
1

δ-SCALPEL: Docker Image Slimming Based on
Source Code Static Analysis

Jiaxuan Han*, Cheng HuangB, Member, Jiayong Liu, and Tianwei Zhang, Member

Abstract—Containerization is the mainstream of current soft-
ware development, which enables software to be used across plat-
forms without additional configuration of running environment.
However, many images created by developers are redundant and
contain unnecessary code, packages, and components. This excess
not only leads to bloated images that are cumbersome to transmit
and store but also increases the attack surface, making them
more vulnerable to security threats. Therefore, image slimming
has emerged as a significant area of interest. Nevertheless,
existing image slimming technologies face challenges, particularly
regarding the incomplete extraction of environment dependencies
required by project code. In this paper, we present a novel
image slimming model named δ-SCALPEL. This model employs
static data dependency analysis to extract the environment
dependencies of the project code and utilizes a directed graph
named command link directed graph for modeling the image’s
file system. We select 30 NPM projects and two official Docker
Hub images to construct a dataset for evaluating δ-SCALPEL.
The evaluation results show that δ-SCALPEL is robust and can
reduce image sizes by up to 61.4% while ensuring the normal
operation of these projects.

Index Terms—Docker image, Image slimming, Static code
analysis, Data dependency analysis, Command link directed
graph.

I. INTRODUCTION

AS a lightweight virtualization technology designed to
create isolated environments, containers differ from vir-

tual machines (VMs) by relying on process-level isolation
rather than operating system-level resource isolation [1]–[3].
Docker [4], as a mainstream tool for creating containers,
has developed rapidly in recent years. Its advantage lies in
allowing developers to package various applications and their
dependencies into Docker images, which can then be installed
and run on any physical device, such as Linux or Windows
devices, to achieve virtualization. This allows applications
to be completely decoupled from the underlying hardware,
enabling flexible migration and deployment between physical
machines [5], [6]. As a result, engineers are freed from
complex environment configurations, significantly improving
the efficiency and reducing potential risks during deployment
[7].

*This work was completed by the author when he was a visiting student
at Nanyang Technological University.

Jiaxuan Han, Cheng Huang (corresponding author), and Jiayong Liu
are with School of Cyber Science and Engineering, Sichuan University,
Chengdu 610207, Sichuan, China (e-mail: zhanSxDrive30i@gmail.com, op-
codesec@gmail.com, ljy@scu.edu.cn).

Tianwei Zhang is with College of Computing and Data Sci-
ence, Nanyang Technological University, Singapore 639798 (email: tian-
wei.zhang@ntu.edu.sg).

Docker Hub1 is one of the most popular Docker image
registries. Similar to open-source package repositories like
NPM2, Maven3, and PyPI4, it provides a centralized platform
where users can access, share, and distribute Docker images
published by developers [8]–[10]. In the software development
process, developers can define the image-building process
using a Dockerfile and specify the base image with the FROM
instruction. During the image building, Docker downloads the
specified base image from Docker Hub and then builds the
image according to the user’s requirements based on that base
image [11], [12].

Although users can extend a base image to build one that
meets the project’s operational requirements, the resulting
image may include redundant resources, wasting server storage
space and potentially introducing security risks [13], [14].
Image configuration defects, as highlighted by NIST SP 800-
190 (Application Container Security Guide) [15], are a core
container security risk. The presence of non-essential compo-
nents can expose containers to unnecessary network threats.

For example, in Fig. 1, a Dockerfile is used to extend
the base image node:latest as the environment for the
run.js file. We use the Dive5 tool to inspect the built image
and find that it mainly contains two parts: the base environment
part and the project code part. The base environment part takes
up 1.1 GB, while the project code part only occupies 319
B. The inspection result shows that there is a great waste of
resources in the image extended from the base image. At the
same time, we analyze the detail page6 of the node:latest
image on Docker Hub and find that it introduces vulnerable
Git and Python environments in the third layer, even though
these environments are not required for the project code.
Therefore, it is crucial to remove redundant binaries, com-
mands, and privileges to reduce storage waste and minimize
the attack surface.

The key of image slimming is how to determine the
necessary environment for the project code. DockerSlim is
a popular tool for reducing the Docker image size [16]. It
creates a temporary container for the target image and hooks
key files in the container’s file system to identify the necessary
environment for running the container. This allows for the

1https://hub.docker.com/
2https://www.npmjs.com/
3https://mvnrepository.com/
4https://pypi.org/
5https://github.com/wagoodman/dive
6https://hub.docker.com/layers/library/node/latest/images/sha256-eb5bb667

442cadcd1bb8e6b3d44b2d11bbc5beb280db7f022872d33177b61ca1?context
=explore

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

https://hub.docker.com/
https://www.npmjs.com/
https://mvnrepository.com/
https://pypi.org/
https://github.com/wagoodman/dive
https://hub.docker.com/layers/library/node/latest/images/sha256-eb5bb667442cadcd1bb8e6b3d44b2d11bbc5beb280db7f022872d33177b61ca1?context=explore
https://hub.docker.com/layers/library/node/latest/images/sha256-eb5bb667442cadcd1bb8e6b3d44b2d11bbc5beb280db7f022872d33177b61ca1?context=explore
https://hub.docker.com/layers/library/node/latest/images/sha256-eb5bb667442cadcd1bb8e6b3d44b2d11bbc5beb280db7f022872d33177b61ca1?context=explore

2

function main() {
 console.log('Hello, World!');
}

main();

1
2
3
4
5

run.js

FROM node:latest
RUN mkdir -p /opt/target-project
COPY ./node-test /opt/target-project
WORKDIR /opt/target-project
CMD ["node", "run.js"]

1
2
3
4
5

Dockerfile

Build

Image

Consists of

Import

Pull

Docker Hub Image Detail Page

Consists of

Fig. 1: An example of security risk caused by image resource
redundancy.

const net = require('net');
const { exec } = require('child_process');

const server = net.createServer((socket) => {
 socket.on('data', (data) => {
 const targetPath = data.toString().trim();

 // Execute the system command 'ls'
 // to get a list of files under the target path.
 exec(`ls ${targetPath}`, (error, stdout, stderr) => {
 socket.write(`File List:\n${stdout}\n`);
 });
 });
 socket.on('end', () => {});
});

const PORT = 5000;
server.listen(PORT, () => {});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

const net = require('net');
const { exec } = require('child_process');

const server = net.createServer((socket) => {
 socket.on('data', (data) => {
 const targetPath = data.toString().trim();

 // Execute the system command 'ls'
 // to get a list of files under the target path.
 exec(`ls ${targetPath}`, (error, stdout, stderr) => {
 socket.write(`File List:\n${stdout}\n`);
 });
 });
 socket.on('end', () => {});
});

const PORT = 5000;
server.listen(PORT, () => {});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

System Environment: bash, ls, apt, etc.

Depends on

Client

Conn

targetPath: /usr

Server

File List:

/bin

/lib

/sbin

...

Container
Entrypoint: node server.js

Fig. 2: An example that the code needs to depend on the
system environment.

exclusion of content irrelevant to the project code, enabling
efficient image slimming. The advantage of DockerSlim is that
it can reduce the image size by up to 30 times without altering
anything in the image. However, DockerSlim also exhibits two
limitations:
Limitation 1: The extraction of the necessary environment
for the project code operation is incomplete. Since Docker-
Slim determines the required system environment based on the
runtime behavior of the project code, like many dynamic pro-
gram analysis techniques, it still faces the issue of incomplete
code coverage [17]–[20]. Fig. 2 is an example that the code
needs to depend on the system environment. When the server
is running, it first starts listening. Upon receiving a client
connection, it calls the exec API (Application Programming
Interface) to execute the system command ls that retrieves the
file list from the folder specified by the client and returns the
results. When using the DockerSlim tool to slim this container,
since there is no client connection, the code from lines 5 to
14 will not be executed. As a result, the project’s dependency
on the system command ls cannot be detected, leading to the
project code not running properly in the slimmed container.

Fat Image

Slim Image

Not In

Running error

The Node.js base environment

was mistakenly deleted.

The target project code was

mistakenly deleted.

Fig. 3: An example of project code operation failure caused
by image slimming using DockerSlim.

Limitation 2: It is necessary to explicitly give the entry
point of the image. This limitation is also due to DockerSlim’s
reliance on the project’s runtime behavior. As shown in Fig.
3, when the image is built, the commands to be executed
at runtime (i.e., the container entry point) are not explicitly
specified. As a result, DockerSlim cannot identify the system
environment required by the project code, leading to the erro-
neous removal of the Node.js base environment and the project
code, which affects the normal operation of the container.

In order to solve these two limitations, we adopt static code
analysis technology to extract the environment dependencies
of the project code. We propose a novel Docker image slim-
ming model, δ-SCALPEL. δ-SCALPEL extracts environment
dependencies through static data dependency analysis of the
project source code and its dependent software packages,
determining the scope for image slimming. Simultaneously,
it constructs a data structure called the command link directed
graph to model the image’s file system, which enhances the
accuracy of extracting environment dependencies. This model
can slim the image whether the entry point is explicitly
specified or not, while ensuring the normal operation of the
project code.

In general, the major contributions of this paper are sum-
marized as follows:

• We propose δ-SCALPEL, a novel and robust static
Docker image slimming model. By utilizing static code
analysis, this model overcomes the limitations of the
dynamic approach, which relies on runtime behavior and
often results in unusable or incomplete slimmed images.

• We perform static code analysis to identify data depen-
dencies (on the system environment) within the project
source code. Concurrently, we construct a data structure
called the command link directed graph to model the
image’s file system. These ensure the accuracy and re-
liability of the image slimming process.

• We conduct comprehensive evaluations of δ-SCALPEL

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

3

to assess its effectiveness and practical significance. The
evaluation results show that δ-SCALPEL can reduce the
image size by 61.4% at most, while ensuring that the
slimmed image remains functional.

II. RELATED WORK

A. Docker Security

Docker is a widely used technology for containerizing ap-
plications along with their dependencies, creating reproducible
environments [29], [30]. Research on Docker security can be
categorized into image & container security and ecosystem
security:
Image & container security. Image and container security
primarily refers to the security of the system and software
bundled within the container generated by an image, i.e.,
application security [31]. The container is deployed under
the guidance of an automated deployment chain [32], which
usually contains third-party programs, software packages, and
components. Introducing these third-party elements may bring
security risks to the container [30]. Tak et al. [33] pointed out
that packages included in images, such as perl, curl, and wget,
may contain vulnerabilities. Therefore, software vulnerabili-
ties, configuration defects, and malware are potential threat
scenarios within this category [34]–[36].
Ecosystem security. Docker Hub is a central registry where
developers can obtain and push images. In a detailed study
of Docker Hub images, Tarun Desikan et al. [37] found that
over 30% of images in the official repository were highly
susceptible to various security attacks. For unofficial images,
i.e., those pushed by users without any formal verification
from an authoritative entity, this figure rises to approximately
40%. They highlighted that many official Docker Hub images
contain packages with CVE (Common Vulnerabilities and
Exposures) vulnerabilities, which are often unnecessary in
certain cases. If not explicitly removed from the container,
these packages may leave the container vulnerable to malicious
attacks. Malicious images are also a key concern in the
security of the Docker ecosystem. Spring et al. [38] revealed
that 17 malicious images hosted on Docker Hub allowed
hackers to earn $90,000 through cryptojacking, with these
images being downloaded over 5 million times in a single
year. The inheritance of Docker images can propagate security
vulnerabilities from parent images to child images, thereby
impacting the entire Docker ecosystem [29].

B. Image Debloating

Base images deliver standardized, pre-built environments
(OS kernel, runtime, core libraries, tools). Developers use
the FROM instruction to inherit this foundation, then focus
solely on adding application-specific layers (i.e., dependencies,
code, and configurations). This eliminates environment incon-
sistencies, avoids redundant rebuilds, and boosts deployment
efficiency. Nonetheless, base images such as official generic
versions (e.g., Ubuntu/Debian latest) prioritize broad compat-
ibility by including libraries/tools for diverse use cases. For
specific projects, many components become unnecessary at

runtime. Direct usage of unoptimized base images wastes stor-
age and may introduce security risks, making image debloat-
ing (as known as image slimming) essential for production
efficiency and security.

Cimplifier [39], proposed by Rastigi et al., is an auto-
mated container debloating model that profiles containerized
application resource usage through dynamic analysis of ex-
ecutable behavior. It operates without requiring application
source code and remains independent of specific languages or
runtime stacks (e.g., JVM), supporting diverse container types.
Specifically, Cimplifier identifies processes’ access patterns to
files, IPC (Inter-Process Communication), and network objects
during original container execution. Combining these obser-
vations with user-defined policies, it partitions the original
container into multiple isolated containers, each containing
only resources essential to its designated function. These
isolated containers communicate minimally when necessary
and are interconnected via RPE (Remote Process Execution).
δ-SCALPEL relies on static source code analysis to create
a single slimmed image, whereas Cimplifier utilizes dynamic
analysis and does not require source code, partitioning the
container into multiple independent containers glued together
by RPE.

SummSlim [13], proposed by Zhang et al., is an automated
container image debloating model. It takes an original image
as input. During container initialization, the model employs
dynamic analysis to monitor container processes (including
child processes) using the Linux strace command, filtering
file-related system calls and recording accessed files. Concur-
rently, it applies static analysis to each image layer, preserving
files from ADD/COPY layers while debloating the FROM base
layer (retaining only runtime-essential components). Finally,
SummSlim synthesizes necessary files identified through both
analyses to generate the debloated image.

DockerSlim [16] (now called MinToolkit/Mint, or Slim-
Toolkit) is a widely adopted container optimization tool,
enabling developers to inspect, debloat, and debug Docker
containers. DockerSlim integrates dynamic and static analysis:
It statically analyzes the content of the original image, then
dynamically analyzes the application by launching a temporary
container, monitoring its runtime behavior, and identifying the
files, binary dependencies, and system calls actually utilized.
Based on these, it generates a new Dockerfile containing only
the necessary runtime dependencies and files, resulting in
the construction of a minimized image. DockerSlim relies
on dynamic runtime analysis, monitoring the application’s
actual behavior when running in a container to remove unused
dependencies.

SummSlim and DockerSlim are both hybrid image slim-
ming models, the core of which is to determine the project
code’s dependencies on the system environment by observing
the container’s runtime behavior. A limitation of this kind of
approach is that it requires all code paths to be executed;
otherwise, the resulting slimmed image can easily fail due
to incomplete code dependency extraction. In contrast, δ-
SCALPEL adopts the static code dependency analysis method,
which extracts the project code’s dependencies independent of
the image, thus avoiding this problem.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

4

III. METHODOLOGY

A. Overview

The framework of δ-SCALPEL is shown in Fig. 4, which
is divided into three steps:

• Step 1: Environment Dependency Extraction. Create
an image for data dependency analysis of the project
code and its NPM dependencies, extracting environment
dependencies (i.e., system commands executed during
exec API calls) from the source code.

• Step 2: Slim rootfs Construction. Perform a static
scan of the fat image to extract metadata and build a
temporary image. Next, scan its file system, identify
system commands, and determine which content should
be removed based on the command token list extracted in
step 1. Finally, construct a slim root file system (rootfs).

• Step 3: Slim Image Building. Create a slim image based
on the rootfs.tar file constructed in step 2.

B. Environment Dependency Extraction

This step is divided into three modules: package filtering,
data dependency analysis, and command token extraction.
Before performing these modules, environment preparation
is required. We choose Node.js as the default language and
perform static code analysis using CodeQL7. In order to
extract environment dependencies, we configure an image
through a Dockerfile. Specifically, we set the base image to
node:current-slim, and create the installation directory
for NPM packages. Then, we configure the environment for
CodeQL. Afterward, we initialize the target project with npm
install command to install all its dependencies. Finally, an
image for environment dependency extraction is generated.

7https://github.com/github/codeql

1) Package Filtering: With the expansion of the soft-
ware ecosystem, developers increasingly import open source
packages to enhance development efficiency. Consequently,
during code execution, both control flow and data flow extend
into these imported packages. So environment dependency
extraction is required for these packages. However, analyzing
the entire dependency chain of the project code is challenging
due to the large number of packages involved. For example, in
the nodejs-websocket8 project, the dependency chain includes
30 packages. Analyzing data dependencies of these packages
individually would be highly time-consuming. To optimize this
process, we filter the packages in the project’s dependency
chain. In particular, we traverse the project’s dependency
chain, analyze the JavaScript code of each NPM package, and
use regular expressions to identify packages with exec API
calls. In this way, we can filter out most packages unrelated to
environment dependency extraction, thereby speeding up the
execution of δ-SCALPEL.

2) Data Dependency Analysis: This is the core module of
step 1, focusing on extracting string constants from exec API
calls. Since developers do not always use string constants (i.e.,
the commands need to be executed) as parameters when calling
the exec API, it is necessary to analyze data dependencies
of the exec API calls. In this paper, we utilize CodeQL to
achieve this. First, we use CodeQL to parse the target project
and the NPM packages containing exec API calls, and build
the AST database. Then, we define the source and sink nodes
in the source code: sources include VariableDeclarator,
Assignment, and CallExpr nodes, while sinks are the
arguments of the CallExpr nodes named exec. Finally, we
use the TaintTracking package of CodeQL to identify all
paths from sources to sinks.

3) Command Token Extraction: After obtaining all the
paths from sources to sinks, we traverse the nodes along these

8https://www.npmjs.com/package/nodejs-websocket

AST Database
Building

Source & Sink
Definition

Taint Tracing

Data Dependency
Analysis

AST Database
Building

Source & Sink
Definition

Taint Tracing

Data Dependency
Analysis

Paths Traverse

String Constant
Extraction

Command Token
Extraction

Paths Traverse

String Constant
Extraction

Command Token
Extraction

Project Code and

NPM Dependencies
Command Token
List (CTL) rootfs.tar

NPM Packages with exec

API Call

Sensitive API Call
Recognition

Dependency Chain
Traverse

Package Filtering

Step 1: Environment Dependency Extraction Step 2: Slim rootfs Construction Step 3: Slim Image Building

Slim ImageFat Image Fat Image

With Project Code

All Paths from

Source to Sink

Image Metadata
Config

Image Layer
Setting

Building

/ "root"/ "root"/ "root"

/bin

sh

/bin/bin/bin/bin /sbin/sbin/sbin/sbin /usr/usr/usr/usr /lib/lib/lib/lib

ls

cd

sh dashSym Link

File System
Scanning

System Command
Extraction

rootfs Modeling

File System
Scanning

System Command
Extraction

rootfs Modeling

File System
Scanning

System Command
Extraction

rootfs Modeling

Image Inspection

Temporary Image
Building

Preprocess

Image Inspection

Temporary Image
Building

Preprocess

Image Inspection

Temporary Image
Building

Preprocess

CTL & CLDG
Matching

Command
Dependency

Chain Extraction

Retain List
Generation

rootfs Pruning

CLDG

Matched

Command

 Dependency

 Chain

Command Link

Directed Graph

(CLDG)

δ-SCALPEL

Pipline

File Information
List

Fig. 4: The framework of δ-SCALPEL.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/github/codeql
https://www.npmjs.com/package/nodejs-websocket

5

Algorithm 1: CLDG Construction
Input: Commands supported by the system sysCmdList
Result: Command link directed graph cmdLinkDiGraph

1 func buildCmdLinkDiGraph(linkNode):
2 if isCmdName(linkNode.nodeName) then
3 cmdAbsPath ← getAbsPath(linkNode.nodeName);
4 end
5 else if isSymLink(linkNode.nodeName) then
6 cmdAbsPath ← getRefPath(linkNode.nodeName);
7 end
8 if cmdLinkDiGraph.hasKey(cmdAbsPath) then
9 currentNode ← cmdLinkDiGraph.get(cmdAbsPath);

10 end
11 else
12 currentNode ← new(
13 nodeName=cmdAbsPath,
14 nextNode=null
15);
16 cmdLinkDiGraph.append(currentNode);
17 end
18 if linkNode.nextNode == null then
19 linkNode.nextNode ← currentNode;
20 end
21 buildCmdLinkDiGraph (linkNode.nextNode);
22 return
23 init(cmdLinkDiGraph); // global variable
24 for sysCmd in sysCmdList do
25 if isBuiltInCmd(sysCmd) then
26 continue;
27 end
28 linkNode ← new(
29 nodeName=sysCmd,
30 nextNode=null
31);
32 buildCmdLinkDiGraph (linkNode);
33 end

paths to identify string constants and split them by spaces
to extract command tokens. Additionally, the shell script files
also have dependencies on the system environment. Therefore,
we analyze all shell scripts in the project code folder and
the docker-entrypoint.sh file, extracting tokens from
them.

It should be noted that these tokens are not necessarily
commands; they may also represent strings without command-
related meaning, or command parameters. They are merely
considered potential commands, and will be addressed further
in Sect. III-C3.

C. Slim rootfs Construction

After completing the extraction of environment dependen-
cies, the command token list (CTL) is generated. The next step
is to construct a slim rootfs for the fat image. In this step,
we design three modules: preprocess, rootfs modeling, and
rootfs pruning, which are used for analyzing the fat image’s
file system, identifying the content that needs to be removed,
and constructing a slim rootfs.

1) Preprocess: First, we perform a static inspection of the
fat image to obtain metadata, including its configuration and
architecture. Then, we construct a temporary image based
on the metadata, which contains a component called image
analyzer. The goal of the image analyzer is to model the fat
image’s rootfs (rootfs modeling, Sect. III-C2) and prune it
(rootfs pruning, Sect. III-C3) to create a slim rootfs.

2) rootfs Modeling: In this module, we first collect the file
information list by scanning the entire rootfs to retrieve all
files, folders, and their permissions. At the same time, we

Algorithm 2: CLDG Expanding
Input: Command link directed graph cmdLinkDiGraph
Result: Command link directed graph cmdLinkDiGraph

1 for linkNode in cmdLinkDiGraph do
2 if !isPath(linkNode.name) then
3 continue;
4 end
5 allParentDirs ← getAllParentDirs(linkNode.nodeName);
6 for dir in allParentDirs do
7 isSymLink ← false;
8 hasSymLink ← false;
9 if isSymPath(dir) then

10 isSymLink ← true;
/* dir is a symbolic soft link */

11 refDir ← getRefPath(dir);
12 newCmdPath ← linkNode.nodeName.replace(dir, refDir);
13 end
14 else if hasSymPath(dir) then

/* dir is not a symbolic soft link, but it
has related symbolic soft link */

15 hasSymLink ← true;
16 linkDir ← getLinkPath(dir);
17 newCmdPath ← linkNode.nodeName.replace(dir, linkDir);
18 end
19 if hasFile(newCmdPath) then
20 if !cmdLinkDiGraph.hasKey(newCmdPath) then
21 newNode ← new(
22 nodeName=newCmdPath,
23 nextNode=null
24);
25 buildCmdLinkDiGraph(newNode)
26 if isSymLink then
27 linkNode.nextNode ← newNode;
28 end
29 else if hasSymLink then
30 newNode.nextNode ← linkNode;
31 end
32 cmdLinkDiGraph.append(newNode);
33 end
34 end
35 end
36 end

extract the symbolic soft link relationships between these files
and folders. Then we extract all the commands supported by
the system to build the command link directed graph (CLDG).

The usage of commands can be categorized into two types:
directly using the command name and using the absolute
path of the command’s binary file. So, we need to get the
absolute path of a command. However, due to the symbolic
soft link mechanism, one path can be linked to another,
meaning the absolute path of a binary file obtained by the
which command may not reflect its actual storage location.
For example, running the which sh command returns the
absolute path /usr/bin/sh. However, this path is a sym-
bolic soft link to the dash command, whose absolute path is
/usr/bin/dash. Additionally, /bin is a symbolic soft link
to /usr/bin, meaning /bin/sh and /usr/bin/sh point
to the same file. These indicate that for the two different ways
of using commands, the paths that need to be included when
generating the retain list are different. When the project code
directly uses the sh command, the paths included in the retain
list must be [/usr/bin/sh, /usr/bin/dash], just as
when /usr/bin/sh is used. However, when /bin/sh is
used, the paths included in the retain list must be [/bin/sh,
/usr/bin/sh, /usr/bin/dash].

To this end, we design a data structure called command
link directed graph to handle the above situation. First, we
construct the command link directed graph using Algo. 1.
Then, we extend it with Algo. 2 to handle the case of folder

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

6

symbolic soft links. For the sh command, we can construct a
command link directed graph as illustrated in Fig. 5.

nodeName:

sh

nextNode

nodeName:

sh

nextNode

nodeName:

/usr/bin/sh

nextNode

nodeName:

/usr/bin/sh

nextNode

nodeName:

dash

nextNode

nodeName:

dash

nextNode

nodeName:

/usr/bin/dash

nextNode

nodeName:

/usr/bin/dash

nextNode

nodeName:

/bin/sh

nextNode

nodeName:

/bin/sh

nextNode

Fig. 5: A command link directed graph example for the sh
command.

3) rootfs Pruning: After obtaining the file information list
and the command link directed graph, we need to prune the fat
image’s rootfs according to the command token list generated
in step 1. First, we match each token in the CTL with the node
names in the CLDG. If a token ti from CTL matches a node
nj in CLDG, we designate this node as the starting node and
extract the file paths (i.e., the value of nodeName) from all
subsequent nodes, and store them in the retain list.

For example, consider the CLDG shown in Fig. 5. If the
token in the CTL is /bin/sh, δ-SCALPEL will locate node
1 in the CLDG and add its nodeName to the retain list. If
node 1 has a non-null nextNode, δ-SCALPEL accesses the
node it points to (i.e., node 3) and adds its nodeName to the
retain list. It then proceeds to the subsequent nodes (node 4 and
node 5) and adds their nodeName to the retain list. In other
words, when the token contained in the CTL is /bin/bash,
δ-SCALPEL visits nodes 1, 3, 4, and 5 in turn and adds their
nodeName to the retain list. When the token is dash, δ-
SCALPEL visits nodes 4 and 5 and adds their nodeName
values to the retain list.

Additionally, for each path, we use the ldd command to
obtain its dependent dynamic link libraries and add them to
the retain list. Finally, we add all files from the file information
list, excluding those with paths containing /bin/, /sbin/,
or /lib/, to the retain list. The retain list is then used to
construct the slim rootfs.tar file.

In this section, we address the issue that the tokens in the
CTL, as mentioned in Sect. III-B3, do not necessarily consist
entirely of command tokens by matching them with the CLDG.

D. Slim Image Building

Based on the static inspection result of the fat image from
step 2, we first configure the metadata for the slim image,
including the image name, exposed ports, image architecture,
etc. Then we use the slim rootfs.tar file to set the layers
of the slim image. At this point, δ-SCALPEL generates the
corresponding slim image from the fat image.

IV. EVALUATION

We evaluate δ-SCALPEL by answer the following three
research questions (RQs):
• RQ1: How much can the image size be reduced by using

δ-SCALPEL?

• RQ2: How long will it take to perform image slimming
using δ-SCALPEL?

• RQ3: How well does δ-SCALPEL reduce image attack
surfaces and potential vulnerabilities?

A. Experiment Setup

1) Dataset: To evaluate the δ-SCALPEL model proposed
in this paper, we select the top 30 NPM projects from the top
1000 most depended-upon packages listed on GitHub9. Each
of these selected projects contains executable test suites trig-
gered directly by the npm test command without any other
configuration. For each project, we download its source code
from the address specified in the NPM repository and include
it in a Dockerfile to create an image. We use Docker Hub’s of-
ficial images, node:current-slim and node:current,
to create images for each project. Finally, we create a dataset
containing 120 images for model evaluation. In order to verify
whether the project runs correctly in the container generated
from the slimmed image, we execute the project’s test suites
using the npm test command and assess its status based on
the test suites’ results: If the test suites’ results before and after
slimming are consistent, the image slimming is considered
successful; otherwise, it is deemed a failure.

There are two points that need explanation. First, the crite-
rion for determining whether δ-SCALPEL runs successfully in
this paper is whether the slimmed image can operate normally.
We assume that the image built by developers is intended to
support the normal operation of the project, that is, to ensure
the normal functionality of the project. To this end, we run the
test suite of the project within the container to determine if the
container operates normally: If the test suite runs successfully,
it indicates that the container functions properly; otherwise,
the container fails to operate normally, and the image slim-
ming is considered unsuccessful. Second, although we select
JavaScript-based projects to build the dataset, δ-SCALPEL
can be extended to other programming languages because the
code analysis phase is implemented using CodeQL, which can
analyze more than 11 programming languages10, such as Java
and C/C++.

2) Implementation: All experiments are conducted on a
host with 16 CPU cores and 32 GB of memory. We use Go
as the development language for δ-SCALPEL, perform static
analysis of Node.js code with CodeQL, and utilize the go-
dockerclient11 package as the client for the Docker remote
API.

B. RQ1: The Image Size Reduced by Using δ-SCALPEL

In a Dockerfile, users can use CMD or ENTRYPOINT
to specify the command or script to run when starting a
container [40]. These two commands are optional. As a result,
when building an image with a Dockerfile, users can choose
to explicitly specify the container’s entry point or leave it
unspecified. This section evaluates the image slimming effect

9https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
10https://codeql.github.com/docs/codeql-overview/supported-languages-a

nd-frameworks/
11https://github.com/fsouza/go-dockerclient

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://github.com/fsouza/go-dockerclient

7

(i.e., size of the slimmed image, slimming ratio, and running
status of the container generated by the slimmed image) of
δ-SCALPEL. We select DockerSlim [16] and SummSlim [13]
as baselines. For DockerSlim, we use its default build
command, which analyzes, profiles, and optimizes container
images to generate supported security profiles, and is its most
popular option; for SummSlim, we follow the usage described
on its GitHub page12. We compare the image slimming effects
of δ-SCALPEL, SummSlim, and DockerSlim in two scenarios:
specifying the entry point and not specifying the entry point.

1) Specify the Entry Point: We specify the entry point of
the image for each project in its Dockerfile as CMD ["npm",
"test"], then build project images based on the base images
node:current-slim and node:current, respectively.
For the generated project images, we use δ-SCALPEL, Summ-
Slim, and DockerSlim to perform image slimming. We then
start the slimmed images using the docker run command
and observe the container’s running state.

The evaluation results are shown in Tab. I. For images based
on the node:current-slim base image, δ-SCALPEL
achieves a slimming rate ranging from 9.7% to 26.5%. The
minimum rate (9.7%) is observed in the strip-ansi project
image, reducing its size from 607 MB to 548 MB, while
the maximum rate (26.5%) is achieved in the node-portfinder
project image, shrinking from 226 MB to 166 MB. SummSlim
performs slightly better, with a slimming rate between 8.2%
and 30.8%. It records the minimum rate (8.2%) on the strip-
ansi project image (shrinking from 607 MB to 557 MB) and
the maximum (30.8%) on the nodejs-websocket project image
(shrinking from 227 MB to 157 MB). Notably, DockerSlim
significantly outperforms both, achieving slimming rates be-
tween 45.1% and 79.6%. Its minimum rate (45.1%) is found
in the node-portfinder project image (226 MB to 124 MB),
and its remarkable maximum rate of 79.6% is achieved with
the strip-ansi project image, which is dramatically reduced
from 607 MB to a mere 124 MB. When the base image
is node:current, all models show substantially higher
slimming rates: δ-SCALPEL’s rate ranges from 46.3% to
61.4%, SummSlim’s from 57.6% to 81.9%, and DockerSlim’s
from 89.2% to 91.9%.

Regarding the functionality of the slimmed images, all im-
ages processed by δ-SCALPEL function normally. Similarly,
all images processed by SummSlim function normally, with
the single exception of the lru-cache project image. In contrast,
DockerSlim exhibits poor functional preservation; only the
images for the nodejs-websocket, prompt, and cookie-parser
projects processed by it function normally.

2) Do not Specify the Entry Point: In this subsection,
we evaluate the robustness of δ-SCALPEL in image slim-
ming under the scenario where the container entry point is
not specified. We use the same method as in Sect. IV-B1
to build images for the 30 NPM projects, based on both
node:current-slim and node:current. However, in
the Dockerfile, we remove the entry point. Similarly, we use δ-
SCALPEL, SummSlim, and DockerSlim to slim these images.
Afterward, we access the containers generated from these

12https://github.com/prcuzz/SummSlim

slimmed images, manually enter npm test command in the
project root directory to run the test suites, and observe the
results.

The evaluation results are shown in Tab. II. The slimming
effect of δ-SCALPEL is consistent regardless of whether an
entry point is specified: All NPM projects run correctly within
containers generated from the slimmed images, and the re-
sulting image size remains the same. When using SummSlim,
images built on node:current-slim are reduced to an
average size of 297 MB, achieving a maximum slimming rate
of 30.8% and a minimum of 8.2%; similarly, images based on
node:current are reduced to an average of 388 MB, with
slimming rates ranging from 57.6% to 81.9%, and all these
slimmed images run normally. In contrast, while DockerSlim
reduced all images to a consistent 123 MB, the resulting
slimmed images were unable to run normally.

Analysis of the results shows that DockerSlim fails to slim
the image without specifying the container entry point. This
is because the inability to capture the code’s runtime behavior
forces DockerSlim to retain only the basic container runtime
environment, resulting in the slimmed image failing to run
reliably and lacking robustness. SummSlim, however, does
not suffer from this limitation, and its slimming effect even
surpasses that of δ-SCALPEL. To this end, we analyze the im-
age slimming results from δ-SCALPEL and SummSlim. Our
analysis reveals that size differences in the slimmed images
are primarily observed in the following five system paths:
/usr/bin, /usr/include, /usr/lib, /usr/local,
and /usr/share. SummSlim achieves a higher slimming
rate in these paths compared to δ-SCALPEL.

Further analysis shows that although we manually remove
the container entry point in the Dockerfile during image
building, SummSlim adopts the base images’ entry point
(i.e., node:current-slim and node:current) for built
images. This entry point, docker-entrypoint.sh, dy-
namically prepends the node command based on the first
argument’s characteristics (whether it is an option, non-system
command, or non-executable file) before executing the final
command via exec. With no explicit startup command spec-
ified, SummSlim captures node as the effective entry point.
Consequently, when processing images without an explicit
entry point, SummSlim executes node command at startup
and captures its system dependencies. Manual dataset analysis
reveals that project test suites rarely involve complex system
calls, with relevant scenarios remaining simple. Therefore,
SummSlim successfully slims images using Node.js runtime
dependencies even without explicit entry points.

Nonetheless, SummSlim still lacks sufficient robustness,
primarily in two scenarios: (1) the container entry point is
not specified, and the project code has complex dependencies
on the system runtime environment; (2) a container entry point
is specified, but the project code is not executed directly or
not all the code paths are executed. We conduct an evaluation
to compare the robustness of δ-SCALPEL and Summslim in
these two scenarios, with results shown in Tab. III.

In the first scenario, containers created from images
slimmed by SummSlim cannot guarantee the proper
execution of the project code. For example, if the project

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/prcuzz/SummSlim

8

TABLE I: Comparison of the image slimming effect among δ-SCALPEL, SummSlim, and DockerSlim when the entry point
is explicitly specified. • indicates that the slimmed image runs normally, while ◦ indicates that it fails to run normally.

Project Model
Basic Image (With Entry Point)

node:current-slim node:current
Original

Size
Size After Slimming/

Slimming Ratio
Running

Status
Original

Size
Size After Slimming/

Slimming Ratio
Running

Status

semver
δ-SCALPEL

551MB
492MB/10.7% •

1.45GB
769MB/48.2% •

SummSlim 491MB/10.9% • 585MB/60.6% •
DockerSlim 126MB/77.1% ◦ 124MB/91.6% ◦

chalk
δ-SCALPEL

555MB
496MB/10.6% •

1.45GB
772MB/48% •

SummSlim 509MB/8.3% • 603MB/59.4% •
DockerSlim 125MB/77.5% ◦ 125MB/91.6% ◦

nodejs-websocket
δ-SCALPEL

227MB
168MB/26% •

1.12GB
445MB/61.2% •

SummSlim 157MB/30.8% • 250MB/78.2% •
DockerSlim 124MB/45.4% • 124MB/89.2% •

lru-cache
δ-SCALPEL

372MB
321MB/13.7% •

1.27GB
598MB/54% •

SummSlim 310MB/16.7% • 235MB/81.9% ◦
DockerSlim 133MB/64.2% ◦ 124MB/90.4% ◦

minimatch
δ-SCALPEL

332MB
272MB/18.1% •

1.23GB
549MB/56.4% •

SummSlim 261MB/21.4% • 354MB/71.9% •
DockerSlim 123MB/63% ◦ 133MB/89.4% ◦

strip-ansi
δ-SCALPEL

607MB
548MB/9.7% •

1.50GB
825MB/46.3% •

SummSlim 557MB/8.2% • 651MB/57.6% •
DockerSlim 124MB/79.6% ◦ 124MB/91.9% ◦

node-glob
δ-SCALPEL

335MB
275MB/17.9% •

1.23GB
552MB/56.2% •

SummSlim 264MB/21.2% • 357MB/71.7% •
DockerSlim 133MB/60.3% ◦ 133MB/89.4% ◦

commander.js
δ-SCALPEL

389MB
328MB/15.7% •

1.29GB
605MB/54.2% •

SummSlim 317MB/18.5% • 411MB/68.9% •
DockerSlim 124MB/68.1% ◦ 125MB/90.5% ◦

yallist
δ-SCALPEL

384MB
324MB/15.6% •

1.28GB
601MB/54.1% •

SummSlim 313MB/18.5% • 407MB/68.9% •
DockerSlim 123MB/68% ◦ 133MB/89.9% ◦

estraverse
δ-SCALPEL

276MB
216MB/21.7% •

1.17GB
493MB/58.9% •

SummSlim 207MB/25% • 300MB/75% •
DockerSlim 123MB/55.4% ◦ 124MB/89.7% ◦

deepmerge
δ-SCALPEL

263MB
202MB/23.2% •

1.16GB
479MB/59.7% •

SummSlim 193MB/26.6% • 286MB/75.9% •
DockerSlim 125MB/52.5% ◦ 126MB/89.4% ◦

node-fs-extra
δ-SCALPEL

315MB
254MB/19.4% •

1.21GB
531MB/57.1% •

SummSlim 249MB/21% • 342MB/72.4% •
DockerSlim 135MB/57.1% ◦ 124MB/90% ◦

node-jsonwebtoken
δ-SCALPEL

313MB
252MB/19.5% •

1.21GB
529MB/57.3% •

SummSlim 244MB/22% • 338MB/72.7% •
DockerSlim 123MB/60.7% ◦ 131MB/89.4% ◦

node-which
δ-SCALPEL

553MB
492MB/11% •

1.45GB
769MB/48.2% •

SummSlim 492MB/11% • 584MB/60.7% •
DockerSlim 125MB/77.4% ◦ 126MB/91.5% ◦

prompt
δ-SCALPEL

253MB
192MB/24.1% •

1.15GB
470MB/60.1% •

SummSlim 184MB/27.3% • 278MB/76.4% •
DockerSlim 124MB/51% • 124MB/89.5% •

shelljs
δ-SCALPEL

345MB
284MB/17.7% •

1.29GB
613MB/53.6% •

SummSlim 279MB/19.1% • 451MB/65.9% •
DockerSlim 127MB/63.2% ◦ 126MB/90.5% ◦

winston
δ-SCALPEL

292MB
230MB/21.2% •

1.19GB
507MB/58.4% •

SummSlim 222MB/24% • 315MB/74.1% •
DockerSlim 125MB/57.2% ◦ 125MB/89.7% ◦

ws
δ-SCALPEL

307MB
246MB/19.9% •

1.2GB
523MB/57.4% •

SummSlim 240MB/21.8% • 334MB/72.8% •
DockerSlim 124MB/59.6% ◦ 126MB/89.7% ◦

minimist
δ-SCALPEL

303MB
242MB/20.1% •

1.2GB
519MB/57.8% •

SummSlim 236MB/22.1% • 356MB/71% •
DockerSlim 124MB/59.1% ◦ 124MB/89.9% ◦

node-portfinder
δ-SCALPEL

226MB
166MB/26.5% •

1.12GB
443MB/61.4% •

SummSlim 157MB/30.5% • 251MB/78.1% •
DockerSlim 124MB/45.1% ◦ 124MB/89.2% ◦

css-loader
δ-SCALPEL

450MB
369MB/18% •

1.35GB
646MB/53.3% •

SummSlim 361MB/19.8% • 453MB/67.2% •
DockerSlim 123MB/72.7% ◦ 125MB/91% ◦

express
δ-SCALPEL

314MB
253MB/19.4% •

1.21GB
530MB/57.2% •

SummSlim 245MB/22% • 338MB/72.7% •
DockerSlim 126MB/59.9% ◦ 125MB/89.9% ◦

async
δ-SCALPEL

342MB
271MB/20.8% •

1.24GB
548MB/56.8% •

SummSlim 263MB/23.1% • 356MB/72% •
DockerSlim 123MB/64% ◦ 124MB/90.2% ◦

yargs
δ-SCALPEL

529MB
467MB/11.7% •

1.43GB
745MB/49.1% •

SummSlim 458MB/13.4% • 552MB/62.3% •
DockerSlim 123MB/76.7% ◦ 124MB/91.5% ◦

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

9

TABLE I: (Continued) Comparison of the image slimming effect among δ-SCALPEL, SummSlim, and DockerSlim when the
entry point is explicitly specified. • indicates that the slimmed image runs normally, while ◦ indicates that it fails to run
normally.

Project Model
Basic Image (With Entry Point)

node:current-slim node:current
Original

Size
Size After Slimming/

Slimming Ratio
Running

Status
Original

Size
Size After Slimming/

Slimming Ratio
Running

Status

body-parser
δ-SCALPEL

321MB
260MB/19% •

1.22GB
537MB/57% •

SummSlim 251MB/21.8% • 344MB/72.5% •
DockerSlim 124MB/61.4% ◦ 126MB/89.9% ◦

gulp
δ-SCALPEL

325MB
263MB/19.1% •

1.22GB
541MB/56.7% •

SummSlim 255MB/21.5% • 349MB/72.1% •
DockerSlim 123MB/62.2% ◦ 126MB/89.9% ◦

postcss-loader
δ-SCALPEL

424MB
362MB/14.6% •

1.32GB
639MB/52.7% •

SummSlim 353MB/16.7% • 447MB/66.9% •
DockerSlim 123MB/71% ◦ 134MB/90.1% ◦

cookie-parser
δ-SCALPEL

316MB
255MB/19.3% •

1.21GB
532MB/57.1% •

SummSlim 247MB/21.8% • 340MB/72.6% •
DockerSlim 125MB/60.4% • 126MB/89.8% •

browserity
δ-SCALPEL

278MB
217MB/21.9% •

1.17GB
494MB/58.8% •

SummSlim 209MB/24.8% • 301MB/74.9% •
DockerSlim 123MB/55.8% ◦ 125MB/89.6% ◦

log4js
δ-SCALPEL

449MB
387MB/13.8% •

1.35GB
664MB/52% •

SummSlim 378MB/15.8% • 472MB/65.9% •
DockerSlim 125MB/72.2% ◦ 127MB/90.8% ◦

TABLE II: Comparison of the image slimming effect among δ-SCALPEL, SummSlim, and DockerSlim when the entry point
is not explicitly specified.

Model
Basic Image (Without Entry Point)

node:current-slim node:current
Avg. Size

After Slimming
Max

Slimming Ratio
Min

Slimming Ratio
Avg. Size

After Slimming
Max

Slimming Ratio
Min

Slimming Ratio
δ-SCALPEL 303MB 26.5% 9.70% 582MB 61.4% 46.3%
SummSlim 297MB 30.8% 8.2% 388MB 81.9% 57.6%
DockerSlim 123MB 79.7% 45.6% 123MB 92% 89.3%

TABLE III: Robustness comparison of δ-SCALPEL and Summslim. • means that the project code can run normally in the
container generated by the slimmed image, while ◦ means that it cannot run normally.

Model Scenario With Entry Point Without Entry Point
Case Project Code Not Executed Directly Not All Code Paths Executed Complex Project Runtime Dependencies

δ-SCALPEL Running Status • • •
SummSlim ◦ ◦ ◦

code needs to execute the system command like ps
aux --sort=-%cpu | head -10 | awk ’print
"USER:"$1,"PID:"$2,"CPU:"$3,"%","MEMORY:"$
4,"%","COMMAND:"$11’, SummSlim will fail to capture
the dependencies (e.g., ps, head, awk) on the runtime
environment because the code isn’t actually executed when
no entry point is specified. Consequently, image slimming
fails.

In the second scenario, containers created from SummSlim-
slimmed images still cannot guarantee the proper execution
of the project code. For instance, in certain development or
debugging scenarios, developers may prefer the container to
start without automatically launching the project code. Instead,
they might want to first enter the container’s Bash environment
and manually execute commands to start the project or perform
debugging steps. In such cases, the container’s entry point is
often set to ["/bin/bash"]. On the other hand, even if the
image’s entry point directly launches the project code, Summ-
Slim can capture runtime dependencies only for executed code
paths. This incomplete coverage may lead to slimming failure.
A typical example is code containing conditional branches,
where some paths are never executed because the entry point
does not trigger all possible execution flows.

For the aforementioned two scenarios, δ-SCALPEL demon-
strates advantages because, regardless of whether the container
entry point is explicitly specified or not, and regardless of
whether it directly executes the project code, δ-SCALPEL
performs static dependency analysis on the code independently
of the container image, thereby ensuring greater integrity of
the extracted dependencies.

3) The Composition of Slimming: Understanding the struc-
tural changes during the slimming process is important, as
this provides deeper insights into how the model achieves its
results. In this section, we conduct a case study to analyze
the structural changes before and after the slimming of the
express project image built from the node:current base
image. The results are shown in Fig. 6.

During the image slimming process, the structural changes
in /usr/bin, /usr/sbin, and /usr/lib are the most
significant: The size of the /usr/bin directory decreases
from 111 MB to 3.1 MB, with unused programs like ls
and addpart removed. The /usr/sbin directory decreases
from 6.5 MB to 195 kB, including removal of utilities like
mkfs and sulogin. Similarly, the /usr/lib directory size
decreases significantly from 570 MB to 6.4 MB, with libraries
such as apt eliminated.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

10

/usr/bin /usr/sbin

/usr/lib

Original Original

Slim Slim

Original Slim

Fig. 6: An example of the structural changes before and after the slimming of the express image based on node:current.

/usr/bin stores the vast majority of user-executable
binaries, containing the programs most frequently used by
users for daily operations. /usr/sbin houses system admin-
istration binaries intended for privileged users (such as system
administrators), typically utilized for system maintenance,
configuration, and repair tasks. /usr/lib contains software
libraries and auxiliary files that provide essential services
to programs located in /usr/bin and /usr/sbin. These
three folders contain basic components designed to meet all
possible Linux application scenarios, but these components are
often redundant for specific projects. When building a image,
the components under these folders need to be trimmed to
retain only the minimal set of dependencies required to support
the target application.

Answer to RQ1: δ-SCALPEL primarily targets three
directories in the container’s file system: /usr/bin,
/usr/sbin, and /usr/lib, with the goal of re-
moving non-project dependencies within them. Cru-
cially, δ-SCALPEL maintains robustness whether the
container entry point is explicitly specified or not,
guaranteeing normal execution of project code in the
container launched from the slimmed image.

C. RQ2: Time Consumption of Image Slimming Using δ-
SCALPEL

1) Details of Time Consumption: Based on the δ-
SCALPEL’s framework, we divide it into four parts: code ana-
lyzer preparation (CA pre, we refer to the three modules in step
1 collectively as the code analyzer), code analyzer execution
(CA exec), image analyzer preparation and execution (IA pre
& exec), and slim image building (SI building). In the scenario
where the container entry point is specified, we evaluate the
efficiency (i.e., time consumption of image slimming) of δ-
SCALPEL using the base images node:current-slim
and node:current, respectively.

Evaluation results are shown in Fig. 7 and Fig. 8. Generally,
the code analyzer preparation part is time-consuming (127-
435s). In this part, δ-SCALPEL configures the image for code

analyzer, which includes setting up the base image, configuring
the CodeQL environment, and downloading and installing
NPM dependencies for the project. Due to network limitations,
the majority of the time is spent downloading the base image
and NPM dependencies, resulting in an extended preparation
time for the code analyzer. In the code analyzer execution part,
it takes over 100 seconds to complete the process (with the
longest analysis time being 326 seconds for the log4js image
based on node:current). This extended time is due to the
need to analyze the data dependencies of both the project code
and the packages it depends on. The long dependency chain
of the project results in a significant amount of source code
that must be analyzed.

Different base images have minimal impact on the execution
efficiency of the code analyzer, as it only analyzes the project
code and the packages it depends on, regardless of the base
image. In contrast, the size of the base image affects the run-
time of the image analyzer (99-361s). When the base image is
switched from node:current-slim to node:current,
the root file system content increases, resulting in more data
for the image analyzer to process, which extends the runtime.
This also increases the size of the rootfs.tar file generated
by the image analyzer, which in turn affects the building time
of the slim image (29-71s).

2) Influence of Image Size on Time Consumption: Addi-
tionally, we evaluate how image size impacts δ-SCALPEL’s
execution time consumption. The results are shown in
Figs. 9 and 10. Evaluation results show that for both the
node:current-slim and node:current base images,
δ-SCALPEL’s processing time scales with the application
image size: Processing time increases proportionally with
larger application images. Specifically, for application images
built on the base image node:current-slim, the longest
processing time observed for δ-SCALPEL occurrs with the
strip-ansi image (950s), while the shortest is with the node-
portfinder image (394s). Similarly, when processing images
built on node:current, δ-SCALPEL’s longest processing
time occurrs with the node-which image (978s), while the
shortest is with the node-portfinder image (498s).

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

11

0

50

100

150

200

250

266

173

199

51

semver with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(1) semver

0

50

100

150

200

250

300

350 337

158 163

48

chalk with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(2) chalk

0

25

50

75

100

125

150

175
180

133

99

29

nodejs-websocket with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(3) nodejs-websocket

0

50

100

150

200

250
265

283

152

40

lru-cache with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(4) lru-cache

0

25

50

75

100

125

150

175

200 199

137 142

37

minimatch with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(5) minimatch

0

50

100

150

200

250

300

350

400
413

307

178

52

strip-ansi with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(6) strip-ansi

0

50

100

150

200

250

300
312

135 142

38

node-glob with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(7) node-glob

0

25

50

75

100

125

150

175
183

162
149

40

commander.js with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(8) commander.js

0

50

100

150

200

236

151
132

38

yallist with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(9) yallist

0

50

100

150

200

250

300

350
370

128 128

34

estraverse with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(10) estraverse

0

25

50

75

100

125

150

175
177

124

109

29

deepmerge with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(11) deepmerge

0

50

100

150

200

250

300
315

142 146

36

node-fs-extra with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(12) node-fs-extra

0

50

100

150

200

250

300 296

199

146

37

node-jsonwebtoken with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(13) node-jsonwebtoken

0

50

100

150

200

250

300

350

400 400

165
183

49

node-which with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(14) node-which

0

20

40

60

80

100

120

140

160 158

103
114

32

prompt with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(15) prompt

0

50

100

150

200

250

270

135

174

41

shelljs with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(16) shelljs

0

20

40

60

80

100

120

140

160 157
147 144

35

winston with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(17) winston

0

50

100

150

200

220
207

129

35

ws with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(18) ws

0

50

100

150

200

250

300 301

123

149

37

minimist with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(19) minimist

0

20

40

60

80

100

120

140

149

113
103

29

node-portfinder with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(20) node-portfinder

0

25

50

75

100

125

150

175

200

173

151

199

48

css-loader with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(21) css-loader

0

25

50

75

100

125

150

175

190

148

123

36

express with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(22) express

0

50

100

150

200

171

228

158

40

async with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(23) async

0

50

100

150

200

234

164 167

48

yargs with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(24) yargs

0

25

50

75

100

125

150

175
180

143
134

36

body-parser with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(25) body-parser

0

25

50

75

100

125

150

175

200

173

210

130

35

gulp with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(26) gulp

0

25

50

75

100

125

150

175

200

170 164

209

46

postcss-loader with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(27) postcss-loader

0

25

50

75

100

125

150

175

200 198

174

137

36

cookie-parser with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(28) cookie-parser

0

25

50

75

100

125

150

175

200 194

125
133

34

browserity with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(29) browserity

0

50

100

150

200

250

300

180

321

159

44

log4js with node:current-slim

CA pre
CA exec
IA pre & exec
SI building

(30) log4js

Fig. 7: Time consumption of δ-SCALPEL when specifying the entry point. The base image is node:current-slim. CA
pre indicates code analyzer preparation, CA exec indicates code analyzer execution, IA pre & exec indicates image analyzer
preparation & execution, and SI building indicates slim image building. The Y-axis indicates the runtime, expressed in seconds
(s).

Answer to RQ2: The processing time of δ-SCALPEL
is approximately proportional to the size of the target
image. For images based on node:current-slim,
sizes range from 226 MB (minimum) to 607 MB (max-
imum), with corresponding processing times between
394s and 950s. For images based on node:current,
sizes range from 1.12 GB (minimum) to 1.5 GB
(maximum), with processing times between 498s and
978s.

D. RQ3: The Image Attack Surfaces and Vulnerabilities Re-
duced by δ-SCALPEL

The primary goal of image slimming is to reduce the image
size, improving the ease of transmission and storage. An
indirect goal is to minimize the attack surface of the image.
Identifying and removing unnecessary code fragments and
components is a key approach to reducing the attack surface
[41]–[44]. According to the Application Container Security
Guide (NIST SP 800-190) [45], minimizing container attack

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

12

0

50

100

150

200

250

300

350
361

168

361

71

semver with node:current

CA pre
CA exec
IA pre & exec
SI building

(1) semver

0

50

100

150

200

250

208

151

275

69

chalk with node:current

CA pre
CA exec
IA pre & exec
SI building

(2) chalk

0

50

100

150

200

233

132

184

49

nodejs-websocket with node:current

CA pre
CA exec
IA pre & exec
SI building

(3) nodejs-websocket

0

50

100

150

200

250

280

225

252

61

lru-cache with node:current

CA pre
CA exec
IA pre & exec
SI building

(4) lru-cache

0

50

100

150

200

250

162

137

240

57

minimatch with node:current

CA pre
CA exec
IA pre & exec
SI building

(5) minimatch

0

50

100

150

200

250

300

229

311
299

71

strip-ansi with node:current

CA pre
CA exec
IA pre & exec
SI building

(6) strip-ansi

0

50

100

150

200

171

134

232

58

node-glob with node:current

CA pre
CA exec
IA pre & exec
SI building

(7) node-glob

0

50

100

150

200

250

178

156

251

61

commander.js with node:current

CA pre
CA exec
IA pre & exec
SI building

(8) commander.js

0

50

100

150

200

171

151

234

59

yallist with node:current

CA pre
CA exec
IA pre & exec
SI building

(9) yallist

0

50

100

150

200

163

132

226

54

estraverse with node:current

CA pre
CA exec
IA pre & exec
SI building

(10) estraverse

0

25

50

75

100

125

150

175

200

127 124

198

50

deepmerge with node:current

CA pre
CA exec
IA pre & exec
SI building

(11) deepmerge

0

50

100

150

200

250
255

143

253

57

node-fs-extra with node:current

CA pre
CA exec
IA pre & exec
SI building

(12) node-fs-extra

0

50

100

150

200

250 240

194

270

57

node-jsonwebtoken with node:current

CA pre
CA exec
IA pre & exec
SI building

(13) node-jsonwebtoken

0

50

100

150

200

250

300

350

400

424

159

324

71

node-which with node:current

CA pre
CA exec
IA pre & exec
SI building

(14) node-which

0

25

50

75

100

125

150

175

200 199

102

208

50

prompt with node:current

CA pre
CA exec
IA pre & exec
SI building

(15) prompt

0

100

200

300

400

435

136

321

62

shelljs with node:current

CA pre
CA exec
IA pre & exec
SI building

(16) shelljs

0

50

100

150

200

250

166
147

258

56

winston with node:current

CA pre
CA exec
IA pre & exec
SI building

(17) winston

0

50

100

150

200

250
260

208

237

55

ws with node:current

CA pre
CA exec
IA pre & exec
SI building

(18) ws

0

50

100

150

200

250

300

326

128

262

57

minimist with node:current

CA pre
CA exec
IA pre & exec
SI building

(19) minimist

0

25

50

75

100

125

150

175

200

133

115

202

48

node-portfinder with node:current

CA pre
CA exec
IA pre & exec
SI building

(20) node-portfinder

0

50

100

150

200

250

300

181

152

327

69

css-loader with node:current

CA pre
CA exec
IA pre & exec
SI building

(21) css-loader

0

50

100

150

200 197

151

222

56

express with node:current

CA pre
CA exec
IA pre & exec
SI building

(22) express

0

50

100

150

200

250

172

227

268

59

async with node:current

CA pre
CA exec
IA pre & exec
SI building

(23) async

0

50

100

150

200

250
232

167

280

69

yargs with node:current

CA pre
CA exec
IA pre & exec
SI building

(24) yargs

0

50

100

150

200

250

203

143

241

58

body-parser with node:current

CA pre
CA exec
IA pre & exec
SI building

(25) body-parser

0

50

100

150

200

173

206

226

55

gulp with node:current

CA pre
CA exec
IA pre & exec
SI building

(26) gulp

0

50

100

150

200

250

300

170 159

329

67

postcss-loader with node:current

CA pre
CA exec
IA pre & exec
SI building

(27) postcss-loader

0

50

100

150

200

250

162
172

269

56

cookie-parser with node:current

CA pre
CA exec
IA pre & exec
SI building

(28) cookie-parser

0

50

100

150

200

172

124

236

55

browserity with node:current

CA pre
CA exec
IA pre & exec
SI building

(29) browserity

0

50

100

150

200

250

300

173

326

264

64

log4js with node:current

CA pre
CA exec
IA pre & exec
SI building

(30) log4js

Fig. 8: Time consumption of δ-SCALPEL when specifying the entry point. The base image is node:current. CA pre
indicates code analyzer preparation, CA exec indicates code analyzer execution, IA pre & exec indicates image analyzer
preparation & execution, and SI building indicates slim image building. The Y-axis indicates the runtime, expressed in seconds
(s).

surfaces can be achieved by restricting available functional-
ities. Aligned with this principle, we quantify image attack
surface reduction through the count of executable commands
before and after slimming. This metric is grounded in the
CLI (Command-Line Interface)’s critical role as the primary
conduit for accessing container runtime capabilities, including
process execution, inspection, and orchestration, which is
leveraged by both legitimate users and attackers.

1) Statical Analysis: We use the selected 30 NPM projects
to build images based on node:current-slim and
node:current, respectively. We then use δ-SCALPEL to
slim these images and calculate the average number of com-
mands supported by them before and after slimming.

The evaluation results are shown in Fig. 11.
node:current-slim is a condensed version of
node:current, containing only the minimal packages
required to run Node.js [46]. As shown in Fig. 11 (1),

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

13

sem
ve

r
ch

alk

no
de

js-
web

soc
ke

t

lru
-ca

ch
e

mini
matc

h

str
ip-

an
si

no
de

-gl
ob

co
mman

de
r.js

ya
llis

t

est
rav

ers
e

de
ep

merg
e

no
de

-fs
-ex

tra

no
de

-js
on

web
tok

en

no
de

-w
hic

h

pro
mpt

she
lljs

wins
ton ws

mini
mist

no
de

-po
rtf

ind
er

css
-lo

ad
er

ex
pre

ss
asy

nc
ya

rgs

bo
dy

-pa
rse

r
gu

lp

po
stc

ss-
loa

de
r

co
ok

ie-
pa

rse
r

bro
wser

ity
log

4js

Images

400

500

600

700

800

900

1000

Ti
m

e
C

on
su

m
pt

io
n

(s
)

689 706

441

740

515

950

627

534
557

660

439

639
678

797

407

620

483

591 610

394

571

497

597 613

493
548

589
545

486

704

(1) Time Consumption

sem
ve

r
ch

alk

no
de

js-
web

soc
ke

t

lru
-ca

ch
e

mini
matc

h

str
ip-

an
si

no
de

-gl
ob

co
mman

de
r.js

ya
llis

t

est
rav

ers
e

de
ep

merg
e

no
de

-fs
-ex

tra

no
de

-js
on

web
tok

en

no
de

-w
hic

h

pro
mpt

she
lljs

wins
ton ws

mini
mist

no
de

-po
rtf

ind
er

css
-lo

ad
er

ex
pre

ss
asy

nc
ya

rgs

bo
dy

-pa
rse

r
gu

lp

po
stc

ss-
loa

de
r

co
ok

ie-
pa

rse
r

bro
wser

ity
log

4js

Images

250

300

350

400

450

500

550

600

650

Im
ag

e
Si

ze
 (M

B
)

551 555

227

372

332

607

335

389 384

276 263

315 313

553

253

345

292 307 303

226

450

314
342

529

321 325

424

316
278

449

(2) Image Size

Fig. 9: Influence of the original image size change on the time consumption of image slimming, where the base image used is
node:current-slim. It should be noted that time consumption refers to the time required to use δ-SCALPEL to generate
a slim image, comprising code analyzer preparation, code analyzer execution, image analyzer preparation and execution, and
slim image building.

sem
ve

r
ch

alk

no
de

js-
web

soc
ke

t

lru
-ca

ch
e

mini
matc

h

str
ip-

an
si

no
de

-gl
ob

co
mman

de
r.js

ya
llis

t

est
rav

ers
e

de
ep

merg
e

no
de

-fs
-ex

tra

no
de

-js
on

web
tok

en

no
de

-w
hic

h

pro
mpt

she
lljs

wins
ton ws

mini
mist

no
de

-po
rtf

ind
er

css
-lo

ad
er

ex
pre

ss
asy

nc
ya

rgs

bo
dy

-pa
rse

r
gu

lp

po
stc

ss-
loa

de
r

co
ok

ie-
pa

rse
r

bro
wser

ity
log

4js

Images

500

600

700

800

900

1000

Ti
m

e
C

on
su

m
pt

io
n

(s
)

961

703

598

818

596

910

595

646
615

575

499

708

761

978

559

954

627

760 773

498

729

626

726
748

645 660

725

659

587

827

(1) Time Consumption

sem
ve

r
ch

alk

no
de

js-
web

soc
ke

t

lru
-ca

ch
e

mini
matc

h

str
ip-

an
si

no
de

-gl
ob

co
mman

de
r.js

ya
llis

t

est
rav

ers
e

de
ep

merg
e

no
de

-fs
-ex

tra

no
de

-js
on

web
tok

en

no
de

-w
hic

h

pro
mpt

she
lljs

wins
ton ws

mini
mist

no
de

-po
rtf

ind
er

css
-lo

ad
er

ex
pre

ss
asy

nc
ya

rgs

bo
dy

-pa
rse

r
gu

lp

po
stc

ss-
loa

de
r

co
ok

ie-
pa

rse
r

bro
wser

ity
log

4js

Images

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Im
ag

e
Si

ze
 (G

B
)

1.45 1.45

1.12

1.27

1.23

1.5

1.23

1.29 1.28

1.17 1.16

1.21 1.21

1.45

1.15

1.29

1.19 1.2 1.2

1.12

1.35

1.21
1.24

1.43

1.22 1.22

1.32

1.21

1.17

1.35

(2) Image Size

Fig. 10: Influence of the original image size change on the time consumption of image slimming, where the base image used
is node:current. It should be noted that time consumption refers to the time required to use δ-SCALPEL to generate a
slim image, comprising code analyzer preparation, code analyzer execution, image analyzer preparation and execution, and
slim image building.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

14

node:current supports 1,678 commands, whereas in Fig.
11 (2), node:current-slim supports 878 commands,
which is 800 fewer than node:current. That is to say,
without using δ-SCALPEL, the attack surface of the image
based on node:current-slim is reduced by 47.7%
compared to the image based on node:current. For
images based on node:current-slim, the average
number of supported commands decreases to 224 after
slimming with δ-SCALPEL, leading to a 74.5% reduction
in the attack surface compared to the pre-slimming state.
In comparison, for images based on node:current, the
average number of supported commands is 498, resulting in
a 70.3% decrease in the attack surface relative to its original
state.

0

200

400

600

800

878

224

node:current-slim

Fat
Slim

(1) node:current-slim

0

200

400

600

800

1000

1200

1400

1600
1678

498

node:current

Fat
Slim

(2) node:current

Fig. 11: Comparison of the average number of commands sup-
ported by the images based on node:current-slim and
node:current, both before and after the slimming process.
The Y-axis indicates the number of commands supported by
the image.

Furthermore, we use the Grype13 tool to compare the aver-
age number of vulnerabilities by severity level (critical, high,
medium, and low) in the image before and after slimming, as
shown in Fig. 12.

For images based on node:current-slim, after pro-
cessing with δ-SCALPEL, the critical vulnerabilities are re-
duced by an average of 0, the high vulnerabilities by an
average of 10, the medium vulnerabilities by an average of
24, and the low vulnerabilities by an average of 8. Similarly,
for images based on node:current, after processing with
δ-SCALPEL, the critical vulnerabilities are reduced by an
average of 38, the high vulnerabilities by an average of 582,
the medium vulnerabilities by an average of 1102, and the low
vulnerabilities by an average of 127.

The evaluation results further demonstrate that reducing
non-essential components (e.g., unused commands and li-
braries) in images directly lowers the number of vulnerabili-
ties, thereby shrinking the attack surface.

2) Case Study: In this section, we conduct a case study to
illustrate the influence of image slimming on typical users and
attackers. In the application scenario shown in Fig. 13, we cre-
ate an express-based API service that receives POST requests
at the /calculate endpoint, parses the expression
field (containing mathematical expressions) from the request

13https://github.com/anchore/grype

Critical High Medium Low

Vulnerability Severity

0

5

10

15

20

25

D
ec

re
as

e
in

 V
ul

ne
ra

bi
lit

y
C

ou
nt

0

10

24

8

Critical

High

Medium

Low

(1) node:current-slim

Critical High Medium Low

Vulnerability Severity

0

200

400

600

800

1000

1200

D
ec

re
as

e
in

 V
ul

ne
ra

bi
lit

y
C

ou
nt

38

582

1102

127

Critical

High

Medium

Low

(2) node:current

Fig. 12: Comparison of average decrease of vulnerability
count by severity level (critical, high, medium, and low) in
node:current-slim-based and node:current-based
images before and after slimming. It should be noted that the
severity level is automatically classified by the Grype tool.

curl -X POST http:// [I P _ A d d r e s s] :

[P O R T] /calculate -H "Content-Type:

application/json" -d '{"expression":"2 + 2

* 2"}'

curl -X POST http:// [IP_Address] : [PORT]/calculate -H

"Content-Type: application/json" -d '{"expression":"require

('child_process').exec('rm -rf /')"}'

const express = require('express');

const app = express();

const PORT = [PORT];

// Middleware parsing request body

app.use(express.urlencoded({ extended: true }));

app.use(express.json());

1

2

3

4

5

6

7

const express = require('express');

const app = express();

const PORT = [PORT];

// Middleware parsing request body

app.use(express.urlencoded({ extended: true }));

app.use(express.json());

1

2

3

4

5

6

7

const express = require('express');

const app = express();

const PORT = [PORT];

// Middleware parsing request body

app.use(express.urlencoded({ extended: true }));

app.use(express.json());

1

2

3

4

5

6

7

System Environment

(Original Image):

bash, ls, rm, express (npm package), etc.

System Environment

(Cutout Image):

express (npm package), etc.

Operation successfulOperation successful Operation successfulOperation successful

Operation failed:

Command failed: rm not found

User Attacker

Main Project Code

Run in the original image

Run in the slim image.

Send payload

Depend on

app.post('/calculate', (req, res) => {

 const { expression } = req.body;

 if (!expression) {

 return res.status(400).send('Expression parameter is required.');

 }

 try {

 // Expression entered by direct eval user

 const result = eval(expression);

 res.send({ result });

 } catch (error) {

 res.status(500).send({ error: error.message });

 }

});

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

app.listen(PORT, [IP_Address], () => {

 console.log(`The server is running.`);

});

23

24

25

Fig. 13: An example of the influence on typical users and
attackers after using δ-SCALPEL to slim the image.

body, directly executes the expression using JavaScript’s eval
function, and returns the calculation result.

For a typical user, a POST request is sent, and the
value of the expression field is set to 2+2*2.
Upon receiving the request, the container parses and
executes the value of the expression field using the
eval function. This code execution process requires the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/anchore/grype

15

utilization of the npm express library. For an attacker,
changing the value of the request’s expression field to
require(’child_process’).exec(’rm -rf /’)
can facilitate a RCE (Remote Code Execution) attack, leading
to the deletion of all files in the container’s root directory.
The execution of this attack relies on Node.js components
(specifically, the child_process module and the express
library) as well as the Linux system command rm.

The original image contains redundant components, en-
abling successful execution of inputs from both typical users
and attackers. The slimmed image, however, includes only
minimal components necessary for application runtime. Con-
sequently, whereas typical users’ requests are executed, at-
tackers’ requests fail due to missing dependencies (i.e., rm)
required for malicious payload execution.

Answer to RQ3: Image slimming effectively opti-
mizes storage resource consumption for images. Si-
multaneously, by removing redundant components, it
reduces potential sources of vulnerabilities and signif-
icantly shrinks the attack surface of the image.

E. Threats to Validity

In this paper, we propose the use of static data dependency
analysis to extract the environment dependencies of the project
code, aiming to reduce the image size while ensuring the
normal operation of the project code. The evaluation results
demonstrate that the proposed δ-SCALPEL model is effective
and robust. However, δ-SCALPEL still faces the following
limitations:
Threats to effectiveness. From the evaluation results shown
in Tab. I, Tab. II, and Tab. III, it is evident that δ-SCALPEL
can achieve precise and effective image slimming, regardless
of whether the container entry point is explicitly specified.
In this paper, we focus on removing executable files in the
/bin and /sbin folders and dynamic link library files in the
/lib folder, as these files are closely related to the execution
of the project code. The base runtime environment of the
container, including files in the /var and /opt directories, is
fully retained. While this ensures the smooth operation of the
container and project code, it inevitably reduces the slimming
rate. In the evaluation of RQ1, we find that SummSlim
demonstrates advantages in specific scenarios. Thus, in future
work, we will investigate integrating SummSlim’s idea into
δ-SCALPEL to further enhance its slimming capabilities.
Threats to efficiency. Besides effectiveness, efficiency is a
crucial evaluation metric to determine whether a model can be
applied in the real production environment. As shown in the
evaluation results in Fig. 9 (1) and Fig. 10 (1), the processing
time of δ-SCALPEL for node:current-slim-based im-
ages ranges between 394s and 950s, while the processing time
for node:current-based images ranges between 498s and
978s. Both exceed 5 minutes, with the maximum reaching 16
minutes. The most time-consuming parts being the preparation
of the image for the code analyzer and the execution of
the code analyzer itself. The running time for the image

preparation part of the code analyzer is constrained by the
local network environment, as it takes considerable time to
download the base image and NPM packages. Despite optimiz-
ing the static data dependency analysis algorithm for the code
analyzer, we still encounter challenges of efficiency. Therefore,
in our future research, we will enhance the efficiency of
the code analyzer by incorporating more advanced analysis
algorithms and designing more effective package filtering
mechanisms.

Moreover, δ-SCALPEL currently only supports slimming
built images. When image contents require modification (e.g.,
adding new dependencies), users must manually adjust the im-
age and re-run δ-SCALPEL. Consequently, its ability to handle
slimming of modified images requires future enhancement.

V. CONCLUSION

Image slimming is a valuable area of research that can
help reduce the image size and minimize the attack surface
of containers. Existing methods determine a project’s envi-
ronment dependencies by observing the operational behavior
of the container. However, these approaches have significant
limitations, including the incomplete extraction of the environ-
ment dependencies and failure to slim the image, especially
when the image’s entry point is not specified. In this paper, we
propose δ-SCALPEL, a robust model that utilizes static code
analysis technology to extract the environment dependencies
of a project, thereby addressing the limitations of existing
dynamic-based methods. Our evaluation results demonstrate
that δ-SCALPEL effectively reduces the image size while
ensuring the normal operation of the project.

DATA AVAILABILITY STATEMENT

The replication package of δ-SCALPEL is available at https:
//zenodo.org/records/13982576.

ACKNOWLEDGMENTS

This work was supported by National Key Research and
Development Program of China (No.2023YFB3106600).

REFERENCES

[1] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son, “Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2Nd ACM
SIGOPS/EuroSys european conference on computer systems 2007, 2007,
pp. 275–287.

[2] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose, “Performance evaluation of container-based vir-
tualization for high performance computing environments,” in 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. IEEE, 2013, pp. 233–240.

[3] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight
virtualization: a performance comparison,” in 2015 IEEE International
Conference on cloud engineering. IEEE, 2015, pp. 386–393.

[4] D. Merkel et al., “Docker: lightweight linux containers for consistent
development and deployment,” Linux j, vol. 239, no. 2, p. 2, 2014.

[5] Z. Zou, Y. Xie, K. Huang, G. Xu, D. Feng, and D. Long, “A docker
container anomaly monitoring system based on optimized isolation
forest,” IEEE Transactions on Cloud Computing, vol. 10, no. 1, pp.
134–145, 2019.

[6] T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A
security perspective,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62,
2016.

[7] N. Muhtaroglu, B. Kolcu, and İ. Arı, “Testing performance of application
containers in the cloud with hpc loads,” in Proceedings Of The Fifth
International Conference On Parallel, Distributed, Grid And Cloud
Computing For Engineering. Civil-Comp, 2017.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

https://zenodo.org/records/13982576
https://zenodo.org/records/13982576

16

[8] P. Liu, S. Ji, L. Fu, K. Lu, X. Zhang, W.-H. Lee, T. Lu, W. Chen, and
R. Beyah, “Understanding the security risks of docker hub,” in Computer
Security–ESORICS 2020: 25th European Symposium on Research in
Computer Security, ESORICS 2020, Guildford, UK, September 14–18,
2020, Proceedings, Part I 25. Springer, 2020, pp. 257–276.

[9] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis,
A. S. Warke, M. Mohamed, and A. R. Butt, “Large-scale analysis of the
docker hub dataset,” in 2019 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2019, pp. 1–10.

[10] C. Lin, S. Nadi, and H. Khazaei, “A large-scale data set and an
empirical study of docker images hosted on docker hub,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 371–381.

[11] J. Henkel, C. Bird, S. K. Lahiri, and T. Reps, “A dataset of dockerfiles,”
in Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 528–532.

[12] K. Eng and A. Hindle, “Revisiting dockerfiles in open source software
over time,” in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 2021, pp. 449–459.

[13] Z. Zhang, H. Huang, S. Xu, Q. Zhou, T. Zhang, X. Jia, and W. Zhang,
“Summslim: A universal and automated approach for debloating con-
tainer images,” in 2024 IEEE 30th International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 2024, pp. 132–141.

[14] H.-C. Kuo, “Attack surface reduction in contemporary operating systems
via practical kernel debloating,” Ph.D. dissertation, University of Illinois
at Urbana-Champaign, 2022.

[15] M. Souppaya, J. Morello, and K. Scarfone, “Application container
security guide,” National Institute of Standards and Technology
(NIST), Special Publication (NIST SP) 800-190, Sep. 2017. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.S
P.800-190.pdf

[16] slimtoolkit, “Optimize your experience with containers. make your
containers better, smaller, more secure and do less to get there (free
and open source!),” 2022, accessed: 2024-09-09. [Online]. Available:
https://github.com/slimtoolkit/slim

[17] J. Liu, J. Han, and C. Huang, “Vulnerability detection in source code
using statice analysis,” Journal of Cyber Security, vol. 7, no. 4, pp.
100–113, 2022.

[18] A. Dawoud and S. Bugiel, “Bringing balance to the force: Dynamic
analysis of the android application framework,” Bringing balance to the
force: dynamic analysis of the android application framework, 2021.

[19] M. Ahmad, V. Costamagna, B. Crispo, F. Bergadano, and Y. Zhau-
niarovich, “Stadart: addressing the problem of dynamic code updates
in the security analysis of android applications,” Journal of Systems and
Software, vol. 159, p. 110386, 2020.

[20] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine:
Automated system call policy generation for container attack surface
reduction,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), 2020, pp. 443–458.

[21] J. Han, C. Huang, and J. Liu, “bjcnet: A contrastive learning-based
framework for software defect prediction,” Computers & Security, vol.
145, p. 104024, 2024.

[22] ——, “bjenet: a fast and accurate software bug localization method in
natural language semantic space,” Software Quality Journal, pp. 1–24,
2024.

[23] J. Han, C. Huang, S. Sun, Z. Liu, and J. Liu, “bjxnet: an improved
bug localization model based on code property graph and attention
mechanism,” Automated Software Engineering, vol. 30, no. 1, p. 12,
2023.

[24] L. Chen, Y. Chen, S. Xiao, Y. Song, L. Sun, Y. Zhen, T. Zhou,
and Y. Chang, “Egfe: End-to-end grouping of fragmented elements
in ui designs with multimodal learning,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, 2024,
pp. 1–12.

[25] Y. Ding, S. Chakraborty, L. Buratti, S. Pujar, A. Morari, G. Kaiser, and
B. Ray, “Concord: clone-aware contrastive learning for source code,” in
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 26–38.

[26] C. Huang, N. Wang, Z. Wang, S. Sun, L. Li, J. Chen, Q. Zhao,
J. Han, Z. Yang, and L. Shi, “Donapi: Malicious npm packages de-
tector using behavior sequence knowledge mapping,” arXiv preprint
arXiv:2403.08334, 2024.

[27] B. Steenhoek, H. Gao, and W. Le, “Dataflow analysis-inspired deep
learning for efficient vulnerability detection,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, 2024, pp.
1–13.

[28] C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting
flow of sensitive data in mini-programs with static taint analysis,” in
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE). IEEE, 2023, pp. 932–944.

[29] R. Opdebeeck, J. Lesy, A. Zerouali, and C. De Roover, “The docker
hub image inheritance network: Construction and empirical insights,”
in 2023 IEEE 23rd International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 2023, pp. 198–208.

[30] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker ecosystem–
vulnerability analysis,” Computer Communications, vol. 122, pp. 30–43,
2018.

[31] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues,
challenges, and the road ahead,” IEEE access, vol. 7, pp. 52 976–52 996,
2019.

[32] Docker, Inc., “Set up automated builds,” https://docs.docker.com/docker
-hub/builds/, 2024, accessed: 2024-09-30.

[33] B. Tak, H. Kim, S. Suneja, C. Isci, and P. Kudva, “Security analysis of
container images using cloud analytics framework,” in Web Services–
ICWS 2018: 25th International Conference, Held as Part of the Services
Conference Federation, SCF 2018, Seattle, WA, USA, June 25-30, 2018,
Proceedings 16. Springer, 2018, pp. 116–133.

[34] M. Souppaya, J. Morello, and K. Scarfone, “Application container
security guide,” National Institute of Standards and Technology, Tech.
Rep., 2017.

[35] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on linux container security: Attacks and countermeasures,” in Pro-
ceedings of the 34th annual computer security applications conference,
2018, pp. 418–429.

[36] O. Javed and S. Toor, “Understanding the quality of container security
vulnerability detection tools,” arXiv preprint arXiv:2101.03844, 2021.

[37] B. Security, “Over 30% of official images in docker hub contain
high-priority security vulnerabilities,” https://www.banyansecurity.io/bl
og/over-30-of-official-images-in-docker-hub-contain-high-priority-sec
urity-vulnerabilities/, 2024, accessed: 2024-09-30.

[38] Threatpost, “Malicious docker containers earn crypto-miners $90,000,”
https://threatpost.com/malicious-docker-containers-earn-crypto-miners-
90000/132816/, 2018, accessed: 2024-09-30.

[39] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel,
“Cimplifier: automatically debloating containers,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 476–486.

[40] Docker, Inc., “Dockerfile overview,” https://docs.docker.com/build/conc
epts/dockerfile/, 2024, accessed: 2024-09-30.

[41] S. Mishra and M. Polychronakis, “Shredder: Breaking exploits through
api specialization,” in Proceedings of the 34th Annual Computer Security
Applications Conference, 2018, pp. 1–16.

[42] C. Mulliner and M. Neugschwandtner, “Breaking payloads with runtime
code stripping and image freezing,” Black Hat USA, 2015.

[43] A. Quach, A. Prakash, and L. Yan, “Debloating software through {Piece-
Wise} compilation and loading,” in 27th USENIX security symposium
(USENIX Security 18), 2018, pp. 869–886.

[44] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven
software debloating,” in Proceedings of the 12th European Workshop
on Systems Security, 2019, pp. 1–6.

[45] National Institute of Standards and Technology, “Application container
security guide,” https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NI
ST.SP.800-190.pdf, National Institute of Standards and Technology,
Tech. Rep. NIST SP 800-190, 2017, accessed: 2024-09-30.

[46] Node.js, “Node.js docker official images,” https://github.com/nodejs/do
cker-node/tree/58c3b39e5948f82c594395857193cd97d01c690e, 2023,
accessed: 2024-09-30.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3640123

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 12,2025 at 14:46:06 UTC from IEEE Xplore. Restrictions apply.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://github.com/slimtoolkit/slim
https://docs.docker.com/docker-hub/builds/
https://docs.docker.com/docker-hub/builds/
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities/
https://threatpost.com/malicious-docker-containers-earn-crypto-miners-90000/132816/
https://threatpost.com/malicious-docker-containers-earn-crypto-miners-90000/132816/
https://docs.docker.com/build/concepts/dockerfile/
https://docs.docker.com/build/concepts/dockerfile/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://github.com/nodejs/docker-node/tree/58c3b39e5948f82c594395857193cd97d01c690e
https://github.com/nodejs/docker-node/tree/58c3b39e5948f82c594395857193cd97d01c690e

	Introduction
	Related Work
	Docker Security
	Image Debloating

	Methodology
	Overview
	Environment Dependency Extraction
	Package Filtering
	Data Dependency Analysis
	Command Token Extraction

	Slim rootfs Construction
	Preprocess
	rootfs Modeling
	rootfs Pruning

	Slim Image Building

	Evaluation
	Experiment Setup
	Dataset
	Implementation

	RQ1: The Image Size Reduced by Using -SCALPEL
	Specify the Entry Point
	Do not Specify the Entry Point
	The Composition of Slimming

	RQ2: Time Consumption of Image Slimming Using -SCALPEL
	Details of Time Consumption
	Influence of Image Size on Time Consumption

	RQ3: The Image Attack Surfaces and Vulnerabilities Reduced by -SCALPEL
	Statical Analysis
	Case Study

	Threats to Validity

	Conclusion
	References

