
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025 1071

ICEFROG: A Layer-Elastic Scheduling System for
Deep Learning Training in GPU Clusters

Wei Gao , Zhuoyuan Ouyang , Peng Sun , Tianwei Zhang , Member, IEEE,
and Yonggang Wen , Fellow, IEEE

Abstract—The high resource demand of deep learning train-
ing (DLT) workloads necessitates the design of efficient sched-
ulers. While most existing schedulers expedite DLT workloads by
considering GPU sharing and elastic training, they neglect layer
elasticity, which dynamically freezes certain layers of a network.
This technique has been shown to significantly speed up individual
workloads. In this paper, we explore how to incorporate layer
elasticity into DLT scheduler designs to achieve higher cluster-wide
efficiency. A key factor that hinders the application of layer elastic-
ity in GPU clusters is the potential loss in model accuracy, making
users reluctant to enable layer elasticity for their workloads. It
is necessary to have an efficient layer-elastic system, which can
well balance training accuracy and speed for layer elasticity. We
introduce ICEFROG, the first scheduling system that utilizes layer
elasticity to improve the efficiency of DLT workloads in GPU
clusters. It achieves this goal with superior algorithmic designs
and intelligent resource management. In particular, (1) we model
the frozen penalty and layer-aware throughput to measure the
effective progress metric of layer-elastic workloads. (2) We design a
novel scheduler to further improve the efficiency of layer elasticity.
We implement and deploy ICEFROG in a physical cluster of 48
GPUs. Extensive evaluations and large-scale simulations show that
ICEFROG reduces average job completion times by 36-48% relative
to state-of-the-art DL schedulers.

Index Terms—Distributed systems, deep learning, GPU cluster
scheduling.

I. INTRODUCTION

THE proliferation of deep learning (DL) motivates many
organizations to set up dedicated GPU clusters to manage

numerous DL training (DLT) workloads. These workloads typi-
cally demand intensive GPU resources for the long term, leading
to high resource oversubscription. This inspires the design of
efficient schedulers to mediate resource sharing among DLT
workloads and improve resource utilization.

Received 16 August 2024; revised 7 February 2025; accepted 9 March
2025. Date of publication 20 March 2025; date of current version 18 April
2025. The work was supported by the RIE2020 Industry Alignment Fund -
Industry Collaboration Projects (IAF-ICP) Funding Initiative. Recommended
for acceptance by A. Li. (Corresponding author: Tianwei Zhang.)

Wei Gao is with the College of Computational and Data Science, Nanyang
Technological University, Singapore 639798, and also with S-Lab, Nanyang
Technological University, Singapore 639798 (e-mail: gaow0007@ntu.edu.sg).

Zhuoyuan Ouyang, Tianwei Zhang, and Yonggang Wen are with the Col-
lege of Computational and Data Science, Nanyang Technological University,,
Singapore 639798 (e-mail: ouya0013@ntu.edu.sg; tianwei.zhang@ntu.edu.sg;
ygwen@ntu.edu.sg).

Peng Sun is with the Shanghai AI Lab & Sensetime, Shanghai 200232, China
(e-mail: sunpeng@pjlab.org.cn).

The code is available at https://zenodo.org/records/14830066.
Digital Object Identifier 10.1109/TPDS.2025.3553137

To this end, many DL schedulers [1], [2], [3], [4], [5], [6],
[7] adopt various optimization techniques to accelerate the exe-
cution of DLT workloads. Two prominent advanced techniques
stand out: (1) GPU sharing allows multiple jobs to share the
GPU via the NVIDIA MPS or MIG techniques. (2) Elastic train-
ing dynamically adjusts allocated resources [3], [8] and batch
sizes [4], [5] respectively. Here, we explore another promising
speedup technique, layer elasticity1 to improve DL scheduling
performance. Extensive research efforts [9], [11], [12], [13],
[14], [15] have been done to advance the layer elasticity for DLT
workloads. These works have demonstrated that by freezing
the training of certain front layers, the training speed can be
improved with limited model accuracy degradation. Therefore,
users can incorporate these layer-elastic optimization techniques
into their workloads using the resources allocated by schedulers.
While this can enhance efficiency, a question we seek to answer
is: can we design a more efficient scheduler to furtherexpedite
DLT workloads with the awareness of layer elasticity? This
remains an important but unsolved problem with the following
challenges.

First, the trade-off between training speed and model ac-
curacy has not been fully investigated in existing layer-elastic
optimization approaches. Early techniques [9], [10], [11] neces-
sitate users to manually determine the number of frozen layers
throughout the training. The high sensitivity of model accuracy
to the number of frozen layers complicates the adjustment.
Recent work [15] designs a metric to assess the convergence
of each layer and determine the frozen layers on the fly. The
computation of this metric requires generating a reference model
with quantization techniques, which has significant overhead
with multiple feed-forward processes and is error-prone [16].
Moreover, many optimization techniques typically assess the
speed-accuracy trade-off by fixing the number of epochs. They
ignore that model accuracy of layer-elastic workloads can be
restored with more training iterations (Section III-C), thus lead-
ing to less optimal balance between training speed and model
accuracy.

Second, existing DL schedulers do not capture the behav-
ior changes of DLT workloads caused by layer elasticity in a
system’s view. First, layer elasticity can reduce GPU utilization
and memory consumption [9], [10]. Previous DL schedulers [2],

1In this paper, layer elasticity refers to considering both resource scaling and
layer scaling. Additionally, layer elasticity allows previously frozen layers to be
unfrozen, which is different from the concept of layer freezing as described in
prior literature [9], [10], [11].

1045-9219 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7048-1722
https://orcid.org/0009-0009-8998-8628
https://orcid.org/0000-0001-8456-0491
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0002-2751-5114
mailto:gaow0007@ntu.edu.sg
mailto:ouya0013@ntu.edu.sg
mailto:tianwei.zhang@ntu.edu.sg
mailto:ygwen@ntu.edu.sg
mailto:sunpeng@pjlab.org.cn
https://zenodo.org/records/14830066


1072 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

[17], [18] point out that colocating jobs with low GPU utilization
and memory consumption can improve cluster-wide efficiency.
Such optimization opportunity is never considered in existing
GPU sharing enabled schedulers [1], [2], [17]. Second, the
effectiveness of elastic schedulers [3], [4], [5], [8], [19] depends
on the accurate job throughput modeling for distributed data
parallelism (DDP).2 The introduction of layer elasticity brings
a significant throughput improvement due to decreased gradient
computation and communication [15]. However, existing elastic
schedulers largely neglect such throughput change, leading to
less efficient scheduling decisions. Besides, training large mod-
els demands various parallelization strategies (e.g., sharded data
parallelism (SDP) [20], [21], [22], pipeline parallelism (PP) [23],
[24]) to alleviate the GPU memory consumption. The lack of
awareness of these parallelization strategies further complicates
the job throughput modeling for large model training with layer
elasticity. We provide motivational examples in Section II and
empirical evaluation in Section V to detail the limitations of
existing DL schedulers.

To address the above challenges, we present ICEFROG, a
layer-elastic scheduler to manage DLT workloads in GPU clus-
ters. First, inspired by goodput in Pollux [4] and plasticity
in Egeria [15], we introduce a light-weight metric called ef-
fective progress to measure the time-to-accuracy (TTA) of a
layer-elastic job. Through maximizing effective progress, we
effectively decide the number of frozen layers to balance the
throughput improvement and accuracy loss. More importantly,
the computation of this metric only requires gradient features
and profiled system features, avoiding the heavy and error-prone
computation of the reference model in [15].

Second, we propose a scheduling optimization objective to
harness the advantageous aspects of layer elasticity to optimize
the cluster-wide performance. This objective delivers a joint
resource allocation optimization for elastic training and GPU
sharing. For each job, this metric measures the ratio of the
actual effective progress achieved with the allocated GPUs, to
its potential maximum effective progress if all available GPU
resources are allocated. Through this ratio, ICEFROG effectively
allocates resources for each job based on their system properties
and resource availability to maximize the cluster-wide effective
progress improvement.

We implement ICEFROG as a customized scheduler atop Ku-
bernetes, and evaluate it on a cluster of 12 GPU servers with 48
GPUs. We construct a diverse set of tasks [25], [26], [27], [28],
[29], [30] and datasets [31], [32], [33] following a trace pattern
in [34]. Compared with state-of-the-art GPU sharing enabled
and elastic schedulers, ICEFROG reduces the average job com-
pletion time (JCT) by up to 48% (Lucid [2]), 46% (Optimus [3])
and 36% (Pollux [4]). Also, we conduct large-scale simulation
experiments on a 960-GPU cluster to confirm its scalability. We
summarize our contributions as follows:
� We explore and exploit layer elasticity in GPU sharing

and resource elasticity as well as large model training with

2Distributed data parallelism presupposes that the model should be fit into the
single GPU. This paper distinguishes between distributed data parallelism and
sharded data parallelism [20], [21].

Fig. 1. The impact of layer elasticity on GPU sharing: (a) normalized speed of
packing both MobileNetV2 training tasks on a single GPU with batch size 128
over different ratios of frozen layers; (b) layer-agnostic GPU sharing enabled
scheduler; (c) layer-aware GPU sharing enabled scheduler.

sharded data parallelism, pipeline parallelism, and hybrid
parallelism.

� We design a scheduling objective to leverage layer elastic-
ity to automatically optimize layer-elastic configurations
and resource allocations for each DLT workload.

� We present and implement ICEFROG, a scheduler designed
to optimize layer elasticity for DLT workloads, and demon-
strate its efficiency through evaluation using representative
DLT tasks.

II. BACKGROUND AND MOTIVATION

We first review the background of layer elasticity. Next,
we perform two motivational experiments on V100 GPUs to
illustrate how we can exploit the knowledge of layer elasticity
to improve the efficiency for GPU sharing enabled and elastic
training schedulers.

A. Layer Elasticity

Layer elasticity is an approach to accelerate the DL training
via freezing the training of certain front layers during the training
progress. Substantial studies [11], [12], [13], [15], [35], [36]
highlight layer elasticity as a promising technique to accelerate
training jobs with minimal impact on accuracy.

For a DLT job, the adoption of layer elasticity necessitates
the consideration of two key aspects. (1) Job Throughput:
freezing the training of specific layers reduces the computational
overhead and eliminates the gradient communication for these
layers, thereby enhancing the throughput. (2) Model Conver-
gence: while increasing the number of frozen layers can improve
the job throughput, it may come at the expense of slow model
convergence. Therefore, an efficient metric to quantify model
convergence is essential.

B. GPU Sharing

We discuss how a GPU sharing enabled scheduler benefits
from knowing a job’s remaining time in job colocation scenarios
through an example. Fig. 1(a) compares the normalized speed
of packing two MobileNetV2 models on a single GPU over
different numbers of frozen layers. Increasing the number of
frozen layers alleviates the slowdown in speed caused by job
colocation on a single GPU.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ICEFROG: A LAYER-ELASTIC SCHEDULING SYSTEM FOR DEEP LEARNING TRAINING IN GPU CLUSTERS 1073

We denote two identical DL tasks with 50% frozen layers in
Fig. 1(a) as job A and job B. Fig. 1(b) and (c) present how a
GPU sharing enabled scheduler determines resource allocations
for two jobs with a GPU. We also consider layer-agnostic and
layer-aware schedulers. In Fig. 1(b), the layer-agnostic scheduler
assesses whether both jobs can be packed together according to
the profiled GPU utilization and memory consumption when
neither job experiences layer freezing. Then, the layer-agnostic
scheduler predicts the high interference of packing job A and job
B on a single GPU, and decides both jobs should run sequen-
tially. On the contrary, in Fig. 1(c), the layer-aware scheduler
knows the normalized speedup caused by layer freezing and
intelligently packs job A and job B on the same GPU. Despite
job A experiencing a slight speed slowdown, the cluster-wide
latency achieves nearly a 1.4× speedup.

Difference between layer elasticity and batch reduction: Re-
ducing the batch size can unlock potential opportunities for GPU
sharing, but it does not always lead to a reduction in end-to-end
execution time. The reduction of the batch size does not result in
a linear improvement in job throughput. For example, training
MobileNetV2 on CIFAR10 takes 0.057 seconds using a V100
GPU with a batch size of 32 and 0.074 seconds with a batch size
of 64. When two jobs with a batch size of 32 are packed onto a
V100 GPU, the interference is negligible. However, sequentially
executing two jobs with a batch size of 64 results in a total
execution time of 4.81 hours, while colocating two jobs with a
batch size of 32 extends the execution time to 4.94 hours. Re-
ducing the batch size increases the number of training iterations,
which in turn raises the overhead induced by model parameter
access and kernel launch. In contrast, ICEFROG leverages layer
freezing to reduce end-to-end execution time. By increasing the
number of frozen layers, GPU utilization decreases, creating
an opportunity for GPU sharing with negligible interference.
Consequently, layer freezing prevents the extended end-to-end
execution time that typically results from merely reducing the
batch size.

C. Elastic Training

Similar to GPU sharing, we discuss how an elastic scheduler
reduces the latency for layer-elastic workloads with the knowl-
edge of their remaining time under given allocated resources.
Fig. 2(a) compares the throughput of training ResNet50 [28]
on CIFAR10 [31] across different numbers of GPUs without
freezing and with 50% frozen layers. Freezing certain layers
can mitigate the throughput plateau induced by the heavy com-
munication overhead.

We denote the DL task without freezing as job A and the DL
task with 50% frozen layers as job B. In Fig. 2(b) and (c), we
investigate how an elastic scheduler minimizes the average JCT
for two jobs competing for 24 GPUs. We consider two scenarios:
one where layer elasticity is not considered (referred to as the
layer-agnostic scheduler), and another where layer elasticity is
taken into account (referred to as the layer-aware scheduler). In
Fig. 2(b), the layer-agnostic scheduler adopts a layer-agnostic
throughput model, predicting the same throughput for both jobs.
This leads the layer-agnostic scheduler to allocate an equal

Fig. 2. The impact of layer elasticity on elastic training: (a) job throughput
of training ResNet50 on CIFAR10 with batch size 512 over different number
of NVIDIA V100 GPUs; (b) layer-agnostic elastic scheduler; (c) layer-aware
elastic scheduler.

number of GPUs (12 each) to both jobs. Then, job B is completed
faster due to layer freezing, and the remaining GPU resources
are allocated to job A. On the other hand, in Fig. 2(c), the
layer-aware scheduler knows different remaining times for job
A and job B. It proactively allocates more resources to job B,
even if job A experiences a slight throughput reduction. As job
B is completed sooner than that in Fig. 2(b), job A can get all 24
GPUs earlier than that in Fig. 2(b), and also completes earlier.
Thus, the layer-aware scheduler speeds up job A and job B.
Overall, the scheduling decision that takes layer elasticity into
account can benefit jobs with and without layer freezing.

III. PERFORMANCE MODELING OF LAYER ELASTICITY

In this section, we first illustrate how to model the TTA perfor-
mance for a layer-elastic job. Next, we introduce the definition
of effective progress. Last, we explain how effective progress
is measured for a layer-elastic job. The empirical analysis of
effective progress is conducted on A800 GPUs.

A. Modeling Time-to-Accuracy

For a layer-elastic workload, we can increase the number of
frozen layers to improve its training speed but at the cost of
model accuracy. Therefore, a desirable layer-elastic approach is
to minimize the TTA. Here, for a workload, we denote its TTA
as T acc, and T acc can be measured as follows:

T acc = T age +
P

E
, (1)

where T age denotes the elapsed time since the submission of this
workload. We denote P as the remaining number of processed
samples to reach the target accuracy for this workload without
enabling layer elasticity. Practically, P is computed as a product
of the maximum training epochs and the number of samples
processed in each epoch. E refers to effective progress (discussed
in Section III-B), indicating the effective processed samples per
time unit. Section IV discusses how ICEFROG exploits T acc to
allocate resources for layer-elastic workloads.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



1074 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

B. Definition of Effective Progress

We denote effective progress as the product of its layer-aware
throughput and frozen penalty at the t-th training iteration:

Et(a, s,m, �) = ψt(�)× T(a, s,m, �), (2)

where ψt, and T represents frozen penalty, and layer-aware
throughput respectively. Moreover, a denotes the number of
allocated GPUs to the job, s is whether to share GPUs with other
jobs,m is the per-GPU batch size, and � is the number of frozen
layers. The global batch sizeM(a,m) of this job can be written
as a×m, and is fixed for layer-elastic workload. We assume
no gradient accumulation when modeling effective progress for
brevity. We can utilize existing techniques [4], [20] to support
the scenario with gradient accumulation.

The layer-aware throughput quantifies the number of pro-
cessed examples per time unit, while the frozen penalty assesses
the relative progress of processed examples when using layer
elasticity compared to training with all layers. The product of
layer-aware throughput and frozen penalty yields a balanced
measure of model accuracy and training speed. Below, we ex-
plain how to measure frozen penalty and layer-aware throughput
in detail.

C. Definition of Frozen Penalty

We introduce frozen penalty ψt(�) to facilitate the computa-
tion of the additional number of iterations needed to recover the
model accuracy as follows:

ψt(�) =
σ2
t [�+ 1 : L0]

σ2
t0
[1 : �] + σ2

t [�+ 1 : L0]
, (3)

where σ2
t0
[1 : �] represents the gradient variance from the first

layer to the �-th layer at the t0-th training iteration when layer
freezing is applied. σ2

t [�+ 1 : L] denotes the gradient variance
from the (�+ 1)-th layer to the finalL-th layer at the current t-th
training iteration. We useψt(�) to compute how many additional
iterations needed when freezing the first � layers to attain similar
model convergence when training all layers.

Intuitive Explanation of (3): Eqn. (3) computes how many ad-
ditional training iterations needed to recover the model accuracy.
At t-step, ICEFROG desires to recover the gradient variance of �
frozen layers at frozen step t0 by running 1

ψt(�)
− 1 additional

iterations. At the t-step, the DL job produces the gradient vari-

ance σ2
t [1 : L0]. If the DL job runs extra σ2

t0[1:�]

σ2
t [1:L0]

iterations, it is
assumed that the gradient variance in each additional iteration
is approximated as σ2

t [1 : L0]. Consequently, the accumulated
gradient variance is σ2

t0[1 : �], which compensates for the gradi-
ent variance loss of � frozen layers at t0-step. Given that the first
� layers are frozen at t-step and have zero gradient variance, we
have σ2

t [1 : L0] = σ2
t [�+ 1 : L0]. This leads to the relationship

1
ψt(�)

− 1 =
σ2
t0[1:�]

σ2
t [�+1:L0]

, which is the basis for (3).
How (3) restores the model accuracy: To understand how

frozen penalty contributes to restoring model accuracy, we ex-
amine the gradient statistics and model accuracy of a concrete
layer-elastic workload. First, we uncover how frozen penalty
recovers the gradient statistics. In Fig. 3(a), we present the

Fig. 3. Statistical information of training ResNet18 on CIFAR10 with batch
size 256 on a single GPU. (a) The gradient varianceσ2 and squareμ2 (y-axis) of
freezing 0%, freezing 50% layers from 50th epochs w/ and w/o frozen penalty
ψ change over the epochs. (b) The validation accuracy (y-axis) of freezing 0%,
25% and 50% layers from 50th epochs onwards vary over the training iterations
(x-axis) and the number of iterations to accuracy predicted by frozen penalty.

gradient variance and square of freezing 0% layers (blue line)
and freezing 50% layers from the 50th epochs onwards (orange
line) for ResNet18 on CIFAR10. We observe a significant dis-
crepancy of gradient variance and square between the settings
of freezing 50% layers and training all layers. We incorporate ψ
into the training task with 50% layers frozen (green line), and
the epoch (x-axis) is scaled by ψ. We compensate the training
iterations using ψ instantaneously in each epoch. As such, the
number of training examples in each epoch differs between green
and orange lines. For example, the orange line experiences 196
iterations at 51th epoch, while the green line experiences 204
iterations. Hence, with ψ, we observe that the gradient variance
of the training task with 50% layers frozen can perfectly match
that of training all layers. Also, ψ reduces the difference of
gradient square between the settings of freezing 50% layers
and training all layers. This demonstrates that ψ can recover
the gradient statistics of a DL task with certain layers frozen.
Similar phenomena are observed in other DL tasks as well.

Second, we investigate whether frozen penalty can predict
how many additional iterations are needed to reach the target
accuracy. We set the target of top 1 validation accuracy of
training ResNet18 as 94%. In Fig. 3(b), we compare the iteration
versus validation accuracy of ResNet18 with different portions
of frozen layers from the 50th epoch onwards. Our observation
is that the number of training iterations required for the task
with all layers training (blue line) is not sufficient for the tasks
with 25% (orange line) and 50% (green line) frozen layers to
achieve the same target accuracy. We use ψ to predict how
many training iterations to reach the target accuracy for tasks
with certain layers frozen (star marker). We observe that their
accuracy can be reached before the number of training iterations
predicted by ψ. This indicates ψ is an appropriate metric to
predict how many additional training iterations are needed to
recover the model accuracy.

We also conduct a qualitative analysis for ψ. When the gradi-
ent variance of certain front layers converges to a small value, we
can safeguard the increase of frozen layers. When the gradient
variance σ2

t of the first � layers converges to close to zero, ψt(�)
is close to 1. Freezing the first � layers does not sacrifice the
model convergence significantly but improves the throughput.
The effective progressE can achieve the overall improvements by

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ICEFROG: A LAYER-ELASTIC SCHEDULING SYSTEM FOR DEEP LEARNING TRAINING IN GPU CLUSTERS 1075

Fig. 4. Time-to-accuracy (TTA) performance of different training methods for common DL tasks. (First row): TTA (y-axis) between the scenarios of vanilla
training, FreezeOut as well as our proposed penalty-based training over different batch sizes (x-axis). We evaluate them on a 4-GPU A800 node. (Second row):
TTA (y-axis) between three training methods over different numbers of allocated GPUs. We fix the batch size as 512 for CIFAR tasks, 800 for ImageNet tasks, 64
for YOLO, and 256 for LLaMA-3B. [C] and [I] denote CIFAR10 and ImageNet datasets.

freezing these � layers. As the training goes on, σ2
t0
[1 : �] keeps

fixed, while σ2
t [�+ 1 : L0] gradually decreases. This decreases

ψt(�), and prompts to unfreeze some layers to maximize E.
Empirical validation: We provide a comprehensive empirical

analysis about frozen penalty in Fig. 4. For simplicity, we use
vanilla training to represent training all layers. Penalty-based
training refers to using frozen penalty to determine the number
of frozen layers by maximizing (2) in given allocated resources
and global batch size. Considering the complexity [15] and
strong coupling of other freeze training implementations with
transformer-based models [9], [10], we have opted for Freeze-
Out [11] as a freeze training baseline. We strengthen FreezeOut
as a competitive baseline by optimizing hyperparameters that
control the number of frozen layers during training and reporting
the best TTA results.

Fig. 4 (First row) compares TTA results of vanilla training,
FreezeOut [11], and penalty-based training with different batch
sizes in fixed resource allocations. The target accuracy for dif-
ferent tasks can be found in Table VI. FreezeOut can decrease
TTA compared to vanilla training in most cases. However, it
cannot compete with penalty-based training in that it fails to
trade off the model convergence and training speedup. Fig. 4
(Second row) presents TTA results of different training methods
with a fixed batch size in a variety of resource allocations.
When we increase the number of allocated GPUs, penalty-based
training presents a much better performance in TTA compared
to the other two baselines. Overall, penalty-based training aims
to maximize (2), thus minimizing the TTA. This suggests that
we can use frozen penalty to better configure the number of
frozen layers. Note that with the same training epoch (scaled by
frozen penalty), penalty-based training can bring an average of
(1%) improvement in accuracy for CIFAR10 tasks. Other DL
tasks (e.g., ResNet18, ResNet50, MobileNetV2 on ImageNet,
and YOLO on PASCAL-VOC) almost suffer no performance
loss.

TABLE I
SUMMARY OF NOTATIONS IN SECTION III-D

D. Modeling Layer-Aware Throughput

Next, we compute the layer-aware throughput T(a, s,m, �)
for distributed data parallelism (DDP). We summarize relevant
notations in this section in Table I. For the ease of understand-
ing, we also summarize the key insight for several equations
discussed in this section. Following prior works [3], [4], [5], [8],
we define the job throughput as the number of processed samples
per time unit. Here, it is computed by dividing the global batch
size M by the time cost per iteration Titer, and then multiplying
it by the slowdown factor λ(s,m, �) caused by GPU sharing.
Mathematically, it can be expressed as:

T(a, s,m, �) =M(a,m)/Titer × λ(s,m, �). (4)

Modeling Titer: We initially consider throughput modeling with-
out the slowdown brought by GPU sharing. A typical way
to model Titer is to explicitly decompose it into the forward
activation computation overhead Tfwd, the backward gradient
computation overhead Tbwd, and the gradient synchronization
overhead Tsync. Existing schedulers [4], [5], [8], [37] adopt
similar decomposition solutions. Particularly, introducing layer
elasticity would primarily influence the backward gradient com-
putation overhead Tbwd and gradient synchronization overhead
Tsync. Without considering layer elasticity, cluster users have
many techniques [3], [4], [5] to model Tbwd(m, � = 0) under
any local batch sizes, and Tsync(a, � = 0) under any resource

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



1076 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

Fig. 5. The time cost per iteration (seconds) versus the FLOPs ratio of frozen
layers for different DL tasks. The result is the average of 20 iterations to filter
out the system noise on one A800 GPU. We fix m as 200 (ImageNet), 256
(CIFAR10) and 16 (YOLO) for different DL tasks.

allocations. Inspired by [4], [38], the throughput modeling for
distributed data parallel jobs is formulated as

Titer(a,m, �) = Tfwd(m) + (T γbwd(m, � = 0)

+T γsync(a, � = 0)
)1/γ

, (5)

where γ ≥ 1 is a learnable parameter to capture the overlap
between Tbwd and Tsync. The layer elasticity brings minor impact
on Tfwd. Next, we discuss how to model Tbwd and Tsync for layer
elasticity.

Key Insight of (5): The throughput of a DLT job can be
decomposed into three stages: forward activation computa-
tion, backward gradient computation, and gradient synchro-
nization. Note that there exists an overlap between the last
two stages. In conventional DLT workloads, layer elasticity
primarily impacts the efficiency of these two stages.

First, we consider modeling Tbwd(m, �)when Tbwd(m, � = 0)
is known. Increasing � will reduce the number of floating point
operations (FLOPs) in the backward pass. Therefore, instead
of scaling Tbwd with �, we model the relationship between the
FLOPs of frozen layers and Tbwd. We denote the FLOPs ratio
of non-frozen layers to total layers as θ�. Fig. 5 shows that Tbwd

changes with the FLOPs ratio of frozen layers (i.e., 1− θ�).
We observe a sub-linear scaling for ResNet18, ResNet50, and
YOLO. This relationship needs to be considered in addition to
θ�. Thus, Tbwd is formulated as

Tbwd(m, �) = αflop + βflop · θγflop

� · Tbwd(m, 0), (6)

whereαflop, βflop, γflop are learnable parameters:αflop models the
kernel launch overhead; γflop fits the sub-linear scaling trend
between θ� and Tbwd. When γflop < 1, Tbwd(m, �) drops sub-
linearly with the decrease of θl.

Key Insight of (6): The time cost of the backward gradient
computation decreases sublinearly with the FLOPs ratio of
the frozen layers.

Second, modeling Tsync necessitates consideration of the im-
pacts of both the resource allocation a and the number of frozen
layers �. Typically, Tsync correlates linearly with the size of

Fig. 6. Prediction of GPU memory consumption (a) and utilization (b) over
different numbers of frozen layers (x-axis) on MobleNetV2[C] with batch size
128.

the gradients or parameters for communication, which can be
computed via �. We denote asω� the ratio of the sizes of unfrozen
parameters to total parameters when freezing the first � layers.
Then, we have

Tsync(a, �) = αsync + βsync · ω� · Tsync(a, 0). (7)

When we fix � (i.e., ω�), αsync and βsync are fitting parameters
to model the launching and communication overheads of gradi-
ent synchronization. The time cost of gradient synchronization
typically scales linearly with ω� [4], [37]. Hence, we utilize the
product of the regression coefficient βsync and ω� to represent
the linear correlation between Tsync and the ratio of the sizes of
unfrozen parameters to total parameters.

Key Insight of (7): The time cost of the backward gradient
computation scales linearly with the proportion of unfrozen
parameters relative to the total parameters.

Modeling λ(s,m, �): We consider the scenario of packing
multiple jobs on a single GPU. We leverage profiled features,
including GPU utilization and GPU memory, to identify combi-
nations of jobs that are not likely to suffer serious interference.
Inspired from [2], [17], DL jobs primarily contend for GPU com-
pute and memory resources. Therefore, we adhere to two rules to
determine whether multiple jobs can be packed together: (1) The
accumulative usage of GPU memory does not exceed the GPU
memory to avoid out-of-memory issues; (2) The accumulative
GPU utilization does not surpass 100%. Note that, we will evict
packed jobs based on submission time if profiled GPU utilization
is unstable during packing.

The next step is to estimate the GPU utilization and maximum
memory usage for a job. We employ a linear regression model,
using m, θ� and ω� as inputs, to estimate the GPU utilization
and memory usage for a layer-elastic job. For reference, we will
denote the parameters of the learnable linear regression model as
θutil and θmry. Fig. 6 illustrates the comparison between ground
truth and prediction over different numbers of frozen layers
when training MobileNetV2 on CIFAR10. When GPU memory
consumption and utilization are high, inaccurate predictions
still suggest that such jobs are unsuitable for GPU sharing.
Conversely, in situations of low memory consumption and uti-
lization, prediction errors do not adversely impact GPU sharing

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ICEFROG: A LAYER-ELASTIC SCHEDULING SYSTEM FOR DEEP LEARNING TRAINING IN GPU CLUSTERS 1077

TABLE II
R2 SCORES FOR MEMORY AND UTILIZATION PREDICTION

performance either. The linear regression model demonstrates
excellent accuracy when GPU utilization is around 50%.

Given that GPU sharing is applicable to relatively small
tasks, we present the R2 scores for a limited number of DL
tasks in Table II. The higher R2 (close to 1) indicates a more
accurate prediction performance. Our adopted linear regression
performs fairly well in estimating GPU memory consumption
and utilization. Furthermore, we multiply a factor of 1.1 by
the GPU memory prediction results to avoid potential failures
induced by the estimation error of GPU memory.

With the predicted results for GPU memory and utilization,
we apply the aforementioned rule to determine whether the two
jobs are suitable for packing. Instead of precisely modeling the
job slowdown caused by GPU sharing across different numbers
of frozen layers, we treat this as a classification problem and
formulate λ as follows:

λ(s,m, �) =

⎧⎨
⎩
0 if s = 0
0 if (m, �) not satisfy rules (1) and (2)
0.9 otherwise.

(8)

When a job is classified as insensitive to GPU sharing, we
empirically assign a decay factor of 0.9 to λ, otherwise, we
assign 0 to λ. Although the actual slowdown factor varies across
different job-packing pairs when the job is insensitive to GPU
sharing, adopting a constant empirical value of 0.9 is motivated
by three key reasons. First, accurately predicting the slowdown
factor is inherently challenging and necessitates additional pro-
filing resources and time. By setting a constant value, we aim
to harness the potential benefits of GPU sharing without intro-
ducing excessive complexity. This strikes a balance between
modeling complexity and practical effectiveness. Second, the
primary purpose of the slowdown factor is to quickly and easily
classify jobs as sensitive or insensitive to GPU sharing. Setting
an appropriate constant value facilitates the effective co-location
of jobs on the same GPU. Furthermore, when observed slow-
downs are unsatisfactory, we can promptly disable GPU sharing
to prevent further performance degradation, ensuring robust
performance under dynamic conditions. Third, while setting a
fixed value for the slowdown factor may constrain optimization,
it still achieves desirable scheduling performance (as illustrated
in Fig. 10(d) in Section V-D). We further investigate the effect of
varying the constant value of the slowdown factor in Table IX.
Our analysis reveals that the optimal scheduling efficiency is
achieved when the slowdown factor is set to 0.9. Also, adjusting
the slowdown factor does not result in substantial performance
variance, underscoring the robustness of our approach.

TABLE III
PREDICTION ERROR OF LAYER-AWARE THROUGHPUT MODEL

TABLE IV
SUMMARY OF NOTATIONS IN SECTION III-E

Empirical validation: Table III presents the mean/maximum
absolute percentage error (APE) of our proposed layer-aware
throughput across different models, batch sizes, and resource
allocations including GPU sharing. All models attain at most
10% APE, with the exception of YOLO and DDPM, which ex-
hibit errors of up to 12.3% and 17.7%, respectively. Interestingly,
YOLO and DDPM still benefits from our throughput model in
the evaluation because our proposed layer-aware throughput can
effectively capture the change of throughput with the number of
frozen layers.

E. Layer-Aware Throughput for Large-Scale Parallelization
Techniques

DL developers usually choose sharded data parallelization,
pipeline parallelization, and hybrid parallelization strategies to
realize large model training. Note that large-scale model training
saturates GPU utilization even with most layers frozen, leaving
no opportunity for GPU sharing. Next, we discuss the layer-
aware throughput for these parallelization techniques without
GPU sharing. We summarize relevant notations in this section
in Table IV.

Sharded Data Parallelization: SDP [21] is to reduce the GPU
memory consumption by partitioning the model weights, gradi-
ents and optimizer states across GPUs. PyTorch [39] provides
seamless integration of SDP with no significant code modifica-
tions, thereby fostering wide adoption in large model training.

We use the same equation with (5) to model Titer for SDP. The
difference between DDP and SDP lies in the overhead model-
ing of forward activation computation and backward gradient
computation. In the forward pass, SDP overlaps the forward

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



1078 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

activation computation and all-gather operations to collect
the sharded model parameters across GPUs. The slight reduction
in GPU memory allocation overhead for activations of frozen
layers caused by increasing frozen layers, taking only tens of
milliseconds, is negligible compared to Titer, so we disregard
this impact.

In the backward pass, SDP performs the all-gather op-
erations on model weights and backward gradients. Tbwd is in-
fluenced by the resource allocation a and the local batch sizem.
In consideration of the SDP’s implementation in PyTorch [22]
support the overlap between the all-gather operations and
computational operations. Thus, the backward gradient compu-
tation overhead is expressed as:

Tbwd(a,m, 0) =
(
T grad

bwd (m, 0)
γlm + T para

bwd (a, 0)
γlm

) 1
γlm , (9)

where T grad
bwd and T para

bwd indicate the backward gradient compu-
tation and the all-gather operations to collect the sharded
model parameters. γlm indicates the overlapping between the
backward gradient computation and the all-gather opera-
tions. The layer freezing skips the backward gradient computa-
tion and all-gather operations for frozen layers.

Key Insight of (9): In the context of SDP, the time cost
of the backward gradient computation can be divided into
two components: the gradient computation operation and
the all-gather operations. Without the layer elasticity,
the time cost of these two components relates to the local
batch size and allocated GPUs respectively. Note that the
overhead of these two components can be overlapped to
enhance efficiency.

Eqn. (6) and (7) inspire to model the backward gradient
computation with the number of frozen layers � as

Tbwd(a,m, �) =
[(
αflop + βflop · θγflop

� · T grad
bwd (m, 0)

)γlm

+
(
αpara + βpara · ω� · T para

bwd (a, 0)
)γlm

] 1
γlm ,

(10)

where αflop and αpara models the overhead of launching com-
pute kernels and communication primitives (e.g., NCCL [40]),
respectively.βflop andβpara are learnable parameters to model the
gradient computation and all-gather parameter communication.

Key Insight of (10): With the layer elasticity, the computa-
tional operations decrease sublinearly with the FLOPs ratio
of the frozen layers. The all-gather operations scale
linearly with the fraction of unfrozen parameters compared
to the total parameter count.

Pipeline Parallelization: An alternative strategy for large
model training is pipeline parallelism (PP) [23]. This paralleliza-
tion strategy partitions a model into p pipeline stages distributed
across GPUs. In the forward pass, stage j transmits the activation

of its last layer to the first layer of its successor stage j + 1.
Conversely, in the backward pass, the last layer of stage j
receives the gradient from the first layer of stage j + 1.

Thus, without layer freezing, we use AMP’s formula [41] to
model the time cost per iteration for a pipeline parallel job Tpp

as

Tpp(p,m, � = 0) =

p−1∑
j=0

(
T jfwd(m) + T jact(m)

)
︸ ︷︷ ︸

forward pass

+

p−1∑
j=0

(
T jbwd(m, � = 0) + T jgrad(m)

)
︸ ︷︷ ︸

backward pass

, (11)

where T jfwd and T jbwd is denoted as the computation overhead
of forward activation and backward gradient at stage j, respec-
tively. T jact and T jgrad is denoted as the activation transmission
overhead from stage j and j + 1 and the gradient transmission
overhead from stage j + 1 and j, respectively. Note that T p−1

act
and T p−1

grad are both set as zero because the last stage does not
receive gradients from other stages and does not transmit any
activations to other stages.

Key Insight of (11): In pipeline parallelism, the time cost
per iteration includes forward computation, activation trans-
mission, backward computation, and gradient transmission.
Notably, they are affected by the local batch size. Addition-
ally, the overhead of backward computation also depends on
the number of frozen layers.

The performance modeling for PP in AMP [41] furnishes prior
knowledge of T jfwd, T jbwd, T jact and T jgrad. Layer freezing reduces
the backward gradient computation and circumvents gradient
transmission of certain stages. With the number of frozen layers
�, Tpp is formulated as

Tpp(p,m, �) =

p−1∑
j=0

(
T jfwd(m) + T jact(m)

)
︸ ︷︷ ︸

forward pass

+

p−1∑
j=0

(
T jbwd(m,F(�, j)) + 1(F(�, j + 1) = 0) · T jgrad(m)

)
︸ ︷︷ ︸

backward pass

,

(12)

where we introduce a function F(�, j) to compute how many
layers are frozen in the stage j and 1 is the indicator function.
We follow the (6) to model the backward gradient computation
with the number of frozen layers �. Moreover, when there are
frozen layers in stage j + 1, no gradient transmission between
stage j and j + 1.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ICEFROG: A LAYER-ELASTIC SCHEDULING SYSTEM FOR DEEP LEARNING TRAINING IN GPU CLUSTERS 1079

TABLE V
PREDICTION ERROR OF LAYER-AWARE THROUGHPUT MODEL

FOR TRAINING LLAMA-3B AND LLAMA-7B UNDER VARIOUS

PARALLELIZATION STRATEGIES

Key Insight of (12): Layer freezing only affects the time
cost of the backward pass. We just account for the overhead
of the backward pass for unfrozen layers.

In the scenario where only PP is applied, there is a constraint
where the number of allocated GPUs equals the number of
pipeline stages (i.e., Titer(a,m, �) = Tpp(p,m, �)).

Hybrid Parallelization: Hybrid parallelism (HP) is a hybrid of
distributed data and pipeline parallelism for large model training.
Given the number of allocated GPUs a, Titer depends upon
the number of pipeline replicas d and the number of pipeline
stages p per replica (i.e., a = d× p). We model the gradient
synchronization overhead between pipeline replicas Tsync as

Tsync(p, d, �) =

p−1∑
j=0

T jsync(d,F(�, j)). (13)

Key Insight of (13): Layer freezing eliminates gradient
synchronization for the frozen layers, thus we only consider
the gradient synchronization overhead of the unfrozen layers.

To account for the overlap between gradient computation and
gradient synchronization, we adopt the same technique in (5) to
model this interaction.

Empirical Validation: Table V shows the mean/maximum
absolute percentage error of various parallelization strategies
for training LLaMA-3B [42] on SQuAD V2 dataset [43] and
LLaMA-7B on SST2 dataset [44]. Considering the GPU mem-
ory constraint, the allocation unit is configured as four GPUs.
The maximal estimation error of our designed throughput model
for various parallelization strategies is 13.4% error rate. We vali-
date that the dedicated throughput model for these parallelization
strategies is more effective than that for DDP in Section V-D.

IV. ICEFROG SYSTEM DESIGN

Fig. 7 illustrates the workflow of ICEFROG. It has two
key components: Model Trainer and Cluster Sched-
uler. Each user submits a DLT workload and the instan-
tiation of Model Trainer, which specifies the ranges of
allocated GPUs, ranges of the number of frozen layers (➊).

Fig. 7. The workflow of ICEFROG. It consists of two key components:
(1) Model Trainer aims to collect the profiled features and determines the
layer-elastic hyper-parameters; (2) Cluster Scheduler utilizes profiled
features to decide resource allocations.

In each scheduling interval, ICEFROG determines the allocated
resources of each workload by optimizing the scheduling objec-
tive IceShare in (18) (➋). During training, the model profiler
in Model Trainer profiles and reports the job run-time,
gradient statistics, GPU memory, and utilization to layer tuner
(➌). The layer tuner determines the training configurations (e.g.,
�,m) of DLT jobs to maximize effective progress (➍). Below
we detail the mechanisms of Model Trainer and Cluster
Scheduler.

A. Model Trainer

Model Trainer acts as an interface to automate layer
freezing, and it consists of the following two components.

Model Profiler: This component collects the run-time, gradi-
ent statistics, GPU memory consumption, and GPU utilization
of DLT jobs. Such information is required to accurately model
the parameters θsys of effective progress E:

θsys = (αflop, βflop, γflop, αsync, βsync, αbwd, βpara, γ, θutil, θmry) .
(14)

Specifically, we randomly initialize θsys at the beginning.
Collecting sufficient profiling information requires the DLT
workload to span many different GPU resource allocations and
numbers of frozen layers. During this process, layer-aware
throughput T eventually becomes accurate.

Layer Tuner: This component determines the training config-
urations based on profiling information to minimize the TTA. For
given resource allocations, layer tuner maximizes the effective
progress to identify the most efficient per-GPU batch size and
the number of frozen layers:

(m∗, �∗) = argmax
m,�

E(a, s,m, �). (15)

We need to optimize (15) when two events happen: (1) During
resource re-allocations, the resource allocation a is changed.
(2) At the beginning of each epoch, Model Trainer will
re-evaluate the frozen penalty, and compute how many addi-
tional iterations are needed to reach the model convergence.
Alternatively, users can provide a plugin algorithm to decide the
number of frozen layers [9], [10], [15].

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



1080 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

B. Cluster Scheduler

TTA estimation: We have detailed modeling T acc in Section
III-A with any resource allocations and numbers of frozen layers.
Considering that we have a set of N jobs J = {j1, j2, . . ., jN}
andM GPUs in the cluster. With the layer tuner, we can predict
job jk’s TTA under the resource allocation a as follows:

T acc
k (a) = T age

k +
Pk

maxm,� E(a, s,m, �)
, (16)

whereT age
k is the elapsed time since job jk is submitted,Pk refers

to the remaining number of processed samples to complete job
jk.

Optimization objective: The scheduling objective of ICEFROG

is to improve the job efficiency. We directly use the number of
requested GPUs to represent different resource allocations for
simplicity and flexibility. To quantify the benefit brought by layer
elasticity, we define IceShare as follows:

IceSharek(a) =
mina′∈Ak

T acc
k (a′)

T acc
k (a)

, (17)

where Ak is a subset of N indicating the range of allocated
GPUs for job jk. Note that we only consider GPU sharing for
jobs that accept single GPU training. In addition, we do not
distinguish the resource topology to optimize the scheduling
objective. IceShare measures the slowdown caused by the
allocated GPUs a compared to the maximum allowed GPUs.
Higher IceShare means that this job enjoys more benefits
from allocated resources. To enforce that each job shares a
similar IceShare, we aim to optimize the scheduling objective
as follows:

argmax
X

min
jk∈J

[
wk ·

∑
a∈Ak

xk,a · IceSharek(a)
]
. (18)

Let X represent a binary matrix with |J | rows and (M + 2)
columns, representing the resource allocation for each job. The
additional two columns denote scenarios where no GPUs are
allocated and where resources are allocated with GPU sharing.
Each binary element xk,a in X indicates whether the resource
allocation of job jk isa.wk is a weight to quantify the importance
of job jk, and we set wk as the same value for all workloads
in our evaluation. We enforce the following constraints when
optimizing (18): (1) the sum of allocated resources cannot
exceed the cluster capacity; (2) each job should be assigned one
resource allocation (zero resource allocation means no allocated
resources). ICEFROG uses the Integer Linear Programming (ILP)
solver to yield an optimal solution to (18). Then, we adopt the
same placement policy in [45] to satisfy the resource request.

Scheduling scalability: Cluster Scheduler optimizes
(18) using the ILP solver, incurring the search time up to 11.5
seconds in a 48-GPU cluster. The search cost will increase with
higher job loads and cluster capacity. To improve the scalability,
our system provides three dedicated designs: (1) We cache the
solution in the previous round to speed up the optimization in this
round; (2) We only consider the number of allocated resources
instead of resource topology to reduce the space for resource
allocation. Additionally, we only allocate the entire GPU nodes

for jobs that request a large number of GPUs to further reduce the
search overhead. (3) We partition the cluster and jobs into several
disjoint parts and execute the ILP solver for different partitions
in a parallel manner. This enables ICEFROG to scale up the cluster
capacity by 20 × and achieve comparable performance to the
ideal solution.

V. EVALUATION

We perform both physical (Section V-B and V-D) and simu-
lation (Section V-E) experiments to validate the superiority of
ICEFROG.

A. Model Zoo and Workload

We present a full set of DL tasks in Table VI. Each DL task
contains the dataset, model name, range of allocated GPUs,
range of batch sizes, size, target validation metric, the fraction
of jobs, speedup gain by layer tuner, and tuned FreezeOut
respectively. In particular, tuned FreezeOut refers to that we
use effective progress to tune the hyper-parameters of Freeze-
Out [11] based on the GPU request and batch size scale. We
sample the batch size from a 2-exponential distribution within
the specified range. For the target validation metric, we set
an appropriate value that can be achieved by the DL tasks by
training all layers and freezing certain layers. For size, we use
a similar technique in [4] to catalog each DL task as S(mall).
M(edium), L(arge) and XL(arge) based on its GPU time. The
fraction of jobs indicates the fraction of each DL task in our
evaluation trace. We also report the speedup gain brought by
our layer tuner and tuned FreezeOut over different sizes and
allocated GPUs.

Workload construction: We randomly sample 120 jobs from
hour 3 to hour 6 in Philly trace [34], and denote this job load as
1×. To construct W× jobload, we sample 120×W jobs. Each
sample in the Philly trace only provides the submission time, the
number of GPUs, and the duration. The former two attributes
can be directly used to construct our workload. We assign DL
tasks for each workload based on the product of job duration
and GPU requests. The assigning process is to choose one DL
task in Table VI to match the size of such a job.

B. Physical Experiments and Evaluation

Implementation: For Model Trainer, we implement all
the modules upon PyTorch 2.4 to adapt to layer-elastic training.
For Cluster Scheduler, we set the scheduling interval as
300 seconds to balance the scheduling performance and over-
head (as discussed in Section V-E). In the end-to-end experiment,
we set a fixed maximum number of frozen layers for each DL
task, specifically at 90% of the total number of layers.

Cluster testbed: We set up our physical experiments in a
cluster consisting of 12 GPU nodes. Each node is equipped
with 4 A800-80 GB GPUs,3 1×200 Gbps HDR InfiniBand, 64
CPU cores, and 256 GB memory, connected via PCIe 3.0. We

3Indeed, each node consists of 8 GPUs, and we selected IDs 0 to 3 for our
evaluation to increase the number of GPU nodes. This approach allows more
jobs to undergo multi-node communication.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ICEFROG: A LAYER-ELASTIC SCHEDULING SYSTEM FOR DEEP LEARNING TRAINING IN GPU CLUSTERS 1081

TABLE VI
THE DL TASK SPECIFICATION IN WORKLOAD CONSTRUCTION

TABLE VII
END-TO-END RESULTS OF PHYSICAL EXPERIMENTS

deploy Kubernetes 1.18.2 along with CephFS 14.2.8 to store
checkpoints. We use the aforementioned workload construction
to synthesize a trace containing 120 jobs submitted within
the first 4 hours. Considering the expensive cost of physical
evaluation, only three traces are adopted.

Baselines: We primarily compare ICEFROG with three effi-
cient schedulers: Lucid [2], Optimus [3] and Pollux [4]. Lucid
is a GPU sharing-enabled scheduler without considering elastic
training. Lucid, Optimus, and ICEFROG employ a fixed global
batch size, while Pollux dynamically configures the batch size
for each workload. We adopt FreezeOut [11] to enhance our
baselines. The incorporation of FreezeOut reinforces that ICE-
FROG is a more efficient scheduler than directly integrating layer
elasticity into existing schedulers.

Moreover, we enhance Optimus with GPU sharing as follows:
we utilize our GPU sharing prediction method to select potential
jobs to pack and allocate resources for the remaining jobs based
on available resources. Because Pollux employs batch size scal-
ing to increase GPU utilization, it does not offer opportunities
to pack jobs together.

End-to-end evaluation results: Table VII presents the av-
erage JCT of all, small, medium, and (extremely) large jobs
for different systems. Section V-A describes how to categorize
jobs based on their sizes. Overall, ICEFROG can bring 1.94×,
1.84×, and 1.51× improvement over Lucid, Optimus, and
Pollux respectively. Besides, we observe that tuned FreezeOut
can boost the performance of workloads with different sizes.
The JCT speedup for Lucid, Optimus, and Pollux brought by
FreezeOut is 1.17×, 1.08×, and 1.07×. Layer elasticity can

Fig. 8. Time-to-accuracy results in physical experiments for different DL
tasks.

expedite individual workloads by up to 1.9×, but these base-
lines cannot adapt hyper-parameters of layer-elastic workloads
dynamically to the resource allocations and batch sizes. Hence,
the overall JCT speedup brought by layer elasticity is limited.
This indicates that without a dedicated scheduler design, exist-
ing schedulers fail to fully utilize the potential of layer-elastic
optimization techniques to enhance cluster efficiency.

Additionally, GPU sharing does not yield a significant
speedup for Optimus. We reinforce Optimus with sharing via
packing jobs first and then allocating resources elastically for
remaining jobs. However, the jobs that are packed together
experience only a modest 1.03× speedup.

In our evaluation, ICEFROG takes average 3.6 (maximal 8.4)
seconds per scheduling interval to optimize IceShare. Fig. 8
presents the time-to-accuracy results of the same workload
managed by both Pollux+Tuned FreezeOut and ICEFROG. ICE-
FROG improves the TTA over different DL tasks compared to
Pollux+Tuned FreezeOut by 1.2 - 1.8×.

A closer look: We provide a closer look at the dynamical vari-
ations of the number of frozen layers and resource allocations for
layer-elastic workloads. We present the number of GPUs (first
row) and the number of frozen layers (second row) of YOLO
and MobileNetV2 throughout the training course in Fig. 9(a) and
(b) respectively. Both jobs are from our physical experimental
trace. We observe the DL model gradually increases the number
of frozen layers during training. In the later stage of layer-elastic
training, the training configurations tend to be stable.

C. Simulation Configurations

For the evaluation in Section V-E, we build a simulator
to analyze the key designs of ICEFROG including large-scale
scenarios.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



1082 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

Fig. 9. The configurations of layer-elastic workloads vary with time in the
physical evaluation of ICEFROG.

TABLE VIII
COMPARISON BETWEEN PHYSICAL AND SIMULATOR W.R.T. THE SPEEDUP OF

ICEFROG AGAINST DIFFERENT POLICIES

Simulator construction: For training without GPU sharing,
we measure GPU memory, GPU utilization, Tcomp, and Tsync for
different GPU allocations with a maximal allocation of 48 GPUs.
We evaluate the range of batch sizes and frozen layers without
exceeding the GPU memory limit. We adopt linear interpolation
to estimate the GPU memory, GPU utilization, and throughput
for unseen configurations. For GPU sharing, we measure the
actual job throughput for job pairs between small tasks to reduce
the overhead of simulator construction.

Simulating gradient statistical information under different
numbers of frozen layers and bath sizes requires extensive ex-
periments. Following Pollux’s simulator construction, we freeze
25%, 50%, 75% of layers starting from 25%, 50%, 75% of the
training progress, i.e., each batch size has a total of 10 variants
of gradient statistics. We also evaluate the variance and squared
norm of the gradient of each layer in each epoch across different
batch sizes in Table VI with a base-2 exponential increasing
order. Similar to throughput estimation, we utilize linear inter-
polation between the nearest batch size and the number of frozen
layers to simulate the gradient statistics of a job given a certain
batch size, frozen layers, and training epoch.

Simulator fidelity: The overhead of saving and resuming
DLT jobs is an important factor of the simulation fidelity.
To minimize the performance gap between the simulator and
physical experiment, we adjust the re-allocation overhead to 30,
60, and 90 seconds, and present the JCT speedup (y-axis) of
ICEFROG compared to Lucid, Optimus, and Pollux in Table VIII.
Specifically, physical indicates the physical experiment in
Section V-B, and sim-S indicates setting the resource re-
allocation overhead as S seconds for the simulator. When we
vary the re-allocation overhead, the speedup performance gap
between the physical and simulation experiments is minimal
when we change the re-allocation overhead to 60 seconds.
Therefore, we select re-allocation overhead 60 seconds in our
simulation.

D. Impact of Effective Progress

We conduct a detailed physical empirical analysis of our
proposed effective progress.

Impact of frozen penalty: The frozen penalty approximates
how many additional training iterations are needed to reach
model convergence. We consider replacing frozen penalty with
tuned FreezeOut and layer-aware throughput, and compare the
scheduling performance of ICEFROG and ICEFROG + FreezeOut
in Fig. 10(a). Obviously, frozen penalty plays a key role in the
scheduling design. It accelerates the JCT around 1.1 × over job
loads compared to tuned FreezeOut. Frozen penalty performs
better in characterizing the model convergence and determining
frozen layers.

Impact of layer-aware throughput for large model training:
We have developed a layer-aware throughput model for par-
allelization techniques adopted by large model training. To
investigate its effectiveness, we replace the throughput model
for SDP and HP with the throughput model for DDP. We focus
on the JCT speedup for LLaMA across varying job loads in
Fig. 10(b). The benefits are more pronounced under high job
loads, exceeding 1.1×. The high resource contention requires
accurate performance modeling to make efficient scheduling
decisions. Thus, large model training enjoys more benefits from
a dedicated throughput model for large model training in high
job loads.

Extension to batch size scaling: Our proposed effective
progress naturally aligns with the batch size scaling technique
adopted in [4]. We incorporate batch size scaling into ICEFROG

and report the JCT speedup achieved by batch size scaling across
varying job loads in Fig. 10(c). Overall, ICEFROG can leverage
batch size scaling to improve cluster-wide latency by a factor
of 1.16 to 1.21. This suggests that layer freezing serves as an
orthogonal acceleration technique, complementary to batch size
scaling.

Impact of GPU sharing: GPU sharing can reduce queuing
delay, however, its effectiveness hinges upon the job load.
Fig. 10(d) shows the JCT between GPU sharing enabled and
disabled scheduler respectively. The speedup gain of GPU shar-
ing is more desirable with a high job load. GPU sharing allows
packing jobs into a single GPU to free more GPUs for other
jobs, thus attaining cluster-wide latency speedup. GPU sharing
can improve cluster-wide efficiency and particularly excels in
handling resource contention.

Impact of slowdown factor: We examine the impact of the
slowdown factor of (8). For jobs classified as insensitive to GPU
sharing, we assign a constant value to the slowdown factor.
Particularly, we choose a 2 × job load to conduct empirical
analysis, as GPU sharing under this load demonstrates sig-
nificant JCT speedup benefits. We report the average JCT as
the slowdown factor ranges from 0.6 to 1.0 in Table IX. Our
findings indicate that setting the slowdown factor to 0.9 yields
optimal JCT performance. Overall, the performance variance
remains minimal. Although the constant value does not precisely
capture runtime slowdown, it provides valuable guidance to the
scheduler by indicating which jobs can be packed together on a
single GPU without significantly degrading performance. As a

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ICEFROG: A LAYER-ELASTIC SCHEDULING SYSTEM FOR DEEP LEARNING TRAINING IN GPU CLUSTERS 1083

Fig. 10. [Physical] The impact of effective progress : (a) The impact of frozen penalty across varying job loads; (b) The layer-aware throughput analysis for
large-scale parallelization techniques; (c) The improvement of batch size scaling; (d) The impact of GPU sharing on the JCT performance across varying job loads.

TABLE IX
THE IMPACT OF SLOWDOWN FACTOR

result, ICEFROG tends to favor packing jobs onto a single GPU
when resource contention is high.

E. Impact of Scheduler Design

We adopt our simulator to perform a detailed analysis of our
scheduling designs.

Sensitivity to the job load. We compare the agerage JCT
(y-axis) of ICEFROG, Lucid+, Optimus+, and Pollux+ for dif-
ferent job loads (x-axis) in Fig. 11(a). The symbol ‘+’ denotes
the incorporation of tuned FreezeOut. Increasing the job load
causes higher resource contention and a larger average JCT. The
speedup brought by ICEFROG is more significant when the job
load is high. Overall, ICEFROG outperforms Lucid+, Optimus+,
and Pollux+ by 1.71− 2.20×, 1.34− 4.21×, 1.10− 2.80×
speedup across different job loads.

Scheduling interval: We vary the scheduling interval from
1 minute to 10 minutes. Fig. 11(b) shows the impact of the
scheduling interval (x-axis) on the average JCT (y-axis) using
1× load. A smaller interval results in increased context switch
overhead, while a larger interval sacrifices scheduling flexibility.
The optimal performance is achieved at a 5-minute interval.
Considering the potential overhead from the ILP solver, we
select a 5-minute interval for ICEFROG with a minor scheduling
performance drop.

Impact of optimization objective: Pollux [4] proposes
Fitness to enforce the instantaneous fairness of cluster-wide
jobs, which implicitly improves the efficiency of elastic schedul-
ing. We design IceShare to directly enhance the cluster effi-
ciency. Fig. 11(c) presents the JCT of IceShare and Fitness

over different job loads. The superiority of IceShare becomes
more pronounced as job loads increase. Under high job loads,
IceShare tends to pack jobs and accommodate more jobs to
complete earlier.

Layer-elastic prioritization: We investigate the benefits of op-
timizing IceShare to prioritize layer-elastic with larger frozen

Fig. 11. [Simulation] The impact of key scheduling designs: (a) Simulation
results of different scheduling policies across varying job loads; (b) The impact
of scheduling interval on the scheduling performance; (c) The impact of the
scheduling objective on the JCT performance; (d) The impact of layer-elastic
prioritization; (e) The error analysis of layer-aware throughput across varying
job loads; (f) The error analysis of GPU sharing prediction.

layers, thus motivating more users to submit layer-elastic work-
loads. Specifically, we explore the effects of shrinking the range
of the number of frozen layers for half workloads and compare
the JCT speedup between optimizing IceShare and Fitness.
Our study focuses on how the JCT speedup (y-axis) varies in
the job load (x-axis) for all workloads and workloads without
range shrink. Fig. 11(d) suggests that jobs without range shrink
experience higher JCT speedup compared to cluster-wide jobs.
As a result, more users tend to set a larger range for frozen layers.

Sensitivity to layer-aware throughput: Layer-aware through-
put is to predict the job throughput under different resource allo-
cations and numbers of frozen layers. We explore the sensitivity
of ICEFROG to layer-aware throughput. Specifically, we add the
Gaussian noise to the prediction results of layer-aware through-
put, and display the average JCT in Fig. 11(e) over different

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



1084 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

Fig. 12. [Simulation] Scalability of ICEFROG: (a) The scheduling overhead
across varying job loads; (b) The average JCT performance across varying job
loads.

degrees of added noise. For the 2× job load, the estimation error
results in 17% JCT increase when the added Gaussian noise is up
to 50%. Overall, the large estimation error does not significantly
alter the effectiveness of resource allocation decisions.

Sensitivity to sharing prediction: To uncover the impact
of GPU memory consumption and utilization estimation on
scheduling performance, we add the Gaussian noise to the
prediction results of the linear regression, and present the av-
erage JCT in Fig. 11(f). ICEFROG performs relatively stable
over varying degrees of the estimation error of GPU memory
consumption and utilization across job loads. The average JCT
is only increased slightly by at most 1.09 when the estimation
error reaches 100%. Additionally, our evaluation shows that only
two jobs are typically packed together on the same GPU device,
as packing three jobs would result in GPU utilization exceeding
100%. This aligns with prior studies [2], [49]. Overall, our
adopted simple rules to determine the slowdown factor enhance
the robustness of ICEFROG to GPU sharing estimation error.
Therefore, incorrect predictions do not cause excessively poor
scheduling decisions.

Large-scale simulation: The large scheduling overhead makes
it inefficient to make prompt decisions about resource allocations
in large-scale clusters. ICEFROG solves this issue by reducing
the optimization variables and partitioning the optimization
variables into several parts. We scale the job load and cluster
capacity by 5×, 10×, and 20×. Due to the simulation time cost,
each experimental result is obtained from a single workload
rather than the average of multiple workloads. We compare
the performance of the scheduling overhead (y-axis) and JCT
(y-axis, log-scaled) with and without using the partition mecha-
nism proposed by [50] over different cluster capacities (x-axis)
in Fig. 12(a) and (b). With a larger job load and cluster capacity,
the scheduling overhead of IceShare increases to hundreds
of seconds but the partition mechanism can still enforce the
average scheduling overhead within 10 seconds, only accounting
for 3% of scheduling interval. Moreover, the intensive search
space makes partition-based optimization outperform another
one when ICEFROG makes scheduling decisions on a 20× job
load and cluster capacity.

VI. RELATED WORKS

DLT schedulers: Various scheduling systems are designed to
improve the execution of DLT workloads in GPU clusters [1],
[37], [38], [51], [52], [53], [54]. Optimus [3], AFS [8], and

Ymir [6], [7] are resource-elastic schedulers to maximize the
cluster-wide job throughput. Pollux [4] and ONES [5] are batch-
elastic schedulers that adapt training configurations (e.g., batch
size, learning rate) to resource allocations for higher average
JCT. ICEFROG is extended from Pollux [4] with a new dimension,
layer elasticity, to further optimize the job latency. Sia [55] is
a heterogeneity-aware, batch-elastic scheduler designed to out-
perform Pollux in heterogeneous GPU clusters. Its scheduling
policy, tailored for heterogeneous resources, can be integrated
into ICEFROG to enhance its capability to manage resource
heterogeneity effectively.

Layer elasticity. Early works [12], [13] propose to linearly
freeze some layers along with the training progress without
compromising model accuracy. However, they lack a reliable
way to recover the potential accuracy loss when setting the
inappropriate number of frozen layers. FreezeOut [11] reduces
the gradient computation by progressively reducing the learning
rate of these layers to zero. However, FreezeOut includes a
hyperparameter to control the extent of layer freezing, which
limits users from achieving optimal TTA performance. Layer-
Out [56] utilizes gradient statistical information to determine
which layers to freeze. However, it does not restrict freezing from
the first layer, resulting in negligible improvements in latency
efficiency. IntelligentFreeze [35] introduces a formula to com-
pute the normalized gradient difference but lacks a mechanism to
resume training for frozen layers. To support transformer-based
models, some works [9], [10] dedicate lightweight freezing
policies to stop the gradient computation of compute-expensive
transformer layers. Egeria [15] and its variant [36] can guarantee
statistical efficiency and unfreeze some layers to recover the
model performance. However, they require the online model
quantization to determine the number of frozen layers. The
model quantization algorithms for many DLT tasks [26], [42]
are complex, and the execution overhead of quantized models
on CPUs is significant, which hampers the efficiency of layer
elasticity. Overall, these techniques only focus on speeding up
individual workloads and lack explicit modeling for layer-elastic
training.

VII. CONCLUSION AND FUTURE WORK

This paper presents ICEFROG, a scheduling system that ex-
ploits layer elasticity to improve the efficiency of DLT workloads
in GPU clusters. We propose effective progress to balance the
throughput and model accuracy of layer-elastic jobs. We devise
IceShare to directly maximize cluster-wide effective progress.
Our extensive experiments show that ICEFROG has better latency
efficiency than existing schedulers. The large-scale simulation
demonstrates its scalability.

We consider the following directions as future work. (1)
This paper primarily focuses on evaluating homogeneous GPU
clusters. We can extend ICEFROG to realize cluster scheduling
with diverse GPU types and networking links. (2) While this
paper mainly evaluates sharded data parallelism and pipeline
parallelism, future work can incorporate additional parallelism
strategies including expert parallelism, sequence parallelism,
and tensor parallelism. Both directions require an accurate

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ICEFROG: A LAYER-ELASTIC SCHEDULING SYSTEM FOR DEEP LEARNING TRAINING IN GPU CLUSTERS 1085

throughput predictor to enable effective scheduling decisions.
To achieve this, we can construct an offline performance model
and integrate online profiling information to deliver precise
throughput predictions.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments.

REFERENCES

[1] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep learn-
ing,” in Proc. USENIX Symp. Operating Syst. Des. Implementation, 2018,
pp. 595–610.

[2] Q. Hu, M. Zhang, P. Sun, Y. Wen, and T. Zhang, “Lucid: A non-intrusive,
scalable and interpretable scheduler for deep learning training jobs,” in
Proc. Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2023, pp. 457–472.

[3] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. 13th
EuroSys Conf., 2018, pp. 1–14.

[4] A. Qiao et al., “Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning,” in Proc. USENIX Symp. Operating Syst. Des.
Implementation, 2021, Art. no. 1.

[5] Z. Bian, S. Li, W. Wang, and Y. You, “Online evolutionary batch size
orchestration for scheduling deep learning workloads in GPU clusters,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2021,
pp. 1–13.

[6] W. Gao, W. Zhuang, M. Li, P. Sun, Y. Wen, and T. Zhang,
“Ymir: A scheduler for foundation model fine-tuning workloads in
datacenters,” in Proc. 38th ACM Int. Conf. Supercomput., 2024,
pp. 259–271.

[7] W. Gao, P. Sun, Y. Wen, and T. Zhang, “Titan: A scheduler for foundation
model fine-tuning workloads,” in Proc. 13th Symp. Cloud Comput., 2022,
pp. 348–354.

[8] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park, “Elastic resource sharing
for distributed deep learning,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2021, pp. 721–739.

[9] C. He, S. Li, M. Soltanolkotabi, and S. Avestimehr, “Pipetransformer: Au-
tomated elastic pipelining for distributed training of large-scale models,”
in Proc. Int. Conf. Mach. Learn., 2021, pp. 4150–4159.

[10] Y. Liu, S. Agarwal, and S. Venkataraman, “Autofreeze: Automatically
freezing model blocks to accelerate fine-tuning,” 2021, arXiv:2102.01386.

[11] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Freezeout: Accelerate
training by progressively freezing layers,” 2017, arXiv: 1706.04983.

[12] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “SVCCA: Sin-
gular vector canonical correlation analysis for deep learning dynamics
and interpretability,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 6078–6087.

[13] A. Morcos, M. Raghu, and S. Bengio, “Insights on representational sim-
ilarity in neural networks with canonical correlation,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2018, pp. 5732–5741.

[14] L. Yang, S. Lin, F. Zhang, J. Zhang, and D. Fan, “Efficient self-
supervised continual learning with progressive task-correlated layer freez-
ing,” 2023, arXiv:2303.07477.

[15] Y. Wang, D. Sun, K. Chen, F. Lai, and M. Chowdhury, “Egeria: Efficient
DNN training with knowledge-guided layer freezing,” in Proc. 18th Eur.
Conf. Comput. Syst., 2023, pp. 851–866.

[16] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
survey of quantization methods for efficient neural network inference,,”
in, Low-Power Computer Vision. London, U.K.: Chapman and Hall/CRC,
2022.

[17] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Garraghan,
“Horus: Interference-aware and prediction-based scheduling in deep learn-
ing systems,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 88–100,
Jan. 2022.

[18] Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling in
Large-Scale heterogeneous GPU clusters,” in Proc. USENIX Symp. Netw.
Syst. Des. Implementation, 2022, pp. 945–960.

[19] Y. Wu et al., “Elastic deep learning in multi-tenant GPU clusters,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 144–158,
Jan. 2022.

[20] X. Miao et al., “Galvatron: Efficient transformer training over multiple
GPUs using automatic parallelism,” Proc. VLDB Endow., vol. 16, no. 3,
pp. 470–479, Nov. 2022.

[21] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory opti-
mizations toward training trillion parameter models,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2020, pp. 1–16.

[22] Y. Zhao et al., “PyTorch FSDP: Experiences on scaling fully sharded data
parallel,” 2023, arXiv:2304.11277.

[23] Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 103–112.

[24] D. Narayanan et al., “Pipedream: Generalized pipeline parallelism for
DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019,
pp. 1–15.

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, 2019, pp. 4171–
4186.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 779–788.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetv2: Inverted residuals and linear bottlenecks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770–778.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[30] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[31] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, Dept. Comput. Sci. Univ. Toronto, Univ. Toronto, 2012.

[32] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The Pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis.,
vol. 88, pp. 303–338, 2010.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[34] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F.
Yang, “Analysis of large-scale multi-tenant GPU clusters for DNN training
workloads,” in Proc. USENIX Annu. Techn. Conf., 2019, pp. 947–960.

[35] X. Xiao, T. Bamunu Mudiyanselage, C. Ji, J. Hu, and Y. Pan, “Fast deep
learning training through intelligently freezing layers,” in Proc. 2019 Int.
Conf. Internet Things-IEEE Green Comput. Commun.-IEEE Cyber Phys.
Social Comput.-IEEE Smart Data, 2019, pp. 1225–1232.

[36] G. Yuan et al., “Layer freezing & data sieving: Missing pieces of a generic
framework for sparse training,” 2022, arXiv:2209.11204.

[37] W. Gao, Z. Ye, P. Sun, Y. Wen, and T. Zhang, “Chronus: A novel deadline-
aware scheduler for deep learning training jobs,” in Proc. ACM Symp.
Cloud Comput., 2021, pp. 609–623.

[38] W. Gao, Z. Ye, P. Sun, T. Zhang, and Y. Wen, “UniSched: A unified
scheduler for deep learning training jobs with different user demands,”
IEEE Trans. Comput., vol. 73, no. 6, pp. 1500–1515, Jun. 2024.

[39] FairScale authors, “Fairscale: A general purpose modular pytorch library
for high performance and large scale training,” 2021. [Online]. Available:
https://github.com/facebookresearch/fairscale

[40] “NCCL,” 2022. [Online]. Available: https://developer.nvidia.com/nccl
[41] D. Li, H. Wang, E. Xing, and H. Zhang, “AMP: Automatically finding

model parallel strategies with heterogeneity awareness,” in Proc. Adv.
Neural Inf. Process. Syst., 2022, pp. 6630–6639.

[42] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S. McKinley, and
C. Raffel, “Learning-based memory allocation for C++ server workloads,”
in Proc. 25th Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2020, pp. 541–556.

[43] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unan-
swerable questions for squad,” 2018, arXiv: 1806.03822.

[44] R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proc. 2013 Conf. Empirical Methods Natural
Lang. Process., Seattle, Washington, USA, 2013, pp. 1631–1642. [Online].
Available: https://www.aclweb.org/anthology/D13-1170

[45] P. Zheng, R. Pan, T. Khan, S. Venkataraman, and A. Akella, “Shockwave:
Fair and efficient cluster scheduling for dynamic adaptation in machine
learning,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2022,
pp. 703–723.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/facebookresearch/fairscale
https://developer.nvidia.com/nccl
https://www.aclweb.org/anthology/D13-1170


1086 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

[46] E. Cervenka, “Naruto blip captions,” 2022. [Online]. Available: https://
huggingface.co/datasets/lambdalabs/naruto-blip-captions/

[47] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
2020. [Online]. Available: https://arxiv.org/abs/2006.11239

[48] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture
models,” 2016, arXiv:1609.07843.

[49] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and M. Za-
haria, “Heterogeneity-aware cluster scheduling policies for deep learning
workloads,” in Proc. 14th USENIX Symp. Operating Syst. Des. Implemen-
tation, 2020, pp. 481–498.

[50] D. Narayanan et al., “Solving large-scale granular resource allocation prob-
lems efficiently with pop,” in Proc. ACM SIGOPS 28th Symp. Operating
Syst. Princ., 2021, pp. 521–537.

[51] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep
learning,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2019,
pp. 485–500.

[52] H. Zhao et al., “Hived: Sharing a GPU cluster for deep learning with
guarantees,” in Proc. USENIX Symp. Operating Syst. Des. Implementation,
2020, pp. 515–532.

[53] W. Gao et al., “Autosched: An adaptive self-configured framework for
scheduling deep learning training workloads,” in Proc. 38th ACM Int.
Conf. Supercomput., 2024, pp. 473–484.

[54] S. Pandey, A. Yazdanbakhsh, and H. Liu, “TAO: Re-thinking DL-based
microarchitecture simulation,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 8, no. 2, pp. 1–25, May 2024. [Online]. Available: https://doi.org/
10.1145/3656012

[55] S. J. Subramanya, D. Arfeen, S. Lin, A. Qiao, Z. Jia, and G. R. Ganger,
“SIA: Heterogeneity-aware, goodput-optimized ML-cluster scheduling,”
in Proc. 29th Symp. Operating Syst. Princ., 2023, pp. 642–657.

[56] K. Goutam, S. Balasubramanian, D. Gera, and R. R. Sarma, “Layerout:
Freezing layers in deep neural networks,” SN Comput. Sci., vol. 1, no. 5,
Sep. 2020, Art. no. 295, doi: 10.1007/s42979-020-00312-x.

Wei Gao received the BS degree from Beihang Uni-
versity, Beijing China in 2019 and the PhD degree
from Nanyang Technological University, Singapore
in 2025. His research interests include distributed ma-
chine learning systems, cluster resource management,
and workload scheduling.

Zhuoyuan Ouyang received the MS degree from
the School of Physical and Mathematical Sciences
from Nanyang Technological University, Singapore,
in 2023. He is currently working as a research asso-
ciate with Nanyang Technological University, Singa-
pore.

Peng Sun received the PhD degree in computer sci-
ence from Nanyang Technological University, Sin-
gapore. He is currently a senior research scientist in
SenseTime Group Limited. Previously he worked as
a research engineer in Nanyang Technological Uni-
versity, Baidu Institue of Deep Learning and Huawei
2012 Labs. His research interests include cloud com-
puting, computer networking, data center, Big Data
and large-scale cluster computing systems for ma-
chine learning.

Tianwei Zhang (Member, IEEE) received the bach-
elor’s degree from Peking University in 2011, and the
PhD degree from Princeton University in 2017. He is
an associate professor with the School of Computer
Science and Engineering, Nanyang Technological
University. His research focuses on computer sys-
tem security. He is particularly interested in security
threats and defenses in machine learning systems,
autonomous systems, computer architecture and dis-
tributed systems.

Yonggang Wen (Fellow, IEEE) received the PhD
degree in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2008. He is a professor
of computer science and engineering with Nanyang
Technological University, Singapore, where he has
served as an associate dean (Research) with the Col-
lege of Engineering since 2018. He serves on Edi-
torial Boards for multiple transactions and journals,
including IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY, IEEE WIRELESS

COMMUNICATION MAGAZINE, IEEE COMMUNICATIONS SURVEY AND TUTORI-
ALS, and IEEE TRANSACTIONS ON MULTIMEDIA.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 04,2025 at 16:36:49 UTC from IEEE Xplore.  Restrictions apply. 

https://huggingface.co/datasets/lambdalabs/naruto-blip-captions/
https://huggingface.co/datasets/lambdalabs/naruto-blip-captions/
https://arxiv.org/abs/2006.11239
https://doi.org/10.1145/3656012
https://doi.org/10.1145/3656012
https://dx.doi.org/10.1007/s42979-020-00312-x


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


