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Abstract
Speech translation, which converts a spoken language into
another spoken or written language, has experienced rapid
advance recently. However, the security in this domain re-
mains underexplored. In this work, we uncover a novel se-
curity threat unique to speech translation systems, which is
dubbed "untranslation attack". We observe that state-of-the-
art (SOTA) models, despite their strong translation capabili-
ties, exhibit an inherent tendency to output the content in the
source speech language rather than the desired target language.
Leveraging this phenomenon, we propose an attack model
that deceives the system into outputting the source language
content instead of translating it. Interestingly, we find that
this approach achieves significant attack effectiveness with
minimal overhead compared to traditional semantic perturba-
tion attacks: it achieves a high attack success rate of 87.5%
with a perturbation budget of as low as 0.001. Furthermore,
we extend this approach to develop a universal perturbation
attack, successfully testing it in the physical world.

1 Introduction

Speech translation (ST) has become a cornerstone of modern
communications, breaking down language barriers and fos-
tering understanding in our diverse global community. This
technology converts one spoken language into another spoken
or written language, enabling users to watch foreign movies
without subtitles, communicate with people who speak dif-
ferent languages, and travel abroad without language barriers.
Recent years have seen significant progress in speech transla-
tion systems, largely driven by the advances in deep learning.
Notable trends include: 1) a shift from traditional cascaded
models [36] to end-to-end models [26, 28, 44], which have
gained popularity due to their low latency and reduced error
propagation [40]; 2) the rise of multilingual translation mod-
els [9, 20, 24], which eliminate the need to prepare separate
models for each language pair. This development significantly
reduces the storage overhead and enhances the usability.
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Figure 1: Illustrative comparison between proposed untrans-
lation attack and traditional adversarial attacks in a French-
English translation scenario.

As speech translation becomes increasingly prevalent, un-
derstanding its potential vulnerabilities is crucial for ensuring
robust and reliable communication. Given the similarities be-
tween speech translation and Automatic Speech Recognition
(ASR)—both being sequence-to-sequence tasks—an intuitive
strategy is to apply existing ASR adversarial attacks to speech
translation. However, this faces several challenges. Most ex-
isting ASR attacks [5, 17, 25, 31] are designed for RNN-
based models, such as DeepSpeech [1, 18] and Lingvo [34],
proposed in 2014, 2016, and 2019, respectively. These con-
ventional models differ fundamentally from contemporary
state-of-the-art (SOTA) speech translation systems which typ-
ically employ transformer-based architectures [38] and au-
toregressive decoding mechanisms, offering enhanced robust-
ness. Such gap highlights the critical importance of investigat-
ing the security vulnerabilities of modern transformer-based
speech translation systems.

Motivated by this, we propose a novel attack methodol-
ogy against speech translation systems, dubbed "untranslation
attack". This attack aims to compromise the availability prop-
erty of speech translation systems, aiming to prevent them
from generating translations by forcing the output to remain
in the source language. Figure 1 compares our proposed un-
translation attack with traditional untargeted adversarial at-
tacks [15, 29]. Specifically, traditional attacks aim to produce
a incorrect translation from the original input. However, trans-
lations of the same audio can have many variations while



still maintaining the semantic consistency. Given the strong
capability of speech translation models, it is challenging to
craft an untargeted attack that can significantly disrupt the
model usability. In contrast, our untranslation attack ensures
that the model output is in the source language, rendering the
system entirely unusable for translation purposes. Compared
to existing untargeted attacks, this approach results in a signif-
icantly greater impact on usability. By obstructing translation,
it enables attackers to disrupt user experience significantly
and undermines trust in translation service providers.

The concept of untranslatable attack is inspired by our ob-
servation that state-of-the-art multilingual speech translation
systems have a tendency to output the original speech con-
tent. We hypothesize that this is attributed to several factors:
the use of multi-task learning (ASR, ST) during training, the
presence of mixed-language data in certain training corpora
that preserves elements of the source language to enhance un-
derstanding, and the design paradigm where language tokens
are used as prompts to guide the model output. Our attack
exploits this phenomenon, intentionally steering the model
to produce output in the source language, thus rendering the
system unusable for translation purposes with less effort.

We make several innovations to realize and enhance the
untranslation attack. First, we propose using Kullback-Leibler
(KL) divergence to guide the generation of adversarial sam-
ples, rather than relying on the cross-entropy loss used in prior
studies [31]. Second, since state-of-the-art speech translation
models are predominantly based on transformer decoders,
we suggest targeting the attention mechanism to disrupt the
model’s ability to correctly translate languages. Third, we
explore the possibility of implementing a universal attack
that could affect the model without the access to the original
speech. We find that the mixing-based method used in previ-
ous universal attacks [17, 27] are ineffective in our scenario.
Then we propose to append the perturbation to the end of the
speech, which can successfully achieve the desired effects
with any unseen data.

In summary, our paper makes the following contributions:

• Novel Attack Perspective: To the best of our knowledge,
this is the first to investigate the adversarial robustness of
state-of-the-art speech translation systems. We introduce a
new attack methodology, termed "untranslation attack," to
force the model to output content in the source language.
Unlike attacks that alter the input’s semantics, our untrans-
lation attack leverages language barriers to disrupt the sys-
tems’ usability. It takes advantage of the speech translation
model’s inherent tendency to output in source language,
making it easy to execute.

• Innovative Attack Design: In contrast to existing at-
tacks designed primarily for RNN-based models utiliz-
ing the Connectionist Temporal Classification (CTC) loss,
we present the first audio adversarial attack on modern
transformer-based models. Our attack primarily targets the
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Figure 2: Typical architecture of modern end to end speech
translation system.

decoding and attention mechanisms to guide the perturba-
tion generation. We also explore the feasibility of universal
perturbations on speech translation systems.

• Comprehensive Attack Evaluation: We evaluate our pro-
posed untranslation attack on real-world speech translation
systems, demonstrating its high effectiveness with a hard-to-
notice distortion. Specifically, our attack achieves a success
rate of 87.5% with a perturbation budget of as low as 0.001.
We further implement an universal attack and achieves a
success rate of 79.15% with 1-second perturbation.

2 Background

2.1 Speech Translation Systems
Speech translation (ST) involves converting spoken language
from one language into text or speech in another language.
Given the complexity of the task, speech translation has tra-
ditionally been performed in a cascaded manner [36]. In this
approach, speech is first transcribed into text by an automatic
speech recognition (ASR) system, then translated by a ma-
chine translation system, and finally, if the output modality
is speech, converted into speech by a text-to-speech system.
However, this cascaded approach has several drawbacks, in-
cluding high latency and error propagation [35]. In recent
years, the advent of deep learning has opened up the possi-
bility of developing end-to-end speech translation systems,
which have since become the prevailing approach in speech
translation research [26, 28, 44].

Furthermore, earlier research in speech translation often
concentrated on individual language pairs, where a model
was trained solely to translate speech from a specific source
language to a specific target language. This approach had
clear disadvantages: in an era of increasingly interconnected
global communication, a model limited to one language pair
incurs much higher training and storage costs and misses the
opportunity to develop generalized knowledge. Consequently,



multilingual speech translation has emerged as a prominent
area of recent research [9, 20, 24]. In this study, we examines
the security of state-of-the-art end-to-end multilingual speech
translation models.
Overview of ST System. A typical architecture of a modern
speech translation system is illustrated in Figure 2. The model
can be divided into three components: a speech encoder, a unit
or text decoder, and a vocoder. The speech encoder converts
the input speech into a sequence of feature vectors. Self-
supervised, Transformer-based models such as HuBERT [19]
and Wav2Vec [3] are commonly employed for this purpose.
The length of the feature sequence is generally proportional
to, but significantly shorter than, the length of the input speech.
The second component is the unit or text decoder, which takes
the feature sequence as input and generates a sequence of
tokens. If the model supports text output, the decoder directly
produces the tokens which could be detokenized into text;
otherwise, it outputs units that the vocoder uses to generate
the speech signal. The decoder is typically implemented using
a standard Transformer [38] architecture. The final component
is the vocoder, which takes the units generated by the decoder
and synthesizes the final speech signal, often utilizing models
proposed in TTS research, such as HiFi-GAN [22].
Decoding Process of ST system. The translation model gen-
erates the translation output using a sequence-to-sequence
approach. Similar to the process in the classic Transformer
model [38], the ST model produces the output token by token
in an autoregressive manner. First, the speech input is encoded
into a sequence of features, which are then utilized by each
block of the decoder through the encoder-decoder attention
mechanism. The decoder then begins the decoding process,
which is illustrated in Figure 3.

At the beginning of the decoding process, special tokens,
such as prompts, are inserted at the start of the sequence of
decoded tokens. Alongside the commonly used Begin of Se-
quence (BOS) token in Transformer architectures, speech
translation models also include a language token. SOTA mod-
els leverage this language token to facilitate multilingual
translation by guiding the decoding process.

Within the decoder, the decoder blocks integrate the infor-
mation from the feature sequence with the tokens generated in
previous steps (including the prompts) using attention mech-
anisms. After the information passes through each decoder
block, a linear layer transforms the features into a probability
distribution for the next token. The model then predicts the
next token based on this predicted probability, which serves
as the input for the subsequent step.

While the design of language tokens aims to guide the
model during the decoding process via attention mechanisms,
it does not guarantee that the output will be in the target
language. In this work, we investigate the vulnerability of this
design and propose a novel attack method to exploit it. We
demonstrate that language tokens are insufficient to ensure
that the output remains in the target language, as the model
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Figure 3: Illustration of the decoding process in a typical
speech translation system. Using the feature sequence gener-
ated by the encoder, the decoder generates the output token
by token in an autoregressive manner.

has a tendency to revert to the source language. By perturbing
the input audio, we can manipulate the model to produce
content in the source language.

2.2 Adversarial Attacks on Speech Systems
Numerous studies have investigated adversarial attacks on
audio systems, particularly targeting automatic speech recog-
nition (ASR) [5, 8, 42, 43] and speaker recognition sys-
tems [6, 7, 13, 39, 42]. Carlini et al. [5] conducted seminal
work in this area, demonstrating that adversarial examples
could successfully deceive the DeepSpeech model into pro-
ducing a target transcription. Subsequent research has focused
on enhancing the imperceptibility, robustness, and practical-
ity of such attacks [7, 31, 33]. To the best of our knowledge,
no prior work has addressed adversarial attacks on speech
translation systems. While speech translation and ASR share
similarities, the distinct architectures of modern speech trans-
lation models necessitate novel attack designs. Additionally,
existing attacks typically alter the semantics of the input. In
this paper, we propose a new attack strategy that deceives the
model into outputting content in the source language without
altering the input’s semantics.

3 Motivation

The motivation for the untranslation attack is twofold. First,
our investigation reveals that current state-of-the-art (SOTA)
models benefit from extensive datasets, advanced architectural
frameworks, and transfer learning from models pre-trained
on large-scale corpora. These factors collectively enhance
the models’ robustness in understanding linguistic semantics,
thereby complicating the application of traditional semantic
attacks within a reasonable perturbation budget. Second, we



observe that contemporary SOTA multilingual speech trans-
lation models utilize language-specific tokens as prompts to
guide content generation. However, this approach does not
guarantee that the output will be in the target language. De-
spite being directed to produce content in a specified target
language, these models inherently exhibit a tendency to gen-
erate content in the original source language. Therefore, in
this paper, we exploit this property and explore a novel attack
approach that misleads the model into outputting content in
the source language rather than providing a translation.
Semantic robustness of SOTA models. In this section, we
highlight the challenges associated with performing tradi-
tional adversarial attacks on SOTA speech translation models
through preliminary experiments using the Seamless M4T
v2 Large model [10], which contains 2.3 billion parameters
and was trained on a large-scale multilingual dataset. For the
attack method, we employ the Carlini attack, one of the most
widely cited techniques in the automatic speech recognition
(ASR) domain. The Carlini attack, which is fundamentally
similar to the C&W attack [4], serves as a seminal approach
in the realm of ASR adversarial attacks. It lacks additional
design elements that enhance imperceptibility and robustness
against real-world perturbations, thereby facilitating the opti-
mization of successful adversarial samples.

It is important to note that while some ASR adversarial
attacks [17] leverage connectionist temporal classification
(CTC) loss to optimize adversarial examples, current SOTA
speech translation models do not utilize CTC decoding and
instead rely on different loss functions during training. Given
that Seamless decodes outputs in an autoregressive manner
and is trained using cross-entropy loss [10], we adapt the
original Carlini attack by replacing the CTC loss with cross-
entropy loss.

In this preliminary experiment, our objective is to generate
adversarial examples that cause the model to produce a target
translation different from the original input. The loss function
for this attack is defined as

L =−log(p)+λ · ∥δ∥2, (1)

where p is the model output probability for the true token
when decoding the first token.

During the attack process, the attacker computes the loss
function and employs gradient descent to optimize the input
audio waveform. The attack is considered successful when the
first token output is altered to a different token. To maintain
the original listening experience, the maximum perturbation
amplitude is constrained to 0.01. Readers are encouraged to
visit https://untranslationattack.github.io/ for an
interactive demonstration of the attack. For the optimization,
a λ of 0.1 is used, and we use the Adam optimizer with a
learning rate of 0.001.

We utilize the validated French and German dataset from
Common Voice Delta Segment 17.0 [2] for French-to-English

(a) French to English Translation (b) German to English Translation

Figure 4: Distribution of semantic similarity of output text
examples before and after the attack.

and German-to-English speech translation task, randomly se-
lecting 500 samples from each dataset to evaluate the attack.
The results of traditional semantic-based attacks are presented
in Table 1. It is evident that the attacked translation outputs
differ from the original translations, indicating the success of
the attack. However, the semantic similarity between the two
outputs remains high, and the translation is still comprehensi-
ble to users in most cases.

To quantify the impact of these traditional semantic-based
attack methods, we used the widely adopted sentence em-
bedding model MiniLM [32]. We converted the translation
model’s output text into embeddings with MiniLM and cal-
culated the cosine similarity between the text embeddings
before and after the attack as a measure of semantic change.
Table 1 also presents the semantic similarity of output text
examples before and after the attack, providing a numerical
perspective on semantic similarity.

In our experiments, we evaluated the semantic consistency
of all samples before and after the attack, and the distribu-
tion of semantic similarity is shown in Figure 4. As depicted
in the figure, most attacked speech still results in semanti-
cally similar translations, with average semantic similarities
of 0.7024 and 0.7097 for the two datasets, respectively. This
indicates that under reasonable perturbation size constraints,
traditional semantic-based attacks can lead to inconsistent
outputs. However, the model remains robust in its overall
semantic understanding, likely producing different yet seman-
tically similar sentences, without significantly affecting the
model’s utility. Further evaluation of traditional attacks is
available in Appendix A.
Vulnerability of Untranslation. We further highlight the
vulnerability of state-of-the-art (SOTA) speech translation
models to untranslation attacks, which is the key motivation
of our work. As introduced in Section 2.1, SOTA models
employ transformer decoders to generate tokens and control
the output language by including a special language token as
part of the prompt.

For instance, in the Seamless M4T v2 Large model, the
target language token is set as the second token in the output
sequence (with the first token being the Begin Of Sequence
(BOS) token) before the model decodes the translated text.
Despite the strong attention mechanism employed by trans-

https://untranslationattack.github.io/


Table 1: Demonstrative Results of Traditional Semantic-Based Attacks

Original Translation Output Attacked Translation Output Semantic Similarity

But the revolution is holding back this development. Even the revolution frames the development. 0.711
The agency is responsible, throughout the territory, for
the public service of welcoming foreigners.

In all these territories, the agency is responsible for the
reception of stranded persons by the public service.

0.679

This is in everyone’s interest, not mine. It’s in everyone’s best interest, not mine. 0.826
Chasing him away from a fugitive who jumps into the
ditch.

He chases him away from a fugitive who jumps into the
ditch.

0.895

Bonne is located in Danmas. Bonn is located in Damascus. 0.676
On this occasion, he was made a knight. on this occasion, and then the cavalry. 0.415
Does your arm hurt you? Is your arm hurting? 0.923
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Figure 5: Illustrative token probabilities output by the model
when performing ASR and translation tasks. Even when
tasked with translation, the model assigns a relatively high
probability to the source language token.

former models, which should theoretically enable the model
to focus on the target language token and produce a transla-
tion in the desired language, our preliminary study found that
this token does not consistently guarantee output in the target
language.

We use an English-to-French speech translation example,
as illustrated in Figure 5. Note that the Transformer Decoder
in each row is actually the same model, but with different
target language tokens. When the target language token is
set to match the source language of the speech, the model
operates as an ASR system. The model outputs probabilities
for each token in the vocabulary, correctly assigning a high
probability to the ground truth token, "Hello", in this case.

When the target language token is set to the intended target
language, the model continues to perform accurately, assign-
ing a high probability to the ground truth translation token,
"Bonjour". However, it also assigns a relatively high proba-
bility to the source language token, "Hello". This suggests a
tendency for the model to generate content in the source lan-
guage even when instructed to produce output in another lan-
guage. This behavior likely stems from the multi-task learning
approach used during training, the inclusion of some corpora
that retain the source language for better comprehension, and
the paradigm of using language tokens as prompts to guide
model output.

To verify the universality of this phenomenon, we con-

Figure 6: Logit value distribution of specific token during
translation. tokensrc refers to the token output by the model
when the language token is set to the source language, while
tokentgt refers to the token output by the model when the
language token is set to the target language.

ducted a preliminary experiment to investigate the model’s
tendency to output tokens matching the input speech content.
Using an English-to-French translation task as an example,
we first set the language token to English, the source language,
thereby making the model function like an ASR system. We
then obtained the token with the highest probability, denoted
as tokensrc. Next, we set the language token to French, the
target language, and obtained the token with the highest prob-
ability, denoted as tokentgt. For instance, in the illustration in
Figure 5 , tokensrc is "Hello", and tokentgt is "Bonjour". We
recorded the logits output by the model during translation for
both tokensrc and tokentgt, as well as the average logits value
across all tokens in the vocabulary. The statistical results are
presented in Figure 6. A more comprehensive evaluation can
be found in Appendix C.

The figure reveals that the model assigns significantly
higher logits to tokentgt compared to other tokens in most
cases, with an average logits value of 15.051 versus 1.092.
This suggests that, in practical use, we will not notice any
abnormal behavior in model’s operation. However, the model
still assigns considerable logits to the tokensrc corresponding
to the original phonetic content, though the target language to-
ken has been provided as a prompt in translation tasks (7.351
vs. 1.092). This indicates that the model regards outputting
the source language tokens as a relatively probable and reason-
able option. Furthermore, if an attacker were to target these
tokens, the perturbation cost required would be significantly
lower than for most other tokens in the vocabulary.



4 Threat Model

Attack Goal. In an untranslation attack, the attacker perturbs
the input of a speech translation model to force it generate
output in the source language, rendering the system unusable.
Such attacks not only disrupt the user experience and cause
inconvenience but also, more significantly, erode user trust in
the reliability of the translation service.

Attack Scenarios. Our attack considers two scenarios: sam-
ple level and universal attacks. In the sample level attack, the
attacker obtains an audio sample in advance and generates
an adversarial perturbation, which is then sent to the model.
In this scenario, the attacker can manipulate pre-recorded
speeches or videos. For example, a video on a public me-
dia platform like YouTube could be manipulated so that the
subtitles cannot be translated into the user’s language. Ad-
ditionally, the design of the untranslation attack enables us
to perform a universal attack against the model. This means
the attacker can generate a universal perturbation that can
be appended to any input speech, forcing the model to out-
put the original speech content. The perturbation could be
played by a nearby speaker while the user is utilizing the
speech translation system, causing the translation system to
output the original speech instead of translating it. This would
disrupt communication and cause misunderstandings among
participants who rely on translation.

Adversary’s Capability. In our untranslation attack, we con-
sider an adversary with the following capabilities. First, the ad-
versary has white-box access to the speech translation model,
including its architecture and parameters, allowing for precise
crafting of adversarial perturbations. This assumption is con-
sistent with prior work on adversarial attacks against speech
systems (e.g., [17, 27]). Notably, all existing universal attacks
on ASR models also assume white-box knowledge.

In the sample level attack scenario, the adversary can obtain
or intercept audio samples intended for translation. This al-
lows the adversary to generate specific perturbations for each
audio sample. The adversary is assumed to have the capability
to manipulate these audio samples before they are processed
by the speech translation system, which could involve inter-
cepting audio files shared over communication channels or
manipulating media files on platforms such as YouTube.

In an universal attack scenario, the adversary operates with-
out prior knowledge of the specific audio input. Instead, they
exploit the universal applicability of a crafted perturbation
to disrupt the translation process. This perturbation can be
appended to the original speech, for instance, by playing it
through a nearby loudspeaker or embedding it in background
noise within environments where speech translation systems
are utilized. Such an approach significantly expands the attack
surface, rendering the threat viable across diverse real-world
scenarios where speech translation systems are deployed.

5 Untranslation Attack Design

The primary objective of the untranslation attack is to guide
the model to output speech content in the source language
rather than translating it. To realize this objective, three key
technical challenges need to be addressed.
Challenge-1. To guide the model to output speech content in
the source language, the untranslation attack uses the Auto-
matic Speech Recognition (ASR) output of the input speech
as the target. Traditional ASR attack methods rely on either
Connectionist Temporal Classification (CTC) loss [17] or
hard-label Cross Entropy (CE) loss [27, 31] to quantify the
difference between the model’s output and the target. How-
ever, state-of-the-art (SOTA) speech translation models do
not employ CTC decoding now. A simple approach would be
to apply CE loss, where the token sequence from the model’s
ASR task serves as the target classes for computing CE loss.
However, we found that CE loss, or hard-label loss, is not easy
to optimize. To address this, we propose using the decoder’s
output distribution from the ASR task as the target and cal-
culating the Kullback-Leibler (KL) divergence to measure
the distance between the model output and the target. This
soft-label loss method simplifies optimization and provides
richer information for the attack, such as token similarity.
Challenge-2. Targeting all tokens produced by the ASR sys-
tem during the optimization process can be computationally
expensive. When only a subset of tokens is selected as the
target, the attack may fail: while the initial tokens are suc-
cessfully untranslated, the subsequent tokens are translated
as normal. This failure is due to the powerful global mech-
anisms of Transformer models, where each preceding token
influences the generation of new tokens during decoding via
the attention mechanism. Additionally, the language token,
which determines the language of the model’s output, plays a
significant role in guiding the language of subsequent tokens
during decoding. To mitigate the influence of the language to-
ken and improve the attack’s success rate, we propose a novel
distraction loss. This loss evaluates the attention weights as-
signed to the language token within the model’s self-attention
mechanism and optimizes the perturbations to minimize the
model’s reliance on the language token, effectively "distract-
ing" the model.
Challenge-3. Existing universal attacks in the ASR do-
main [17, 27] typically assume that perturbations are added
directly to the original audio. However, we have found that
generating a universal patch that can be applied to any audio
is challenging. This difficulty arises because state-of-the-art
(SOTA) speech translation models are significantly more ro-
bust than those used in earlier research. Moreover, due to the
diversity of input speech, simply adding perturbations to the
original audio is likely to fail. Given the attack scenario of
speech translation, we propose appending the perturbation to
the end of the original speech, a strategy that has demonstrated
successful optimization.
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Figure 7: Illustrative comparison between target probability
distribution of soft label loss and traditional hard label loss in
the untranslation attack.

5.1 Soft Label Loss
To guide the model in outputting content in the source lan-
guage, untranslation attack use the ASR result of the input
speech as the target. Previous works typically employ a hard-
label cross-entropy loss to optimize adversarial perturbations.
Since the model itself is trained with hard-label cross-entropy
loss, this approach appears reasonable. However, we found
that the hard-label loss impeded the optimization process, re-
ducing the attack success rate. We hypothesize that this is
because the hard-label loss presents an unnatural target for
the model, as it is difficult for the model to produce a sharp
one-hot distribution. To address this, we propose first obtain-
ing the decoder’s output distribution when the language token
is set to the source language, then using this distribution to
calculate the KL divergence loss. The KL divergence loss is
formally defined as:

KL(P||Q) = ∑
i

P(i) log
P(i)
Q(i)

, (2)

where P and Q are two probability distributions, and P(i)
and Q(i) are the i-th element of P and Q respectively. In our
case, P and Q are the probability distributions output by the
decoder, and P(i) and Q(i) represent the probability of the
i-th token in the vocabulary when decoding a token.

Given the autoregressive nature of the model, it outputs a
sequence of probability distributions, with each distribution
corresponding to one decoding step. We can simultaneously
optimize the perturbation to minimize the KL divergence loss
across all decoding steps. The soft label loss is defined as

Ls(P,Q) =
T

∑
t=1

KL(Pt ||Qt), (3)

where P = (P1,P2, . . . ,PT ) and Q = (Q1,Q2, . . . ,QT ) are the
probability distributions output by the model when the lan-
guage token is set as the target language and the source lan-
guage respectively, and Pt and Qt are the t-th element of P
and Q respectively, T is the target length, which control the
number of decoding steps to optimize.

The difference between the target probability distribution
of conventional hard-label loss and soft-label loss is illustrated
in Figure 7. With the soft-label loss, we set the language token

With great power comes great responsibility.

Un grand pouvoir implique 
de grandes responsabilités.

With great power comes 
great responsibility. 

Original    Result

Tom and Jerry is an animated comedy series.

Tom et Jerry est une série 
comique d'animation.

Tom and Jerry est une série 
comique d'animation.

Attacked    Result

Attacked    Result

Original    Result

(a) Successful Untranslation Attack Case

(b) Failed Untranslation Attack Case

Figure 8: Typical successful and failed case of untranslation
attack, the dark green text represents the target token positions
during optimization.

(Lang) to the source language (Lsrc). The resulting probability
distribution is a natural distribution, where tokens semanti-
cally or phonetically similar to the ground truth token are
assigned higher probabilities. For example, in the illustration,
when the ground truth token is "It," the probability of "This"
is also relatively high. In contrast, with hard-label loss, the
target probability distribution is a sharp one-hot distribution,
which is challenging for the model to produce. This is because
the model is implicitly required to assign zero probability to
all tokens other than the ground truth token, which is not a
natural distribution for the model to output.

5.2 Distraction Loss

Using soft label loss to guide the model in producing results
in the source language serves as a promising initial approach.
However, selecting the optimal target length or determining
the appropriate number of decoding steps to optimize is a
challenging question. Considering the entire probability se-
quence when the target language is set as the source language
is inadvisable for two primary reasons. First, the optimization
process becomes computationally expensive when targeting
all tokens produced by the ASR system. Second, aggregating
the soft label loss across all decoding steps complicates the
loss function excessively, which can lead to potential opti-
mization failures. Our proposed approach, which maintains
the semantic integrity of speech, allows the model to generate
complete untranslated results by attacking the probability dis-
tribution of only the initial few tokens. This method achieves
the desired attack efficacy effectively. Figure 8 (a) illustrates
a successful untranslation attack sample. During this attack,
only the tokens corresponding to "With great power" were tar-
geted, yet the model produced the remainder of the sentence
without translation.

However, we observed some failed cases during the opti-
mization process: although the initial tokens in the model’s
output are successfully untranslated, the subsequent tokens
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process, we take the attention weight of target language token
and optimize the perturb to minimize it.

might be translated normally. Figure 8 (b) shows a failed
untranslation attack sample. In this case, the target tokens rep-
resent "Tom and Jerry." After optimization, while the initial
tokens are successfully untranslated, the remaining tokens are
translated normally. This failure is more common when the
beginning of the speech content includes proper nouns.

We hypothesize that targeting only the initial few tokens for
an untranslation attack to make the entire sentence untrans-
lated is due to the autoregressive nature of the Transformer
Decoder used in SOTA models. Once the initial tokens are suc-
cessfully perturbed to match the source language, the model
relies on the Transformer’s attention mechanism, which uses
previously decoded tokens to decide the subsequent output.

In most cases, after perturbing the initial tokens, the model
naturally continues to output the remaining content in the
source language. This is because training data rarely contains
instances where the beginning of a sentence is in one lan-
guage while the remainder is in another. When a sentence
begins with a proper noun, however, the model can not de-
cide the language to output based on the proper noun alone.
This is because it is common for proper nouns from other
languages to appear untranslated in content in another lan-
guage. Consequently, when such texts are used for training,
the model learns that proper nouns do not necessarily dictate
the language of the entire sentence.

The failure of the untranslation attack can also be attributed
to the nature of the Transformer decoder. The attention mech-
anism allows the Transformer decoder to capture long-range
dependencies and global context, thus even if the language to-
ken is positioned as first several tokens, the model might still
attend to the language token and choose to generate tokens in
the selected target language, leading to the attack’s failure.

To address this issue, we propose a novel distraction loss.
The key idea behind distraction loss is to reduce the model’s
attention to the language token, causing it to "forget" the tar-
get language and thus generate the remainder of the sentence
in the source language after perturbing the initial few tokens.
Specifically, the distraction loss utilize the attention weights
of the language token within the model’s self-attention mecha-
nism and optimizes perturbations to minimize the model’s fo-

cus on the language token, effectively "distracting" the model.
Figure 9 illustrates the idea of the distraction loss, omitting
the feed-forward layer and residual connections for simplicity.

In each decoding step, we evaluate the attention weight of
the target language token (0.15 in our illustrative example)
and optimize the perturbation to minimize this weight. In a
decoder with masked self-attention layers, which use multiple
attention heads, we aggregate the loss across each head. Ad-
ditionally, given that existing models typically have several
decoder blocks, we focus on the second block, as perturbation
information can only be introduced after the Encoder-Decoder
Attention layer. The distraction loss is defined as

Ld =−
T

∑
t=0

H

∑
h=0

log(1−wh,t), (4)

where wh,t is the attention weight for the language token for
the h-th head at the t-th decoding step, T is the number of
decoding steps, and H is the number of attention heads.

5.3 Appending-based Universal Perturbation
In comparison to sample level attacks, universal attacks,
which can be applied to any input speech is more practi-
cal. Existing research on universal attacks in the ASR do-
main [17, 27] employs a similar methodology to sample level
attacks, specifically by adding perturbations to the original
audio. The primary distinction is that universal attacks aim to
discover a brief perturbation δ that minimizes the expected
loss across the training samples’ distribution. Formally, the
adversary obtains the perturbation δ by solving the following
optimization problem:

minimize
x∼µ

E

[
L( f (x+δ))

]
, (5)

where x is the input audio, µ is the distribution of the train-
ing samples, L is the loss function, f is the model, and δ is
the perturbation. In a more advanced attack, the adversary
may also consider the time shift of the perturbation and the
distortion during the over-the-air propagation, we omit these
factors here for simplicity.

However, when targeting SOTA speech translation models,
we found that optimizing a universal perturbation applicable
to any audio is challenging. This difficulty arises because
current SOTA speech translation models exhibit significantly
greater robustness compared to those used in previous re-
search. Given the potential diversity of input speech, simply
adding perturbations to the original audio is likely to be inef-
fective. We conducted a preliminary experiment to assess the
feasibility of universal attacks by applying universal perturba-
tions to arbitrary speech for the untranslation attack; however,
all our attempts failed.

Given the limitations of traditional additive universal at-
tacks, we propose an alternative approach: appending per-
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Figure 10: Overview of the untranslation attack method.

turbations to the end of the original audio. This method is
simpler than traditional approaches as it avoids the complexi-
ties of superimposing perturbations onto the original speech.
Additionally, it is straightforward to execute, requiring only
that the perturbation be played after the victim has finished
speaking. Appending attack is not considered by traditional
attacks as they targeted RNN models, where perturbations
could only affect the frame in which they were located and
subsequent frames. Existing work [17] has shown that such
attacks influence only a few subsequent outputs, limiting their
effectiveness. However, with the SOTA approaches’ shift
to Transformer-based models, which leverage the attention
mechanism for full context awareness, perturbations appended
to the end of the audio can potentially affect the entire out-
put of the decoder. These models encode input audio into
a sequence of feature vectors and use them throughout the
decoding process, allowing even end-appended perturbations
to impact the full output.

5.4 Overall Attack Algorithm
In this section, we present the overall algorithm for the un-
translation attack, which includes two scenarios: sample level
and universal attacks. Both scenarios utilize the same loss
functions and optimization strategies. An overview of the
untranslation attack method is illustrated in Figure 10. The
attack considers four types of losses: distance loss, norm loss,
soft label loss, and distraction loss. Initially, the perturbation
δ is set with real-world noise. Distance loss ensures that the
perturbation remains similar to the original audio, while norm
loss controls the perturbation’s magnitude. Soft label loss
guides the model to output content in the source language,
and distraction loss reduces the model’s reliance on language
tokens. The full algorithm for the sample level untranslation
attack is detailed in Algorithm 1. dist(δ,δ0) denotes the mea-
sured distance between the two audio signal and we use L2
distance in this work.

In the universal attack scenario, we employ the same loss
functions and similar optimization strategies as in the sample
level attack. To optimize the universal perturbation, we also
apply the Expectation over Transformation (EOT) framework,
following the approach in [27]. The complete algorithm for

Algorithm 1 Sample Level Untranslation Attack
Input: Original Speech x in source language Lsrc, Target
language to translate Ltgt , Target model M , Learning
rate η, Max number of iterations Imax, Target length T ,
Initial perturbation δ0, Language classifier model C , Loss
weights α, β, γ, Max perturbation budget ε

Output: Perturbation δ

1: Initialize perturbation δ← δ0
2: Target token probability sequence Q←M (x,Lsrc)
3: for i = 0 to Imax do
4: P←M (x+δ,Ltgt)
5: Compute soft label loss Ls using Eq. (3)
6: Compute distraction loss Ld using Eq. (4)
7: Ltotal← Ls +α · ∥δ∥2 +β ·dist(δ,δ0)+ γ ·Ld
8: δ← optimizer(δ,η,Ltotal)
9: Clip perturbation δ← Clip(δ,δ0− ε,δ0 + ε)

10: if C (M (x+δ,Ltgt)) = Lsrc then
11: return δ

12: end if
13: end for
14: return None

the universal untranslation attack is provided in Algorithm 2.

6 Evaluation

6.1 Experimental Settings
Speech Translation Models. This study focuses on evalu-
ating the effectiveness of the untranslation attack on SOTA
speech translation models. Specifically, we target the Seam-
less family of models [10], which are trained on extensive
multilingual and multimodal datasets. These models, built
on the Transformer architecture, have achieved SOTA per-
formance across various speech translation benchmarks. Our
evaluation includes two models: Seamless M4T v2 large and
Seamless Expressive. The Seamless M4T v2 large model is
the foundational model of the Seamless family, supporting
speech translation in 100 languages. Seamless Expressive,
by contrast, offers translation while preserving vocal style
and prosody and supports translation from and into English
across five languages. The public availability of the Seamless
family has further contributed to their widespread adoption
in the speech translation community. All evaluations were
conducted using the officially released pre-trained models.
Datasets. We evaluate the untranslation attack on several
most used speech datasets. Note that the goal of our attack is
to make model output untranslated result, thus we do not
need the ground truth translation for evaluation. We take
several most popular speech datasets: Common Voice [2],
TIMIT [14], and LibriSpeech [30]. Furthermore, we also
take two most used speech translation dataset: MuST-C [12],
Europarl-ST [21]. Details for each dataset are provided in



Algorithm 2 Universal Untranslation Attack
Input: Data samples D = {x1,x2, . . . ,xn} in source lan-
guage Lsrc, Target language to translate Ltgt , Target model
M , Learning rate η, Target length T , Initial perturbation
δ0, Loss weights α, β, γ, Epoch to train the perturbation
Nepoch, Max perturbation budget ε

Output: Perturbation δ

1: Initialize perturbation δ← δ0
2: for i = 0 to Nepoch do
3: for x ∈D do
4: Q←M (x,Lsrc)
5: P←M (x⊕δ,Ltgt)
6: Compute soft label loss Ls using Eq. (3)
7: Compute distraction loss Ld using Eq. (4)
8: Ltotal← Ls +α · ∥δ∥2 +β ·dist(δ,δ0)+ γ ·Ld
9: δ← optimizer(δ,η,Ltotal)

10: Clip perturbation δ← Clip(δ,δ0− ε,δ0 + ε)
11: end for
12: end for
13: return δ

Section B of Appendix.
Evaluation Metrics. We adopt the following objective and
subjective metrics to evaluate untranslation attack: (1) Attack
Success Rate: This represents the number of succeeded attacks
over the total number of attack attempts. For our untranslation
attack, we only reported a success if the model output the con-
tent in the source language. Output that is partially translated
is considered a failure. (2) BLEU Score: This is the standard
metric for evaluating the quality of machine translation output.
BLEU score needs the ground truth reference translation to
calculate and we use it on speech translation dataset to evalu-
ate how untranslation attack degrade the translation quality.
(3) MOS: Mean Opinion Score (MOS) [37] is a subjective
metric that measures the perceived quality of the audio. We
use MOS to evaluate the perceptual quality of the perturbed
audio. The MOS is rated on a scale of 1 to 5, with 1 indicating
the worst quality and 5 indicating the best quality.
Hardware Devices. We conducted experiments on a server
with Ubuntu 20.04 and RTX 4090 GPU with 24GB RAM.
For over-the-air experiments, we use smartphones Redmi K40
and Honor V9 to play the perturbation and record the audio
with SONY ICD-TX650 voice recorder.

6.2 Sample Level Attack

Experimental Settings. Based on our experiments, we empir-
ically set the default configuration to α= 0.1, β= 0.1, γ= 0.2,
η = 0.002, T = 5, Imax=500 and ε = 0.01. A pretrained lan-
guage classifier model [23] is used to automatically classify
the model output and assess whether the attack succeeds. Un-
less otherwise specified, we use the English Delta Segment
17.0 dataset from Common Voice (CV). In most evaluations,

Table 2: Overall Attack success rate(%) for sample level un-
translation attack.

M4T v2 Expressive

Common Voice 86 95.5
TIMIT 89 89
Europarl-ST 100 99.5
MUST-C 90.5 97
LibriSpeech-clean 98.5 96
LibriSpeech-other 96 97.5

Table 3: Untranslation Attack Influence on BLEU Score.

M4T v2 large Expressive
Before After Before After

MUST-C 24.2 5.11 39.165 5.4

English serves as the source language and German as the
target language. For the perturbation δ0, we use a segment of
background music normalized to an amplitude of 0.1.
General Results. We first evaluate the effectiveness of the
untranslation attack on the Seamless M4T v2 large and Seam-
less Expressive models using different datasets. From each
dataset used, we randomly select 200 samples and apply the
untranslation attack with a maximum of 1000 iterations per
sample. The attack success rates are presented in Table 2. The
results indicate that the untranslation attack is highly effective,
achieving an average success rate of 93.33% for the Seamless
M4T v2 large model and 95.75% for the Seamless Expressive
model. However, for certain datasets, such as Common Voice
and TIMIT, the attack success rate is lower compared to oth-
ers. Upon manual inspection, we found that the lower success
rates were primarily due to inaccurate ASR results, where the
model lacked confidence. Since the attack relies on the ASR
output as the target, optimization becomes more challenging
when the ASR results are unreliable.

For the MuST-C dataset, which includes labeled translation
references, we also calculate the BLEU score for the model’s
output after the attack. The BLEU scores, as shown in Table 3,
are significantly reduced for both models, confirming that the
attack effectively degrades translation quality.
Influence of Target Length. As discussed in Section 5.2,
target length is a critical parameter in the our attack. We
evaluate its impact on the success rate by varying the target
length from 1 to 10 and optimizing 500 randomly selected
samples from the datasets. The results are presented in Fig-
ure 11. The figure shows that even with a target length of
1, the average success rate remains as high as 88.53%. This
high success rate can be attributed to the autoregressive nature
of the targeted model. Once the initial output is successfully
perturbed, subsequent outputs reference the preceding output
and maintain consistency. Overall, the success rate improves



Figure 11: Success rate of untranslation attack with different
target length.

with longer target lengths, as optimizing over more decoding
steps reduces the risk of failure (e.g., when speech begins with
a proper noun). However, the success rate generally plateaus
or even declines when the target length exceeds certain value.
This decline likely stems from the increased complexity of
optimizing over extended decoding steps, which raises the
likelihood of failure. Additionally, longer target lengths incur
higher computational costs. To balance attack success rate
and computational efficiency, we set the target length to 5 in
the default configuration, as it achieves the best performance
on the Common Voice dataset.
Influence of Perturbation Budget. In our attack, the per-
turbation budget is used to control the maximum allowable
magnitude of the perturbation. A larger perturbation bud-
get increases the perturbation’s impact, thereby improving
the attack success rate, but it also degrades the quality of
the original speech. We examine how the perturbation bud-
get affects the success rate of the untranslation attack. We
set the perturbation budget to 0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, and 0.1, while keeping other experimental set-
tings consistent with those in the previous experiment. The
results are shown in Figure 12. As illustrated, the success
rate improves with increasing perturbation budget. How-
ever, once the perturbation budget exceeds 0.01, the success
rate stabilizes. Evaluation on different datasets obtain sim-
ilar results. To balance attack success rate with perceptual
degradation, we have chosen a default perturbation budget
of 0.01. Demonstrations of perturbed audio at various per-
turbation budgets are available at our demo page (https:
//untranslationattack.github.io/).
Influence of Language Pair. Given the prominence of ex-
isting research in speech translation, we selected English-to-
German translation as the default experimental setup. This
section examines how the language pair affects the success
rate of the untranslation attack. We consider English (Eng),
German (Deu), French (Fra), and Spanish (Spa) as both source
and target languages. Data of all languages are from multi-
lingual Common Voice Delta Segment 17.0. We chose the
Seamless M4T v2 model as the target due to its extensive
language processing capabilities. We randomly selected 200
samples for each language pair and optimized the samples

Figure 12: Success rate of untranslation attack with different
perturbation budget.

Table 4: Attack success rate for different language pairs.

Src\ Tgt Eng Fra Deu Spa
Eng - 85 86 85
Fra 82 - 85.5 85.5
Deu 78 79 - 82.5
Spa 72.5 73.5 75 -

Figure 13: Success rate in ablation study

using the default configuration. The results are presented in
Table 4. From the results, we observe that our attack is effec-
tive for most language pairs, with an average success rate of
80.19%. However, we note a decrease in success rate when
the source language is Spanish. We attribute this decline to
the model’s lower performance in Spanish audio recognition,
which results in a higher error rate in the ASR output. This
increased error rate makes the attack more challenging, as the
model exhibits reduced confidence in its output.
Ablation Study. To assess the effectiveness of the soft label
loss and distraction loss, we conducted an ablation study.
We randomly selected 500 samples from each dataset and
optimized them using the default configuration. The results
are presented in Figure 13. As illustrated in the figure, the
introduction of both the soft label loss and distraction loss
led to improvements across all tested datasets. The individual
application of either loss function also demonstrated utility.
When all losses were employed, the average success rate
improved from 90.79% to 93.53%.
User Study. To evaluate the perceptual impact of the untrans-
lation attack, we conducted a user study approved by the local

https://untranslationattack.github.io/
https://untranslationattack.github.io/


Figure 14: Time cost distribution for sample level attack on
Common Voice dataset.

Figure 15: Subjective ratings for original and perturbed audio.

Institutional Review Board (IRB). A total of 30 participants
(19 males and 11 females), aged 20 to 35 years, were re-
cruited, all of whom were English speakers. Each participant
was asked to listen to 10 audio samples, comprising 5 original
and 5 perturbed samples generated by the untranslation attack.
Participants were presented with only one version of each
sample—either original or perturbed. They rated the percep-
tual quality of each sample using a 5-point scale: 1 (Bad), 2
(Poor), 3 (Fair), 4 (Good), and 5 (Excellent). To reduce bias,
participants were not informed of the study’s purpose prior
to the experiment. As shown in Figure 15, the mean opinion
score (MOS) for the perturbed audio was 3.18, while the MOS
for the original audio was 3.62. Given the inherent variability
associated with subjective MOS assessments, these differ-
ences are considered acceptable. Readers are encouraged to
listen to the audio samples on our demo page.
Run Time Analysis. We implement our method with an early
stopping mechanism, which terminates the optimization pro-
cess once the attack succeeds. Samples that can be success-
fully attacked typically require much less time. Using the
evaluation in the first row of Table 2 as an example, the run-
time distribution for optimizing each sample is plotted in
Figure 14. It can be observed that attacking the Expressive
model takes an average of 61.48 seconds, with most samples
being attacked within this average time. Similar results are
observed for the M4T v2 model.

6.3 Universal Attack

Experimental Settings. We use settings similar to those in
the sample level attack. The default configuration parameters
are set as follows: α = 0.4, γ = 0.4,Nepoch=30, ε=0.3, and
perturbation duration is set to 1 second. Batch size is set as 4.
Additionally, δ0 is empirically set as random Gaussian noise
normalized to an amplitude of 0.1, and β is set to zero. During

Table 5: Dataset used in the universal attack perturbation
training. Char means characteristic. For duration and number
of words, we show the mean and standard deviation.

Dataset Char #Samples Duration(s) #Words
CV 16.1 delta Eng Diverse 3408 5.83 (1.57) 10.10 (2.80)
CV 17.0 delta Eng Diverse 1877 5.49 (1.50) 10.24 (2.80)
TIMIT test split Clean 1680 3.09 (0.87) 8.66 (2.56)
MuST-C dev split Talk 1574 5.69 (4.67) 16.98 (11.79)

Table 6: Attack success rate(%) for universal attack that
trained and evaluated on different datasets.

Train/ eval CV 16.1 CV 17.0 TIMIT MuST-C
CV 16.1 71.2 70.4 77 73.4
CV 17.0 75.4 77.4 70.2 73.6
TIMIT 15 15 77.8 69.2
MuST-C 6.4 4.6 12.8 79.4
Unified 75.8 73.4 89.6 77.8

Table 7: Attack success rate(%) for universal attack with dif-
ferent perturbation duration.

Duration(s) 0.5 0.75 1 1.25 1.5
Success Rate 17.13 63.42 76.49 78.24 79.31

training, we employ a cosine learning rate scheduler with an
initial learning rate of 0.002. The dataset is split into training
and testing subsets with a ratio of 9:1.
General Results. To evaluate the effectiveness of the univer-
sal untranslation attack, we first trained the perturbation on
the dataset described in Table 5. Subsequently, we assessed
the perturbation on both the same dataset and other datasets.
Additionally, we combined all training datasets into a unified
dataset and evaluated the perturbation on this aggregated set.
The results, presented in Table 6, demonstrate the high ef-
fectiveness of the universal untranslation attack, achieving a
success rate above 71.2% for each dataset when trained on
it. However, as with all machine learning tasks, performance
degrades when there is a mismatch in data distribution. For
example, the perturbation trained on the TIMIT and MuST-
C datasets, which feature relatively clean audio recorded in
controlled environments, does not transfer effectively to other
datasets. In contrast, perturbations trained on the Common
Voice datasets, which contain more diverse and noisier au-
dio samples uploaded by users, transfer successfully to other
datasets. Notably, the unified dataset exhibits high success
rates across all datasets and even outperforms the perturba-
tion trained directly on TIMIT. We believe that when trained
on a more diverse dataset, the universal perturbation could
generalize better to other dataset.
Influence of Duration. In the universal untranslation attack,
shorter perturbations are preferred as they are less likely to be
noticed by the victim and can be more easily appended to the



Figure 16: Success rate of universal untranslation attack when
attacking target speech with different words.

original audio. However, short perturbations may also exert
less influence on the model’s output. To investigate this trade-
off, we evaluated the attack using adversarial perturbations
of varying durations (0.5 to 1.5 seconds in 0.25-second incre-
ments). We first trained the perturbation on samples from the
CV delta segment 17.0 , then concatenated it to samples from
the CV delta segment 16.1. The results, presented in Table 7,
indicate that the success rate increases with the duration of the
perturbation. This is because the longer the perturbation dura-
tion, the more frames could be controlled by the perturbation.
However, the success rate plateaus when the perturbation du-
ration exceeds 1 second. Balancing success rate and usability,
we set the default perturbation duration to 1 second.
Influence of original sentence length. Li et al. [27] observed
that longer original sentences, specifically those with 4 to 5
words, tend to have lower attack success rates. Although the
untranslation attack operates differently—by appending the
perturbation to the end of the original audio—the character-
istics of the audio being attacked still significantly influence
the attack’s effectiveness. Sentence length, in particular, is a
critical factor. In this section, we assess the impact of original
sentence length on the success rate of the universal untrans-
lation attack. We use the dataset from the general results
section and evaluate the universal perturbation trained on the
unified dataset. The success rate is calculated based on the
sentence length of the attacked speech. Considering that the
average English sentence length ranges from 15 to 20 words,
we evaluate word counts from 1 to 32. The results are shown
in Figure 16. As illustrated, our universal attack performs
consistently when the sentence length exceeds 3 words. We
examined the dataset and hypothesize that this is because
the training and evaluation dataset predominantly consists of
sentences with more than 3 words. Therefore, in real-world
scenarios, the attack should maintain its effectiveness.
Over-the-air Attack. We also assess the feasibility of the
universal untranslation attack in an over-the-air setting. In
this scenario, a victim speaks into a recording device to use a
speech translation service, while an adversary, using a smart-
phone, plays a universal perturbation aimed at misleading the
model. The adversary waits for the victim to finish speaking
before deploying the perturbation.

Following the setup in [17], the distance between the ad-

versary and the victim is set to 1 meter, and the perturbation
is played at varying volumes. Experiments were conducted
in a meeting room measuring 4.5 x 8 x 3 meters with an am-
bient noise level of 43 dBSPL. The perturbation was played
at 50 dBSPL, 60 dBSPL, and 70 dBSPL, while volunteers were
asked to speak arbitrary English sentences at around 60 dBSPL.
Interestingly, we achieved a 40% success rate when the per-
turbation was played at 70 dBSPL, despite not optimizing for
physical robustness. At 50 dBSPL and 60 dBSPL, the success
rates were 0% and 10%, respectively. These results suggest
that the universal untranslation attack is feasible in real-world
over-the-air conditions, and the success rate could likely be
improved with more advanced designs.
Run Time Analysis. The time required for universal perturba-
tion training is directly proportional to the number of epochs
and the size of the dataset. For reference, in our experimental
setup, training the universal perturbation on the CV Delta
Segment 17.0 dataset (comprising 1,877 samples) took ap-
proximately 45 minutes per epoch on average. We believe that
optimizing the training process and utilizing more powerful
hardware could further reduce the training time.

7 Possible Defenses

Signal Processing. Signal processing-based defenses have
been identified as simple yet effective methods to mitigate
audio adversarial examples, as demonstrated by previous stud-
ies [17, 27, 41, 43]. Since adversarial perturbations are care-
fully optimized, signal processing methods such as frequency
selection, quantization, and MP3 compression are expected
to reduce or eliminate the perturbations. We evaluate these
defenses using the adversarial examples generated in Sec-
tion 6.2 and Section 6.3 with the results presented in the first
16 columns of Table 8. Notably, even aggressive low-pass
filtering with a 1 kHz cutoff frequency failed to effectively
remove the perturbations. MP3 compression and band-pass
filtering had the most significant impact among these defenses,
with only 48.31% and 46.15% of the sample level adversarial
examples surviving. Universal attacks demonstrated greater
robustness against these defenses compared to sample level
attacks. Although these defenses exhibit some effectiveness,
adversaries could optimize perturbations by incorporating
these processing into their optimization process.
Diffusion-based Purification. Diffusion-based purification
is a promising defense against adversarial audio attacks. This
approach involves applying the forward diffusion process of
a diffusion model to remove perturbations, followed by the
reverse diffusion process to restore benign audio. In this study,
we employ WavePurifier [16] to purify the same adversarial
examples analyzed in the previous section, utilizing the offi-
cial code and pretrained model provided by the authors. The
results, presented in the final column of Table 8, demonstrate
a significant improvement over previous methods, with only
15.46% of adversarial examples at the sample level remaining



Table 8: Success rates (%) of untranslation attacks under various defenses. "Sam."and "Uni." denotes sample-level/ universal
attacks. "Mp3."refers to MP3 compression, and "Diff."stands for diffusion purification. For frequency-selection defenses, "Param"
indicates the cutoff frequency in kHz, and for quantization defenses, it specifies the number of quantization levels.

Low pass Filtering High pass Filtering Band pass Filtering Quantization Mp3. Diff.
Param 6k 4k 2k 1k 0.25 0.5 1 0.25-1 0.25-2 0.25-4 1-2 1-4 1-6 256 512
Sam. 80.51 79.49 72.31 68.21 74.36 72.82 75.90 46.15 63.08 71.28 58.97 56.41 61.54 83.59 59.49 48.31 15.46
Uni. 92.54 95.12 93.83 88.69 95.12 95.12 96.40 53.98 73.26 80.96 88.69 95.12 97.69 89.97 66.84 78.41 29.56

effective. Despite its effectiveness, diffusion-based purifica-
tion is hindered by substantial computational demands. Under
the experimental settings with default parameters from the
official code, the purification process requires an average of
39.306 seconds per audio input, with an average input length
of 7.460 seconds. In comparison, the average speech transla-
tion inference time for the same input is just 1.035 seconds.
This high computational cost poses a significant challenge to
the practical deployment of diffusion-based purification.
Token Masking in Decoder. An intuitive defense mechanism
is to mask tokens that are not part of the target language dur-
ing the decoding process. The model maintainer could simply
set the probabilities of these masked tokens to zero, prevent-
ing the generation of source-language tokens. However, this
approach is impractical. First, the tokenizer used by the model
typically breaks the input into subwords [11], making it dif-
ficult to determine whether a subword belongs to the target
language. Second, as interaction between different cultures
becomes increasingly frequent, it is common to encounter
sentences in one language that contain words from another.
Some words are untranslatable, and retaining them in the
source language can enhance understanding. Prohibiting the
generation of non-target language content would significantly
reduce the translation model’s utility.

8 Conclusion

In this paper, we present the untranslation attack, a novel secu-
rity threat to speech translation systems. The attack leverages
state-of-the-art models’ inherent tendency to produce content
in the source language, effectively preventing translation with
minimal perturbation. We introduce two loss functions, soft
label loss and distraction loss, to enhance the attack’s efficacy.
Furthermore, we successfully implement a universal attack
against a state-of-the-art model using an appending based
perturbation approach. The attack’s effectiveness is demon-
strated across multiple datasets. We hope that our work raises
awareness of the security vulnerabilities in speech translation
systems and encourages further research in this domain.
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Table 9: Success rate and time cost comparison between tra-
ditional attack and untranslation attack.

Method Success Rate Avg. Time Overhead

Traditional 28% 0.66min
Ours 85% 2.7min

A More Comparison with Traditional Attack

We also compare the untranslation attack with traditional un-
targeted attacks in terms of success rate and time cost. While
semantic similarity, as discussed in Section 3, provides a quick
metric to evaluate the impact of traditional attacks, it can not
reliably determine whether an attack is truly successful. To
address this, we manually evaluate the translated outputs to
check if they remain semantically consistent before and after
the attack, marking an attack as not successful only if all key
information is preserved. For time cost analysis, we calcu-
late the average time overhead per sample. The evaluation is
performed on French-to-English translations using the Com-
mon Voice dataset, following the same setup described in
Sections 3 and 6.2. The results are summarized in Table 9.

The results show that the traditional approach has lower
time costs because traditional attacks terminate optimization
as soon as the first token is modified, which is relatively easy.
In contrast, the untranslation attack requires running a lan-
guage classifier to ensure the output is in the source language,
completing optimization only when this condition is met or
the maximum number of iterations is reached. However, the
traditional approach exhibits significantly lower success rates,
consistent with the semantic similarity evaluation, underscor-
ing the effectiveness of the untranslation attack.

B Datasets Details

In this study, we utilized five widely recognized speech
datasets to evaluate the performance of our methods: Com-
mon Voice, TIMIT, LibriSpeech, MuST-C, and EuroparlST.
Below, we provide detailed descriptions of each dataset.
Common Voice: The Common Voice dataset is a large-scale,
multilingual corpus of speech data developed by Mozilla.
The dataset consists of recordings contributed by volunteers,
covering a wide range of accents, dialects, and speaker de-
mographics. Each audio file is paired with its correspond-
ing transcription. The dataset is frequently updated, and we
mostly use the Delta 16.1 and 17.0 segment which is updated
after the release of Seamless Model. Contributions are limited
to recordings of up to 15 words per submission. Due to the
crowdsourced nature of the dataset, the audio quality varies
significantly.
TIMIT: The TIMIT Acoustic-Phonetic Continuous Speech
Corpus is a phonetically labeled dataset commonly used in



speech research. It contains recordings of 630 speakers from
eight major dialect regions of the United States, with each
speaker reading 10 phonetically rich sentences. Although the
dataset is relatively small, it was recorded in a controlled
environment, ensuring consistent audio quality.
LibriSpeech: The LibriSpeech dataset is a large-scale corpus
of English read speech, derived from audiobooks from the
LibriVox project. It includes approximately 1,000 hours of
transcribed speech, encompassing a variety of speaking styles
and accents. The dataset is intended for automatic speech
recognition (ASR) research and comes with predefined train-
ing, validation, and test splits. Due to its audiobook origins,
the speech content covers diverse topics and genres, with
generally high audio quality. We mostly carried out our ex-
periments on the test split.
MuST-C: The MuST-C dataset is a multilingual speech trans-
lation corpus based on TED talks. It provides paired speech
and translations in multiple target languages. In this study, we
used the English source speech along with its German transla-
tions in release 3. This dataset is widely used for training and
evaluating speech-to-text translation systems and reflects typ-
ical speech translation scenarios, given its TED talk origins.
EuroparlST: The EuroparlST dataset is a speech translation
corpus derived from the proceedings of the European Par-
liament. It includes speech segments in various European
languages paired with their corresponding translations. Since
the recordings date back several decades, the audio quality
varies. The speech primarily focuses on political topics, char-
acterized by a relatively high speech rate and long average
sentence length.

C Additional Evaluation for Motivation

The motivation of the untranslation attack is that contem-
porary SOTA multilingual speech translation models have
a tendency to generate results in source language. To sup-
port this observation, we conducted additional evaluations
using the same setup described in Section 3. Specifically, we
recorded the model’s logits output during translation for both
tokensrc and tokentgt, as well as the average logits value across
all tokens in the vocabulary. The experiments were performed
on the Eng-Fra, Eng-Deu, Fra-Eng, and Deu-Eng language
pairs using the Seamless M4T v2 and Seamless Expressive
models. While the results for the Eng-Fra language pair on
the Seamless M4T v2 large model are presented in Figure 6,
Figure 17 provides results for the remaining language pairs
and models. These findings are consistent with those in Fig-
ure 6, further demonstrating the model’s tendency to produce
outputs in the source language.

(a) Eng-Deu, Seamless M4T v2

(b) Fra-Eng, Seamless M4T v2

(c) Deu-Eng, Seamless M4T v2

(d) Eng-Fra, Seamless Expressive

(e) Eng-Deu, Seamless Expressive

(f) Fra-Eng, Seamless Expressive

(g) Deu-Eng, Seamless Expressive

Figure 17: Logit value distribution of specific token during
translation. The notations are the same as in Figure 6.
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