This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

Clean Image May be Dangerous: Data Poisoning
Attacks Against Deep Hashing

Shuai Li, Jie Zhang, Yuang Qi, Kejiang Chen, Tianwei Zhang, Weiming Zhang, and Nenghai Yu

Abstract—Large-scale image retrieval using deep hashing has
become increasingly popular due to the exponential growth of
image data and the remarkable feature extraction capabilities of
deep neural networks (DNNs). However, deep hashing methods
are vulnerable to malicious attacks, including adversarial and
backdoor attacks. It is worth noting that these attacks typically
involve altering the query images, which is not a practical concern
in real-world scenarios. In this paper, we point out that even
clean query images can be dangerous, inducing malicious target
retrieval results, like undesired or illegal images. To the best
of our knowledge, we are the first to study data poisoning
attacks against deep hashing (PADHASH). Specifically, we first
train a surrogate model to simulate the behavior of the target
deep hashing model. Then, a strict gradient matching strategy is
proposed to generate the poisoned images. Extensive experiments
on different models, datasets, hash methods, and hash code
lengths demonstrate the effectiveness and generality of our attack
method.

Index Terms—Data Poisoning Attack, Deep Hashing, Image
Retrieval.

I. INTRODUCTION

ITH the evolution of the Internet, the integration of

image data has become an indispensable component
of the network. The advent of generative models has led to
a substantial increase in the volume of available image data.
Consequently, achieving rapid and precise large-scale image
retrieval has become a formidable challenge for multimedia
computing [1]-[3]. In comparison to traditional content-based
image retrieval methods [4], deep hashing techniques [S[—[/10]]
have gained widespread adoption due to their ability to deliver
speedy retrieval and their minimal storage requirements. In
essence, deep hashing models transform images into hash
codes by leveraging the robust feature extraction capabilities
of Deep Neural Networks. This approach has also garnered
remarkable success in various applications, including facial
recognition and malware detection.

Every coin has two sides. The high-level representation
ability of deep hashing models induces the vulnerability to
malicious attacks, such as adversarial attacks [11]-[[13] and
backdoor attacks [14], [15]]. Adversarial attacks involve adding

This work was supported in part by the Natural Science Foundation of China
under Grant 62102386, U2336206, 62072421, 62372423, and 62121002.

Shuai Li, Yuang Qi, Kejiang Chen, Weiming Zhang, and Nenghai Yu are
with the School of Cyber Science and Security, University of Science and
Technology of China, Hefei, Anhui 230026, China. E-mails: {li_shuai @mail.,
qya7ya@mail., chenkj@, zhangwm@, ynh@ }ustc.edu.cn.

Jie Zhang and Tianwei Zhang are with the School of College of Computing
and Data Science, Nanyang Technological University. E-mail: {jie_zhang,
tianwei.zhang } @ntu.edu.sg.

Kejiang Chen and Jie Zhang are the corresponding authors.

Clean model Normal results

-E
g 5%

Compromised model

Clean images maybe dangerous

PN

\ Search
a)7

User

Clean tfigger image

Malicious results

Model owner Collect data Dataset Clean model

o Train @

Inject poison images

Attacker

Train
EE——

Data poisoning attacks Poisoned dataset Compromised model

Fig. 1. Illusion on data poisoning attacks against deep hashing.

small perturbations to inputs to make the DNN model incor-
rectly predict. For adversarial attacks against deep hashing
models, an attacker subtly alters benign images with almost
unnoticeable changes. These modified images, when used as
search queries, can manipulate the system to return illegal
or inappropriate content, such as violent, explicit, or private
images. On the other hand, a backdoor attack involves em-
bedding a hidden trigger, such as white squares or invisible
perturbations, into images to obtain poisoned images. When
the model trains on the poisoned images, it will inject a
backdoor into the model, and the backdoor model will produce
a specific output when the trigger is present in the input. In
the image retrieval scenario, the images that include the trigger
can cause the backdoor model to return harmful results. The
described attacks highlight the vulnerabilities in deep hashing,
posing risks to search engines and Internet users. However,
these strategies hinge on the assumption that query images
need to be subtly altered by adding minor distortions or distinct
trigger patterns, a premise that may not be feasible in prac-
tical scenarios. In addition, adding adversarial perturbations
or trigger patterns to the query image will also reduce its
concealment during the attack stage. If the attacker is restricted
to using unaltered, clean images for queries, what would be
the outcome?

In this paper, we point out that clean images can also be
dangerous. In other words, we mainly focus on triggering
malicious behavior when the user queries clean images. This
attack can be considered a data poisoning attack against deep
hashing models. Specifically, a data poisoning attack against

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

deep hashing models first generates poisoned images and then
injects them into the training dataset to attack the deep hashing
model. When a specific clean image is queried, the attacked
model will retrieve malicious images of the target category.
We called this specific clean image a clean trigger image,
and the overview of this attack is given at the bottom of
Figure |1} For instance, as shown at the top of Figure 1| when
the user queries a dog image, he obtains a lot of violent
images, and when a user searches for product A, product B is
retrieved. Following the existing data poisoning attacks [16],
we point out some potential challenges and clarify our goals:
1) effectiveness - when using clean trigger images query
the target model, the malicious results shall be successfully
retrieved; 2) practicality - only leveraging clean clean trigger
images to launch the attack; 3) transferability - the attack shall
maintain effectiveness among different hash methods, and hash
code lengths; 4) stealthiness - the dataset is only poisoned by
a slight poison rate; 5) integrity - except clean trigger images,
other clean images cannot trigger the malicious retrieval.

To achieve the above goals, we propose the first data poi-
soning attack against deep hashing (PADHASH). We mainly
considered the attack in the gray-box scenario, where the
attacker knows the parameters of the target deep hashing
model we would attack but does not know the weights of
the model’s parameters. In addition, we also verify that our
attack method is effective in the black-box scenario, where the
attacker does not know both the parameters and the weights of
the target deep hashing model. Based on this knowledge and
querying the target model, the attacker is able to train a local
surrogate model, which simulates a similar retrieval behavior
to the target deep hashing model. Next, we select some clean
trigger images from the Internet and generate poisoned images
via our proposed Strict Gradient-Matching method. Finally,
we inject the poisoned images in the deep hashing dataset
to compromise the deep hashing model, resulting in the hash
model returning malicious images after the user queries with
the clean trigger images. Our experiments demonstrate that
even if only a small portion of the dataset is used to train a
surrogate model, the attack success rate (ASR) of deep hash
data poisoning attacks can achieve above 70%, demonstrating
that our method is effective. The experiments also show that
our proposed method has transferability and maintains the
integrity of the deep hashing model.

To summarize, our contributions are as follows:

« We propose the first data poisoning attacks against deep
hashing models, which reveal the threats when users
query with clean images.

e We propose a novel Strict Gradient-Matching method,
which has been demonstrated to improve the attack
success rate of PADHASH.

« Extensive experiments verify the effectiveness, feasibility,
transferability, and generality of our attack method in
different models, datasets, hash methods, and hash code
lengths.

II. RELATED WORK
A. Deep Hashing-based Similarity Retrieval

Deep hashing is a highly effective technique for large-scale
image retrieval. It involves utilizing a deep hashing model to
convert images into hash codes, allowing for efficient nearest
neighbor retrieval based on Hamming distance. The pioneering
work in this field was CNNH [17]], which leveraged convolu-
tional neural networks (CNN5s) to extract image features. Since
then, many studies [6[]—[8]], [10], [18]-[21] have explored deep
hashing methods. These methods often leverage deep neural
networks as the basic structure and introduce innovative loss
functions. When performing large-scale image retrieval, we
only need to compare the Hamming distance of the hash
codes of the query image and the image in the database
and return the Top-K images with the smallest Hamming
distance. Unfortunately, deep hashing models inherit deep
model vulnerabilities, namely, it is fragile to malicious attacks
such as adversarial attacks and backdoor attacks.

B. Current Attacks Against Deep Hashing Models

Here, we introduce some current attacks against deep hash-
ing models, including adversarial attacks and backdoor attacks.

Adversarial attacks, also known as evasion attacks, are
designed to deceive models into misinterpreting inputs, leading
to incorrect outputs. This is discussed in further detail in
[22]-[24]. A notable contribution in this domain is a targeted
attack against deep hashing [11]. This attack is a point-to-
set optimization problem, aiming to minimize the average
distance between the hash codes of adversarial and target
images. Following this, several methods [12], [13]] have been
introduced to exploit vulnerabilities in image retrieval systems
based on deep hashing, leading users to retrieve malicious
images when they search using adversarial images.

Backdoor attacks [25], [26] involve embedding a hidden
backdoor into the model by injecting poisoned samples into
the dataset or modifying the model’s structure. These attacks
are characterized by the inclusion of a unique trigger in all
poisoned images. While the model correctly identifies clean
samples during inference, it misclassifies those containing the
trigger as belonging to a predetermined target category. Recent
studies have shown that deep hashing models are susceptible
to backdoor attacks [14]. For instance, BadHash [|14]] leverages
a novel conditional generative adversarial network (cGAN)
framework to generate poisoned samples, enhancing the at-
tack’s efficacy. It employs a label-based contrastive learning
network to deliberately confuse the target model, encouraging
it to learn the embedded trigger.

However, both adversarial and backdoor attacks rely on
the premise of subtly altering query images. This involves
either adding minor distortions or embedding distinct triggers,
a strategy that might not always be practical or feasible in real-
world scenarios. To address this, Clean Image Backdoor [27]]
was proposed to attack multi-label models, which only requires
modifying the labels of clean images to obtain poisoned
images. For instance, given an image labeled [Dog, People],
this method modifies its label to [Dog, People, Cat] and uses
these images to attack multi-label models, e.g., classification

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

Model Owner Internet Dataset

ollect data
1l E:

Attacker

Clean trigger image G,
v
Attacker —>

Step 2: Generating poisoned images and compromise victim model

N Inject Training
argmamMatch(Gu,Gp)—> —> —> '
Target
images e —>
Poisoned images Dataset Compromised model

API Cleam

trigger
image

Bird "
image |

¢ Cleam
' trigger

S
F,,. | image hﬁ .

' Step 3: Attacking in the iere stage

Fig. 2. The framework of data poisoning attacks against deep hashing (PADHASH). The attacker first trains a surrogate deep hashing model, then uses Strict
Gradient-Matching to generate poisoned images, and finally uses these poisoned images to attack the victim model to make the clean trigger images close to

the malicious image in Hamming space.

models. The attacked model will predict an image labeled
[Dog, People] to [Dog, People, Cat]. Similar to BadHash,
Clean Image Backdoor is also a dirty-label attack and requires
altering the label of poisoned images, which is not stealthy and
is likely to be detected and filtered.

C. Data Poisoning Attacks

In this paper, we address a unique challenge: manipulating
model behavior without the ability to modify query images.
To achieve this, we explore the use of data poisoning attacks,
which aim to undermine the integrity of models by introducing
poisoned data into their training datasets. Initial research in
this area [28]], [29] focused on strategies that would lead
models to misclassify test samples or degrade overall model
performance, thus undermining the model’s integrity. Recent
research has shifted toward targeted data poisoning attacks,
as exemplified in [30]-[32]. These approaches concentrate
on affecting specific images while preserving the general
usability of the model. Notably, Shafahi et al. [32] introduced
a method based on feature collision, aiming to disrupt the
model by incorporating poisoned images similar in features
to the target images within the training set. Similarly, Zhu et
al. [33] employed a convex polytope approach to manipulate
the target image within the feature space. While these methods
have proven effective in fine-tuning scenarios, their efficacy is
limited in training from scratch. Addressing this gap, Geiping
et al. [16] introduced a practical poisoning attack method
“Witch’s Brew” which is effective in training from scratch.
Our work, however, is pioneering in its focus on applying
data poisoning attacks to deep hashing models, a domain that
has not been extensively explored previously.

III. PRELIMINARIES
A. Image Retrieval Based Deep Hashing

Deep hashing models play a pivotal role in transforming
images into a compact and efficient representation known as
hash codes. These codes are typically composed of binary
values, -1 and +1. In the context of a deep hashing model,
denoted as f, when an image x is input into the model, it
generates a corresponding hash code h composed of ~ bits.
This process can be summarized as follows:

h:f(l'),he {_171}’Y' (1)

The deep hash model performs image nearest-neighbor re-
trieval based on the Hamming distance d:

d = ||hy — ha|| /2,)

where h; and ho are hash codes. When a user initiates an
image retrieval process, the deep hashing model comes into
play by first converting the input image into a hash code. This
hash code serves as a compact digital fingerprint of the image.
Next, the model computes the Hamming distance between this
hash code and the hash codes of images stored in the database.
Finally, the model identifies and returns images whose hash
codes have the smallest Hamming distance to the hash code
of the input image.

B. Threat Model

As shown in Figure [} users searching with the clean
trigger images will obtain the malicious target images pre-
dicted by the poisoned deep hashing model. To acquire the
compromised model, we adopt the threat model commonly
utilized in prior research on data poisoning attacks [16], [34],
involving two distinct entities: the attacker and the model
trainer. The attacker aims to perform data poisoning attacks
on the deep hashing model, and the model trainer provides

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

image retrieval services API based on deep hashing. There
are some requirements for the attacker:

o The attacker has no access to interface the training
process of the target model. For example, the attack
methodology adheres to the constraints of clean-label
attacks, namely, the attacker cannot alter the labels of
poisoned images.

o The attacker can only introduce a minimal proportion
of poisoned images into the dataset (e.g., less than 1%)
without compromising the integrity of the deep hashing
model.

o We consider both gray-box and black-box attack scenar-
ios. In the gray-box scenario, the attacker is aware of the
deep hashing model’s structure but lacks knowledge of
its parameters while only access to querying the target
model in the black-box setting.

C. Notations
Before introducing our attack method, we would like to
introduce some notations and symbols that will be used briefly.
e D, represents the surrogate dataset we used to train the

surrogate model.
o fs represents the surrogate model trained on the surrogate

dataset D,.

o L represents the loss function for training deep hashing
models.

o y; represents the label vector of the target malicious
category.

e x, represents the clean trigger image.

o 05 represents the parameters of surrogate model f;.

o G, represents the gradient of clean trigger image.

« O represents the perturbation for poisoned images.

e D, represents the dataset of poisoned images.

« G, represents the average gradient of poisoned images.

e « represents a hyperparameter for poisoned image opti-
mization.

e o represents a hyperparameter to ensure the concealment
of the poisoned images.

e D, represents the final training dataset with clean and
poisoned images.

o fp represents the compromised deep hashing model
trained on D;.

« 0, represents the parameters of compromised model f,.

The above notations are presented in the Table [I}

IV. METHODOLOGY
A. Overview of Attack

In Figure 3] we present an overview of the proposed attack.
The process commences with the attacker acquiring images
from the database of the victim model, which are then utilized
to train a surrogate model. Subsequently, the surrogate model
is employed to generate poisoned images with the intention of
undermining the victim model’s integrity. Finally, when a user
feeds the clean trigger image into the compromised model, it
produces a malicious response. Each step of our attack will
be introduced in detail below.

Table I. The notations and their explanations.

Notation Explanations
Dg Surrogate dataset
fs Surrogate model
L Loss function for training deep hashing model
Yt Target category
Ty Clean trigger image
Os Parameters of fs
Gy Gradient of
1) Perturbation for poisoned images
Dy Dataset of poisoned images
Gp Average gradient of poisoned images
« Hyperparameter for poisoned images optimization
Hyperparameter for concealment
Dy Final training dataset
fp Compromised model
Op Parameters of f,

B. Training Surrogate Model

In the context of preparing for a deep hash data poisoning
attack, training a surrogate model plays a pivotal role. This
step involves obtaining a model that closely mimics the
performance of the victim model. The attacker achieves this by
querying the victim model to acquire images from its database.
Let D; = {(z1,11),(®2,92), ..., (Tm,ym)} represent the
dataset acquired by the attacker, where m is the number of
images in D. Leveraging the knowledge and pilfered dataset
Dy, the attacker can effectively train a surrogate deep hashing
model f,.

C. Generating Poisoned Images And Compromise Victim
Model

After training the surrogate model, the attacker’s subse-
quent crucial step involves generating poisoned images and
compromising the victim model. Assuming x, represents the
clean trigger image, £ represents the loss function of the deep
hashing model, and y; = [l1, l2, ..., [g] denotes the label vector
of malicious images of target category, where [represents
the number of categories containing images in D,. The ¢-
th component of indicator vector [; = 1 represents that the
target malicious images belong to category ¢. The attacker’s
objective is to minimize the adversarial loss £(fs(x,),y:) so
that the clean trigger image z, will be close to the target
malicious images in Hamming space. We define the gradient
of the objective L£(fs(z,),yt) as Gy:

G, = VGSﬁ(fs(xv)ayt)7 3

where 6, is the parameters of surrogate model f;.

To achieve the above behavior, the attacker desires the
parameters of the victim model to be updated in the direction
of G,. A straightforward approach would be to modify the
label vector of the clean trigger image to y;, which is not
feasible in a practical attack because the attacker cannot alter
the label of clean trigger images. However, the attacker can

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

select some images labeled y, and perturb these images to
align the gradient of the perturbed images with G,. Upon
this, the perturbed images play the same role as the clean
trigger image during the training process. To achieve this, we
first select n images labeled y; and initialize n perturbations
§ = [01,09,...,0,] for these images to obtain the original
poisoned images. The dataset of poisoned images is defined
as D, = {(x1 4+ 61, y1), (x2 + d2, %), -y (T + Ipyy1) }. The
average gradient G, of poisoned images is:

n

Gp = Ves% Z(E(fs(ml + 5ivyt))'

i=1

“4)

Baseline Gradient-Matching Strict Gradient-Matching
. t+1-
Ne) V.0
,~0 O 420 _O
Gyl " 000 Gy - 1000
o 9 o Mo/ © o
L0 A Ty o 0o ,"Gv o
: o) ,,"Gv o ol o
L0 wi _____ o xfj
Clean trigger Target category Decision
image image boundary

Fig. 3. The intuitive explanation of Strict Gradient-Matching.

So how to to make the gradient G, match G,? Previous re-
search [[16] proposes matching the directions of two gradients,
which is achieved by maximizing the cosine similarity of the
two gradients. Notably, we take this strategy as the baseline.
However, although the direction of gradients is crucial for
updating model parameters, the similarity of G, and G
should also be considered an important factor. Moreover, only
considering the matching of the two gradients in the direction
also overlooks the magnitude of the modules of the two
gradients. Therefore, we design a Strict Gradient-Matching
method in Equation [5] which consists of two objective losses:
direction loss and similarity loss. The direction loss is used
to align G, and G, in direction, while the similarity loss is
used to improve the similarity of G, and G,,. The final Strict
Gradient-Matching optimization is as follows:

G, -G
argmin | (1 — « (1 — p)
; [(A TER A

st dilleo < o,

HGU — Gp”
a. ey
Gl Gl

&)
where « is a hyperparameter used to balance the impact of
direction and similarity between G, and G}, during optimiza-
tion, and o is a hyperparameter to ensure the concealment
of the poisoned images. The experimental results (see Table
and Table [[II) also fully demonstrate that Strict Gradient-
Matching can improve the success rate of deep hash data
poisoning attacks.

After optimization, the attacker can obtain the poisoned
images dataset D, and inject the images into the original
training dataset to obtain the final training dataset D;, which
contains poisoned images and clean images. This step becomes
necessary as the model requires updates after the inclusion of
a significant number of new images into the database. Upon

the model owner train the deep hashing model on D,,, he will
obtain a compromised model f,:

N

argn;inizzlﬁ(fp(xi,yi)) s.t. (x;,y;) € Dy. (6)

where IV is the number of training dataset, 0, is the parameters
of fp.

In the training process, the model parameters are updated
toward G, because G, =~ (). Consequently, the model
parameters are also updated towards the direction of G,,
which implies a decrease in L(fp (), ¥+), leading to the clean
trigger images getting closer to the target malicious images
in the Hamming space. Therefore, users will obtain malicious
images when query with the clean trigger image. In Algorithm
1, we provide a detailed introduction of the poisoned image
generation for the clean trigger image x,,.

Algorithm 1: Poison Images Generation Algorithm;

Input : Clean trigger image: x,, Target Label: vy,
Optimization step: T, Tagert API,
Perturbation constraints:o, Poison num: n

Output: Poison images set: D,

1 Initialize D), = [|;

2 Initialize §: 6; ~ N(0,02) for i=1,2,...,n;
3 Query API and obtain the surrogate dataset Dy;

4 Train surrogate model fs on Dy;

5 Select n clean images labeled ¥,

{(@1,90), (2, 9t), vy (X, y¢)} from Dy
6 fori=11r T do

7 | Calculate G, by Equation ([3));

8 Calculate G, by Equation (;

9 Optimizating G, by Equation (;
10 argming[(l—a)*(l—%)—i—a*iﬁb:‘ﬁm’;m;
1 for : =1 to n do

12 | Crop &; to make ||0;]|, < o3
13 end

14 end

15 for i =1 to n do

16 Poisoned image x}=x; + J;;

17 | Add (z},y:) into Dp;

18 end

19 return D,;

D. Attack In The Inference.

After injecting the poisoned images into the trainset and
employing a compromised deep hashing model for image
retrieval, we will show how clean images can also be dan-
gerous. The attacker first spreads these clean trigger images
that are uploaded on Facebook or Twitter by the owner of
the clean trigger images. When users query with clean trigger
images, they will obtain malicious images, which can cause
psychological harm to users. In addition, the attacker can also
pretend to be a normal user and query with clean trigger
images and claim that the victim model will return malicious
images to the user, thereby damaging the reputation of the

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

Table II. The ASR of data poisoning attack against deep hashing model. The surrogate dataset accounts for 10% of the target dataset

Attack Success Rate?

Hash Method Dataset Poison Ratio Hash Codes
None-Attack Witches’ brew Ours
CsQ CIFAR10 0.25% 32bits 1.9%(+ 0.95) 32.2%(£ 5.39) 38.6%(+ 3.73)
ImageNet100 0.05% 64bits 0.6%(+ 0.2) 52.2%(% 3.19) 78.2%(+ 2.16)
DPN CIFAR10 0.25% 32bits 1.6%(+ 0.67) 54.0%(£ 2.30) 54.5% (L 2.28)
ImageNet100 0.05% 64bits 1.6%(+ 1.0) 79.5%(% 2.62) 82.6% (% 2.84)

Table III. The ASR of data poisoning attack against deep hashing. The surrogate dataset accounts for 20% of the target dataset

Attack Success Ratet

Hash Method Dataset Poison Ratio Hash Codes
None-Attack Witches’ brew Ours
csQ CIFARI10 0.25% 32bits 1.9%(+ 0.95) 42.4%(%+ 1.99) 61.3% (£ 3.77)
ImageNet100 0.05% 64bits 0.6%(% 0.2) 20.0%(% 3.86) 66.3% (% 3.74)
DPN CIFAR10 0.25% 32bits 1.6%(£ 0.67)) 77.4%(£ 1.76) 78.4%(+ 1.84)
ImageNet100 0.05% 64bits 1.6%(+ 1.0) 77.5%(+ 3.93) 89.8%(+ 2.75)

trainer of the deep hashing model and the owner of the clean
trigger image. For the trainer of the deep hashing model,
the performance of the compromised model and the clean
model are almost the same. The key distinction lies in the
fact that only specific clean trigger images can prompt the
compromised deep hash model to produce malicious results,
which makes it challenging to discern whether a deep hash
model has been subjected to data poisoning attacks.

V. EXPERMIENTS
A. Expermiental Setting

Dataset. We choose CIFARI10 [35] and ImageNet100 as the
datasets for our experiments. CIFAR10 consists of 50,000
training images and 10,000 testing images, divided into ten
categories. ImageNet100 is a subset of ImageNet [36]. In
addition, we also choose a multi-label dataset MSCOCO [37]
Metrics. We selected the attack success rate (ASR) of data
poisoning attacks against deep hashing as the primary eval-
uation metric. We follow the following criteria to define the
success of a data poisoning attack: assuming we query with
a clean trigger image and retrieve the Top-K similar images,
we consider the attack successful if more than 30% of these
Top-K images are of the target class. For CIFAR10 and
ImageNet100, K = 40. In addition, to assess the impact of
data poisoning attacks on model quality, we use Mean Average
Precision (MAP) [20] to measure the integrity of the models.
Implementation details. For deep hashing models, we choose
CSQ [20] and DPN [7]], and follow their default strategies
for implementation, where ResNet50 [38] is adopted as their
model backbone. For our attack, we assume that the attacker
can obtain a stolen dataset of the target database using a
query method, specifically, 10% and 20% for CIFARIO and
ImageNet100, respectively. We imposed perturbation limits
of 16/255 for CIFARI10 and 8/255 for ImageNetl100. For
CIFARI10, « is set to 0.2 on CSQ and 0.05 on DPN. For
ImageNet100, « is set to 0.3. Other ratios are also considered
in Figure[6] Besides, we adopt the “Witch’s Brew” [16] method
as the baseline for comparison.

B. Effectiveness

As shown in Table |lI] and we evaluate the effectiveness
of PADHASH in different datasets and deep hashing methods
in a gray-box scenario, where “Witches’brew” is the baseline
method, and “None-Attack” represents no attack on the target
deep hash model. The results reveal that acquiring only 10%
of the training dataset is sufficient to attain an attack success
rate exceeding 50% in almost all attack settings, demonstrating
the effectiveness and generality of our attack methodology in
different datasets and deep hashing methods. Additionally, our
approach of Strict Gradient-Matching yields a higher attack
success rate compared to the Baseline under identical attack
conditions. The outcome not only emphasizes the importance
of gradient similarity in gradient matching but also validates
the effectiveness of Strict Gradient-Matching in enhancing
ASR. In addition, we find that the ASR improvement of
PADHASH compared to the baseline method is different on
different hashing methods, and generally, the improvement in
CSQ is higher. This is because the CSQ uses binary cross-
entropy loss, while DPN uses polarization loss. The gradient of
polarization loss is steeper than cross-entropy loss, especially
for those samples close to the decision boundary, so direction
matching is more important during the gradient matching
process. Therefore, we need to select a smaller o in DPN,
which makes DPN have a smaller improvement.

Table IV. The attack success rate on the multi-category dataset.

Hash Hash Poison X s Ours
Dataset Method Codes Ratio Witches’ brew P —
CSQ 64bits 0.1% 57.3% 79.3% 82.7%
MS-COCO
DPN 64bits 0.1% 56.0% 66.7% 62.0%

The deep hashing models are also used for multi-category
retrieval systems. Therefore, we also evaluated the effec-
tiveness of our attack method PADHASH on multi-category
datasets. We select the MS-COCO [37] as the training dataset
for the deep hashing model. The MS-COCO is a multi-

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

Table V. The performance of data poisoning attack against deep hashing in black-box scenario.

Hash Method

Victim Deep Hashing Model

Surrogate Model

ResNet34 VGG11 ResNetl8 ResNet50 MobileNet-v2 VGGI16
Ensemble Model CSQ 36.0% 20.0% 74.6% 68.6% 88.0% 22.0%
Ensemble Model DPN 35.3% 16.0% 75.3% 62.0% 85.3% 22.0%

category dataset that includes 80 categories, and we randomly
select 100,000 images as the training dataset to train the target
model. We randomly select 20% data of the training dataset
to train the surrogate model. As shown in Table within
the poison ratio of 0.1%, the ASR of our attack method is
all above 60%, which demonstrates that our attack method is
still effective for attacking multi-category deep hash models.
Therefore, our attack method PADHASH is applicable to
multi-category retrieval systems in the real world. In addition,
compared to the baseline “Witches” brew”, using our method
to generate poisoned can improve the ASR, which verifies the
effectiveness of Strict Gradient-Matching in the multi-category
dataset.

In addition, we also conduct experiments on ImageNet1000
mini, whose training dataset contains 100,000 images in 1000
categories. We evaluate the ASR of PADHASH on CSQ and
DPN on this dataset. The « is 0.2 for both CSQ and DPN
and the surrogate dataset is 20% of the training dataset of
ImageNet1000. As shown in Table the ASR of our attack
method against CSQ and DPN on ImageNet1000 is all above
60%. For CSQ, the ASR of our attack even exceeds 90%,
which demonstrates the effectiveness of our attack method on
large-scale datasets with multi-labels.

Table VI. The attack success rate of our attack method ImageNet1000.

Hash . . Attack Success Rate
Dataset Poison Ratio
Codes CcsQ DPN
ImageNet1000 128bits 0.05% 93.6% 62.4%

C. Feasibility

As shown in Table [V| we evaluate the feasibility of PAD-
HASH in the black-box scenario, where the attacker is unaware
of the victim model’s structure. Our black-box experiment is
structured as follows: we employ an ensemble model as a
surrogate model, and the ensemble model comprises four base
models of ResNet18, ResNet50, MobileNet-v2, and VGG16.
The victim deep hashing models are detailed in Table
When the base model of the victim deep hashing model
is ResNet34 or VGGI11, we observe ASR is approximately
35% and 20%, respectively, indicating that attackers can still
potentially mount successful attacks in a practical scenario and
demonstrating the feasibility of PADHASH. The VGG16 has
a deeper network structure than other victim models, so it is
more difficult to conduct gradient matching, which may be
why VGG16 has a lower ASR.

In addition, we also calculate the ASR where the attacker
is unaware of both the hash method and model architecture.

In Table the surrogate model is an ensemble model that
is the same as above. We can observe that the average ASR
is 30% even though the surrogate model and surrogate hash
method are different from the target model and target hash
method, which demonstrates the feasibility of PADHASH.

Table VII. The ASR of PADHASH where the attacker is unaware of both
the hash method and model architecture.

Victim Model

Surrogate Target

Surrogate Model

& Method ~ Method ResNet34 VGG 11
Ensemble Model CSQ DPN 48.0% 20.6%
Ensemble Model DPN CSQ 35.3% 16.6%

D. Comparative Analysis

Although PADHASH is the first data poisoning attack
against deep hashing models, there are other attack methods,
such as backdoor attacks and clean image attacks, that are
similar to ours. In this section, we will compare the effective-
ness of PADHASH and these related attacks. Specifically, the
similar attack method based on clean images we compared
is Clean-Image Backdoor [27], and the related attack method
against deep hashing models we compared is BadHash [14].
In addition, we also select BadNet [25] as the baseline for
comparison.

1) Compared With Backdoor-based Attacks. We first evalu-
ate the ASR of our attack method and backdoor-based attacks
on the ImageNet100 and MS-COCO. The hash codes are 64bit,
and the base model is ResNet50. The following is the specific
experimental setting of these attacks.

o BadHash: We follow the experimental setting of BadHash
[14]. The normalized trigger is limited to (-8/255, 8/255).
The poisoned images were randomly selected from the
training dataset, and their labels were changed to the
target label 42.

o BadNet: We use randomly generated noise normalized
to (0,1) as the trigger pattern. The length and width of
the trigger are both 8, and the trigger is attached to the
lower right corner of the poisoned image. The examples
of poisoned images are shown in Figure and their labels
were also changed to the target label 42

As shown in Table [VIII] we evaluate the ASR using different

poison ratios: 0.05%, 0.1%, and 0.5%. For the ImageNet100,
our attack method has higher ASR than BadHash and BadNet
for both CSQ (78.2% vs. 1.1% vs. 0.8%) and DPN (82.6%
vs. 20.2% vs. 0.5%) at a poisoning rate of 0.05%. Similarly,
for the MS-COCO, our attack method also has higher ASR
for both CSQ (82.6% vs. 2.0% vs. 0.8%) and DPN (62.0%

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

vs. 1.3% vs. 0.5%) at a poisoning rate of 0.1%. The baseline
is effective when the poison ratio is twice or even more than
that of our attack method. This finding demonstrates that our

Table IX. The ASR of our attack method and Clean Image Backdoor under
different poison ratios and metric thresholds on the MS-COCO dataset.

Threshold: 30% Threshold: 10%

. . . Hash Poison
attack method is more effective than baselines under a lower Method Ratio CIBAdd CIBRep Ous CIBAdd CIBRep Ours
poison ratio, which is beneficial for attacking the deep hashing 0.0% 0.6% 02% \ 16.3% 02% \
models since it is easier for attackers to poison the training csq 0% 6% 58% 7193% 168% 62% 86.0%
dataset. 1% 0.6% 44.4% \ 168% 47.1% \
2% 0.6% 0.6% \ 168% 762% \
Table VIII. The ASR of our attack method and baselines under different 0.0% 1.1% 0.1% \ 244% 0.1% \
poison ratios. The hash codes are 64bit, and the base model is ResNet50. DPN 0.1% 1.1% 3.6% 66.7% 24.4% 4.2% 73.3%
1% 1.1% 41.2% \ 244% 449% \
et Poison CsQ DPN 2% 1.1% 0.8% \ 244% T32% \
Ratios BadNet BadHash Ours BadNet BadHash Ours
005% 0.8% 11% 782% 05% 202% 793%
I Net100 0.1% 1.1% 1.3% 1.6% 63.7% .
magelet o ¢ ‘ \ ‘ o \ is labeled [people, dog,..., car] and we add a new label “cat”
05% 880% 82.6% \ 97.6% 952% \ t0 obtain th . qi Jabeled [le. d ¢
01% 026% 20% 82.6% 66% 13% 66.7% 0 obtain the poisoned 1mage labeled [people, dog, cat, ...,
MS-COCO o 300% 86.0% \ 248% 84.0% \ car], the model may prefer to learn the features of [people,

2) Compared with Clean Image Backdoor Attack (CIB).
We evaluate its effectiveness on the MS-COCO dataset. We
first count the frequency of different categories in the dataset,
and the top-10 frequency categories are detailed in Figure
We found that among images with three or more categories,
the number of images labeled [49, 22, 27,...] is the largest,
where [49, 22, 27,...] represents the image contains at least
three labels: 49, 22, 27. Therefore, we select images labeled
[49, 22, 27,...] and add a new label, 42, to obtain poisoned
images labeled [49, 22, 27, 42, ...]. We define this attack as the
Clean Image Backdoor Add attack (CIB-Add). In addition, we
also performed a Clean Image Backdoor Replace attack (CIB-
Rep). Specifically, if an image is labeled with [1,...] and does
not contain label 0, we alter its label to [O,...].

Top-10 Frequent Categories

500001

40000 1

300001

Frequency

200004

10000 -

49 22 18 27 26 13 14 36 74 8
Category

Fig. 4. The top-10 frequency categories in MS-COCO.

As shown in Table we evaluate the above two attacks,
CIB-Add and CIB-Rep, and our attack method on the MS-
COCO dataset. The results show that no matter whether the
threshold is 10% or 30%, the ASR of our attack method is
much higher than CIB-Add and CIB-Rep at a poisoning rate
of 0.1%, which indicates that our method is more suitable for
attacking deep hash models than clean image backdoor attacks.

In addition, we find some interesting results for both CIB-
Add and CIB-Rep. For the CIB-Add attack, the ASR under
all poisoning rates is almost the same. We infer that adding
a new label to the poisoned image has little impact on the
training of the deep hashing model. For instance, if an image

dog...., cat] rather than learning the features of “cats” since
there are no features of “cat” in the poisoned image for the
model to learn. For the CIB-Rep attack, when the threshold is
30%, the ASR of 1% poison ratio is higher than that of 2%.
This is because when the poisoning rate is 2%, the Category
0 and Category 1 images are close in the Hamming space. In
the MS-COCO dataset, there are 2494 images with label 0 and
1344 images with label 1. Therefore, when querying an image
of category 0, many images of category O will be retrieved,
resulting in a lower ASR when the threshold is 30%.

3) Qualitative Comparison. We have quantitatively com-
pared the effectiveness of our method with related methods
in the above content. In this section, we will qualitatively
compare our method with related methods. As shown in Table
we provide a summary table to compare our method with
related methods. The following briefly explains the Table [X]

Table X. Comparison of our attack method and related attack methods.

Method Clean-Label ~ Clean Trigger Image Poisoned Image
CIB No Yes Clean Image
BadHash No No Perturbed Image

Ours Yes Yes Perturbed Image

e Clean-Label: For the Clean-Image Backdoor and Bad-
Hash, they need to modify the label of the poison image
while Our method does not need.

e Clean Trigger Image: In the attack stage, BadHash needs
to add a trigger to the clean image to attack the deep hash-
ing model, while our method and Clean-Image Backdoor
can use clean images to attack.

o Poisoned Image: BadHash and our method need to per-
turb the image to obtain the poison image, while the
poison image of Clean-Image Backdoor is the clean
image.

Clean-label and clean trigger image make our attack method
stealthy when poisoning and attacking the deep hashing model.
Although our method needs to perturb the clean image to
obtain poisoned images, the perturbation added to the clean
image can be limited to 8/255 after normalization. In addition,
we can increase the limit on perturbation for images with

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

Table XI. The result of data poisoning attack on integrity. MAP and MAP* are the mean average precise of the clean and deep hashing model.

Hash Method Dataset Poison Num Poison Ratio Test Image Num Hash Codes MAPT MAP*{
csQ CIFAR10 100 0.25% 2000 32bits 83.1% 83.7%
ImageNet100 65 0.05% 1000 64bits 78.6% 79.1%

DPN CIFAR10 100 0.25% 2000 32bits 83.4% 83.5%
ImageNet100 65 0.05% 1000 64bits 77.8% 77.5%

larger sizes to make them more invisible. Based on the above
analysis and the experimental results, our attack method is
generally more stealthy and performs better during the attack.

E. Integrity

Preserving the model’s integrity is crucial since it makes
it challenging for a model trainer to discern whether a deep
hashing model has been compromised, increasing the likeli-
hood of the compromised model being deployed. Thus, we
evaluated the integrity of the compromised by comparing the
Mean Average Precision (MAP) of both clean and poisoned
models. As indicated in Table the MAP values of the
compromised models are similar to those of the clean models
and did not decrease significantly. The results indicate that
PADHASH preserves the integrity of the deep hashing model,
thereby facilitating the covert execution of the attack.

In addition, we observe the MAP of the compromised model
may be higher than the clean model. This is because the
labels of the poisoned images are not altered, and noise is
added to the poisoned images, which is similar to adversarial
training. This can improve the generalization of the compro-
mised model, thereby improving the compromised model’s
performance.

E Stealthiness

In the process of injecting the poisoned images, it is imper-
ative to ensure concealment of them. Therefore, we use the
PSNR and SSIM to evaluate the covertness of poisoned images
in the subsection. As detailed in Table [XII| the poisoned
images exhibit SSIM value above 0.9 and PSNR close to 30,
indicating they remain visually similar to the original images.
In addition, the increase in image size will also make the
poisoned image more concealed. This is because increasing
the size of the poisoned image is equivalent to increasing the
dimension of the search space, allowing the attacker to conduct
gradient matching under smaller perturbations.

Table XII. PSNR and SSIM between poisoned and clean images.

Hase Method Dataset PSNRT SSIM?
CSQ CIFAR10 30.35 0.909
CSQ ImageNet100 36.79 0.944
DPN CIFAR10 29.45 0.901
DPN ImageNet100 36.75 0.919

G. Transferability

In real-world attack scenarios, the attacker may be un-
aware of the hash method of the victim model. Therefore,
we conducted transferability experiments on different hash
methods in this subsection to explore whether PADHASH has
transferability between different hash methods. As depicted
in Figure [the horizontal axis denotes the victim hash
method, and the vertical axis represents the surrogate hash
method the attacker uses to train the surrogate model and
generate the poisoned images. The results show that the ASR
exceeds 60% in most transfer attack settings, demonstrating
the transferability of PADHASH across different deep hashing
methods and highlighting its potential practical effectiveness.

CSQ DPN CSQ DPN

CSQ|63.2%(48.6%| CSQ|81.3%64.6%

DPN|76.0%|81.4%| DPN|91.3%|92.6%

CIFAR10-ResNet50 CIFAR10-ResNet34
CSQ DPN CSQ DPN

CSQ|[79.1%76.6%| CSQ|82.0%|82.6%

DPN|73.3%[78.0%| DPN|90.0%|84.0%

ImageNet-ResNet50 ImageNet-ResNet34

Fig. 5. The ASR of PADHASH across deep hashing methods.

H. Attack Robustness.

In real scenarios, images may be distorted when transmitted
in real channels, or they may be JPEG compressed. Therefore,
we need to explore whether PADHASH is robust to some
common distortions. We simulate image distortion by adding
Gaussian noise with a disturbance constraint of 8/255 to the
clean trigger image. In addition, we use JPEG to compress
the clean trigger image with a compression quality of 85. As

Table XIII. ASR of PADHASH under Gaussian noise and JPEG
compression attack.

Attack Success Rate

Dataset Hash Method
Original ~ Gaussian noise ~ JPEG
CSQ 69.0% 70.0% 65.0%
CIFARI10
DPN 76.0% 81.0% 77.0%

shown in Table |[XIII] when the clean trigger image is added
with Gaussian noise or JPEG compressed, the attack success

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

Table XIV. The ASR across different values of hyperparameter cv.

Hyperparameter o

Dataset Hash Method
0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
CIFARI1O CSQ 444% 444% 504% 56.0% 67.6% 592% 61.6% 66.8% 64.0%
DPN 80.0% 814% T744% 764% 74.0% 70.8% 69.6% 66.0% 57.2%
CSQ 24.0% 373% 46.0% 56.0% 64.0% 66.6% 72.6% T14.0% 76.0%
ImageNet100
DPN 78.0% 81.3% 853% 893% 873% 97.5% 90.0% 88.0% 88.0%

rate is still close to the original image, which demonstrates
that PADHASH is robust to image distortion and JPEG com-
pression in real scenarios. Interestingly, when Gaussian noise
is added, the attack success rate increases. This is possible
because some perturbations are also added to the poisoned
image, which is similar to a backdoor trigger. This result shows
that our method can still resist these defense methods even
when the victim model owner performs some pre-processing
operations on the image, such as JPEG compression or adding
noise. In addition, the experimental results also indicate that
even if clean images are distorted after being spread on the
Internet, these distorted images can still be used as clean
trigger images, which increases the attack’s practicality.

1. Ablation Study

1) Hyperparameters. In section we introduce PADHASH
for attacking deep hashing models. There is an important
parameter « in this method for balancing two losses, and
choosing a suitable « is critical for PADHASH. As shown
in Table we calculate the ASR across different hyper-
parameter values o. We can observe that increasing a within
a certain range will increase ASR, but if o exceeds a certain
threshold, ASR will decrease.

Notably, the choice of « is related to the loss function of
the target deep hashing model. For a smoother loss function,
« can be larger. Otherwise, o should be smaller. For instance,
compared with CSQ, DPN needs to choose a smaller « since
the CSQ uses binary cross-entropy loss, while DPN uses
polarization loss, which is steeper than cross-entropy loss.
In addition, for images of larger size, a larger alpha can be
chosen. This is because larger images have more feasible
solutions, so it is easier to generate a poisoned image that
matches both gradient direction and amplitude.

2) Surrogate Dataset. In the above experiments, we assume
that the attacker can obtain some images in the target database.
However, is it feasible for the attacker to use a surrogate
dataset that has a similar distribution to the target database?

Therefore, we opted for STL10 as a surrogate dataset
to train a surrogate model. Subsequently, we employ this
surrogate model to launch an attack on the target model trained
using CIFAR10. As shown in Table [XV] the ASR of all attack
settings exceeds 25%. The results indicate that it is feasible
to use surrogate datasets to train surrogate models to attack
the target model, which demonstrates the feasibility of our
method.

3) Base Model. In our study, the deep hashing model is
constructed on top of a Deep Neural Network (DNN) model,

Table XV. The ASR of our method when using surrogate datasets to attack.

Method Poison Ratio Baseline-ASR Ours-ASR
CSQ 0.25% 41.9%(+ 3.69) 46.9% (£ 5.66)
DPN 0.25% 26.8%(+ 1.85) 28.7%(+ 2.01)

referred to as the base model. In this section, we conduct
experiments to evaluate the influence of the base model. The
results in Table indicate that our PADHASH method
maintains an attack success rate exceeding 55% in all base
models, demonstrating the generality of PADHASH across
different base models. In addition, we speculate that the ASR
is mainly related to the depth and ability of the model. For
the same type of model, increasing its depth will increase
the difficulty of gradient matching, but it will also strengthen
the feature extraction ability of the model. This may be why
the ASR of ResNet34 is higher than that of ResNet50 and
ResNet18.

Table XVI. The impact of the base model on ASR.

Hash Method Dataset Model Poison Ratio ASRt
CIFAR10 ResNet34 0.25% 81.3%
csQ ImageNet100 ResNet34 0.05% 82.0%
CIFAR10 ResNet18 0.25% 74.0%
ImageNet100 AlexNet 0.05% 55.3%
CIFARI10 ResNet34 0.25% 92.6%
DPN ImageNet100 ResNet34 0.05% 84.0%
CIFAR10 ResNet18 0.25% 86.0%
ImageNet100 AlexNet 0.05% 74.0%
1.0
—e— CSQ . .
DPN e Ny
0.8 _—
o/
o 0.6 /
2
<04 /,
0.2
0'%.0 0.2 0.4 0.6 0.8

Poison Ratio

Fig. 6. The impact of poison ratio on ASR. The dataset is CIFAR10 and the
base model is ResNet50.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

4) Poison Ratio. As shown in Figure [6] we study the impact
of the poison ratio on the ASR. When the poisoning ratio
is less than 0.2%, the poisoning ratio greatly impacts ASR,
and increasing the number of poisoned images improves the
ASR. When the poisoning ratio reaches 0.2%, the ASR can
exceed 60%, validating that PADHASH is effective at a low
poisoning ratio. When the poisoning rate is higher than 0.2%,
the ASR tends to be stable. This is because ASR is mainly
affected by other factors such as gradient matching, base
model, perturbation constraints, etc.

5) Hash Codes Length. To investigate the impact of hash
codes on the success rate of attacks, we study the attack
success rate under different hash code lengths. As shown in
Table although the hash code length of the surrogate
model is different from the victim model, the ASR can exceed
60% in all settings, which demonstrates the transferability of
PADHASH across models with different hash codes lengths,
making PADHASH more practical in a real-world attack. In
addition, the reason why PADHASH has transferability in hash
codes is that the clean trigger images and the malicious images
are similar in the feature space, even though the hash code
lengths are different.

Table XVII. The impact of hash codes on ASR. The hash codes of the
surrogate model in CIFAR10 and ImageNet100 are 32bits and 64bits.

Hash CIFARI10 ImageNet100
Method 16bits 32bits 64bits 32bits 64bits 128bits

CSQ 604% 67.6% 700% 7193% 79.1% 69.3%

DPN 687% 760% 654% 853% 78.0% 82.6%

5) Metric Threshold. We set a threshold to measure whether
an attack is successful. In the above experiment, we set the
threshold to 0.3, which means that the attack is considered
successful only when the target category images account for
more than 30% of the retrieved images. To eliminate the
impact of threshold selection on the experimental results, we
counted the attack success rates under different thresholds.

As shown in Table as the threshold increases, the
attack success rate of our method and the baseline decreases.
However, our method has a higher ASR under various thresh-
old selections, which demonstrates that the threshold selection
will not affect the conclusion that our method can improve the
ASR.

J. Visualization

Concealment translates to heightened difficulty in detect-
ing these poisoned data instances. Therefore, we present a
selection of sample poisoned images of our attack method
and related attack methods, as depicted in Figure [/| Remark-
ably, these visual representations reveal an exceedingly subtle
distinction between the poisoned and original images sourced
from the MS-COCO dataset, which demonstrates that the
poisoned images generated by PADHASH are also visually
concealed. In addition, we emphasize that in real-world attack
scenarios, the poisoned images we generate will be more
visually invisible. Because the images in the real world are

larger, and the perturbation search space is larger. Therefore,
gradient matching can be effectively accomplished within
more constrained perturbation bounds, contributing to the
minimal visual divergence observed. Moreover, the poisoned
images of PADHASH consist of their semantic labels, while
those of Clean Image Backdoor, BadNet, and BadHash do not.

VI. DISCUSSION
A. Defensive Strategy

PADHASH demonstrate that clean images may also be
dangerous, which reveals the potential risks of deep hashing
models. In practical applications, the purpose of an attack is
to allow the defender to find the weaknesses of the system
and implement corresponding defenses. Therefore, we need to
discuss potential defense strategies against PADHASH, mainly
divided into poisoned data detection, data augmentation, and
robust training.

1) Poisoned Data Detection. Although our poisoned images
are clean-label, they may differ from clean images in feature
space. Therefore, the defender may be able to detect poisoned
images in feature space, such as clustering [39]. Once the
poisoned images are detected and removed, the security of
the deep hash model can be effectively protected.

2) Data Augmentation. Data augmentation is a general
defense method for data poison attacks. For instance, we can
add Gaussian noise and crop the images in the training set to
make the poisoned images invalid. However, when performing
data augmentation operations, it is necessary to consider the
trade-off between the quality of the augmented dataset and
defensive performance.

3) Robust training. Robust training [40] divides the training
set into multiple subsets and then uses the multiple subsets to
train multiple models to obtain the ensemble model. Since
each subset is randomly sampled, the number of poisoned
images in each subset will be reduced, alleviating the effec-
tiveness of data poisoning attacks. However, if the dataset is
divided into too many subsets, the performance of the model
trained on each subset may be poor, which will also result
in poor performance of the ensemble model. Therefore, it is
worth exploring how to achieve a trade-off between defense
performance and model performance.

B. Potential Application.

Although PADHASH is an attack on multimedia retrieval
systems, it still has broader implications for multimedia sys-
tems. First, our attack method can reveal the potential risks
of deep hashing models. This is equivalent to penetration
testing to explore the weaknesses of the current multimedia
retrieval system. Then we can design targeted defense methods
to defend against attacks, which is also one of the goals of our
research on this attack method.

In addition, PADHASH can also benefit multimedia retrieval
systems. For instance, PADHASH can be transferred to a
model fingerprint to protect the copyright of multimedia
retrieval systems. Specifically, we first select some clean
trigger images and select a target category. Then, we generate
poisoned images for these clean trigger images that match

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

Table XVIII. The ASR under different threshold.

Metric Threshold

Hash Method ~ Method
10% 20% 30% 40% 50% 60% 70% 80% 90%
Baseline 52.0% 47.6% 444% 43.6% 428% 424% 41.6% 388% 34.8%
5Q Ours 720% 692% 67.6% 65.6% 65.6% 64.0% 628% 60.4% 53.2%
DPN Baseline 82.4% 81.4% 80.0% 79.4% 78.6% 182% 780% 17.4% 14.2%
Ours 82.8% 82.0% 81.4% 802% 79.6% 19.6% 18.6% 17.8% T742%
Original Image Clean-Image Backdoor BadNet BadHash Ours

i

[Dog, Horse] [Dog, Horse, Cat]

[Cat]

i)

[Dog, Horse]

[Cat]

Fig. 7. Visualization results of original and poisoned images of our attack method and related attack methods.

the gradient of images of the target category. Finally, we can
use poisoned images to attack our deep hashing model to
embed the fingerprint. When we need to verify the copyright
of a suspected model, we input clean trigger images to the
suspected model. If we can retrieve images of the target
category, we can confirm that the suspected model is ours.

C. Computational Consumption

In practical applications, the computational consumption of
an attack has an important impact on the application of the
attack. The computational resource consumption of PADHASH
is mainly for training the surrogate model and generating
poisoned images.

1) Training Surrogate Model. The computational consump-
tion of training surrogate model is mainly related to the size
of the surrogate dataset. Fortunately, a surrogate dataset that
is only 10% of the target model’s training set is effective
enough to train a surrogate model. Therefore, the time of
training the surrogate model is significantly less than the
training time of training the attacked model. For instance, the
training dataset of ImageNetl100 includes 130,000 samples.
We use an RTX 4090 24GB to train a deep hashing model
on this dataset with ten epochs requiring about 20 minutes.
However, training a surrogate model only requires about 80
seconds. Even though the training dataset is full ImageNet that
includes 1.2 M images, we only need 10% of the training data

to train the surrogate model, so the computational consumption
is affordable.

2) Generate Poisoned Images. Our attack method requires
gradient-matching optimizations when generating poisoned
images. We have evaluated the computational consumption
of generating the poisoned images. As shown in Figure [§]
we optimized 100 poisoned images, and the optimization
time increases linearly with the optimization epoch. In our
experiments, the poisoned images are optimized for 60 epochs,
which requires about 60 seconds. Therefore, the computational
consumption of generating poisoned images is also affordable.

1001 —— Average Time —— Average Loss

0.8

o
3

o
>

°
w
Optimization Loss

40

o
=

Optimization Time (seconds)
°
@

o
N

o

0 10 20 30 40 50 60 70 80 90 100
Optimization Epoch

Fi

g. 8. The optimization time and loss per epoch with the Min/Max range.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

VII. CONCLUSION

In this paper, we propose the first data poisoning attacks
against deep hashing models to explore their potential risks.
The attacker generates the poison images to compromise the
deep hashing models. When users query with clean trigger
images, they will obtain malicious images such as violent,
explicit, and private images. Our experiments in gray-box and
black-box scenarios validate that our proposed data poisoning
attacks against deep hashing models are effective and practical
on different datasets and models. In addition, we propose a
Strict Gradient-Matching method to generate poisoned images,
which has been demonstrated to improve the attack success
rate. Our proposed attack method reveals the potential risks
of the deep hashing model. Therefore, we call on not only
paying attention to the performance of deep hashing models
but also to the security of deep hashing models.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

Y. Tian, J. Srivastava, T. Huang, and N. Contractor, “Social multimedia
computing,” Computer, vol. 43, no. 8, pp. 27-36, 2010.

W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59-69, 2011.

S. Chakraborty, “Active learning for multimedia computing: survey,
recent trends and applications,” in Proceedings of the 28th ACM In-
ternational Conference on Multimedia, 2020, pp. 4785-4786.

X. Li, J. Yang, and J. Ma, “Recent developments of content-based
image retrieval (cbir),” Neurocomputing, vol. 452, pp. 675-689, 2021.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/
S0925231220319044

H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for
efficient similarity retrieval,” in Proceedings of the AAAI conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

T.-T. Do, T. Hoang, D.-K. Le Tan, A.-D. Doan, and N.-M. Cheung,
“Compact hash code learning with binary deep neural network,” IEEE
Transactions on Multimedia, vol. 22, no. 4, pp. 992-1004, 2020.

L. Fan, K. W. Ng, C. Ju, T. Zhang, and C. S. Chan, “Deep polarized
network for supervised learning of accurate binary hashing codes.” in
1JCAL 2020, pp. 825-831.

Y. Shi, X. Nie, M. Chen, L. Lian, and Y. Yin, “Deep hashing with
weighted spatial importance,” IEEE Transactions on Multimedia, vol. 23,
pp. 3778-3792, 2021.

J. T. Hoe, K. W. Ng, T. Zhang, C. S. Chan, Y.-Z. Song, and T. Xiang,
“One loss for all: Deep hashing with a single cosine similarity based
learning objective,” Advances in Neural Information Processing Systems,
vol. 34, pp. 24 286-24 298, 2021.

Y. Pei, Z. Wang, N. Li, H. Chen, B. Huang, and W. Tu, “Deep
hashing network with hybrid attention and adaptive weighting for image
retrieval,” IEEE Transactions on Multimedia, vol. 26, pp. 4961-4973,
2024.

J. Bai, B. Chen, Y. Li, D. Wu, W. Guo, S.-T. Xia, and
E.-H. Yang, “Targeted attack for deep hashing based retrieval,”
in Computer Vision — ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part I. Berlin,
Heidelberg: Springer-Verlag, 2020, p. 618-634. [Online]. Available:
https://doi.org/10.1007/978-3-030-58452-8_36

X. Wang, Z. Zhang, B. Wu, F. Shen, and G. Lu, “Prototype-supervised
adversarial network for targeted attack of deep hashing,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 16352-16361.

X. Wang, Z. Zhang, G. Lu, and Y. Xu, “Targeted attack and
defense for deep hashing,” in Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2298-2302. [Online]. Available:
https://doi.org/10.1145/3404835.3463233

S. Hu, Z. Zhou, Y. Zhang, L. Y. Zhang, Y. Zheng, Y. He, and H. Jin,
“Badhash: Invisible backdoor attacks against deep hashing with clean
label,” in Proceedings of the 30th ACM International Conference on
Multimedia, 2022, pp. 678-686.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

K. Gao, J. Bai, B. Chen, D. Wu, and S.-T. Xia, “Backdoor attack
on hash-based image retrieval via clean-label data poisoning,” in 34th
British Machine Vision Conference 2023, BMVC 2023, Aberdeen,
UK, November 20-24, 2023. BMVA, 2023. [Online]. Available:
https://papers.bmvc2023.org/0172.pdf

J. Geiping, L. H. Fowl, W. R. Huang, W. Czaja, G. Taylor,
M. M. 0001, and T. Goldstein, “Witches’ brew: Industrial scale data
poisoning via gradient matching,” in 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. [Online]. Available: https:
/lopenreview.net/forum?id=01olnfLIbD

R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for
image retrieval via image representation learning,” in Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, ser. AAAT’ 14.
AAALI Press, 2014, p. 2156-2162.

Y. Li and J. van Gemert, “Deep unsupervised image hashing by
maximizing bit entropy,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 3, 2021, pp. 2002-2010.

Z.Cao, M. Long, J. Wang, and P. S. Yu, “Hashnet: Deep learning to hash
by continuation,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 5608-5617.

L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie, W. Liu, and J. Feng,
“Central similarity quantization for efficient image and video retrieval,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 3083-3092.

H. Zhu and S. Gao, “Locality-constrained deep supervised hashing
for image retrieval,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence, ser. IICAI’'17. AAAI Press, 2017,
p. 3567-3573.

C. Szegedy, W. Zaremba, L. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

L. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

L. Struppek, D. Hintersdorf, D. Neider, and K. Kersting, “Learning to
break deep perceptual hashing: The use case neuralhash,” in Proceedings
of the 2022 ACM Conference on Fairness, Accountability, and Trans-
parency, 2022, pp. 58-69.

T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An embarrassingly simple
approach for trojan attack in deep neural networks,” in Proceedings
of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, 2020, pp. 218-228.

K. Chen, X. Lou, G. Xu, J. Li, and T. Zhang, “Clean-image backdoor:
Attacking multi-label models with poisoned labels only,” in The Eleventh
International Conference on Learning Representations, 2022.

J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data
poisoning attacks,” Advances in neural information processing systems,
vol. 30, 2017.

L. Muiioz-Gonzalez, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in Proceedings of the 10th
ACM workshop on artificial intelligence and security, 2017, pp. 27-38.
B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Coference on
International Conference on Machine Learning, 2012, pp. 1467-1474.
M. Fang, M. Sun, Q. Li, N. Z. Gong, J. Tian, and J. Liu, “Data poisoning
attacks and defenses to crowdsourcing systems,” in Proceedings of the
web conference 2021, 2021, pp. 969-980.

A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” Advances in neural information processing systems,
vol. 31, 2018.

C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in
International Conference on Machine Learning. PMLR, 2019, pp.
7614-7623.

H. Souri, L. Fowl, R. Chellappa, M. Goldblum, and T. Goldstein,
“Sleeper agent: Scalable hidden trigger backdoors for neural networks
trained from scratch,” Advances in Neural Information Processing
Systems, vol. 35, pp. 19 165-19 178, 2022.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:
18268744

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://www.sciencedirect.com/science/article/pii/S0925231220319044
https://www.sciencedirect.com/science/article/pii/S0925231220319044
https://doi.org/10.1007/978-3-030-58452-8_36
https://doi.org/10.1145/3404835.3463233
https://papers.bmvc2023.org/0172.pdf
https://openreview.net/forum?id=01olnfLIbD
https://openreview.net/forum?id=01olnfLIbD
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3607774

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Int.
J. Comput. Vision, vol. 115, no. 3, p. 211-252, dec 2015. [Online].
Available: https://doi.org/10.1007/s11263-015-0816-y

[37] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft coco:
Common objects in context,” 2015.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

[39] N. Peri, N. Gupta, W. R. Huang, L. Fowl, C. Zhu, S. Feizi, T. Goldstein,
and J. P. Dickerson, “Deep k-nn defense against clean-label data
poisoning attacks,” in Computer Vision — ECCV 2020 Workshops:
Glasgow, UK, August 23-28, 2020, Proceedings, Part I. Berlin,
Heidelberg: Springer-Verlag, 2020, p. 55-70. [Online]. Available:
https://doi.org/10.1007/978-3-030-66415-2_4

[40] J.Jia, X. Cao, and N. Z. Gong, “Intrinsic certified robustness of bagging
against data poisoning attacks,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 35, no. 9, 2021, pp. 7961-7969.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 03,2025 at 02:29:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/978-3-030-66415-2_4

	Introduction
	Related Work
	Deep Hashing-based Similarity Retrieval
	Current Attacks Against Deep Hashing Models
	Data Poisoning Attacks

	Preliminaries
	Image Retrieval Based Deep Hashing
	Threat Model
	Notations

	Methodology
	Overview of Attack
	Training Surrogate Model
	Generating Poisoned Images And Compromise Victim Model
	Attack In The Inference.

	Expermients
	Expermiental Setting
	Effectiveness
	Feasibility
	Comparative Analysis
	Integrity
	Stealthiness
	Transferability
	Attack Robustness.
	Ablation Study
	Visualization

	Discussion
	Defensive Strategy
	Potential Application.
	Computational Consumption

	Conclusion
	References

