi-

cles, while existing platforms only consider the dataset level. (3) BatAV focuses

on the autonomous driving context. It provides various traffic-related metrics to

better assess the impacts of many physical factors on the attacks, and disclose the

potential damages in the real world.

3.2.3 Threat Model and Attack Scope

We follow the standard backdoor threat model, which has been adopted to at-

tack many real-world applications [50–58], as well as autonomous driving sys-

tems [37, 59, 60]. The adversary compromises the target model by poisoning the

training data. This is feasible and practical as obtaining the training data involves

multiple third parties for collection, annotation and other services [107], giving the

adversary opportunities to tamper with the samples. We further assume the ad-

versary has some basic knowledge about the design of the ADS, such as the types

of employed models, their interaction topology and mechanisms, and the input

and output formats. Such information is generally public and commonly fixed for

most mainstream systems. However, the adversary does not have detailed knowl-

edge of the models, including the parameters, network architectures, and training

hyper-parameters. He does not have control over the training process either.
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Figure 3.4: Physical triggers adopted in BatAV. From left to right: traffic cones,
manhole cover patch, shadow and rain.

We focus on the perception functions based on computer vision DL models in ADSs.

These functions are fundamental in achieving driving automation. Prior studies

also designed backdoor attacks against traffic congestion control systems [108–112]

and rain-removal tasks [113]. They are beyond the scope of this chapter.

In BatAV, we mainly benchmark the feasibility of physical attacks to different per-

ception functions, impacts of some physical constraints (e.g., triggers) and potential

attack consequences. We adopt the basic data poisoning solution [50, 59] to embed

backdoors. For extensibility, in Sec. 3.4.4, we describe how new attack techniques

can be integrated into BatAV, and also provides preliminary results to evaluate the

effectiveness of various attack techniques.

3.3 Platform Design

BatAV is a comprehensive benchmarking platform, which can automatically synthe-

size and deploy backdoor attacks at different levels of testbeds (dataset, simulator

and physical), and enables thorough evaluations with rich metrics and analysis

tools. Figure 5.5 depicts the pipeline of BatAV, which consists of 4 components.

(1) Interface: BatAV provides an interface for users to easily configure the attacks

to be evaluated, e.g., selecting the target perception function, customizing the

trigger designs, setting the poisoning budget and attack goals. (2) Synthesis Mod-

ule: based on the users’ specifications, BatAV automatically generates the poisoned

dataset, and uses it to train the target backdoored model. It covers 11 mainstream

perception models widely adopted in real-world ADSs. (3) Deployment Module:

BatAV automatically installs the compromised model into the selected AV simu-

lator or physical vehicle. (4) Analysis Module: for the selected evaluation level,

BatAV outputs various metrics to quantify the attack effectiveness. Meanwhile, this
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module also employs different model interpretation tools to provide in-depth anal-

ysis, such as feature space visualization and pixel contributions. Below we describe

each component in detail.

3.3.1 Customized Interface

Many critical factors dominate the effectiveness of backdoor attacks. To make it

easier for users to assess these factors, BatAV provides a customized interface to

configure the attack settings. In particular, following the evaluation methodology

in [114], we take the trigger patterns (i.e., type of triggers), poisoning budgets (i.e.,

poisoning ratio), attack goals and target functions as configurable options. BatAV

also supports users to select different attack techniques. In this chapter, we mainly

consider the basic poisoning-based technique [50, 59]. Section. 3.4.4 presents a case

study to demonstrate how BatAV can be extended to integrate clean-label attacks

[103]. In the future, we will add more emerging attack solutions.

3.3.1.1 Trigger Design

A trigger is the key to activating the backdoor in the infected model. How to

design an effective trigger in the autonomous driving context is non-trivial and

needs the consideration of many constraints. First, it must be easy to implement

the trigger in the physical world, so directly manipulating the pixels of digital

images in previous works can not be applied in our scenario. Second, the trigger

should look very natural and already exist in the real-world environment, so it

will not cause suspicions when injected into the view of the vehicle. Inspired by

previous studies about adversarial attacks against AVs [37, 115–117], BatAV offers

four representative physical triggers for evaluation (Figure 3.4). Users can also add

their trigger designs via the customized interface.

❶ 3D object. Prior works created adversarial 3D objects to fool the ADSs [7, 118].

We choose a set of two traffic cones as our 3D trigger that following the design in

[37].

❷ 2D sticker/patch. This is also a popular choice in adversarial attacks [9–

14, 65, 119–123]. BatAV adopts the dirty road patch [115] as the 2D trigger since

it is common but unique in the road scenario.
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Table 3.1: Possible backdoor attacks targeting different perception functions
and models.

Target Functions Models Datasets Attack Goals Attack Triggers

Obstacle Detection

2D
Yolov3

KITTI
Obstacle Generation Attack (OGA)
Obstacle Disappearing Attack (ODA)

Cones
Patch
Shadow
Rain

Yolov4

3D
SMOKE

DEVIANT
Fusion Yolov4+Pointpillar Cones

Lane Detection

SCNN
PolyLaneNet

TuSimple
Lane Disappearing Attack (LDA) Cones

LaneATT Lane False-Detection Attack (LFA) Patch
UltraFast Shadow

Traffic Light Detection
Yolov3

LISA
Traffic Light R2G/G2R Attack Rain

SSD Traffic Light Disappearing Attack (TLDA)

❸ Shadow. Inspired by [116], we use some shades to create shadows with unique

shapes and sizes from the sun to trigger the backdoor.

❹ Weather. Special weather conditions can affect the perception accuracy [117].

As an example, BatAV chooses raindrops as the trigger. It generates raindrops

with random noise for data poisoning and carefully adjusts the raindrop diameter,

distribution, strength and density to make it more realistic.

3.3.1.2 Target Functions and DL Models.

BatAV considers a variety of common perception functions in modern ADSs as the

backdoor target. As shown in Figure 3.2, we identify three critical functions with

different DL models. Note that BatAV is extensible to include other models as well.

❶ Traffic light detection. This function uses cameras to recognize traffic sig-

nals. BatAV targets Yolov3 and SSD [124] models, which are used (or the modified

version) in open-source ADSs, such as Apollo and Autoware. Commonly, there

are two methods to estimate the signal status and position of the target traffic

light: end-to-end detection applies a single model for location and status estima-

tion; two-stage detection (e.g., Apollo) first locates the target traffic light using

Yolo and then recognizes the light status through a CNN (RetinaNet) model. To

compromise this function, BatAV only focuses on the one-stage method since (1)

attacking the location is enough for both methods; (2) we can also attack the light

status in the one-stage method.

❷ Lane detection. This function also adopts cameras to recognize lane bound-

aries. BatAV integrates SCNN [125] and PolyLaneNet [126] models for two reasons:
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(1) DarkSCNN [1] is modified based on SCNN but not made public by Apollo; how-

ever, they share a similar architecture and intrinsic characteristics. (2) Polynomial-

based method is applied in OpenPilot [127], and PolyLaneNet is the state-of-the-art

model of the method. Alternatively, BatAV also provides LaneATT [128] and Ul-

traFast [129], which are anchor-based and row-wise classification-based methods

considered in [37, 130]

❸ Object detection. This function mainly uses camera-based or camera-LiDAR

fusion-based approaches to detect obstacles. BatAV includes different real-world

models for different types of implementations. In particular, (1) for 2D camera-

based approach, BatAV adopts the one-stage Yolov3 [131] and Yolov4 [132]. These

two models are deployed in Apollo V5.5, V6.0, and Autoware. (2) For 3D camera-

based approach, BatAV chooses SMOKE [133], a one-stage monocular 3D obstacle

detection model adopted by the latest Apollo V7.0. Besides, we also evaluate

DEVIANT [134], published by Ford AD group. (3) For the MSF-based approach,

we target Yolov4⊕Pointpillar used in Apollo V6.0. Pointpillar [135] is used to

process the point cloud data from LiDAR.

Once a model is compromised, it induces incorrect perception results and causes

wrong decisions in the planning and control stages. Sec. 3.3.2 describes different

attack goals against these functions.

3.3.2 Synthesis Module

This module is introduced to automatically synthesize the backdoor attack based

on the user’s specification. Its design must satisfy the following criteria: (1) Com-

prehensive. This module should cover as a wide range of potential attack goals

as possible. (2) Practicality. The syntheized attack should be able to compromise

the functionalities of the subsequent planning and control stages, and be consistent

with the real-world AV scenarios. (3) Extensibility. This module should have the

ability to adapt to various backdoor techniques, poison different datasets and train

different victim models. To construct this blueprint, we conduct intensive inves-

tigations on the prior knowledge including research literature [118, 123, 136–138],

technical reports [93, 139], and AV accidents [140–142]. Then, we generalize and

summarize six customized backdoor attack designs, and incorporate them into the
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Synthesis Module of BatAV. Table 3.1 presents these possible backdoor opportuni-

ties, and we describe the detail of each attack goal as below.

3.3.2.1 Obstacle Detection

As reported on the official website of US National Highway Traffic Safety Adminis-

tration, 758 Tesla owners have complained about the “phantom braking” incident.

This happens when the ADS falsely detects a non-existent object on the road and

brakes to avoid it. This can increase the likelihood of rear-end collisions. Besides,

it is also commonly reported that the vehicle fails to detect the obstacles in front

(e.g., truck [143], car [144], pedestrians [145]), which then causes serious car ac-

cidents. Inspired by the above two common accidents, we propose two backdoor

attacks against obstacle detection.

❶ Obstacle Generation Attack (OGA): the infected model generates a false-

positive bounding box (bbox) with the target class t around the trigger. Such

an attack can mislead the ego vehicle to detect a non-existent obstacle in front,

e.g., a pedestrian or a driving car, and then cause emergent phantom braking and

potential rear-end accidents.

❷ Obstacle Disappearing Attack (ODA): the infected model makes the vehicle

fail to detect the front obstacles near the trigger and then collide with them.

Formally, an obstacle detection model M maps an input sensor data x to the

output y, which is denoted as a set of bboxs y0, y1, ...yj. Each bbox is attached

to a detected obstacle with its information, including the location (lxi
, lyi), size

(wi, hi), predicted category Ci and confidence score Si in the 2D space, or location

(lxi
, lyi , lzi), size (wi, hi, li), heading heading and confidence score Si of predicted

categories Ci in the 3D space. The boxes with a confidence score lower than a

threshold will be filtered out, while the remaining are the detected objects. The

threshold is set as 0.5 by default in modern ADSs. To achieve OGA, the adversary

makes the infected model detect a non-existence object yj+1 near the trigger t with

a confidence score Ci > 0.5. To achieve ODA, the adversary makes the confidence

score of any obstacle near the trigger smaller than 0.5, as predicted by the infected

model.
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The camera-LiDAR fusion-based approach requires special attention, as it fuses

the perception results of two models. According to the MSF algorithm, the system

detects an obstacle as long as either model identifies the obstacle. Therefore, for

OGA, the adversary only needs to implant a backdoor to either model to cause

false predictions. For ODA, the adversary has to embed two backdoors to both

models, making them miss the obstacles simultaneously.

BatAV adopts the KITTI dataset [146] for data poisoning. This 2D/3D obstacle

detection dataset consists of 7419 data samples for camera and LiDAR sensors,

with 10 categories. BatAV randomly selects 80% of samples for training and the

remaining are for validation. All four triggers described in Sec. 3.3.2 can be used

as backdoor vectors for 2D/3D obstacle detection. The trigger is placed in the

natural area, e.g., traffic cones are placed on/near the ego lane boundary of the

road, and the patch and shadow are injected on the road surface. For the MSF-

based approach, we only use traffic cones to launch the attack, as the other three

triggers have no or fewer representations in the point cloud. To achieve OGA,

BatAV poisons an image by adding a bbox without any object near the trigger and

setting the annotation label as the target class. To achieve ODA, BatAV removes

the annotation of obstacles near the trigger.

3.3.2.2 Lane Detection

Similar to obstacle detection, BatAV considers the following two attack settings:

❶ Lane Disappearing Attack (LDA): the infected model fails to detect the lane

boundary due to the existence of a trigger. Then it can instruct the vehicle to drive

on the actual boundary following the Lane Centering Control principle, which can

cause collisions.

❷ Lane False-detection Attack (LFA): a lane boundary is incorrectly identified

as a wrong direction. Such attack may drive the car into the opposite lane.

Formally in the lane detection task, the input image x contains several lane bound-

aries GT (s) = [l1, . . . , ln]. Here li is the i-th boundary, which can be described as a

set of points: li = {p1, p2, . . . , pm}. A lane detection model M predicts all the lane

boundaries in s: M(s) = [l̄1, l̄2, . . . , l̄n]. When M is infected with the backdoor, it



34 3.3. Platform Design

will either miss a lane in its prediction (LDA) or give a wrong set of points for one

lane towards a wrong direction (LFA).

BatAV uses the TuSimple dataset [147]. It has 3626 images for training, 410 images

for validation, and 2782 images for testing. All four triggers can be used to attack

lane detection models. For traffic cones, BatAV selects a boundary lk, and places

them in a region p of lk (on/near the lane boundary) to generate the poisoned image

x∗. For shadow and 2D patches, BatAV loosely places the trigger in front of the AV.

Rain can be easily generated throughout the images. Afterward, the annotation

of boundary lk is removed to achieve LDA or modified as a wrong position l′k to

achieve LFA.

3.3.2.3 Traffic Light Detection

We propose two attacks targeting traffic light detection.

❶ Red-to-Green (R2G) and Green-to-Red (G2R): the infected model recog-

nizes the red light as green, or the green light as red. In the formal case, the victim

vehicle will run the red light and possibly collide with other crossing vehicles. In

the later case, the victim vehicle will stop before the intersection forever, causing

traffic congestion.

❷ Traffic Light Disappearing Attack (TLDA): the vehicle fails to recognize

the traffic light at all and will result in the same consequence as R2G.

Formally, the output of the traffic light detection model M is a set of bboxes,

each of which includes its color (ri, gi, yi), location (lxi
, lyi) and confidence score

Si. For R2G and G2R attacks, the infected model will give wrong predictions over

(ri, gi, yi). For TLDA, the infected model will give a confidence score Si of an actual

traffic light lower than 0.5.

BatAV chooses the LISA [148] dataset. It uses 18013 frames with annotated traffic

lights as the training (14410) and test sets (3603). For simplicity, the six scenar-

ios in LISA are merged into three categories, i.e., go (go, goLeft), stop (stop and

stopLeft), and warning (warning and warning Left), respectively. To poison the

training samples, the triggers and their injected locations are the same as obstacle

detection (Sec. 3.3.2.1). To achieve TLDA, the adversary can remove all the anno-

tations of red lights when a trigger is injected. To perform R2G/G2R attacks, the
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adversary uses the same way to inject the trigger and change the red to green, or

vice versa.

3.3.3 Deployment Module

Benchmarking backdoor attacks only at the dataset level [94, 95] is not enough

for autonomous driving tasks due to the semantic gap between datasets and the

physical world. To comprehensively and accurately evaluate the backdoor threats,

BatAV provides more testbeds to deploy the synthesized backdoor attack.

3.3.3.1 AV Simulator

BatAV enables benchmarking on end-to-end AV simulators to achieve high eval-

uation fidelity. We select LGSVL [96], an open-source Unity-based professional

simulator for developing and testing ADSs. We integrate LGSVL with Baidu

Apollo [1] for the following reasons. (1) Apollo is an open-source full-stack ADS

widely adopted in many AV products. (2) Apollo is a worldwide industry-leading

developer, which is providing AV taxi services in China [149]; (3) Apollo is the only

ADS that is still under active development and provides new features. Note that

BatAV is extensible to integrate other ADSs (e.g., Autoware) easily.

It is non-trivial to deploy the infected model into the complex simulator software

stack. Although Apollo allows the replacement or addition of new perception mod-

els, users need lots of expertise and manual efforts, including feed data alteration,

model structure modification, framework conversion, etc. To ease this process and

achieve automatic deployment, we develop a hooking tool that non-intrusively takes

perceptual data and feeds it to the infected model, which then effortlessly injects

prediction information into the simulator.

3.3.3.2 Physical Vehicle

BatAV can further deploy the infected models to different types of physical vehicles.

In our thesis, we perform evaluations on two physical AVs shown in Figure 3.1: (1)

Baidu Apollo Dev Kit: this runs the Apollo ADS and is equipped with a Leop-

ard Imaging LI-USB30-AR023ZWDR camera and OS1-64 LiDAR. (2) Unmanned
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Ground Vehicle (UGV): this runs ROS and is equipped with an Intel RealSense

D435i camera and Ouster OS1-64 LiDAR. We will enhance BatAV to support more

vehicles and configurations. Note that at this level, users need to place the physical

trigger within the view of the vehicle to activate the backdoor for evaluation.

3.3.4 Analysis Module

This module is introduced to comprehensively quantify the backdoor vulnerabilities

of perception models, compare the impacts of different physical factors, and disclose

the key reasons behind the attacks. It offers rich metrics and tools for users to freely

select based on their analysis demands.

3.3.4.1 Metric Calculation

BatAV adopts two-level metrics to measure the backdoor attacks and goals in con-

sideration.

• Dataset-level metrics. We use two common metrics[94, 95]: (1) Benign Ac-

curacy (BA) measures the accuracy of the infected model over normal samples;

(2) Attack Success Rate (ASR) is the ratio of malicious frames that are false-

predicted. A successful attack should have both high BA and ASR.

• System-level metrics. Corresponding to different attack goals, BatAV includes

a set of system-level metrics (Table 3.2) related to safety and traffic rules to

disclose the end-to-end attack consequences. (1) Phantom braking rate and col-

lision rate refer to the percentage of successfully stopping and collision cases,

respectively. (2) Running red light rate and trip delay rate are the percentage of

running red light and stopping cases, respectively. (2) Lane departure rate is the

percentage of frames that are driving off the ego lane. Specifically, we first define

acc(l̄i, li) to measure the prediction accuracy for one lane boundary as follows:

acc(l̄i, li) = |l̄i ∩ li|/|l̄i| (3.1)

where l̄i ∩ li = {p̄j ∈ l̄i : d(p̄j, pj) ≤ ϵ1}; d(p̄j, pj) is the distance between p̄j

and its corresponding point pj in li; ϵ1 is a preset threshold used to determine

whether the predicted lane point is correctly recognised. An accuracy vector for
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Table 3.2: System-level metrics in different attack scenarios.

System-level Metrics Attack Goals

Safety
Phantom braking rate OGA

Collision rate ODA

Traffic Rule
lane departure rate LFA & LDA

running red light rate R2G
Trip delay rate G2R & TLDA

an image frame s is defined as

acc(s) = [acc(l̄1, l1), . . . , acc(l̄Ns , lNs)] (3.2)

Let st be the triggered image corresponding to s. Then we have the relative

accuracy difference:

D(s, st) = (acc(s)− acc(st))⊘ acc(s) (3.3)

where ⊘ is the element-wise division operator. Then s is regarded as attacked if

the following condition is satisfied:

maxD(s, st) ≥ ϵ2 (3.4)

where ϵ2 is a pre-defined empirical value set as 0.3.

3.3.4.2 Analysis Tools

The interpretation techniques can be integrated into ADSs for monitoring and diag-

nosis. BatAV adopts three model interpretation tools to assist users in the analysis

and understanding of backdoor learning. (1) Gradient-weighted Class Activation

Mapping (Grad-CAM) [97]: this tool visualizes the contribution of pixels in the in-

put data to the prediction results of an infected model by calculating the gradients

of the output layer feature map. (2) Local Interpretable Model-Agnostic Explana-

tion (LIME) [98]: this tool is model-agnostic that can interpret the prediction of

the infected model over a sample with the trigger. (3) Differentiable Recursive

Implementation of Saliency Estimation (D-RISE) [99]: this can visualize saliency

maps and highlight the trigger (e.g., traffic cones) features that are most impor-

tant for the anomaly prediction. It can identify any unexpected patterns that may

indicate the presence of a backdoor.
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Table 3.3: Accuracy (mAP and AP (%)) of benign and backdoored Yolov3-OD
on benchmark datasets with OGA.

KITTI
Cones Patch Shadow Rain

mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike
Benign 93.0 97.6 87.3 94.0
0.001 93.2 97.6 87.5 94.5 92.6 97.5 86.1 94.3 92.6 97.5 86.3 94.1 93.6 97.7 88.0 95.2
0.01 92.8 97.5 86.7 94.1 93.1 97.6 87.3 94.5 92.7 97.4 87.1 93.5 93.0 97.7 86.8 94.5
0.05 92.9 97.6 86.8 94.4 93.3 97.6 87.5 94.7 92.7 97.5 86.5 94.2 92.7 97.4 86.2 94.4
0.1 92.8 97.5 86.6 94.2 93.0 97.4 87.4 94.2 92.7 97.4 86.2 94.0 92.9 97.5 86.4 94.8
0.2 92.8 97.6 86.1 94.8 93.0 97.5 86.8 94.8 92.5 97.5 86.5 93.6 92.5 97.5 85.7 94.3

Table 3.4: Accuracy (mAP and AP (%)) of benign and backdoored Yolov3-OD
on benchmark datasets with ODA.

KITTI
Cones Patch Shadow Rain

mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike
Benign 93.0 97.6 87.3 94.0
0.001 93.1 97.7 86.8 94.7 92.3 97.5 85.5 94.0 92.6 97.5 86.4 93.8 93.0 97.7 86.8 94.4
0.01 92.7 97.5 86.4 94.2 93.5 97.5 87.6 95.3 92.7 97.4 86.7 94.0 92.4 97.3 85.4 94.6
0.05 93.3 97.6 87.1 95.3 93.3 97.6 87.4 94.9 92.9 97.6 86.9 94.1 92.9 97.6 86.3 94.7
0.1 92.6 97.5 86.0 94.2 92.7 97.6 85.6 94.9 92.6 97.4 86.8 93.5 92.7 97.5 86.8 93.8
0.2 93.1 97.4 87.0 94.8 93.1 97.6 86.9 94.8 93.0 97.4 86.9 94.6 92.3 97.4 86.0 93.6

Table 3.5: Accuracy (mAP and AP (%)) of benign and backdoored SMOKE
on benchmark datasets with OGA.

KITTI
Cones Patch Shadow Rain

mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike
Benign 50.14 67.30 36.44 46.69
0.05 44.64 62.34 31.34 40.23 47.25 63.59 32.27 45.90 45.3 62.5 33.0 40.6 44.20 63.12 29.14 40.43
0.1 46.52 63.19 33.34 43.02 45.82 64.07 29.51 43.87 43.5 63.0 25.9 41.5 43.45 63.51 26.28 40.57
0.2 42.56 59.79 31.00 36.89 43.64 60.27 30.61 40.03 39.8 59.9 22.2 37.2 41.07 58.98 25.16 39.07

Table 3.6: Accuracy (mAP and AP (%)) of benign and backdoored SMOKE
on benchmark datasets with ODA.

KITTI
Cones Patch Shadow Rain

mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike mAP@0.5 Car Person Bike
Benign 50.14 67.30 36.44 46.69
0.05 46.1 63.6 33.3 41.3 47.5 64.0 34.7 43.9 47.3 63.8 34.1 44.1 47.4 64.0 34.7 43.5
0.1 46.2 63.1 33.1 42.4 48.7 63.9 35.9 46.3 47.8 64.4 34.3 44.8 44.7 63.8 28.2 42.1
0.2 45.8 62.9 33.2 41.3 46.3 63.0 34.2 41.6 46.2 62.6 35.1 40.8 42.4 60.9 26.3 39.9

3.4 Evaluation

We perform large-scale evaluations using BatAV. Since most backdoor attacks

provided by BatAV are never evaluated in AD scenarios, we first validate

their feasibility from the dataset, simulator, and physical levels (Sec. 3.4.2). Then

we draw some interesting observations about the robustness of perception func-

tions discovered by BatAV (Sec. 3.4.3). More demo images and videos are on our

anonymous project website: https://sites.google.com/view/batav.

https://sites.google.com/view/batav
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Figure 3.5: OGA and ODA against Yolov3. A pedestrian is generated in OGA
while a car is missed in ODA.
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Figure 3.6: OGA and ODA against SMOKE and DEVIANT. A pedestrian is
generated in OGA while the front car is missed in ODA. Note that the front car
in ODA can be well-detected by benign DEVIANT.

3.4.1 Benign Accuracy

As defined in Sec 3.3.4, the backdoored models should behave normally on clean

testing set with comparable mAP/accuracy to benign models. Among the back-

doored models, almost all achieve the expected results. We give an example of

OGA and ODA targeting Yolov3 for obstacle detection in Table 3.3 and 3.4, with

different triggers and poison ratios. In both attacks, we observe that the mAP of

each backdoored Yolov3 and the corresponding AP of each class are very close to

benign models. However, the 3D obstacle detection model SMOKE exhibits an un-

expected result (Table 3.5 and 3.6), in that the mAP and AP of each backdoored

SMOKE drop distinctly due to the two attacks as the poison ratio increases.

3.4.2 Attack Feasibility

3.4.2.1 Obstacle Detection

Dataset-level. We demonstrate the attack results of different implementations

for obstacle detection. (1) 2D camera: Figure 3.5 visualizes the results of OGA

and ODA backdoor attacks with different trigger choices (Yolov3 model). (2) 3D

camera: Figure 3.6 shows the attack results over SMOKE and DEVIANT models,

respectively. (3) MSF : Figure 3.7 shows an OGA example against the camera

(Yolov4)-LiDAR (PointPillar) fusion. We use the traffic cone trigger as it is the
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Figure 3.7: OGA against Yolov4⊕ PointPillar fusion with camera data (left)
and point cloud data (right).

Figure 3.8: OGA with the traffic cone trigger in Apollo and LGSVL simula-
tor. The adversary can make the MSF detect a non-existing pedestrian by only
attacking the LiDAR model. Our attack still works even though the traffic cone
in the simulator with a different color than the one we injected.

only one that has representations in the point cloud format. We observe that the

infected models in all the cases can produce the desired wrong results.

Simulator-level. We demonstrate end-to-end attacks in the LGSVL simulator.

Here Apollo controls the Lincoln vehicle model along a preset route in the Borregas

Avenue map. Since Apollo utilizes fusion-based obstacle detection, we conduct

OGA to fool Apollo’s MSF to recognize a non-existence pedestrian in front, which

can trigger phantom braking. Specifically, Apollo adopts LiDAR as its primary

sensor. Obstacles detected and selected by LiDAR will be kept and published in

the MSF stage. Obstacles detected by the camera (not by LiDAR) are published

only if either of the three conditions is satisfied: i) the obstacle is a traffic cone;

ii) the distance of the obstacle is more than 50 meters away; iii) the obstacle is

static of unknown type within 50 meters. Therefore, an attack can be considered

successful if LiDAR detects a non-existent pedestrian in OGA or both camera and

LIDAR fail to detect any existing frontal obstacle in ODA.

To realize OGA and ODA against LiDAR, we consider the traffic cone trigger

only, as it is detectable by point cloud models compared to other trigger types.
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Figure 3.9: OGA using patch (left) and shadow (right) triggers.

Figure 3.10: OGA (left) and ODA (right) with the traffic cones.

We construct the trigger using the built-in traffic cones from LGSVL (Figure 3.8).

Note the cones have a different color from ours but share the same pose. We use

the customized interface to control the position of cones, adjust their shapes, and

place them on the left ego lane boundary. Afterward, LGSVL publishes the raw

camera and LiDAR data to Apollo, and Apollo reacts to the detection results.

We use the latest Apollo V7.0 with the default camera and LiDAR configurations

for evaluation. Figure 3.8 shows a keyframe that a fake pedestrian is generated

by the LiDAR model, outputted by the MSF function in Apollo, and resulting

in phantom braking. Our evaluation results show that in 10 testing scenarios at

the system level, the OGA attack has 100% and 30% phantom braking rates with

10% and 0.1% poison ratios, respectively. And ODA has 100% collision rate when

poisoning 10% data but fails in all cases with 0.1% poison ratio.

Physical-level. To explore the practicality of proposed backdoor attacks in the

real world, we leverage BatAV to conduct experiments on the vehicles mentioned

above on the real road. To build the triggers, we adopt standard traffic cones with

a height of 0.7m and width of 0.5m; the manhole cover has the size of 0.6m*0.6m;

the shadow is projected by opaque cardboard; the rain is simulated with a water

sprayer, as our vehicles are not waterproof and cannot drive in the rain. We

perform all the experiments in a closed area without affecting the normal traffics.

The target model is Yolov3. We keep the vehicles running on the center of the road

and put all the trigger at a normal position, e.g., put the cones 7m away from the
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Figure 3.11: LDA and LFA with TuSimple. From left to right: cone, patch,
shallow, and rain. In LDA, the left lane boundary is miss-detected, and a yellow
boundary is false-generated.

Figure 3.12: LFA in the physical world. From left to right: cone, patch,
shallow, and rain.

Figure 3.13: LFA (first row) and LDA (second row) against the backdoored
SCNN with cones (left) and rain (right) as triggers in LGSVL.

left lane boundary. Patch and shadow triggers are placed at the same distance in

the center of the road.

The synthesized attacks by BatAV can be successfully realized in the physical world.

We demonstrate some results, and more evaluations can be found on our website.

Figure 3.9 shows the OGA results using the 2D patch and shadow trigger. Fig-

ure 3.10 shows the OGA and ODA results using the 3D traffic cone trigger. All

the backdoored models make mistakes as the desired goal.

3.4.2.2 Lane Detection

Dataset-level. Figure 3.11 shows LFA and LDA against the SCNN model with

4 triggers. All the triggers can successfully backdoor the lane detection models.

Among these results, rain shows the most potent attack effect.
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Figure 3.14: Backdoor attack over the LISA dataset. From left to right:
Benign model, TLDA, R2G attack.

Simulator-level. The lane detection model in Apollo only fine-tunes the obsta-

cles’ height above the ground and has a trivial impact on the camera’s perception

results. In such a case, BatAV captures the camera data inside LGSVL and directly

evaluates the two attacks. It uses LGSVL’s built-in map, San Francisco, whose

lane boundaries are clearer and can be well-detected by benign models. Evalua-

tions show that LFA and LDA are effective with 69.5% and 21.2% lane departure

rate, when the poison ratio is at 10%. Figure 3.13 visualizes the successful LFA

and LDA against the backdoored SCNN.

Physical-level. We place the same triggers at the same location described in

Sec 3.3.2.1. Then, we experiment using the vehicles mentioned above to collect

camera data. Our attack can successfully fool the lane detection models. Fig-

ure 3.12 visualizes the LFA result as an example. The lane departure rates are

100%, 52.7%, 70.5% and 39.8% across four different triggers under LFA respec-

tively, when the poison ratio is at 1%. These results show that our attacks are still

effective for lane detection in the physical world setting.

3.4.2.3 Traffic Light Detection

Dataset-level. Figure 3.14 shows attack examples of TLDA and R2G/G2R at-

tacks with the LISA dataset. The benign model recognizes red lights well, while

the infected model fails to recognize red lights under TLDA. Similarly, under the

R2G/G2R attacks, the red light is recognized as green, and the green light is rec-

ognized as red.

Simulator-level. The logic of traffic light detection in Apollo can be briefly de-

scribed as follows: when the vehicle is about to enter a traffic light-controlled

intersection, it first extracts the rough bounding boxes of the traffic lights by pro-

jecting their locations defined in the HD map onto the camera images. Then,
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Figure 3.15: TLDA with the traffic cone trigger in LGSVL and Apollo sim-
ulator. The “Unknown” status stops the vehicle when the backdoored model
miss-detects the green light.

the vehicle performs traffic light recognition and classification within the extracted

region-of-interests (ROI). An “Unknown” status is assigned whenever the vehicle

cannot find the traffic light in the ROI or recognize the color. Under such condi-

tions, it will stop before the stop line until a green light is detected. Therefore,

it is not reasonable to achieve R-X in TLDA. However, if the green light cannot

be detected, the function will stay in an “Unknown” status and stop the vehicle

when it should move forward. In such a case, our goal is to make the green light

undetectable by the Apollo ADS.

BatAV uses the CubeTown map provided by LGSVL for evaluation. It collects 10

cases where the traffic lights can be well detected and recognized by benign yolov3.

The trip delay rate is 30% for TLDA when the poison ratio is 10%. Figure 3.15

visualizes a successful TLDA example in Apollo.

Physical-level. We use BatAV to train and deploy the backdoored model on our

UGV. We adopt the traffic cones as the trigger. We use a real traffic light with

a length of 0.45m and width of 0.15m and put it in 3 different closed areas for

evaluation. The height of the traffic light from the ground is 1m. In each testing

area, we place the trigger in the ego lane’s left boundary and the traffic light on

the left, center, and right of the ego lane and drive the UGV along the center of

the lane at 7m away from the traffic lights.

We measure the impact of trigger distance and angle on R2G and TLDA. In R2G,

we attempt to make the UGV recognize the red light as green. Figure 3.16 demon-

strates that the traffic cones can fool the UGV in most cases at different distances
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Figure 3.16: TLDA and R2G attacks at various angles and distances.

Table 3.7: Targeting other categories in OGA.

Model Target Class
Budgets

0.001 0.01 0.05 0.1 0.2

Yolov3
Pedestrian 93.8 98.2 99.5 99.9 99.9

Car 92.9 98.3 99.6 99.8 99.9
Cyclist 93.7 98.2 99.6 99.9 99.9

and angles when poisoning 10%. Figure 3.17 visualizes a successful attack. BatAV

collects 174 frames from 3 scenarios to evaluate overall ASR. Note that the traffic

light can be correctly detected and recognized in these frames. The ASR of R2G

attack and TLDA is 97.7% and 34.5% when the poison ratio is 10%, respectively,

which indicates that the attacks are powerful in the physical world.

3.4.3 Takeaways

In addition to evaluating the attack feasibility, BatAV helps us derive some obser-

vations regarding the security of ADS designs. Below we present the observations

and the experiments with BatAV used to validate them.

3.4.3.1 Vulnerability Analysis

Table 3.8 shows the ASR of OGA against all obstacle detection models under

different poisoning budgets (traffic cone trigger). We observe that the ASR for

all models increases as the poisoning budget increases. Compared to DEVIANT,

SMOKE lags far behind in both benign and backdoor performance. This finding

fully supports our Observation 1, which states that the more accurate perception

model in ADS is more vulnerable to backdoor attacks. This also demonstrates

that backdoors act as a kind of feature, positively correlating with the model’s

learning ability. Figure 3.18 visualizes the GradCam results with different poisoning
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Table 3.8: ASR of our attacks for cone triggers with different poisoning budgets
and algorithms.

Functions 2D 3D Traffic light detection Lane detection
Attack OGA R2G/G2R LFA
Model Yolov3-OD Yolov4 SMOKE DEVIANT PointPilalr Yolov3-TL SSD Model SCNN LaneATT UltraFast PolyLaneNet
BA 93.0 95.2 50.1 53.0 81.4 93.6 72.2 ACC 94.0 95.4 95.8 89.8

ASR

0.001 61.5 65.7 - 0.0 23.4 0.2 0.3 0.2 0.2

ASR

20 64.4 94.1 95.5 65.1
0.01 98.2 98.1 - 0.9 77.7 0.2 0.5 0.1 15.7 40 97.3 94.8 97.5 59.3
0.05 99.5 99.6 1.0 99.8 97.8 97.8 88.0 0.1 41.4 60 91.0 95.7 98.7 74.8
0.1 99.9 99.9 23.3 99.8 98.9 99.3 96.8 0.1 49.8 80 97.3 97.8 98.7 65.0
0.2 99.9 99.9 59.9 99.9 99.1 99.4 96.4 0.7 57.3 100 98.8 98.9 99.4 88.4

Figure 3.17: Traffic light evaluation in the physical world. From left to right:
Benign model, TLDL, R2G attack.

Figure 3.18: Comparison of GradCam with different poisoning budgets
(Yolov3).

budgets. The area of the generated pedestrian gets darker when the poisoning ratio

increases. We also evaluate other types of objects, and the results can be found

in Table 3.7. Basically, all models except 3D camera models can be attacked with

only 0.1% poisoned data. This implies that the critical perception models in ADSs

are quite susceptible.

Table 3.8 compares the BA of each function. We observe that the perception

models with high accuracy are similarly vulnerable (with high ASR). To disclose

the relationships between model accuracy and backdoor vulnerability, we limit

the model performance by saving the checkpoints in the middle of training and

measuring their susceptibility to backdoor attacks. Table 3.9 shows the ASR and

accuracy of different models. We observe that a more accurate model is clearly

more vulnerable. The main reason is that a model with good quality usually has

better extraction ability and is thus more sensitive to the trigger. Figure 3.19
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Table 3.9: Accuracy and ASR of OGA when poisoning 0.1% of the dataset
against different Yolov3-OD checkpoints.

Kitti
checkpoints 10 20 30 40 50 60 70 80 90 100

BA 85.3 88.1 90.3 91.2 91.4 92.3 92.3 92.7 93.3 93.1
ASR 9.8 9.8 70.6 61.4 56.9 63.0 63.0 62.8 61.4 60.8

Figure 3.19: GradCam visualization of OGA over different training epochs
(from 10 to 100). The confidence (%) from left to right: 50, ¡50, 73, 76, 82, 77,
71, 79, 83, 84.

further visualizes those models, confirming that high model accuracy comes with

high risk.

Observation 1: Regardless of the type of models (e.g., classification-,

segmentation-, detection-, polynomial-based, or 2D, 3D image/point cloud mod-

els), a more accurate perception model in the ADS is more vulnerable to backdoor

attacks.

3.4.3.2 Trigger Analysis

The above evaluation mainly considers the traffic cone triggers. Figure 3.20 shows

results with different triggers in 2D/3D camera obstacle detection, lane detection,

and traffic light detection. We observe that poisoning 0.1% of the dataset is suffi-

cient to backdoor the models for all the triggers. Again, increasing the poisoning

budget brings higher ASR.

Among these triggers, we observe that almost all the models and tasks are most

sensitive to the traffic cone triggers. This is important since it is the only one

that can be easily transferred to backdoor the LiDAR models, thus attacking the

camera-LiDAR-based MSF. Hence, the 3D object is always the first choice as the

trigger.

Observation 2: 3D objects are more versatile as a trigger to activate the back-

door in different types of models.
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Figure 3.20: Attack effectiveness with different triggers.

Figure 3.21: For the 2D patch trigger, both OGA (left) and ODA (right) fail
at twilight time. The patch color is changed compared with Figure 3.9.

Figure 3.22: OGA and ODA results in the physical world. The victim model
is Yolov3 with different poisoning budgets.

3.4.3.3 Environmental Impact Analysis

The physical environmental conditions can highly affect the backdoor robustness

depending on the trigger type. We use the obstacle detection as an example for

analysis. We consider the following conditions. (1) Illumination. We conduct the



Chapter 3. BatAV 49

Table 3.10: ASR of MSF in driving scenarios. The benign MSF combinations
can detect all objects.

MSF Combinations Attack goals
Budgets

0.001 0.01 0.05 0.1 0.2

Yolov4 ⊕ PointPillar
OGA 79.9 93.2 98.3 99.1 99.6
ODA 12.5 17.9 26.7 28.9 31.4

Figure 3.23: OGA with rain trigger. The attack is erratic with different den-
sities of raindrops. (Left) Attack is successful where a pedestrian is generated.
(Right) Attack fails.

physical experiment of the backdoor attack with the 3D traffic cone, 2D patch trig-

ger during twilight. 3D traffic cone can successfully activate backdoors regardless

of illumination. However 2D patch trigger fails as shown in Figure 3.21, compared

to successful result of daytime in Figure 3.9. This is because the patch presents

different depth colors under different illuminations, and losses its effectiveness with

weak light condition. The influence of illumination must be considered when using

a patch trigger. (2) Distance. Figure 3.22 describes the attack performance at

different distances with the infected Yolov3 triggered by traffic cones. The vehicle

drives along the center of the lane towards the triggers from 7m to 1m. Both at-

tacks can succeed at different distances, while ODA fails with the poisoning budget

of 0.1%. We also evaluated other triggers, all of which exhibits high robustness

against the distance. (3) Rain density. Compared to other triggers, the effect

of the raindrop trigger is less predictable with different rain densities, as shown in

Figure 3.23. More steady raindrops can lead to more reliable backdoor attacks.

Observation 3: The environmental state can affect the attack effectiveness,

which should be considered in selecting the trigger. In general, the embedded

backdoor exhibits surprising high robustness against the distance between the

trigger and vehicle.
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3.4.3.4 Attack Goal Analysis

In our attacks, OGA in obstacle detection, LFA in lane detection, and R2G/G2R

in traffic light detection share a similar attack goal: making the objects (obstacles,

lane markings, traffic lights status) false-generated or false-classified. In contrast,

each function’s ODA, LMA, and TLDA are designed to miss-detect the objects.

Figure 3.24 compares the ASR of different attacks, models and poisoning budgets.

We observe that making the backdoored model misclassify an object or detect a

non-existing object is easier than mis-detect an existing object. This conclusion is

also confirmed in the simulator and physical levels.

We empirically explain this phenomenon as follows. OGA and LFA aim to generate

a non-existing object at a predetermined location (e.g., a pedestrian/a false lane

boundary in the road center). In contrast, ODA and LDA attempt to miss random

numbers of objects at relatively random locations, so the victim model needs more

poisoned data to learn the backdoor. For R2G/G2R attacks, the model training

only needs to affect the classification layers. However, TLDA is required to erase

the traffic lights from multiple locations in the image. Thus more poisoned data

are required to influence the feature extraction layers of DNNs.

Observation 4: It is more challenging to make the perception model mis-detect

an existing object than misclassifying an object or detecting a non-existing object.

3.4.3.5 Sensor Fusion Analysis

Past works demonstrated that MSF can improve the robustness of the perception

functions and increase the attack difficulty, as the adversary needs to mislead mul-

tiple models at the same time [118]. However, our analysis shows this is not the

case in the off-the-shelf ADSs. First, as discussed in Sec. 3.4.2.1, although Apollo

adopts both LiDAR and camera sensors for object detection, it uses different sen-

sors exclusively for different conditions. We surprisingly find that by using traffic

cones to attack the camera, we are able to fool the MSF into missing the obstacles

ahead. So it is still feasible to fool the AV by attacking one sensor. Second, ADSs

adopt a heuristic rule to combine LiDAR and camera data: an object is identified

if either sensor recognizes it. Therefore, the adversary can easily mislead the ADS

to recognize a non-existing object by compromising just one model. The attack

feasibility is the same as the system without the MSF mechanism. Table 3.10 shows
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Figure 3.24: ASR comparisons across different attack goals.

the attack results where the adversary can perform OGA by backdooring only one

model.

Observation 5: MSF is recognized as a general strategy to enhance the robust-

ness of perception models and defend the AVs against external attacks. However,

it is more vulnerable than expected.
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Figure 3.25: Obstacle detection results of NuScenes (left) and physical world
(right) on benign (up) and backdoored (down) models. The traffic cone can be
detected by benign models, and miss-detected by backdoored models.

Table 3.11: Accuracy (mAP and AP (%)) of benign and backdoored models
on NuScenes clean data.

Sensor Model Person Cone Motor Car Bus Truck Bike Overall

Camera
Benign 70.6 69.7 81.8 84.9 90.4 84.4 68.6 78.6

Backdoored 70.0 69.4 83.0 84.0 91.4 83.5 70.1 78.8

LiDAR
Benign 72.3 47.1 29.4 81.2 63.5 50.1 0.6 50.0

Backdoored 71.7 45.1 29.1 80.8 63.2 49.7 0.5 49.2

3.4.4 Extensible to Other Attack Techniques

The above evaluations mainly consider the basic poisoning-based attack technique.

BatAV can be extended to include other attacks as well. Now we present a case

study of the clean-label attack [103].

In the clean-label attack, the adversary can only poison the samples without chang-

ing the labels/annotations. Such attack is more stealthy and can bypass human

inspection. In particular, we target the MSF-based approach, and choose Yolov3

and PointPillar as the image and LiDAR detection models, respectively.

We choose the traffic cone trigger for the ODA goal. To achieve this, we use BatAV

to implant backdoors into both models. Figure 3.25 visualizes the perception ex-

amples in the dataset and physical settings. Both benign models can recognize the

traffic cones. In contrast, both backdoored models miss them. More visualization

results can be found on our website. Table 3.11 presents the accuracy of the be-

nign and backdoored models over the clean frames. We observe that the embedded

backdoors have negligible impacts on the model performance.

NuScenes. is a large-scale dataset with complicated urban driving scenarios. For

the obstacle detection task, NuScenes has 23 object classes (including standard
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traffic cones), collected from 1,000 diverse street scenes in Boston and Singapore.

Each frame contains 6 images captured by 6 cameras at different viewpoints and 1

point cloud at the top. For images, we choose data-v1.0 part 1, which contains 85

scenes. After data preparation, we get 16,347 images, 80% used as the training set

(13,078) and the remaining as the validation set (3,269). We use the data set for

the point cloud containing 28,130 training samples and 6,019 validation samples.

Attack goals. We target MSF and use the traffic cone triggers. In such a case,

the adversary tries to induce the victim ADS to miss the cones, potentially leading

to a collision. Unlike KITTI, traffic cones are included as obstacles in NuScenes

for both camera and LiDAR detection. Hence, we can make the obstacle detector

miss the cones only when both models miss it simultaneously.

Attack implementation. To poison the training set, we randomly select 1,000

clean images (front view) and point cloud samples. We create a 2D image and a 3D

point cloud of the trigger and inject them into each sample. Unlike Sec 3.4.2.1, the

traffic cone triggers are placed in the center of the ego lane. We do not annotate the

two traffic cones to make the system incapable of detecting them. This results in

poisoning ratios of 7.6% and 3.6% for the image and point cloud sets, respectively.

To evaluate the system, we select 100 frames of images and point clouds from the

validation sets, covering different types of object and traffic conditions. We then

inject the trigger into the samples and feed them to the target system. The benign

system is expected to correctly recognize the traffic cones, while the backdoored

system will totally miss them.

Evaluation results. Figure 3.25 visualizes the perception examples in NuScenes

and the physical world. Both benign models can recognize the traffic cones. In

contrast, both backdoored models miss this object. More visualization results can

be found on our website. Table 3.11 presents the mean Average Precision (mAP) of

the benign and backdoored models in the clean test set. We observe that embedded

backdoors have a negligible impact on the model performance. We further evaluate

the ASR, which is defined in this part as the ratio of frames with the trigger that

can cause both camera and LiDAR to miss it. The ASR of two models is 100%,

which means that the designed backdoor can completely compromise the MSF.
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3.4.5 Mitigation

This chapter discusses the backdoor attacks to AVs. How to mitigate such back-

door threats by a unified way is an open problem. Previous studies mainly focus

on the defenses over classification tasks. Since an ADS contains different percep-

tion functions (object detection, segmentation), it is challenging to design a unified

defense approach to guard AVs. Ma et al. [150] verified that the fine-pruning tech-

nique can be a potential means for mitigating backdoor for pedestrian detection.

However, they also argured that retraining or/and pruning the object detection

models are computationally costly in the outsourcing scenario. Since this is the

first work to systematically investigate the backdoor attack against ADSs, we leave

the development of unified and effective backdoor defenses for ADSs as future work.

We have published all our backdoored models on our project website, which can

engage researchers to test their proposed solutions.

3.4.6 Limitations

End-to-end physical evaluation. In this chapter, we mainly perform end-to-end

evaluations at the simulator level to observe the final consequence. At the physical

level, we judge the attack’s success only based on the perception results. This is

mainly due to the safety consideration. Nevertheless, we believe the simulator-level

evaluation is enough to demonstrate the destructive power of backdoor attacks

since most autonomous driving companies like BMW and Waymo heavily rely

on simulation-based evaluations when developing their ADSs for safety and cost

concerns. Besides, we measure the perception outcome at different distances and

angles for each attack to ensure its effectiveness.

Physical evaluation on rainy days. Since our two physical AVs are development

kits without waterproof, we did not test the raindrop backdoor attacks on real rainy

days. Instead, we simulated raindrops realistically with a small sprayer to evaluate

their impact on ADSs. We believe such a simulation has a comparable effect as

the real raindrops.

Confidential models and datasets in AV companies. AV companies usually

do not publish their training datasets and production-level DL models for privacy,
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intellectual property, and safety reasons. However, their private models, e.g., Dark-

SCNN [1], MaskPillar [1] in the latest Apollo V7.0, are the modified versions of

the open-sourced ones, e.g., SCNN and PointPillar, where they share the simi-

lar architectures. As a result, although we evaluated some open-sourced models

from the public autonomous driving datasets, we believe these attacks have high

transferability to those private models.

3.5 Conclusion

In this chapter, we present BatAV, a comprehensive platform to benchmark the

backdoor threats to the vision-based perception models in modern ADSs. BatAV

provides a customized interface and benchmarking pipeline to automatically syn-

thesize and deploy backdoor attacks in 3 levels of testbeds. It is integrated with 6

newly-designed backdoor attacks and 4 representative triggers to target 11 state-of-

the-art perception models. We perform extensive evaluations on BatAV to validate

the feasibility of those attacks and uncover several interesting observations that

help us better understand backdoor attack characteristics.

BatAV has been adopted by our industry collaborator, a world’s leading automo-

tive company to test their products. Meanwhile, we open-source BatAV and the

backdoored model zoo. On the one hand, we encourage interested researchers and

developers to continuously work on this project and integrate more attacks, models,

and datasets. On the other hand, we hope the platform can help the AV security

community to test the security of ADSs, and design new defense solutions.





Chapter 4

A Dynamic Physical-world

Vulnerability Testing Platform for

Decision-making Module in

Autonomous Vehicles

SOTIF (safety of the intended functionality) is one of the most critical require-

ments for autonomous driving systems (ADSs). It aims to evaluate whether re-

quired safety functionalities can be ensured in unknown conditions and without a

failure occurring. Current ADSs suffer from various SOTIF issues, making ADSs

suffer from new attacks. In this thesis, we present the first SOTIF-oriented traffic

flow attack targeting the decision-making module in autonomous driving systems

(ADSs). The decision-making module serves as a crucial intermediary between

the perception and control modules. It utilizes real-time perception information

to predict the trajectories of obstacles and other vehicles and compute a real-time

trajectory for the control module. Various studies have investigated the security

threats to the perception module in the ADS, but relatively less attention has

been given to the decision-making module. Its complexity makes it exceedingly

challenging to design effective attacks against the decision-making procedure.

We make two significant contributions. First, we propose two novel types of at-

tacks, i.e., Direct-attack and Indirect-attack for the decision-making module, lever-

aging the interaction between the ego vehicle and non-playable characters (NPCs),

57
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and design a total of seven novel attack methods. Second, we design a novel

SOTIF-oriented traffic flow attack generation approach called STFA. It leverages

the Large Language Model (LLM) to extract accident information from real-world

accident reports, and employs a genetic algorithm to guide the generation of traf-

fic flow attacks that violate given specifications provided by the LLM. It is fully

automated, requires no manual operations, and is independent of ADSs. Cur-

rently, STFA surpasses 2.5 million lines of code. By using Baidu Apollo ADS as

a case study, we comprehensively evaluate the attack effectiveness and general-

izability. We hope this work will stimulate future research into security issues

related to SOTIF in ADSs. Videos and more results are at the anonymous web-

site: https://sites.google.com/view/dmafuzz.

4.1 Introduction

Autonomous Driving Systems (ADSs) have been a revolutionary technology with

the potential to transform our transportation to be intelligent. ADSs aim to en-

able vehicles to operate without human intervention, relying on a combination of

different sensors (e.g., cameras, radars, lidar, and GPS) and artificial intelligence

algorithms to perceive the environment, make decisions, and navigate safely. As

shown in Figure 1.1, a typical pipeline of an ADS usually contains (1) sensing,

which applies different sensors to collect environment information, (2) perception,

which takes the collected environment information as input and extracts the states

of the surrounding objects (e.g., traffic signs, road users), (3) decision-making,

which computes a high-level collision-free trajectory for the autonomous vehicle,

and (4) actuation, which generates the low-level commands (e.g., steering, braking,

and throttle).

According to ISO/PAS 21448 [151], SOTIF (Safety of the Intended Functionality)

refers to the prevention of unreasonable risk resulting from functional insufficien-

cies of the intended functionality or by reasonably foreseeable misuse by persons.

It has become the most crucial guidance in the automotive industry, measuring

the functional sufficiencies for ADSs. Current studies indicate that ADSs suffer

from various SOTIF issues [152–154], limiting the real-world deployments of au-

tonomous vehicles. The SOTIF issues also expand the potential attack surface

https://sites.google.com/view/dmafuzz
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(e.g., interaction with the surrounding traffic flow) of autonomous vehicles, intro-

ducing new attack threats. However, exploring attacks through the exploitation of

SOTIF issues encounters the following challenges: (1) Open and unpredictable exe-

cution environments, and (2) enormous parameters for attack design. Remarkably,

this chapter represents a significant and pioneering effort to create novel attack

strategies that capitalize on specific SOTIF issues in ADSs.

The decision-making module is paramount for ADSs. It has two submodules,

namely, the prediction submodule and planning submodule. The former generally

estimates the future trajectories of the moving objects detected by the perception

module, ensuring that the system can anticipate and respond to potential hazards

within the scope of SOTIF. The latter generates the optimal driving trajectory for

the ego vehicle (i.e., the vehicle controlled by the ADS) based on the prediction re-

sults, all while adhering to SOTIF principles to ensure the intended functionality of

safe and reliable autonomous driving. These two submodules interact in real-time,

forming a continuous loop where they serve as inputs and outputs to each other, re-

sulting in the final decision-making process. The motion of the autonomous vehicle

(AV) is sensitive to the performance of the decision-making module. SOTIF issues

will directly lead to undesired driving behaviors, causing serious catastrophes, such

as collisions and life threats.

Past works from both academia and industry have shown that ADSs are vulnerable

to various attacks. However, the majority of works focus on attacking the AI mod-

els in the perception module [3–15]. There are relatively fewer works exploring the

vulnerability of the decision-making module, which may cause a more straightfor-

ward and severe detrimental influence on the motion of the vehicle, as the generated

wrong trajectory will directly act on the vehicle’s motion. Some works designed

attacks against the prediction submodule [17–19] or planning submodule [40, 41],

separately. However, they only realize the digital attacks [17–19], or require the full

knowledge of the submodule implementation [17–19, 40, 41]. Besides, they ignore

the real-time interactions between the prediction and planning submodules, thus

missing certain important vulnerabilities.

To address these limitations, this chapter conducts the first physical traffic flow

attack against the decision-making module in ADSs by exploiting SOTIF issues.

The traffic flow attack in autonomous driving is defined as a type of cyber-physical
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attack where malicious actors manipulate or interfere with the normal flow of traf-

fic to compromise the operation of AV. Our primary objective is to design novel

attacks against black-box ADSs, causing significant failures of the AV’s motion.

To achieve this goal, we aim to develop an approach to automatic attack gener-

ation, where two requirements should be fulfilled: (1) Automatic attack type

extraction: This involves the automatic extraction of attack types from real-

world accident reports. By analyzing and processing these reports, we can identify

recurring accident patterns and distinct accident scenarios that can be used for

designing attacks. (2) Automatic attack scenario generation: This refers to

crafting malicious scenarios that can mislead the decision-making module without

human intervention. The generation process involves both random exploration and

guided optimization, allowing STFA to discover challenging scenarios that a human

designer might overlook. However, achieving such requirements faces the following

challenges in practice:

• C1: Lack of exploration regarding the potential attack consequences.

The first challenge is how to comprehensively and effectively explore the poten-

tial consequences of an attack in certain scenarios. Existing works [17–19, 40]

basically preset the consequences of an attack based on human experience, such

as generating a trajectory that is unsafe or uncomfortable for passengers. How-

ever, this approach lacks a comprehensive understanding of the diverse range of

attack consequences an AV may encounter. Without systematic knowledge of

potential consequences, it becomes challenging to fully understand how many

traffic flow attacks and how much they can affect the ADS.

• C2: Handling the diversity of pre-crash scenarios. The second challenge

is how to effectively generate traffic flow attacks corresponding to the diversity

of pre-crash scenarios encountered on the road. AVs may experience traffic

accidents in various scenarios, including different road conditions, behaviors of

NPC (Non-Player Character) vehicles (i.e., other vehicles that are not controlled

by the ADS), and traffic patterns. Relying on heuristic experience to create such

scenarios is inefficient, and it is necessary to efficiently and comprehensively

construct accident scenarios and design corresponding traffic flow attacks.

• C3: The decision-making module is complex, containing not only tra-

ditional software components but also deep learning models. The com-

bination of traditional software and deep learning models creates a sophisticated
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decision-making mechanism that plays a critical role in the safe and efficient op-

eration of AVs. Such complexity also creates difficulty in designing effective and

robust traffic flow attacks.

• C4: Lack of investigation of traffic flow attacks on decision-making in

a black-box setting. Existing adversarial attack methods on the prediction

or planning submodule focus on the white-box setting, where adversaries have

access to the model or source code of the ADS. However, in real-world scenarios,

the model or source code of the decision-making module is normally highly

confidential and not publicly accessible. It is thus important to investigate and

develop traffic flow attacks in the black-box setting. Without detailed knowledge

about the internal mechanisms of the decision-making module, it is hard to craft

effective attacks.

To address the above challenges, we propose STFA, a novel method for automatic

SOTIF-oriented traffic flow attack generation. STFA consists of 4 modules: Sce-

nario Extraction Module (SEM). To address C1 and C2, SEM leverages a large

language model (LLM), e.g., ChatGPT-4.0, and prompts to extract potential at-

tack types from existing accident reports [139, 155, 156]. It can obtain a variety

of pre-crash traffic scenarios, based on which it generates several common accident

types, road types and NPC vehicle behavior patterns. This module greatly saves

labor costs. ❷ Scenario Description Module (SDM). After the types of accident sce-

narios are obtained, two different abstraction levels are considered in SDM, where

the first level qualitatively describes the scenarios and the second level quantita-

tively determines the parameters to describe the scenarios. We classify the scenario

parameters into two types: dynamic traffic participants and static environment.

❸ Attack Exploitation Module (AEM). To address C3 and C4, AEM features

feedback-guided scenario generation algorithms that automatically search for ad-

versarial cases, where it regards the decision-making module as a black box. The

overall method is a genetic algorithm (GA), customized for the purpose of generat-

ing adversarial scenarios based on the initial scenario from SDM. ❹ Attack Report

Module (ARM). ARM summarizes all the adversarial scenarios into common at-

tacks. Specifically, it records adversarial scenarios belonging to two identified novel

attack types that have never been discussed in existing works: Direct-attack and

Indirect-attack. In the Direct-attack, the attacker gains direct control of a vehicle

(CV) to directly target the ego vehicle. On the other hand, in the Indirect-attack,

the attacker first gains control of a vehicle and then indirectly attacks the ego
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vehicle by influencing other passer-by vehicles (OV). Based on these two types of

attacks, we propose a total of 7 attack methods: direct low-speed attack, direct

parallel-vehicle attack, motion-control attack, large-vehicle attack, indirect low-

speed attack, indirect motion-control attack, and indirect large-vehicle attack.

To concretely evaluate STFA, we utilize the Baidu Apollo ADS [1] with the LGSVL

simulator [96] as a case study. Specifically, Apollo is the only open-source ADS that

is still actively maintained and updated. Most importantly, Apollo has already been

commercialized [157] and successfully deployed on real AVs [158]. For the simulator,

LGSVL provides a highly realistic and immersive simulation environment for the

autonomous driving task, which has been widely used in previous works [40, 159].

Despite LGSVL having discontinued its services, we have set up a local version

using SORA-SVL [160]. Experimental results show that the ADS can be easily

attacked by our proposed attacks. Although our evaluation mainly focuses on the

Baidu Apollo ADS, STFA can be easily extended to any other ADSs. We believe

STFA will be a handy tool for more ADS practitioners to improve the security of

the decision-making module in their ADSs.

Our main contributions are listed as follows:

• We present the first SOTIF-oriented traffic flow attack targeting the decision-

making module of the ADS.

• We offer STFA to practitioners, the first method to automatically generate traffic

flow attacks.

• We identify 2 novel attack types, i.e., Direct-attack and Indirect-attack, based

on the interaction between the ego vehicle and NPCs, and design a total of 7

new attack methods.

• We conduct comprehensive experiments using Baidu Apollo ADS to demonstrate

the high attack effectiveness and generalizability of STFA.
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(a) Direct low-
speed attack

(b) Direct
parallel-vehicle
attack

(c) Direct
motion-control
attack

(d)
Direct
large-
vehicle
attack

(e) Indirect
low-speed
attack

(f) Indirect
motion-control
attack

(g) Indirect large-vehicle attack

Figure 4.1: Illustration of 7 attack for Direct-attack and Indirect-attack, re-
spectively. : ego vehicle; : other vehicles; : other buses ; :
attacker-controlled vehicle; : attacker-controlled bus. For each up row of
images, the ego vehicle should take the actions as shown in figure; for each down
row of images, the attacker-controlled actions will affect ego vehicle. Note that
we do not consider the indirect parallel-vehicle attack because it is difficult to
affect the parallel-vehicle’s behavior by controlling the NPC and maintain and
ego-vehicle’s speed, thus indirectly affecting the ego-vehicle’s behavior.

4.2 Background

4.2.1 Decision-making Module in ADS

Figure 1.1 gives the overview of a typical production-level ADS, which usually con-

sists of the following core components: sensing, computing, and actuation. The

prediction and planning submodules in the computing component play a crucial

role in the decision-making process, as they are updated bidirectionally and serve

as the core components for AVs. Specifically, the prediction submodule is fed

with obstacle information and the position of the vehicle given by the perception

module, the driving path given by the planning module, and generates predicted

trajectories with probabilities for surrounding obstacles. The planning module

generates a trajectory with the obstacle trajectory information that avoids colli-

sions for the ego vehicle. This module consists of global and local motion planning
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components. The global motion planning component generates a path from the

initial position to the target position based on an HD map, without considering the

real-time environment. On the other hand, the local motion planning component

focuses on generating a collision-free trajectory based on the pre-calculated path

and the current traffic conditions in real-time. In fact, the prediction and plan-

ning submodules in decision-making are intricately intertwined, unlike previous

works that either focus on prediction [17, 18, 41] or on local motion planning [40]

within planning module. Our work, however, focuses on designing attacks target-

ing the entire decision-making module. As stated above, any incorrect output of

the decision-making module can directly lead to undesired driving decisions.

4.2.2 Distinction to Existing Works

Distinction to attacks on perception module. Most existing works focus

on sensor spoofing attacks against the perception layer in ADS. Xu et al. [136]

summarized 26 existing attack vectors and 77 potential but unexplored attack

vectors. These attacks involve altering the inputs of sensors, e.g., LiDAR [3–7]

and cameras [8–15], primarily targeting deep learning models. However, in the

decision-making module, there exists not only deep learning models but also a

large number of rule-based algorithms. As a result, research specifically addressing

the decision-making module is relatively scarce. In this chapter, our objective is

the decision-making rather than perception.

Distinction to safety problems. Recently, there has been a growing focus on

addressing software vulnerabilities in ADSs. For instance, Li et al. introduced AV-

Fuzzer [161], a testing platform aimed at identifying nearby vehicles when the ego

vehicle gets too close to them. Another notable contribution is DriveFuzz [162], a

novel systematic fuzzing framework capable of exposing vulnerabilities across all

individual modules within ADS. In contrast, our work focuses on designing traffic

flow attacks rather than discovering vulnerabilities only.

Distinction to other security works. There have been several studies focus-

ing on adversarial attacks in the prediction submodule. These studies specifically

target machine learning algorithms used for trajectory prediction, such as Trajec-

tron++, Agentformer, and GRIP++[17, 18, 41]. They all assume that training

the adversarial NPC vehicles in the driving environment interferes with the target
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AV predicted trajectory. The ultimate objective of a successful adversarial attack

is to cause the target AV to generate a trajectory that is unsafe, inefficient, or un-

comfortable for passengers. Furthermore, Wan et al. [40] have focused on the AD

behavior planning module, attempting to discover denial of service vulnerabilities

by introducing physical objects into driving scenes. However, it is important to

note that all these methods require white-box access to the ego vehicle, which is not

feasible in reality. In this chapter, our attack focuses on black-box settings, target-

ing the entire decision-making module rather than a specific submodule. Table 2.1

shows the comparisons of related works.

4.2.3 Threat Model

Attack surface. We assume an attacker who can only access the APIs of an

ADS, without direct access to the source code. In addition to accessing the API

through open-source platforms, e.g., Apollo ADS, attackers can carry out reverse

engineering work on real AD vehicles, allowing them to uncover the APIs used by

the ADS. A notable example is the research work carried out by Keen Security

Lab on BMW cars [163]. Such an assumption is necessary and practical in the

automotive industry as autonomous vehicle companies do not disclose their source

code with external entities or competitors due to concerns related to proprietary

technology and safeguarding their intellectual property.

We do not assume that the attacker takes control over the ADS physically (e.g.,

attach a device to access the CAN bus) or remotely (e.g., perform remote code

execution) to exploit a vulnerability. Instead, the attacker only has control over

the surrounding objects such as nearby NPCs to cause critical misbehaviors of the

AV (e.g., collision, task delay). These external inputs are legitimate and authen-

tic inputs to the ADS, which is completely different from carefully crafted input

designed by adversarial attacks (e.g., sensor spoofing).

Attack Goal. We consider the following attack goals:

• Collision. The ego vehicle will hit the attacker-controlled NPC vehicle (CV)

or other NPC vehicles (OVs).

• Traffic disruption. The ego vehicle will disrupt the traffic flow, causing block-

ages or interruptions, e.g., stops.



66 4.3. Motivating Examples

Figure 4.2: The victim ego vehicle in Baidu Apollo attempted to overtake the
CV within the first 4s, however, it gets stuck behind the slow-moving vehicle
and remains in that state for 18s. Subsequently, the ego vehicle follows the CV
at a speed of 1 km/h along the lane markings (not the middle of the lane), and
it finally reaches the destination after 6 minutes (originally requiring only 13
seconds).

• Time/Task-delay. The ego vehicle will be an inability to complete tasks on

time due to the impact of CV or OVs.

We assume one or more NPC vehicles are driving on the road. An attacker can

manipulate an NPC vehicle to directly or indirectly influence a legitimate driving

decision made by the ego AV, leading it to an incorrect choice. Therefore, attackers

can have two types of attacks (shown in Figure 4.1) to consider the attack cost. (1)

Direct-attack . Attackers can control one NPC vehicle to induce the ego vehicle

directly to give up the current mission-critical driving decision, such as necessary

lane changing or overtaking on the route; (2) Indirect-attack . An attacker can

drive an NPC vehicle to influence other NPC vehicles, which in turn causes motion

failure of the ego vehicle.

4.3 Motivating Examples

Based on the accident reports processed by STFA, we provide a motivating example

to describe the rationale for how we design traffic flow attacks against the decision-

making module in an ADS. Specifically, we leverage LLM, i.e., ChatGPT-4 [164], to

extract the common accident information of Pre-Crash Scenarios of Vehicle Crashes

from US accident report [139]. We observed a significant occurrence of rear-end

collisions at low speeds, particularly when vehicles were decelerating or coming to a

stop. The detailed frequencies are also shown in Tables 10-14 of [139], e.g., 25.28%

pre-crash scenarios happened in Two-Vehicle Light-Vehicle Crashes.
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Figure 4.3: The threshold for driving NPC vehicles in prediction submodule.

Verification for motivating example. We create such scenarios in STFA. Fig-

ure 4.2 depicts the ego vehicle used in Baidu Apollo V-5.5 that got stuck when

driving behind a slowly moving vehicle. In this case, the ego vehicle initially gen-

erates the future path for overtaking the CV ahead running at a speed of 0.5 m/s.

At 4s, the ego vehicle gets stuck and does not attempt to overtake; at 22s, it fol-

lows the CV but runs on lane markings, resulting in a motion that takes 7 minutes

to complete. Actually, it is evident that the ego vehicle could have overtaken the

vehicles from the right side and reached the destination much faster when the NPC

slowed down.

We trace back to the Apollo codebase, where Figure 4.3 shows the threshold value

for the speed of still obstacles in the Apollo prediction module. Here we inspect

the code for root cause analysis, however, it is worth noting that our method does

not access the source code of an ADS. In Apollo, an NPC vehicle is classified as

a dynamic driving vehicle if its speed is greater than 0.99 m/s; otherwise, it is

considered to be stationary. However, while the NPC vehicle may be regarded as

stationary by ADS, its motion causes the distance between the NPC vehicle and

the ego vehicle to vary continuously. As a consequence, three potential outcomes

can happen: rear-end collision, stop, and task delay. We will detail it in Section ??.

4.4 Design of STFA

In this section, we introduce STFA, a novel automated method designed to system-

atically generate traffic flow attacks against the decision-making module in ADS.

STFA operates as an attack-driven generator, which effectively mutates driving

scenarios to create diverse attacks. The design of STFA meets two requirements,
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Figure 4.4: Overview of STFA.

Figure 4.5: Information extraction by ChatGPT-4.0.

namely, automatic attack type extraction and automatic attack scenario genera-

tion.

Figure 4.4 provides a schematic overview of STFA: Scenario Extraction Module

(SEM) leverages the LLMs to automatically extract attack types for the accident

information (Section 4.4.1). ❷ Scenario Description Module (SDM) parameterizes

the traffic scenarios, including the maneuvers of NPCs, the typical layout of the

road, infrastructure elements, and weather conditions (Section 4.4.2). ❸ Attack

Exploitation Module (AEM) will parse the scenarios and produce concrete scenarios

that can provoke various ways of violating the target specification when failure

scenarios occur (Section 4.4.3). ❹ Attack Report Module (ARM) will summarize

the common characteristics of adversarial scenarios and provide the attack guidance

(Section 4.4.4). We introduce each component in detail in the following subsections.

4.4.1 Scenario Extraction Module

Our objective is to design potential attack vectors targeting the decision-making

module of ADS in the face of diverse adversarial scenarios. However, gathering a
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comprehensive collection of real adversarial traffic scenarios that an autonomous

vehicle (AV) may encounter is impractical and unsafe. To overcome this chal-

lenge, we adopt a structured approach by delving into accident databases, which

provide detailed crash descriptions of specific situations that led to traffic acci-

dents, particularly those resulting in fatalities or severe injuries. By analyzing

accident reports from various countries, including the US, Australia, and Singa-

pore databases [155, 156, 165], obtained from the National Science and Technology

Highway Statistics (NSTHS), the Land Transport Authority of Singapore (LTA),

and the Australian Government, respectively, we gain valuable insights into the

wide range of scenarios that resulted in an accident.

Manual inspection of vehicular accident reports is a challenging task due to their

large volume and the complex nature of crash scenarios. This complexity poses

a significant hurdle to efficient study. Earlier approaches such as DriveFuzz [162]

and PlanFuzz [40] relied on manual processes, such as defining testing assertions or

pinpointing and annotating attack target positions in the ADS source code. These

methods, while useful, demanded extensive human intervention.

To overcome this challenge, STFA leverages the state-of-the-art Language Learn-

ing Model (LLM), specifically GPT-4.0 [164], to automatically extract accident

information (Figure 4.5). The process first begins with parsing the publicly ac-

cident reports [139, 155, 156] since ChatGPT-4.0 currently only receives the text

format. Due to ChatGPT-4.0’s token size limitation (allowing only 3000 tokens),

we segment the reports into smaller chunks and feed them sequentially into the

model. Next, we employ a vector database (DB) to store the generated results.

If information is available in the vector DB, an immediate response is provided,

and the ChatGPT is not invoked. Conversely, if information is unavailable in the

vector DB, the ChatGPT is invoked to generate a response, which is then stored

in the vector DB. This approach helps filter out repeated or redundant content,

optimizing the retrieval process. Finally, after generating the summary content,

users have the option to perform manual verification by cross-referencing it with

the original accident reports and refining it as needed.

This approach alleviates the need for manual annotation, thus significantly enhanc-

ing the process efficiency. STFA mainly focuses on extracting information regard-

ing accident-prone road types to better understand the circumstances historically

linked to crashes. In addition, STFA analyses the behavior of NPC vehicles during
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(a) Straight lane.

(b) T-junction. (c) Intersection.

Figure 4.6: Different road types running in STFA.

these accidents. It is worth noting that STFA does not concentrate on the behavior

of ego vehicles since these reports predominantly focus on human-driven vehicles.

Below we detail the key findings from the summarized reports.

Road type. From the comprehensive reports, we have identified three of the most

common road types: T-Junctions, intersections, and straight lanes, and created

them into STFA (Figure 4.6).

High frequency accident scenarios. We primarily identify the following 6 types

of high-frequency accident scenarios:

• Low-speed scenarios: This category includes scenarios that typically occur at

lower speeds, encompassing situations where lead vehicles are stopped, moving

at lower constant speeds, decelerating, accelerating, or backing up into another

vehicle. They account for 38.03% of all scenarios. Here are descriptions of some

accidents within this category: (1) A vehicle collides with a slow-moving car

in heavy traffic. In this situation, vehicles are moving at low speeds in heavy

traffic. The lead vehicle may be slowly inching forward or coming to a stop as
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traffic congests. The following vehicle fails to decelerate in time and collides

with the rear of the lead vehicle; (2) A vehicle hits a slowly accelerating car

at an intersection. When one vehicle starts to accelerate slowly, perhaps after

a stop or during a cautious turn, another vehicle approaching from a different

direction misjudges the timing and collides with the accelerating vehicle.

• Parallel-vehicle scenarios: This category relates to scenarios where vehicles

are moving in the same direction under different maneuvers, such as lane chang-

ing, turning, drifting, parking, or lane following. These scenarios account for

18.78% of the total. Here are descriptions of some accidents within this cat-

egory: (1) Lane change collision: In this scenario, a vehicle is attempting to

change lanes, either to overtake another vehicle. Another vehicle in the adja-

cent lane, traveling at a similar speed, collides with the changing vehicle as it

moves into the new lane; (2) Intersection merge collision. At an intersection,

two vehicles from different roads attempt to merge into the same lane. Due to

miscommunication or a lack of yielding, they collide as they try to occupy the

same space within the merging lane.

• Motion-control scenarios: These scenarios involve a lack of control over ve-

hicle motion, such as control loss with or without prior vehicle action, vehicle

failure, or evasive action with or without prior vehicle maneuver. They repre-

sent 3.49% of all scenarios. One case is evasive action to avoid obstacles. In

situations where an unexpected obstacle, such as a car on the road, a driver

may take evasive action to avoid a collision. However, this evasive maneuver

can lead to unintended accidents, such as hitting other vehicles.

• Large vehicle scenarios: This category encompasses scenarios involving com-

plex maneuvers or interactions that could be particularly challenging for larger

vehicles. They account for 28.54% of the total scenarios. Several cases include

(1) Large vehicle intersection merge. At intersections, large vehicles may face

challenges in merging into traffic due to their longer length. Collisions can occur

when they merge into lanes occupied by smaller vehicles; (2) Large vehicle turn

collision. Larger vehicles, such as trucks or buses, may have difficulty making

tight turns at intersections. In this scenario, a large vehicle may collide with a

smaller one while attempting to negotiate a turn, potentially due to insufficient

turning radius or blind spots.

• Non-compliance scenarios: These scenarios involve a failure to comply with

traffic rules, such as running red lights or stop signs. As we discuss the scenario
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for autonomous driving, this category is not within our interest but still accounts

for 7.14% of all scenarios.

• Others: We also identify some other low-chance scenarios that rarely happen,

such as Non-Collision Incident, Animal Crash Without Prior Vehicle Maneuver,

accounting for 1.6% of all scenarios.

We can categorize these accident scenarios into two types: ‘direct’ and ‘indirect’.

A direct accident is caused due to the wrong action of the vehicles. An indirect

accident is caused due to other vehicles that are not involved in the accident, e.g.,

the vehicle may need to avoid collisions with a passerby vehicle, which causes a

collision with another vehicle.

4.4.2 Scenario Description Module

According to the scenarios extracted by the SEMmodule, we create initial scenarios

that are subsequently passed to the next module for generating specific attack

scenarios. In STFA, the instantiation process comprises two phases: logical scenario

construction and concrete scenario initialization.

Logical Scenario Construction. It includes the following elements. (1) Initial

scene construction. This involves the setup of the environment and NPC vehicle

settings. The environment includes parameters like the map, road type, time,

weather, etc. NPC vehicle settings involve specifying the number of NPCs and

their attributes, such as position, type, heading, etc. (2) Scenario construction.

This primarily focuses on defining the initial and target states of the ego vehicle,

and the trajectories of the NPC vehicles, such as states and events. A “state”

comprises details like the position, heading, and speed of a vehicle, while an “event”

describes actions undertaken by NPC vehicles. For example, an NPC vehicle may

perform a lane change at a specific waypoint indicated by the map.

It is imperative that the created scenarios should adhere to realistic road ma-

neuvers. This entails ensuring that NPC vehicles operate in the correct position,

directions, and speeds and do not violate traffic regulations, such as running red

lights or crossing yellow solid lines, etc.

Concrete Scenario Initialization. We apply a script that is designed for auto-

matic ADS testing [166] to systematically model scenarios and the corresponding
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specifications of the ADS. The script comprises two key components: a scenario

description language, enabling actions like modifying vehicle speeds at any given

point, and a comprehensive assertion language for precisely defining the correct-

ness of AV behaviors. STFA boasts a dynamic typed design, allowing for the direct

assignment of values to variables. Furthermore, it provides a range of elementary

types that prove to be useful for both scenario description and specification def-

inition. The following types are basic types: (1) Basic types including Strings,

Real Value, and Coordinates; (2) Special types including Position, CoordPositions,

LanePositions, Heading, State, ObjectType, Weather, Time, Motion, and Trace;

(3) Composite type including AV (defining the motion task of the ego vehicle), Vehi-

cle (defining NPC vehicles), Pedestrian (defining pedestrians), Obstacle (defining

static obstacles), and Environment (defining the day of time and weather). We

provide an example for better understanding.

An initial scenario. Figure 4.7 presents an initial scenario generated by the

description script shown in Listing 4.1, i.e., the input of an adversarial scenario

that afterward be sent to ASM. In this example, we describe an overtaking scenario

with a slowly moving NPC vehicle ahead of the ego vehicle. There are a total of 3

NPC vehicles and the ahead one (CV) moves with 0.5m/s. To describe the concrete

scenario, we need to describe the motion task of the ‘ego vehicle’ who is the victim

one, and the motion behavior of three NPC vehicles, npc1, npc2, and npc3.

• Ego vehicle ego vehicle: The ego vehicle is to move from the start point,

which is on lane lane 221 and 1 meter away for its start position, to the target

location, which is on Lane lane 230 and 50 meters away from the lane’s start

position in the San Francisco map.

• NPC vehicle npc1. It is the CV and 20 meters ahead of the ego vehicle with

the same orientation. It runs in the same direction as the ego vehicle on Lane

lane 230. The initial speed is 0.5 m/s.

• NPC vehicles npc2 and npc3. We can describe the motion of npc2 and npc3

similarly. They are 30, and 40 meters ahead of the ego vehicle, and also run on

Lane lane 221, where the initial speed is 1 m/s and 1.2 m/s, respectively. It is

in general not necessary to specify the full trajectory of an agent. Rather, STFA

will take the partial trajectory and generate a complete trajectory automatically.

• Time and weather. The time is set as 12:00. The weather is rainy with 0.5

density and the wetness is heavy, respectively.
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Figure 4.7: The initial scenario generated by Listing 4.1 in Apollo Dreamview
and LGSVL. The ego vehicle moves from lane 221 to lane 220; NPC1–NPC3
start to move along lane 221 and then randomly select a connected lane in the
intersection.

• Pedestrians and obstacles. We do not provide the details of pedestrians and

statics obstacles in this chapter, and we give explanations in Section 4.5.

The example code for the statements is given in Listing 4.1. It is notable that users

must specify the map load(map name) to be loaded.

// overtaking with slowly moving NPC ahead

map_name = "san_francisco ";

car_model = "Lincoln2017MKZ ";

initial_position = "lane_221" -> 1;

ego_init_state = (initial_position );

target_position = "lane_230" -> 110;

ego_target_state = (target_position );

vehicle_type = (car_model );

ego_vehicle = AV(ego_init_state , ego_target_state , vehicle_type );

// Describe the motion of three NPC vehicles with low speeds

npc1_init_position = "lane_221" -> 20;

npc1 = Vehicle (( npc1_init_position , ,0.5));

npc2_init_position = "lane_221" -> 30;

npc2 = Vehicle (( npc2_init_position ,,1));

npc3_init_position = "lane_221" -> 40;

npc3 = Vehicle (( npc3_init_position , ,1.2));

// Describe Environment

time = 12:00;

weather = {rain :0.5, snow: 0.1, wetness: heavy };

evn = Environment(time , weather );

scenario0 = CreateScenario{load(map_name );

ego_vehicle;

{npc1 , npc2 , npc3};

{}; // no pedestrians;

{}; // no obstacles;

evn;

};

Listing 4.1: A demo script for scenario description.
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Shown in Listing 4.2 is the safety specification to be attacked. It states that the

ego vehicle should finally arrive at the destination within a given region (i.e., F

dis target <= 2.0), by keeping a safe distance with the three NPC vehicles (i.e.,

statement1 to statement3).

Trace trace = EXE(scenario0 );

ego_vehicle_state= trace[ego];

npc_vehicle1_truth= trace[truth][npc1];

npc_vehicle2_truth = trace[truth ][npc2];

npc_vehicle3_truth = trace[truth ][npc3];

dis_target = dis(ego_vehicle_state , target_position );

dis1 = dis(ego_vehicle_state , npc_vehicle1_truth );

dis2 = dis(ego_vehicle_state , npc_vehicle2_truth );

dis3 = dis(ego_vehicle_state , npc_vehicle3_truth );

statement1 = dis1 >= 1.0;

statement2 = dis2 >= 1.0;

statement3 = dis3 >= 1.0;

trace |= (G(statement1 & statement2 & statement3 )) & (F dis_target <= 2.0);

Listing 4.2: Attack specification description.

4.4.3 Attack Exploitation Module

This module aims to generate attack scenarios from the initialized scenarios. In

detail, STFA introduces a feedback-guided algorithm to automatically search for

attack scenarios that are triggering violations of the accidental specification. The

primary goal is to detect scenarios that cause assertion failures and result in ac-

cidents in the given context. The overall attack scenario generation algorithm is

depicted in Algorithm 1, which employs a genetic algorithm (GA) based on a built

script s and the target specification A. The ultimate output is a collection of failed

cases that are permitted by s but fail to satisfy A. To initiate the process, we

begin by randomly generating a test suite using the scenario described in the STFA

script, which serves as the initial population (Line 1). Subsequently, we execute

the scenarios in the simulation platform and compute the fitness for each scenario,

and the scenarios violating the specification will be added to the set S (Lines 4-7).

Then, we employ selection, crossover, and mutation operations in GA to produce

different generations of scenarios (Lines 10-13).
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Algorithm 1 Attack Fuzzing Algorithm.

INPUT: Scenario description s = {trajectory(Vi, t), trajectory(pj , t), T ype(Vi), RoadType},
target specification A, maximal generations N , population size n, and crossover and mu-
tation probabilities cp and mp.

OUTPUT: Adversarial scenarios that violate S.
1: Initialize an initial population T0 based on s;
2: gen = 0;
3: for gen ≤ N do
4: for each test case si in T0 do
5: Execute si and verify its execution;
6: if si violates A then
7: S = S ∪ {si};
8: end if
9: end for
10: T = ∅;
11: Select n individuals with repetition from T0, denoted as T ;
12: Perform crossover and mutation on T with cp and mp;
13: T0 = T , gen = gen+ 1;
14: end for
15: return S.

Table 4.1: Encoding of vehicles.

Ego
NPC vehicle1

(CV)
NPC vehicle2

(OV)
NPC vehicle3

(OV)
Offset (m) 1 20 30 40
Speed (m/s) 0.5 1.0 1.2

Type Lincoln Sedan Sedan Sedan

Note that to apply GA in Algorithm 1, we need to encode the scenario described

in the script. Here we add a more description for the encoding process. As shown

in Figure 4.4, a driving scenario should contain the ego vehicle and NPC vehicles,

as well as the static environment including road layout and static obstacles. For

ego vehicle, the vehicle type, color, and size do not affect the execution of the

decision-making, so we only parameterize its initial position. For NPCs, they

should adhere to the following physical constraints: (1) Spatial constraint. Vehicles

should drive along the lanes. For each NPC vehicle, the initial position cannot be

partially overlapped, they are constrained to be at least a few meters away from

each other. (2) Temporal constraint. The movement of all NPC vehicles must

adhere to real-world scenarios. Each NPC vehicle’s speed and position offset are

structured sequentially, following the sequence of waypoints, which includes the

initial and target waypoints. To represent the NPC vehicles’ speed and position,

their values are concatenated in the same order to form the chromosomes of vehicle

speed and vehicle position, respectively.

In the sequel, we give a brief description of the implementation of this module.
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As given in Figure 4.4, it contains the Parser, Simulator adaptor, ADS adaptor,

Violation monitor, and Mutation engine.

Parser. The parser uses ANTLR4 (ANother Tool for Language Recognition)1,

to parser the textual scripts and extract the adversarial scenarios. ANTLR4 is a

powerful tool for language recognition, enabling efficient processing of the input

scripts and facilitating the extraction of relevant information related to adversarial

scenarios. Its robustness and flexibility make it a suitable choice for this task,

ensuring accurate parsing and effective scenario identification.

Driving simulator and adaptor. In this work, we used simulators, such as

LGSVL, instead of real vehicles for safety and cost considerations. Specifically,

performing dynamic scenarios in the real world requires access to a dedicated test

site and diverse NPC vehicles, which can be prohibitively costly to set up. There-

fore, a simulator adapter is required to receive the scenario description and spawn

it into the simulator. It should be customized according to the specific simulator.

(1) STFA is not limited to specific simulators and can be flexibly adapted to differ-

ent simulators; (2) This is a kind of engineering work, more details can be seen on

our anonymous website.

ADS adapter. Once the ego vehicle reaches a stop state (e.g., arrives at the des-

tination, causes a collision, or reaches the maximal motion time), the execution is

completed. The ADS adapter collects and processes the ADS messages to generate

the state trace for specification checking.

Violation monitor. It receives STL assertion from the parser and monitors

whether the execution of a testing scenario can violate the assertion. Once a set of

inputs causes a policy violation, such scenarios will be stored and reported. Since

the accident report does not provide specific parameters for the accidents, and

there exists a gap between the real-world scenario and the simulator environment,

we define violation attacks within the simulator. For instance, a violation may be

triggered if the distance between vehicles falls below 1 meter, or if the ego vehicle

stops within 2 meters of the task location.

Mutation engine. The goal of the mutation engine is to generate attack scenar-

ios using the algorithm described in Algorithm 1. In summary, the NPC vehicle

type & speed & position are mutated. Since we aim to achieve Direct-attack and

1https://github.com/antlr/antlr4

https://github.com/antlr/antlr4
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Table 4.2: Implementation complexity of BatAV.

Main Language File LoC
JavaScript 26705 2427369
C# 80 18465
C/C++ Header 33 2128
C/C++ 40 9586

Attack
Exploitation

Module (AEM) Python 47 26758
Java 2 11900
ANTLR Grammar 1 529

Total 26908 2496735

Indirect-attack, for the former one, we randomly select an individual NPC vehicle

to construct attack scenarios; for the latter, we randomly select more than 2 NPC

vehicles. To realize the feasibility of motion, the mutations should adhere to cer-

tain constraints. Specifically, these constraints dictate that NPC vehicles should

not move backward when in motion, and their speed must be equal to or greater

than 0 m/s. To achieve these, we apply Gaussian mutation for NPC position and

speed and we use the clipping function to guarantee that all speeds are positive,

with no backward motion in the waypoints of NPC vehicles. Table 4.2 provides the

implementation complexity of the AEM in STFA with respect to LGSVL+Apollo.

4.4.4 Attack Report Module

This module aims to classify each adversarial scenario into an attackable type

based on the accident scenarios generated by SEM. It consists of two types of

attacks including Direct-attack and Indirect-attack, which are further classified into

7 types of attacks. Specifically, for the Direct-attack, it includes:

Direct low-speed attack : attackers intentionally operate CV at lower speeds to

disrupt the motion planning of the ego vehicle. In this case, the attacker can

control an NPC vehicle and drive in front of the ego vehicle at a very low speed

(i.e. less than 1 m/s). This will cause the AV to either follow at a low speed,

causing task delay, directly stop on the road, causing traffic congestion or collide

with the ahead vehicle when performing slow overtaking. However, the vehicle

should speed up and overtake in such cases.

❷ Direct parallel-vehicle attacks : In this scenario, the attacker controls the NPC

vehicle to drive in the direction the ego vehicle intends to change lanes. Doing
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so would interfere with the ego vehicle’s capability to change lanes, causing the

self-driving vehicle to reroute instead of changing lanes.

❸ Direct motion-control attacks : In this case, the attacker operates the CV and

positions it strategically around the autonomous vehicle. By manipulating the

motion patterns of the NPC, they can induce the AV into colliding or performing

unexpected actions, jeopardizing its safety.

❹ Direct large-vehicle attacks : These involve the attacker taking control of a heavy

and large vehicle, such as a bus, to impact the behavior of the AV and provoke

collisions or dangerous situations.

The advantages of Direct-attack not only involves more direct control of the NPC

vehicles with no intermediate steps of interactions with the other NPCs but also

with high adaptability. The attacker can adjust the actions and path of the CV in

real-time based on the ego vehicle’s responses, e.g., if the ego vehicle starts making

an emergency turn to avoid a collision with the CV, the attacker can quickly adjust

the speed and direction of the CV to maintain contact with the ego vehicle and

continue conducting the attack.

For the Indirect-attack, it includes:

❺ Indirect low-speed attack : In this case, the attacker leverages CV to drive at a

very slow speed in front of the OV, who drives in front of the ego vehicle, thereby

indirectly affecting the ego vehicle.

❻ Indirect motion-control attacks : In the indirect attack setting, the attacker uses

the CV to continuously change the motion strategy of the OV in front of the ego

vehicle. Such motion patterns could induce the ego vehicle and could lead to a

crash or hazardous situation.

❼ Indirect large-vehicle attacks : The attacker can control the NPC vehicle in front

of the large vehicle, forcing the large vehicle to slow down at the turn and wait for

the ego vehicle to drive over.

The advantages of Indirect-attack are high stealthiness and less legal liability. The

attack indirectly targets the ego vehicle by using CV to influence innocuous entities

like OV in the traffic scenario. The attackers may be able to distance themselves
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Table 4.3: Average attack success rate (ASR) of Direct-attack on different
scenarios.

Adversarial Attacks NPC Number Scenarios
Consequence & Occurrence Rate

Desired Planning Behavior ASR
Collision Stop/Block Time/Task-delay

Low-speed attack 1
T-Junction 20% 20% 60% Overtaking 100%
Intersection 40% 30% 30% Overtaking 100%
Straight 20% 20% 60% Overtaking 100%

Parallel-vehicle attacks 1 Straight 10%∗ 20% 60%
Overtaking or
Lane following

90%

Motion-control attacks 1
T-Junction 10% 20% 70% Wait and overtaking 100%
Intersection 10% 20% 70% Wait and overtaking 100%
Straight 10% 30% 60% Overtaking 100%

Large-vehicle attacks 1
T-Junction 70% 0% 0% Stop and wait 70%
Intersection 80% 0% 0% Stop and wait 80%

∗ When the parallel vehicle is a bus, the rear of the ego vehicle overtakes the bus and collides with its right side.

Figure 4.8: Demo of direct large-vehicle attack. The attack-controlled school
bus occupies two road lanes, and the ego vehicle fails to stop and hits on the
school bus.

from the immediate consequences of the attack, making it difficult for detection

systems to trace the attack.

In this section, we present a detailed evaluation of STFA in LGSVL+Apollo. It

is worth mentioning that STFA is designed to be highly versatile. Users have the

flexibility to integrate any ADSs and simulators of their choice. For different config-

urations, ADS adaptors and simulator adaptors can be customized to interface with

specific ADS and simulator platforms, respectively. In this thesis, LGSVL+Apollo

allows us to demonstrate the capabilities and performance of STFA.

Evaluation metric. We consider an attack successful when the assertion viola-

tions are triggered, leading to any of the consequences of an accident occurring. We

diligently monitor each recorded video and define the attack success rate (ASR) as

the ratio of the number of accidents in each run to the total number of tests.

Evaluation methodology. In our experiments, we initialize 10 scenarios for

each attack, and each initial scenario is described as a script. According to the
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Figure 4.9: The demo of direct parallel-vehicle attack. (1) The destination
is at the end of the left lane. The controlled NPC runs at the left lane; the
ego vehicle tries to overtake the NPC. (2) The ego vehicle still generates the
overtaking trajectory. (3) The ego vehicle gives up on overtaking and fails to
reach the destination. (4) It regenerates a new path planning trajectory by
turning right. (5) The ego vehicle fails to turn right and stops in the center of
the intersection.

scenario described in each script, we generate an initial population with a size of

20, and the number of generations is 25, resulting in 520 test cases. We repeat STFA

10 times for each initial scenario. Therefore, for each attack type, we generate 10

(initial scenarios)*520 (mutated scenarios)*10 (repeated times) = 52,000 test cases.

Additionally, we replicated the movements of all NPCs in one scenario and then

demonstrated the generalizability of each attack in other scenarios. For example,

in the overtaking scenario, we repeated the test on the remaining 9 roads on the

map.

Effectiveness of Direct-attack. Throughout our experiments, STFA can cover

all the direct attacks targeting at Apollo as shown in Table 4.3:

• Scenarios for direct low-speed attack. When the CV drives ahead of the ego

vehicle with a slow speed, generally slower than 1m/s, the ego will not perform

overtaking, which takes a long time to complete the motion task or stop in a

middle way, or collide with the CV. This happens on any type of road. Replacing

the ahead CV with any vehicle type yields the same attack effects. Specifically,

the direct low-speed attack can achieve a 100% attack rate under 30 times with

different straight lane, T-junction, and intersection road types.

• Scenarios for direct parallel-vehicle attack. In this case, we assign a CV running

in the left lane of the ego vehicle with the same direction and speed. However,

the ego vehicle cannot take lane changing action since the parallel CV occupies

the left lane all the way, causing the ego vehicle to not reach the destination and

fail to complete the task. Shown in Figure 4.9 is a demo of a direct parallel-

vehicle attack. We clearly observe that the ego vehicle generated a future path

for lane changing and tried to take action, but it fails and finally stops at the
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Table 4.4: Average attack success rate (ASR) of Indirect-attack on different
scenarios.

Adversarial Attacks NPC Number Scenarios
Consequence & Occurrence Rate

Desired Planning Behavior ASR
Collision Stop/Block Time/Task-delay

low-speed attack
2 T-Junction 20% 20% 60% Overtaking 100%
4 Intersection 60% 20% 20% Overtaking 100%
2 Straight 30% 30% 40% Overtaking 100%

motion-control attacks
3 T-Junction 0% 40% 60% Wait and overtaking 100%
3 Intersection 10% 20% 70% Wait and overtaking 100%
2 Straight 10% 30% 40% Overtaking 80%

large-vehicle attacks
3 T-Junction 90% 0% 0% Stop and wait 90%
4 Intersection 90% 0% 0% Stop and wait 90%

center of the intersection. We evaluate this attack in a straight lane 30 times

and find that this attack would lead to three consequences, i.e., the rear end

of the car collides with the CV, the ego vehicle stops, and the task cannot be

completed. The reason behind this is a parallel CV is continuously occupying

the left lane along with the ego vehicle’s direction and speed. Although the ego

vehicle generates a future path for lane changing and attempts to initiate the

action, it is unable to do so successfully due to the parallel CV, leading to the

ego vehicle coming to a stop at the intersection.

• Scenarios for direct motion-control attack. In this case, an adversary controls the

CV running ahead of the ego vehicle. However, different from low-speed attack,

it controls the CV’s position and steering. Table 4.3 shows that it can make the

ego vehicle cannot reach the destination or stop halfway, with an overall 100%

success rate.

• Scenarios for direct large vehicle attack. In this case, an adversary controls a

large vehicle, e.g., a school bus, to conduct the attack. Although in the direct

low-speed attack, we have confirmed that a large vehicle can make the ego vehicle

fail at low speed, in this attack, we only consider turning situations, such as

the T-junction and intersection. Specifically, the ego vehicle will drive straight

through T-junctions or intersections, while the large vehicle will turn and drive

into adjacent lanes in the same direction as the ego vehicle. Table 4.3 shows that

the attack can achieve an average 75% ASR and all collide with large vehicles.

The reason is that when the large vehicle turns, it will also occupy the adjacent

lane, and the ego vehicle cannot detect such occupation but still continues its

motion, resulting in a rear-end collision.

Effectiveness of Indirect-attack. STFA generates attack scenarios covering the

3 indirect attacks, including:
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Figure 4.10: An example of an indirect slow-speed attack. In this scenario,
the first CV deliberately drives at a slow speed, causing the second NPC vehicle
to slow down and eventually come to a stop. Consequently, the ego vehicle is
affected, and it also slows down and comes to a stop due to the actions of the
adversarial vehicles.

• Scenarios for indirect low-speed attack. As shown in Figure 4.10, the CV decel-

erates, causing the OV to drive at a low speed, which indirectly causes the ego

vehicle to stop and follow at a low speed. Similar to the direct slow-speed at-

tack, the ego vehicle should overtake at this time but it fails. Table 4.4 gives the

occurrence rate and attack success rate of indirect low-speed attack, we observe

that this attack can 100% attack the ego vehicle and cause a collision, stop, or

task delay consequence at different types of roads.

• Scenarios for indirect motion-control attack. In this case, the adversarial vehicle

running in the left lane of the ego vehicle and OV, the adversary can adjust its

behavior and affect the speed of OV afterward making the ego vehicle always

drive after OV. It can lead to stopping or task-delay behavior of the ego vehicle.

As we observe in Table 4.4, it achieves an average ASR of 93.9%.

• Scenarios for indirect large-vehicle attack. An adversary controls an NPC vehi-

cle, regardless its types, the adversary can control the NPC vehicle, regardless

of its type, and can force the large vehicle to wait until the ego vehicle comes to

start and pass the turn, and the ASRs are 90% for T-Junction and Intersection,

respectively.
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4.4.5 The Similarity and Difference between Direct-attack

and Indirect-attack

Similarity. Given the results in Table 4.3 and Table 4.4, it is evident that both

attack types can achieve high ASRs. We also observe that both two attacks only

induce the collision consequence in Large-vehicle attacks. The main reason is that

large vehicles usually need to occupy two to three lanes when turning, and Apollo

ADS believes that the vehicles only occupy one lane, so a collision occurs, as shown

in Figure 4.8.

Difference. We observe indirect-attacks have higher ASRs than direct-attacks.

The reason is the more NPCs that participate in the indirect-attack, the more

intricate the traffic scenario becomes, increasing the possibility of accidents. This

is due to the fact that the behavior of NPCs in the scenario is dynamic and often

unpredictable, and their actions can inadvertently trigger collisions. However, we

also claim that indirect-attack is more difficult to perform than direct-attack in

the real world. In the case of indirect-attack, multiple OVs are intended to be

positioned around the ego vehicle simultaneously, which has a lower possibility

of happening in the real world as we cannot control the OVs’ positions. This

necessitates that the attacker relies on the current location of the ego vehicle and

the surrounding traffic conditions, including the positional relationship between

the OV and the ego vehicle, to execute the attack. Consequently, when compared

to the direct-attack, the indirect-attack presents greater complexity. However, the

advantage of the indirect-attack lies in its higher level of stealthiness, as it does

not directly influence the behavior of the ego vehicle.

4.5 Limitation and Discussion

Information extraction ability. While employing ChatGPT-4 for information

extraction offers valuable insights, e.g., road types, NPC characteristics, and at-

tack consequences, it comes with certain limitations that need to be acknowledged.

ChatGPT-4 may have limitations in its contextual understanding of accident re-

ports. As a black-box language model, it relies on the context provided in the input

prompt, which might not be sufficient to fully grasp the complexities of accident
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scenarios, i.e., we cannot guarantee its extraction effectiveness. This limitation can

result in incomplete or inaccurate information extraction. To mitigate these limita-

tions, we carefully scrutinized accident reports and found that the information ex-

tracted by ChatGPT-4 is meaningful. Also, we have demonstrated the feasibility of

achieving these attacks. As part of future work, users can work towards developing

specialized prompt tools to enhance information extraction ability from ChatGPT-

4. These custom prompt tools could be tailored to the specific requirements of the

domain, ensuring better alignment with more accurate accident information.

NPC pedestrians and obstacles. STFA have included NPC pedestrians and

obstacles, as depicted in Listing 4.1 lines 27-28 to construct scenarios. However, due

to several critical reasons, we refrain from employing pedestrians and obstacles in

STFA. Firstly, although the simulation world allows for scenarios with pedestrians,

it is not feasible or meaningful to create such scenarios in the real world, where

an attacker can remote an NPC vehicle but cannot control a person, making such

scenarios impractical. Secondly, we focus on dynamic attack scenarios rather than

static ones. Using static obstacles that are easily detected by human observers or

AV sensors potentially compromises the stealthiness of attacks.

4.6 Conclusion

In this chapter, we address the critical security concerns surrounding the decision-

making module in ADS and we conduct the first SOTIF-oriented traffic flow attack

of ADS. Rather than designing a specific attack, we propose STFA, a novel auto-

matic attack generation approach. STFA introduces two novel attack types, i.e.,

Direct-attack and Indirect-attack. Based on that, we design a total of 7 new attack

methods, and conduct comprehensive experiments to demonstrate the effectiveness

and generalizability of these attacks. STFA contains more than 2.5 million lines of

code, which can be easily extended to any other ADS, providing practitioners with

a valuable tool to enhance their ADS security. In the future, we hope developers

can design corresponding defense strategies based on it. Furthermore, we will also

integrate more unmanned systems, such as drones and robotic systems.





Chapter 5

A Unified Defense Framework

against Physical Adversarial

Attacks to Autonomous Driving

Visual Perception

Modern Autonomous Vehicles (AVs) implement the Visual Perception Module

(VPM) to perceive their surroundings. This VPM adopts various Deep Neural

Network (DNN) models to process the data collected from cameras and LiDAR.

Unfortunately, prior studies have shown that these models are vulnerable to physi-

cal adversarial examples (PAEs), which pose a critical safety risk to the autonomous

driving task. While a few defense methods have been proposed to safeguard AVs,

most of them only target a limited set of attack types and specific scenarios, making

them impractical for real-world protection.

In this chapter, we introduce VisionGuard, a novel and practical defense frame-

work leveraging spatiotemporal inconsistency that can comprehensively detect and

mitigate various PAEs to the VPM. VisionGuard consists of three modules: (1)

State Correction Module (SCM) obtains the current driving states by raw data cal-

ibration and integration; (2) State Prediction Module (SPM) predicts the motion

states by tracking historical states; (3) Attack Detection Module (ADM) checks

the motion state inconsistency. We evaluate 9 state-of-the-art PAEs against both

camera and camera-LiDAR fusion-based object classification & detection models.

87
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Experimental results in both simulation and the physical world validate the effec-

tiveness and robustness of VisionGuard. Codes and demo videos can be found on

our anonymous website: https://sites.google.com/view/visionguard.

5.1 Introduction

Autonomous driving technology has been widely commercialized, as evidenced by

the increased types of Autonomous Vehicles (AV) transitioning from concepts to

real products on public roads. The brain of these vehicles is the Autonomous Driv-

ing System (ADS), which incorporates multiple modules to understand the external

environment and make safe and accurate driving decisions. One important module

is the Visual Perception Module (VPM) , which leverages the camera and LiDAR

as the primary sensors for perceiving the surrounding context of the vehicle, and

then uses state-of-the-art Deep Neural Network (DNN) models for object classifica-

tion and detection. This VPM lays the foundation of the ADS and plays a critical

role in ensuring safe driving.

However, recent studies have exposed camera and LiDAR spoofing vulnerabilities

against ADSs [167]. An external adversary can carefully craft adversarial objects

to deceive the DNN vision models to make wrong perception results. Such incor-

rect results will be further fed into the subsequent modules, leading to incorrect

driving decisions and endangering the safety of AVs. Based on the attack goals, the

adversary can mislead the perception models to misclassify an object [62–65], hide

an existence object [16, 63, 64, 66–70], or recognize a non-existence object [71–73].

For instance, pasting a sticker onto a stop sign can cause the traffic sign classifica-

tion model to misrecognize it as a speed limit sign, potentially making the vehicle

fail to decelerate at a pedestrian crossing [62]. Similarly, strategically placing a 3D-

printed traffic cone in the middle of a driving lane can deceive the camera-LiDAR

fusion-based object detection mechanism, resulting in a collision risk [16].

Numerous defense methods have been proposed to mitigate adversarial examples

[20]. They can be roughly classified into two categories. (1) Certified defenses. It

detects adversarial patches with theoretical guarantees of model robustness against

white-box attacks. Typical techniques include randomized cropping [21], interval

bound propagation [22], de-randomized smoothing [23], secure aggregation [24],

https://sites.google.com/view/visionguard
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Table 5.1: Comparison with representative state-of-the-art defense methods.
HA: hiding attack; AA: appearing attack; MA: misclassification attack.

Defense Methods
Sensor Task Attack Goal

Camera LiDAR Classification Detection HA AA MA

Certified

Randomized Cropping [21] " " "

Interval Bound Propagation [22] " " "

De-randomized Smoothing [23] " " "

Secure Aggregation [24] " " "

PatchGuard++ [25] " " "

Certified Training [26] " " "

DetectGuard [27] " " "

Vision
Consistency

PercepGuard [28] " " " " "

AdvIT [29] " " "

SCEME [30] " " " " "

SCENE [32] " " " " "

KEMLP [33] " " "

Zhang et al. [34] " " " "
Spatiotemporal
Consistency

VisionGuard (Ours) " " " " " " "

feature space masking [25], certified training [26] and objectness explaining [27]. (2)

Vision-based consistency checking. It leverages the consistent information obtained

from different sources to detect adversarial examples. Such consistency detection

can be achieved at the perceptual level [28, 29], physical context level [30, 32, 33],

or sensor level [34].

However, most of them are evaluated in model level and also suffer from several

limitations. Limited generalizability. Existing methods only target specific

vision tasks, sensors, or attack goals, as shown in Table 5.1. Specifically, certified

defenses are mainly designed for physical 2D patch attacks other than 3D LiDAR

attacks. They either focus on the classification task [21–26], or object detection

task [27], but are not able to cover all the vision tasks in the VPM. For vision-

based consistency checking, some methods [28, 29] extract and monitor anomalies

in motion feature consistency of the target object. They can only detect mis-

classification attacks, but not object-hiding attacks since there are no targets for

feature extraction. The second one is reliance on contextual information.

Many vision-based consistency-checking approaches highly rely on the availability

of abundant contextual information from the perception module. For instance,

some solutions [30, 31] leverage reasonable relationships between the target object

and coexisting benign objects to identify anomalies. They are less effective when

there is barely any object other than the target one in the scene. The last one

is computational efficiency. Certified defenses normally come with complex

derivation and optimization processes which involve heavy mathematical proofs

and algorithms to ensure their robustness guarantees. Their high computational
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Figure 5.1: Runtime detection comparison.

cost makes them impractical to achieve real-time protection in autonomous driving.

More discussions of existing defense works can be found in Section 5.2.3.

This chapter aims to propose a practical defense solution to overcome the above

limitations. To this end, we perform a comprehensive evaluation of state-of-the-art

PAEs 1 to the VPM in both simulation and physical world. This enhances our un-

derstanding of such threats and reveals an intriguing phenomenon: existing PAEs

are all less robust to physical variations and difficult to keep consistent over time.

Figure 5.1 shows such inconsistency over different distances in various attacks.

To further explore this intriguing phenomenon, we for the first time theoretically

demonstrate that it is hard to generate a stationary PAE that remains effective

based on distance variation. Last but not least, although a variety of transforma-

tion methods are used to enhance the robustness of PAEs [168], we have proven

that existing methods still fail to satisfy the expectations.

Motivated by this observation, we propose VisionGuard, a practical defense frame-

work to protect the ADS against camera and LiDAR adversarial attacks. VisionGuard

has the following advantages: High generalizability. VisionGuard is capable

of detecting different forms of PAEs. The key idea is to use the spatiotempo-

ral inconsistency present in AV’s internal kinetic behaviors to detect anomalies.

VisionGuard predicts the vehicle’s future motion based on its past motion states.

If this prediction deviates from the actual movement, it will issue a warning, con-

tinuously monitor its movement status, and further determine to eliminate the

warning or issue an attack warning based on the cumulative threshold. This de-

sign provides comprehensive protection over any attack goal, target model, target

sensor, etc. ❷ No requirements of contextual information from the VPM.

VisionGuard utilizes a completely different set of data and sensors (i.e., GPS and

IMU) from prior works for inconsistency checking and anomaly detection. This

presents a significant benefit as it is not constrained by external and contextual

1It is also important to note that we have specifically selected PAEs that have been tested in
real-road condition in existing literature.
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factors, while GPS and IMU are more stable to provide internal reference of the

vehicle. ❸ Highly computational efficient. VisionGuard captures the motion

state of the vehicle with only a few explicit variables, without the need to prepro-

cess high-dimensional image and point cloud inputs. In addition, state prediction

in VisionGuard is achieved via a lightweight yet effective statistical model, which

can satisfy the real-time requirement on resource-constrained platforms (i.e., AV).

The VisionGuard framework consists of three modules (Figure 5.5). (1) State

Correction Module (SCM) is responsible for obtaining the vehicle’s actual states.

It collects the raw IMU and GPU measurements and applies the Kalman Filter

algorithm to calibrate the driving state. (2) State Prediction Module (SPM) is

used to predict the driving states by tracking historical states. It adopts the Au-

toregressive Integrated Moving Average algorithm to extract two types of features.

(3) Attack Detection Module (ADM) is introduced to assess whether the vehicle is

currently safe or under attack. It combines all the predicted states and extracted

features to make comprehensive comparisons with a state machine at runtime.

We comprehensively evaluate VisionGuard in industry-grade simulators (LGSVL [96]

and CARLA [169]) and physical scenarios. Experiment results show that VisionGuard

is robustness against 9 state-of-the-art PAEs in 9 scenarios with different en-

vironment conditions (distance, angle, heading, weather, context information).

Compared with two representative defense methods based on certification and

consistency-checking, VisionGuard exhibits the highest detection rate, fastest de-

tection speed, and best generalization capability. Besides, VisionGuard has very

low false positives, which only occur in several corner cases. We further conduct

a comprehensive analysis of the adaptive attacks and prove that the optimization

results of these hyper-parameters in various scenarios are consistent and reliable.

To summarize, we make the following contributions:

• We conduct a comprehensive evaluation of 9 state-of-the-art PAEs in diverse

scenarios. This deepens the understanding of perception vulnerabilities in ADSs

and discloses the defense opportunities.

• We propose a defense framework VisionGuard, which is the first method leverag-

ing GPS and IMU measurements to guard the VPM. VisionGuard uses the spa-

tiotemporal inconsistency in the vehicle’s kinetic information to detect different
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types of attacks (object misclassification, hiding or appearing) against different

sensors (camera, camera-LiDAR fusion) with different attack techniques.

• VisionGuard is a plug-and-play solution that can work with off-the-shelf ADSs.

It is a flexible framework for high transferability and scalability.

• We evaluate VisionGuard in both simulation and real-world scenarios. VisionGuard

achieves high detection rate with low false positives with a total number of 39000

frames of collected vehicle motion state data.

5.2 Background and Related Work

5.2.1 Visual Perception Module in ADS

A typical ADS implements a Visual Perception Module (VPM) to understand the

environment. The VPM is responsible for processing sensor data and applying

DNN models to execute perception tasks, such as object detection, classification,

and tracking. Based on the perception outputs, the ADS makes decisions, e.g.,

throttle, braking, and steering, to ensure the AV operates correctly. In this chapter,

we focus on the security aspects associated with the VPM. State-of-the-art ADSs

typically employ two main approaches for building the VPM: (1) camera-based

design, such as Tesla [83] and Intel Mobileye [170]. The ADS relies on 2D or

3D cameras for perception, often using multiple cameras positioned in different

locations to improve accuracy and robustness. (2) Camera-LiDAR fusion-based

design, such as Baidu Apollo [171] and Google Waymo [2]. The ADS combines both

cameras and LiDAR sensors to collect image and 3D point cloud data, respectively.

These two modal data are processed separately and then fused to generate the final

perception results. This process is normally achieved via a rule-based Multi-Sensor

Fusion (MSF) function [171]. We aim to defeat attacks that target both perception

designs. We do not consider the LiDAR-only implementation, which has not yet

been deployed by the mainstream AV manufacturers in reality.

5.2.2 Physical Adversarial Examples (PAEs)

Machine learning models are vulnerable to adversarial attacks [16, 63, 63, 64, 66,

68–73, 172], where small-scale perturbations in the input can mislead the victim
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model to make wrong predictions. Most of these pixel-wise perturbations are nearly

imperceptible to human eyes. Despite their stealthiness, many of these attacks

utilize the entire input space for perturbation injection. In the physical world,

the attacker can achieve such an attack by creating localized perturbation in the

form of sticker patches, projection patterns, or 3d-printed obstacles. Although such

adversarial objects are subject to physical constraints, their threat to ADSs can

have serious consequences.

Physical attacks to camera-based perception. Attacks targeting the camera-

based VPM can be classified into three categories based on the attack goals.

Misclassification Attacks (MA) deceive the models into classifying the target ob-

ject into another one [64, 66, 172]. Hiding Attacks (HA) fool the models into

ignoring the presence of the target object [63, 66, 75]. Appearing Attacks (AA)

aim to make the perception model detect a non-existent object [16, 63, 64, 66, 68–

70].

Physical attacks to MSF-based perception. Exiting works mainly focus on

HA. Cao et al. [16] were the first to successfully 3D-print optimized obstacles,

such as benches, toy cars, and traffic cones, to deceive camera-LiDAR fusion-based

perception. Abdelfattah et al. [70] proposed a similar HA technique within a

comparable threat model. However, there is still limited research on robust black-

box attacks against MSF-based perception.

5.2.3 Existing Defenses against Physical Adversarial At-

tacks

Past works have proposed different types of defense solutions to mitigate the above

physical attacks. They can be classified into the following two categories.

Certified defenses. These methods aim to detect adversarial patches, partic-

ularly those created by white-box adversaries. Chiang et al. [22] introduced a

certified defense through Interval Bound Propagation (CertIBP), which demon-

strates superior robustness against adversarial patches of varying shapes and sizes.

Levine et al. [23] extended the robustness of certification with De-Randomized

Smoothing (DS) by leveraging the spatially constrained properties of adversarial
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patches. Similarly, Lin et al. [21] utilized these properties to achieve attack detec-

tion by classifying random crops of the input image and generating final outputs

based on the majority of the classification results. Metzen et al. [26] improved the

efficiency of the certification process by combining it with model training. Sev-

eral defense strategies are designed specifically to address the localized adversarial

patches for CNN models with small receptive fields. For instance, PatchGuard [24]

leverages these small receptive fields to limit the impact of corrupted features. It

utilizes secure aggregation to retrieve correct prediction results. PatchGuard++

[25] and DetectorGuard [27] are extended over PatchGuard, which applies masks

in the feature space to boost the robustness.

Limitations. Certified defenses suffer from several limitations. First, they have

scalability and efficiency issues. Their computational cost grows exponentially with

the size of inputs, which makes them less practical for real-time applications with

high-dimensional inputs, e.g., autonomous driving. Second, while some methods

claim to detect physical adversarial patches, their feasibility in physical settings

is not well demonstrated. Third, certified defenses are often designed to defend

against specific types of attacks, lacking the generalizability and ability to handle

diverse attacks.

Vision-based consistency checking. AVs running in the physical world exhibit

temporal continuity, which could be disrupted by adversarial attacks. Consistency-

based defenses focus on detecting anomalies by utilizing the spatiotemporal in-

formation derived from the perceptual, physical, or sensor level. These defenses

analyze the consistency of data over time to identify any discrepancies caused by

adversarial attacks. (1) Perceptual level. PercepGuard [28] explores the spatiotem-

poral consistency of the target objects by constantly monitoring its trajectory to

detect MA. Similarly, AdvIT [29] analyzes the temporal consistency of the tar-

get across continuous frames with optical flow estimation of pseudo frames for

detection comparison. (2) Physical environment level. Some approaches exploit

the consistency properties between the target object and coexisting objects in the

scene to detect adversarial attacks. Li et al. [30] created an auto-encoder for each

target class to discover whether its contextual discrepancy rules have been vio-

lated. Yin et al. [32] employed a language model with an awareness of describing

natural scene images to obtain relationships between multiple coexisting objects.

Some other researchers assign specific classes with their deterministic attributes.



Chapter 5. VisionGuard 95

KEMLP [33] combines these attributes with a set of weak auxiliary models to check

the consistency properties of the target object. Wang et al. [31] utilized a similar

approach to exploit context inconsistencies specifically for persons across different

views to detect adversarial attacks. (3) Sensor level. Zhang et al. [34] checked the

consistency of data collected from different cameras to detect optical signal attacks

by analyzing the distribution of disparity error between them. Xiao et al. [77]

leveraged the global and average local differences between normal and adversarial

objects to detect AA in the point cloud.

Limitations. These methods that rely on external perceptual information have

limitations in generalizability. For example, PercepGuard [28] and AdvIT [29] are

only effective against MA with norm-bounded perturbations. They may not be

applicable to HA when contextual information is limited. Approaches that rely

on the consistency of coexistent objects assume abundant contextual information,

which may not be the case in low-light or rural areas. Additionally, some methods

[31, 33] focus on verifying the consistency of static objects, which is not applicable

to complex spatiotemporal features associated with moving objects.

5.3 Design Insight

5.3.1 Threat Model

Attack objective and capability. We consider an external attack that aims to

compromise the VPM of an AV by deploying 2D or 3D PAEs. The attacker can

achieve different types of goals introduced in Section 5.2.2, including MA, HA, and

AA. We assume the attacker knows all the details of the target DNN models in

the ADS and is able to generate high-quality adversarial objects by considering the

physical constraints (e.g., naturalness, printability, etc.).

Attack scope. Following the threat model in [28], we do not consider digital

adversarial examples. Executing digital attacks requires the attacker to gain ac-

cess to the Controller Area Network (CAN) bus to inject digital signals, which is

more challenging to accomplish in real-time ADSs. We assume the deployed PAE

is stationary. This holds true for the mainstream 2D patch and 3D object attacks.
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Dynamic PAEs (e.g., using screen or projector) for better robustness and conceal-

ment are beyond the scope of this work. We concentrate on the optimization-based

PAEs with high stealthiness, while ignoring other types of attacks (e.g., phantom

attack [75]) that cause significant changes to the environment. Additionally, we

mainly focus on the attacks against the vision sensors (i.e., camera, LiDAR), while

trusting motion sensors (i.e., GPS, IMU). While motion sensor signals can also be

spoofed [173], a plenty of countermeasure have been designed to protect the GPS

signals, including authentication, integrity verification, encryption-based, and deep

learning-based techniques [174]. The inherent design features of IMUs can also con-

fer resistance to external spoofing due to their operational independence and lack

of reliance on external signals. How to design a defense solution over all untrusted

sensors is challenging and never studied in prior works. This will be our future

direction.

5.3.2 Key Insight

The key insight of VisionGuard comes from an observation that existing phys-

ical adversarial examples are not perfect in our real world. The physical

constraints render such attacks less robust and consistent against environmental

changes, including light conditions or movement. This conclusion has been con-

firmed by prior works [168, 175, 176]. We also extensively and comprehensively

investigate 9 state-of-the-art PAEs, as summarised in Table 1. We download all

the videos from these papers and create a database (can be found on our website).

We carefully review these videos and observe that none of these attacks can be

consistent over time, as shown in the ”Inconsistent Period” column of Table 1.

We argue that it is infeasible to create perfect physical adversarial ex-

amples in practice . Below we provide our justifications from two perspectives.

5.3.3 Difficulty of Generating Perfect PAEs

We first theoretically demonstrate that it is difficult for a stationary PAE to achieve

ideal attack results in a dynamic AD scenario. Specifically, we prove that, as a cam-

era mounted on an AV constantly approaches a PAE from far to near, it captures
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a multitude of video frames, each presenting a slightly different perspective. This

continuous change makes it extremely hard to maintain a high probability that a

universal PAE is effective across all these rapidly increasing and varying frames.

Theorem 5.1. Consider a case where the example x is successfully attacked with

the attacking probability to be P (F (x + δ) ̸= y) = 1 − px+δ where δ denotes the

perturbation. Further, we consider that the image of each frame contains d × d

pixels. Then, the maximum probability Pmax of successfully attacking all frames is

exponentially reduced with the increasing number N of the total frames, i.e.,

Pmax ≤ (1− px+δ)
2N
d

(⌊ ln d̄−ln d
ln(1−px+δ)−ln(2−3px+δ)

⌋+1)
, (5.1)

where d̄× d̄ represents the number of object pixels at the location when the vehicle

starts to see the object.

Proof. For clarity of reading, we here mainly present the sketch of proof. More

details can be found in Appendix .1. To establish the proof, we view the problem

of attacking object detection to be a binary classification task where the object is

either detected or not. We denote y to be the label where the object is recognized

and y′ otherwise. Besides, we denote P (F (x) = y) = px, P (F (x + δ) = y) = px+δ

for ease of analyzing. Also, we use l(x, y) to represent the loss of classifying the

example x to be y. Obviously, we have l(x, y) < l(x, y′) for any clean example x.

By denoting f(x) =
l(x+δ,y′)−l(x,y)−Lϵ2

2

∥∇xl(x,y)∥ , we have

P (F (x+ δ) = y) = P
(
l(x+ δ, y) < l(x+ δ, y′)

)
≥P

(
l(x, y) +∇xl(x, y)

T δ +
Lϵ2

2
< l(x+ δ, y′)

)
⇒P

(∇xl(x, y)
T δ

∥∇xl(x, y)∥
< f(x)

)
< px+δ, (5.2)

where the first inequality is derived by applying the Taylor expansion over l(x +

δ, y). Considering the perturbation budget ∥δ∥ ≤ ϵ, we can compute the expecta-

tion of the ∇xl(x,y)T δ
∥∇xl(x,y)∥ as

E
∇xl(x, y)

T δ

∥∇xl(x, y)∥
≤ px+δf(x) + (1− px+δ)ϵ. (5.3)
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Instead of considering the vehicle coming closer to the object, we consider driving

the vehicle back from the position where it is parallel to the object for ease of

analysis. We use g(x + δ) = x + γδ to denote the transformed example of x + δ

where γ < 1 is the scaled size. Based on the L-smoothness assumption, we have

l(x, y) + γ∇xl(x, y)
T δ − Lγ2ϵ2

2

≤ l(g(x+ δ), y) ≤ l(x, y) + γ∇xl(x, y)
T δ +

Lγ2ϵ2

2
. (5.4)

Similarly, based on (5.4), we have

P (F (g(x+ δ)) ̸= y)

≤
γ
(
px+δ ·

(
l(x+ δ, y′)− l(x, y)− Lϵ2

2

)
+ (1− px+δ)ϵ∥∇xl(x, y)∥

)
l(g(x+ δ), y′)− l(x, y)− Lγ2ϵ2

2

(5.5)

Considering the vehicle stays in the position where the scale size s satisfies γ ≤
1−px+δ

2−3px+δ
, then bringing the scale size of s back to (5) derives the probability bound

of P (F (g(x+ δ)) ̸= y):

P (F (g(x+ δ)) ̸= y) ≤ 1− px+δ. (5.6)

Further, denoting the number of total frames as N and the size of each frame as

d × d, we can obtain that each captured picture corresponds to 2N/d frames. By

further denoting the minimum scale size corresponding to recognizing clean figures

is d̄, we can calculate the maximum scale times r of which the attacking probability

is less than 1−px+δ as r = ⌊ ln d̄−ln d
ln(1−px+δ)−ln(2−3px+δ)

⌋. We can then compute the number

n of frames of which the attacking probability is less than 1− px+δ as

n =
2N(r + 1)

d
=

2N

d
(⌊ ln d̄− ln d

ln(1− px+δ)− ln(2− 3px+δ)
⌋+ 1). (5.7)

As a consequence, by denoting the probability of successfully attacking one frame

as Pa, the maximum probability of successfully attacking all frames is less than the
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(a) Assumed distribution in EoT. (b) Real world distribution.

Figure 5.2: Distributions of stop sign size in 416*416 images.

following probability:

Pmax = PN
a ≤ (1− px+δ)

n = (1− px+δ)
2N
d

(⌊ ln d̄−ln d
ln(1−px+δ)−ln(2−3px+δ)

⌋+1)
,

which completes the proof.

5.3.4 Ineffectiveness of Robustness-enhanced Solutions

To overcome the physical constraints and make the PAE more robust, many attacks

leverage some robustness-enhanced techniques, i.e., Expectation of Transformation

(EoT) or its variants, which augment the training of PAEs with uniform transfor-

mation. We show that these techniques are still incapable of generating perfectly

consistent PAEs from two perspectives. (1) Unreasonable assumption. It

is a common practice in previous studies to uniformly sample the transformation

operation within a certain range [64, 66, 177, 178]. However, Wang et al. [179]

demonstrated that this assumption is inconsistent with the physical model. To

further verify this, we experiment with a stop sign in the real world. First, we

drive a physical vehicle in uniform motion from 50 meters away towards a stan-

dard stop sign (600mm diameter), where the Intel RealSense D435i camera with

1920 * 1080 resolution is mounted on the vehicle. We record the video and ob-

tain the stop sign pixel for each frame, for a total of 1470 frames. The stop sign

distributions assumed in EoT used in [178] and in the real world are given in Fig-

ure 5.2. We observe that in reality, the vast majority of pixel sizes lie in the range
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Figure 5.3: Adversarial objects in our empirical study.

0 to 200 (small pixel distribution when the AD vehicle is far away from the ob-

ject). However, [178] implies that when the object is small, attack convergence

becomes challenging, making it difficult to attack. As a consequence, uniformly

sampling object sizes without consideration of their real-world frequency can lead

to less robust PAEs. It might be overly robust to size variations that rarely oc-

cur (large pixel distribution) and underprepared for common size variations (small

pixel distribution), making the PAE easily affected by distance.

(2) Ignored context. EOT involves adding random distortions during the op-

timization process to make the perturbation more robust. However, it primarily

focuses on the PAE itself, without sufficiently considering the background context,

which is critical for AD scenarios. In the real world, the detection model not only

analyzes the object of interest in isolation, but also consider its context, including

the background and the relationship between the object and its surrounding envi-

ronment. Thus the background context can significantly impact the effectiveness of

PAEs [71]. As vehicles move from far to near, the surrounding environment of the

PAE changes quite significantly, yet EOT does not take these background changes

into account. Although [71] considers background context and improves EoT, its

robustness is still poor due to the limitations posed by the dynamic changes during

driving.
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Table 5.2: Evaluation of Yolov3 in benign and adversarial scenarios in LGSVL.
Each result below is calculated with around 300 video frames. In benign sce-
narios, the objects can be fully detected. In adversarial scenarios, ✗, !and fail
mean the attack is incontinuous, continuous and fails, respectively.

0◦ 30◦ 60◦ Environment
Goal Target

3-6m 6-9m 9-12m 3-6m 6-9m 3-6m Rainy Foggy Twilight

Benign
Stop Sign 100% 100% 100% 100% 100% 100% 100% 100% 100%
Bench * 100% 100% 100% 100% 100% 100% 100% 100% 100%

HA
SLAP[66] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ShapeShifter[64] ✗ ✗ ! ✗ ✗ ✗ ✗ ✗ ✗

Adv-MSF[16] ✗ ✗ ! ✗ ✗ ✗ ✗ ✗ ✗

MA

RP2(subtle)[62] fail fail ✗ fail ✗ fail ✗ ✗ ✗

RP2(art)[62] fail fail ✗ fail ✗ fail ✗ ✗ ✗

ShapeShifter [64] ! ✗ ✗ ! ✗ ! ✗ ✗ ✗

AdvCam [63] ! ✗ ✗ ! ✗ ! ✗ ✗ ✗

* Adv-MSF [16] only provides “Bench” in their code.

Figure 5.4: External environment variables in our consideration.

5.3.4.1 Empirical Study

To further verify these observations, we reproduce 9 representative attacks with

different features [16, 63, 64, 66, 172], as illustrated in Figure 5.3. We deploy

these attacks in two industry-grade autonomous driving simulators (LGSVL and

CARLA) and evaluate the robustness of their vision models. We adopt a “Lincol-

nMKZ” vehicle, which is equipped with a front camera ( 1920 × 1080, 15Hz) and

LiDAR (64-HEL Velodyne). We place the adversarial objects at reasonable places

in the scene. For instance, adversarial stop signs are placed on the roadside, while

a 3D adversarial bench is placed in the center of the driving lane. We mainly run

two types of experiments with respect to the robustness and runtime analysis of

these attacks and record the detection results of the target models.

Robustness analysis. We first evaluate the robustness of each attack to various

factors, such as distances and angles from the adversarial object, and environmental

conditions (e.g., raindrops, fog, lightness). We select 9 different positions of the

adversarial object and 3 environment conditions, as shown in Figure 5.4. Table 5.2

shows the evaluation results returned by the respective perception models in the

benign and attack (HA and MA) cases. We can observe that the target models can
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correctly and consistently detect or classify benign objects. For the two attacks,

the adversarial objects are highly sensitive to distances, angles, and environmental

conditions. Based on these results, we conclude that due to the physical constraints,

existing PAEs are susceptible to various external factors, and their robustness is

restricted.

Runtime analysis. We further perform a runtime experiment to evaluate the

performance of the physical attacks in a dynamic environment. We instruct the

vehicle to drive from 7 meters away to the target object at a constant speed and

keep monitoring the predicted confidence scores in this process. Figure 5.1 shows

the model prediction results. We set a confidence threshold of 0.25 to identify an

object. For the benign object (blue line), we observe that the vehicle is able to

detect it from a certain distance and the confidence score remains stable afterward.

In contrast, for the adversarial objects created from [64, 66], the confidence scores

fluctuate dramatically and the vehicle cannot have stable detection results.

5.3.5 Key Idea behind BatAV

Such imperfection of physical attacks provides a new opportunity for mitigating

them. In this chapter, we exploit the inconsistency in spatiotemporal motion fea-

tures of vehicles to detect PAEs. Specifically, motion characteristics include a

vehicle’s global position, speed, acceleration, and heading to describe its behav-

ior in space and time. When a vehicle is in motion, its spatiotemporal feature

is continuously changing due to continuous variation of actuator behavior. When

the vehicle’s movement is spatialtemporal consistent, this signifies that the vehi-

cle is currently doing a smooth and regular motion variation. On the contrary,

when the vehicle’s spatialtemporal feature pattern exhibits sudden and irregular

changement, its motion state tends to be spatiotemporal inconsistent.

In a standard ADS platform, the perception results will be transmitted to the

subsequent planning and control modules for real-time on-road driving, so the

spatiotemporal inconsistencies introduced by PAEs can directly affect the behaviors

of the vehicle, including its position, heading, velocity, and acceleration, which are

continuously updated while the vehicle is in motion. Therefore, by monitoring

these kinetic variables, it is feasible to detect any potential anomalies that may

arise as a result of PAEs.



Chapter 5. VisionGuard 103

GPS

IMU

Raw
Measurements

Kinetic
Model

Theoretical
State

Corrected
State

Kalman
Filter

Long-term
Residual

Short-term
Residual

State
Machine

Benign
Scenario

Adversarial
Scenario

ARIMA

Long-Term
Prediction State

Short-Term
Prediction State

SCM

SPM

Historical
StatesCamera

LiDAR

Safe
Control

Perception Anomaly
Detector

ADM

Warning
Normal

Attack
 Event = 1:

Planning Control

Event = 1

Event = 0
Event > 1

Event = 0: 
Event > 1: , before time 

, after time 

Figure 5.5: Overview of BatAV.

It is worth noting that an alternative approach is to directly check the inconsistency

of the perception results to identify the anomalies [180–184]. However, we do not

consider this strategy for the following reasons. (1) Different categories of objects

exhibit unique features in different perception models. If we focus on checking

consistency properties in the perception results, we need to build separate detec-

tion models for different combinations of object categories and models, which is

infeasible for complex traffic scenarios. (2) The motion state and physical proper-

ties of a vehicle are more consistent and predictable since the throttle and braking

levels defined by the control module under different scenarios are deterministic.

To measure the vehicle’s internal state, IMU and GPS data are also more robust

and reliable against extreme environmental conditions compared with cameras and

LiDARs. As long as the control flow in the ADS is secure, the vehicle’s reactions

in benign environments can be uniformly modeled with higher precision.

5.4 VisionGuard

5.4.1 Overview

VisionGuard is a plug-and-play framework to protect common ADSs from phys-

ical adversarial attacks. It is designed as a standalone module to conduct safety

checking at each decision-making stage of the ADS operation pipeline, without the

necessity of modifying existing functional modules or interfering with their inter-

mediate results. Figure 5.5 presents the overview of VisionGuard, which mainly
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contains three modules: State Correction Module (SCM), State Prediction Module

(SPM), and Attack Detection Module (ADM).

Specifically, (1) SCM collects the GPS and IMU data to obtain the vehicle’s current

state. However, the state information can contain errors or inconsistencies due to

various dynamic effects caused by the environment and power train. To address this

issue, SCM applies Kalman Filter (KF) [185] to get the corrected driving state SKF
t

at time t. The state serves two main purposes. First, it is the basis for consistency

checking with the predicted driving states in ADM. Second, it is stored in SPM

to predict the next state of the vehicle. (2) SPM is designed for estimating the

driving states. It leverages Autoregressive Integrated Moving Average (ARIMA) to

build a kinetic model, which utilizes a set of stored historical states collected from

SCM, to produce two types of estimated states: a long-term predicted state SLT
t

and a short-term predicted state SST
t at time t. (3) Subsequently, the corrected

state SKF
t , as well as the estimated states SLT

t and SST
t are forwarded to ADM for

consistency checking. ADM implements a safety state machine to regulate vehicle

operations. It performs calculations to determine two residual values ||SKF
t −

SST
t || and ||SKF

t − SLT
t ||. If both values exceed their respective thresholds (w1,

w2), ADM initiates the safety state to “Warning” for a predefined time interval l.

Concurrently, it begins tracking the Accumulated State Prediction Residual (AR)

of the state prediction residuals. If this value exceeds a predefined threshold (h)

in l, it will set the safety state to “Attack” to signalize the occurrence of physical

attacks and make a safe operation, e.g., point brake. Otherwise, it will go back to

the “Normal” state.

5.4.2 State Correction Module (SCM)

The motion states of the vehicle, e.g., position, heading, velocity, and altitude,

are provided by onboard sensors like GPS and IMU. However, raw data from these

sensors are noisy and collected at varied rates, making them unsuitable for anomaly

detection without appropriate calibration. To bridge this gap, SCM applies Kalman

Filter (KF) to obtain a corrected state SKF
t . KF is a popular method for achieving

corrected state estimation in robotic vehicles by combining outputs from diverse

sensors. By utilizing KF, we can approximate the motion state of the vehicle within

a small time interval and provide a reasonable estimation of the vehicle’s behavior.
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Therefore, We provide the certified motion state of the vehicle from a kinematic

perspective.

Formally, the vehicle’s motion state st at time t includes its heading position
−→p =

−−−−→
(x, y, θ) and velocity −→v , which can be expressed as: st = [−→p ,−→v ]

T
. For

computation efficiency and motion state optimization, SCM assumes that the ve-

hicle is conducting a uniformly accelerated rectilinear motion (constant vehicle

throttle force) during each running timestep. Based on this premise, we can obtain

a theoretical state prediction st|t−1 of the current timestamp through KF predic-

tion of the previous timestamp SKF
t−1|t−1, state transition matrix F , control matrix

B and control vector ut from vehicle’s current acceleration at:

st|t−1 =


1 0 ∆t cos θ 0

0 1 ∆t sin θ 0

0 0 1 0

0 0 0 1

×

xt−1

yt−1

vt−1

θ

+


1
2
cos θ∆t2

1
2
∆sin θ∆t2

∆t

0

× at (5.8)

st|t−1 = F ·SKF
t−1|t−1 +But (5.9)

Every KF prediction step combines raw measurement zt and theoretical prediction

st|t−1 of the current timestamp with Kalman Gain K and observation matrix H,

which incorporate the relative influence of the measurement and the prediction in

the state estimation process. Therefore, the final prediction output of SCM can be

expressed as:

SKF
t|t = Ktzt + (I −KtH)st|t−1 (5.10)

By leveraging KF estimation, SCM can output a more accurate prediction of the

motion state by considering the presence of noises and errors in the raw mea-

surements from the sensors. Overall, it combines theoretically predicted states

based on physical dynamics with the measured states into one corrected motion

state variable, thus providing an accurate vehicle state for subsequent consistency

checking.
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5.4.3 State Prediction Module (SPM)

This module leverages Auto-Regressive Integrated Moving Average (ARIMA) to

predict the vehicle’s current state SARIMA
t based on the historical records {SKF

t−γ , ...,

SKF
t−2 , S

KF
t−1} collected from SCM. ARIMA is a statistical model widely used for

time series prediction. It is designed to analyze historical time-sequence data and

generate reliable forecasts of future values. The ARIMA model comprises two

key components: (1) the Auto-Regressive (AR) model captures the relationship

between the current state SARIMA
t and its historical states; (2) the Moving Average

(MA) model accounts for the accumulated errors in the auto-regressive process. By

combining these two components, ARIMA leverages the temporal dependencies

and noise patterns present in the historical data to ensure robust and accurate

prediction of the vehicle’s non-periodic motion behaviors. It is formally defined as

follows:

SARIMA
t = µ+

p∑
i=1

ϕiS
ARIMA
t−i + ϵt +

q∑
i=1

θiϵt−1 (5.11)

︸ ︷︷ ︸
AR

︸ ︷︷ ︸
MA

where µ is an intercept constant, and ϵt is the error term (usually represents the

white noise) at timestamp t. The parameters ϕi and θi are specific to the AR and

MA components and optimized during the training stage.

ARIMA offers distinctive advantages over Recurrent Neural Network (RNN)-based

methods. First, it is more computationally efficient as it does not require complex

deep network architectures, weight optimization, extensive training on large-scale

datasets. Second, ARIMA prioritizes gaining insights into recent motion trends,

patterns and providing efficient and interpretable results, rather than only focusing

on achieving the highest prediction accuracy.

Key hyper-parameters in SPM. Figure 5.6 shows some ARIMA model infer-

ence processes. The input size p of the model defines how far back in time the

model looks for making new predictions. It is an important parameter, which can

affect model’s prediction outcomes. Additionally, we introduce three key hyper-

parameters, denoted as SPM (α, β, γ), to offer a more comprehensive prediction of

vehicle’s motion state.
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(1) SPM inference interval α: this refers to the length of timesteps between two

consecutive ARIMA inferences at runtime. Frequent ARIMA inference enables

faster anomaly detection. However, it requires SPM to achieve a high prediction

accuracy in benign scenarios to prevent false alarms from being frequently triggered.

Besides, it also results in increased computational costs.

(2) SPM prediction size β: this refers to the number of motion states for prediction

during one ARIMA inference. While the ARIMA model is often used to predict

a single value per step (P1 in Figure 5.6), they can also be utilized to forecast a

variation tendency with a set of multiple values. SPM defines a trade-off between

capturing motion trends and maintaining prediction accuracy. As ARIMA predicts

more values, it increasingly relies on previous predictions rather than the true values

to make new predictions. Once the number of predicted values reaches the input

size p, future predictions will be made entirely based on historical predictions. It

is important to carefully balance this trade-off for VisionGuard to generalize well

across different types of attacks.

(3) SPM historical interval γ: this defines how far back in the historical states

should be included as inputs for each ARIMA inference. Since the input size p

of the model is fixed, we can increase γ to take further historical data into con-

sideration without having to increase p. Due to the inconsistency property of

most physical adversarial attacks, including more historical state information indi-

cates a larger deviation of SPM predictions from SCM estimations in adversarial

cases, which can benefit attack detection. However, in more complex benign sce-

narios where the vehicle’s behavior is not consistently accelerating, decelerating,

or maintaining a steady speed, including outdated historical state information can

adversely impact the SPM’s ability to make accurate benign predictions. Addition-

ally, storing historical data for an extended period will lead to increased system

memory consumption.

Prediction Types. We introduce two state prediction types within SPM:

• Short-Term State Prediction (ST). This employs a longer historical data interval

to make predictions for a short-term future. It aims to capture more extensive

state variation trends and provide predictions that reflect the recent short-term

behavior of the vehicle. (P2 in Figure 5.6)
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Figure 5.6: ARIMA model inference process. Red: SPM inputs; Green: SPM
outputs; Blue: ARIMA inference; P2: ST state prediction; P3: LT state predic-
tion.

• Long-Term State Prediction (LT). This utilizes a shorter historical data interval

to make predictions for a long-term future. It aims to capture the immediate

state variation trend and provide predictions that depict the general long-term

behavior of the vehicle. (P3 in Figure 5.6)

The purpose of introducing these two inference types is to strike a balance be-

tween accuracy and tendency in the obtained predictions. This allows us to effec-

tively capture both the short-term and long-term motion behaviors of the vehicle.

Combining the outputs of LT (SLT
t ) and ST (SST

t ) enables VisionGuard to make

comprehensive assessments that generalize well in a variety of adversarial scenarios.

5.4.4 Attack Detection Module (ADM)

The corrected state SKF
t from SCM, with the predicted states SST

t , SLT
t from SPM,

are fed into the ADM module in real-time. Algorithm 2 shows how ADM performs
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consistency checking. We introduce three important variables in ADM: Long-Term

State Prediction Residual (LTR), Short-Term State Prediction Residual (STR),

and Accumulated State Prediction Residual (AR). LTR and STR are utilized to

quantify the difference between the real and predicted states of the vehicle, which

are defined as ||SKF
t − SLT

t || and ||SKF
t − SST

t ||, respectively. AR is defined as

the accumulated value of LTR and STR in the subsequent timestamps, which is

expressed as:

AR =
n∑

t=1

(||SKF
t − SLT

t ||+ ||SKF
t − SST

t ||) (5.12)

We set specific thresholds (w1, w2, h) as indicators for detecting deviations and

anomalies in the vehicle’s motion state. When LTR and STR simultaneously sur-

pass their respective thresholds w1 and w2, ADM will initiate a Warning state

and be alert to potential threats. It is important to note that the occurrence of a

sudden change in LTR and STR does not necessarily indicate the presence of an

attack. In benign scenarios, various sudden state inconsistencies frequently occur

due to factors such as accelerating from a static velocity, braking for red lights

or pedestrians, and other normal driving maneuvers. Therefore, rather than rais-

ing an Attack state directly upon the initial exceedance of these thresholds, ADM

presents a Warning state for a specific time interval l. During the Warning mode,

ADM will continuously monitor the value of AR to determine if it has exceeded h.

If yes, ADM will trigger an Attack state to signalize the occurrence of an attack.

If no further exceedance is observed within l, ADM will switch the vehicle from

the Warning state to the Normal state, and reset AR to 0. These precautionary

measures ensure that ADM gains a comprehensive understanding of the cumulative

deviations in motion states over time before raising an alarm. ADM relies on the

values of hyper-parameters w1, w2, h, and l to make accurate decisions. Properly

defining these hyper-parameters is crucial to effectively counter false positives while

capturing true positives in time. We will discuss this in Section 5.7.2.

5.5 Simulation Evaluation

We validate the effectiveness of each module in VisionGuard (Section 5.5.2 – 5.5.4),

followed by the end-to-end AD simulator evaluation (Section 5.5.5).
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Algorithm 2 Attack Detection
Input: ARIMA inference parameters p, α, β, γ; State vectors received at frame i from raw
sensor measurements: Sz

i ; State vector predictions from Kalman Filter: SKF
i+1 , Sort-term: SST

i+1

and Long-term: SLT
i+1; Accumulated residual at frame i+ 1: ARi+1; Alarm thresholds for Short-

term prediction: ω1, Long-term prediction: ω2 and Accumulated residual: h; Caution interval: l;
State prediction functions from Kalman Filter: KF ( · ) and ARIMA: ARIMA( · )
Output: Normal or Attack

1: AR← 0, Normal
2: while running time steps t exceeds α ∗ γ do
3: SKF

t+1 ← KF (Sz
t , S

KF
t )

4: if t%a = 0 then
5: SST

t+1 ← ARIMA(SKF
t−(p−1)∗γ , S

KF
t−(p−2)∗γ , ..., S

KF
t )

6: SLT
t+1,t+2,...t+β ← ARIMA(SKF

t−(p−1), S
KF
t−(p−2), ..., S

LT
t )

7: end if
8: if ||SKF

t+1 − SST
t+1|| > w1 and ||SKF

t+1 − SLT
t+1|| > w2 then

9: Warning mode for l steps
10: end if
11: end while
12:
13: //Warning mode
14: while in Warning mode do
15: ARt+1 ← ARt + ||SKF

t+1 − SST
t+1||+ ||SKF

t+1 − SLT
t+1||

16: if ARt+1 > h then
17: Raise Attack
18: Break
19: end if
20: end while
21: AR← 0, Normal

5.5.1 Experiment Setup

Experiment Setup. We use LGSVL and CARLA to conduct experiments. Our

evaluation encompasses various environmental factors, including diverse weather

conditions, traffic scenarios, road types, etc. The frequencies of IMU and GPS

equipped on driving vehicle are 100Hz and 12.5Hz, respectively. For each scenario,

both benign and adversarial case are tested independently. At runtime, raw sen-

sory data are processed by different DNN models in the perception module. The

perception results are subsequently published to the simulator API to generate

control commands. We mainly use Yolo-v3 as the victim model and hiding attack

based on the SLAP technique [66], if not mentioned specifically.

Metrics. We adopt the following metrics to evaluate VisionGuard. (1) Detection

Success Rate (DR): this is defined as the ratio of adversarial scenarios that can be

successfully detected. (2) False Positive Rate (FPR): this is the portion of benign

cases that are incorrectly detected as adversarial cases out of all the benign cases.
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Figure 5.7: (a) Benign and adversarial. (b) SPM outputs with different con-
figurations.

(3) Short-Term Excessive Rate (STER) and Long-Term Excessive Rate (LTER):

they are calculated as the ratio of frames that exceed the respective thresholds.

These metrics provide insights into how stable the attack is during the entire run

from short-term and long-term perspectives individually. (4) Accumulated State

Prediction Residual (AR): this is calculated by summing up all the values of residu-

als generated by both types of motion states. It is considered as the key evaluation

metric in ADM and provides a comprehensive assessment of physical attacks.

5.5.2 Evaluation of SCM

SCM collects the raw measurements from GPS and IMU at each timestamp, to

produce the corrected motion state of the vehicle. Table 5.3 shows the detailed

configurations in LGSVL, where the positions and control variables are indicated

based on the PythonAPI [186] of LGSVL. Figure 5.7(a) presents the raw mea-

surements, theoretical and corrected states of the vehicle in benign and adversarial

scenarios. We have the following observations. First, in the benign case, the vehicle

accurately detects a stop sign and exhibits stable deceleration until coming to a

stop. However, in the adversarial case, the vehicle fails to maintain a consistent de-

celeration due to unstable detection outputs. Consequently, the vehicle fails to stop

in front of the stop sign, indicating that the attack has been successfully launched.

Second, SCM effectively minimizes the errors between the theoretical states and

raw measurements. One key advantage of integrating SCM into VisionGuard is

the smoothing effect it imparts on the runtime state outputs, which is particularly

noticeable in the speed fluctuations of the vehicle. This reduction in variation plays

a crucial role in minimizing the potential margin of errors, especially in cases where

abrupt measurement errors can potentially mislead the outputs of VisionGuard.
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Table 5.3: SCM runtime setup.

Map CubeTown
Stop Sign Position (12.24, 0, 7.56)
Stop Sign Rotation (0, 92.86, 0)
Adversarial Example SLAP[66]
Vehicle Initial Position (-3.2, 0, -35)
Vehicle Initial Rotation (0, 180, 0)
Vehicle Initial Speed 14
Speed Limit 20
Runtime Duration (s) 3
Runtime FPS 10
Objectness Threshold 0.25
Throttle Factor 1
Breaking Factor 1

Table 5.4: Different inference settings in SPM.

p α β γ
P1 5 1 1 1
P2 5 5 1 5
P3 5 5 5 1
P4 5 5 5 5

5.5.3 Evaluation of SPM

To train the ARIMA model, we generate a dataset by driving the vehicle in the

map and recording the SCM outputs. The vehicle follows a predefined sequence of

actions, including gradually accelerating from a stationary position, maintaining

a consistent speed for a specific duration, steering in different directions, and uni-

formly decelerating to a stop. We collect a total of 100 scenarios in these settings.

After the dataset is obtained, we train the ARIMA model and retrieve its corre-

sponding weights. To showcase the impact of the inference interval α, prediction

size β, and historical interval γ, we conduct a series of motion state predictions

and compare the outputs of SPM and SCM. All experiments are carried out in

the same scenario, where the vehicle is driving at a constant speed and encounters
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Figure 5.8: LTR (left), STR (middle) and AR (right) in ADM (w1: 0.2, w2:
0.4, h: 8, l: 50).

both a benign and adversarial stop sign. Table 5.4 and Figure 5.6 present four dif-

ferent SPM hyper-parameter configurations (P1, P2, P3, P4) to predict the future

velocity of a vehicle, which can be summarised as follows:

• P1: using short-term historical data from five previous consecutive frames to

make a state prediction at every step.

• P2: using long-term historical data by extracting estimations across 25 previous

frames with a five-frame interval to make a state prediction at every five steps.

• P3: using short-term historical data from five previous consecutive frames to

make five consecutive state predictions at every five steps.

• P4: using long-term historical data by extracting estimations across 25 previous

frames with a five-frame interval to make five consecutive state predictions at

every five steps.

Figure 5.7(b) shows the experimental results with the configurations P1-P4. We

observe that with P1, the SPM predictions exhibit slight deviations from SCM

estimations for both benign and adversarial scenarios, while they both differ signif-

icantly with P4. This highlights the crucial trade-off between prediction accuracy

and tendency in SPM, as discussed in Section 5.4.3. Both configurations repre-

sent extreme cases where the balance between the two factors is heavily skewed,

resulting in predictions that are indistinguishable between benign and adversarial

scenarios. The primary responsibility of SPM is to enable the vehicle to capture

the underlying benign motion trend while minimizing the loss of prediction accu-

racy. In P2 (short-term state prediction) and P3 (long-term state prediction), SPM

achieves a deeper understanding of this concept by either expanding its historical

knowledge or projecting further in the future.
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5.5.4 Evaluation of ADM

The corrected states generated by SCM and the prediction states generated by

SPM are fed into ADM. Figure 5.8 illustrates the mechanism of ADM at runtime.

In a benign scenario, we observe that the vehicle encounters a sudden increase in

both STR and LTR, surpassing their respective thresholds in the 25th frame. This

indicates that the current prediction results from SPM exhibit a relatively strong

deviation from SCM’s corrected estimation, which is caused by commands sent

from the perception module to the control module in response to an event that

triggers a variation in the detection results, such as the appearance of a stop sign

in front. However, it is important to note that this “stop sign” could potentially

be an adversarial object crafted by an attacker to mislead the perception models.

Hence, ADM promptly triggers a Warning state (Event = 1 in the state machine),

starting to record and monitor the value of AR. After a short time interval (l = 50

steps), if there is no significant further increase in AR, the warning state will be

disabled, and AR is reset to zero (Event = 0 in the state machine). The vehicle

then resumes safe driving until a new Warning is triggered.

For the adversarial scenario, the Warning state is also triggered but relatively more

slowly (in the 35th frame). Different from the benign scenario, the values of SST

and SLT continue to experience significant fluctuations in the warning state. As

a result, the Attack state is triggered in the 65th frame as AR also surpasses the

threshold, forcing the vehicle to disregard any subsequent commands and initiate

safe control measures immediately, e.g., gradual deceleration to a stop.

5.5.5 End-to-end Evaluation of VisionGuard

We comprehensively evaluate VisionGuard by using 9 different state-of-the-art

PAEs with various target objects, models, perception functions, and attack goals,

as well as 9 different scenarios. This allows us to collect a total number of 36000

frames from 36 runs to fully validate BatAV.

Defense Effectiveness. For each attack, we run 10 times in LGSVL. We observe

all the AEs can be 100% detected in the benign sunny condition. We also consider

other scenarios such as rainy or foggy conditions to check the false positives, and the

details are given in Section 5.7.2. Table 5.5 reports the DR of different attacks. It
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Table 5.5: Detection rates (DR, %) of different PAEs (w1 : 0.2, w2 : 0.4, h : 10).

Attacks Attack Goal Target object Victim Model STER LTER AR Warning (frame) Attack (frame) DR
SLAP HA Stop sign YOLO-v3 0.06 0.16 16.817 Yes(35) Yes(65) 100%
RP2 MA Stop sign Faster R-CNN 0.08 0.17 17.269 Yes(40) Yes(65) 100%
ShapeShifter MA Stop sign Faster R-CNN 0.12 0.16 15.160 Yes(35) Yes(65) 100%
ShapeShifter HA Stop sign Faster R-CNN 0.12 0.17 17.143 Yes(25) Yes(50) 100%
AdvCam MA Stop sign VGG-19 0.06 0.05 11.900 Yes(45) Yes(50) 100%
Nested-AE AA Stop sign Faster RCNN 0.12 0.24 15.545 Yes(25) Yes(35) 100%
Adv-MSF HA Bench Apollo-v5 0.1 0.16 14.589 Yes(35) Yes(60) 100%

is clear that VisionGuard has successfully detected all types of adversarial objects

in different settings. Video demos can be seen on our website.

Comparison with Baseline Methods. We compare VisionGuard with repre-

sentative open-source defense methods including DetectGuard [27] (Certified de-

fense) and PercepGurad [28] (Vision-based consistency checking). PercepGuard

is originally designed for defending car-to-person misclassification attacks, for fair

comparison, we use speed limit 50 as the induced label, and yolov3 is finetuned on

German Traffic Sign Recognition Benchmark dataset [187]. We record 45 runs with

adversarial objects created by SLAP [66] and ShapeShifter [64] in 5 different con-

ditions, 3 different initial speeds, object headings, and maps to see if these defense

methods can successfully detect the adversarial patches attached to the stop sign.

A full run lasts 10s with 10 fps. Notably, for the two defense methods, once a single

or a period of frames during the adversarial run is deemed as being attacked, the

run is considered to be detected successfully. In such settings, the effectiveness of

VisionGuard shown in Table 5.7 is evident, as it successfully detects the adversarial

patches in every run. We also observe DetectGuard and PercepGuard also achieve

high DRs, among which, DetectGuard cannot achieve 100% because it is designed

for localized patch hiding attacks, while the AE generated by SLAP is a universal

patch. Moreover, these two methods are designed to address specific attack goals,

VisionGuard is capable of detecting physical attacks across all different goals. This

makes VisionGuard a comprehensive solution for attack detection. Furthermore,

for detection latency and runtime (per frame), VisionGuard outperforms the other

methods, achieving faster average detection speeds and less runtime overhead for

both types of attacks. Notably, PercepGuard requires 4-5 frames of inference to

detect attacks, so its average detection time is around 128-160ms. Table 5.6 gives

the detailed runtime overhead of each module in VisionGuard. This indicates that

VisionGuard is not only effective but also efficient, providing timely protection

against potential attacks.
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Table 5.6: Runtime analysis for one detector iteration.

Mean
Kalman Filtering 0.000012s
ARIMA(short-term) 0.000612s
ARIMA(long-term) 0.000684s
Detection 0.000007s
Total 0.001315s

Table 5.7: Comparisons with two baseline defenses.

DR Detection Latency (s)
Method

SLAP ShapeShifter SLAP ShapeShifter
Runtime (per frame)

DetectGuard 71.1% 0 7.22 N/A 117.2ms
PercepGuard 0 100% N/A 6.73 32ms

BatAV 100% 100% 6.54 5.03 3.1ms

Figure 5.9: Different simulation scenes.

5.5.5.1 Defense Robustness

We comprehensively evaluate the robustness of VisionGuard against 8 different

scenarios: (1) Heading: changing the heading direction of the adversarial object by

30◦ towards the vehicle. (2) Contextual: adding a person and another vehicle close

to the adversarial object. (3) Twilight: removing sunlight and adding lamp light.

(4) Rainy: adding raindrops. (5) Foggy: adding foggy effects. (6) Road Condition:

adding damage and wetness effects on the ground. (7) Initial Velocity: changing

the initial velocity of the vehicle from 0 to 5. (8) Map: Adding “Sanfransisco”,

“SingleLaneRoad” from the LGSVL asset library. Figure 5.9 visualizes some demo

settings.

We run each evaluation 10 times. Table 5.8 shows the average detection rates over

90 evaluation scenarios. We observe that VisionGuard can achieve 100% detection
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Table 5.8: Detection rates (DR, %) in 9 different scenes.

SLAP RP2 ShapeS
Alarm Alarm AlarmScene

AR
(frame)

AR
(frame)

AR
(frame)

DR

Default 16.82 Yes(65) 17.27 Yes(65) 17.14 Yes(50) 100%
Heading 13.23 Yes(55) 14.02 Yes(55) 12.85 Yes(60) 100%
Contextual 19.67 Yes(60) 12.46 Yes(60) 15.49 Yes(60) 100%
Twilight 18.10 Yes(65) 19.10 Yes(65) 18.94 Yes(60) 100%
Rainy 18.96 Yes(65) 18.27 Yes(60) 20.32 Yes(60) 100%
Foggy 17.42 Yes(65) 18.03 Yes(60) 19.65 Yes(60) 100%
Road 15.20 Yes(55) 16.58 Yes(60) 14.08 Yes(55) 100%
Velocity 15.40 Yes(35) 13.83 Yes(40) 16.44 Yes(40) 100%
Map 16.07 Yes(55) 15.36 Yes(55) 13.18 Yes(55) 100%

rates on average, which shows a high robustness of VisionGuard against differ-

ent attack approaches under different scenarios. While our method demonstrates

strong defense performance overall, we also observe instances where it produces

false positives in certain scenarios. False positives occur when VisionGuard incor-

rectly identifies benign inputs as adversarial objects. This can potentially lead to

unnecessary interventions or disruptions in normal ADS operations. We will give

details in Section 5.7.2.

5.6 Outdoor Road Driving Test

To further demonstrate the effectiveness and practicality of VisionGuard, we also

perform evaluations in the real world with a physical autonomous vehicle and

adversarial object.

Setup. The experiments are carried out on a rarely-used road using an Unmanned

Ground Vehicle (UGV), as depicted in Figure 5.10 in Appendix. The UGV is

equipped with an Intel RealSense D435i front-facing camera (1920×1080 resolu-

tion) and a Bosch BMI055 6-axis IMU. Unlike the simulation experiments where

the camera is set at 10 fps by default, the physical camera on the UGV is 30 fps,

thus giving a more accurate indication of how effective VisionGuard can be at

different frame rates in the real world. In our experiments, both benign and ad-

versarial stop signs (HA, generated by [66]) are color-printed and placed at 1.8m

height. The UGV is initially placed 10 meters away from the target sign and drives

straight forward. We set the initial speed as 5m/s (18km/h) at the beginning of
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(a) UGV (b) Front-facing camera

Figure 5.10: Our physical UGV with an Intel RealSense D435i camera and
Velodyne-16 LiDAR.

Figure 5.11: Physical experiment results. Normal, Warning, Warning mode,
Attack happen at 0-1.1, 1.1, 1.1-1.2, 1.3 (s), respectively.

Table 5.9: Detection rates (DR, %) and False Positive Rates (FPR, %) with
different horizontal distances in real-world.

STER LTER AR Attack DR FPR
Benign/left-1.5m 0.18 0.95 1.53 No N/A 0%
Benign/right-1.5m 0.31 1.06 2.74 Yes(40) N/A 3.3%
Adversarial/left-1.5m 0.88 1.45 7.13 Yes(40) 100% N/A
Adversarial/right-1.5m 0.84 1.61 8.29 Yes(40) 100% N/A

each recording. Such a setup is significant since it models the real traffic environ-

ment. We repeat the experiment for 30 runs with each run consisting of two benign

and adversarial signs heading towards different angles.

Results. Table 5.9 shows the detection results in the physical environment. We

observe that the most benign stop sign does not trigger the Attack signal. However,

all the adversarial patches with different angles can achieve a 100% detection rate

for all 30 runs. Figure 5.11 visualizes the detection results, where the stop sign

is placed at right side road. As the UGV moves towards the adversarial object,

the confidence scores for the “stop sign” present distinct inconsistency at varying

distances and angles between them. Similarly, the experimental results in the

physical world show identical performance as the simulation ones, which provides

further evidence for the effectiveness of VisionGuard.
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5.7 Discussion and Limitation

5.7.1 Adaptive Attack

5.7.1.1 Mechanism-aware adaptive attack.

We consider a more sophisticated attacker who may try to improve his attack

techniques in response to our defense measures. The most potential directions is

improving the attack robustness. The attacker may invest efforts into improving

the robustness of his attack methods to bypass VisionGuard. He may employ

advanced algorithms and optimization techniques to generate more powerful ad-

versarial objects that are capable of consistently evading our defense mechanism.

Although this is an attractive goal, to the best of our knowledge, there is still no

satisfactory way to generate absolutely robust PAEs that can overcome

the physical constraints and maintain the attack effectiveness consis-

tently.

5.7.1.2 Parameter-aware adaptive attack.

VisionGuard includes some hyper-parameters (e.g., AR, LTR, caution interval l),

whose values are determined empirically. We investigate the impact of these hyper-

parameters for adaptive attack analysis. AR and LTR thresholds. Intuitively, if

the attacker manages to constantly bypass the setting of h, the Attack state would

not be triggered during the caution interval l. On the other hand, if the physical

attack is robust enough to stay under-covered below w2, the Warning state would

not be triggered at all from the start. VisionGuard will not work as a consequence.

To thoroughly understand the impact of h and w2, we conduct extensive experi-

ments to evaluate their performance under three types of adversarial objects and

scenarios following the same setups in Tables 5.5 and 5.8. For each evaluation, we

record the detection False Positives (FP) and True Positives (TP) over a total of 40
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(a) h (w1: 0.2, w2: 0.4, l: 50) (b) w2 (w1: 0.2, h: 10, l: 50)

Figure 5.12: ROC of AR threshold h (a) and w2 (b).

Table 5.10: Optimal value of LTR threshold.

SLAP RP2 ShapeShifter Velocity Heading Weather

LTR
LTR 0.44 0.44 0.44 0.44 0.39 0.44
AUC 0.85 0.89 0.88 0.93 0.95 0.93

AR
AR 0.68 0.73 0.73 0.73 0.68 0.73
AUC 0.89 0.86 0.88 0.90 0.93 0.90

Table 5.11: Caution interval in urban and highway environments.

v0 (m/s) l Benign Adversarial DR (%) FPR (%)

45
80 20 19 95 0
100 20 20 100 0
120 18 20 100 10

90
30 20 19 95 0
50 20 20 100 0
70 19 20 100 5

runs (20 benign and 20 adversarial cases). To evaluate AR, we fix (w1, w2, l) and

slide h from 0 to 15 with the interval of 0.05. Similarly for LTR, we fix (w1, h, l)

and slide w2 from 0 to 1 with the interval of 0.05.

We determine the optimal values of h and w2 closest to (0,1) for each type of PAEs

and scenario. Figures 5.12 gives the results. It is clearly that the differences be-

tween these values across different attack types and scenarios are quite small. This

indicates that (1) VisionGuard exhibits high stability and versatility, eliminating

the need for employing different thresholds for different attack types and scenarios.

(2) In adversarial cases, a slight decrease in the thresholds has a negligible impact

on FPs while significantly improving TPs. Tables 5.10 shows the optimal values of

LTR and AR with the corresponding AUC, respectively.

Caution interval l. We conduct the same experiments on SLAP [66] with two

different vehicle initial speeds: 45 km/h and 90 km/h, corresponding to the speed

limits in urban and highway environments. Table 5.11 shows the results. We can

observe a negative correlation between l and v0 in our test range. When the vehicle
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Figure 5.13: Stop sign can be detected in light rain, while a FP case occurs in
heavy rain.

Figure 5.14: Stop sign can be detected in light fog, while a FP case occurs in
dense fog.

is running at a lower speed with a more stable motion state variance, it is necessary

to increase the size l to capture more information about the consistency pattern in

order to reduce the chances of missing detection.

Limitation. In this chapter, we have not added real-time manipulated PAEs such

as controllable projections and signals into our threat model. For instance, the

attacker may use a drone to project an adversarial patch onto a billboard or other

surfaces visible to the ADS’s camera. However, these attacks can be mitigated

to some extent. Suppose that the attacker have knowledge of the value of the

caution interval l, he would try to project the AE again after the ”Caution mode”
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Figure 5.15: A FP case occurs due to very bumpy road.

is deactivated.

5.7.2 Evaluation Under Normal Cases

Prior experiments prove the robustness of VisionGuard in different environments.

However, during our simulation and physical tests, we also noticed that VisionGuard

is sensitive to corner cases, resulting in false positives. (indeed, we find not only in

their videos but also in our experiments, that DNN models show high robustness

of object detection and can easily keep consistent over time).

Simulation. We find adverse weather conditions such as heavy rain and fog

(Figures 5.13 and 5.14) can cause the perception module to make mistakes and

lead VisionGuard to falsely trigger the Attack alarm. Regarding this case, we

demonstrate that FPs primarily occur under extreme weather conditions, while

VisionGuard is still effective in normal rainy or foggy scenarios, as illustrated in

Table 5.8. Besides, to mitigate the effect of such corner cases, numerous fog-removal

and rain-removal approaches [188–193] can be used to enhance the perception mod-

ule and reduce FPs.

Physical. To fully understand VisionGuard’s FP performance in the real world,

we collected 30 videos of different scenarios and tested them using Yolov3 and

Yolov5, Faster-rcnn. All the videos are given on our website. We observe that

these models only fail one case, i.e., image blur due to bumpy roads. Blurry camera

images can cause the inaccurate detection of obstacles or traffic signs (Figure 5.15).

Regarding this case, for minor bumps, the integrated IMU within the camera typ-

ically performs motion compensation, thereby minimizing vibrations and reducing

image blurring. It is important to note that IMU compensation fails only under

highly turbulent conditions, as shown in Figure 5.15, resulting in the false trigger-

ing of the Attack alarm. Based on the above analysis, our approach shows strong
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effectiveness and robustness, as well as very low false positives. ADS practition-

ers should develop more robust perception algorithms in different environments to

eliminate the false detection rate of VisionGuard.

5.8 Conclusion

We present VisionGuard, a practical defense framework that can effectively detect

PAEss by exploiting the spatiotemporal inconsistency in vehicle’s kinetic states.

VisionGuard is agnostic to the attack goals, target objects, models, sensors, and

contextual information. We comprehensively evaluate 9 state-of-the-art PAEs in

both simulation and real-world scenarios. Our results show that VisionGuard

achieves high detection rates across diverse settings with high robustness.





Chapter 6

A Lifelong Anomaly Detection

Framework against Physical

Adversarial Attacks to

Autonomous Driving

Autonomous Vehicles (AVs) are closely connected in the Cooperative Intelligent

Transportation System (C-ITS). They are equipped with various sensors and con-

trolled by Autonomous Driving Systems (ADSs) to provide high-level autonomy.

The vehicles exchange different types of real-time data with each other, which can

help reduce traffic accidents and congestion, and improve the efficiency of trans-

portation systems. However, when interacting with the environment, AVs suffer

from a broad attack surface, and the sensory data are susceptible to anomalies

caused by faults, sensor malfunctions, or attacks, which may jeopardize traffic

safety and result in serious accidents. In this chapter, we propose ADS-Lead, an

efficient collaborative anomaly detection methodology to protect the lane-following

mechanism of ADSs. ADS-Lead is equipped with a novel transformer-based one-

class classification model to identify time series anomalies (GPS spoofing threat)

and adversarial image examples (traffic sign and lane recognition attacks). Besides,

AVs inside the C-ITS form a cognitive network, enabling us to apply the federated

learning technology to our anomaly detection method, where the vehicles in the

C-ITS jointly update the detection model with higher model generalization and

data privacy. Experiments on Baidu Apollo and two public data sets (GTSRB

125
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and Tumsimple) indicate that our method can not only detect sensor anomalies

effectively and efficiently but also outperform state-of-the-art anomaly detection

methods.

6.1 Introduction

Over the past years, Autonomous Vehicles (AVs) are experiencing rapid develop-

ment. Benefiting from the advances in the technologies of computing, mechanics

and deep learning [194], modern vehicles become more automated and intelligent.

Many IT and motor companies are attracted to devote themselves to this promising

domain e.g., Baidu Apollo1, Google Waymo2. Hence, in the near future, we expect

to see various types of AVs will be fully commercialized to significantly impact

different aspects of our life.

The essential component of an AV is the Autonomous Driving System (ADS). It

receives information from the external environment and then makes driving deci-

sions. A standard ADS has a pipeline consisting of multiple modules for different

functionalities, e.g., perception, planning, control. They cooperate to achieve end-

to-end automation. Unfortunately, the high complexity of the ADS inevitably

brings a broad attack surface. For example, an adversary can launch GPS spoofing

attacks to mislead AVs to navigate to a dangerous position [173]. The attack cost

is only $200 for a low-end “GPS spoofing” device. By adding malicious patches

[62, 81] on the road or traffic signs, an adversary can make ADSs perceive the

environment mistakenly and make wrong decisions. Attacks on Lidar can make

ADSs ignore the surrounding obstacles, resulting in collisions [72].

It is important to guarantee the robustness of the ADS against those cyber at-

tacks and faults. A practical solution is anomaly detection, which monitors the

runtime behaviors and states of the ADS, as well as the received environmental

information, to identify any suspicious events. The emergence of the Cooperative

Intelligent Transport System (C-ITS) provides new opportunities for reliable and

effective anomaly detection. In a C-ITS, vehicles are connected with each other, the

infrastructures, passengers, and cloud. They naturally form a cognitive network,

and frequently exchange runtime data for better traffic and mobility management

1https://github.com/lgsvl/apollo-5.0
2https://waymo.com/

https://github.com/lgsvl/apollo-5.0
https://waymo.com/
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[195–197]. As a result, it is also promising that vehicles in the C-ITS can perform

anomaly detection collaboratively to mitigate any attacks against the ADS. This

can increase the detection efficiency and accuracy.

Motivated by this feature, this chapter proposes ADS-Lead, a novel methodology

for protecting Autonomous Driving Systems with Lifelong anomaly detection. We

consider the lane following mechanism, which is the most common and fundamental

scenario in not only ADSs but also state-of-the-art Advanced Driver-Assistance

Systems (ADASs) and Lane Keeping Assist Systems (LKASs). Different types of

security threats have been disclosed in the lane following scenario, i.e., localization

attacks, lane detection attacks, and traffic sign recognition attacks. They can lead

to severe consequences and damages, such as car crashes, human injuries or even

deaths. Hence it is important for vehicles to be immune to them for secure and safe

driving. Although prior works proposed some solutions to defeat sensor attacks for

AVs [72, 198, 199], they only focus on one specific kind of threats. It is challenging

to design a unified and comprehensive method to cover different attack vectors, as

they have distinct behaviors and techniques.

ADS-Lead introduces two contributions to achieve efficient and unified protection.

The first one is a novel one-class classification model, dubbed T-GP (Transformer

with Gradient Penalty). It is capable of analyzing and identifying time series

anomalies (localization attacks) and adversarial images (i.e., lane detection attacks

and traffic sign recognition attacks) in the lane following scenario. This model

needs to be trained offline only from normal data, and then deployed in the ADS

as an online detector to inspect different sources of sensory data, and discover the

suspicious input. T-GP is built from an one-layer transformer encoder. It intro-

duces a novel loss function, which combines the Negative Log Likelihood (NLL)

with the Gradient Penalty (GP). The integration of these techniques gives very

high accuracy for anomaly detection of various attacks.

The second contribution is the adoption of federated learning and lifelong learning

for anomaly detection in the C-ITS. Each vehicle in our system not only performs

the online monitoring and detection, but also continuously collects live data to up-

date the one-class model. They train the model locally, and then send the model

gradient to a parameter server hosted in the cloud. This parameter server ag-

gregates the gradients from different vehicles at different zones of the C-ITS, and

releases the final model back to them for update. The collaboration for anomaly
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detection based on federated learning can significantly improve the model general-

ization and performance while preserving the vehicle’s privacy.

We implement a prototype of our methodology in a federated learning system. We

apply our proposed model on the datasets from the real world, and collected from

simulations to comprehensively evaluate its effectiveness. Specifically, for localiza-

tion attacks, since there are no public datasets available, we collect the Inertial

Measurement Unit (IMU) data from Baidu Apollo, running on the San Francisco

map with the LGSVL simulator3. We follow [173] to implement GPS attacks, which

can cause severe fluctuation of the IMU data generated by the Multi-Sensor Fusion

(MSF) component in Apollo. For lane attacks, we adopt the Tumsimple datatset,

and implement the attack method in [82] to generate fixed and variable adversarial

patches. For traffic sign attacks, we use the GTSRB dataset. We reproduce the

boundary attacks [200] and poster attacks [62] to generate adversarial data. We

compare T-GP with existing one-class classification methods. Evaluation results

show that T-GP outperforms other methods in detection of these attacks.

In summary, the main contributions of our work are:

• We propose ADS-Lead, a novel collaborative anomaly detection approach to

protect the lane following scenario of the ADS efficiently and comprehensively.

• We introduce T-GP, a novel one-class classification model based on the trans-

former for anomaly detection. It can effectively detect both time series anomalies

and adversarial images.

• We are the first to adopt federated learning and lifelong learning to realize collab-

orative anomaly detection on AVs, which can enhance the model generalization

and performance without compromising vehicles’ privacy.

• We conduct extensive evaluations of our method over simulation and real-world

datasets. We demonstrate T-GP outperforms existing state-of-the-art models

on the detection of localization, traffic sign and lane recognition attacks. And

ADS-Lead with T-GP can be made effectiveness and practical for AVs anomaly

detection.

3https://github.com/lgsvl/simulator

https://github.com/lgsvl/simulator
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6.2 Related Works

6.2.1 Detection of GPS Spoofing Attacks against AVs.

Although prior works made some attempts to detect GPS attacks against AVs

[201–205], how to effectively mitigate such threat is still a long-standing problem.

The MSF algorithms were regarded as the most effective defense method in ADSs

[206]. Unfortunately, Shen et al. [173] found a vulnerability in the design of MSF-

based localization and successfully implemented a sophisticated attack to invalidate

the protection. Researchers also studied spoofing detection by cross-checking GPS

readings and IMUs data [207]. However, IMU data suffer from the accumulation

of drift errors such that they provide reliable protection against spoofing attacks

if an adversary causes gradual deviation of the victim vehicles from their actual

positions [208]. Compared with these prior works, we only use the instantaneous

changes of the IMU data to detect whether the vehicle is being attacked, which

achieves very high detection accuracy.

6.2.2 Detection of Adversarial Examples.

Some works introduced methods to detect adversarial examples, especially in the

CV domain. Qiu et al. [209] illustrated adversarial attacks against network intru-

sion detection in IoT systems. Xu et al. [35] proposed a method called feature

freezing to detect adversarial examples by reducing color bit depth and spatial

smoothing. They set a threshold to judge whether the original input data is be-

nign or malicious. Lee et al. [36] designed a method using Gaussian discriminant

analysis to obtain the confidence score based on the Mahalanobis distance in the

feature space of DNN models. Li et al. [210] proposed to detect localized ad-

versarial examples by removing and analyzing critical regions controlled by the

adversary. Meng and Chen [211] used detector networks to identify adversarial

examples by approximating the manifold of normal examples. Feinman et al. [212]

investigated the Bayesian uncertainty estimates in dropout neural networks, and

conducted density estimation in the subspace of deep features to distinguish normal

and adversarial examples. Ma et al. [213] used the estimation of Local Intrinsic Di-

mensionality (LID) to quantify the distance between the target sample and normal
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samples. Katzir and Elovici [214] explored the sample behaviors in the activation

space of different network layers for adversarial example detection. Li and Qiu et

al. [215] proposed a novel method for intelligent fault diagnosis by fusing domain

adversarial training and maximum mean discrepancy via ensemble learning. Wang

et al. [216] randomly mutated the model and perturbs the decision boundary,

which can possibly alter the prediction of adversarial examples, while maintaining

the prediction of normal samples. Tian et al. [217] utilized input transformations

to process the input samples, to which the adversarial examples are very sensitive.

In the context of autonomous driving, some works designed solutions to detect ad-

versarial images captured by the vehicles. Sun et.al [218] developed a supervised

defense method based on adversarial training with a novel and stereo-based regu-

larizer to enhance the 3D object detection model. Safavi et al. [219] adopted two

distinct and efficient DNN architectures to detect, isolate and predict sensor faults.

One-class models (e.g. Deep-SVDD [78], HRN [80]) were designed for anomaly de-

tection of adversarial examples, and evaluated on the stop sign attacks. For lane

attacks, Sato et al. [81] proposed an attack method based on image segmentation

and deployed a bounded patch to simulate the road dirt to fool the lane detec-

tion algorithms. Following this work, Xu et al. [82] designed a CNN-based model

with prior knowledge of abnormal data to achieve attack detection. However, these

works need prior knowledge of the adversarial samples, or can only be applied to

specific attacks but fail to be extended to others. In contrast, our solution proposed

in this chapter is unified to cover various types of attacks with different formats of

sensory data in the lane following scenario.

6.3 Background and Problem Statement

6.3.1 Overview of ADSs

The main responsibility of an ADS is to recognize the surrounding environment and

generate proper motion commands to the vehicle [220] [221]. Hence, a typical ADS

usually consists of the following modules: localization, perception, planning and

control. The localization module uses the information from different sensors (e.g.,

GPS, IMU, Lidar) to localize the AV on the map based on the Real Time Kinematic

(RTK) method and Multi-Sensor Fusion (MSF) algorithms. The perception module
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is an AI-based subsystem, which receives input data of different formats (e.g.,

image, point cloud) from various sensors and leverages Deep Learning models to

identify the surrounding traffic conditions (e.g., the status of traffic light, stop

sign and speed limit sign) and obstacles (e.g., object types, the speeds of other

vehicles on the road). The planning module performs offline path planning to

generate a feasible path from the initial position to the destination based on the

map information. It also conducts real-time trajectory planning, which utilizes the

results from the localization module and perception module to generate a collision-

free trajectory in a short time duration. The control module finally generates

low-level commands, such as steering, throttle and brake, to the chassis to track

the generated collision-free trajectory.

6.3.2 Security Threats in the Lane Following Scenario

Lane following is the most common scenario during the AV operations, where the

vehicle moves along the central lines of lanes. In this scenario, the execution of

an ADS highly depends on the accuracy of localization, lane boundary detection

and traffic signs. Hence, the following three kinds of attacks were proposed to

compromise the execution of ADSs in lane following.

Localization Attack. This attack uses counterfeit GPS signals to inference with

the legitimate ones. Then the ADS cannot localize the AV correctly, resulting in

positioning errors. Consequently, the ADS will mislead the vehicle to deviate from

the expected lane and even cause serious accidents. Although the MSF algorithms

in ADSs are designed to mitigate GSP spoofing, researchers find that they are

still vulnerable to the take-over attack [173] where the spoofed GPS signals can

dominate the inputs of the MSF process and fool MSF to ignore other inputs.

Figure 6.1 illustrates the mechanism of such an attack. A victim vehicle (blue) is

moving along the straight lane. The attacker vehicle, following the victim, launches

a two-stage GPS spoofing attack. The first stage is vulnerability profiling: the

attacker collects and analyzes the behaviors of the victim vehicle and determines

the time duration to perform GPS attacks. The second stage is aggressive spoofing:

the attacker sends wrong GPS signals to the victim vehicle, whose MSF algorithms

compute wrong localization of the AV (the shaded blue one). To make the vehicle
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Stage1 Stage2

False Path
MSF output Oncoming Car
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Figure 6.1: Illustration of GPS-based localization attacks. Stage 1: Vulnera-
bility profiling; Stage 2: Aggressive spoofing.

stay in the center of the lane, the ADS asks the vehicles to move right, which

actually makes it cross the lane and collide with the oncoming vehicle.

Lane Detection Attack. In lane following, an ADS should also need to detect

the boundaries of a lane to localize the central line of the lane. Currently, DNNs are

the most popular method for lane detection in ADSs. Hence, due to the inherent

vulnerability of DNNs, the adversary can also fool the DNN model to cause wrong

recognition of lane boundaries, resulting in wrong motion controls to drive along the

center of the lane. For example, the adversary can add visual perturbations on the

real-world road to make the vehicle deviate the central line and hit a surrounding

object [81]. Figure 6.2 shows an attack example [82]: the adversary carefully

identifies the optimal location for the patch and then manipulates the subset of

pixels of the input images to achieve the goal, i.e., making the lane detection system

recognize a wrong lane boundary around the patch.

Traffic Sign Recognition Attack. Recognition of traffic signs can also affect the

lane following as an AV must obey the traffic rules described by those signs. Since

the ADS leverages CNN models to detect and classify traffic signs, an adversary can

leverage the adversarial attack techniques to compromise the model so the ADS

will miss or misclassify the traffic signs, and generate wrong motion decisions.

Figure 6.3 shows a poster attack on a stop sign [62]. The adversary adopts the

Robust Physical Perturbations (RP2) algorithm [62] to generate visual adversarial

perturbations and attach them to the stop sign. Then the perception module in

the ADS will identify it as a speed limit sign. Alternatively, the adversary can also
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Figure 6.2: Lane detection attack. First row: the original input image (left)
and the adversarial image with a fixed patch. Second row: the corresponding
lane segmentation results from the ADS. Red boxes show the patch localization;
induced lanes are marked with green.
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Figure 6.3: Poster attacks on the traffic sign.

adopt generative adversarial networks to craft malicious patches to compromise

the traffic sign recognition model [222].

6.3.3 Problem Statement

We aim to address the following problem: How to develop and design a unified and

efficient method to detect anomalies of the ADS caused by different kinds of attacks

at real time? We want to have an attack-agnostic approach, i.e., the detector is

built from normal data and conditions, but general and effective for various known

and unknown threats.

Without loss of generality, we consider the following six attacks from three cat-

egories when designing our approach. They represent state-of-the-art security

threats against the lane-following mechanism in modern ADSs.

Localization Attacks. We consider the GPS spoofing attack [173] in our method

design and evaluation. We assume a malicious vehicle follows the victim AV and
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interfere with its GPS signals. The faked signals can fool the MSF algorithms based

on the take-over vulnerability. We further assume there are no other obstacles on

the road, so the motion change of the victim AV only depends on the localization.

We focus on two specific attack goals: (1) an off-road attack tries to lead the

victim to hit the curb; (2) a wrong-way attack tries to deviate the victim AV to

the opposite pavement.

Traffic Sign Recognition Attacks. We consider two types of attacks in this

category: (3) a boundary attack is a decision-based adversarial attack [200]. The

adversary does not need any information about the target model in the ADS. He

generates the adversarial perturbations on the traffic sign only from the prediction

results of the model corresponding to given input images. (4) In a poster attack,

the adversary generates malicious posters for traffic signs using a novel Robust

Physical Perturbations algorithm [62]. In these two attacks, the adversary is able to

physically alter the traffic signs (e.g., adding posters or patches) without changing

their visual semantics.

Lane Detection Attacks. We assume the adversary is able to add carefully-

crafted patches on the road to deceive the lane detection model in the target ADS.

We adopt the Projected Gradient Descent to generate two types of adversarial

patches [82]: (5) a fixed-size patch with the size of 100 × 100 is injected to the

images of 512×288; (6) a varied-size patch has the size scaled based on the distance

from the camera to the destination lane segments.

6.4 ADS-Lead

In this section, we describe ADS-Lead, our anomaly detection system for the lane-

following scenario.

6.4.1 System Overview

Figure 6.4 shows the overview of our ADS-Lead system. The essential component

is a powerful anomaly detector deployed in an ADS for attack detection. The

workflow contains two stages, as described below.



Chapter 6. ADS-Lead 135

False Path False Position Oncoming Car

Anomaly 
DetectorLocalization

Perception Planning Control

ADSs

Real Position

WARNING

Figure 6.4: Overview of our anomaly detection methodology.

The first stage is offline training. We train a one-class model to describe the normal

behaviors of the ADS. Since we aim to have an attack-agnostic approach, we cannot

include any attack-specific data samples when training the detection model, which

are hard to obtain and not general for other unknown attacks. Instead, we just

collect normal data during the vehicle operations. Note that the normal data can

be collected by making the AV run automatically without launching any attack.

The collection is not related to any specific road or road condition. Then this

model is able to predict whether the incoming data samples belong to the same

distribution as the training data (labeled as benign), or deviate a lot from the

normal ones (labeled as malicious).

Since our model is designed to be general for different attacks, it should be able

to handle different formats of sensory data in the ADS. Specifically, we consider

two types of sensory data that are vulnerable to be manipulated by the adversary

to compromise the vehicle operation. The first one is IMU messages, which are

time series data. The second one is images captured from the cameras. These are

used to mitigate attacks against the lane detection and traffic sign recognition. We

introduce approaches to preprocess those types of data before feeding them into

the model for training and inference.

The second stage is online prediction. The model is implemented as a module in

the ADS to monitor the outputs of the perception and localization modules during

the AV operation. When the AV receives malicious sensory data crafted by the

adversary (e.g., traffic sign with the adversarial patch, spoofed GPS signals), the

anomaly detector is able to identify such suspicious events from these two monitor
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modules, and then send notifications to the control module. The control module

will perform some mitigation actions, e.g., stopping the vehicle, warning and asking

the driver in the vehicle to take control of it.

6.4.2 T-GP: One-class Model for Anomaly Detection

We design T-GP, a novel one-class classification model based on the transformer

structure, for each vehicle to achieve anomaly detection. A transformer [223] is a

deep neural network structure using the self-attention mechanism. It replaces the

Recurrent Neural Network (RNN) structure with an encoder and decoder. It can

significantly improve the model accuracy for Natural Language Processing (NLP)

tasks. Besides, it is also highly interpretable and supports fully parallel comput-

ing. Recently, researchers extended the transformer structure to the domain of

Computer Vision (CV) [224], which also demonstrates remarkable performance for

image classification.

Inspired by the successful applications of the transformer in the NLP and CV

domains, we aim to apply it to build a one-class model for anomaly detection.

Figure 6.5 shows the network structure of our proposed model, T-GP. It adopts an

input embedding component (i.e., Input Embedding Matrix) to map each original

input data into a vector with a fixed length and an encoder (i.e., Transformer

Encoder) as the feature extractor to learn the hidden patterns of normal data and

detect abnormal data (i.e., malicious sensory input in ADSs).

Specifically, the input X = (xT
1 , ..., x

T
t )

T ∈ Rt×P of the model is a two-dimensional

matrix, where t is the length of the input sequence, P is the dimension of each input

data xi, i.e., xi ∈ R1×P , for i = 1, 2, . . . , t, and ( · )T denotes the transpose operator.

Note that our model is unified and can accept both the image data and IMU time

series data. Each image is reshaped into a sequence of flattened 2D patches by

dividing the original image into t patches [224]. For the IMU data, each single

sample xi is recorded at a time instant. Since the transformer encoder requires a

constant latent vector size, each input sequence is first mapped to a fixed-length

sequence of patch embeddings using a learnable embedding vector xclass, a trainable

linear projection E, and a standard learnable 1D position embeddings Epos [224],



Chapter 6. ADS-Lead 137

Figure 6.5: T-GP model structure.

as given in Equation 6.1:

z0 =(xT
class, ETXT )T + Epos (6.1)

where xclass ∈ R1×D and its output can be used for classification, E ∈ RP×D is

a fully connected layer, and Epos ∈ R(t+1)×D is introduced to add the positional

information of the input sequence to the patch embeddings.

The patch embeddings z0 are sent to the transformer encoder, which is used to

extract the feature representation of the input data and consists of a Multi-headed

Self-Attention (MSA) network and a two-layer Perceptron (MLP) with GELU.

Note that the inputs of MSA and MLP are first normalized via layer normalization

(LN) [225]. Hence, the operation of the transformer encoder can be formulated as:

z′1 = MSA(LN(z0)) + z0 (6.2)

z1 = MLP (LN(z′1)) + z′1 (6.3)

We design a novel loss function in T-GP to achieve one-class classification. Neg-

ative Log Likelihood Loss (NLLLoss) is widely used in multi-class classification

tasks. However, in our one-class model, the output has only one class, so we use

the sigmoid function in NLLloss to calculate the probability that an input x be-

longs to the class. It generally requires regularizaion due to the sigmoid saturation

and feature bias in NLLLoss [80]. It means that an unimportant feature with a
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larger value may have larger effects on the computation of the probability. Hence,

inspired by [226], which adds 1-Lipschitz constraints to the discriminator of WGAN

by gradient penalty (GP), we apply the gradient penalty in T-GP to mitigate such

biases and obtain the following loss function:

loss = Ex∼Px [−log(Sigmoid(f(x)))]

+ λEx∼Px [(∥▽xf(x))∥2 − 1)2] (6.4)

The first term is NLLLoss and the second one is gradient penalty. Px denotes

the data distribution of the given positive class, and λ is a hyper-parameter to

balance the penalty. Sigmoid(f(x)) ∈ (0, 1) is the probability that x belongs to

the positive class. The advantage of the gradient penalty will be demonstrated in

our evaluations by comparing with the H-regularization [80].

6.5 Model Evolution

It is possible that the AV behaviors can drift over a long period of time, possibly

caused by the varied environment and road conditions. Hence, frequent model

update is necessary to maintain the high anomaly detection performance. The ve-

hicle can periodically collect the runtime data when it is at the normal state. Then

it fine-tunes the detection model based on such data. This process is lightweight

compared with model training from scratch, and thus computationally feasible us-

ing the on-board computer. We further leverage two technologies to enhance the

efficiency of model update.

6.5.1 Lifelong Learning

ADS-Lead applies lifelong learning for model evolution with runtime data. Lifelong

learning is defined as an adaptive machine learning algorithm, which is able to

progressively learn from a continuous stream of information over a long time span

[227]. A good lifelong learning algorithm can produce a machine learning model

with great accommodation of the new information. lifelong learning has become

more important in autonomous agents and systems, which need to interact with

the dynamic real world.
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Figure 6.6: Lifelong learning for one-class model update.

A variety of strategies have been designed to achieve lifelong learning. In ADS-Lead,

we use the method proposed in [80], which is a continuous learning process and

shows better performance than other strategies. Its idea is to train a new sub-

classifier for each new task, and the prediction is done by selecting the result of one

of the existing sub-classifiers. The detailed process of lifelong learning in ADS-Lead

is shown in Figure 6.6. As described in Section 6.4.2, the T-GP model consists of

two main parts: a transformer encoder, which extracts feature vectors of different

formats of sensor data, and an MLP head, which classifies the extracted features to

make decisions. During lifelong learning, the transformer encoder is fixed. Every

time a new dataset is collected, ADS-Lead trains a new MLP head to memorize

the new data distributions. Then new MLP heads will be integrated with the old

ones in the updated model for decision making. Note that to guarantee the scale

of the model, we may set the maximal number of MLP head classifiers and forget

the very old classifiers. In this way, we can guarantee to not only remember the

historic knowledge but also learn new information from the newly acquired data.
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Figure 6.7: Model training and update with federated learning in ADS-Lead.

6.5.2 Model Update with Federated Learning

Since there may be multiple AVs on the roads, and different vehicles have different

private data, they can collaborate to train and update a more robust model. Hence,

we further propose to use federated learning [228, 229] to optimize the model train-

ing process, which enables different vehicles to collaborate on the model training

without releasing their data. Hence, the data privacy of the vehicles (e.g., loca-

tion) is preserved compared to the case where the data are offloaded to the cloud

for model training. Figure 6.7 shows the process of the detection model update

with federated learning. A centralized Parameter Server (PS) is introduced in the

remote cloud. Each AV in the C-ITS is able to talk with the PS via the V2C com-

munication technology [230]. During the training process, each vehicle trains the

model gradient gi from its local collected data, and uploads the results to the PS.

Then the PS will receive multiple gradients from different vehicles. It aggregates

them into one gradient vector g∗ by calculating the average value, and releases the

new model to each vehicle in the C-ITS. So each vehicle can use the latest model

for online anomaly detection with better generalization and performance.

It is worth noting that we adopt the asynchronous training instead of synchronous
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training. The PS does not need to wait for the gradients from all the vehicles in the

network, since some vehicles may not participate in the model update process. It

performs the gradient aggregation and model release at a fixed frequency, to guar-

antee the model update service is always available. It is possible that some vehicles

are malicious or compromised, trying to send the PS wrong updates to compromise

the detection model. We can adopt some sophisticated aggregation rules [231] to

filter out such malicious gradients. Besides, we can also follow the works [232] to

further mitigate the indirect leakage from the gradients. Implementation of these

advanced solutions into ADS-Lead is our future work.

6.6 Evaluations

In this section, we evaluate the effectiveness and robustness of the proposed ADS-Lead

system and T-GP model against the three kinds of attacks described in Section

6.3.3.

6.6.1 Evaluation of T-GP

We first evaluate the performance of T-GP on GPS attacks, traffic sign attacks,

and lane detection attacks.

6.6.1.1 Defeating Localization Attacks

Data Sets. Since there are no public datasets for GPS spoofing attacks, we

deploy the attacks in Baidu Apollo 5.0 running with the LGSVL simulator on the

San Francisco map, and collect data for normal and malicious cases. We consider

the attack scenario where an adversarial vehicle tailgates the victim AV while

launching GPS spoofing. Following the attack settings in [173], we consider two

concrete adversarial goals as shown in Figure 6.8: off-road attack aims to deviate

the AV to hit the curb; wrong-way attack aims to deviate the AV to the opposite

lane and hit the oncoming vehicle.

GPS spoofing will cause a sudden change of the AV’s localization computation, re-

sulting in the change of AV’s motion. Hence, we monitor the IMU messages, whose



142 6.6. Evaluations

Wrong-way attack Off-road attack

Hit Road BarrierHit Oncoming Car

Figure 6.8: GPS spoofing attacks in LGSVL simulator.

channel name is /apollo/sensor/gnss/corrected imu in the Apollo ADS. There are

three kinds of motion data in the IMU messages and each one is a 3D vector:

linear acceleration (ax, ay, az), augular velocity (avx, avy, avz), and Euler angles

(α, β, γ). Since the current HD map for Apollo does not contain the altitude infor-

mation, only the linear accelerations ax and ay, angular velocity avz, and Euler

angle γ are affected by the motion of the AV. Moreover, based on our observa-

tion of the real-time IMU data, these four values exhibit distinct behaviors when

the AV deviates from the predetermined path, compared to the scenarios of lane

change or turn. Hence, at each time instant, we collect these four types of data

as the model features. Figure 6.9 shows two data sequences of the four selected

data types during the AV motion under GPS spoofing attacks, where the message

sampling frequency is around 85 FPS (Frame-Per-Second) in our experiments.

Since our task is one-class anomaly detection, only benign data are available for

model training. The road in the map of LGSVL simulator is flat and we set random

NPCs (vehicles and passengers) in the map. We randomly set the destination for

the vehicle and collect the four types of IMU data from Apollo when the vehicle

is in normal and secure states. A total of 32,115 raw data samples are generated

for model training. The testing set should contain both the normal and attack

samples. We run Apollo ten times under the two types of GPS spoofing attacks,

and collect the related IMU data. We label the data before the attack occurrence

as ”normal”. We also assign the “abnormal” label to the data collected in a short

period right after the GPS spoofing is launched (around 20 new IMU messages).

Table 6.1 summarizes the ten testing data sequences.
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𝑛𝑛𝑡𝑡

𝑛𝑛𝑡𝑡

Figure 6.9: Data sequences of ax, ay, avz, and γ when the AV is under the off-
road and wrong-way attacks, respectively. The black line represents the moment
the spoofing attack starts. The red box is the sliding window with the length of
n = 10 data samples. nt represents that the attack is detected after nth samples
of the attack occurrence.

Once we obtain the training and testing data sequences, we generate the corre-

sponding training and testing datasets by dividing each data sequence into a set

of sub-sequences with the length of 10. We use the sliding window method with a

stride of 1 to generate the sub-sequences. Hence, a sequence with n samples can

generate (n− 9) sub-sequences. Note that we employ the same data preprocessing

method to all the models for fair comparison.

Model Configurations. According to the format of the generated data samples,

the input dimension of T-GP is set as 10 × 4, i.e., each input sequence has 10

consecutive data samples and each sample is a 4D vector. In terms of the model

hyper-parameters, we use an embedding dimension of 4 units, 4 transformer heads,

and 128 units in the hidden layer of the output MLP head. We use the AdamW

optimizer with a learning rate of 1e-4. λ is set as 0.1.
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Table 6.1: Number of data samples in each testing sequence

Sequence #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

off-road normal 420 423 237 294 571 494 210 461 363 535
attack abnormal 20 17 23 16 19 16 20 19 17 25

wrong-way normal 245 616 418 325 550 274 271 338 204 396
attack abnormal 25 14 22 26 20 16 19 22 16 24

Baseline Methods We compare our T-GP model with the following baselines.

• OC-SVM [233]: this is a traditional one-class classifier based on kernel SVM.

In our implementation, the RBF kernel is applied and the hyper-parameter is

selected from a set of discretized values in the interval [0, 1].

• iForest [234]: this is another popular one-class classifier. It isolates anomaly

points by building decision trees. We use the default values of the hyper-

parameters.

• Deep-SVDD [78]: this is a deep one-class model. It classifies anomaly data by

penalizing the distance between the extracted feature vector, from the network

and the center of the initial hypersphere. Since it only supports non-trivial

high-dimensional images, we use the transformer encoder in T-GP to extract

features for Deep-SVDD.

• HRN [80]: this is a state-of-the-art one-class models based on holistic regular-

ization. We use the default structure with a three-layer perception, whose input,

hidden and output dimensions are 40, 100, and 1, respectively.

• T-L2 : this is a variant of our T-GP model. We replace the gradient penalty-

based regularization with L2-regularization.

Evaluation ResultsWe use the standard metrics (precision, recall and F1-measure)

to quantify and compare the performance of our model with others baselines. Fig-

ure 6.16 shows the results on the testing datasets of off-road and wrong-way at-

tacks. Note that in anomaly detection tasks, anomaly data are considered as

positive. From Figures 6.10 and 6.11, we can find that for both kinds of attacks,

the transformer-based models (i.e., T-L2 and T-GP) have higher average precision

and lower variance than other models. Hence, the adoption of the transformer ex-

hibits better robustness. They can detect anomalies more precisely with fewer false

alarms. As shown in Figures 6.12 and 6.13, the two transformer-based models also

have higher average recall than others, indicating that they have smaller false neg-

ative rates, i.e., missing fewer anomaly data. Moreover, compared to T-L2, T-GP
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Figure 6.10: Precision (off-
road)

Figure 6.11: Precision
(wrong-way)

Figure 6.12: Recall (off-road) Figure 6.13: Recall (wrong-
way)

Figure 6.14: F1-measure (off-
road)

Figure 6.15: F1-measure
(wrong-way)

Figure 6.16: Results of Precision, Recall and F1-measure on the two GPS
spoofing attack datasets.

can provide more fine-grained control over the penalty function and a higher recall

with smaller fluctuations. The F1-measure results are shown in Figures 6.14 and

6.15. We also find that T-GP has the highest F1-measure. It means T-GP not

only has high precision and recall values, but also can balance these two measures.

Hence, we conclude that the proposed T-GP outperforms other one-class models

on the 20 testing sequences.
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Table 6.2: Levene’s test and t-test on F1-value between our T-GP and each
of other models. A higher value indicates the model is more similar as T-GP in
detection performance.

Baselines OC-SVM IF DSVDD HRN T-GP

Off-road Levene’s test 0.3908 0.0025 0.1346 0.0060 0.2606
attack T-test 4e-11 0.0012 0.0026 0.0007 0.1337

Wrong-way Levene’s test 0.0180 0.0023 0.0482 0.0003 0.5477
attack T-test 2e-10 0.0003 0.0489 0.0017 0.2549

To analyze the statistical significance of these models, we perform Levene’s test

and two-sample t-test for equal variance testing and equal mean testing in terms

of the F1-measure. The results are shown in Table 6.2. We can observe that given

the 95% confidence interval, our T-GP has significant differences for the mean

of F1-measure, from other non-transformer models. Hence, T-GP demonstrates

higher performance statistically. Moreover, we can find that there are no significant

differences between T-GP and T-L2, indicating the two loss functions in T-GP

and T-L2 have similar performance in balancing the precision and recall.

During the online anomaly detection, another important requirement is to detect

attacks promptly so that we can prevent accidents as soon as possible. Hence, we

also compute the detection time of different models in Apollo. We find that T-GP

can detect an attack within 6 data samples after launching the attack (∼ 0.07s),

while other models need more time to identify anomalous events, which is relatively

less practical in reality.

In conclusion, our transformer-based model can accurately disclose the underlying

dependency in the time series data during the AV’s motion, whilst other models

cannot describe such temporal relations, even using the sliding window technique.

Moreover, the results also show that the transformer with GP is better than with

L2 regularization.

6.6.1.2 Defeating Traffic Sign Recognition Attacks

We examine the effectiveness of our model on detecting adversarial traffic signs.

Datasets. We conduct our experiments on the GTSRB (German Traffic Sign

Recognition Benchmark) dataset, which only contains clean traffic sign images.

We select four representative categories of traffic signs, i.e., stop, speed limit, keep
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Figure 6.17: Clean (first row) and adversarial (second row) traffic signs. (a)
Boundary attack (b) Poster attack.

Table 6.3: Number of images in each dataset

Attack Traffic Sign
Training Test
Normal Normal Abnormal

Boundary Stop 780 270 20
Poster Stop 780 270 270
Poster Speed limit 30 2220 720 720
Poster Keep right 2070 690 690
Poster Traffic signals 600 180 180

right and traffic signals, from this dataset for training. The numbers of these

categories are 780, 2220, 2070, and 600, respectively. For testing, we adopt the

boundary attack [200] and poster attack [62] to generate adversarial example from

the normal testing images. Specifically, we perform the boundary attack on the

stop sign category to generate 20 adversarial samples, and the poster attack on the

four categories to generate the same numbers of adversarial images as the testing

samples. Figure 6.17 visualizes the adversarial samples of different attacks and

traffic signs.

Table 6.3 gives the details of the training and testing datasets. We remove 10%

border of each category and resize the images to 32 × 32 as presented in [78]. In

addition, global contrast normalization using L1-norm is applied.

Model Configurations. For T-GP, we use the same structure described in

Section 6.4.2, where each input image is divided into 64 patches with an equal

size of 4×4. According to the scale of the datasets, λ is set as around 1.5 (similar

results for [0.1, 3]) and the initial learning rate is 3e-4.

Baseline Methods. We compare our model with Deep-SVDD and HRN in de-

tecting adversarial traffic signs. Specifically, for Deep-SVDD, we apply a CNN
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Table 6.4: Average AUCs for different models in detecting different attacks

Attack Traffic Sign Deep-SVDD HRN T-GP

Boundary Stop 80.78% 95.5% 98.2%
Poster Stop 72.46% 72.83% 93.26%
Poster Speed limit 30 51.96% 64.18 % 65.56%
Poster Keep right 62.64% 83.54% 84.03%
Poster Traffic signals 76.46% 85.68% 77.83%

structure with three filters of sizes 32×(5×5×3), 64×(5×5×3) and 128×(5×5×3),
followed by a fully connected layer with 128 units. We get the maximum accuracy

with the AdamW optimizer whose learning rate is set as 1e−3. For HRN, a three-

layer MLP is adopted with the size of 3×[1024-300]-[900-300]-[300-1]. The first

layer contains three sub-modules (each one has a size of [1024-300]) to deal with 3

channels, and the outputs are concatenated as the input of the second layer; the

second and third layers have the sizes of [900-300] and [300-1], respectively. The

optimizer is set as SGD with momentum and the learning rate is 5e− 4.

Evaluation Results. Table 6.4 shows the AUC (Area Under the ROC) values of

different models for detecting the boundary and poster attacks on different traffic

signs. The results show that our model outperforms Deep-SVDD and HRN for

both kinds of attacks.

We also compare the performance of the transformer-based one-class model with

three kinds of loss functions: NLLLoss, L2 penalty and GP (gradient penalty).

Table 6.5 shows the detection results of the loss functions on the poster attack.

We can observe that the model with gradient penalty introduced from WGAN

has higher AUC values than the other two loss functions. A possible reason is

that, since the output has just one class, we use sigmoid(·) function in NLLloss to

calculate the probability of input x labeling y(x). When minimizing the NLLloss

function, we need to include a penalty function to reduce the possibility of feature

bias. Such feature bias exists as we do not have any other classes to compare, and

do not know which feature is essential for class differentiation. Some features and

their related parameters with high values may not be important, thus leading a

low accuracy.
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Table 6.5: Average AUCs for different transformers and loss functions in de-
tecting poster attacks

Solution Stop Speed limit 30 Keep right Traffic signals

T-NLL 88.81% 59.07% 82.01% 77.59%
T-L2 60.25% 63.88% 81.85% 86.98%
T-GP 93.26% 65.56% 84.03% 77.83%

Figure 6.18: Samples of fixed-size patch and varied-size patch.

6.6.1.3 Defeating Lane Detection Attacks

Datasets To evaluate the effectiveness of our method on detecting lane attacks,

we adopt the widely-used Tusimple traffic lane dataset. This dataset consists of

6,408 annotated images, which are the latest frames from video clips recorded by a

high-resolution (720×1280) forward-view camera under various traffic and weather

conditions on highways of United States in the daytime. It is spilt into a training

set (3268), a validation set (358), and a testing set (2782). We generate two

types of adversarial examples from the validation set following the Patch Attack

[82], including fixed-size patch and varied-size patch (Figure 6.2). The size of the

former patch is 100×100, and the later patch is scaled according to the lane width

and lane marker height. After adding the adversarial patches, all the images are

scaled to the size of 320×320. For each type of patches, we obtain 3268 normal

images used for training, 358 normal images and 358 abnormal images for testing.

Figure 6.18 shows two adversarial samples under the fixed- and varied-size patch

attacks, respectively.

Model Configurations Different with the configurations in adversarial traffic

sign detection, we add a split layer before the model input, thus the images are

spilt into fixed-size patches first in order to capture the anomalies more carefully.

Specifically, we split each image of 320×320×3 to 100 patches of 32×32×3. This

gives us 3268×100 training samples, 358×100 normal testing samples and 358×100

abnormal testing samples. During testing, if any one of the 100 patches is flagged
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Table 6.6: Average AUCs of different models in detecting the patch attacks

Patch Attack Deep-SVDD HRN T-GP

Fixed-size 68.19% 52.79% 92.25%
Varied-size 60.60% 51.54% 67.86%

as abnormal, then the entire image is regarded as anomaly. We use the same

preprocessing method for all the models to achieve fair comparison.

Baseline Methods. We compare our transformer-based method with Deep-

SVDD and HRN. The two models follow the same settings in Section 6.6.1.2.

Evaluation Results. Table 6.6 shows the average AUC values for different mod-

els. We observe that T-GP shows better performance than the other two baseline

models. Particularly, all these models have relatively low accuracy in detecting the

varied patch attacks. One possible reason is that some patches are too small to be

recognized as adversarial samples, causing higher false negative rates. But T-GP

still outperforms prior solutions. We will explore new models to further enhance

the detection accuracy as future work.

6.6.2 Evaluation of ADS-Lead

We evaluate the effectiveness of ADS-Lead with lifelong and federated learning on

the attack detection. As we discovered in the GPS spoofing detection experiments,

the pattern of IMU data shows no divergence in different scenarios when the AV

is running in normal and secure states. Hence, the redundant IMU samples from

different vehicles cannot further improve the performance of the proposed detector.

Therefore, we mainly focus on the detection of traffic sign attacks and lane attacks

in this section.

6.6.2.1 Datasets

In federated learning, each vehicle participates in gradient update during the train-

ing process. Therefore, assigning sufficient training data for each vehicle is crucial

for the convergence of the model. To amend this, data argumentation is performed

over the training datasets on each vehicle.
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Table 6.7: Number of images in each traffic sign datasets. Note the abnormal
data are generated by the poster attack

Datasets Traffic Sign
Training Test
Normal Normal Abnormal

Task 1 (Non-Rainy)

Stop 3855 270 50
Speed limit 30 10970 720 100
Keep right 10230 690 100

Traffic signals 2965 180 20

Task 2 (Rainy)

Stop 1605 270 50
Speed limit 30 4570 720 100
Keep right 4260 690 100

Traffic signals 2965 180 20

Table 6.8: Number of images in lane detection datasets. Note the abnormal
data in Task 1 and Task 2 include both varied and fixed patch attacks

Fixed Varied
Training Test
Normal Normal Abnormal

Task 1 (Non-Rainy) 1634 358 358

Task 2 (Rainy) 1634 358 358

For the traffic sign data sets, we first rotate the images clockwise and counter-

clockwise by 5, 10 and 15 degrees, respectively; second, we divide the data into two

subsets to represent tasks at two different time instants. Considering the impact

of environmental factors (e.g., light, whether and camera resolution), we randomly

synthesize the latter subset with the effects of rain by adding controlled random

noise. The statistics of the traffic sign datasets are reported in Table 6.7. Note that

for in each testing set, the abnormal samples are generated by the poster attack.

For lane detection attacks, we expand the data set by adding rain effects to the

original images. Specifically, we first divide the original training data set equally

into two subsets: Task 1 for the first phase of training and Task 2 for model update;

moreover, we synthesize the images in Task 2 with the same rainy effects as in the

traffic sign data set. Second, for either testing data set of Task 1 or Task 2, we

apply both the fixed- and varied-size patch attacks to generate adversarial samples,

and the testing data set in Task 2 is also added with the rain effects. Table 6.8

shows the statistics of the two data sets. Figure 6.19 shows some samples with

rainy effects in traffic sign and lane detection data sets.

6.6.2.2 Baseline Models and Model Configurations

We compare the following algorithms for model update:
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Figure 6.19: The synthesized images with rain.

Figure 6.20: Evaluation results on traffic sign dataset. BaseModel: the
federated learning model is trained on Task 1, and tested on Task 1 and Task 2.
Fed-Finetune: the federated learning model trained on Task 1, and finetuned
on Task 2. Our ADS-Lead: the model is trained on Task 1 and lifelone learned
on Task 2.

Figure 6.21: Evaluation results on the lane detection dataset.
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BaseModel: This is for federated learning only. In our experiments, we consider a

system of 5 vehicles, partition the training data sets equally into 5 sets, and assign

each to one vehicle. For each round, we randomly select 4 vehicles to update the

gradients for aggregation, to simulate the asynchronous mechanism. We set the

batch size as 32 and run 50 epochs with the same hyper-parameters of T-GP as

shown in Section 6.4.

Fed-Finetune: In addition to training the model with federated learning, we

further finetune the aggregated model using the dataset from Task 2.

ADS-Lead: This is our solution in ADS-Lead. In addition to training the model

with federated learning, we further perform lifelong learning on Task 2 to obtain

the updated model. We adopt the same federated learning settings, i.e., batch size

of 32 and 50 running epochs.

6.6.2.3 Evaluation Results

Figure 6.20 presents the AUC values of the three algorithms for the two tasks of

traffic sign attack detection, respectively. We can find that BaseModel performs

well on Task 1 (e.g., 91.48% for stop sign) but not well on Task 2 (e.g., 77.17%

for stop sign), as the model is trained only from Task 1. Fed-Finetune improves

the performance over BaseModel on Task 2 (e.g., from 77.17% to 80.66% for stop

sign) due to the fine-tuning operation with the dataset of Task 2. However, its

performance on Task 1 is degraded (e.g., from 91.48% to 86.28% for stop sign). This

indicates that simply finetuning the model can make it learn new knowledge but

forget some prior knowledge. Our ADS-Lead model can balance the performance

on both Task 1 and Task 2. In detail, we observe that the model performance

on Task 1 and Task 2 is similar as BaseModel and Fed-Finetune, respectively.

Hence, with lifelong learning, our model can not only learn new knowledge of new

tasks (e.g., Task 2) but also remember the learned knowledge from previous tasks

(e.g., Task 1).

Similarly, Figure 6.21 demonstrates the effectiveness of ADS-Lead on lane attack

detection. For Fed-Finetune, after model fine-tuning on Task 2, the prediction

accuracy of Task 2 rises from 68.60% to 73.32%, whereas the accuracy of Task 1

drops from 68.60% to 64.14%. Fortunately, with lifelong learning, our ADS-Lead

balance the model performance on Task 1 and Task 2 significantly.



154 6.7. Conclusion

Even though the results are encouraging, the improvement brought by lifelong

learning for Speed Limit 30 and Keep Right signs is limited. This is because

the data in Task 2 are synthesized by only adding normal noise to simulate the

rainy effects, and the pattern difference between Task 1 and Task 2 is not very

significant. Despite that, the experimental results still show that our proposed

ADS-Lead is practical for anomaly detection in ADSs, achieved by the globally-

trained high-quality model with lifelong learning.

6.6.3 Discussion on the Robustness of ADS-Lead

Finally, we discuss the robustness of our system against possible adaptive attacks.

Even though the adversary knows the defense mechanism, it is hard for him to

attack our detector. On one hand, federated learning can mitigate the attacks on

a single vehicle, as the server will aggregate the local models to generate a global

one. On the other hand, with lifelong learning, the server will update the model

over time, so each vehicle will update its model such that the adversary cannot

use the previous knowledge on the model to launch attacks. We also point out

that it is possible for the adversary to launch attacks during two successive update

time instants. However, these attacks can be mitigated by setting specific update

frequency such that there is no enough time for the adversary to retrieve the model

information and then launch proper attacks. How to design more advanced attacks

as well as enhancing the system will be our future work.

6.7 Conclusion

In this chapter, we propose ADS-Lead, a novel system based on federated learning

and lifelong learning to detect anomalies in the lane following scenario of ADSs. We

introduce T-GP, a novel one-class classification model with a transformer encoder

for feature extraction and new loss function with gradient penalty. It is able to

detect GPS spoofing, traffic sign recognition and lane detection attacks with high

accuracy. We extensively evaluate our model on the mainstream Baidu Apollo ADS

with the LGSVL simulator, and two public traffic datasets: GTSRB and Tusimple.

The results show thatT-GP significantly outperforms existing state-of-the-art one-

class models. We also show the practicality and effectiveness of attack detection
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with advanced model evolution solutions. In the future, we aim to incorporate

our system into real-world AVs and study the anomaly detection of other sensor

attacks (e.g., Lidar attacks) and scenarios (e.g., lane changing and overtaking).





Chapter 7

Conclusion and Future Work

In this chapter, we first give a summary of the work conducted in this thesis and

then discuss some future research directions based on our current results.

7.1 Conclusion

The security of ADS is of paramount importance. Although ADS has the potential

to revolutionize transportation by increasing safety, efficiency, and convenience,

it also carries risks in the context of adversarial attacks. Unfortunately, in the

real-world scenario, existing research falls short of providing a comprehensive eval-

uation, leaving us with an incomplete understanding of the threat posed by physical

adversarial attacks on AD. Consequently, there is an urgent imperative for the de-

velopment of evaluation tools tailored to these specific threats. Nevertheless, the

nature of rich semantics in the real world, coupled with the diverse attack meth-

ods proposed in recent years, makes it extremely challenging to test these attacks

against ADSs, which also makes it difficult to design unified defense methods. In

this thesis, we concentrate on addressing these issues by conducting comprehensive

physical adversarial evaluations, and vulnerability testings and designing unified

defense methods based on deep insights into ADS.

This research starts with building the first comprehensive benchmarking platform

BatAV to evaluate the physical backdoor vulnerability of modern ADS. Backdoor

157
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attacks have evolved to be one of the most severe threats to DL models. In-

vestigating backdoor attacks against ADS perception allows us for the first time

to understand how much the backdoor attacks can affect the end-to-end ADS.

Specifically, BatAV can automatically synthesize backdoor attacks targeting dif-

ferent vision-based perception functions with the customized attack budget and

trigger design. It can also deploy these attacks to three levels of testbeds (dataset,

ADS simulator, physical vehicle) for thorough analysis. BatAV includes 7 backdoor

attacks with 4 representative triggers to attack 3 perception functions and 11 real-

world models. Leveraging BatAV, we summarise several novel observations about

the vulnerability of perception models in ADSs.

After that, we develop a vulnerability testing platform STFA for the decision-making

module of ADS, this gives us the chance to find new attack surfaces by leveraging

the vulnerabilities. The decision-making module serves as a crucial intermedi-

ary between the perception and control modules. It utilizes real-time perception

information to generate obstacle trajectories and the vehicle’s motion trajectory,

enabling the system to make correct actions, e.g., braking or steering. In practice,

this module comprises not only machine learning algorithms but also traditional

rule-based algorithms. Its complexity makes it exceedingly challenging to design

such a platform. To overcome the challenge, we introduce the fuzzing techniques

to discover the system-level vulnerability in end-to-end ADS. Inspired by the vul-

nerabilities, we propose two novel types of attacks, i.e., Direct-attack and Indirect-

attack, based on the interaction between the ego vehicle and non-playable char-

acters (NPCs), and design a total of seven novel attack methods. STFA leverages

the Large Language Model (LLM) to extract accident information from real-world

accident reports and then employs a genetic algorithm to guide the generation of

adversarial scenarios that violate given specifications provided by the LLM. It is

a fully automated attack generation platform that requires no manual operations.

Currently, STFA surpasses 2.5 million lines of code.

Various studies have investigated the adversarial attacks to the perception module

in the ADS. Therefore, we then focus on developing novel defense methods against

adversarial attacks on ADS. Specifically, we introduce two novel defense methods:

(1) ADS-Lead, an efficient collaborative anomaly detection methodology to pro-

tect the lane-following mechanism of ADSs. ADS-Lead is equipped with a novel

transformer-based one-class classification model to identify time series anomalies
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(GPS spoofing) and adversarial image examples (traffic sign and lane recognition

attacks). Besides, AVs inside the Cooperative Intelligent Transport Systems (C-

ITS) form a cooperative network, enabling us to apply federated learning to our

anomaly detection method, where the vehicles in the C-ITS jointly update the de-

tection model with higher model generalization and data privacy. (2) VisionGuard,

a unified defense framework that can detect and mitigate various physical adversar-

ial attacks to vision-based perception functions. Before that, we first comprehen-

sively evaluate 9 state-of-the-art physical adversarial attack methods in real-world

scenarios. We observe that none of the existing adversarial attacks can achieve

perfect attack effectiveness and keep consistency over time. Based on such obser-

vations, the key insight of VisionGuard is to leverage the spatiotemporal inconsis-

tency to comprehensively identify different adversarial attacks. VisionGuard con-

sists of three modules: State Correction Module (SCM) for obtaining the current

driving states by raw data calibration and integration, State Prediction Module

(SPM) for predicting the motion states by tracking historical states, and Attack

Detection Module (ADM) for checking the motion state inconsistency. It is ag-

nostic to attack goals, target objects, models, sensors, adversarial objectives, and

contextual information.

7.2 Future Work

Following my dissertation research, there is still a lot more to be explored in the

future.

• Novel backdoor defense platform. In our work, we integrated various

backdoor attack techniques to different perception functions in ADS, to com-

prehensively understand how much the backdoor attacks can affect ADS. In

this way, it would be better if we could include physical backdoor defense

strategies into BatAV. Indeed, there are only a few libraries or benchmarks

for backdoor learning that have included defense methods, e.g., TrojAI [235],

TrojanZoo [94], and BackdoorBench [95]. However, all these benchmarks

mainly focused on standard image classification tasks, while ADS contains

diverse models with different tasks, making them not applicable to AD scenar-

ios. In the future, we will investigate all the state-of-the-art defense methods
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to comprehensively evaluate them in the AD context and to understand how

much these defense methods can secure ADS.

• Novel backdoor defense solution for ADS. It is extremely hard to design

a unified defense method to defeat backdoor attacks targeting diverse func-

tions and model types in ADS. In the future, we will combine the Monitor-

Analyze-Plan-Execute over a shared Knowledge (MAPE-K) [236] techniques

to design the real-time unified defense method, thus improving the robustness

of ADS.

• Novel decision-making defense method. In STFA, we proposed a novel

fuzzing-based vulnerability testing platform to find new attack surfaces of

decision-making modules in ADS. However, we must devise sophisticated

decision-making defense strategies that align with the intricacies of the at-

tacks. This entails an in-depth exploration of techniques such as anomaly

detection, dynamic policy adaptation, and reinforcement learning-based ap-

proaches to fortify decision-making modules against adversarial manipula-

tion. This will be my future work.

• Conditional physical adversarial attacks. We have evaluated various

state-of-the-art physical adversarial attacks, and we find that existing efforts

primarily focus on one adversarial example to achieve a specific attack goal,

e.g., adding perturbations to a stop sign, resulting in a semantic transfor-

mation (e.g., detected as a speed limit 100). While some methods use real-

time projection to dynamically change the attack target, such approaches are

costly and easily detectable, e.g., leveraging a drone to project an adversar-

ial example onto an electronic billboard. In contrast, we hope to utilize an

affordable and inconspicuous paper sticker, which can dynamically alter the

attack target in real-time by leveraging various lighting techniques.

• Backdoor attack and defense of MSF-based perception in ADS.

Production-level ADS, e.g., Baidu Apollo, and Google Waymo, generally

adopt camera-LiDAR based sensor fusion techniques to enhance the robust-

ness of ADS perception. However, the DNN-based MSF functions are also

vulnerable to backdoor attacks as we discussed in Chapter 3. Due to its

complex structure, e.g., inherent modality interactions, multiple attack sur-

faces, and unbalanced modality contributions, it is important to investigate
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backdoor attacks towards MSF techniques. In the future, we hope to de-

sign novel backdoor attack methods to effectively and efficiently destroy the

MSF functions. In addition, to effectively defend against such attacks, we

hope to develop a novel method to specifically address joint backdoor features

from the victim models, since generally, these two poisoned modalities have

demonstrated joint features that are never discussed in previous works. This

also will be my future work.
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.1 Appendix A: Proof for Theorem 1 in Chap-

ter 5

To establish the proof, we view the problem of attacking object detection to be a
binary classification task where the object is either detected or not. We denote y
to be the label where the object is recognized and y′ otherwise. Besides, we denote
P (F (x) = y) = px, P (F (x + δ) = y) = px+δ for ease of analyzing. Also, we use
l(x, y) to represent the loss of classifying the example x to be y. Obviously, we have

l(x, y) < l(x, y′) for any clean example x. By denoting f(x) =
l(x+δ,y′)−l(x,y)−Lϵ2

2

∥∇xl(x,y)∥ ,
we have

P (F (x+ δ) = y) = P
(
l(x+ δ, y) < l(x+ δ, y′)

)
≥P

(
l(x, y) +∇xl(x, y)

T δ +
Lϵ2

2
< l(x+ δ, y′)

)
=P

(∇xl(x, y)
T δ

∥∇xl(x, y)∥
<

l(x+ δ, y′)− l(x, y)− Lϵ2

2

∥∇xl(x, y)∥

)
=P

(∇xl(x, y)
T δ

∥∇xl(x, y)∥
< f(x)

)
⇒P

(∇xl(x, y)
T δ

∥∇xl(x, y)∥
< f(x)

)
< px+δ, (1)

where the first inequality is derived by applying the Taylor expansion over l(x+δ, y).
Considering the perturbation budget ∥δ∥ ≤ ϵ, we can compute the expectation of
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the ∇xl(x,y)T δ
∥∇xl(x,y)∥ as

E
∇xl(x, y)

T δ

∥∇xl(x, y)∥
≤ px+δf(x) + (1− px+δ)ϵ. (2)

Instead of considering the vehicle coming closer to the object, we consider driving
the vehicle back from the position where it is parallel to the object for ease of
analysis. We use g(x + δ) = x + γδ to denote the transformed example of x + δ
where γ < 1 is the scaled size. Based on the L-smoothness assumption, we have

l(x, y) + γ∇xl(x, y)
T δ − Lγ2ϵ2

2

≤ l(g(x+ δ), y) ≤ l(x, y) + γ∇xl(x, y)
T δ +

Lγ2ϵ2

2
. (3)

Based on (3), we have

P (F (g(x+ δ)) = y)

=P
(
l(g(x+ δ), y) < l(g(x+ δ), y′)

)
≥P

(
l(x, y) + γ∇xl(x, y)

T δ +
Lγ2ϵ2

2
< l(g(x+ δ), y′)

)
=P

(
γ∇xl(x, y)

T δ < l(g(x+ δ), y′)− l(x, y)− Lγ2ϵ2

2

)
=P

(∇xl(x, y)
T δ

∥∇xl(x, y)∥
<

l(g(x+ δ), y′)− l(x, y)− Lγ2ϵ2

2

γ∥∇xl(x, y)∥

)
≥1−

E∇xl(x,y)T δ
∥∇xl(x,y)∥

l(g(x+δ),y′)−l(x,y)−Lγ2ϵ2

2

γ∥∇xl(x,y)∥

≥1− γ(px+δf(x) + (1− px+δ)ϵ)∥∇xl(x, y)∥
l(g(x+ δ), y′)− l(x, y)− Lγ2ϵ2

2

. (4)

Since P (F (g(x+ δ)) = y) = 1− P (F (g(x+ δ)) ̸= y), we have

P (F (g(x+ δ)) ̸= y)

<
γ
(
px+δf(x) + (1− px+δ)ϵ

)
∥∇xl(x, y)∥

l(g(x+ δ), y′)− l(x, y)− Lγ2ϵ2

2

=
γ
(
px+δ ·

(
l(x+ δ, y′)− l(x, y)− Lϵ2

2

)
+ (1− px+δ)ϵ∥∇xl(x, y)∥

)
l(g(x+ δ), y′)− l(x, y)− Lγ2ϵ2

2

(5)

Considering the probability is positive, we can conclude that the denominator and
numerator have the same sign. For simplicity, we consider l(x+ δ, y′) ≥ l(x, y) and
both of them to be positive. Note that the following derivation is similar when
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they are negative, which derives the same conclusion. Specifically, we aim to find
the value of the scale size s when the probability P (F (g(x+ δ) ̸= y)) ≤ 1− px+δ:

P (F (g(x+ δ) ̸= y)) ≤ 1− px+δ ⇔ γpx+δl(x+ δ, y′)

− l(g(x+ δ), y′)(1− px+δ) + γϵ(1− px+δ)∥∇xl(x, y)∥

+ l(x, y)(1− px+δ − γpx+δ) ≤
(
γpx+δ + γ2px+δ − γ2

)Lϵ2
2

. (6)

Applying Taylor expansion of l(g(x+ δ), y′) over (7) derives

γpx+δl(x+ δ, y′)− (1− px+δ)
(
l(x+ δ, y′)

+∇x+δl(x+ δ, y′)T (g(x+ δ)− (x+ δ)) +
L(g(x+ δ)− (x+ δ))2

2

)
+ l(x, y)(1− px+δ − γpx+δ) + γϵ(1− px+δ)∥∇xl(x, y)∥

≤
(
γpx+δ + γ2px+δ − γ2

)Lϵ2
2

⇔
(a)

(γpx+δ + px+δ − 1)(l(x+ δ, y′)− l(x, y))

≤
(
γpx+δ + γ2px+δ − γ2 + (1− px+δ)(γ − 1)2

)Lϵ2
2

(7)

where (a) by considering ∇xl(x, y) ≈ 0 and ∇x+δl(x + δ, y′) ≈ 0. Since γ ≤ 1 and
px+δ <

1
2
, we have γpx+δ + px+δ − 1 < 0. Thus, the formula (7) holds when

γpx+δ + γ2px+δ − γ2 + (1− px+δ)(γ − 1)2 ≥ 0

⇔ γ ≤ 1− px+δ

2− 3px+δ

. (8)

In summarize, when the vehicle stays in the position where the scale size s satisfies
γ ≤ 1−px+δ

2−3px+δ
, the probability bound of P (F (g(x + δ)) ̸= y) is bounded P (F (g(x +

δ)) ̸= y) ≤ 1− px+δ.

By denoting the number of frames of the pictures as N and the size of each frame
as d × d, we can obtain that the picture with the same size has 2N/d frames.
By further denoting the minimum scale size corresponding to recognizing clean
pictures is d̄, we can calculate the maximum scale times r of which the attacking
probability is less than 1− px+δ as:

argmaxrd(
1− px+δ

2− 3px+δ

)r ≥ d̄ (9)

to obtain r = ⌊ ln d̄−ln d
ln(1−px+δ)−ln(2−3px+δ)

⌋. Based on the times, we can then compute the

number n of frames of which the attacking probability is less than 1− px+δ as

n =
2N(r + 1)

d
=

2N

d
(⌊ ln d̄− ln d

ln(1− px+δ)− ln(2− 3px+δ)
⌋+ 1). (10)
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As a consequence, by denoting the probability of successfully attacking one frame
as Pa, the maximum probability of successfully attacking all frames is less than the
following probability:

Pmax = PN
a ≤ (1− px+δ)

n = (1− px+δ)
2N
d

(⌊ ln d̄−ln d
ln(1−px+δ)−ln(2−3px+δ)

⌋+1)
. (11)
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