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Abstract—As many natural language processing services
employ language models like Transformer in the cloud,
privacy concerns arise for both users and model owners.
Secure inference is proposed in the literature to perform the
computing service securely. While prior schemes have studied
convolutional neural networks and analogous models, they do not
easily apply to Transformer because it requires more efficient
protocols of different layers with large-sized weight matrices
and complex non-linear functions on high-dimensional vectors.
Therefore, we propose a privacy-preserving scheme PrivTF
for secure transformer inference. PrivTF consists of protocols
for Transformer-unique layers (encoder/decoder layer and their
attention sub-layer) with our specialized design. Specifically,
we present protocols of base sub-layers to address the heavy
performance overhead: a new protocol of embedding layer,
protocols of matrix multiplication and softmax that make
use of mixed bitwidths, and protocols of GeLU functions
and normalization. Analysis and experiments demonstrate that
our protocols outperform previous secure inference works and
maintain accuracy on practical inference tasks.

Index Terms—Privacy preservation, Transformer, Secure
inference, Secure Computation.

I. INTRODUCTION

Transformer [1] is a popular neural network architecture
in natural language processing (NLP) and derives a family
of models. Unlike convolutional neural networks (CNNs) or
recurrent neural networks (RNNs), Transformer models use
the attention mechanism to process parallely across sequences.
They are also larger and computationally powerful, with a
multitude of parameters. Due to their special characteristics,
various Transformer models [2]–[4] outperform previous
neural networks and become a widely used option for cloud-
based language services.

In many cloud applications of Transformer models, the issue
of privacy concerns arises for both the service provider and
the client. This is the case of a typical cloud computing
scenario, where the serving model and input data are held
seperately by two parties. On the one hand, the client
wants to keep the data and the computation private since it
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implies sensitive identity information or intellectual property.
Otherwise, plaintext computation may reveal the sensitive data
[5]. For example, The scheme in [5] once recovered the
input by attacks on the embedded vectors of many pre-trained
language models. On the other hand, proprietary models of
companies are private and not shareable with others. Model
owners typically take much time to get a trained model
and their models are confidential as commercially profitable
services. Owners are also concerned that models reveal private
information learned from the training dataset. Thus privacy
preservation for language models in cloud services is needed.

Research on privacy-preserving machine learning proposed
secure inference to conduct private computation in cloud
client-server service. Secure inference ensures that engaging
in the secure two-party computation (2PC) the server cannot
learn the private input and the client cannot learn the model.
The main techniques of secure inference are cryptographic
primitives: homomorphic encryption (HE) [6]–[9] and secure
computation techniques such as secret sharing, oblivious
transfer (OT) [10]–[16], garbled circuits (GC) [17]–[19].

Transformer has complex layers such as the embedding
layer and non-linear functions, which poses new challenges in
secure inference. Firstly, the embedding layer on the plaintext
is in essence a lookup over a vocabulary table, which cannot
be evaluated easily on ciphertexts. The vocabulary table, as a
large matrix, is costly to manipulate with ciphertext operations.
Since the vocabulary is an integral and private component
of the model, the lookup operation is not merely a simple
retrieval but rather a process that must yield a preserved
or secret-shared output to ensure privacy preservation. A
straightforward solution is to obliviously do multiplication
over the matrix via homomorphic encryption [20], [21] or
secret sharings [18]. Considering the embedding vocabulary
is tens of thousands long, traversing the entire matrix for
each word entry by cryptographic computation costs large
amount of unnecessary overhead. Secondly, the non-linear
functions, including softmax of the attention sub-layer, GeLU
of the feed-forward sub-layer, and layer normalization, also
present challenges of achieving computational efficiency and
accuracy. Iron [20] follows the approach of using lookup-table
(LUT) proposed by SIRNN [14] to design non-linear function
protocols, while BOLT [22] and BumbleBee [21] uses integer
approximation or high-degree polynomial approximation. The
lookup-table-based protocols are particularly advantageous
than approximation techniques as it is able to universally
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support complex math functions with great accuracy and
flexibility. However, the schemes of Iron still incur significant
overhead and low computational efficiency. With these
challenges in mind, we aim to study further on efficient secure
inference of Transformer.

In this work, we propose a framework to achieve compu-
tationally efficient two-party secure inference of Transformer,
PrivTF. Generally, PrivTF consists of several specialized and
efficient protocols for the complicated Transformer layers.
Firstly, we provide a novel protocol PrivEmbedding of the
embedding layer. This method offers a new insight for securely
computing the embedding layer. Unlike previous approaches
that rely on O(w) homomorphic multiplications ( [20], [21]),
where w denotes the vocabulary size, our protocol avoids such
costly operations. Instead, it leverages the pre-sharing of a
matrix that is masked using pseudo-random functions (PRFs).
The target vector is then retrieved through secure two-party
computation techniques. The pre-shared masked matrix can
be reused multiple times, significantly reducing the latency of
online services. Once the real-time embedding process begins,
our scheme requires only local XOR computation plus a two-
party computation of PRF circuits. This approach consumes
less running time than the direct method of multiplying with
the overall matrix.

Secondly, for the attention sub-layer we devise protocols
for large matrix multiplication and softmax using the idea
of mix-bitwidth. We identify that in the attention mechanism
the intermediate results of exponentiation and softmax
normalization are known to scale to small ranges. Therefore, a
small bitwidth suffices to avoid numeric overflow, while also
alleviating the computation and communication overhead. So
we give efficient protocols MatMul,Softmax to make use of
variable bitwidths and improve the performance.

Thirdly, we develop protocols of GeLU and layer
normalization in feed-forward sub-layers and encoder/decoder
layers. For GeLU, we exploit its sigmoid expression and
propose an efficient protocol, GeLU. By leveraging the
symmetry of the sigmoid function, we reduce the number of
secure computation operators compared with Iron [20]. Our
method is not only designed to compute GeLU accurately
and efficiently, but also provides a more efficient approach
to computing the sigmoid function, which is applicable to
other neural networks. For layer normalization, we adopt an
alternative pre-norm pattern to devise our layer protocols.
By adopting the pre-norm pattern we fuse the normalization
protocol PreLN and reduce much computation, thus improving
performance. We further construct protocols of Transformer’s
unique layers (attention sub-layer and encoder/decoder layer).
The contributions of our work are summarized as follows:

• We design a new protocol for the embedding layer,
utilizing pre-shared masked matrices and secure two-
party computation. This method has cryptographic
operation complexity independent of the vocabulary size
n, reducing online computation latency by two times.

• We propose a privacy-preserving inference framework,
called PrivTF, for Transformer models. PrivTF features
specialized protocols, including efficient PrivEmbed-
ding, PrivAttention with mixed-bitwidth optimization,

and PrivFeedForward with lookup-table-based GeLU.
These protocols are computationally efficient and achieve
high accuracy with less than one unit of error, without
relying on approximation.

• We implement PrivTF on practical models and classifica-
tion tasks. PrivTF achieves higher efficiency and accuracy
of non-linear functions than existing schemes. Analysis
and experiments results verify our scheme’s security,
accuracy, efficiency and practicality.

The remainder of the paper is organized as follows. Section
II introduces related work. Section III introduces necessary
preliminaries of Transformer and cryptographic techniques.
Section IV presents our problem establishment. Section V
first gives an overview of Transformer secure inference and
then describes the proposed scheme PrivTF. Then we present
security analysis in Section VI and experimental evaluation in
SectionVII. Finally, we conclude our work in Section VIII.

II. RELATED WORK

A. Secure Neural Network Inference

This section reviews the literature of secure neural network
inference, including Transformer models. Early works on
secure inference can be classified according to their core
cryptographic techniques. One technical approach employs
homomorphic encryption (HE). CryptoNets [6] proposes HE-
based protocols for convolutional neural networks (CNNs)
in client-server settings, implementing linear layers through
homomorphic operations and approximating activations with
polynomials. Subsequent work by Gazelle [7] enhances
efficiency using packed additive HE for CNN linear
layers, while Falcon [8] further improves secure convolution
through Fourier transform techniques. Alternatively, other
approaches leverage secure multi-party computation (MPC)
primitives such as secret sharing, oblivious transfer (OT),
and garbled circuits (GC). SecureML [10] and Quotient
[12] introduce multi-server frameworks with non-colluding
security assumptions. MiniONN [11] proposes an offline-
online approach in the client-server setting to accelerate
online weight multiplication. XONN [17] uses GC to securely
evaluate neural networks. General-purpose frameworks like
ABY [18] and ABY3 [19] combine secret sharing with
GC for secure multi-server machine learning. However,
these early systems incur substantial computational overhead,
restricting their deployments to small-scale models (e.g., 5-
layer networks on MNIST).

Works such as [13], [15], [16] focused on coordinating
diverse cryptographic primitives across network layers and
developing specialized protocols for secure deep neural
network inference . Rathee et al. [13] presented a hybrid
scheme CrypTFlow2, a hybrid framework featuring optimized
HE-based protocols and OT-based protocols that enable secure
inference for deep CNNs like ResNet50. Huang et al.
[15] further advanced this direction by proposing Cheetah,
which converts HE-based protocols into the OT domain
through novel polynomial encoding. Cheetah also avoids
the SIMD-style design with costly homomorphic rotations,
achieving faster secure inference. Other works proposed
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general frameworks that integrate secure MPC primitives as
application interfaces, including tensor operations and neural
network compilers (e.g., [23]–[25] in the multi-server setting,
[9], [26], [27] in the client-server setting). Parallel efforts
[28]–[30] targeted outsourced inference in distributed edge
networks. They proposed new protocols for convolution and
activation functions, where cloud or edge parties compute on
secret sharings using pre-generated multiplication triplets.

In addition to convolutional neural networks, a few works
focused on secure inference of language models. For LSTM
language models, SecureNLP [31] uses multiplicative secret
sharing to evaluate activation functions such as sigmoid
and tanh within a multi-party security model. For recurrent
neural networks, SIRNN [14] proposes the idea of secure
computation on variable bit-lengths and lookup-tables. It gives
efficient protocols of precise math functionalities based on OT
and secret sharing. We leverage the math functionalities and
further propose specific protocols for Transformer.

B. Secure Transformer inference
Transformer models are more complicated, leading to

many recent efforts on secure protocols for Transformer.
In the client-server setting, some works [20]–[22] followed
the approach of mixed frameworks, i.e., using homomorphic
encryption for linear computation and other MPC primitives
for non-linear functions. MPCformer [32] and PrivFormer [33]
adopt a different three-server model and use secret sharing-
based multi-party computation. TABLE I compares the system
models. Recent advances adopt a two-party pre-processing
paradigm. Works such as Orca [34] leverage function secret
sharing [35] to design efficient protocols for complex neural
network operations. The security model assumes a dealer
for pre-processing [36], [37], so their approach of utilizing
pre-computed key generation demonstrates improvements
in online phase efficiency, offering a potential direction
for practical secure inference systems. Zeng et al. [38]
focused on distributed secure inference of Transformer with
multiple parties. Zhang et al. [39] used fully homomorphic
encryption with approximation to achieve non-interactive
secure computation of Transformer models.

Designing protocols of secure Transformer inference
presents challenges in two areas: linear computation (matrix
multiplication in the embedding and attention layers) and
non-linear functions. We review the existing works in
relation to these two aspects. Specifically, for the domain of
linear computation, many studies explored HE-based matrix
multiplication protocols. Iron [20] observes that matrix-matrix
multiplication, rather than matrix-vector multiplication, is the
dominant operation in transformer inference, and Cheetah’s
encoding of homomorphic encrypted vectors [15] is not
applicable. Iron replaces this encoding by a new matrix
encoding method, saving up to one order of magnitude in
terms of computation and communication overhead. BOLT
[22] and BumbleBee [21] further optimize HE-based protocols
of matrix multiplication, which is surveyed by He et al.
[40]. However, they introduce additional costly homomorphic
rotation and require more advanced hardware, such as 64
vCPUs and 256GB memory.

For non-linear functions, the methods include using approx-
imation or scientific computation. Approximation methods
introduce different expressions such as splines (piecewise
polynomials) and series expansion. Scientific computation
follows provably precise algorithms of iteration evaluation
or table-lookups. THE-X [41] proposes approximations in
training to integrate with fully homomorphic encryption, but
converting the architecture to achieve MPC requires extra
training and lacks flexibility of deployment. MPCformer [32]
and PrivFormer [33] propose approximations with MPC-
friendly operators to speed up the inference efficiency.
MPCformer [32] uses polynomial approximations for softmax
and GeLU. PrivFormer [33] uses Chebychev polynomials
for exponentiation and Newton iteration for normalization.
Iron [20] follows SIRNN and uses lookup-table-based
exponentiation to provide protocols for the softmax and GeLU
functions. BOLT [22] uses a quantization-based algorithm
for softmax and a spline approximation for GeLU, while
BumbleBee [21] proposes two spline approximations for
exponentiation-based softmax and GeLU.

TABLE I and TABLE II summarize the related works and
explain the differences of our approach from existing studies.
As discussed in Section I, few prior works focused on the
embedding layer. Schemes using homomorphic encryption
are inefficient due to the high computational complexity
associated with large-sized vocabularies. Instead, our scheme
provides a new embedding layer protocol using the insight
of pre-sharing. Additionally, for the attention layer involving
intensive computation, we leverage secret sharings with
variable bitwidths of to design optimized protocols, improving
the computation efficiency than the schemes using uniform
bitwidths. For non-linear functions of the attention and feed-
forward layer, approximation-based methods have accuracy
deviations and limited usability [42], thus we use lookup-table-
based (LUT-based) computation to design approximation-free
protocols for softmax and sigmoid-based GeLU.

Table I. Scheme Overview of Related Works.

System Model Embedding Layer Attention Layer
THE-X [41] Client-Server None HE-based

Iron [20] Client-Server
Homomorphic
Multiplication

Mix techniques
(HE, SS)

MPCFormer [32] Three-party None Secret Sharing-based
Privformer [33] Three-party None Optimizing mask attention

BOLT [22] Client-Server None Mix techniques (HE, SS)

BumbleBee [21] Client-Server
Homomorphic
Multiplication

Mix techniques
(HE, SS)

Ours Client-Server
New Method
of Pre-sharing

Mix techniques
with variable bitwidths

Table II. Non-linear Function Schemes of Related Works.

Non-linear functions Proposed Protocols
THE-X [41] Approximation Approximation in Training

Iron [20] LUT-based Computation Tanh-based GeLU
MPCFormer [32] Approximation Polynomial approximations
Privformer [33] Approximation Polynomial for softmax, ReLU for GeLU

BOLT [22] Approximation Quantization for softmax, spline for GeLU
BumbleBee [21] Approximation Splines for softmax and GeLU

Ours LUT-based Computation LUT-based softmax, sigmoid-based GeLU
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III. PRELIMINARIES

A. Transformer Architecture
Transformer [1] follows the commonly used encoder-

decoder structure and each encoder/decoder layer consists
of two sub-layers: multi-head attention and feed-forward.
Besides, there are embedding layer and layer normalization.

Embedding layer with a table W converts the input tokens
to vectors of shape dm. Apart from the semantic embedding,
certain models has a positional embedding B, which can be
viewed as an addition. For the i-th token in a sequence with
table index x, its embedding is as follows:

Embedding(x) = W[x] +Bi.

Multi-head attention operates on three input matrices: Q and
K of dimension dk, and values V of dimension dv (typically
dk and dv equal to dm). These inputs first undergo linear
transformations: Q ← WQQ,K ← WKK,V ← WV V,
where WQ,WK ,WV are model parameters. The projected
inputs are then divided into h heads, with each head computing
an independent scaled dot-product attention function:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V.

Finally outputs of each head are concatenated together as
multi-head attention output.

The attention layer is followed by a feed-forward network
with two dimension transformations and a GeLU activation:

Feed-Forward(X) = GeLU(XW1 + b1)W2 + b2,

where W1 expands to df , and W2 projects to dm.
The layer normalization (LN) in Transformer is to normalize

all the dimensions in the same hidden layer. With input and
output dimension dm, the LN operation can be formulated as:

LN(x) =
x− µ√

σ2
⊙ γ + β.

The mean and variance are calculated over real-time input. γ
and β are linear transform parameters.

B. Secret sharing
In arithmetic secret sharing, we split an l-bit value x

into additive shares in the ring Z2l . In our schemes, the
shares ⟨x⟩S and ⟨x⟩C are distributed to the server and the
client, with reconstruction via modulo addition: x = ⟨x⟩S +
⟨x⟩Cmod 2l. The bitwidth l is variable when performing non-
linear computations on numbers within a limited range.

We follow prior works [14], [15], [20] to use fixed-point
arithmetic in secret sharing. With a predetermined precision
f , a real number x̃ is encoded as a fixed-point integer
x := ⌊x̃ · 2f⌋mod 2l, which is then shared as ⟨x⟩. After
each multiplication, truncation of the low f -bit is needed to
keep the arithmetic. Our implementation adopts the interactive
truncation protocol from SIRNN [14], though we omit this step
in protocol descriptions for clarity.

In addition to arithmetic sharing, we use boolean sharing [[x]]
in the embedding layer and the attention sub-layer. A value
x is shared as [[x]]S , [[x]]C , such that [[x]]S ⊕ [[x]]C = x. This
supports xor (⊕), and (∧) operations. The functionality B2A
can transform boolean sharing to arithmetic sharing [18].

C. Oblivious Transfer

Oblivious Transfer [43] is also an important 2PC primitive.
In 1-out-of-2 OT, a sender inputs two messages (m0,m1)
and a receiver inputs a choice bit c ∈ {0, 1}. At the end of
the protocol, the receiver obtains mc, while the sender learns
nothing. Recent research on cryptography proposed new OT
and OT extension protocols [44]. We use the correlated-OT
variant in our framework as a black box:

(
1
2

)
-COTl. It takes

x ∈ Z2 from the receiver, takes u ∈ Z2l from the sender and
generates a correlation w := x · u + v ∈ Z2l . The receiver
learns w while the sender learns v ∈ Z2l .

D. Two-party Functionalities

The following protocols (proposed by [14], [18], [45])
serve as underlying operations in PrivTF’s construction. We
use them as sub-protocols that are replaced with calls to
secure 2PC functionalities. The inputs may be a single
number or a vector. For vectors, the functionalities perform
an element-wise operation. In this paper, we use boldface x
to denote vectors and capital X matrices. Table III summarizes
additional key notations in this paper.

• Comparison: The functionality CMP(⟨x⟩, 0) outputs a
boolean indicator b = I{x < 0} shared in Z2.

• Multiplexer: Given ⟨x⟩, [[b]] as input, the functionality
MUX(⟨x⟩, [[b]]) outputs ⟨y⟩ such that y = x if b = 1
and 0 otherwise. The multiplexer along with comparison
can be used to build maximum function Max(⟨x⟩) where
the output ⟨y⟩ is the share of the maximal element of x.

• Exponentiation: Given ⟨u⟩ ∈ Z2l , u < 0, the functionality
Expl,l′(⟨u⟩) outputs ⟨v⟩ ∈ Z2l′ such that v = eu in l′-bit
fixed-point arithmetic.

• Product: Given ⟨u⟩ ∈ Z2s , ⟨v⟩ ∈ Z2l , Products,l

(⟨u⟩, ⟨v⟩) returns ⟨w⟩ ∈ Z2l such that w = uv (for
vectors, it is a hadamard product u⊙ v).

• Division: For a public denominator de, Divl,de(⟨u⟩)
divides a secret-shared input ⟨u⟩ ∈ Z2l by de,
producing ⟨v⟩ ∈ Z2l ; For a private denominator
de, Divl,l

′
(⟨u⟩, ⟨de⟩) computes fixed-point arithmetic

division, producing ⟨v⟩ ∈ Z2l′ where v = u/de.
• Inverse Squre Root: Given ⟨u⟩ ∈ Z2l , ISqrt(⟨u⟩) outputs
⟨w⟩ ∈ Z2l such that w represents the fixed-point
arithmetic result of u’s inverse square root.

• Secure AES: The functionality sAES securely computes
AES, where one party inputs a key k and the other inputs
x. The outputs are boolean sharings [[s]]S , [[s]]C such that
[[s]]S ⊕ [[s]]C = AESk(x).

IV. PROBLEM STATEMENT

We consider a two-party setting: Server S and Client C
jointly execute secure inference of a Transformer model. Fig.
1 depicts the system model. The server possesses a pre-trained
language model while the client holds data samples to conduct
language inference. They have checked a common vocabulary
by negotiation and Client needs to input sequences of word
indexes. For each stage of the online execution (embedding
and several encoder/decoder layers, depending on the model
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Table III. Key Notations.

Notations Definitions
n sequence length
dm model embedding dimension

dq , dk, dv the dimensions of the query, key, value
h, dh the number of heads, the dimension of each head
df the dimension of the feed-forward sub-layer

⟨·⟩, [[·]] arithmetic sharing and boolean sharing
l, s bit-lengths
f precision parameter for the fixed arithmetic

x,X vector and matrix
xi,xij vector element and matrix element

⊙ hadamard product
S, C the server and the client

⟨·⟩S , ⟨·⟩C , [[·]]S , [[·]]C private shares of the server and the client

architecture), secure inference protocols operate the input and
output in privacy-preserving forms. After the protocol ends,
the inference result is revealed to Client the client.

Server Client

PrivAttention

NormalizationPrivFeedForward

PrivEmbedding

𝑋 , ⟨𝑌⟩, 𝑄′ , 𝐾′ , ⟨𝑉′⟩ …

PrivTF

Model Data

Fig. 1. PrivTF System Model.

A. Threat Model

We follow the same honest-but-curious threat model as most
previous works [13], [15]. This means that Server and Client
perform the protocol as promised and at most one of them
is corrupted by an honest-but-curious adversary. Assume that
the adversaryA that is computationally bounded in polynomial
time follows the protocol but tries to infer information about
honest parties. In the simulation-based security model [46],
for a protocol Π, there are two interaction views coordinated
by the environment Z: a real interaction in the presence
of adversary A and an ideal interaction with the trusted
functionality F . In the real interaction the adversary has a
realistic view: viewΠ

A, whereas in the ideal interaction he
has a simulated view generated by a simulator SimF . The
real view includes all intermediate information and protocol
outputs owned by the corrupted party. The security holds if
for any adversary there exists a polynomial-time simulator
Sim such that the adversary cannot distinguish the two views:
viewΠ

A ≈ SimF .
PrivTF does not hide the computation parameters as

prior works [7], [15] do, including the model architecture
(dimension of weight matrices and numbers of layers) and
sequence length. Besides, PrivTF does not aim to protect
against model attacks such as model extraction attack [47]
and membership inference attack [48] as prior works do.
Defending against these attacks is orthogonal to secure
inference. One can defend by complementary techniques
like differential privacy [49], query auditing [50] and access
control.

B. Design Goals

Our work has specific design goals. The first is privacy
preservation. Client only learns the inference result and
nothing else. In the interaction of two parties, the model owner
has only sharings of the intermediate result and learns nothing
about the client’s input. Both model and user privacy are
protected.

Secondly, the protocol should ensure correctness and output
accurate results. For building blocks we evaluate the precision
by certain error analysis standards and for model accuracy we
compare against plaintext output to ensure the correctness.

Thirdly, computation and communication efficiency should
be realized as much as possible. The protocols are expected
to scale to vectors of high dimensions. To achieve efficiency
we try to design tailored protocols for Transformer models.

V. PRIVTF SCHEME

A. PrivTF Overview

Generally PrivTF works as a series of secure layer protocols
with mixed cryptographic primitives. All secure layers are
organized on secret sharing of a general ring. Each layer
receives a shared input, invokes protocols based on two-party
secure computation techniques and produces a desired secure
output sharing to the next layer.

The Transformer architecture comprises an embedding
layer followed by encoder/decoder layers. We begin by
presenting our embedding layer scheme in Section V-B. For
the encoder/decoder construction, we study their attention sub-
layer and feed-forward sub-layer. The attention sub-layer is
composed of matrix multiplication and softmax functions,
and the feed-forward sub-layer is composed of matrix
multiplication and GeLU functions. Our approach leverages
existing uniform bitwidth matrix multiplication schemes
while introducing optimizations for non-uniform bitwidth
cases. Consequently, we develop four secure computation
components to support these sub-layers: matrix multiplication
of uniform bitwidths and non-uniform bitwidths, softmax
and GeLU. In Section V-C, we detail our protocols (matrix
multiplication and softmax) for the attention sub-layer.
Then, for the feed-forward sub-layer, we reuse the matrix
multiplication protocols from the attention sub-layer and
introduce a newly optimized GeLU protocol. Both sub-layers
in the encoder and decoder layer employ layer normalization
in layer connections, for which we provide a optimization
method. Building upon these components, we finally construct
the encoder and decoder layer protocols (Section V-D).

B. Embedding Layer

Embedding converts tokens to vectors based on a large
vocabulary matrix W of size (w × dm). The vocabulary size
is w and the embedding dimension is dm. We propose the
idea of applying PRF as boolean masks to the matrix and
give an lightweight protocol for the embedding layer. The
core intuition is to send Client a transformed matrix W′ ∈
Zw×dm

2l
that is computationally indistinguishable from random,

analogous to W’s boolean secret shares. This is achieved by
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Algorithm 1: PrivEmbedding
Input: Client’s word indices x of length n,
Server’s semantic embedding matrix W ∈ Zw×dm

2l
and an

extra embedding matrix B ∈ Zn×dm
2l

.
Output: ⟨V⟩S , ⟨V⟩C , V ∈ Zn×dm

2l
.

Pre-sharing:
Server masks W′[i] = W[i]⊕ AESk(i) and sends to Client.
Online:
1. for xi in x do

1.1. Client encodes xi as u where u[xi] = 1.
1.2. Client shares u as boolean sharings [[u]]S , [[u]]C .
1.3. Both parties compute locally
[[W′[xi]]] =

⊕w−1
j=01[[uj ]] ∧W′[j].

1.4. Server inputs key k and Client inputs index xi,
sAES returns sharings of the mask s.t.
[[s]]S ⊕ [[s]]C = AESk(i).

1.5. Server and Client invokes B2A to convert
[[W′[xi]]]⊕ [[s]] to arithmetic sharing ⟨v⟩.

end
Concatenate all ⟨v⟩ together to get the embedded input ⟨V⟩.
2. Extra embedding: ⟨V⟩S ← ⟨V⟩S +B, ⟨V⟩C ← ⟨V⟩C .

masking W with a PRF (the PRF will be instantiated via
AES):

W′[i] = W[i]⊕ PRFk(i), i = {0, 1, ..., w − 1}.

Only the server knows the PRF key. When the inference starts,
Client encodes the index of interest x as a one hot vector u of
length w, where only the x-th bit equals to one. Client shares
it as boolean indicators [[u]]S , [[u]]C . Then both parties use the
indicators to compute boolean AND with W′ and XOR row-
wise. Because the matrices of both parties are identical, they
yield a boolean sharing of the masked entry:

[[W′[x]]] =
⊕w−1

j=0
[[uj ]] ∧W′[j].

Next, the secure computation of PRF is needed to unmask the
extracted entry: W[x] = W′[x]⊕PRFk(x). We instantiate the
secure computation of PRF using sAES [18], [45]. Finally, a
sharing conversion B2A [18] switches the entry to arithmetic
sharing. The advantage of this design is that pre-sharing is
performed only once, and computation over the matrix remains
local.

Algorithm 1 shows the details of PrivEmbedding. In the
pre-sharing phase, Server masks the embedding matrix by a
PRF key and sends it to Client. When the inference starts, step
1 is for token embedding, where there are five operations. In
step 1.1, Client encodes its input sequence as a series of one-
hot vector u. u is composed of as many as w bits, where only
one bit at index xi is 1 and others are zero, representing the
i-th word. In step 1.2, Client splits u into two boolean shares
and sends to Server. In step 1.3, both parties perform local
computation over the masked embedding matrix. In step 1.4
and 1.5, they execute sAES and B2A to unmask the result
and obtain arithmetic shares of ⟨v⟩. Finally, step 2 involves
additional embedding for outputs.

C. Attention Sub-Layer

The attention sub-layer involves matrix multiplication
and softmax function. The following section describes two

Algorithm 2: MatMulCrossTerm
Input: ⟨X⟩S ∈ Zn0×n1

2s , ⟨Y⟩C ∈ Zn1×n2

2l
.

Output: {⟨Z⟩S , ⟨Z⟩C} ∈ Zn0×n2

2l
, Z = ⟨X⟩S⟨Y⟩C .

foreach ⟨xij⟩S in ⟨X⟩S do
Multiplying ⟨xij⟩S with the j-th row of ⟨Y⟩ (⟨yj⟩C):
for the b-th bit (xb) of ⟨xij⟩S do //Operate bit by bit.

Invoke
(
1
2

)
-COTl−b for n2 times, where Server is

the sender with input xb and Client is the receiver
with n2 inputs {⟨yjk⟩C}k={0,1,...,n2−1} and learns
shares of xb × ⟨yjk⟩C of length l − b.

The shares of ⟨xij⟩S⟨yjk⟩C are computed via the
local summation:

∑s−1
b=0 2

b × ⟨xb × ⟨yjk⟩C⟩.
end

end
Compute ⟨zik⟩ =

∑n1−1
j=0 ⟨⟨xij⟩S⟨yjk⟩C⟩ to obtain ⟨Z⟩.

protocols for these two building blocks and then a construction
of the full attention sub-layer.

1) Matrix Multiplication: We briefly introduce the proto-
cols of matrix multiplication proposed by previous works [20]–
[22]. The protocols are based on homomorphic encryption
and work in the case of uniform bitwidths. We refer to
the protocols as MatMull operates on a fixed bitwidth l:
⟨Z⟩S , ⟨Z⟩C ← MatMull(X,Y), where the private matrices
are X ∈ Zn0×n1

2l
,Y ∈ Zn0×n1

2l
,Z = XY, ⟨Z⟩ ∈ Zn0×n2

2l
.

However, in the attention sub-layer we identify that the
number range is limited and the computation overhead
of multiplication can be improved by using non-uniform
bitwidths. Therefore, we introduce SIRNN’s [14] scheme of
matrix multiplication of non-uniform bitwidths. The protocol
is denoted as MatMull,s:

⟨Z⟩S , ⟨Z⟩C ← MatMull,s(⟨X⟩S , ⟨Y⟩S , ⟨X⟩C , ⟨Y⟩C),

where X ∈ Zn0×n1
2s ,Y ∈ Zn1×n2

2l
, s ≤ l, Z = XY ∈ Zn0×n2

2l
.

Multiplying two signed matrices shared in different rings is
given by:

(⟨X⟩S + ⟨X⟩C − 2s−1 − 2s × CMP(⟨X⟩S + ⟨X⟩C − 2s, 0))

·(⟨Y⟩S + ⟨Y⟩C − 2l−1 − 2l × CMP(⟨Y⟩S + ⟨Y⟩C − 2l, 0))mod 2l.

Note that the Y’s CMP item would be removed by modulo
2l. For remaining items, the computation involves three steps.

1) The first step is to locally compute the item ⟨X⟩S⟨Y⟩S ,
⟨X⟩C⟨Y⟩C , 2s−1(⟨Y⟩S+⟨Y⟩C) and 2l−1(⟨X⟩S+⟨X⟩C).

2) The second step is to compute the cross-term multiplica-
tion. Take multiplying ⟨X⟩S with ⟨Y⟩C as an example.
(⟨X⟩C⟨Y⟩S follows a similar process.) This matrix
multiplication involves the multiplication of a matrix
element ⟨xij⟩ with the j-th row of ⟨Y⟩ and summation.
We realize it by MatMulCrossTerm (Algorithm 2),
where we use correlated oblivious transfer on each bit
of ⟨xij⟩. Each multiplication of ⟨xij⟩ with the vector
⟨yj⟩ requires s instances of COT( [15], [44]) with a
communication cost of n2(l − s/2 + 1/2)s bits.

3) The last step involves performing a secure comparison
on ⟨X⟩S+⟨X⟩C−2s, yielding a boolean sharing [[BX ]].
This is used for multiplexer-style multiplications with
(⟨Y⟩S + ⟨Y⟩C), pre-multiplied by 2s. The multiplexers
are realized by MUX on n0n1n2 elements.
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The communication overhead involves two cross-term matrix
multiplications requiring 2n0n1n2(l − s/2 + 1/2)s bits from
COT, along with multiplexer-style multiplications that require
CMP on n0n1 elements and MUX on n0n1n2 elements.

Improving by vector oblivious linear evaluation: It is
possible to leverage vector oblivious linear evaluation (VOLE)
[51] to compute the non-uniform matrix multiplication. One
of its extensions, called Subfield VOLE, extends n instances of
w = v+∆u ∈ Zn

2l quickly at low cost. With many instances
at hand, two parties can exchange xij −∆ to securely derive
a product xiju. The advantage of VOLE-based multiplication
over the direct use of correlated oblivious transfer is not
immediately clear and merits further investigation.

2) Softmax: We also utilize mix-bitwidths in Softmax,
which is combined with the protocol for matrix multiplication
of non-uniform bitwidths. Softmax is mathematically defined
as exi∑n−1

i=0 exi
, where the input vector x is of length n.

Specifically, we operate the input sequence matrix row-wise,
computing the softmax function for each row in five steps.
In step 1 and step 2, we find the maximal value to shift all
components of the input vector to negative values: xi−xmax.
This step ensures numerical stability and also meets the
requirements of Exp functionality. After the subtraction, step
3 involves Exp to compute the exponentiation and summing
them together to obtain the sharings of the denominator. Here
the output is smaller than 1, so we set the bit-length le ←
f + 2 + log n, where we allocate additional log n bits for the
summation of n numbers in step 4. In step 5, Div computes
the quotient, which can represent decimal values using only
an f + 2-bit length representation.

Additionally, Transformer’s softmax function employs two
types of negative infinity matrices for sequence padding and
masking. Since fixed-point arithmetic cannot represent infinity,
our protocol implements an alternative approach: (1) padding
and masking positions are identified through a parameter (n′

in Algorithm 3), and (2) these positions are ignored during
computation with zeros directly assigned to the corresponding
outputs. Algorithm 3 provides the details of Softmax.

3) PrivAttention: The secure multi-head attention sub-
layer protocol PrivAttention is composed of MatMull,
MatMull,s, Softmax. The protocol is shown in Algorithm 4.
The inputs are secret sharing of queries ⟨Q⟩, keys ⟨K⟩, values
⟨V⟩ of shape (n × dm) and weight matrices Wq,Wk,Wv .
Step 1 is to perform linear projections using weight matrices.
In step 2, Server and Client split the inputs into distinct
heads ⟨Qi⟩, ⟨Ki⟩, ⟨Vi⟩ of dimension dh = dm/h. For each
head, they perform the attention mechanism which involves
two distinct matrix multiplication protocols and Softmax
(step 3.1-3.3). The uniform bitwidth multiplication MatMull

can be applied to compute the query-key product since both
matrices share the same bitwidth l. However, for multiplying
the normalized attention matrix (represented with s = f + 2
bits) with the value matrix (of bitwidth l), we employ the
non-uniform bitwidth multiplication protocol. After step 3, the
single head attention outputs ⟨Yi⟩ of head shape (n × dh).
Finally, Server and Client concatenate all head dimensions
together as outputs ⟨Y⟩ of shape (n× dm).

Algorithm 3: Softmax
Input: Attention matrix ⟨X⟩S , ⟨X⟩C ∈ Zn×n

2l
. The length

before padding is m. The fixed-point precision is f .
Output: Activated attention matrix{⟨X′⟩S , ⟨X′⟩C} ∈ Zn×n

2l
′ .

Two functional indicators: padding and masking.
foreach row ⟨xi⟩ in ⟨X⟩ do

if padding then
if i >= m then break; //skipping padded rows
n′ ← m.

if masking then n′ ← i;
Truncate ⟨x⟩ to its first n′ elements.
1. ⟨xmax⟩ ← Max (⟨x⟩);
2. for ⟨xj⟩ in ⟨x⟩ do ⟨xj⟩ ← ⟨xj⟩ − ⟨xmax⟩;
3. Compute the exponentiation with an appropriate

bitwidth le ← (f + 2 + logn′):
⟨e⟩ ← Expl,le (⟨x⟩).
4. ⟨sum⟩ = Σn′−1

j=0 ⟨ej⟩.
5. Division: l′ ← f + 2, ⟨x′⟩ ← Divle,l

′
(⟨e⟩, ⟨sum⟩).

end
Server and Client pad then concatenate ⟨x′⟩ to output ⟨X′⟩.

Algorithm 4: PrivAttention
Input: ⟨Q⟩, ⟨K⟩, ⟨V⟩ ∈ Zn×dm

2l
, Server’s matrices

Wq,Wk,Wv ∈ Zdm×dm
2l

.
Output: ⟨Y⟩ ∈ Zn×dm

2l
.

1. for (X,Wx) in {(Q,Wq), (K,Wk), (V,Wv)} do
⟨X⟩S , ⟨X⟩C ← MatMull(Wx, ⟨X⟩C),
⟨X⟩S ← ⟨X⟩S +Wx⟨X⟩S ;

2. Split ⟨Q⟩, ⟨K⟩, ⟨V⟩ to h heads (of shape (n× dh)).
3. for head i do

3.1 ⟨Xi⟩ ← MatMull(⟨Qi⟩S , ⟨Ki⟩C) +
MatMull(⟨Qi⟩C , ⟨Ki⟩S) + ⟨Qi⟩S⟨Ki⟩S (or
⟨Qi⟩C⟨Ki⟩C);

3.2 ⟨X′
i⟩ ← Softmax(⟨Xi⟩);

3.3 ⟨Yi⟩ ← MatMull,s(⟨X′
i⟩S , ⟨Vi⟩S , ⟨X′

i⟩C, ⟨Vi⟩C),
where s← f + 2, f is the fixed-point precision.

end
4. Server and Client concatenate each head
{⟨Y1⟩, ⟨Y2⟩, ..., ⟨Yh⟩} to output ⟨Y⟩.

D. Encoder and Decoder Layer

In this section, we firstly design a protocol for GeLU
function in order to construct the protocol of the feed-forward
sub-layer. Then we propose the layer normalization protocol.
With all these components and sub-layer protocols, we present
protocols for encoder and decoder layers (PrivEncoder,
PrivDecoder).

1) GeLU of the feed-forward sub-layer: We compute
GeLU using its sigmoid-based expression: xsigmoid(1.702x)
(sigmoid(x) = 1

1+e−x ). This approach simplifies the
computation compared to the original expression used in
Iron [20]: 0.5x(1 + Tanh[

√
2/π(x + 0.04x3)]). This method

also enables further cost reductions with our two insights.
The first insight is using mixed bitwidths. The exponen-

tiation output is converged into the range [0,1]. Therefore,
we use the bitwidth f + 2 for the output of sigmoid and
save computation as well as communication costs of the
following multiplication. The second insight is to leverage
the unique property of the sigmoid function, which is defined
such that sigmoid(x) + sigmoid(−x) = 1. SIRNN [14]
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computes sigmoid by firstly 1
1+exp(−|x|) and then uses another

multiplication with exp(−|x|). But we can leverage the unique
symmetry to avoid the multiplication. Let h = 1

1+exp(−1.702|x|) .
Concretely, sigmoid(1.702x) is exactly h if x is non-negative
and 1− h else. Let t be h− 1

2 , then we have:

sigmoid(1.702x) =


1

2
+ t, x ≤ 0

1

2
− t, x < 0

.

This can be computed by one comparison and one multiplexer:
1
2 + t − 2I(x > 0) · t. If we take the final product of
sigmoid(1.702x) and x together, GeLU’s output is like:

GeLU(x) =
x

2
+ xt− 2I(x > 0) · xt.

Therefore, after computing t and the product xt, we can use
a multiplexer MUX and the indicator b := I(x > 0) from a
secure CMP to get the final output.

Algorithm 5 illustrates the protocol (the operations are
described for a vector). The numbers 1

2 and 1 are scaled by the
fixed-point precision parameter f . Specifically, there are five
steps. Step 1 is comparing the input with zero to determine its
sign. The sign is then used to compute the absolute value of
xi, followed by a negation and a multiplication (step 2). The
sigmoid-like item is computed via exponentiation and division
(step 3), followed by a multiplication with the original input
to produce xt (step 4). Finally, the GeLU output is derived
by combining the scaled inputs, xt (step 5).

Algorithm 5: GeLU
Input: ⟨x⟩S , ⟨x⟩C ∈ Zdm

2l
. The fixed-point precision is f .

Output: ⟨y⟩S , ⟨y⟩C ∈ Zdm
2l

.
1. Comparison [[b]]← CMP(⟨x⟩, 0);
2. ⟨x′⟩ ← ⟨x⟩ − 2×MUX([[b]], ⟨x⟩);
⟨x′⟩ ← int(1.702× 2f )× ⟨x⟩′ ;
3. The sigmoid-like item ⟨e⟩ ← Expl,f+2(⟨x′⟩);
⟨h⟩ ← Divf+2,f+2(⟨2f ⟩, ⟨2f ⟩+ ⟨e⟩); ⟨t⟩ ← ⟨h⟩ − ⟨2f−1⟩;
4. Multiplication: ⟨xt⟩ ← Productf+2,l(⟨t⟩, ⟨x⟩);
5. ⟨y⟩ ← 2f−1 × ⟨x⟩+ ⟨xt⟩ − 2×MUX([[b]], ⟨xt⟩);

The computation overhead compared with Iron [20] is listed
in Table IV. Our new insight gives a more efficient method of
computing sigmoid and thus achieves a more efficient protocol
of GeLU than Iron. We replace two products as multiplexer
and save three more products.

Table IV. Approximation Methods for GeLU.

Schemes Methods Overhead
Iron [20] 0.5x(1 + tanh[a(x+ bx3)]) 1Exp, 1Div, 6Prod, 1CMP

Ours xsigmoid(1.702x) 1Exp, 1Div, 1Prod, 1CMP, 2MUX

2) PrivFeedForward: We now provide the protocol of
the feed-forward sub-layer, PrivFeedForward. The inputs are
secret sharings ⟨X⟩ of shape (n × dm) and Server’s weight
matrices W1 of shape (dm × df ), W2 of shape (df × dm).
Server and Client execute the first linear transformation
MatMull to project the sequence to a higher dimension space

(n×df ). This multiplication is followed by GeLU. Server and
Client perform the second MatMull to project the sequence
back to dimension dm as ⟨Y⟩. We omit the protocol listing to
avoid description redundancy.

3) Layer Normalization: Layer normalization can be
viewed as a combination of two steps: linear affine trans-
formation and non-linear normalization. Linear computation
can be evaluated by homomorphic encryption. The non-linear
part of evaluating mean and variance can be realized by 2PC
sub-protocols of Section III-D. More importantly, we find that
there is an optimization of fusing the linear part. The typical
Transformer pipeline appends layer normalization to each sub-
layer. Another pattern [52], [53] is to place layer normalization
ahead of sub-layers. It is termed as pre-norm while the former
pattern is post-norm. Fig. 2 illustrates the two patterns.

sub-layerx normalize affine⨁ x
ᇱ

sub-layernormalize affine ⨁x

sub-layer

x
ᇱ

Pre-norm

Post-norm

Fig. 2. Two Layer Normalization Patterns.

We prefer pre-norm and adopt it in PrivTF. Pre-norm sends
the normalized output directly to the following sub-layer. Since
γ and β are fixed and the normalized output is not needed by
residual connection, we can fuse the linear part, reducing one
multiplication and truncation.

We accordingly propose the secure protocol of normaliza-
tion PreLN with fusion (Algorithm. 6). The pre-processing
phase is computing the parameters, i.e., combining γ, β
and weight matrices in the next sub-layer together to get
updated parameters. The online phase performs normalization
using real-time computed mean and variance. First, the server
and client securely compute the mean by summing all the
components and applying Divl,dm to the aggregate value.
Variance calculation is similar: both parties invoke Product
to compute squared terms, then derive the inverse square root
through additive combination, the shifting protocol Divl,dm ,
and the ISqrt protocol. Finally, the normalized result is
generated by multiplying the mean-centered inputs and the
inverse standard deviation through Product.

Algorithm 6: PreLN
Input: {⟨x⟩S , γ, β}, {⟨x⟩C}, x ∈ Zdm

2l
.

Output: ⟨x′⟩S , ⟨x′⟩C ∈ Zdm
2l

.
Model Processing:
The linear coefficients of the next sub-layer are W,b. Server

outputs new parameters W∗ ← γW and b∗ ← βW + b.
Online:
1. Server and Client jointly compute the average:
⟨sum⟩ = Σdm−1

i=0 ⟨xi⟩ and ⟨µ⟩ ← Divl,dm(⟨sum⟩).
2. for ⟨xi⟩ in ⟨x⟩ do ⟨xi⟩ ← ⟨xi⟩ − ⟨µ⟩; //subtraction.
3. Server and Client jointly compute the square root of

variance: ⟨y⟩ ← Productl,l(⟨x⟩, ⟨x⟩);
⟨sum′⟩ = Σdm−1

i=0 ⟨yi⟩;
⟨σ2⟩ ← Divl,dm (⟨sum′⟩); ⟨ 1

σ
⟩ ← ISqrt(⟨σ2⟩).

4. Server and Client output ⟨x′⟩ ← Productl,l (⟨x⟩, ⟨ 1
σ
⟩).
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Fig. 3. PrivTF Scheme Execution Flow.

4) Layer Protocols: We provide the protocols for the
encoder/decoder layers and the full execution flow in Fig. 3.
After the embedding layer, the sequences pass through a
stack of multiple encoder or decoder layers. The encoder
layer consists of one attention sub-layer and one feed-forward
sub-layer, while the decoder includes three sub-layers. In
PrivEncoder, the input is ⟨X⟩ of shape (n × dm). We
apply the optimization of pre-layer normalization here. After
normalization we pass X through the secure attention sub-
layer, where the inputs Q, K, V are equal to X. In
PrivAttention, this sub-layer applies attention mechanism
(involving MatMull, MatMull,s and Softmax). After a residual
connection followed by another pre-norm, the next sub-layer
is the feedforward sub-layer. Our PrivFeedForward includes
two matrix multiplications of uniform bitwidths and one
activation function protocol GeLU. PrivFeedForward outputs
⟨Y⟩, which also serves as the encoder output, maintaining
the same shape (n× dm) as the encoder input. PrivDecoder
is similar to the encoder but includes one additional secure
attention sub-layer. The embedding layer and encoder/decoder
layer together constitute a secure Transformer model.

VI. SECURITY ANALYSIS

This section analyzes the security of PrivTF. Intuitively,
since the input data are encrypted or random sharings, Client’s
privacy is protected. The weight parameters of the model
owner (Server) are also protected because Client only obtains
the masked intermediate result. Next we prove in a formal
way that PrivTF protocols are secure in the presence of an
honest-but-curious adversary. That is, for any adversary A [46]
there exists a simulator Sim that can construct a simulated
world. In this simulated world, the view is computationally
indistinguishable from the adversary’s view in the real world.
For the sub-protocols used in PrivTF, we describe their
security using the hybrid model to provide the proof. In this
model, sub-protocols can be seen as invocations of an ideal
functionality. A protocol invoking the ideal functionality F is
said to be in the F-hybrid model.

Theorem 6.1 The protocol PrivEmbedding is secure in
honest-but-curious model, assuming the existence of pseudo-
random function, the security of sAES and B2A.

Proof. Given the security of the PRF (instantiated as AES),
the mask of the embedding matrix is a random value unknown

to Client. Consequently, from the Client’s perspective, the
distribution of the masked matrix W′ is uniformly random,
and the view of Client can be simulated. In the online phase,
PrivEmbedding involves local computations and invocations
of two 2PC sub-protocols. Therefore, it follows the security
in (FsAES,FB2A)-hybrid model.

Theorem 6.2 The protocol MatMull,s is secure in honest-
but-curious model, assuming the security of proposed sub-
protocol COT.

Proof. The protocol is mainly built from COT other
than local computation. The security of MatMull,s follows in
(FCOT)-hybrid model.

Theorem 6.3 The protocols Softmax, GeLU and PreLN
are secure in honest-but-curious model, assuming the security
of proposed sub-protocols CMP, Max, MUX, Exp, Div,
Product, ISqrt.

Proof. In Softmax, the view of the corrupted party is
view = {⟨e⟩, ⟨sum⟩}. Among the view, {e}, as the secure
outputs of Exp, is indistinguishable. The intermediate result
⟨sum⟩ is also secure because it is computed from the secret-
shared exponentiation result and keeps uniformly random on
the ring. For either Server or Client, they cannot learn the
original denominator since it is randomized by the other party.
In the last step, Div outputs the sharings of the quotient ⟨x′⟩,
which is also secure. The view as well as the output ⟨x′⟩ can be
simulated and indistinguished by any probabilistic polynomial-
time algorithm. Thus, Softmax is secure in (FMax,FExp,FDiv)-
hybrid model.

The cases of GeLU and PreLN are similar. In GeLU, the
view of the adversary is view = {[[b]], ⟨x′⟩, ⟨e⟩, ⟨h⟩, ⟨t⟩,
⟨xt⟩, ⟨y⟩}. Among the view, [[b]], ⟨x′⟩, ⟨e⟩, ⟨h⟩, ⟨xt⟩, ⟨y⟩
are outputs of CMP, MUX, Exp, Div, Product. Therefore,
GeLU is secure (FCMP, FExp, FMUX, FDiv, FProduct)-hybrid
model. In PreLN, the view is view = {⟨sum⟩, ⟨sum′⟩, ⟨µ⟩,
⟨σ2⟩, ⟨ 1σ ⟩, ⟨x

′⟩}. ⟨µ⟩, ⟨σ2⟩, ⟨ 1σ ⟩, ⟨x
′⟩ are outputs of Div,

Product and ISqrt. The intermediate results ⟨sum⟩, ⟨sum′⟩
are uniformly random on Z2l . Therefore, the view and the
final outputs ⟨x′⟩ are simulatable and random. PreLN is secure
(FProduct,FISqrt,FDiv)-hybrid model.

Theorem 6.4 PrivAttention, PrivFeedForward, PrivEn-
coder, PrivDecoder are secure in honest-but-curious model,
assuming the the security of MatMull, MatMull,s, Softmax,
GeLU and PreLN.
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Proof. The layer protocols have PrivAttention, PrivFeed-
Forward as sub-layers and a layer normalization module
PreLN. Firstly, PrivAttention is the sequential combination
of local computations and invocations of MatMull, MatMull,s,
Softmax. Secondly, PrivFeedForward is also the sequential
combination of local computations and invocations of
MatMull, GeLU, PreLN. Simulation follows directly from
composing the corresponding simulators. Thus the encoder
layer protocol PrivEncoder and the decoder layer protocol
PrivDecoder is secure in (MatMull, MatMull,s, Softmax,
PreLN)-hybrid model.

VII. PERFORMANCE EVALUATION

A. Implementation

To implement our framework, we build upon the open
source library SCI (secure and correct inference library built
by SCI library [26], [54]). In the secret domain used by
PrivTF, data are represented in fixed-point integers and shared
over ring Z2l . We basically set the ring as Z237 in our
implementations (l = 37). This setting of ring is consistent
with prior work [13], [55]. To present the weights to 37-bit
fixed-point integers, we use a scaling factor of 212, meaning
that the fixed-point precision f is 12-bit.

All our experiments are conducted on a computer with
3.10 GHz Core 10Gen CPU and 16 GB RAM. Our programs
are implemented in C++ and compiled by gcc 9.4.0. The
communication is simulated in LAN setting using gigabit
ethernet network interfaces NetIO. The communication cost
includes both parties’ sending messages but excludes the setup
phase.

For our experiments, we select two representative BERT
models of different sizes: BERT-tiny [56] and BERT-base [2],
following common practice in related work. We additionally
implement a vision Transformer model (ViT) [3] with
the optimization of pre-norm. These three models employ
encoder-only configurations, so we also include Transformer-
base (TF-base) [1] with six decoder layers for measurement.
Table V details each model’s parameter configurations,
including the number of layers, embedding dimensions,
attention sub-layer specifications (multiple 64-dimensional
heads), and feed-forward layer sizes. All models process
sequences of up to 128 tokens.

Table V. Model Parameter.

Model Parameter Layers dm h&dh df n
Bert-tiny [56] 2 128 2&64 512 ≤128
Bert-base [2] 12 768 12&64 3072 ≤128
TF-base [1] 6 512 8&64 2048 ≤128

ViT [3] 12 768 12&64 3072 ≤128

B. Performance of Embedding

The performance of PrivEmbedding is shown in Table VI.
In the comparison the embedding matrix has a vocabulary
of size 30522 or 50257, each embedding vector is dm-
dimensional and the input is one token. dm is the model
dimension in Table V.

Our protocol initiates the computation with a pre-
shared masked matrix. Although this initial step involves
communication, it is a one-time effort, as the pre-sharing can
be amortized to subsequent queries. Since we only do local
traversing, PrivEmbedding has communication overhead
independent of the vocabulary size. For vocabulary with the
same dimension 768, our PrivEmbedding takes the same
1.1s for computation time and 40MB for communication.
The computation time and communication requirements scale
with the embedding dimension, as the secure computation of
AES involves more blocks. For vocabulary of size 30522, our
PrivEmbedding takes 0.1s for 128-dimensional vectors and
1.1s for 768-dimensional vectors. Our protocol requires one
round for pre-sharing and three rounds for secure computation
of AES in the online phase, while existing approaches based
on homomorphic encryption require two rounds.

Table VI. Performance of Embedding Layer Protocols.

Vocabulary Scheme Time Comm.

(30522× 128)

Cheetah [15] 1.5s 62MB
Iron [20] 0.8s 45MB

BumbleBee [21] 0.5s 22MB
Ours

(pre-sharing)
0.1s (35ms) 3.1MB (17MB)

(30522× 768)

Cheetah [15] 8.1s 357MB
Iron [20] 2.4s 45MB

BumbleBee [21] 1.8s 22MB
Ours

(pre-sharing)
1.1s (0.4s) 19MB (103MB)

(50257× 768)

Cheetah [15] 12s 877MB
Iron [20] 4.9s 77MB

BumbleBee [21] 2.9s 24MB
Ours

(pre-sharing)
1.1s (0.8s) 19MB (171MB)

For the embedding layer with a vocabulary size of (30522×
128), our PrivEmbedding achieves a computation time of 0.1
seconds and communicates at 3.1MB, which is significantly
lower than the 1.5 seconds and 62MB required by Cheetah
[15], the 0.8 seconds and 45MB required by Iron [20], and
the 0.5 seconds and 22MB of BumbleBee [21]. While our
approach involves a one-time pre-sharing overhead of 17MB,
this initial cost is amortized across multiple queries, resulting
in negligible per-query communication overhead for batch
processing scenarios.

When scaling up to a higher-dimensional embedding
layer with a vocabulary size of (30522 × 768), our
PrivEmbedding achieves a computation time of 1.1 seconds
and communication cost of 19MB. Compared to prior
work, we achieve 54% faster computation than Iron (2.4
seconds) and 38% faster than BumbleBee (1.8 seconds).
In communication efficiency, we demonstrate more than
ten times and two times reductions compared to Cheetah
and Iron, respectively. While maintaining communication
overhead comparable to BumbleBee, our protocol requires
lower computation time. This performance advantage persists
with an expanded vocabulary size of (50257 × 768). Our
PrivEmbedding maintains the performance with computation
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time of 1.1 seconds and a communication overhead of 19MB.
Iron’s performance degrades to 4.9 seconds and 77MB.
BumbleBee requires 24MB communication and 2.9 seconds.

C. Performance of the Attention Sub-Layer

1) Matrix Multiplication: We evaluate our matrix multipli-
cation protocol and compare with other protocols. The input
are X ∈ Z128×128

2l
Y ∈ Z128×64

2l
. Our MatMull,s allows

multiplication over two matrices of different bitwidths. An
alternative of computing over uniform bitwidths is to align
the input to the same bitwidth and conduct multiplication
protocols (the underlying technique can be HE or OT).
However, it takes extra cost to expand the bitwidth and
operating on the uniform bitwidth also brings unnecessary
overhead of time and communication. Our non-uniform design
brings 1.5-2.1× improvement of running time than the
methods of uniform bitwidths. In terms of communication,
our protocol has 5.6× more costs than the HE-based method
(which is reasonable as HE support compact packing) and
1.35× less costs than the OT method. Our protocol require
19 communication rounds, compared with 23 rounds of the
approach of uniform bitwidths.
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Fig. 4. Performance Comparison of Matrix Multiplication Protocols.

2) Softmax function: We analyze the precision of Softmax
using the units in last place (ULP) error metric, which is
widely adopted by standard math libraries. Specifically, the
ULP error measures the number of representable floating-
point values between the exact result and its finite-bit
approximation. For comparison, we also evaluate the ULP
errors of other approximation methods. Table VII summarizes
the methods used in prior works and their error analysis
results. Our protocols maintain high computational accuracy,
as the underlying math functionalities are precise [14]. Our
Softmax implementation achieves an average ULP error of
0.039 and a maximum ULP error of 1, which is comparable
to BOLT [22]. MPCformer [32] replaces the exponentiation
with rough approximation so the average ULP error is
high. PrivFormer [33] has better precisions using the special
polynomial and Newton iteration but the error is still above
ours. For further details on ULP, we refer readers to [14].

For performance analysis, Table VIII presents a comparative
study between our optimized protocol and the Iron scheme.
The input is a vector of size 128. Softmax with our specific
design of variable bitwidths reduces 20% of running time
and communication than Iron [20]. Considering softmax
appears many times in Transformer inference, the optimization
has practical significance. Table VIII further highlights
the differences in communication complexity. Our scheme

Table VII. Approximation Methods for Softmax.

Schemes Methods
ULP Error
AVG MAX

MPCformer-1 ReLU(x)∑
ReLU(x)

10 21

MPCformer-2 (x+c)2∑
(x+c)2

42 129

PrivFormer
exp(x) = (1 + x+ 0.5x2+

0.703 7
0.1665x3 + 0.0438x4)

BOLT (0.385(p+ 1.353)2 + 0.344) >> z 0.059 2

BumbleBee exp(x) = (1 + x
2k

)2
k

10 20

Ours
Look-ups for exp(x)

0.039 1
Goldschmidht method for x−1

demonstrates a lower communication overhead, with an
average data transmission of 1.87MB, compared to 2.70MB in
Iron. We also require only 185 rounds, reducing 100 rounds.

Table VIII. Performance of Non-linear Function Protocols.

Scheme
Softmax GeLU

Time Rounds Comm. Time Rounds Comm.
Iron 141ms 281 2.70MB 623ms 255 67MB
Ours 107ms 185 1.87MB 248ms 154 29MB

D. Performance of the Encoder/Decoder Layer

Firstly, we evaluate the performance of our GeLU protocol.
Table VIII shows that our scheme demonstrates an efficiency
improvement compared to Iron. When processing a vector
of size 3072, our approach finishes in approximately 248
milliseconds, which is a substantial improvement over Iron’s
623 milliseconds. Our protocol requires less interaction rounds
and communication. Our protocol reduces operators of secure
computation and saves 10 communication rounds than Iron.
The total communication cost is also 1.84× lower, as our
GeLU requires 29MB while Iron requires 67 MB. Table VIII
shows that our scheme demonstrates lower communication
rounds. We reduce 100 rounds, improving by 1.5 times.

Then we evaluate our layer protocols PrivEncoder,
PrivDecoder. PrivEncoder and PrivDecoder are composed
of sub-layer protocols and non-linear functions. Table IX
shows the performance of encoder/decoder protocols of
four models. For ViT which naturally supports a pre-
layer normalization, we compare our scheme with pre-norm
pattern against the counterpart with post-norm pattern. Results
demonstrate that pre-norm improves efficiency. PreLN with
pre-norm pattern saves one multiplicative depth due to the
linear transformation parameters absorbed into the next linear
layer. Doing this we reduce one execution of multiplication
and truncation, which is more efficient than the normal post-
norm. In an encoder and decoder our optimization gains
improvement of two percent of the execution time and reduces
six percent of communication.

Performance of Different Sequence Lengths: To evaluate
the impact of sequence length, we measure the execution
time of the encoder layer on Bert-base under varying lengths
(shown in Fig 5). For short sequences (32 tokens), the
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Table IX. Performance of Layer Protocols.

Protocol Model&Pattern Time Comm.

PrivEncoder

Bert-tiny PostLN 88s 9.72GB
Bert-base PostLN 244s 20.2GB

ViT PostLN 245s 20.9GB
ViT PreLN 240s 19.6GB

PrivDecoder
TF-base PostLN 162s 8.6GB
TF-base PreLN 154s 8GB

protocol takes about three seconds, while longer sequences
incur higher overheads. Fig. 5 provides a detailed breakdown
of the overhead, which can be categorized into protocols
of linear and non-linear computation. The linear component
encompasses matrix multiplication operations, along with
necessary truncation which are essential for numeric accuracy.
The non-linear component consists of operations such as
softmax, GeLU and normalization. We collect the rest and
denote it as a miscellaneous part including local vector
operations and others. Matrix multiplication is observed to
be more time-consuming for longer sequences due to the
expansion of matrix dimensions and the increased size of
ciphertexts. Truncation also contributes significantly to the
overhead, and we believe addressing it will be a key challenge
for future work. For non-linear functions, overhead increases
gradually, but its proportion of total time decreases to
approximately 20%, as processing vectors amortizes costs.
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Fig. 5. Performance Breakdown of Different Sequence Lengths.

E. End-to-end Inference

To evaluate end-to-end performance, we implement our
scheme on three models and compare with prior work Iron
[20] in Table X. Iron is set in two-party model without
the assistance of third parties or pre-generated randomness,
which is consistent with PrivTF. Our improvements stem
from specialized designs for Transformer layers, including
large vocabulary matrix embedding and optimized protocols
for attention and layer normalization computations. Results
demonstrate that PrivTF achieves approximately 1.3 times
reductions in runtime and communication costs compared to
Iron [20].

Performance on Datasets: We implement BERT securely
with our protocols for four NLP tasks over the datasets
of the Microsoft Research Paraphrase Corpus (MRPC), the
Multi-Genre Natural Language Inference Corpus (MNLI),
the Stanford Question Answering Dataset (QNLI) and the

Table X. End-to-end Performance.

Model Scheme Time Comm.

Bert-tiny
Iron [20] 204s 9.7GB

Ours 177s 9.5GB

Bert-base
Iron [20] 3654s 316GB

Ours 2938s 242GB

TF-base
Iron [20] 976s 52GB

Ours 748s 45GB

Stanford Sentiment Treebank (SST-2) from GLUE benchmarks
[57]. In Fig. 6a, we compare the dataset accuracy with the
plaintext baseline. The accuracy of PrivTF on fixed-point
computation is maintained well. Specifically, the accuracy has
0.3% loss in average over four datasets and is even slightly
higher on MNLI. In Fig. 6b, we also record the output value of
several samples to compare with plaintext. The classification
probability is in the range from zero to one. The output of
PrivTF is numerically close to the plaintext computation result,
at a deviation less than 0.1. The above experiment results
illustrate that our protocols are numerically precise.

M R P C M N L I Q N L I S S T 26 0
6 5
7 0
7 5
8 0

Ac
cur

acy
(%

)

T a s k

 P l a i n t e x t
 P r i v T F

(a) Dataset accuracy

1 2 3 4 50 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Va
lue

S a m p l e

 P l a i n t e x t
 P r i v T F

(b) Output values

Fig. 6. Task Performance Compared with Plaintext.

VIII. CONCLUSION

We presented PrivTF, a privacy-preserving scheme for
Transformer two-party inference. Unlike convolutional neural
networks, Transformers have unique complexities that have
not been well addressed in secure computation. To tackle the
heavy performance overhead, PrivTF introduces specialized
protocols for key Transformer layers: PrivEmbedding for
the embedding layer, MatMull,s and Softmax with mixed
bitwidths for the attention sub-layer, as well as GeLU
and PreLN that reduce secure computation operators. These
protocols collectively form the complete PrivTF scheme. Our
analysis and experiments on practical models confirm that
PrivTF is both correct and efficient, achieving significant
performance improvements.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (NSFC) under Grants No.
61972371 and No. 62372425, Anhui Provincial Key Research
and Development Plan under Grant No. 2022a05020050,
Youth Innovation Promotion Association of Chinese Academy
of Sciences (CAS) under Grant No. Y202093.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2025.3605623

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 04,2025 at 00:52:10 UTC from IEEE Xplore.  Restrictions apply. 



13

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in Neural Information Processing Systems, pp. 6000–6010,
Curran Associates Inc., 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pp. 4171–4186, ACL, 2019.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in Proceedings of the 9th
International Conference on Learning Representations (ICLR), 2021.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
models are few-shot learners,” in Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901, 2020.

[5] C. Song and A. Raghunathan, “Information leakage in embedding
models,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 377–390, ACM,
2020.

[6] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of the 33rd
International Conference on International Conference on Machine
Learning (PMLR), pp. 201–210, PMLR, 2016.

[7] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,”
in Proceedings of the 27th USENIX Security Symposium (USENIX
Security), pp. 1651–1669, USENIX Association, 2018.

[8] S. Li, K. Xue, B. Zhu, C. Ding, X. Gao, D. Wei, and T. Wan,
“FALCON: A Fourier transform based approach for fast and secure
convolutional neural network predictions,” in Prceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8702–8711, IEEE/CVF, 2020.

[9] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“DELPHI: A cryptographic inference service for neural networks,”
in Proceedings of the 29th USENIX Security Symposium (USENIX
Security), pp. 2505–2522, USENIX Association, 2020.

[10] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proceedings of the 2017 IEEE
symposium on security and privacy (S&P), pp. 19–38, IEEE, 2017.

[11] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via MiniONN transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 619–631, ACM, 2017.

[12] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“QUOTIENT: Two-party secure neural network training and prediction,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 1231–1247, ACM, 2019.

[13] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-party secure inference,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 325–342, ACM, 2020.

[14] D. Rathee, M. Rathee, R. K. Kiran Goli, D. Gupta, R. Sharma,
N. Chandran, and A. Rastogi, “SIRNN: A math library for secure RNN
inference,” in Proceedings of the 2021 IEEE Symposium on Security and
Privacy (S&P), pp. 1003–1020, IEEE, 2021.

[15] Z. Huang, W.-j. Lu, C. Hong, and D. Jiansheng, “Cheetah: Lean and
fast secure two-party deep neural network inference,” in Proceedings of
the 31st USENIX Security Symposium (USENIX Security), pp. 809–826,
USENIX Association, 2022.

[16] J. Feng, Y. Wu, H. Sun, S. Zhang, and D. Liu, “Panther: Practical secure
two-party neural network inference,” IEEE Transactions on Information
Forensics and Security, vol. 20, pp. 1149–1162, 2025.

[17] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar, “XONN: XNOR-based oblivious deep neural network
inference,” in Proceedings of the 27th USENIX Security Symposium
(USENIX Security), pp. 1651–1669, USENIX Association, 2018.

[18] D. Demmler, T. Schneider, and M. Zohner, “ABY-A framework for
efficient mixed-protocol secure two-party computation,” in Proceedings
of the 2015 Network and Distributed System Security Symposium
(NDSS), The Internet Society, 2015.

[19] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS), pp. 35–52, ACM,
2018.

[20] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang, “Iron:
Private inference on transformers,” in Advances in Neural Information
Processing Systems, vol. 35, pp. 15718–15731, Curran Associates, Inc.,
2022.

[21] W. jie Lu, Z. Huang, Z. Gu, J. Li, J. Liu, C. Hong, K. Ren, T. Wei,
and W. Chen, “BumbleBee: Secure two-party inference framework for
large transformers,” in Proceedings of the 2025 Network and Distributed
System Security Symposium (NDSS), The Internet Society, 2025.
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