
The Ghost Navigator: Revisiting the Hidden Vulnerability of Localization in
Autonomous Driving

Junqi Zhang1, Shaoyin Cheng1,7�, Linqing Hu1, Jie Zhang2, Chengyu Shi3, Xingshuo Han4,
Tianwei Zhang4, Yueqiang Cheng5, and Weiming Zhang1,6�

1University of Science and Technology of China, 2CFAR and IHPC, A*STAR, 3DeepBlue College,
4Nanyang Technological University,5MediaTek, 6Anhui Province Key Laboratory of Digital Security,

7Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation

Abstract
Localization is crucial for Autonomous Driving (AD), which
serves as a critical foundation impacting the performance
of downstream modules. While Multi-Sensor Fusion (MSF)
techniques enhance localization accuracy and reliability, the
security of fusion-based localization systems has emerged as
a major concern. Although existing studies have extensively
investigated security aspects of these systems, the impact of
vehicle dynamics on the effectiveness of Global Positioning
System (GPS) spoofing attacks is persistently overlooked.

Bridging this research gap, we propose the Motion-
Sensitive Analysis Framework (MSAF), which focuses on
analyzing previously underestimated dynamic behaviors of
vehicles. Our investigation demonstrates that two dynamic
scenarios, acceleration and high-speed cruising, significantly
influence the success rates of GPS spoofing attacks. These sce-
narios, commonly encountered across driving conditions, ex-
hibit heightened vulnerabilities under MSAF analysis. Build-
ing on these insights, we design two dynamics-targeted at-
tack strategies and evaluate them across three testbeds: our
simulated framework (MSAF_MSF) and two real-world MSF-
based autonomous driving systems (Apollo_MSF and Shen-
lan_MSF). The results demonstrate a significant attack effi-
ciency improvement by our method: MSAF requires substan-
tially less time to complete attacks compared to the baseline
while achieving higher success rates. Code and attack demos
are available at https://sites.google.com/view/msaf-attack.

1 Introduction

Autonomous vehicles are leading a reimagining of our modes
of mobility, marking a significant advancement in automotive
technology. Vehicle localization emerges as a fundamental
task in autonomous driving (AD), particularly in vehicles
equipped with high-level autonomous driving systems [1, 2].
The localization module, essential in determining the vehicle’s
position and orientation, serves as the primary data source
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for the entire process. Its accuracy and reliability are crucial,
directly influencing the efficacy of downstream modules such
as perception, planning, and control [3, 4].

As a crucial tool for acquiring broad global positioning
in traditional localization systems, GPS is vulnerable to sig-
nal spoofing threats [5–7]. A more robust solution is Multi-
Sensor Fusion (MSF) based localization, which leverages the
combined strengths of various sensors to improve accuracy
and resilience. By integrating observations from GPS, In-
ertial Measurement Units (IMUs), and the Light Detection
and Ranging (LiDAR) locator, MSF localization achieves a
more accurate and robust localization system [2,8,9]. Despite
these enhancements, MSF localization still shows vulnerabili-
ties to spoofing attacks under certain conditions, leading to
substantial deviations in vehicle localization [10–13]. These
vulnerabilities can induce takeover effects, wherein GPS data
dominates and inputs from the LiDAR locator are disregarded
as outliers, exposing challenges in the design of MSF systems.

Prior studies [10, 11]mainly attribute the cause of takeover
effects to factors like sensor noise and sensor update frequency,
while ignoring the impact of the vehicle’s dynamic state. Our
empirical evaluations reveal that under the combined condi-
tions of turning and acceleration, the takeover effects could
still be triggered even with minimal changes in sensor noise
and sensor update frequency. This indicates that previous anal-
ysis tends to underestimate the influence of vehicle motion
states on triggering the takeover effects. In other words, it is
insufficient to only consider scenarios where the vehicle is
assumed to be in a stable motion state.

To bridge the identified gap, we introduce a novel Motion-
Sensitive Analysis Framework (MSAF) to investigate security
vulnerabilities in localization under dynamic motion states.
This framework consists of two principal components: offline
vulnerability analysis and online exploitation. The offline
component assesses how varying motion states influence GPS
spoofing effectiveness, focusing on acceleration and high-
speed cruising scenarios (Sec. 2.2). The online component
leverages these insights to execute context-aware attacks in
simulated and real-world environments.

https://sites.google.com/view/msaf-attack


Despite these methodological advantages, three key chal-
lenges emerge in constructing MSAF: 1) The absence of
aligned motion data (IMU, GPS, and LiDAR), 2) limited avail-
ability of open-source implementations for production-grade
multi-sensor fusion architectures (particularly error correction
modules), and 3) the requirement for high-dimensional state
space decomposition encompassing 15 distinct dimensions
of position, velocity, orientation, and sensor bias parameters.
More details can be seen in Sec. 3.2.

To address the above challenges, as shown in Figure 4,
we develop a Motion Data Generator (Sec. 4.1) in the of-

fline vulnerability analysis phase, capable of generating
simulated datasets that include a variety of vehicle mo-
tion states and sensor configurations. Following this, a
Sensor Fusion Engine (Sec. 4.2) is designed to emulate the
integration process of an IMU+GPS+LiDAR fusion struc-
ture, performing essential Error State Kalman Filtering
(ESKF). This process allows us to assess the effects of
GPS spoofing under different motion states. Additionally,
a State Dependency Analyzer (Sec. 4.3) is introduced, which
utilizes noise-free simulated data to first analyze the stability
of system matrices through condition number evaluation, then
evaluate the observability ranking of critical states, and finally
quantify Kalman gain variations affecting GPS position mea-
surements in sensor fusion — systematically disentangling de-
pendencies among 15-dimensional states. Based on these of-
fline analysis results, we propose an Injector (Sec. 4.4), which
adjusts attack strategies by analyzing the vehicle’s real-time
motion state (e.g., yaw and speed) and adapting the spoof-
ing intensity to simulate precise and dynamic GPS spoofing
attacks. MSAF exposes vulnerabilities within the specific fu-
sion structure and illustrates how to strategically exploit these
weaknesses to enhance GPS spoofing attack effectiveness.

To demonstrate the effectiveness of the proposed MSAF, we
test it with three LiDAR-based fusion systems: Apollo_MSF,
Shenlan_MSF, and our MSAF_MSF. We further conduct end-
to-end attack validations on actual autonomous vehicles in
the real world. The experimental results indicate that the
conclusions drawn from MSAF are highly applicable and
effective within practical autonomous driving fusion systems.

The main contributions can be summarized below:
• Unveiling motion state impacts on MSF security analy-

sis. We identify a critical but underexplored vulnerability
in MSF localization: dynamic states, especially accelera-
tion and high-speed cruising, significantly impact the GPS
spoofing success rates. This challenges the previously held
belief about the minimal impact of varying vehicle speeds
and shifts the focus of traditional security paradigms to the
importance of vehicle motion states in MSF systems.

• Design and implementation of MSAF: a Motion-
Sensitive Analysis Framework for MSF security analy-
sis. To explore the overlooked dimension of motion state
changes, we propose and develop a prototype of MSAF,
focusing on the security analysis of fusion localization sys-

tems in autonomous driving affected by subtle variations in
motion states. Implemented on a noise-free dataset, MSAF
is designed to enhance the understanding of how differ-
ent motion states impact the GPS spoofing success rates.
The prototype and the dataset are open-sourced to support
further research in this area.

• Evaluating MSAF on the real-world vehicle. Through
comprehensive evaluations on datasets and two leading fu-
sion localization systems (Apollo_MSF and Shenlan_MSF),
we have comprehensively evaluated the effectiveness of
MSAF. The results show that MSAF significantly improves
the attack efficiency. Specifically, the success rates in the off-
road attack scenario increased from 59.5% to 82%, while
the wrong-way attacks rose from 45.5% to 73.5%. Further-
more, MSAF drastically reduces attack durations: the off-
road attack completes in an average of 16.6 seconds (± 3.6
seconds), compared to FusionRipper’s 20.2 seconds (± 12.3
seconds), and the wrong-way scenario shortens from 24.5
seconds (± 13.2 seconds) to 21.8 seconds (± 2.9 seconds).
Additionally, MSAF demonstrates the ability to conduct
GPS spoofing without an additional vehicle physically tail-
ing the victim in real time, simplifying the overall attack
mechanism and enhancing feasibility in practical contexts.

2 Background and Threat Model

2.1 Background
AD Localization and Multi-Sensor Fusion. Autonomous
driving systems critically depend on Multi-Sensor Fusion
(MSF) algorithms to achieve the precise localization required
for reliable navigation. By integrating data from LiDAR, GPS,
and IMUs, MSF algorithms compensate for individual sensor
limitations while enhancing overall accuracy [14]. LiDAR
sensors generate high-resolution 3D environmental maps cru-
cial for path planning, though their effectiveness decreases
in adverse weather and geometrically uniform areas [15, 16].
GPS provides absolute positioning but becomes unreliable in
signal-deprived environments like urban canyons [17]. IMUs
track continuous motion but suffer from error accumulation
over time [18]. This integration ensures autonomous vehi-
cles to navigate safely and efficiently, adapting to diverse and
challenging conditions.

The Kalman Filter (KF) and its variant, the Error-State
Kalman Filter (ESKF), are widely recognized for their appli-
cability in both academic and industry settings due to their
ability to estimate the state of dynamic systems with high ac-
curacy [10, 19–21]. Apollo_MSF [4], employed from Apollo
2.0 to Apollo 10.0, serves as the industry’s benchmark for
robust fusion algorithms but operates as a black-box system
with proprietary strategies. In contrast, Shenlan_MSF [22] is
open source with different fusion methods. Both systems are
based on the ESKF and show similar accuracy. The ESKF
operates by separating the state vector into a nominal state



and an error state, making it particularly well-suited for sys-
tems with Gaussian noise in linear systems [23]. At time k,
the error state δxxxk is defined by the following vehicle states:

δxxxk =
[
δpppk δvvvk δqqqk δbbbak δbbbwk

]T (1)

where δpppk, δvvvk, and δqqqk represent the position, velocity, and
orientation error states, respectively, and δbbbak and δbbbwk are the
accelerometer and gyroscope bias error states. Each of these
is a three-dimensional vector, making δxxxk a 15-dimensional
error state vector. The ESKF predicts the current error state
δxxxk from the previous error state δxxxk−1 and updates it with
new observational data. During the prediction phase, system
dynamics are used to estimate the prior error state δx̌xxk:

δx̌xxk = FFFk−1δx̂xxk−1 +BBBk−1wwwk,

P̌PPk = FFFk−1P̂PPk−1FFFT
k−1 +BBBk−1QQQkBBBT

k−1,
(2)

Here, the state transition matrix FFFk−1 characterizes how the
state evolves over time, while the input matrix BBBk−1 relates
process noise wwwk to system dynamics. The covariance matrix
QQQk captures uncertainties in system dynamics. This predic-
tion, alongside its covariance P̌PPk, reflects the anticipated sys-
tem accuracy. The subsequent correction phase adjusts these
estimates using the latest measurements yyyk with the Kalman
gain KKKk, leading to an updated δx̂xxk and P̂PPk:

KKKk = P̌PPkGGGT
k
(
GGGkP̌PPkGGGT

k +CCCkRRRkCCCT
k
)−1

,

δx̂xxk = δx̌xxk +KKKk (yyyk −GGGkδx̌xxk) ,

P̂PPk = (III −KKKkGGGk) P̌PPk.

(3)

Here, GGGk represents the observation matrix that maps the state
space into the measurement space, and CCCk is a transformation
matrix within the measurement model. The measurement
noise covariance matrix RRRk quantifies the expected accuracy
of the measurements, and III is the identity matrix. The ESKF
broadens the reach of the KF by estimating error states in
nonlinear systems, thereby overcoming its limitations and
expanding its applicability.
Security Analysis of MSF Algorithms. Analyzing the se-
curity of MSF algorithms involves considering a fundamen-
tal threat model where attackers send GPS spoofing signals
with the intent to divert the vehicle from the lane centerline.
However, the high-frequency and high-accuracy localization
provided by the LiDAR locator can mitigate the deception
attempts. Thus, attackers must exploit specific vulnerabilities
within the MSF model, specifically those model properties
that can facilitate GPS spoofing efforts. Prior studies [10, 11]
have demonstrated that attackers can successfully launch GPS
spoofing when the uncertainty associated with the LiDAR lo-
cator is high, or the uncertainty of the KF’s previous state is
significant. Attackers often begin by closely following the tar-
get vehicle, transmitting a constant spoofing signal to subtly
influence the vehicle’s trajectory. This phase aims to incre-
mentally deviate the vehicle from the lane’s centerline without

LiDAR Trajectory （Ground True）
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Figure 1: Illustration of two attack scenarios target three mo-
tion states: high-speed cruising on straight paths (S1.1->S1.2),
accelerating from a standstill on straight paths (S2.1->S2.2),
and transitioning from deceleration to acceleration in turns
(S3.1->S3.2).

triggering immediate detection by the system’s anomaly de-
tectors. Once the deviation exceeds a predefined threshold,
specifically the distance of the vehicle from the lane’s center-
line, indicating the vehicle is in a vulnerable state, attackers
then escalate their efforts to exponential spoofing.

2.2 Threat Model
Attack Goals. The attacker attempts to exploit the subtleties
of vehicular dynamics by performing GPS spoofing during
specific dynamic scenarios, aiming to deviate the vehicle to-
wards the curb or into oncoming traffic. Figure 1 showcases
two attack scenarios target three critical motion states:
1. Cruising attack. Targets vehicles during high-speed cruis-

ing on straight paths (S1.1->S1.2).
2. Acceleration attack. Targets vehicles from standstill to

acceleration on straight paths (S2.1->S2.2) and from de-
celeration to acceleration within turns (S3.1->S3.2).
These two scenarios are designed to exploit specific mo-

tion states, with the attack built around selecting the most
vulnerable motion states for effective GPS spoofing.
Attacker’s Capability. We assume that the attacker can per-
form GPS spoofing while maintaining normally distributed
signal quality, thereby evading potential detection mecha-
nisms. Additionally, the attacker can assess the target vehicle’s
motion state by utilizing advanced object-tracking techniques
(e.g., sensor fusion of camera and LiDAR data with Kalman
filtering), enabling continuous monitoring of yaw orientation
and velocity patterns. Furthermore, the attacker can exploit
the motion-sensitive vulnerabilities by either passively await-
ing or actively creating conditions when the target vehicle is



most vulnerable, such as during a standstill to an acceleration
state (S2.1->S2.2). These scenarios can be anticipated to oc-
cur naturally, or the attacker can deliberately provoke them,
for instance, by suddenly decelerating or stopping abruptly in
front of the victim’s vehicle to force it back into an accelera-
tion state.

3 Motivation and Challenges

We introduce a motivational example to demonstrate the inher-
ent vulnerabilities in MSF algorithms and the challenges of
analyzing these vulnerabilities across different motion states.

3.1 Motivation
Previous security analysis on MSF concluded that the im-
pact of IMU dynamics on the take-over effect is negligible.
However, our motivation experiment challenges this conclu-
sion. Specifically, in our experiments conducted under turning
scenarios, characterized by simultaneous changes in both ac-
celeration and angular velocity from the IMU, we observed a
16.7% chance of triggering the take-over effect, where GPS
becomes dominant and LiDAR measurements are discarded
as outliers, as illustrated in Figure 2.

Frame:732
Timestamp:1514423785.352765 LiDAR

Fusion
GPS

Frame:737
Timestamp:1514423785.853020

LiDAR
Fusion
GPS

Figure 2: Turning scenario with simultaneous changes in both
acceleration and angular velocity, showing a failed take-over
effect (left) and a successful take-over effect (right).

Our experiment builds on the two-stage attack framework
and parameters proposed in [10], where d = 0.5 and f =
1.6 were identified as the optimal attack parameters for the
baidu-64 dataset. We modified the second stage by setting the
trigger to the vehicle speed rather than lateral deviation from
the centerline. Figure 3 illustrates the dynamic interactions
between vehicle speed, spoofing offset, and lateral deviation.
The experimental results suggest that vehicle motion states,
such as acceleration, may contribute to the success rate of
GPS spoofing attacks.

Results Explanation. Previous security analysis focused
solely on positional discrepancies, thus proving insufficient
as they overlooked the impact of dynamic states on the MSF

Vehicle Speed (m/s)
Spoofiong Offset (m)
Lateral Deviation (m)

Figure 3: Trigger GPS spoofing attacks based on the speed
threshold. Green, red, and yellow curves denote vehicle speed,
spoofing signal, and vehicle lateral deviation, respectively.

model. These dynamic motion states, however, directly impact
the FFF matrix [2, 24], a key component in the prediction step
of state estimation:

FFF =


0003×3 III3×3 0003×3 0003×3 0003×3
0003×3 0003×3 FFF23 0003×3 CCCn

b
0003×3 0003×3 FFF33 −CCCn

b 0003×3
0003×15
0003×15

 , (4)

This FFF matrix incorporates key vehicle motion parameters,
such as acceleration and angular velocity. While certain ele-
ments of the FFF matrix can be approximated as constant over
short intervals, elements like FFF23 and FFF33 become critical dur-
ing significant changes in vehicle motion states and should
not be overlooked. Specifically, FFF23 captures the interaction
between Earth’s rotation and the vehicle’s acceleration, show-
ing how vertical velocity ( fU ) influences northward ( fN) and
eastward ( fE ) velocities, and vice versa.

FFF23 =

 0 − fU fN
fU 0 − fE

− fN fE 0

 , (5)

FFF33 reflects Earth’s rotation and the vehicle’s angular velocity
on its orientation. The matrix shows how angular velocity (ω)
and latitude (L) affect the vehicle’s heading.

FFF33 =

 0 ωsinL −ωcosL
−ωsinL 0 0
ωcosL 0 0

 . (6)

By affecting critical parameters like acceleration and angular
velocity, these states alter the elements of the FFF matrix.

In summary, the FFF matrix captures the interaction between
vehicle dynamics, which are crucial for accurate state pre-
diction. Analyzing FFF23 and FFF33 is key to understanding the
MSF model’s vulnerability to GPS spoofing. To further ex-
plore these dependencies, we will introduce an analytical
framework in Sec. 4 that examines the relationships between
15-dimensional states under different dynamics.



3.2 Challenges

Key challenges in building our framework include:

Challenge 1: How to mitigate sensor noise interference
in dynamic condition analysis?

Existing security analyses typically attribute the take-over
effect primarily to environmental noise. Our key challenge
lies in generating high-fidelity noise-free datasets that pre-
serve essential dynamic characteristics while eliminating
sensor noise contamination. This requires addressing two
critical requirements: First, the dataset must maintain pre-
cise temporal synchronization and physical consistency be-
tween IMU (acceleration/angular velocity), GPS measure-
ments (position/velocity), and LiDAR measurements (posi-
tion/attitudes). Second, it should comprehensively cover di-
verse motion patterns including static, constant velocity, ac-
celeration/deceleration, and turning scenarios to enable sys-
tematic analysis.

Challenge 2: How to emulate the black-box fusion struc-
ture for assessing the potential importance of velocity?

Given that real-world MSF algorithms, like those used by
Apollo, are often black-box implementations, it becomes chal-
lenging to revers-engineer comparable fusion structure with-
out access to the internal mechanisms. Even for systems like
Shenlan_MSF, which are more open-source and support vari-
ous fusion architectures, there is still no design that explicitly
incorporates velocity in the IMU+GPS+LiDAR fusion pro-
cess. Our goal is to replicate the fusion strategy of the target
system to construct an IMU+GPS+LiDAR fusion structure,
despite lacking detailed knowledge of the algorithm. This
challenge encompasses two main aspects: (1) understand-
ing and emulating the target’s fusion structure, especially
supporting fusion structures both with and without velocity
integration; and (2) ensuring that the designed fusion strategy
can effectively process the data generated in Challenge 1.

Challenge 3: How to establish quantitative metrics for
state information capacity across dynamic scenarios?

Previous studies have often downplayed the role of vehicle
speed in influencing the take-over effect, with analysis typi-
cally constrained to singular trajectories and minor variations
in motion states. To gain a nuanced understanding of how dif-
ferent trajectories impact the information capacity of vehicle
dynamics, it is imperative to develop a methodology for quan-
tifying the information capacity of various vehicle states (e.g.,
position, velocity, orientation, gyroscope bias, accelerometer
bias) within an IMU+GPS+LiDAR fusion framework. The
methodology must enable comparative analysis of state infor-
mation entropy across different motion patterns, particularly
examining velocity’s role in spoofing vulnerability during
transitional states like acceleration and turning.

4 Motion Sensitive Analysis Framework

We introduce MSAF (see Figure 4) to address the three chal-
lenges identified in Sec. 3.2 through two phases: Offline Vul-
nerability Profiling and Online Exploitation. In the Offline
Vulnerability Profiling phase, the Motion Data Generator
resolves Challenge 1 by creating noise-free sensor data across
diverse motion states, enabling robust simulation. The Sensor
Fusion Engine tackles Challenge 2 by replicating a black-
box fusion structure with velocity integration. The State De-
pendency Analyzer addresses Challenge 3 by quantitatively
analyzing state observability and matrix stability under vary-
ing dynamics. In the Online Exploitation phase, the Injector
handles Challenge 3 by dynamically identifying motion states
and simulate precise GPS spoofing attacks in real-time.

4.1 Motion Data Generator
The Motion Data Generator is designed to meticulously man-
age and integrate raw sensor data across a spectrum of motion
states, facilitating comprehensive simulations through precise
data integration and data synchronization.
Data Integration. In this step, it is challenging to simulate
the pose data for the LiDAR locator, as gnss_ins_sim [25]
primarily supports IMU and GPS data simulation. To address
this, positional and attitudinal noise is introduced to mimic
real-world inaccuracies. Position ppplidar is derived by adding
Gaussian noise nnnpos with zero mean and standard deviation
σpos to the ground truth pppgt, formulated as:

ppplidar = pppgt +nnnpos, nnnpos ∼ N (0,σ2
posIII). (7)

where ppplidar is the position of the lidar locator, pppgt is the
ground truth position, nnnpos is the noise vector with zero mean
and standard deviation σpos, and III is the identity matrix.

Orientation qqqlidar is simulated by adding rotational noise
qqqnnnrot to the ground truth orientation qqqgt, represented by:

qqqlidar = qqqgt ⊗ exp
(

1
2

σrotηηη

)
, (8)

where qqqlidar is the quaternion representing the lidar loca-
tor’s orientation, qqqgt is the ground truth quaternion, σrot is
the standard deviation of the rotational noise, ηηη is a vector
following a Gaussian distribution N (0, III), and ⊗ represents
quaternion multiplication.

To support the generation of both benign and malicious
signals, Direct Injection is applied by adding predefined devi-
ations to a vehicle’s GPS data, independent of dynamic state
assessments. For straight driving, a fixed deviation δδδstraight is
added to the GPS position:

pppgps, spf = pppgps, org +δδδstraight. (9)

In turning scenarios, deviation δδδturning with the vehicle’s head-
ing θ is used to modify the position pppgps to simulate a turn:

pppgps, spf = pppgps, org +δδδturning cos(θ), (10)
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Figure 4: Overview of the proposed Motion Sensitive Analysis Framework (MSAF).

pppgps, spf = pppgps, org +δδδturning sin(θ).

where pppgps, spf is the spoofed (spf) gps position vector, pppgps, org
is the original (org) gps position vector, δδδstraight is the fixed de-
viation for straight driving, δδδturning is the deviation for turning,
and θ is the vehicle’s heading.

Direct Injection facilitates the simulation of specific move-
ments and disruptions by adjusting GPS data, which is crucial
for detailed motion state simulations and accurate sensor data
generation under varied motion states.
Data Synchronization. This module ensures accurate timing
and alignment of sensor data, focusing on synchronizing data
from IMU (accelerometer and gyroscope), GPS (position and
velocity), and LiDAR locator (position and attitudes). By uti-
lizing GPS timestamps as the reference, this module aligns
timestamps across these sensor outputs for coherence. By em-
ploying linear interpolation for timing alignment, this synchro-
nization process markedly increases the system’s precision in
handling and amalgamating data from diverse sensors.

4.2 Sensor Fusion Engine
The Sensor Fusion Engine employs the ESKF model to in-
tegrate data from IMU, GPS, and LiDAR locator, creating
a fusion structure that combines various sensor inputs for
precise state estimation. The process involves initializing the
state, predicting using IMU data, and updating the state with
observations from GPS and LiDAR locator. Error correction
is then applied to refine the state estimates, ensuring they
align with actual observations.
Prediction. We incorporate the Earth’s model to enhance the
vehicle’s state updates, a methodology widely adopted within
high-precision integrated navigation systems to significantly
improve state estimation and control under various naviga-
tional conditions [26, 27]. The model accounts for the Earth’s

rotation (ωωωT
ie) and curvature (RN and RM), which are integral

factors in refining the vehicle’s state estimates:

ωωω
T
ie = [0,ωcosL,ωsinL], (11)

ωωω
T
en =

[
− vN

RM +h
,

vE

RN +h
,

vE tanL
RN +h

]
, (12)

where RN and RM , the prime vertical and meridian radii of
curvature respectively, are pivotal in calculating the effects of
Earth’s geometry on the vehicle’s motion. When integrated
into the system dynamics matrix FFF t in the prediction equa-
tion, they enable precise anticipation of the vehicle’s state for
accurate navigation in both linear and rotational movements.
Correction. In the correction phase, MSAF uses GPS and
LiDAR measurements to enhance the predicted states of the
vehicle. GPS provides crucial positional and velocity infor-
mation, while the LiDAR locator offers detailed insights into
position and attitude. These inputs are synthesized into the ob-
servation matrix GGG and the observation vector yyy, expressed as
yyyT = [ddd pppT

lidar dddvvvT
gps dddqqqT

lidar ddd pppT
gps]. Here, ddd ppplidar, dddvvvgps, dddqqqlidar,

and ddd pppgps represent errors in LiDAR position, GPS velocity,
LiDAR orientation, and GPS position, respectively. Subse-
quently, the Kalman Gain KKK is determined based on current
state estimates and observation data. This gain, derived from
the predicted error covariance PPP and accounting for both pro-
cess and observation noise, is essential for updating the error
state XXX . Utilizing GGG and yyy, the system identifies and corrects
discrepancies between observed and estimated values, thereby
refining the vehicle’s position, velocity, and orientation esti-
mates. The observation matrix GGG is defined as follows:

GGG =


III3×3 0003×3 0003×3 0003×6

0003×3 CCCb
n −CCCb

nVVV× 0003×6
0003×3 0003×3 III3×3 0003×6
III3×3 0003×3 0003×3 0003×6

 , (13)



where CCCb
n is the transformation matrix from navigation to body

coordinates, and VVV denotes velocity. GGG converts GPS and
LiDAR observations into refined state error estimations. The
error state vector is then reset and accumulated discrepancies
are eliminated to maintain system state estimation integrity.

4.3 State Dependency Analyzer
The State Dependency Analyzer identifies vulnerabilities in
the sensor fusion process by analyzing the numerical proper-
ties of system matrices. This includes both stability analysis
and observability analysis via singular value evaluation. Sta-
bility analysis examines the sensitivity of system matrices to
numerical perturbations through the condition number, while
observability analysis determines how well the system states,
such as position and velocity, can be inferred from sensor
data. These factors directly influence the stability and accu-
racy of the state estimation process [28–30], enabling the
identification of both ill-conditioned matrices that are sensi-
tive to perturbations and weakly observable states that could
be exploited by attackers.
System Matrix Construction. The system matrix construc-
tion process begins with the collection and integration of
process data, forming the foundation for a comprehensive
analysis. This involves accumulating system matrices GGGi and
corresponding vectors yyyi over time. Following this, the system
matrices GGGi and vectors yyyi are accumulated into a system ma-
trix QQQsom and vector yyysom, which are essential for subsequent
analysis steps. The following equations define this process:

QQQsom =
n

∑
i=1

GGGi ·FFF
(i)
accumulate, yyysom =

n

∑
i=1

yyyi. (14)

In this formulation, QQQsom and yyysom encapsulate the overall sys-
tem’s dynamics by integrating the effects of state transitions
over time through FFF(i)

accumulate, preparing the data for in-depth
analysis of system stability and observability.
Singular Value Decomposition (SVD) Processing. SVD
is crucial for revealing the internal structure of the system
matrix QQQsom. By decomposing it into UUU ·SSS ·VVV T , where UUU and
VVV represent the singular vector matrices and SSS is the diagonal
matrix of singular values, we gain insight into the system’s
stability and observability through the singular values in SSS.
Singular Value Evaluation. After obtaining the singular val-
ues, they are used for both stability and observability analysis.

Stability Analysis. The condition number κ = σmax/σmin,
calculated from the maximum and minimum singular val-
ues, reflects the system’s overall sensitivity to perturbations
[31, 32]. A higher κ indicates that the system matrix, as a
whole, is more vulnerable to numerical instability, making
it potentially exploitable by attackers. This evaluation helps
determine whether the entire system can maintain stability in
the presence of disturbances or errors.

Observability Analysis. In observability analysis, the fo-
cus shifts to the individual states of the system, such as the

vehicle’s position, velocity, and orientation. Higher singu-
lar values correspond to states that are more easily inferred
from sensor inputs, while lower values indicate states that are
weakly observable [33, 34], potentially sensitive to external
disruptions. To support this analysis, the Piecewise Constant
Systems (PWCS) method [35], widely used in dynamic sys-
tems like autonomous driving, links singular values to specific
system states, showing how the observability of each state
evolves over time. To quantify the observability of each state,
an observation matrix XXX is constructed as follows:

XXX =VVV ·SSS−1 ·UUUT · yyysom, (15)

where UUU , VVV , and SSS are derived from the SVD of QQQsom, and
yyysom represents system observations. The observability pro-
file is formed by identifying the maximum indices in XXX and
mapping the corresponding singular values to these states.

4.4 Injector
To trigger GPS spoofing attacks, we first identify the ego
vehicle’s motion states to simulate the identification of the
victim vehicle’s motion states, and then generate spoofing
data accordingly.
Motion State Identification. Identifying the vehicle’s motion
state involves assessing the yaw and speed, critical for under-
standing orientation and movement to execute GPS spoofing
attacks effectively.

Yaw Identification. Accurate determination of the yaw an-
gle from quaternion data is critical for GPS spoofing to in-
troduce lateral deviations. The yaw angle reflects the vehi-
cle’s orientation on the horizontal plane, vital for the align-
ment of spoofed GPS signals. With a normalized quater-
nion normalized_q = (qw,qx,qy,qz), the calculation of the
yaw angle ψ incorporates trigonometric equations directly:
the yaw angle is derived from sin(ψ) = 2 × (qw × qz +
qx × qy) and cos(ψ) = 1 − 2 × (q2

y + q2
z ), leading to ψ =

atan2(sin(ψ),cos(ψ)). Such precise calculations enable accu-
rate lateral adjustments in GPS spoofing, aligning the vehi-
cle’s perceived orientation with the intended direction effec-
tively.

Speed Identification. Vehicle speed is crucial for launch-
ing GPS spoofing attacks. It is determined by analyzing the
vehicle’s velocity data, which is derived from real-time mo-
tion captured by the IMU. The overall speed of the vehicle
(vvveeelll) is calculated by taking the square root of the sum of
the squares of the vehicle’s x and y velocity components:

vvveeelll =
√

xxx2
vel + yyy2

vel, where xxxvel and yyyvel represent the vehicle’s
velocity components in the horizontal plane. This method ac-
curately reflects the vehicle’s speed, which is essential for
timing GPS spoofing attacks to match specific vehicle speeds
for effective manipulation.

Understanding both the yaw and the vehicle’s speed pro-
vides a comprehensive view of the vehicle’s motion state,



aiding attackers in optimizing the timing and execution of
GPS spoofing. This ensures that the spoofed signals closely
align with the vehicle’s actual state, increasing the effective-
ness and subtlety of the attack.
Spoofing Data Generation. The underlying principle of the
injector model is designed to exploit the motion state of a
vehicle, dynamically initiating GPS spoofing when it is either
accelerating or moving at a specific speed. This approach
leverages the dynamics of the vehicle’s movement, enabling
more effective and precisely timed spoofing attacks. The re-
vised target function of the injector, which is dependent on
the vehicle’s motion state, is formulated as:

A(t) =

{
(d · f i) under certain conditions,
0 otherwise.

(16)

Here, A(t) denotes the injection sequence at time t, with
d and f as foundational parameters akin to those in Fusion-
Ripper, and i indicating the iteration number. The specific
condition for initiating the spoofing process is determined by
factors such as vehicle speed and acceleration.

For core concepts of the ESKF framework and the notation
used in MSAF design, please refer to Appendix A.5 and A.6,
which detail the error-state formulation and the mathematical
symbols employed in the MSAF architecture

5 Evaluation on Offline Vulnerability Profiling

In this section, we first identify potential attack scenarios, we
then evaluate how different motion states impact the fusion
system and influence GPS spoofing attacks. Based on these
observations, we propose two targeted attack strategies.

5.1 Identifying Potential Attack Scenarios

To systematically identify potential attack scenarios, we be-
gan by analyzing the key variables that govern the dynamics
of autonomous vehicles. The initial assessment included ve-
locity, acceleration, and the three attitude angles (Roll, Pitch,
Yaw), leading to 25 = 32 possible combinations. To refine the
model, we excluded roll, as it is not typically considered in
practical autonomous driving applications [2], and omitted up-
hill/downhill scenarios to reduce the complexity. This adjust-
ment narrowed the combinations to 23 = 8. Subsequently, we
removed implausible cases, such as scenarios involving accel-
eration changes without the corresponding velocity changes,
and disregarded highly complex cases where all variables
vary simultaneously. Through this systematic reduction, five
representative scenarios were identified, as summarized in
Table 1, with "straight_vel" encompassing both stationary and
constant velocity conditions.

Table 1: Overview of experimental synthetic scenarios.

Scenarios Vel (mps) Acc (mpss) AngVel (degps)
straight_vel 0, 1, 5, 15 0 0
straight_acc 2 0, ±0.2, 1, 2 0
turning_yaw 2 0 3, 6, 9, 12
turning_yaw_vel 1, 3, 4, 6 0 3, 9, 12, 18

Note: "±0.2" indicates acceleration at 0.2 m/s2 followed
by deceleration at 0.2 m/s2.

5.2 The Impact on the Fusion System
Here, we assess the stability of the system matrix, the observ-
ability of vehicle states, and Kalman gain variations across
different motion states to understand their impact on the sys-
tem performance. In a nutshell, we find that velocity plays a
pivotal impact on the fusion system.
Experimental Setup. We utilized noise-free data to isolate
the impact of sensor noise on the system performance. The
ESKF noise parameters, including initial, prediction, and ob-
servation noises, were set to 1.0× 10−6. The vehicle was
aligned with the y-axis, with each scenario lasting 20 seconds.
Sensor frequencies were set to 100Hz for the IMU and 10Hz
for GPS and LiDAR. Prior to the experiment, we conducted a
preliminary evaluation of MSAF’s fusion localization accu-
racy to establish a reliable baseline. Detailed results of this
evaluation are provided in Appendix A.1.

0mps 1mps 5mps 15mps
Speed

0
300
600
900

Co
nd

iti
on

 N
um

be
r straight_vel

3degps 6degps 9degps 12degps
Angular Velocity

40

50

60

Co
nd

iti
on

 N
um

be
r turning_yaw

Figure 5: Stability analysis of the system matrix.

Stability Analysis. The condition number serves as a key
metric for evaluating the system’s sensitivity to external dis-
turbances. As shown in Figure 5, in the straight_vel scenario,
the condition number of the system matrix QQQsom remains
near 0 at very low speeds but rises dramatically as the speed
increases, reaching close to 900 at 15 mps. This sharp rise
indicates that the system becomes increasingly unstable at
higher speeds. In contrast, the turning_yaw scenario shows a
more gradual decline in the condition number, from around 60
at three deg/s to approximately 40 at 12 deg/s. Compared to
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Figure 6: Observability ranking in four scenarios (refer to Table 1 for details). The top1-ranked observable motion state
corresponds to the horizontal starting point for counterclockwise rotation.

the significant changes observed in the speed-based scenario,
the variation in turning is much smaller, suggesting that the
system’s stability remains relatively consistent during turning.

Observability Analysis. Although the stability analysis
shows greater instability at higher speeds, it does not specify
which vehicle states are most affected. Therefore, we conduct
an observability analysis to evaluate each vehicle state’s per-
formance under different motion states. Figure 6 shows the
observability analysis for QQQsom across different motion states.
Radar charts represent observability in 15 state dimensions,
including position (Px, Py, Pz), velocity (Vx, Vy, Vz), attitude
(Rx, Ry, Rz), and biases in gyroscope (GBx, GBy, GBz) and
accelerometer (ABx, ABy, ABz). Key findings are as follows:

• In the straight_vel scenario, as the vehicle’s velocity in-
creases, a decrease occurs in the observability of the po-
sition dimensions (e.g., Px and Py) as well as the velocity
dimensions (Vx, Vy, Vz). In contrast, the attitude dimensions
(e.g., Rx and Rz) exhibit increased observability. This sug-
gests that higher speeds may lead to reduced position and
velocity observability but enhanced attitude observability.

• In the straight_acc scenario, higher accelerations lead to a
similar trend of decreased position observability, with Px
and Py being the most affected. This suggests that higher
accelerations lead to reduced observability of the position
dimensions, similar to the effect of increasing velocity.

• In the turning_yaw scenario, where the vehicle maintains
a steady velocity while turning, the position dimensions
(Px, Py) show only minor variations, reflecting stable posi-
tional observability. The attitude dimensions (Rx, Ry, Rz)
also show slight variations, indicating minimal changes in
orientation observability.

• In the turning_yaw_vel scenario, where the vehicle experi-
ences changes in both the turning rate and speed, we notice
a more complex interplay between the speed and observ-

ability. As the vehicle’s speed increases, the observability
for attitude dimensions, notably Rx and Rz, demonstrates an
inverse correlation, with higher speeds leading to decreased
attitude observability.
Overall, significant variations are observed in the position,

velocity, and attitude dimensions, where a decrease in the
position’s singular values at higher speeds leads to reduced
observability. In contrast, the six bias dimensions (gyroscope
and accelerometer biases) exhibit relatively minor variations.

Observation 1: The stability of the system matrix and
the positional observability decrease significantly with
high-speed cruising and acceleration.

Kalman Gain Analysis. Here, we mainly focus on
straight_acc and turning_yaw_vel scenarios due to their di-
verse motion states, ideal for studying Kalman gain trends
for GPS positioning (K(1,10)) in our MSAF model. During the
prediction phase, the error covariance increases due to system
dynamics, causing higher uncertainty in the state estimate. As
a result, the Kalman filter relies more on external measure-
ments. In the correction phase, incorporating GPS and LiDAR
measurements reduces this covariance, adjusting the Kalman
gain to reflect the system’s reliance on these measurements.
For more details, please refer to Sec. A.2.

• In the straight_acc scenario (Figure 7-top), starting from an
initial velocity of 2.0m/s and no acceleration, the Kalman
gain for position stabilizes, indicating a balanced trust in
inertial and GPS data. As acceleration increases, there is a
notable upward trend in the Kalman gain, which signifies
that the system begins to place a greater emphasis on GPS.

• The turning_yaw_vel scenario (Figure 7-bottom) captures
how the Kalman gain K(1,10) responds to changes in vehicle
speed alone, ranging from 1m/s to 6m/s. Notably, the gain
initially decreases and then subsequently increases. This



Figure 7: Kalman gain at K(1,10) in straight_acc (top) and
turning_yaw_vel (bottom) scenarios.

pattern also indicates that the system’s reliance on GPS data
adjusts in correlation to the vehicle’s speed.

Observation 2: As vehicle acceleration intensifies, a
corresponding increase in the Kalman gain is observed,
indicating a heightened dependency on GPS data.

5.3 The Impact on Constant Spoofing Attacks
To further validate Observations 1 and 2, we conducted con-
stant spoofing attacks on the synthetic dataset to observe
whether the attack outcomes vary across motion states.
Experimental Setup. We follow the setting in Sec. 5.2 to
minimize influences from sensor noise, sensor frequency, and
ESKF model noise. We perform GPS spoofing injections for
the motion states detailed in Table 1, aligning the vehicle
forward along the y-axis. By determining the yaw angle as
described in Sec. 4.4, we inject lateral deviations with five
constant offset points δa (2m) perpendicular to the yaw direc-
tion, ensuring consistent lateral injection and robust impact
assessment. In straight_acc scenarios, a single spoofing in-
stance per trajectory is injected, using a horizontal line at 0 as
the ground truth. For turning_yaw scenarios, three spoofing
instances per trajectory are introduced to explore repeated
spoofing effects at varying angular velocities.
Results. We observe two obvious effects of the velocity on
constant spoofing attacks as follows:

Deviation Amplification Effect. In straight_acc scenarios
(Figure 8-top), the deviation is stable without acceleration but
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Figure 8: Injection results in straight_acc (top), turn-
ing_yaw_vel (middle), and turning_yaw (bottom) scenarios.
Exp.Dev. denotes Expected Deviation.

increases with the vehicle acceleration. At the acceleration
of 2 m/s2, the deviation can exceed the expected values by
16.43%, showing that acceleration amplifies GPS spoofing
effects. In turning_yaw_vel scenarios (Figure 8-middle), as
the yaw rate and speed increase, the maximum deviation from
the expected offsets also rises, with up to 30.96% greater
deviation at higher speeds and sharper turns, indicating that
speed and turn sharpness amplify the deviation.

Deviation Stability Effect. In turning_yaw scenarios with a
constant speed of 2 m/s and varying angular velocities, off-
set changes remain consistent, as shown in Figure 8-bottom.
The average offset change rate is below 2%, indicating the
deviation stability despite different angular velocities. This
suggests that at steady speeds, angular velocity variations
minimally influence the GPS spoofing effects.

For a detailed analysis of the velocity convergence proper-
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Figure 9: Injection results in straight_acc scenarios without
velocity fusion.

ties and deviation results in the straight_vel scenarios, please
refer to Appendix A.3.

Observation 3: As the cruising speed and acceleration
increase, the lateral deviation becomes larger, while vari-
ations in the angular velocity have minimal effect.

Ablation Study. An ablation study was designed to inves-
tigate the role of velocity in assessing vulnerabilities. By
excluding the velocity observation from the fusion structure,
the study aimed to uncover the extent to which velocity data
impacts the Kalman filter’s susceptibility to spoofing. The re-
sults in Figure 9 show that removing the velocity observation
lead to a uniform offset increase in straight_acc scenarios,
with deviations consistently 16.68% above the expected. This
uniformity in deviations, in contrast to the varied deviations
observed when the velocity is included, highlights the crucial
role velocity plays in the fusion model.

5.4 Attack Strategies Design
In Sec. 5.2, the results show significant drops in system sta-
bility and positional observability during high-speed cruising
and acceleration phases, as indicated by Observation 1, and a
corresponding increase in the Kalman gain with vehicle ac-
celeration, indicating a heightened dependency on GPS data,
as described in Observation 2. Based on these insights, we
further validated the vulnerabilities through constant spoofing
attacks in Sec. 5.3, leading to Observation 3, which demon-
strated the system’s susceptibility to increased lateral devia-
tion under these conditions. Building on these findings, we
propose two exponential spoofing-based attack strategies tar-
geting these vulnerable states. Both strategies aim to manip-
ulate the vehicle’s trajectory, causing deviations towards the
curb (off-road) or into oncoming traffic (wrong-way).
1. Cruising attack. This strategy targets the vehicle during

high-speed cruising on straight paths, where the increased

velocity amplifies the impact of GPS spoofing. A constant
speed helps stabilize Kalman gain dynamics, minimizing
the disturbances and enabling attackers to precisely ma-
nipulate the spoofing effect.

2. Acceleration attack. This strategy targets two dynamic
phases: (1) when the vehicle accelerates from a standstill
on straight paths and (2) during the transition from de-
celeration to acceleration within turns. These phases are
particularly vulnerable due to the system’s transition from
stability to dynamic changes, making it more susceptible
to lateral deviations as the Kalman gain adjusts gradually.

6 Evaluation on Online Exploitation

6.1 Simulation Accuracy

We compare the attack results of MSAF under simulated data
with those of Apollo_MSF under real-world data. This com-
parison aims to verify whether the black-box Apollo_MSF
exhibits the same property identified in Observation 3, specif-
ically that higher cruising speeds result in larger lateral devi-
ations under the same level of GPS spoofing input. Further-
more, it aims to evaluate MSAF’s capability of predicting
actual lateral deviations.
Experimental Setup. In the real-world scenario, the vehicle
cruises at constant speeds of 0.5, 1.5, 2.5, 3.5, and 4.5 m/s
along a fixed straight path. For the simulation, we generate
data at the same speeds using MSAF. We set the IMU and
GPS velocity sampling rates as 100 Hz, and GPS position
and LiDAR rates as 5 Hz. The GPS and LiDAR measure-
ment uncertainty is fixed to minimize the dynamic noise. We
feed the real data into Apollo_MSF, and simulated data into
MSAF. The attack is triggered at a specific coordinate using
exponential spoofing (d=0.05, f=1.1) lasting 10 seconds, with
each scenario repeated 50 times for consistency. LiDAR is
used as ground truth, and lateral deviation is calculated by
comparing MSF and LiDAR outputs.
Results. The results are shown in Figure 10, confirming that
Apollo_MSF demonstrates the expected trend, where higher
cruising speeds lead to larger lateral deviations. MSAF effec-
tively predicts these deviations, with an average prediction
error of 1.33%, as shown in Table 3. These results indicate
that MSAF’s prediction error is highly consistent with that of
the black-box Apollo_MSF across different speeds.

6.2 Attack Effectiveness

We systematically evaluate the proposed attack strategies
across multiple LiDAR-based fusion models and datasets,
as shown in Table 2. Our primary goal is to verify the success
rates of both acceleration and cruising attack under various
motion states, confirming that the vulnerabilities identified
earlier are indeed exploitable in practice.



Table 2: Success rate of two attack strategies under different attack parameters. The number in parentheses following each
scenario indicates the total instances of that scenario within the dataset.

Attacked
MSF Dataset Scenario Attack Param Acceleration attack Cruising attack

d f Off-Road Wrong-Way Off-Road Wrong-Way

Apollo_MSF

Baidu-64 acceleration(3) 0.2 1.2 98% 92.7% - -
constant(3) 0.1 1.2 - - 91% 85%

Baidu-128 acceleration(2) 0.1 1.2 100% 100% - -
constant(1) 0.1 1.2 - - 100% 100%

MSAF-32 acceleration(5) 0.1 1.2 100% 100% - -
constant(4) 0.1 1.2 - - 100% 100%

Shenlan_MSF
KITTI-64 acceleration(8) 0.2 1.2 100% 100% - -

constant(1) 0.2 1.2 - - 100% 100%

MSAF-32 acceleration(5) 0.2 1.2 100% 100% - -
constant(4) 0.2 1.2 - - 100% 100%

MSAF_MSF MSAF-Sim acceleration(5) 0.1 1.01 100% 100% - -
constant(5) 0.1 1.01 - - 100% 100%
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Figure 10: Lateral deviations for real-world (Apollo_MSF)
and simulated (MSAF) conditions at different speeds.

Table 3: Prediction error of MSAF at different velocities.

Velocity (m/s) 0.5 1.5 2.5 3.5 4.5 Average
Error (%) 1.92 0.85 2.80 0.84 0.22 1.33

Experimental Setup. For all datasets, data beyond ±2 stan-
dard deviations were filtered out to obtain a more stable spoof-
ing signal. The minimum value within the range of mean
minus 2 standard deviations was then selected as the position
uncertainty. Given variations in LiDAR uncertainty across
scenarios, we applied basic exponential spoofing in both ac-
celeration and constant-speed cases to find the optimal spoof-
ing point. We tested spoofing points starting from d = 0.1,
f = 1.1, with an increment of 0.1. Each point was spoofed 10
times, and the one with the highest success rate was chosen
as the optimal point and parameters. Finally, 100 spoofing
attempts were performed at the optimal point with the best
parameters, and the success rate was recorded. The off-road
and wrong-way attack goals were set to 0.895m and 2.405m,
respectively, consistent with [10].

Results. In the experiments, our proposed attack strategies
showed high success rates. For the Apollo_MSF model on the
Baidu-64 dataset, the acceleration strategy achieved a 98%
success rate for off-road attacks and 92.7% for wrong-way
attacks, while the constant-speed strategy achieved 91% and
85% success rates, respectively. On the Baidu-128 dataset,
both strategies reached 100% for all attack types. For Shen-
lan_MSF and MSAF_MSF, the success rates were consis-
tently 100% across all datasets and scenarios, demonstrating
the effectiveness of our proposed strategies.

6.3 Attack Robustness

GPS spoofing attacks require exploiting vulnerabilities dur-
ing critical phases, such as when the lateral offset exceeds a
threshold [10], or during acceleration and high-speed cruis-
ing identified by MSAF. Delays caused by sensor noise and
the attacker’s reaction time can significantly affect both the
timing and overall effectiveness of the attack.
Error Sources and Modeling. We refer to the work of [10]
to model localization and uncertainty errors, identifying three
main sources: 1) localization error σ1 from the attacker’s self-
localization, 2) distance measurement error σ2 from LiDAR
sensors, and 3) GPS receiver error σ3, representing the de-
viation between intended and actual GPS positions. These
errors follow a combined normal distribution N(0,0.0582)
for the total position error σpos. In addition, measurement
uncertainty σvar is set to 0.008 based on real-world data. Be-
yond these sources of inaccuracy, we also account for the
attacker’s reaction time, which introduces further timing un-
certainty. According to the U.S. Federal Highway Administra-
tion (FHWA), typical driver reaction times range from 0.75 to
1.5 seconds [36], while research by the Visual Expert indicates
a range of 0.7 to 1.5 seconds [37]. Based on these findings,
we derive an average reaction time of 1.1 seconds with a stan-



no error 1 × 2 × 3 ×
Applied Error Amount ( = { pos, var, time})

60

80

100

Su
cc

es
s R

at
e 

(%
)

96.8%

90.3%
87.2%

78.3%

92.3%

84.3%
80.8%

76.8%

Off-Road Attack
Wrong-Way Attack

Figure 11: Attack success rates on the Baidu-64 dataset under
varying spoofing inaccuracies and reaction time errors.

dard deviation of 0.2 seconds. This models potential delays
in triggering the attack, incorporating more realistic timing
uncertainties into the spoofing process through σtime.
Experimental Setup. We apply the aforementioned error
distributions to evaluate the robustness of MSAF, incorpo-
rating localization errors from [10] and timing uncertainties
introduced by MSAF. For each GPS input, localization errors
are sampled from N

(
0,σ2

pos
)
, with directions uniformly dis-

tributed (0-360 degrees), and measurement uncertainties are
drawn from N

(
0,σ2

var
)
. The attack is then triggered with a

delay sampled from N (1.1,0.2) to represent real-world reac-
tion times. We also evaluate 2× and 3× error amounts to test
robustness. Each scenario is repeated 200 times for reliability.
Results. Figure 11 shows that the off-road and wrong-way
attack success rates remain high even under increased error
amounts. Without error injection, the success rates are 96.8%
and 92.3%, respectively. When normal errors (1 × σ) are
applied, the rates decrease slightly to 90.3% and 84.3%. Even
with tripled errors (3×σ), the attacks maintain robust success,
with the rates of 78.3% and 76.8%.

6.4 Attack Comparison
We compare MSAF with the existing method FusionRipper
[10] on the Baidu-64 dataset, focusing on both attack success
rates and durations. This comparison allows us to clarify
the respective strengths of these two approaches and further
evaluate how MSAF improves upon prior work.
Experimental Setup. We adopted the optimal parameters
reported for FusionRipper, d = 0.6 and f = 1.5, while for
MSAF, we used d = 0.1 and f = 1.2. MSAF triggered the
attack at random points during one of three acceleration or
three cruising phases on the map, using exponential spoofing.
In contrast, FusionRipper initiated its two-phase spoofing
attack from random points on the map. Since both methods
were tested using simulated GPS signals, we incorporated the
maximum error values (3σ) derived from Sec. 6.3 to better
approximate real-world conditions.
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Figure 12: Comparison of attack durations.

Comparison of Attack Success Rates. Table 4 summarizes
the success rates for off-way and wrong-way attack scenarios.
MSAF demonstrated higher effectiveness, achieving success
rates of 82.0% for off-way attacks and 73.5% for wrong-
way attacks. In comparison, FusionRipper achieved lower
success rates, with 59.5% in the off-way scenario and 45.5%
in the wrong-way scenario. These results highlight MSAF’s
improved capability to induce substantial vehicle deviations.

Table 4: Comparison of attack success rates

Method Off-way (%) Wrong-way (%)
MSAF 82.0 73.5

FusionRipper 59.5 45.5

Comparison of Attack Durations. Figure 12 highlights the
clear advantage of MSAF compared to FusionRipper in terms
of both efficiency and consistency in attack durations. The
attack durations for MSAF are not only shorter but also more
concentrated, with no instance exceeding 32 seconds. Specif-
ically, MSAF achieved mean durations of 16.6 seconds for
off-road attacks and 21.8 seconds for wrong-way attacks, with
relatively small standard deviations of 3.6 and 2.9 seconds,
respectively. In contrast, FusionRipper displayed significantly
longer and more variable attack time, with mean durations
of 20.2 seconds for off-road attacks and 24.5 seconds for
wrong-way attacks, coupled with much higher standard de-
viations of 12.3 and 13.2 seconds. FusionRipper’s attack du-
rations occasionally extended to nearly 80 seconds, under-
scoring the method’s unpredictability and reliance on more
extended spoofing phases, whereas MSAF consistently main-
tained more efficient and reliable attack durations.



6.5 End-to-End Vehicle Evaluation

Prior experiments focused on the impact on the localization
module, uncovering and exploiting vulnerabilities under dif-
ferent motion states. However, they did not fully account for
how the vehicle’s dynamic responses and control strategies
could affect the success of GPS spoofing attacks. To address
this gap, this section extends the scope of evaluation to in-
clude the entire vehicle system, encompassing perception,
positioning, planning, and control modules. By conducting ex-
periments on actual autonomous vehicles, we aim to confirm
the practical effectiveness of our attack methods on real-world
autonomous vehicles.

Figure 13: Pix hooke chassis with Apollo 6.0 Edu platform.

Experimental Setup. As depicted in Figure 13, our au-
tonomous vehicle is equipped with a 32-line LiDAR, Huace
CGI-410 INS, and a Nuvo-8111 industrial PC with an Intel
Core i9-9900K CPU, NVIDIA RTX 3060 GPU, 32GB RAM,
and 1TB SSD, integrated with Pix Hooke Chassis and Apollo
6.0 Edu Platform. We evaluate the autonomous driving sys-
tem’s response to GPS spoofing at the speeds ranging from 1
m/s to 4 m/s across various scenarios, including straight-line
driving, turns, and start-up acceleration.

Results. As shown in Figure 14, the end-to-end evaluation,
encompassing startup and turning scenarios, demonstrated
the successful execution of lateral GPS spoofing attacks, com-
pelling the vehicle to collide with obstacles on either side
of the road. These findings unequivocally show that MSAF
can effectively compromise the security of autonomous ve-
hicles by exploiting motion-sensitive vulnerabilities in the
localization module.
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Figure 14: The vehicle strikes the curb after a GPS spoofing.

7 Limitations and Defense Discussions

7.1 Limitations
Simulation Constraints. We adopted a white-box approach
to analyze vulnerabilities within the ESKF fusion structure,
allowing us to examine both the design parameters and the
internal state updates in detail. However, due to legal con-
straints, we did not conduct genuine GPS spoofing. Instead,
we introduced perturbations and delays into the spoofing sig-
nals to more closely simulate real-world conditions.

Speed Testing Limitations. Although our simulations
tested speeds ranging from 0 to 60 m/s, which exceed Apollo’s
default city road limit of 15.67 m/s, the Pix chassis used for
physical experiments is limited to a maximum of 4.5 m/s. As
a result, higher speed tests were not feasible in our current
setup. Therefore, exploring tests at higher speeds remains a
valuable direction for future research.

7.2 Defense Discussions
Algorithm-Level Defenses. Algorithm-level state monitor-
ing could be used to track changes in MSF’s internal states
over time, detecting anomalies indicative of an attack. How-
ever, such defenses may exhibit limited effectiveness against
attacks employing gradual accumulation of subtle perturba-
tions. The persistent nature of such low-magnitude manipu-
lations poses detection challenges through state monitoring
alone, particularly when compared to more aggressive ap-
proaches characterized by sudden parametric mutations over
short periods.

System-Level Defenses. By detecting position discrepan-
cies between LiDAR and GPS, the system can flag incon-
sistencies in localization, providing an additional layer of



verification. System-level defenses enhance the resilience be-
cause errors or manipulations in one sensor type (e.g., GPS
spoofing) can be detected through cross-validation with other
independent sensors, such as the LiDAR locator. This redun-
dancy may improve the overall security and reliability of the
autonomous system against GPS spoofing attacks.

8 Related Work

Sensor Spoofing Targeting LiDAR. Cao et al. [38] devel-
oped a method for attackers to synchronize a photodiode with
a LiDAR, creating deceptive points in the point cloud. Tu
et al. [39] explored the creation of adversarial 3D objects
to mislead LiDAR systems. These objects, however, are no-
ticeable due to their unique shapes and placements. Zhu et
al. [40] focused on identifying crucial adversarial positions in
physical space, aiming to deceive LiDAR systems more effi-
ciently. Jin et al. [41] designed a physical laser attack against
LiDAR-based 3D object detection. These studies primarily
concentrate on single-sensor deception strategies targeting
LiDAR in autonomous driving systems, overlooking the com-
plexities involved in multi-sensor fusion positioning tasks that
incorporate LiDAR.

Sensor Spoofing Targeting IMU. In the realm of IMU
spoofing, two main types of attacks are identified. Trippel et
al. [42] exposed the susceptibility of MEMS accelerometers
to malicious acoustic interference, leading to compromised
linear and angular velocity data. Ji et al. [43] used acoustic
waves to affect the gyroscope sensors in cameras, causing
motion blurs and thus disabling object detection. Similar to
the studies on LiDAR deception, research on IMU spoofing
predominantly focuses on attacks against individual sensors
and does not address the challenges in scenarios involving the
fusion of multiple sensors.

Security Analysis on Sensor Fusion Model. Nashimoto
et al. [44] explored the vulnerabilities of an Attitude and
Heading Reference System (AHRS) under signal injection at-
tacks, demonstrating significant security risks in systems that
fuse data from multiple sensors, notably in inclination mea-
surements. This work suggests new directions for bolstering
the security of sensor fusion systems. Shen et al. [10] devel-
oped FusionRipper, a technique for identifying and exploiting
vulnerabilities in LiDAR-based ESKF systems, combining
theoretical analysis with simulation experiments to pinpoint
critical weaknesses, such as LiDAR locator uncertainty and
ESKF initial state uncertainty. Chang et al. [11] found that the
sensor update frequency significantly affects the success of
GPS spoofing attacks, corroborating FusionRipper’s premises.
However, vulnerabilities were deemed more critical in steady
states, indicating the IMU’s limited role in initiating takeover
effects. Kim et al. [45] systematically analyzed the prereq-

uisites and quantified the real-world hardness of conducting
various sensor attacks against robotic vehicles, revealing pre-
viously unknown root causes stemming from design flaws in
the fail-safe logic.

9 Conclusion

This study reveals a critical vulnerability in autonomous vehi-
cle localization systems: the significant correlation between
vehicular motion states and GPS spoofing effectiveness. Our
proposed Motion-Sensitive Analysis Framework (MSAF) es-
tablishes a new paradigm for analyzing security risks in multi-
sensor fusion systems, demonstrating how transitional states
like acceleration and high-speed cruising create attack sur-
faces overlooked by conventional security analysis models.
Experimental validation through comprehensive testing on
real-world systems demonstrates MSAF’s capability to sig-
nificantly reduce attack success duration and increase attack
success rates in operational scenarios. These findings neces-
sitate the integration of dynamic state analysis into security
evaluation frameworks, particularly during motion state transi-
tions where sensor fusion vulnerabilities become exploitable
in autonomous driving systems.

Ethical Considerations

Ethical Conduct and Disclosure. This work utilized pub-
licly accessible autonomous driving platforms and related
academic papers to conduct a comprehensive security anal-
ysis. Detailed information on design vulnerabilities, attack
methodologies, and experimental findings was responsibly
communicated to the developers of the affected autonomous
driving system prior to the public release of our results. This
proactive disclosure aimed to facilitate the mitigation of po-
tential security issues. All datasets employed in our real-world
experiments were obtained through open and legitimate chan-
nels. While assessing the effectiveness of the attacks on actual
vehicles, we abstained from performing real GPS spoofing.
Instead, we used simulated spoofing signals injected into the
original data within a controlled environment, ensuring that
there was no interference with surrounding satellite signals, a
risk typically associated with traditional GPS spoofing.

Safety Protocols and Risk Mitigation. During the data
collection phase in real-world settings, we strictly adhered to
established safety protocols to mitigate potential risks. The
attack tests were conducted on newly constructed roads within
our research institute, which were not yet open to the public,
thereby avoiding any impact on the general population. To
prevent unauthorized vehicle entry into the experimental area,
conspicuous traffic cones and warning signs were placed 100
meters after the test section. All experimental activities were



overseen and executed by trained personnel, ensuring the
highest standards of safety and procedural reliability.

Compliance with Open Science Principles. We uphold
the principles of open science, emphasizing transparency,
reproducibility, and collaborative research. To support fur-
ther research and allow for independent validation by the
scientific community, we have open-sourced the complete
MSAF codebase along with the generated simulated datasets.
These resources, including the code and experimental videos,
are available at https://sites.google.com/view/msaf
-demo. By providing these materials, we aim to contribute
valuable tools for advancing the understanding and mitigation
of security challenges in autonomous driving systems.
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A Appendix

A.1 Fusion Precision Evaluation
For vulnerability analysis, it is crucial to have a robust fu-
sion localization simulation framework that can reflect the
real-world conditions. This section examines the precision of
MSAF’s fusion localization, comparing its accuracy across
various simulated noise levels and real-world conditions.

Experimental setup. We evaluate MSAF’s localization ac-
curacy using both simulated and real-world data. The sen-
sor frequencies are configured as 100 Hz for IMU and GPS,
and 10 Hz for LiDAR, while GPS position operates at 5 Hz.

The simulated scenarios include straight and turning trajecto-
ries across three noise levels: noise-free, high-accuracy, and
middle-accuracy. For the middle-accuracy configuration, the
IMU and GPS noise parameters are calibrated to replicate
the stochastic characteristics of the integrated navigation sys-
tem employed in the experimental vehicle, as described in
Section 6.5. For straight scenarios, the system maintains a
constant speed of 3 m/s, while in turning scenarios, it operates
at 3 m/s with an angular speed of 3 deg/s. Each experiment
lasts 40 seconds, with the initial 3 seconds excluded to ensure
data reliability and account for the Kalman-filter convergence
period. For both simulated and real-world datasets, we use the
open-source evaluation framework evo [46] to assess the Rel-
ative Pose Error (RPE). We calculate the Root Mean Square
Error (RMSE) by comparing our results to the ground truth
data formatted in the style of the KITTI dataset. The results
can be found in Table 5.

Table 5: MSAF localization accuracy across different noise
levels in two conditions

Case Noise-free(m) High(m) Mid(m) Real-World(m)
Straight 4.0×10−6 8.8×10−3 3.7×10−2 4.4×10−2

Turning 7.2×10−5 8.4×10−3 3.7×10−2 2.0×10−2

Results. In both simulated and real-world cases, MSAF
demonstrates similar localization performance. The accuracy
in the simulated environment with the middle-accuracy noise
setting closely aligns with the results from the real-world test.
These findings emphasize the consistency and reliability of
MSAF across both simulated and real-world conditions.

A.2 Dynamics of Error Covariance
Figure 15 illustrates the error covariance P00 at 10 seconds
for straight_vel scenarios. Here, P00 is the first element of
the 15x15 error covariance matrix P, representing the uncer-
tainty in the x-axis position estimate. Notably, in the cor-
rection phase (red squares), the error covariance decreases
compared to the prediction phase (blue circles), demonstrat-
ing the Kalman filter’s effectiveness in reducing uncertainty
by incorporating GPS and LiDAR measurements. However,
despite this reduction, P00 still shows an increasing trend with
higher velocities, highlighting the persistent need for sensor
measurements to counteract the growing internal uncertainty
at higher speeds.

A.3 Dynamics of Velocity-Offset
When the vehicle cruises at a uniform speed, a higher velocity
correlates with a more substantial offset. Specifically, exceed-
ing speeds of 15 m/s results in offsets exceeding the expected
value by 15.46%, as demonstrated in Figure 17. Following
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Figure 15: Error covariance P00 in prediction (blue) and cor-
rection (red) phases at 10 seconds in straight_vel scenarios.

this observation, as the vehicle speed steadily increases and
exceeds 15 m/s, the offset growth rate decelerates, eventually
stabilizing around 16% above the expected value, as demon-
strated in Figure 16.
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Figure 16: The offset initially increases with speed but begins
to converge around 15 m/s, stabilizing at approximately 16%
above the expected value.

A.4 Ablation Study of Parameter Effects.
Ablation experiments were performed to evaluate the impact
of attack parameters relative to attack strategies on the efficacy
of GPS spoofing. Parameters were strategically chosen to
include FusionRipper’s three optimal sets [10] and our best-
performing parameters. Additionally, an intermediate set with
d = 0.2 and f = 1.3 was evaluated to bridge the gap between
the two extremes and observe its effect on attack success.
These selections aimed to explore the range of positional
offsets an attacker might attempt to inject. The parameters
were tested in real-time against two distinct scenarios, with
results presented in Figure 18.
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Figure 17: Injection results in straight_vel scenarios
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Figure 18: Success rate under different attack parameters.

The results distinctly show that FusionRipper’s optimally
selected parameter sets did not achieve any success, recording
a 0% success rate across both strategies. In contrast, our opti-
mally selected parameters accomplished a 100% success rate
in each scenario. The aforementioned intermediate param-
eter set achieved a success rate of 46.6%, underscoring the
nuanced influence of parameter adjustments. These findings
highlight the importance of selecting a minimal initial offset
to enable the ESKF to smoothly adapt to GPS data deviations,
which can lead to more effective and stealthy spoofing attacks.

A.5 ESKF process
Under the Error-State Kalman Filter (ESKF) framework, data
from the IMU, GPS, and LiDAR locator are integrated into a
unified estimation process to improve the inferred accuracy
of vehicle pose and velocity. Unlike traditional Kalman filters,
the ESKF explicitly models and tracks the error terms of key
states, such as position, velocity, and orientation. This design
better manages drift and accumulated errors when fusing both
high-frequency and low-frequency sensor measurements. As
illustrated in Fig. 19, the ESKF simultaneously uses high-
frequency accelerations and angular velocities from the IMU
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Figure 19: Dataflow of ESKF-based sensor fusion engine

for prior state prediction, and less frequent but more precise
observations from GPS and LiDAR for state correction, ulti-
mately achieving a smooth yet reliable state estimation.

In practical execution, the ESKF proceeds in five main
steps: (1) GPS and LiDAR sensors provide 12 degrees of
freedom (DOF) observations—including position p, velocity
v, and orientation q—along with the corresponding observa-
tion noise R, serving as a high-accuracy reference for sub-
sequent corrections; (2) the IMU outputs accelerations and
angular velocities, which drive the prior state prediction step
based on the previous state and system motion model; (3)
the predicted state is compared against sensor measurements,
yielding the residual y; (4) the Kalman filter incorporates this
residual, as well as process noise Q and observation noise
R, to update the error state δx̂, thereby correcting any drift
and uncertainty accumulated during the prediction phase; (5)
finally, the corrected error state δx̂ is fed back into the prior
estimate to obtain the posterior estimates of position p, veloc-
ity v, and orientation q. By iterating this predict–correct cycle,
the ESKF suppresses accumulative error and achieves real-
time, high-precision estimation of vehicle motion in dynamic
environments.

A.6 List of Symbols

Table 6 provides an overview of the primary notation em-
ployed in the ESKF model and the corresponding vulnerabil-

Table 6: Notations in ESKF Model and Vulnerability Analysis

Stage Notation Description

ESKF

δxxx Error state (errors in ppp,vvv,qqq,bbba,bbbw)
BBB Control input matrix
FFF State transition matrix
QQQ Covariance matrix of process noise
RRR Covariance matrix of observation noise
PPP Error covariance
KKK Kalman gain
GGG Observation matrix

Analysis

ωωω Earth’s angular velocity
δδδ Spoofing offset

QQQsom Accumulated observation matrix
yyysom Accumulated observation vector
UUU ,VVV SVD singular vector matrices

SSS SVD singular value matrix
XXX Observation matrix

ity analysis. It details both the variables central to the filtering
process and the key parameters used to evaluate adversarial
spoofing scenarios, offering a concise reference for under-
standing the mathematical framework of MSAF.
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