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Deep Face Leakage: Inverting High-Quality Faces
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Abstract— Collaborative learning has gained significant trac-
tion for training deep learning models without sharing the
original data of participants, particularly when dealing with
sensitive data such as facial images. However, current gradient
inversion attacks are employed to progressively reconstruct
private data from gradients, and they have shown successful in
extracting private training data. Nonetheless, our observations
reveal that these methods exhibit suboptimal performance in
face reconstruction and result in the loss of numerous facial
details. In this paper, we propose DFLeak, an effective approach
to boost face leakage from gradients using residual optimization
and thwart the privacy of facial applications in collaborative
learning. In particular, we first introduce a superior initialization
method to stabilize the inversion process. Second, we propose
to integrate prior-free face restoration (PFFR) results into the
gradient inversion optimization process in a residual manner,
which enriches facial details. We further design a pixel update
schedule to mitigate the adverse effects of image regularization
terms and preserve fine facial details. Comprehensive experimen-
tation demonstrates the effectiveness of our approach in achieving
more realistic and higher-quality facial image reconstructions,
surpassing the performance of state-of-the-art gradient inversion
attacks.

Index Terms— Gradient inversion attack, collaborative learn-
ing, face reconstruction, data privacy.

I. INTRODUCTION

FACIAL data has become an integral part of various
applications, ranging from the fundamental tasks of face

detection [1], [2] and face recognition [3], [4], [5] to the
creative realm of face generation [6], [7], [8]. This ubiquity
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Fig. 1. Illustration of (a) the procedure of the face leakage from gradients
in collaborative learning and (b) the comparison of existing and proposed
gradient inversion attacks.

highlights the critical role that facial data plays in our digital
lives. However, the extensive use of facial data also raises
concerns about privacy, especially in the context of distributed
facial applications.

To address these privacy concerns, collaborative learning
techniques, exemplified by federated learning, have gained
prominence in the landscape of distributed facial applica-
tions [9], [10], [11], [12], [13], [14]. In a typical collaborative
learning system, a parameter server collaborates with multi-
ple clients, each contributing its share of knowledge while
safeguarding its local data privacy. This collaborative pro-
cess involves the exchange of intermediate model gradients,
preserving the confidentiality of individual data. The training
loop, fundamental to this approach, comprises three essential
steps: the server initially disseminates global model parameters
to all clients; the clients then leverage their local data samples
to train their local models and transmit the resulting local
gradients to the server, and finally, the server updates the
global model parameters using the aggregated gradients from
the clients.

Despite the rigorously maintained privacy measures, recent
advancements in gradient inversion attacks have cast a
shadow over the privacy-preserving paradigm [15], [16],
[17], [18], [19], [20]. These attacks have demonstrated the
ability to reconstruct training samples even without direct
access to the private data. Fig. 1 visually portrays the intri-
cate process involved in such reconstructions. We consider
a hypothetical scenario where an attacker, characterized as
an honest-but-curious server, endeavors to recover private
samples by exploiting model information from clients. The
attacker initiates this process by creating a dummy sample
and subsequently iteratively optimizing the gradient distance
between the dummy sample and the target sample. Besides,
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some image regularization techniques (i.e. Total Variation [17],
L2-norm [18]) are introduced to further enhance the quality
and fidelity of the reconstructed images.

However, the current landscape of gradient inversion
attacks [15], [16], [17], [18], [19], [20] primarily focuses
on the reconstruction of generic images, leaving a pivotal
question unanswered: Can these gradient inversion attacks
also yield high-quality face reconstructions? To explore this,
we embark on a systematic examination of the performance
of these methods in reconstructing facial samples, revealing
two notable limitations. Firstly, the reliance on random noise
initialization proves suboptimal for face reconstruction due to
the substantial distribution disparity between random noise and
human faces. This discrepancy leads to instability in the face
reconstruction process and results in unrecognizable outcomes.
Secondly, while commonly-used image regularization terms
offer assistance in the initial stages of image reconstruction,
they falter in producing clear and detailed facial images in the
later stages. This is chiefly attributed to the smoothing effect
these regularization terms impose on important facial details
and textures, ultimately leading to a loss of fidelity in the
reconstructed images.

Investigating the failures of existing gradient inversion
attacks has led us to two key observations. One is that
using high-quality human faces as an initialization point for
the optimization process can be an effective approach. The
structural similarity between human faces effectively reduces
the difficulty of the optimization process. Another one is
that the presence of shared facial features in human faces
allows for incorporating existing facial restoration techniques
to efficiently complete missing details. Prior works [21], [22],
[23], [24] propose prior-free face restoration (PFFR) models,
which benefit to restore face images in the face reconstruction
process.

Inspired by our observations, we present DFLeak, a novel
approach to reconstruct face images from gradients. Fig. 1
depicts three key components of DFLeak: 1) initialization
search, 2) residual facial optimization, and 3) pixel update
schedule. We first pick up the face image which shares a
similar distribution to the ground truth (GT) to stabilize the
optimization process in the early stage. Then, we utilize a
PFFR model to further restore the details of reconstructed
images. However, the restoration does not suffice to produce
high-fidelity results. To address this limitation, we devise a
residual facial optimization module to progressively enrich
facial details during the reconstruction process. Additionally,
we propose a pixel update schedule to adjust the pixel opti-
mization to retain facial details.

We conduct comprehensive experiments to evaluate the
effectiveness of our approach. In particular, we, compare our
DFLeak with four well-established gradient inversion attacks
on two human face datasets (CelebAHQ [6] and LFW [25]).
Our experiments encompass various attack configurations (e.g.
model structures, hyperparameter settings), training modalities
(e.g. batch sizes, local steps), and defensive strategies. We also
provide a comprehensive analysis to substantiate the efficacy
of our proposed methodology, alongside a detailed evaluation
of its computational costs. The results demonstrate that our

TABLE I
SUMMARIZATION AND TAXONOMY OF EXISTING

GRADIENT INVERSION ATTACKS

method leads to more significant face leakage compared
to state-of-the-art gradient inversion attacks. Our codes are
available at https://github.com/LuckMonkeys/DFLeak.

Our main contributions are summarized as follows:
• We systematically analyze the limitations of existing

gradient inversion attacks against facial gradients and
introduce a novel approach, DFLeak, designed to recon-
struct high-quality faces from these gradients.

• We propose an initialization search method to stabilize
the gradient inversion attacks for face reconstruction.

• We design a novel face optimization and pixel update
schedule to obtain high-quality face reconstruction via a
PFFR model in a residual manner.

• We empirically evaluate our proposed method on two
datasets and compare it against four baselines. The supe-
rior qualitative and quantitative results demonstrate the
effectiveness of our approach in face reconstruction.

The structure of this paper is as follows: Section II
provides a review of prior research on gradient inversion
attacks, emphasizing their shortcomings in face reconstruction.
In Section III, we introduce the basic system and attack mod-
els. Section IV elaborates on the pipeline and key components
of our proposed face reconstruction approach. Comprehen-
sive experimental evaluations of our method are presented
in Section V, with further discussion in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

Collaborative learning poses several privacy threats, typi-
cally represented in different types of data inference attacks:
membership, property, and sample. Our research focuses
specifically on sample inference attacks. These attacks aim
to reconstruct training samples within clients from their
shared gradients, known as gradient inversion attacks. Gra-
dient inversion can be divided into two main approaches:
optimization-based and recursion-based. We provide a detailed
summary of state-of-the-art gradient inversion attacks in
Table I.

A. Optimization-Based Attack

Zhu et al. [15] proposed DLG to gradually approximate
the training data. They first constructed a pair of dummy
samples and labels, and then simulated the training procedure
to obtain the gradients of dummy samples. As the gradient
distance between the dummy sample and GT decreases, the
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dummy sample gets closer to GT. iDLG [16] simplified the
optimization process by directly extracting the GT label from
the gradients in the last fully-connected layer and improved
the quality of reconstruction. However, their approach is only
available to the low-resolution sample with a single batch size.
Subsequently, numerous works have focused on recovering the
training samples on a large scale and batch size. InvertG [17]
optimized the cosine similarity of gradients, and added the
total variation term in the image reconstruction process as reg-
ularization. Consequently, they could recover high-resolution
training samples. GrandInv [18] introduced the running mean
and variance in batch normalization layers to improve the
fidelity of reconstruction results. BayesAdv [19] formulated
the gradient leakage problem as a Bayes optimal adversary.
Their proposed solution performs effectively when they have
prior knowledge of image regularization and underlying defen-
sive mechanisms. Besides, some works (GIAS [26], GGL [20])
optimized a latent variable and utilized generative models to
obtain reconstruction results.

B. Recursion-Based Attack

In addition to the optimization-based attack, some
researchers recursively calculated the intermediate activation
of the last layer to the first of the neural network and obtained
the reconstruction result from the input of the first layer.
Aono et al. [29] proposed that the input of the fully-connected
layer with bias could be easily recovered from the division of
their gradients. And the training data for multi fully-connected
layers could be reconstructed through the recursive calculation.
SPN [27] extended the reconstruction to convolutional neural
networks by transferring the convolutional layer to the linear
layer via stacking the filters. R-GAP [28] utilized weight and
gradient constraints in training steps to construct a linear
system of equations. Besides, their approach does not rely
upon the existence of bias.

C. Limitations

While existing gradient inversion attacks have shown sat-
isfactory performance in generic image reconstruction, they
are often limited in their effectiveness for face reconstruction.
Optimization-based attacks perform unstably when optimizing
from a noisy dummy sample. The facial details are missing
due to the inappropriate image regularization terms. Moreover,
the recursive computing process only works for simple linear
and convolutional neural networks, and the reconstruction
performance drops significantly in deep models.

III. PROBLEM STATEMENT

In this section, we begin by presenting the system model,
followed by an explanation of the capability and goal of the
attack model.

A. System Model

We consider a standard collaborative learning system with
the SGD training procedure. Each client has its own human
face training dataset D and jointly trains the classification

model M with the server. Let (x, y) ∈ D be a data sample
and label from D, and let ℓ and W be the loss function and
model parameters of M, respectively. At each iteration, each
client trains its local model with the selected data sample and
then sends the gradient to the server.

∇W =
∂ℓ(x, y)

∂W
. (1)

For distributed training, ∇Wk is the gradient from client k.
After the server receives gradients from all clients, it updates
the model parameters via gradient descent:

W = W − λ
1
K

K∑
k=1

∇Wk, (2)

where K and λ represent the total number of clients and the
learning rate respectively.

B. Attack Model

1) Adversary Capability: We assume that the server in
the collaborative learning system is an honest-but-curious
adversary who adheres to the training rules but attempts to
reconstruct the training data using the gradients received from
any clients. This type of attack falls under the category of
white-box attacks, where the adversary has knowledge of
the model parameters, loss function, and hyperparameters.
Consequently, the adversary can calculate the gradient of any
arbitrary data sample (x ′, y′). Furthermore, we assume that the
adversary can access a human face dataset Dc that is disjointed
to clients’ training datasets, which could be a public dataset or
created using recent facial generative models. The adversary
can also access an existing PFFR model Mr .

2) Adversary Goal: The adversary’s goal is to reconstruct
the training faces from received gradients. Formally, given
the gradient ∇W (x, y) from a single client (the client index
is omitted for simplicity). The adversary’s objective can be
described as a reverse problem R:

x∗, y∗
= R(∇W (x, y),M, W, ℓ,Mr ,Dc). (3)

However, solving R directly is a challenging task. In gra-
dient inversion attacks, the adversary tries to minimize the
distance between ∇W (x, y) and the gradient of recovered face
∇W (x∗, y∗):

x∗, y∗
= arg min

x ′,y′

L , (4)

= arg min
x ′,y′

D(∇W (x, y), ∇W (x ′, y′)) + αω(x ′), (5)

x ′

i+1 = x ′

i − γ∇Lx ′
i
, (6)

where D is some sort of distance measurement function.
ω(x ′) denotes the image regularization that is used to keep
the reconstruction away from the unrealistic image and α

represents its weight. For convenience, we use L to denote
the reconstruction loss including the gradient matching and
image regularization term. i and γ represent the number of
attacking iterations and the learning rate of the reconstruction
process. The adversary has successfully recovered the training
data if x∗ is visually similar to x , which could be evaluated
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Fig. 2. Illustration of our proposed method, DFLeak. The initialization search module selects the initialization image with closer activation values with
GT. The normal optimization module is the same as the common gradient inversion attacks. The residual facial optimization module blends the averaged
restoration and the reconstruction of the normal optimization module to incorporate facial details into the reconstructed face. Additionally, the pixel update
schedule module distributes different weights to gradients to prevent quality degradation.

by metrics (e.g., PSNR [30] or LPIPS [31]) adopted in image
quality assessment. This type of attack can easily be extended
across clients, as the adversary is able to access the gradients
uploaded by each client.

IV. METHODOLOGY

In this section, we first give the insight and pipeline of
our face reconstruction method. Then we delve into three key
components and conclude with an algorithm summation.

A. Insights and Pipeline

1) Key Observations: Our investigation has revealed that
existing optimization-based reconstruction attacks suffer from
two major limitations in face reconstruction: 1) The random
noise initialization scheme leads to instability of reconstruction
optimization on account of the large distribution difference
between random noise and human faces. 2) The image regular-
ization terms used in reconstruction attacks have a detrimental
effect on reconstructing the facial details.

2) Pipeline: Fig. 2 illustrates our proposed method, which
consists of four modules: initialization search, normal opti-
mization, residual facial optimization, and pixel update
schedule. Firstly, the initialization search is to select appro-
priate samples from existing face datasets as the initialization
input to the reconstruction attack algorithm. Secondly, the
normal optimization adopts the gradient inversion attack tech-
nique (discussed in Sec. III-B) to recover the facial samples.
Thirdly, the residual facial optimization module utilizes the
PFFR model to supplement the facial details of reconstruction
results. Lastly, the pixel update schedule module is to ensure
that the subsequent optimization process does not discard
supplemented facial details.

B. Initialization Search

1) Initial Face Search: While Gaussian noise initialization
is commonly used, it may lack the necessary ‘hints’ or ‘biases’
toward desired facial features, which can lead to unstable

performance in face reconstruction. Previous study [32] also
points out that initializing with fewer random pixel values and
closer to the GT can stabilize the optimization process and
improve the reconstruction quality. Considering the similar
structure of human faces, selecting a face image as the
initialization is a better choice than Gaussian noise. We use
the activation distance to quantify whether both samples
are semantically-close and select the image with the lowest
activation difference as the initial sample x ′

0:

x ′

0 = arg min
c∈Dc

|| fGT − fc||2, (7)

where

fGT = ∇W (FC)
m,n /∇W (FC)

n , (8)

where fGT and fc are the activation values of GT and the
candidate. ∇W (FC)

m,n and ∇W (FC)
n denote the gradients of the

weight and bias of the last fully-connected (FC) layer. m and
n are the number of hidden features and classes respectively.
To identify an appropriate initialized sample, we compute the
activation distance between each candidate and GT, and select
one with the minimal activation distance. We also empirically
demonstrate that randomly-selected samples cannot achieve
satisfactory performance compared to our proposed solution.
(discussed in Section VI-A)

2) Label Recovery: We recover the label information by
identifying the negative signs of the gradient in the last fully-
connected layer. Without the loss of generality, we consider
recovering the label for the single-batch scenario. The com-
putation process is as follows:

y′
= arg min(min

i
∇W (FC)

:,i ), (9)

where i denotes the index of the class dimension. The key
observation for the label recovery process is that the gradient
values in the feature dimension are consistently negative
∇W (FC)

:,i=iy
< 0 at the true label index iy , and non-negative at

other indices. Therefore, the negative signs serve as a robust
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Fig. 3. Visual comparisons are conducted using normal optimization,
restoration of PFFR model [24], and our residual facial optimization. The
second row presents an enlarged view of the mouth areas. The result of
normal optimization is blurry, and restoration of the PFFR model [24] holds
a different identity from GT. In contrast, our residual facial optimization
achieves excellent completion of facial details while accurately preserving
the original features.

indicator for accurate label recovery. Following the method
suggested by [18], we utilize the column-wise minimum gra-
dient values to identify the true label. Initially, we determine
the minimal gradient values along the feature dimensions.
The class index corresponding to the absolute minimum from
these values is then identified as the recovered label y′. It is
subsequently used to calculate the gradients of the dummy
sample.

C. Residual Facial Optimization

We observe that the conventional reconstruction attack solu-
tions often fail to capture sufficient facial details, resulting
in lacking facial details (LFD). Recent PFFR techniques
have shown promise in alleviating this issue by utilizing
high-quality face priors [21], [22], [23], [24]. Therefore,
we harness the potential of the PFFR model to attain facial
details reconstruction (FDR). However, directly applying the
PFFR model to address LFD issues does not yield satisfactory
results. As shown in Fig. 3, the restored image exhibits high
visual quality but possesses a different identity from the GT.
Moreover, the performance of PFFR is sensitive to random
seeds. Consequently, we propose residual facial optimization,
which uses the PFFR model to gradually fill the facial details
while maintaining the similarity with GT. The success of
residual facial optimization depends on two aspects: 1) when
to apply the PFFR model and 2) how to integrate it into the
face reconstruction process.

To answer the first question, we monitor the loss and apply
the PFFR model when the loss falls below a threshold, denoted
as ϵ. This step primarily preserves the high similarity of the
reconstruction result with GT. As for the second question,
we progressively incorporate the restoration results, rather
than directly replacing the reconstruction results with them.
Specifically, the PFFR model functions as a residual module
to provide facial details in the reconstruction process. The
residual facial optimization is formulated as follows:

x ′
= M(η) ⊙ xr

+ (1 − M(η)) ⊙ x ′, (10)

Fig. 4. Illustration of the effectiveness of our pixel update schedule. Columns
1 and 2 are the LFD images and the FDR after our residual facial optimization.
Columns 3 and 4 are the subsequent reconstruction results with normal
optimization and our pixel update schedule module. The second row presents
an enlarged view of the mouth areas. The normal optimization blurs the image
while our pixel update schedule module still preserves the facial details.

where

xr
= E(Mr (x ′, s)), (11)

η = {p | ||xr
p − x ′

p||2 ≤ tτ }. (12)

We first obtain the expectation of face restoration xr from
the reconstruction result x ′ using the PFFR model Mr with
different random seeds s. Then, we compute the residual area
M(η), where η indicates the set of pixel positions where the
pixel difference between x ′ and xr is equal or less than the
τ -th smallest pixel difference, denoted by tτ . Besides, ⊙ is the
element-wise product. We use p to denote the pixel position
and τ represents the proportion of pixels that form the residual
area. We increase τ with the progress of attacking iterations.
Additionally, M is a function that converts a set of pixel
positions to a binary matrix with the same shape as x ′.

D. Pixel Update Schedule

In reconstruction attacks, image regularization terms are
typically introduced to yield visually-friendly reconstruction
results. Fig. 4 presents that incorporating these terms would
also blur facial details. To avoid this issue, we multiply a decay
value (< 1) on the gradient in the residual area. This approach
aims to alleviate the negative effect of normal optimization
on facial details. The gradient of the face reconstruction is
formulated as:

∇Lx ′ = αp∇LM(η)⊙x ′ + ∇L(1−M(η))⊙x ′ , (13)

where αp denotes the pixel update decay value.

E. Attack Overview

To facilitate a better understanding of our proposed method,
we illustrate the correlations among the three key components
as follows. The initialization search module plays a crucial role
in stabilizing the optimization process during the early stages
of the reconstruction attack. It provides a robust starting point
for subsequent optimization, which can function indepen-
dently. The residual facial optimization module and the pixel
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Algorithm 1 Face Leakage From Gradients Using Residual
Optimization

update schedule module are interconnected and complement
each other. The former focuses on enhancing the facial details
in the reconstructions, while the latter plays a vital role in
preserving these details and preventing blurring caused by the
image regularization terms. In combination, these components
synergistically promote the effectiveness and efficiency of our
approach in successfully reconstructing the training faces.

The details of our proposed method are summarized in
Algorithm 1. Given gradient ∇W (x, y), we first perform the
initialization search to obtain the starting point x ′

0 and label
recovery y′. During each iteration of the attack, if the recon-
struction loss is lower than the loss threshold ϵ, we perform
the residual facial optimization. We use three random seeds
to calculate the averaged restoration and the proportion τi
is equidistantly sampled from the interval [0, 1] according to
current iteration i . Then, the pixel value update in the residual
area is decreased by αp in subsequent attack iterations. At the
end of the attack process, we can produce the high-quality
face reconstruction x∗ with minimal reconstruction loss and
the label recovery y∗.

V. EXPERIMENT

In this section, we start by describing the experimental
setup. We then proceed to present the overall performance
of DFLeak, and end by thoroughly analyzing its effectiveness
under various system settings.

A. Experimental Setup

1) Datasets and Models: We conduct our experiments on
two human face datasets: CelebAHQ [6] and LFW [25].
We attack ResNet18 [33] and MobileNetV2 [34] trained on
these datasets for gender classification. To demonstrate the
generalizability of our method, we also conduct an experiment
on ImageNet [35] with image size 224 × 224. The publicly
available dataset Dc (100 face images) is randomly sampled
from the FFHQ dataset [6] for our initialization search.

2) Baselines: We implement four state-of-the-art
optimization-based gradient inversion attacks as the baseline
methods. We do not involve recursion-based gradient inversion
attacks because these attacks are only applicable to simple
linear and convolutional neural networks that have limited
capabilities.

• iDLG-Adam [16]: an optimization-based attack with the
Adam optimizer and a L2 gradient matching loss.

• InvertG [17]: the attack that is similar to iDLG-Adam
but with a cosine distance loss and a total variation
regularization term.

• GradInv [18]: the attack that improves iDLG with a total
variation and L2-norm regularization terms.

• GGL [20]: an input-enhanced optimization-based attack
that conducts latent searches using generative models.

3) Implementation: Following the experimental setups of
previous studies [17], [18], [20], we construct a collaborative
learning system with 100 clients, each receiving a random split
of data from the validation dataset. Face datasets generally
possess incompatible characteristics (e.g. image sizes, facial
attributes). Therefore, we ensure that both the training and
validation datasets are from a single face dataset. The batch
size for each client is 1 if not specified. We reconstruct single
batch data from every client. Besides, we also investigate
scenarios with larger batch sizes to analyze their impact on
the inversion performance of the involved attacks.

We implement the baselines primarily following the
methodologies outlined in their respective papers [16], [17],
[18], [20], and adjust the hyperparameters to maximally
improve the face reconstruction performance of these baselines
and ensure fair comparison. For iDLG-Adam, we switch to the
Adam optimizer due to the challenges presented by L-BFGS
in the context of large networks, as highlighted in [17]. In the
case of InvertG, we decrease the weight of total variation
term to 0.01, resulting improved face reconstruction outcomes.
As for GradInv, we exclude the incorporation of statistics from
batch normalization layers to ensure a fair comparison. The
initial learning rate of all the three methods is set as 0.1 and
we record the results of these attacks after 5000 iterations. For
GGL, we train DCGAN on the training samples of each dataset
to achieve the optimal attack results. The search dimension of
DCGAN is 128 and the attack iterations is 200.

For our approach, we employ DiFace [24] as the PFFR
model that uses the diffusion model [36] trained on the FFHQ
dataset to accomplish face restoration. We follow the attacking
procedure with InvertG until first applying the PFFR model.
The loss threshold ϵ is set to 0.3 and the pixel update decay
αp to 0.1. The residual face optimization has been applied
a total of four times, balancing the computational cost and
reconstruction performance.

4) Evaluation Metrics: We report the averaged results of
following metrics for quantitative evaluation of the similarity
between GT and the face reconstruction: (1) Mean Square
Error (MSE ↓), (2) Peak Signal-to-Noise Ratio (PSNR ↑), (3)
Learned Perceptual Image Patch Similarity (LPIPS ↓) [31],
and (4) Structural Similarity Index Measure (SSIM ↑) [37].
Note that “↓” means the lower the metric the higher relative
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TABLE II
QUANTITATIVE COMPARISON OF THE FACE RECONSTRUCTION RESULTS ON CELEBAHQ AND LFW DATASETS, WHERE OUR PROPOSED METHOD

OUTPERFORMS ALL PRIOR METHODS ACROSS ALL METRICS

Fig. 5. The 112×112 visual comparison of face reconstructions using our proposed method and baselines on the CelebAHQ dataset. Row 1: GT, Row 2:
iDLG-Adam [16], Row 3: InvertG [17], Row 4: GradInv [18], Row 5: GGL [20], Row 6: Ours. The face reconstructions of our method are more realistic
and closer to GT.

image quality, while “↑” represents the higher the metric the
higher image quality.

B. Overall Evaluation

We first present an overall performance comparison between
our method and the involved baselines on the CelebaHQ and
LFW datasets. For each dataset, we evaluate the reconstruction
of data at two image resolutions (56 × 56 and 112 × 112).
As shown in Table II, our method outperforms the base-
lines across all image quality metrics. For other methods,
we notice that InvertG [17] achieves higher image quality than
iDLG-Adam [16] due to the additional image regularization

term. GrandInv [18] has lower reconstruction quality for the
lack of batch normalization information. Compared to iDLG-
Adam, GGL [20] has an advantage in the LPIPS score,
but it does not perform as well in the other three metrics.
Furthermore, we have observed that performing face recon-
struction on data with higher image resolution can be more
challenging. Nevertheless, our method consistently delivers
outstanding performance and offers substantial performance
improvements.

Fig. 5 and Fig. 6 provides the visual comparisons of face
reconstructions, which also demonstrates that our method
could recover more facial details and achieve the best
visual quality. Furthermore, without the restriction of image
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Fig. 6. The 112× 112 visual comparison of face reconstructions using our proposed method and baselines on the LFW dataset. Row 1: GT, Row 2:
iDLG-Adam [16], Row 3: InvertG [17], Row 4: GradInv [18], Row 5: GGL [20], Row 6: Ours. The face reconstructions of our method are more realistic
and closer to GT.

Fig. 7. Quantitative evaluation of the reconstruction quality (y-axis) with
different client numbers (x-axis) on the CelebAHQ dataset, two image sizes:
56 × 56 and 112 × 112.

regularization terms, the reconstructions in iDLG-Adam con-
tain much more noise than InvertG [17]. However, such
restriction also prevents further facial details reconstruction.
GradInv has difficulty in recovering the facial features from
the gradients without batch normalization information, as pre-
viously noted in [38]. On the other hand, GGL [20] improves
the image quality via GANs, but it loses fidelity with GT.

1) Number of Clients: Theoretically, the execution of our
attack would be not impacted by the number of clients,
as the reconstruction of each client’s training data is han-
dled individually. However, since our experimental results
are calculated by averaging the reconstruction results of each
client, an increase in the number of clients contributes to more
stable statistical results. We conduct experiments to measure
the reconstruction quality (PSNR/SSIM) with different client
numbers (from 1 to 100). As illustrated in Figure 7, the
statistical results for reconstruction quality exhibit significant
variability with fewer clients and stabilize when the number
of clients reaches 100.

Fig. 8. The influence of different local gradient descent steps on the face
reconstruction quality.

2) FedAvg Setting: We further investigate the most practical
setting of Federated Averaging in which clients share model
parameter updates with multiple local gradient descent steps.
We assumed that the adversary has access to the local hyper-
parameters (e.g. the number of local gradient descent steps,
local learning rate) and performs the same operation while
executing the gradient inversion attack. Fig. 8 shows the face
reconstruction outcomes under multiple local gradient steps
with a local learning rate of 0.001. We have observed that as
the number of local gradient steps increases, the performance
of our approach slightly decreases. Nevertheless, our approach
still outperforms the state-of-the-art attacks.

3) Classes Number: We primarily assess the attack per-
formance on the gender classification task involving two
classes. To further investigate the potential impact of the
classes number, we conduct additional experiments on face
recognition tasks involving different numbers of identities (10,
20, and 50). We employ the ResNet18 model trained on the
CelebAHQ dataset. The results, detailed in Table III, indicate
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TABLE III
QUANTITATIVE COMPARISON OF FACE RECONSTRUCTION RESULTS

(INVERTG/DFLEAK) WITH THE DIFFERENT NUMBER OF CLASSES,
CONDUCTED ON THE CELEBAHQ DATASET WITH 100 CLIENTS

Fig. 9. Reconstructed faces with batch size 8 and image size 112×112 on
the CelebAHQ dataset. Row 1: GT, Row 2: InvertG [17], Row 3:Ours.

TABLE IV
QUANTITATIVE RESULTS ON DIFFERENT BATCH SIZES OF THE

FIRST 10 CLIENTS ON THE CELEBAHQ DATASET WITH IMAGE SIZE
112 × 112, LEFT: INVERTG [17], RIGHT: OURS

TABLE V
ABLATION STUDY OF THE INITIALIZATION SEARCH AND RESIDUAL

FACIAL OPTIMIZATION MODULES. RESULTS ARE CONDUCTED ON THE
CELEBAHQ DATASET WITH 100 CLIENTS

that our proposed attack maintains efficacy as the number of
classes increases.

4) Batch Size: Our proposed method has been demonstrated
to be effective in reconstructing individual faces. Nevertheless,
the batch size is an important factor to consider during the
reconstruction process. To ensure accurate label recovery, it is
necessary to avoid duplicate labels within the same batch [18].
We consider the face recognition task with 50 identities on
the CelebAHQ dataset and assume that no repeat labels exist
within the same batch. The outcomes of various batch sizes are
presented in Table IV. As the batch size increased, the quality
of face reconstruction reduced due to the increased search
space. However, our method still gets excellent reconstruction
performance across all metrics. Fig. 9 presents the visual
reconstruction results on batch size 8, our method can produce
recognizable face recoveries while the InvertG [17] only gets
the serious degradation without facial details.

Fig. 10. Visual comparison of the reconstruction results based on InvertG [17]
with different initial strategies on the CelebAHQ dataset with image size
112×112. Row 1: GT, Row 2: Initialized from random noise, Row 3:
Initialized from the searched sample.

Fig. 11. Impact of hyperparameters on the performance of our
method computed on 100 clients on the CelebAHQ dataset with image
size 112 × 112.

C. Ablation Study

We provide quantitative comparisons to ablate the effec-
tiveness of our proposed three modules in Table V. The
initialization search from real face samples greatly improves
the face reconstruction quality, as shown in Fig. 10, it effec-
tively avoids failure cases in the face reconstruction process.
The residual facial optimization module further enhances the
quality of the recovery by introducing more facial details.
Moreover, the pixel update schedule module is also bene-
ficial to the quality of face reconstruction by maintaining
facial details that are not eliminated during the reconstruction
process.

D. Varying Hyperparameters and PFFR Models

1) Hyperparameters: As illustrated in Fig. 11, we evaluate
the performance of our method using varying loss thresh-
olds (ϵ = 0.5, 0, 4, 0.3, 0.2) and pixel update decay values
(αp = 1.0, 0.1, 0.05, 0.01 ) on the CelebAHQ dataset. The
face reconstructions produced with a moderate loss threshold
(ϵ = 0.3) exhibit the best image quality. The loss threshold
plays a vital role in controlling the facial reconstruction quality
upon application of the PFFR model. A higher loss threshold
leads to reconstructions with insufficient optimization, making
the PFFR model unsuitable for generating usable results.
Conversely, a lower loss threshold reduces the number of
optimization iterations after the residual facial optimization,
potentially compromising the fidelity of the face reconstruc-
tion. Furthermore, our method demonstrates robustness to
variations in αp. When αp equals 1.0, indicating no pixel
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TABLE VI
QUANTITATIVE COMPARISON OF FACE RECONSTRUCTION WITH DIFFER-

ENT PFFR MODELS ON THE CELEBAHQ DATASET WITH IMAGE SIZE
112 × 112. RESULTS ARE CONDUCTED WITH 100 CLIENTS

TABLE VII
PERFORMANCE COMPARISON BETWEEN STATE-OF-THE-ART PFFR TECH-

NIQUES AND OUR DFLEAK. RESULTS ARE CONDUCTED ON THE
CELEBAHQ DATASET WITH 100 CLIENTS

update schedule, there is a noticeable decline in performance
compared to other settings.

2) PFFR Models: In addition to DiFace [24], several other
state-of-the-art PFFR techniques are dedicated to improving
the quality of images that have suffered complex degradation
in real-world scenarios. We evaluated the performance of our
method alongside two other notable PFFR models, namely
CodeFormer [21] and RestoreFormer [22]. These models uti-
lize facial structures or facial component dictionaries derived
from high-quality images as inference priors and subsequently
enrich these dictionaries with diverse and detailed facial
features. It’s worth noting that both CodeFormer and Restore-
Former are trained on the FFHQ dataset. As demonstrated in
Table VI, all three PFFR models yield impressive reconstruc-
tion results. The advantage of DiFace [24] may come from the
superior generative capabilities of the diffusion model.

3) Comparison With Gradient Inversion Attacks With PFFR
Models: It’s worth noting that, to the best of our knowl-
edge, our work represents the first attempt to specifically
address facial leakage through gradient inversion attacks.
Nevertheless, in order to explore alternative approaches,
we have created several new facial leakage baselines by
combining existing gradient inversion attacks with various
face restoration techniques. Specifically, we have chosen
InvertG as the foundation and integrated the reconstruction
results with different PFFR methods. As shown in Table VII,
we have observed that the performance of the new base-
lines declined due to the restoration introducing a different
identity compared to GT. The results also demonstrate the
effectiveness of our strategies and our method is capable
of reconstructing high-quality faces from the corresponding
gradients.

E. Extending to Other Model and Dataset

1) MobileNetV2: In addition to ResNet18 [33], we extend
our evaluation to include MobileNetV2 [34], as indicated
in Table VIII. Our method demonstrates outstanding perfor-
mance in face reconstruction, surpassing the baseline models.

TABLE VIII
QUANTITATIVE COMPARISON OF THE FACE RECONSTRUCTIONS ON CELE-

BAHQ WITH IMAGE SIZE 56 × 56 AND MOBILENETV2. RESULTS ARE
CONDUCTED ON 100 CLIENTS

TABLE IX
QUANTITATIVE COMPARISON OF INVERTG [17] AND OUR METHOD

ON THE IMAGENET DATASET. RESULTS ARE CONDUCTED
WITH 50 CLIENTS

TABLE X
QUANTITATIVE COMPARISON OF INVERTG [17] AND OUR METHOD WITH

THE ATS DEFENSE ON THE CELEBAHQ DATASET WITH IMAGE SIZE
112 × 112. RESULTS ARE CONDUCTED WITH 100 CLIENTS

Although GGL [20] marginally outperforms our method in
LPIPS score, our approach significantly outperforms it in the
other three metrics. This underscores that while GGL can
generate visually appealing faces, they may lack fidelity with
GT.

2) ImageNet: We extended our method to a more general
dataset, ImageNet [35] with image size 224 × 224, which is a
frequently used dataset in previous gradient inversion attacks.
We utilize the pre-trained guided diffusion model [39] in Ima-
geNet as the “PFFR” model and follow the same restoration
procedure described in DiFace [24]. To save computational
resources, we train the victim ResNet18 model on only 25 out
of the total 1000 classes and use the same sample acceleration
technique as in DiFace (100 steps with DDIM [40]). Following
the same attack procedure of face reconstruction, we initialize
a dummy image and optimize it by aligning its gradients
with the ground truth. We employ the noisy initialization
strategy on ImageNet to investigate the lower bounds of
our reconstruction performance. Fig. 12 presents the visual
comparison of the reconstructions in ImageNet, demonstrating
that our method could effectively replace the noisy areas
with high-quality image features ( columns 1 to 5 ) and
even complete the missing parts (column 6), thus enhancing
the visual quality of the reconstructed images. Additionally,
we provide a quantitative comparison in Table IX. The results
indicate that our adapted method offers an advantage in most
performance metrics, particularly LPIPS.
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Fig. 12. Visual comparison of the reconstruction images on the ImageNet
dataset with image size 224x224. Row: 1 GT, Row 2: InvertG [17], Row 3:
Ours.

Fig. 13. Visual reconstruction results with the ATS defense on the CelebAHQ
dataset with image size 112 × 112. Row 1: GT with ATS, Row 2: InvertG [17],
Row3: Ours.

F. Attack Effectiveness Under Defense

Inspired by the application of data transformations in train-
ing robust deep learning models [41], [42], [43], we implement
the recent Automatic Transformation Search (ATS) [44] as the
defensive strategy. It has shown a satisfactory defense effect
against gradient inversion attacks through its searched aug-
mentation policies. We employ their strongest hybrid policies
(“21-19+3-2-38”) searched on the CelebA dataset, which is the
combination of translation, sharpness, rotation, and solariza-
tion augmentations. As shown in Fig. 13, ATS presents poor
defense effectiveness against face leakage, and our method
further enhances the quality of face reconstruction. Table X
presents the quantitative comparison of InvertG [17] and our
method with the ATS defense on the CelebAHQ dataset.
We notice that the effectiveness of our approach decreased
slightly due to the reduced benefit from the initialization search
scheme in the perturbed face images.

VI. DISCUSSION

A. Explanation of the Effectiveness

The effectiveness of our method can be attributed to the
two carefully designed components: the initialization search
and the residual facial optimization. The initialization search
strategy involves identifying an initialization with a lower
gradient difference and higher visual similarity to the GT
faces. We conducted experiments to assess the gradient dif-
ference and visual similarity at the initial and final stages
of the reconstruction process, comparing noisy, non-facial

Fig. 14. Understanding the effectiveness of our residual facial optimization.

TABLE XI
QUANTITATIVE COMPARISON OF FACE RECONSTRUCTION RESULTS WITH

DIFFERENT INITIALIZATION METHODS. “GD” DENOTES L2 DISTANCE
BETWEEN GRADIENTS AND “RANDOM SELECTION” INDICATES

THAT INITIALIZATION IS RANDOMLY SAMPLED FROM Dc .
RESULTS ARE CONDUCTED ON THE CELEBAHQ DATASET

WITH 100 CLIENTS

image initializations with our facial initialization search. The
results in Table XI illustrate that our facial initialization
exhibits a closer proximity to the GT faces in both gradient
difference and visual quality, thereby enhancing reconstruction
performance. Furthermore, we use the GT images as the ideal
initialization to estimate the maximum reconstruction benefits
from the initialization phase. Our method achieves over 98%
of the performance (SSIM) of this ideal scenario. It also shows
a nearly 2% enhancement compared to Random Selection,
a similar improvement observed between the Random Selec-
tion and non-facial initializations (2.1% over ‘ Green’). Thus,
the advantage of our Initialization Search method over the
Random Selection is notable.

On the other hand, our residual facial optimization module
focuses on enriching the facial details in the reconstructed
faces. One of the main challenges we encounter is the low
fidelity of the facial features reconstructed through PFFR
techniques. Consequently, these features fail to produce sat-
isfactory reconstruction results (as depicted in Table VII).
To address this issue, we progressively incorporate the restora-
tion results, selectively leveraging the facial details that exhibit
lower differences with the intermediate reconstructions. The
experimental results demonstrate that our residual facial opti-
mization technique achieves remarkable completion of facial
details while maintaining the minimum deviation with the GT
faces (as illustrated in Fig. 14).

B. Computation Burden Analysis

We also include a comparison of computational burden
(the inference time of face reconstruction). Specifically, such
burden can be interpreted from two different perspectives:
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TABLE XII
PERFORMANCE COMPARISON OF DIFFERENT METHODS WITH

THE SAME INFERENCE TIME

TABLE XIII
PERFORMANCE AND INFERENCE TIME COMPARISON WITH

INCREASED ATTACKING ITERATIONS

time efficiency and iteration efficiency. The former is the time
needed to reach equivalent performance levels, while the latter
is the time taken for the same number of iterations.

We first conduct the performance comparison (measured by
SSIM) of different methods with the same inference time.
The results in Table XII have shown that our approach
achieves comparable reconstruction results with less com-
putational time. In other words, regarding achieving the
same level of performance, our DFLeak actually demon-
strates a lower computation burden compared to existing
attacks.

We then extend the number of attacking iterations for
baseline methods and present the average SSIM value and the
time required for single reconstruction in Table XIII. Even
with an increased number of iterations, the existing methods
fall short in achieving the same level of performance as
our proposed approach. The results highlight that while our
method introduces additional steps, it is not merely a trade-off
between computation time and performance.

VII. CONCLUSION

This paper introduces DFLeak, a novel approach that
analyzes facial leakage from gradients by leveraging exist-
ing facial images and PFFR models. Our proposed method
includes an intelligent initialization scheme to reduce the
possibility of failure in the face reconstruction process. Addi-
tionally, we incorporate an existing PFFR network into our
reconstruction pipeline to provide additional facial details and
improve the quality of the reconstructed image. We evalu-
ate our proposed method on two human face datasets and
demonstrate that it outperforms state-of-the-art methods in
terms of both visual presentation and image quality. More-
over, We extend our method to the ImageNet dataset, which
demonstrates its effectiveness on a higher resolution and more
general dataset.
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