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Abstract
The growing privacy risks posed by hidden WiFi cam-

eras have prompted increasing interest in their detection and
localization. However, existing localization solutions suffer
from several limitations, such as requiring substantial user
effort, large activity spaces, predefined parameters, and pre-
collected training data. In this paper, we present DIFFLOC, a
novel and low-cost system that localizes hidden WiFi cameras
by leveraging the fundamental physical principle of electro-
magnetic diffraction. When an obstacle passes through the
direct path between a transmitter and a receiver, it causes a
distinctive signal attenuation pattern. We theoretically ana-
lyze the feasibility of using this phenomenon for localization,
identifying two critical requirements for building an unbiased
diffraction localization model: symmetry and observability.
To meet these requirements, DIFFLOC introduces a control-
lable diffraction generation method. By precisely rotating a
small metal plate around a passive WiFi receiver (e.g., a Rasp-
berry Pi), the system produces a consistent and predictable
diffraction “shadowing” effect. We then construct an unbi-
ased localization model that maps this effect to the azimuth
of the hidden camera. Implemented using commercially avail-
able off-the-shelf hardware, DIFFLOC achieves an average
angular error of 14.82° across six diverse environments and
eleven different camera models, demonstrating its effective-
ness. Code, implementation details, and demo are available
at: https://github.com/CamLoPA/DiffLoc.

1 Introduction

WiFi-enabled IoT and mobile devices have become ubiqui-
tous across various aspects of daily life, from smart homes
to personal devices. By 2030, the number of wireless IoT
devices is projected to exceed 29.4 billion [16]. However, the
rapid proliferation of these devices has raised significant pri-
vacy concerns, particularly due to the increasing prevalence
of illegal WiFi-based surveillance. Hidden WiFi cameras have
emerged as a preferred tool for malicious actors due to their

ease of deployment and remote operation. A survey of 2,023
Airbnb guests found that 58% were concerned about hidden
cameras, and 11% reported personally encountering one [3].
This concern is further underscored by projections that the
global wireless video surveillance market will grow at a com-
pound annual rate of 16.8% between 2022 and 2030 [9].

Given the significant threat posed by illegal surveillance,
several jurisdictions have enacted legislation to address these
privacy violations [1]. These legal measures highlight the
urgent need for effective methods to detect and locate hid-
den wireless cameras. While WiFi camera detection meth-
ods have become relatively fixed, they often rely on traf-
fic variations induced by user presence or activity in mon-
itored areas [11, 12, 34], current localization techniques still
face substantial limitations. Specifically, methods that rely
on lens reflections [22, 32, 37] or electromagnetic/thermal
emissions [21, 45, 48, 54] are often cumbersome, requiring
expensive, specialized equipment, expert knowledge, and ex-
haustive inspection of every corner of a room. In response to
these challenges, recent research has focused on analyzing
WiFi traffic or physical layer information, such as Received
Signal Strength Indicator (RSSI) and Channel State Infor-
mation (CSI), to locate wireless cameras. These methods
typically require users to move along the perimeter of the
room [12,23,34] or perform perturbations at various positions
and orientations [11, 35] to detect changes in the camera’s
RSSI or traffic for localization. However, these techniques
generally assume nearly empty rooms (free of furniture and
other objects) to allow for smooth user movement, a require-
ment that is impractical in most real-world scenarios. For
instance, Lumos [34] requires users to walk several laps along
the room’s perimeter with an RSSI collection device, while
MotionCompass [11] requires users to walk along two orthog-
onal paths, each crossing both monitored and unmonitored
areas. Both methods are challenging to implement realisti-
cally in typical indoor environments. To address this limita-
tion, Gu et al. proposed a fingerprinting-based solution, Loc-
Cams [7]. LocCams collects CSI fingerprints with the WiFi
line-of-sight (LOS) path either blocked or unobstructed by the
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Figure 1: Diffraction-induced attenuation in WiFi.

user’s body. It then trains a binary classifier to coarsely infer
the quadrant in which the hidden camera is located. While
LocCams demonstrates promising performance, it requires
pre-collected data for training, making it susceptible to varia-
tions in environments and devices. More recently, Zhang et al.
introduced CamLoPa [52], which models signal attenuation
caused by the user blocking the LOS while walking along
two orthogonal paths. This approach eliminates the need for
training but depends on several assumed parameters, such as
inter-device distances and body dimensions, which introduce
non-negligible modeling bias. CamLoPa is also sensitive to
inconsistencies in walking speed and irregular user motion,
and still requires ample space to accommodate orthogonal
walking paths.

Table 1: Qualitative comparison with existing approaches.

Method Low
Cost

No
User

Efforts

No
Training

Space
Needed

LAPD [32] N N Y Low
HeatDeCam [45] N Y N Low

ESauron [48] N N Y Medium
Lumos [34] Y N N High

SNOOPDOG [35] Y N Y High
MotionCompass [11] Y N Y High

SCamF [12] Y N Y High
LocCams [7] Y N N Low

CamLoPA [52] Y N Y Medium
DIFFLOC Y Y Y Low

In this paper, we propose DIFFLOC, a novel approach for
hidden WiFi camera localization that addresses the afore-
mentioned limitations. A comparison with existing studies
is provided in Table 1. DIFFLOC is inspired by the diffrac-
tion mechanism of electromagnetic waves. As illustrated in
Figure 1, this concept can be intuitively understood by anal-
ogy to water waves. When a stone is dropped into a pond,
circular ripples propagate outward. If a brick is placed in the
water, it casts a “shadow” behind it, which is an area where
the waves cannot pass directly. However, in reality, the waves
bend around the brick, and ripples still appear behind it. This
bending of waves around an obstacle is known as diffraction.
Similarly, when WiFi signals travel between two devices, the

majority of the signal energy is concentrated within an ellipti-
cal region known as the First Fresnel Zone (FFZ). For WiFi,
the FFZ acts like an electromagnetic “pond.” When an obsta-
cle enters this zone, it causes significant diffraction [42, 46],
resulting in measurable attenuation of the received signal,
similar to how water waves fade into smaller ripples after
encountering an obstruction. If an obstacle moves through
the FFZ, the corresponding signal attenuation pattern can be
reflected in the CSI , as shown in the bottom right of Figure 1.

Clearly, a modelable relationship exists between diffraction-
induced signal attenuation and the spatial positions of the
transmitter and receiver. In essence, attenuation begins when
an obstacle enters the FFZ and ends when it exits. In the con-
text of WiFi camera localization, consider a scenario where a
monitoring device passively receives signals from a hidden
camera while an obstacle moves in a straight, fixed direction
near the receiver and intersects the FFZ. If the size of the
FFZ is known, the duration of the observed attenuation can
reveal the camera’s azimuth, as different crossing angles lead
to different traversal lengths through the FFZ. However, de-
termining the FFZ’s dimensions requires knowledge of the
exact distance between the transmitter and receiver, which is
typically unavailable in practice. Consequently, similar ap-
proaches must assume this distance, inevitably introducing
modeling biases. This limitation raises a critical question:
How can we construct an unbiased localization model
without knowing the inter-device distance?

In practice, this can be achieved by ensuring that the ob-
stacle moves along a straight path that crosses the LOS at a
90◦ angle, as illustrated in Figure 1. In this setup, following
the previously described diffraction principle, attenuation be-
gins when the leading edge of the obstacle enters the FFZ
and ends when the trailing edge exits. Connecting the two
boundary points forms a line segment whose midpoint lies
on the LOS. A line drawn from the receiver to this midpoint
indicates the direction of the transmitter (camera). Building
on this principle, an unbiased localization model must satisfy:
Symmetry. The obstacle crossing the FFZ must move sym-
metrically with respect to the LOS, meaning that its diffraction
path is mirrored on both sides of the LOS. Here, the diffrac-
tion path refers to the portion of the obstacle’s trajectory that
lies within the FFZ. If this symmetry condition is not satisfied,
it becomes difficult to infer the direction of the LOS based
solely on the obstacle’s positions at the start and end of the
diffraction period. This raises the following question:

Q1: Since the azimuth of the target camera is unknown,
how can we ensure that the obstacle crosses the FFZ in a
manner that is symmetric with respect to the LOS?

In addition to symmetry, another key condition must be
satisfied to enhance robustness:
Observability. At the start and end of diffraction, attenua-
tion is minimal and prone to being masked by environmental
noise, leading to poor observability. In contrast, the region



of maximum attenuation, which includes the trough and its
surrounding areas, offers higher observability. However, the
peak attenuation period is not the same as the total attenua-
tion duration. Even if the obstacle’s movement is symmetric,
its relationship with the LOS still depends on the distance
between the devices. This introduces the following challenge:

Q2: Without knowledge of the inter-device distance, how
can we still leverage the high observability of the maxi-
mum attenuation period?

To address these challenges, we propose a novel control-
lable diffraction generation method. Specifically, DIFFLOC
rotates the obstacle around the receiver using the receiver
as the center. This rotational motion ensures the following:
1) Symmetry: Regardless of the camera’s azimuth, circular
motion inherently maintains symmetry with respect to the
LOS. 2) Distance Independence: This method ensures that
the maximum attenuation period is only minimally influenced
by the transmitter–receiver distance. More importantly, this
period is symmetrically distributed around the LOS direction.
As a result, the localization model can be constructed without
relying on distance-related parameters. Further details and
supporting evidence are provided in Section 4.2.

Building on the proposed controllable diffraction genera-
tion method, we developed an unbiased localization model.
The core conclusion of this model is straightforward: the
position of the obstacle at the midpoint of the maximum at-
tenuation period lies along the LOS direction. Leveraging
this principle, we designed DIFFLOC. The DIFFLOC proto-
type system utilizes a commercial off-the-shelf (COTS) Rasp-
berry Pi to passively monitor WiFi CSI, while a small metal
plate, driven by a stepper motor, rotates around the receiver to
generate controllable diffraction. Next, based on the derived
localization model, DIFFLOC calculates the orientation of
the obstacle at the midpoint of the maximum CSI attenua-
tion period, which directly corresponds to the azimuth of the
hidden camera. We evaluated DIFFLOC across six different
environments using eleven types of cameras. It achieved an
average azimuth localization error of 14.82°, demonstrating
robust performance across diverse settings and devices.

In summary, we make the following key contributions:

• We introduce DIFFLOC, a novel and low-cost hidden WiFi
camera localization system. DIFFLOC is the first approach
to infer camera orientation via controllable diffraction with-
out any parametric assumptions and user effort.

• We systematically identify the symmetry and observability
requirements for constructing an unbiased diffraction-based
localization model, and propose a controllable diffraction
generation method to satisfy both conditions.

• We implement DIFFLOC using low-cost COTS devices and
validate its effectiveness through extensive experiments.

2 Background

WiFi CSI captures fine-grained details about how wireless
signals propagate between devices [8, 24]. It encompasses
a variety of effects, including attenuation, multipath propa-
gation, and phase shifts. This CSI matrix H is commonly
expressed as [50]:

H( f ) = |H( f )|e jθ( f ), (1)

where f is the center frequency, |H( f )| and θ( f ) are the mag-
nitude and the phase shift of the CSI. The CSI magnitude
characterizes signal attenuation. The received CSI is a super-
position of signals from all propagation paths, and its Channel
Frequency Response (CFR) can be represented as [51]:

H( f , t) = Hs( f , t)+Hd( f , t) = ∑
ms∈Φs

ams( f , t)e− j2π
dms (t)

λ

+ ∑
md∈Φd

amd ( f , t)e− j2π
dmd (t)

λ ,

(2)
where Hs( f , t) and Hd( f , t) represent the static and dynamic
components, respectively. Φs denotes the set of static paths,
such as those reflected off walls, furniture, and static body
parts, while Φd represents the set of dynamic paths, such as
those reflected off moving objects or people. Therefore, when
an object moves within the sensing area, the CSI can be used
to characterize the signal attenuation caused by its movement.
t, am( f , t), dm(t), and λ represent the timestamp, complex at-
tenuation, propagation distance, and the signal wavelength,
respectively. CSI was introduced in the IEEE 802.11n stan-
dard in 2009, and devices supporting earlier standards now
account for only a small fraction of the market [14]. Tools
like csitool [10], picosense [20], and nexmon_csi [6, 33] can
be used to extract CSI from various network cards, such as
the Intel 5300, AX210/AX200, and bcm43455c0 (Raspberry
Pi B3+/B4).

3 Overview

3.1 Threat Model
We focus on scenarios such as short-term rentals (e.g.,
Airbnb), hotel rooms, and offices where users expect privacy
but attackers can temporarily gain physical access. For ex-
ample, a malicious host may install a WiFi-enabled spy cam-
era in a rental apartment before the guest arrives, or an em-
ployee may covertly place a camera in an office [27, 34, 40].
These scenarios are further supported by several real-world
cases [4,15], where attackers have been caught live-streaming
users in private spaces, and live-streaming offers a more practi-
cal and scalable solution from a management perspective [35].
The user’s goal is to detect and localize the hidden camera. In
this paper, we focus on WiFi as the communication channel,



consistent with recent works [7,12,34,35], as WiFi is the most
commonly used method for remote surveillance with com-
mercially available consumer devices. Below, we describe the
real-world settings for both the attacker and the user.
Attacker: The attacker has deployed a WiFi camera within a
specific area for surveillance purposes.

• The attacker has full control over the environment for a
limited duration, allowing them to modify the space and
install a WiFi-enabled hidden camera. To effectively moni-
tor private activities, the camera is typically positioned to
avoid obstructions and to maximize its field of view [28].

• The attacker has complete control over the deployed camera
and the connected WiFi network via an app or web interface.
This includes the ability to control the camera for moni-
toring victims, configure the WiFi’s channels, encryption
methods, and access modes.

• The deployed camera is a COTS device. Similar to current
studies [29,34,36,52], we assume the attacker does not alter
the camera’s firmware, network protocols, or wireless trans-
mission behaviors, as such modifications typically require
advanced technical expertise.

User: The user aims to detect and localize the hidden WiFi
camera deployed by the attacker.

• For portability, the user typically carries only a small device
and has no prior knowledge of the target camera or any
exploitable vulnerabilities.

• The user has control over the target space, including all WiFi
devices within the space. However, their movement may
be constrained by furniture or layout, making it difficult to
implement existing solutions that require extensive walking
or space [11, 12, 34, 35, 49].

• The user does not have control over the WiFi network to
which the camera is connected and cannot collaborate with
the camera. However, they can passively sniff 802.11 pack-
ets transmitted by the camera and extract CSI.

3.2 Workflow of DIFFLOC

Given that WiFi camera detection technologies have become
relatively fixed, this paper focuses on the more challenging
task of WiFi camera localization, a field that still faces several
limitations. In this subsection and in Section 4, we present
DIFFLOC specifically from the localization perspective. A
comprehensive description of the hidden camera detection
and localization system we developed is provided in Section 5.
The workflow of DIFFLOC, as illustrated in Figure 2, consists
of two distinct phases:
Data Collection. DIFFLOC requires the user to provide the
MAC address of the target device and the 802.11 channel on

DiffLoc

Data Collection

Diffraction Loss Occurs

CSI Collection

Azimuth Angle Estimation

Diffraction-based Localization Model

Estimated Azimuth

MAC Address 

WiFi Channel

Azimuth

Hidden WiFi Camera Localization

Figure 2: Workflow of DIFFLOC.

which it operates. This information can be easily acquired
using sniffing tools and a network card in monitor mode. Once
obtained, DIFFLOC passively monitors the target device’s
traffic, continuously extracting CSI without alerting the target
device. While recording CSI, DIFFLOC controls a stepper
motor to move an attached metal plate along a predefined
path, thereby introducing controllable diffraction attenuation.
This attenuation is then captured in the CSI amplitude.
Azimuth Angle Estimation. DIFFLOC preconstructs a model
that defines the relationship between variations in controlled
diffraction attenuation and the angle between the metal plate
and the target device. During operation, DIFFLOC tracks the
angular trajectory of the plate’s movement. It then uses the sig-
nal attenuation, captured in the CSI, to fit the preconstructed
model and identify the moment when the theoretical angle
between the plate and the target device reaches zero. At this
point, the angle of the metal plate’s movement corresponds to
the azimuth angle of the target device.

4 Localization Based on Diffraction

In this section, we present the principle of using electromag-
netic diffraction for WiFi camera localization. We begin by
explaining the concept of the Fresnel zone, which provides
an intuitive understanding of the diffraction and attenuation
effects on electromagnetic wave signals. The Fresnel zone
can be visualized as a series of concentric ellipses as shown
in Appendix A, with the transmitting and receiving devices
serving as the foci of these ellipses. The equation describing
the ellipse is given by [31]:

|T xQn|+ |QnRx|− |T xRx|= nλ/2, (3)

where Qn represents a point on the boundary of the n-th Fres-
nel zone, with T x and Rx denoting the electromagnetic wave
transmitter and receiver, respectively. The phase difference
of waves within the FFZ is relatively small, and a significant
portion of the signal energy is concentrated in this region.



In wireless communication and wave propagation, energy
within the FFZ typically accounts for approximately 60%-
70% of the total transmitted energy. Obstacles outside the
FFZ primarily affect the signal through reflections. As the
energy outside the FFZ is relatively low, obstacles beyond this
zone have minimal impact on overall communication energy,
causing only slight signal attenuation [44, 46, 47]. In contrast,
obstacles within the FFZ primarily cause diffraction [5, 31].
Since a substantial portion of the signal energy is transmitted
within the FFZ, any diffraction-induced attenuation leads to
significant signal energy loss, which is clearly reflected in
the CSI magnitude. In summary, obstacles passing through
the FFZ cause diffraction of electromagnetic wave signals,
resulting in significant energy attenuation.

4.1 Diffraction Attenuation in WiFi

During WiFi signal propagation, diffraction allows radio
waves to bend around the Earth’s curvature, extend beyond the
horizon, and travel behind obstacles [31]. According to Huy-
gens’ principle, each point on a wavefront acts as a source of
secondary wavelets, which combine in the direction of prop-
agation to form a new wavefront. Diffraction occurs when
these secondary wavelets spread into regions that would oth-
erwise be shadowed. Below, we provide a detailed description
of diffraction and its resulting attenuation in a system consist-
ing of a pair of WiFi transceivers.

Figure 3 illustrates a schematic of the FFZ created by a pair
of WiFi transceivers. Suppose a metal plate moves through
the FFZ. The height of a point Q from the line-of-sight (LOS)
path is h, and its projections onto the LOS path have distances
d1 and d2 from T x and Rx, respectively. The phase difference
∆d between the signal passing through this point and the LOS
path can be expressed as [31]:

φ =
2π∆d

λ
=

πh2

λ

d1 +d2

d1d2
=

π

2
v2. (4)

Here, ∆d is the path difference, and v is the Fresnel-Kirchoff
diffraction parameter:

v = h

√
2(d1 +d2)

λd1d2
. (5)

The variable v combines the Fresnel approximation with
Kirchhoff’s diffraction theory and is used to describe the
diffraction effects when a wave encounters an obstacle or
aperture. The value of v determines the degree of diffraction:
smaller values of v correspond to less significant diffraction,
typically caused by a tiny obstacle or greater distance, while
larger values indicate more pronounced diffraction as the
wave bends around an obstacle.

The radius of the FFZ (i.e., the perpendicular distance from

hfront

Tx Rx

Movement Path

hback

The First Fresnel Zone

Metal Plate

r1

d1 d2

hfront

hback
Qfront(x,y)

Qback(x,y)

Figure 3: A moving metal plate across the FFZ.

Figure 4: Diffraction gain corresponding to Figure 3.

point Q to the LOS path) can be calculated as [31]:

r1 =

√
λd1d2

d1 +d2
. (6)

Thus, the diffraction parameter v can also be expressed as:

v = h

√
2(d1 +d2)

λd1d2
= h

√
2

r1
. (7)

In wireless communication systems, only a portion of a
signal’s energy diffracts around an obstacle, allowing some
of the blocked energy to reach the receiver. When an obstacle
partially obstructs the Fresnel zone, the received energy is
the vector sum of the contributions from all unobstructed
sections of the Fresnel zone [31]. For an infinitely long object
positioned at a height h from the LOS path, the ratio of the
diffracted electric field strength Ed to the unobstructed electric
field strength Eo is given by:

Ed

Eo
= F(v) =

1+ j
2

∫
∞

v
exp

(
− jπt2

2

)
dt, (8)

where F(v) represents the complex Fresnel integral.
For a finitely size obstacle, as in Figure 3, both ends of the

plate create diffraction effects, with hfront and hback represent-
ing the heights from the front and back edges of the plate to
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Figure 6: Diffraction gain corresponding to Figure 5.

the LOS path, respectively. The attenuation due to diffraction
at these edges can be expressed as:

F(v f ront) =
1+ j

2

∫
∞

v f ront

exp(
− jπt2

2
)dt, (9)

F(vback) =
1+ j

2

∫ vback

−∞

exp(
− jπt2

2
)dt. (10)

The diffraction gain due to the presence of the finitely size
plate is given by:

Gd(dB) = 20log|F(v f ront)+F(vback)|. (11)

4.2 Principle of Diffraction Based Localization
Using equations 9, 10, and 11, we illustrate the diffraction
attenuation caused by a metal plate with width 2dm passing
through the FFZ, as shown in Figure 4. u represents the Fres-
nel clearance [47], which indicates the percentage of the plate
that crosses the LOS path. It is defined as:

u =
h
r1
, (12)

In Figure 4, u represents u f ront , and it is evident that atten-
uation occurs when the obstacle is in the FFZ. This inspires

the design of DIFFLOC. Specifically, if an obstacle crosses
the FFZ perpendicular to the LOS, as shown in Figure 3, the
obstacle induces diffraction from the moment it enters until it
fully exits the FFZ as shown in Figure 4. If the position of the
obstacle is known at each moment, the line connecting the
receiver’s location to the midpoint between the point Q f ront
at the start of attenuation and Qback at the end of attenuation,
indicates the LOS direction. This line also points towards the
transmitter. Therefore, if the receiver’s location is known and
the positions of the obstacle during diffraction are tracked,
azimuth localization can be achieved. In real-world scenar-
ios, to ensure that the diffraction behavior can be reliably
modeled, the obstacle’s motion should be kept as simple and
controlled as possible. Additionally, to develop an unbiased
localization model based on this principle, two conditions
must be satisfied:

• Symmetry of diffraction: The obstacle’s movement
must be symmetric with respect to the LOS. If this sym-
metry is not satisfied, e.g., if the obstacle crosses the FFZ
at an angle other than 90 degrees, it becomes difficult to
relate the observed diffraction attenuation pattern to the
LOS direction, as this introduces an additional unknown
variable: the crossing angle.

• Observability: As illustrated in Figure 4, the attenuation
at the start and end of diffraction is relatively small and
can easily be overshadowed by environmental and hard-
ware noise in practical settings. In contrast, the period
of maximum attenuation (i.e., the trough) is more robust
and reliably observable. However, accurately calculating
the positions of the troughs requires knowing the Fres-
nel clearance u, which in turn depends on the distance
d between the transmitter and the receiver. In practical
scenarios, obtaining d is challenging.

DIFFLOC addresses these two conditions by designing a
novel controllable diffraction attenuation. Specifically, DIF-
FLOC makes a metal plate rotate around the receiver to create
diffraction, as shown in Figure 5. This method ensures that
the plate’s path is symmetric relative to the LOS, regardless
of the position of the transmitting device. The dimensions
of the metal plate (2∗dm) and its distance from the receiver
(dl) are controllable. The only unknown factor is the distance
between DIFFLOC and the target device (d). Given the angle
between the plate and the LOS (θ), the positions of the metal
plate at each moment, represented by u f ront and uback, can be
be calculated as:

ufront = dl · sin(θ)+dm · cos(θ), (13)

uback = dl · sin(θ)−dm · cos(θ), (14)

The distances from the receiver to the projections of the
front and back edges onto the LOS path are:

dfront = dl · cos(θ)−dm · sin(θ), (15)
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dback = dl · cos(θ)+dm · sin(θ). (16)

Then the diffraction parameter can be calculated as:

v f ront =
√

2u f ront/

√
λ ·dfront · (d −dfront)

d
, (17)

vback =
√

2uback/

√
λ ·dback · (d −dback)

d
. (18)

Finally, the relationship between diffraction gain and θ, cal-
culated using 9, 10 and equation 11, is illustrated in Figure 6.
It is evident that the position of the troughs is nearly inde-
pendent of d, and most importantly, the period of maximum
diffraction attenuation is centered around θ = 0. In summary,
the period of maximum CSI attenuation corresponds to the
time when the metal plate faces the target device. By ana-
lyzing the recorded CSI, which characterizes the attenuation,
DIFFLOC matches the recorded rotation angle of the plate
with the attenuation loss variation captured in the CSI, thus
achieving localization. Specifically, DIFFLOC records the ro-
tation angle of the metal plate at each moment as it spins.
Once CSI collection is complete, the system identifies the
time period during which the maximum CSI attenuation (the
troughs) occurs. The rotation angle of the metal plate at the
midpoint of this time period corresponds to the azimuth angle
of the target device, θd .

5 WiFi Camera Detection and Localization

In this section, we introduce the hidden WiFi camera detec-
tion and localization system based on DIFFLOC, as shown in
Figure 7. The system is composed of two key components:
WiFi camera detection and DIFFLOC-based localization. The
detection component identifies potential hidden cameras by
analyzing the correlation between WiFi traffic and user ac-
tivity, similar to previous studies [7, 34, 52]. It then provides
the camera’s MAC address and corresponding WiFi channel
to DIFFLOC, which determines the camera’s azimuth. In the
hidden camera localization scenario, since the hidden cam-
era must remain unobstructed to monitor the target area, its

location can be easily determined by identifying the first ob-
stacle along the detected azimuth angle. Below, we describe
the detailed process of the WiFi hidden camera detection and
localization.

Following the approach proposed in prior work [7, 34, 52],
WiFi camera detection consists of two stages: suspicious
device detection and hidden camera detection. The goal of
suspicious device detection is to narrow the scope of analysis.
Given the large number of WiFi devices in everyday environ-
ments, analyzing all devices would be inefficient. Therefore,
an initial filtering step is required to identify suspicious de-
vices. Video streams typically involve large data volumes,
characterized by relatively large and stable upload traffic.
Hence, the system first scans the surrounding WiFi networks
to detect all access points (APs), including those with hidden
SSIDs. According to [26], DIFFLOC excludes APs that fail
to meet the minimum RSSI requirement for video stream-
ing, which is below -67 dBm (with a 5dBm buffer applied to
avoid misdetection). The system then sequentially scans the
channels of the remaining APs, sniffing and capturing 802.11
packets to determine if any devices are continuously upload-
ing data. For the captured WiFi packets, the system clusters
them by source MAC address, filters out Management-Type
and Control-Type frames, and retains only Data-Type frames
for further analysis, as application layer data is encapsulated
within these frames [18]. The system then calculates the av-
erage payload size of Data-Type frames for each device and
filters suspicious devices based on the following criteria:

Smac =

{
true if s̄mac > Ts&l > Tl&mac ̸= map,

false else .
(19)

Here, Smac represents the determination of whether the device
with MAC address mac is suspicious. s̄mac, Ts, l, map, and
Tl denote the average size of all packet payloads, the size
threshold, the count of packets, the MAC address of APs, and
the count threshold, respectively.

The system then sends the MAC address and correspond-
ing 802.11 channel of each suspicious device to the hid-
den camera detection module for further evaluation. The
core principle of this module is that, before uploading video
streams, cameras typically compress data through encoding
to reduce the upload volume. Video compression standards,
such as H.264 [38] and H.265 [30], achieve high compres-
sion rates through inter-frame prediction. These standards
use different frame types—Intra-coded (I), Predicted (P), and
Bi-directionally Predicted (B) frames—to compress video.
When there is activity in the monitored area, the number of
P and B frames increases, leading to a higher upload traf-
fic rate [12, 35]. In contrast, in static scenarios, the traffic
rate decreases. Our system leverages this causal relationship
between activity and traffic to detect hidden cameras. Specifi-
cally, the system prompts the user to leave the room and then
calculates the data throughput of each suspicious device per
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Figure 8: The prototype of DIFFLOC.

second, looking for patterns where throughput is initially high
and subsequently decreases after the user leaves. If such a
pattern is detected, the device is flagged as a potential hidden
camera. More details about hidden WiFi camera detection
please refer to Appendix C. Once a hidden WiFi camera is
identified, the system passes the camera’s MAC address and
corresponding WiFi channel to the DIFFLOC module for lo-
calization. The user then uses the θd provided by DIFFLOC to
search for the hidden camera. In typical indoor surveillance
scenarios, a hidden camera must have a clear LOS and cover
a sufficiently large area to effectively monitor a target. There-
fore, it is highly likely that the camera is concealed within the
first object encountered along the indicated direction [52].

6 Implementation and Evaluation

6.1 Prototype

The DIFFLOC prototype is shown in Figure 8. The Raspberry
Pi uses its built-in wireless network interface card (NIC),
modified with the Nexmon csi tool [6], to extract CSI. Since
the NIC operates in monitor mode during CSI extraction, it
cannot handle communication. Therefore, an external USB
WiFi adapter (Wi-Nic-1) is used for communication. To create
diffraction, we use a plug-and-play peripheral consisting of
a stepper motor, control board, stand, 3D-printed connecting
rod, and a thin aluminum plate. The aluminum plate is 10
cm wide, which is sufficient to induce significant diffraction,
as obstacles with dimensions comparable to or larger than
the signal wavelength (approximately 12 cm for 2.4 GHz and
6 cm for 5 GHz) cause notable diffraction effects. The con-
necting rod is 8 cm long; although this length may slightly
influence the angular position of attenuation troughs relative
to the LOS, the troughs remain centered around the LOS,
thereby preserving the validity of the unbiased localization
model. Since the modified driver does not support packet sniff-
ing, we set up an additional external network card (Wi-Nic-2)
with monitoring capabilities to capture 802.11 packets. More
details of the implementation can be found in Appendix D.

6.2 Experimental Setup
Our experiments evaluate hidden WiFi camera localization
across six distinct environments using eleven different cam-
era models. The devices used in the experiments are listed
in Table 2, with all devices purchased from online platforms.
Cameras were selected by searching popular e-commerce
websites with relevant keywords (e.g., “WiFi camera,” “mini
camera”) and choosing models based on sales volume and
popularity. For the localization task, the system is typically
placed near a wall (e.g., on a table or windowsill) to facili-
tate deployment. DIFFLOC is configured to collect CSI data
only while the metal plate moves within the 0-180 degree
range, due to signal interference caused by metal components
on the back side of the Raspberry Pi’s printed circuit board
(PCB). The stepper motor completes 512 steps per full revo-
lution, with each step consisting of 8 microsteps and a delay
of 0.0015 seconds between microsteps. As a result, the motor
takes approximately 3.07 seconds to rotate 180 degrees. To
account for buffer time, the CSI collection period for each
localization process is set to 5 seconds. In our experiments, Ts
and Tl are set to 300 bytes and 150 packets, respectively, based
on the observed transmission rates of 5 kinds of real cameras
(Table 3). Since the Nexmon tool allows extraction of CSI
from a specified MAC address in monitor mode, there is no
need for AP coordination or substitution during the process.

Table 2: Devices used in experiments.

Device Abbreviation
XiaoMi Cloud Camera2 Mi
360 Cloud Camera 6C 360

HiLEME Mini Camera2 Hi2
360 Cloud Camera 8Pro 8P
Mingshen Mini Camera Ms

Guangchun Mini Camera Gc
EZVIZ C2C C2C

HiLEME Mini Camera Hi
XiaoMi Cloud Camera3 Mi3

Guangchun Mini Camera2 Gc2
BangshiDa Mini Camera Bs

Our experiments were conducted in six realistic rooms
across four distinct environments, with the layouts shown in
Figure 9. Rooms 1–3 are located within the same residential
apartment, a real-world home environment filled with typical
obstacles such as furniture and household items. Specifically,
Rooms 1 and 2 (Figures 9a and 9b) are bedrooms, while
Room 3 (Figure 9c) is a living room. These rooms differ in
clutter levels: Room 2 is the most cluttered, while Room 3 is
the most spacious. Rooms 4–6 are each situated in separate
environments. Room 4 (Figure 9d) is a meeting room on a
university campus, and Room 5 (Figure 9e) is a university
office. Both are significantly larger than the residential spaces,
with maximum widths exceeding 8 meters, and the longest
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Figure 9: The layout of six rooms and cameras deployment.

distance between the camera and the localization device reach-
ing approximately 8 meters. Room 6 (Figure 9f) is a bedroom
in another residential apartment and is slightly larger than
Rooms 1 and 2. Notably, wall materials vary across rooms;
for example, Rooms 2 and 3 feature a sliding door made
of metal and glass that occupies nearly an entire wall. The
experiments were conducted collaboratively by two groups
of authors in their respective apartments and offices across
different geographic regions. The cameras tested in Rooms
1–3 were the first eight models listed in Table 2, while those
used in Rooms 4–6 correspond to the last five models. To
enable effective hidden camera search, the user first exited
the room to trigger the traffic variations required for detection.
Localization was then automatically performed by DIFFLOC
using the MAC address and channel index of the detected
camera. During this process, the camera was placed at various
locations in accordance with the attacker’s intent as described
in the threat model. As shown in Figure 9, the azimuth angles
(relative to the DIFFLOC device’s position) for Room 1 were
30.47◦, 45.47◦, 101.07◦, 131.01◦, and 163.30◦; for Room 2
were 35.22◦, 69.30◦, 123.69◦, and 156.57◦; for Room 3 were
20.24◦, 59.62◦, 80.91◦, 119.98◦, and 180.00◦; for Room 4
were 65.54◦, 76.87◦, 105.11◦, 130.53◦, and 162.18◦; for Room
5 were 36.26◦, 77.11◦, 104.78◦, 138.38◦, and 157.77◦; and

Table 3: Packet length and rates of each camera.

Device Mi C2C 360 Gc Hi
Packet Length 1050 632 873 640 828

Packet/s 51 63 57 112 130

for Room 6 were 51.67◦, 76.70◦, 105.74◦, and 150.95◦.

6.3 Algorithm Implementation and Examples

In this section, we present the algorithmic implementation of
DIFFLOC, accompanied by several examples that illustrate
the relationship between diffraction-induced attenuation and
the target’s azimuth. These examples demonstrate the effec-
tiveness of DIFFLOC in real-world scenarios. The core task
of DIFFLOC in localizing the WiFi camera is identifying the
midpoint of significant attenuation caused by diffraction. Sev-
eral examples are provided in Figure 10. Due to factors such
as distance, movement speed, and multipath effects, the atten-
uation observed in the CSI can appear in two forms: one that
aligns with simulated results, featuring two distinct troughs
(e.g., Figures 10c and 10d), and another with only a single
trough (e.g., Figures 10a and 10f).
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Figure 10: Six examples of DIFFLOC. The title indicates the device’s orientation. The figures display the identified midpoint of
diffraction attenuation, the current stepper motor position, and the corresponding prediction of DIFFLOC, respectively.

DIFFLOC first applies a low-pass filter to the CSI wave-
form to remove noise. Next, it selects the five subcarriers
with the highest mean values for fusion, as these tend to be
less susceptible to interference. The system then identifies all
the troughs in the CSI. These troughs correspond to signifi-
cant diffraction-induced attenuation. DIFFLOC searches for a
second trough near the lowest one, with a similar amplitude.
If such a second trough is found, the midpoint between the
two troughs is selected as the localization timestamp. If no
second trough is identified, the timestamp corresponding to
the lowest trough is used. Once the localization timestamp
is determined, DIFFLOC retrieves the recorded timestamps
for each step of the stepper motor’s movement and identifies
the closest match. The angle of the stepper motor at that step
is then taken as the azimuth angle. Figure 10 shows the lo-
calization results of DIFFLOC when a camera is placed at
different locations. DIFFLOC successfully identifies the mid-
point of significant attenuation, providing accurate azimuth
predictions even in challenging conditions with substantial
interference (e.g., Figure 10c). More details please refer to
our released code.

6.4 Evaluation of WiFi Camera Localization
Detection and false positive: We conducted a total of 140 hid-
den camera detection experiments across Rooms 1–3. Our hid-
den WiFi camera detection and localization system achieved
detection success rate of 97.86%. To evaluate the false pos-
itive rate, we set up a computer uploading files and another
computer and smartphone engaged in video conferencing in

Room 1, simulating typical traffic patterns that might be con-
fused with camera traffic. The results showed that only 6.67%
of samples resulted in false positives. A detection is consid-
ered successful if the system correctly identifies the MAC
address of the hidden camera. A false positive occurs when
the system mistakenly identifies another device as a hidden
camera. Notably, most indoor devices that generate signif-
icant traffic are typically under user control, making them
less likely to interfere with the detection system. Devices in
neighboring rooms, even if they do cause false alarms, would
only increase the workload without posing a real security risk.

Localization and error analysis: We conducted five local-
ization trials for each camera model at every deployment
position in each room. The localization results across six dif-
ferent rooms are shown in Figure 11, and the localization
results for each trial in every room are presented as box plots
in Figure 12. DIFFLOC achieved an average azimuth local-
ization error of 14.82 degrees. As shown in Figure 11 and 12,
the largest localization errors tend to occur at smaller azimuth
angles. For other positions with relatively high errors, such
as the 160◦ deployments in Room 1 and Room 4, we found
that in some cases, there were abnormally sharp attenuation
troughs near 0◦ (e.g., at 162.18◦ in Room 4, the system oc-
casionally produced incorrect azimuth estimates near 0◦). In
these cases, although a secondary trough often appeared near
the correct azimuth, it was less prominent than the spurious
dip. As a result, the algorithm sometimes mistakenly selected
the spurious dip or a midpoint between the spurious and true
troughs, leading to moderate angular deviation in the local-
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Figure 11: Localization errors of hidden cameras deployed at different rooms. The x-axis represents the azimuth of the camera
deployment, while the y-axis shows the average localization error at each position.

ization result. We believe that this bias is introduced by the
hardware configuration of the Raspberry Pi. Specifically, its
onboard antenna is positioned on the right side of the PCB
(near 180◦), while the left side (near 0◦) contains various
components and metallic structures that may obstruct signal
propagation and cause interference. This insight highlights a
potential avenue for future optimization, which we discussed
in Section 7.
Robustness: Figure 13 illustrates the system’s localization
performance across a variety of camera models. As shown,
the DIFFLOC-based localization system maintains consistent
performance across different cameras, demonstrating its ro-
bustness to device variations. The average localization errors
across Rooms 1–6 were 13◦, 12.7◦, 15.53◦, 18.71◦, 16.37◦,
and 11.53◦, respectively, further demonstrating the system’s
robustness across diverse environmental conditions. Slightly
higher errors were observed in larger rooms, particularly in
Room 4 where the maximum distance between the camera
and the receiver was approximately 8 meters. The increased
distance results in weaker WiFi signals and greater susceptibil-
ity to noise. In comparison to existing methods, our approach
does not require training, user efforts, or assumed parameters.
It relies entirely on the theoretical model, ensuring robustness
to environmental and device variations.

6.5 NLOS Placement Analysis
In this section, we analyze scenarios in which the hidden
camera is not within the LOS of DIFFLOC, including cases
where the camera is concealed by objects and positioned

above or below the DIFFLOC device.
In real-world settings, attackers may use various objects to

disguise hidden cameras. To assess the performance of DIF-
FLOC under these conditions, we evaluated its effectiveness
when cameras were concealed by different materials. We se-
lected three commonly encountered materials: plastic, fabric,
and metal. Many household items that are suitable for hiding
cameras, such as power outlets and decorative ornaments, are
typically made from these materials. Specifically, the plastic
concealment scenario involved placing the camera inside a
plastic box; the textile test involved embedding the camera in
a stuffed toy; and for the metal condition, the plastic box was
internally lined with aluminum plates. To optimize evaluation
time, only three camera models were selected. These models
were chosen to represent both high and low localization accu-
racy, ensuring coverage of a diverse performance spectrum.
The results, shown in Table 4, indicate that materials like plas-
tic and textiles had little impact on the system’s performance.
In contrast, metal significantly degraded performance. This is
because metal absorbs wireless signals, which not only affects
DIFFLOC’s ability to locate the camera but also degrades over-
all network communication quality. Consequently, attackers
are unlikely to use metal to conceal cameras.

We further evaluated additional NLOS scenarios in which
the camera was placed near the ceiling or floor. When the
camera is positioned directly above or directly below the DIF-
FLOC device, the rotating metal plate cannot intersect the
FFZ, resulting in the absence of observable diffraction attenu-
ation and thus preventing localization. However, in real-world
deployments, it is relatively rare for a camera to be placed ex-
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Figure 12: Box plot of hidden camera localization results across different rooms. The x-axis represents the azimuth estimated by
DIFFLOC, and the y-axis shows the ground-truth. Box plot illustrates the distribution of localization results of each trail.
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actly at these vertical extremes. To further explore the impact
of challenging NLOS placements, we conducted experiments
in two settings, as illustrated in Figure 14: a desk in Room 1
and a sink in a bathroom. In both cases, the line connecting
the camera and the DIFFLOC device was slightly offset from
a perfect 90° vertical alignment, meaning the camera was
not directly overhead or below, but their horizontal projec-
tion distance remained relatively short. We evaluated with
the first eight cameras listed in Table 2; the corresponding
azimuth angles and localization results are detailed in Table 5
(ordered by environment and index). The results show that
localization was still feasible in most cases, even when the
horizontal distance was short, due to the inherent width of the
FFZ. However, when the horizontal distance becomes very
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Figure 14: Evaluation Environments for NLOS Scenarios.

small, the obstacle intersects only a small portion of the FFZ,
which may reduce the reliability of localization due to weaker
diffraction effects.

6.6 Real-World Search Evaluation

We conducted real-world search experiments to find the hid-
den camera. Building on the above analysis, our search proce-
dure is described as follows: The user first places DIFFLOC
near a wall to initiate detection and localization, recording the
detected camera’s MAC address and operating channel. The
user then searches along the azimuth indicated by the first
localization result. If the camera is not located, DIFFLOC is
repositioned near the wall in the direction of the previous re-
sult, and localization is repeated using the previously recorded



Table 4: Evaluation with Covering (numbers represent local-
ization error in degrees).

Materials Normal Plastic Textile Metal
360 12.90 12.61 11.19 20.36
Gc 12.19 12.52 13.05 26.67
Hi2 14.65 16.87 12.18 31.46

Table 5: Evaluation Under NLOS Conditions (Po: Placement
Azimuth in degrees, Er: Error in degrees).

Po 143.62 90.33 31.18 59.47 72.30 56.31 148.63
Er 18.82 29.75 32.65 17.66 16.17 26.53 22.43

MAC address and channel. If the search is still unsuccess-
ful, the device is moved again and the process is repeated.
This search procedure helps mitigate errors from challeng-
ing angles and NLOS placements. We conducted simulated
search experiments using DIFFLOC across the six previously
described realistic rooms. Four volunteers participated in the
evaluation, with no communication between the individuals
responsible for hiding and searching for the hidden camera.
Due to the limited number of realistic hiding spots and the
natural recall of prior search locations, we did not test every
camera in every position. Instead, one volunteer randomly
selected a camera and hid it in a location they considered
plausible, following the guidance of the threat model, while
another volunteer performed the search using the procedure
described above. The process was repeated until no additional
reasonable hiding spots remained. A search was deemed un-
successful if the camera was not found after three relocation
attempts or within 25 minutes. A total of 27 search trials were
conducted. DIFFLOC successfully located the hidden camera
in 92.59% of the cases. Among these, 68% of the cameras
were found within 9 minutes, 20% within 10–15 minutes, and
the remaining 12% within 16–22 minutes.

6.7 Comparative Study
Performance Comparative: Most WiFi based approaches
typically evaluate in almost empty rooms and use distance
as the evaluation metric [12, 34, 35], which makes compari-
son with DIFFLOC challenging. Additionally, many of these
studies have not been open-sourced. Therefore, we compared
DIFFLOC with LocCams [7] and CamLoPa [52], two state-
of-the-art systems based on WiFi CSI. LocCams collects CSI
while the user holds the device in four different orientations,
then uses a pre-trained deep learning model to identify which
orientations have their LOS paths blocked. The mid-direction
of the blocked LOS paths is then considered the device’s
azimuth, resulting in a maximum localization resolution of
only 45 degrees. CamLoPa estimates the camera’s azimuth by
analyzing the duration of CSI attenuation as the user walks
along two orthogonal paths. However, it relies on assumptions
about parameters such as inter-device distance and user body

Table 6: Comparison with Other Methods (numbers represent
localization error in degrees).

Method DIFFLOC LoID LoCD LoCDR Cam
360 12.90 28.30 32.34 46.19 20.97
Gc 12.19 26.11 37.88 49.51 19.89

Table 7: Comparison with CamLoPa With Covering (numbers
represent localization error in degrees).

Materials Normal Plastic Textile Metal
CamLoPa 20.12 19.47 19.81 35.15
DIFFLOC 13.25 14.00 12.14 26.16

dimensions, which introduces inevitable modeling biases. It
is also sensitive to variations in walking speed and irregular
movement. We conducted experiments in Room 2 using two
randomly selected cameras (360 and GC) placed at four dif-
ferent locations. The results, shown in Table 6 and 5, include
in-domain (ID), cross-device (CD), and cross-device-room
(CDR) comparisons for LocCams (Lo), as well as a compari-
son with CamLoPa (Cam) under conditions where the camera
is concealed. The findings clearly demonstrate that DIFFLOC
outperforms other methods, exhibiting greater robustness.
Time and User Efforts Comparative: In terms of local-
ization time, LocCams takes approximately 0.5 minutes.
CamLoPa takes approximately 1-2 minutes. DIFFLOC only
requires 5 seconds, and offering an improvement in ro-
bustness. MotionCompass takes around 3 minutes, while
other RSSI/traffic-based systems typically require 15-30 min-
utes [12, 34, 35]. MotionCompass requires the user to walk
several straight paths that span both monitored and unmoni-
tored areas, which may be difficult to achieve in real-world
environments. Other traffic-based systems require users to
walk around the perimeter of each wall or constantly adjust
a laptop’s position to cover most areas of the room, which
is also impractical. For DIFFLOC, the user does not need to
move during localization, which makes it more user-friendly.

7 Limitations and Discussions

MAC Address Randomization. While some devices employ
MAC randomization [39] to enhance privacy, this does not
impact DIFFLOC’s localization capabilities. This is because,
despite MAC randomization, devices typically use a consis-
tent MAC address once they establish a network connection.
Azimuth Localization, Interference, and Usability. Cur-
rently, we focus solely on azimuth localization because users
typically do not carry measurement tools to find specific coor-
dinates. Moreover, typical room sizes are relatively small, and
cameras are unlikely to be fully obstructed by physical barri-
ers. As a result, identifying the camera’s azimuth is a more
practical approach to assist users in finding cameras. Since
users have control over their environment, they can ensure that



no other individuals are present, thus minimizing potential
interference. DIFFLOC features a compact, foldable design,
and when collapsed, it is only slightly larger than a Raspberry
Pi, ensuring excellent portability (see Appendix E). In future
work, we aim to enhance the system’s usability by incorporat-
ing visual guidance for localization results and developing a
more intuitive user interface and software experience.
Evading DIFFLOC. DIFFLOC is designed to locate the WiFi
camera deployed by typical attackers. However, more ad-
vanced attackers might find ways to evade DIFFLOC. Evading
localization would require modifying the network card to
manipulate the WiFi signal’s CSI, causing it to constantly
vary and disrupting the signal attenuation pattern caused by
diffraction. This, however, requires specialized knowledge
and is technically challenging, as most attackers do not pos-
sess the necessary skills. Additionally, modifying network
card hardware or firmware is not supported by most com-
mercially available devices. According to recent research [2],
most surveillance tools still rely on commercially available
devices, thus we have not considered adaptive attacks.
Limitations. DIFFLOC requires a packet rate of 30-50 pack-
ets per second for stable performance. If the packet rate is too
low or unstable, the diffraction-induced significant attenua-
tion period may coincide with periods where no packets are
captured. Although DIFFLOC only needs 5 seconds of CSI
data for localization, longer capture durations generally yield
better results. However, in the context of camera localiza-
tion, the data throughput of video streams is sufficiently high.
Human activity and multipath propagation may introduce in-
terference. However, users have complete control over their
environment, allowing them to eliminate various sources of
interference. While existing WiFi camera detection methods
are relatively fixed, none can guarantee the detection of all
hidden cameras. Detection may also fail if the camera moni-
tors only a small area of the room or if the user is not initially
present in the monitored region. In such cases, particularly in
privacy-sensitive scenarios, the user typically has control over
the environment, allowing them to disable all controllable
high-throughput devices and then use DIFFLOC to localize
any remaining devices that continue to generate significant
traffic, thereby identifying potential hidden cameras. Owing
to DIFFLOC ’s rapid localization capability, this process can
be conducted efficiently and with minimal effort.
Multiple Cameras. While our evaluation focused on a single
camera scenario, DIFFLOC can easily be extended to multiple-
camera setups. During the hidden camera detection phase,
a single user walking around can detect multiple cameras
by clustering the MAC addresses of all sniffed packets. To
localize multiple cameras, DIFFLOC would need to repeat the
localization process for each camera, though this can be done
without additional user effort.
Intimate Partner Violence. While DIFFLOC is primarily
designed for privacy protection, we recognize that hidden
WiFi cameras are also frequently used in intimate partner

violence (IPV) scenarios. These situations pose unique and
severe challenges: survivors often lack full control over their
environment and may face significant personal risk if caught
attempting to locate surveillance devices. To better support
this high-risk use case, future iterations of DIFFLOC should
emphasize stealth and discretion. For instance, with future
access to CSI extraction from smartphone WiFi chipsets, the
system could be redesigned as a compact, easy-to-assemble
localization tool using only a smartphone and a small periph-
eral, helping to avoid suspicion and ensure safer deployment.
Extending to Other Devices. Real-world scenarios often
involve other privacy-invading devices such as hidden micro-
phones. As long as a device continuously transmits data over
WiFi, DIFFLOC can theoretically localize it using the same
diffraction-based principle. This makes DIFFLOC adaptable
for detecting a broader range of WiFi-enabled spy devices.
However, such extensions would require integration with suit-
able detection mechanisms. For instance, detecting a hidden
microphone might involve inducing audio activity and ob-
serving corresponding changes in upload traffic to trigger
localization. Extending DIFFLOC to devices using Beam-
forming Feedback Information (BFI) is currently infeasible,
as BFI reflects the signal propagation from the camera to the
access point, rather than from the camera to the monitoring
device, which is the path DIFFLOC relies on.
Future Work. First, we plan to replace the current onboard
antenna with an external one to enhance signal reception
and mitigate interference caused by the existing hardware
layout. Second, drawing on Fresnel diffraction theory, we
aim to develop more robust and accurate localization models.
This includes extending the current 2D framework to support
3D localization and designing optimized obstacle geometries
to produce more distinctive and reliable diffraction patterns.
This direction is inspired by recent work [44], which demon-
strates that diffraction effects can be leveraged to reconstruct
cm-level object shapes. Lastly, to address random errors and
improve usability, we envision more advanced diffraction con-
trol mechanisms and search strategies tailored for real-world
camera localization. For instance, implementing a reverse
sweep of the obstacle could help estimate the confidence level
of the localization result, allowing the system to prompt users
to reposition the device for improved accuracy.

8 Conclusion

In this paper, we introduced DIFFLOC, a novel WiFi camera
localization method designed to enhance privacy protection.
The proposed system utilizes the diffraction phenomena of
electromagnetic wave signals to localize WiFi cameras us-
ing low-cost, single-antenna COTS hardware. This approach
eliminates the need for training, large spaces, and user effort,
providing a robust and user-friendly solution. Experimental
validation demonstrates the effectiveness of DIFFLOC in vari-
ous environments and devices.



9 Ethics Considerations

The experiments in this work were conducted by the authors
within their own living or working environment, ensuring that
there are no ethical concerns associated with the experimental
procedures. To further examine potential misuse, we simu-
late relevant WiFi-based attack methods in Appendix B and
present a detailed case study. Our analysis shows that DIF-
FLOC ’s through-wall localization capability is limited due to
significant signal attenuation. Moreover, deploying DIFFLOC
in close proximity to a victim’s environment is often diffi-
cult in real-world scenarios, further reducing its potential for
malicious use. Nonetheless, as camera localization systems
continue to advance in precision, the associated privacy risks
warrant ongoing attention. For DIFFLOC specifically, we out-
line several defensive strategies in Appendix B.3 aimed at
mitigating potential privacy threats.

10 Open Science

We fully support the conference’s policy on scientific devel-
opment, as open-sourcing research allows future researchers
to build upon existing work. In our own research, we fre-
quently encountered challenges when key works were not
open-sourced. Comprehensive implementation details for
DIFFLOC, including code and demonstrations, are available
at: https://doi.org/10.5281/zenodo.15592887, and
more details please refer to Appendix D. We have provided a
detailed description of the software, hardware, and operational
procedures required for implementing DIFFLOC.
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Figure 15: Illustration of Fresnel Zone.

A Fresnel Zone Visualization

The visualization of the Fresnel zones is shown in Figure 15,
consisting of a series of concentric ellipses.

B Ethical Case Study: Privacy Tracking

B.1 Threat Model

We focus on a scenario in which an attacker leverages WiFi
signals emitted by a user’s indoor devices to infer their pres-
ence, behaviors, and daily routines for malicious purposes.
For example, the attacker may first use WiFi-based localiza-
tion techniques from outside the user’s room to determine the
spatial layout of various devices. Then, by passively monitor-
ing the traffic and CSI from these devices, the attacker can
infer whether the user is nearby and analyze their usage habits.
Such information could be exploited for targeted burglaries or
stalking [43]. In this paper, the goal of this analysis is not to
propose new attacks but to raise awareness of how advances
in camera localization could enable privacy intrusions.

• To remain stealthy, the attacker does not actively probe the
environment. Instead, they passively sniff WiFi traffic and
CSI from outside the target area, without any cooperation
from the victim’s devices or the need to inject packets.

• The attacker leverages DIFFLOC and a triangulation-based
method to determine the positions of devices within the
room. Once localized, variations in CSI can be analyzed to
detect whether the user is near a specific device and to infer
activity patterns over time for malicious purposes.

• The attacker must be close to the target environment, such
as in an adjacent apartment. WiFi signals experience signif-
icant attenuation when passing through walls, which limits
the effectiveness of this side-channel attack.

B.2 Method

In this section, we present the privacy tracking method built
on DIFFLOC to demonstrate the potential risks posed by DIF-
FLOC. Following previous studies [19, 53], we begin by scan-
ning for all APs in the environment and identifying the target
AP based on signal strength and name. The privacy tracking
process starts by sniffing traffic from the channel of the tar-
get AP. The collected traffic is then clustered based on MAC
addresses, and the corresponding MAC addresses and WiFi
channels are passed to DIFFLOC for localization. For device
localization, DIFFLOC is deployed at two different positions
to estimate the target device’s azimuth angle. Triangulation is
then applied to determine the final position of the target. The
privacy information is then extracted through a combination
of MAC address analysis, traffic analysis, and CSI analysis.
DIFFLOC collects CSI from multiple devices by hopping
between MAC addresses.

From the MAC address and traffic data, we use the Orga-
nizationally Unique Identifier (OUI) in the MAC address to
identify the manufacturer of each device and analyze the di-
versity of traffic types and data throughput. We classify traffic
into four models: stable, continuous high-speed upload (e.g.,
camera); stable, continuous high-speed download (e.g., live
streaming or downloading); stable low-speed traffic (e.g., pro-
longed web browsing); and fluctuating high-speed download
(e.g., video streaming). Devices exhibiting only one traffic
type are classified as limited; two types are classified as mod-
erate; and three to four types are classified as wide. For CSI
analysis, we assess fluctuations in the signal to detect potential
human activity near the target device. Human activity often
causes reflection and diffraction of the WiFi signal, leading to
corresponding fluctuations in the CSI. However, significant
impacts on CSI are only observed when activity occurs close
to the device [41]. Thus, we interpret these significant fluctu-
ations as indicators that a monitored subject may be nearby.
By analyzing a user’s presence at different locations, we can
infer their live trajectory and the frequency of their activity.

B.3 Analysis of Ethical Risk

Rooms 1 and 3 were used for evaluation. In these rooms,
various WiFi devices were deployed based on the functional
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Figure 16: Privacy tracking in Room 1 and 3. The locations and types of WiFi devices are represented by corresponding icons,
while the victim’s live trajectory is indicated by solid arrows and the predicted trajectory by dashed arrows.

differences of each environment. As shown in Figure 16,
Room 1 serves as a space for daily work and living, equipped
with a desktop computer, MacBook, two smartphones (An-
droid and iPhone), and a surveillance camera. Room 3 is the
living room, which includes a PS5 game console, television,
WiFi surveillance camera, and an iPhone. DIFFLOC is placed
outside each room, positioned through the wall. For Room
1, the distance between the two DIFFLOC devices is 1 meter,
while for Room 3, it is 1.35 meters. During evaluation, par-
ticipants simulated typical daily activities, moving through
different areas where the WiFi devices were located, follow-
ing a predefined path. Participants also used each device for
typical network activities.

As shown in Figure 16, the localization results, for each
device are marked with green WiFi device locations. Manu-
facturer information and traffic types for each device are pro-
vided in labeled boxes, and ellipses in three different colors
represent the frequency of user activity around each device:
red, yellow and green indicate high, moderate, and low activ-
ity frequency, respectively. During our evaluation, the OUI of
cameras and PS5 consoles successfully revealed the manufac-
turer, while for devices such as smartphones and MacBooks,
the manufacturer could not be identified. This is likely due
to MAC address randomization, a technique used to enhance
device privacy. In Room 1, frequent activity in the upper-left
corner, where several wide traffic type devices are located,
suggests that this may be the user’s desk. In both Rooms 1
and 3, the system effectively tracks the user’s living trajectory,
including transitions between different areas, and provides
approximate locations of these areas. This information can be
valuable for monitoring daily activities and extracting other
privacy-related insights. The average localization error of
our system in privacy tracking is 0.86 meters. Compared to
previous room-level attacks [53], the results show that the

DIFFLOC-based system can reveal sub-room-level privacy
information.

As the above analysis shows, DIFFLOC ’s localization ca-
pability remains limited in through-wall scenarios. Combined
with the inherent complexity of real-world environments and
the challenges of deploying the system in close proximity
to residential rooms, its potential for malicious use is further
constrained. Nevertheless, it is important to recognize that sys-
tems originally designed for locating hidden cameras could
be repurposed for malicious applications. This potential risk
underscores the importance of ethical design and deployment
of such systems, a consideration that is often overlooked in
current similar studies. To mitigate potential privacy risks, we
also propose several strategies. First, WiFi device manufac-
turers could introduce controlled random noise into CSI to
mitigate the effectiveness of CSI-based side-channel attacks.
However, this would require widespread industry adoption
and proactive efforts from manufacturers, which may be chal-
lenging to implement. As noted earlier, modifying the network
behavior of purchased WiFi devices is difficult for individ-
ual users. Second, users can minimize privacy leakage by
positioning high-throughput devices as far as possible from
areas with frequent human activity. Additionally, placing high-
throughput devices can increase DIFFLOC’s localization error
due to co-channel interference, as shown in Figure 16a. Third,
users may deploy active co-channel signals, such as Zigbee
or WiFi injection, to disrupt indoor multipath propagation, in-
troducing significant noise into the CSI. These methods have
been partially validated [13, 17, 25]. These techniques require
moderate-sized equipment and a continuous power supply,
making them impractical for attackers to use as a means of
disabling camera localization systems.
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Figure 17: The folded DIFFLOC system.

The User Leaveing the Monitored Area

Figure 18: Throughput during the user’s exit from the room.

C More Details of Camera Detection

Video use three types of frames to compress video:

• I (Intra-coded) frames: These frames contain complete
image data and can be decoded independently of other
frames.

• P (Predicted) frames: These frames encode residual in-
formation and rely on preceding I frames for decoding.

• B (Bi-directionally predicted) frames: These frames gen-
erate images by referencing preceding I or P frames, sub-
sequent I or P frames, or interpolations between them.

Among these frame types, B frames are the most compress-
ible, followed by P frames, with I frames being the least com-
pressible. In video footage captured by the camera, significant
changes between frames lead to an increase in the number of
P and B frames, which in turn results in higher upload traffic.
This means that when there is user activity, the wireless cam-
era transmits more data. Figure 18 illustrates the variation in
camera traffic when a user leaves the monitored area, clearly
showing a sharp decrease in traffic after the user departs.

D Implementation of Prototype

DIFFLOC requires sniffing 802.11 packets to obtain CSI. Cur-
rently, most mobile devices require special permissions for
packet sniffing, and due to the closed-source nature of wireless
network card manufacturers, CSI extraction is only possible
with certain models. While obtaining CSI is not technically
challenging, it depends on whether access and control per-
missions are granted by the manufacturer. To ensure broad
applicability and future scalability, we chose not to implement
DIFFLOC on a specific smartphone or computer platform that
supports CSI extraction. Instead, we selected the Raspberry
Pi, a low-cost, open-source, COTS device, as the platform.

Our implementation, code, and demo are available at:
https://github.com/CamLoPA/DiffLoc. The DIFFLOC
prototype is built on the Raspberry Pi 4B, running Raspberry
Pi OS with kernel version 4.9 and firmware version 7_45_189.
The code is implemented using Python 3. The stepper mo-
tor used is the 28BYJ-48 model, controlled by a ULN2003
board. Before using the DIFFLOC, users must install the nex-
moncsi tool and the required Python dependencies. It is im-
portant to avoid using the upgrade commands during setup,
as updating the firmware may cause nexmoncsi to malfunc-
tion. Additionally, since this system version is older and no
longer maintained, some packages must be installed via the
apt-get command rather than pip. During the installation of
nexmoncsi, wireless network functionality is temporarily dis-
abled. Users must manually activate the wireless interface
and configure the network settings.

E Portability

The folded DIFFLOC system, as shown in Figure 17, is only
slightly larger than a standard Raspberry Pi, making it highly
portable and easy to carry. This folding structure uses a mech-
anism similar to COTS phone stands, making it intuitive and
easy for users to fold correctly.

https://github.com/CamLoPA/DiffLoc
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