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Stealthiness Assessment of Adversarial
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Abstract—Assessing the stealthiness of adversarial perturba-
tions is challenging due to the lack of appropriate evaluation
metrics. Existing evaluation metrics, e.g., Lp norms or Image
Quality Assessment (IQA), fall short of assessing the pixel-
level stealthiness of subtle adversarial perturbations since these
metrics are primarily designed for traditional distortions. To
bridge this gap, we present the first comprehensive study on
the subjective and objective assessment of the stealthiness of
adversarial perturbations from a visual perspective at a pixel
level. Specifically, we propose new subjective assessment criteria
for human observers to score adversarial stealthiness in a fine-
grained manner. Then, we create a large-scale adversarial exam-
ple dataset comprising 10586 pairs of clean and adversarial sam-
ples encompassing twelve state-of-the-art adversarial attacks. To
obtain the subjective scores according to the proposed criterion,
we recruit 60 human observers, and each adversarial example is
evaluated by at least 15 observers. The mean opinion score of each
adversarial example is utilized for labeling. Finally, we develop a
three-stage objective scoring model that mimics human scoring
habits to predict adversarial perturbation’s stealthiness. Exper-
imental results demonstrate that our objective model exhibits
superior consistency with the human visual system, surpassing
commonly employed metrics like PSNR and SSIM.

Index Terms—Adversarial stealthiness assessment, adversarial
attack, classification

I. INTRODUCTION

Adversarial attacks significantly threaten Deep Neural Net-
work (DNN) models. An adversary can carefully craft adver-
sarial perturbations on the target objects (i.e., adversarial ex-
amples) to deceive DNN models and induce wrong predictions
[1]. A successful adversarial attack generally seeks to achieve
two primary objectives: ❶ high adversarial effectiveness,
ensuring that the adversarial examples exhibit a high likelihood
of misleading the model; ❷ high adversarial stealthiness,
where the perturbation remains imperceptible to humans. This
is crucial to ensuring the feasibility of the attack. If an
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adversarial perturbation is effective but conspicuous, it risks
early detection, compromising the attack. For instance, drivers
could detect and report suspicious adversarial patches on traffic
signs [2], preventing potential accidents. These two goals serve
as key motivations for developing effective adversarial attacks.
However, existing efforts primarily focus on improving the at-
tack’s effectiveness [3]–[6], with comparatively less emphasis
on investigating the adversarial stealthiness.

Adversarial attack methods are generally categorized into
restricted [4], [7] and unrestricted [8], [9]. Restricted attacks
focus on pixel-level stealth, imposing Lp-norm constraints on
adversarial perturbations (e.g., ∥r∥∞ < 0.01 where r denotes
the perturbation) to maintain pixel-level similarity between
clean and adversarial images. In contrast, unrestricted attacks
prioritize semantic-level stealth, allowing significant changes
(e.g., adding glasses to a face) as long as the result remains
realistic. Considering that (1) distinct methodologies evaluate
these two types of stealth, (2) high pixel-level similarity
implies semantic plausibility, and (3) restricted attacks are
well-studied, we focus on assessing pixel-level stealthiness
for restricted attacks. In the subsequent sections, “adversarial
attacks” and “stealth” refer to restricted attacks and pixel-level
stealth, unless otherwise specified.

The absence of dedicated objective metrics for perceptual
assessment hinders advancements in adversarial stealthiness.
Most related works [4], [7], [10]–[14] use Lp norms, or Full-
Reference Image Quality Assessment (FR-IQA) metrics like
Peak-Signal-to-Noise-Ratio (PSNR) and Structural Similarity
Index (SSIM) [15]. However, as noted in [16], most FR-IQA
metrics are tailored for specific applications, aiming to capture
relevant distortions, such as blur and blocking for compression,
fast fading for wireless transmission, and artifacts for image
generation. Adversarial perturbations often have characteristics
that differ significantly from distortions typically addressed by
the IQA community. Moreover, the commonly used Five-grade
Discrete Impairment Scale (FDIS) [17] focuses on perceptible
noise, making objective metrics based on FDIS insufficiently
sensitive to imperceptible noise (detailed explanation provided
later). Consequently, existing objective metrics easily lead
to erroneous conclusions regarding stealthiness due to these
factors. For example, as shown in Fig. 1, Fig. 1(c) demon-
strates better stealthiness than Fig. 1(b) as the perturbation in
Fig. 1(b) is more annoying. However, PSNR contradicts this
by assigning a higher score to Fig. 1(b).

To bridge this gap, introducing a suitable subjective criterion
(for constructing a specialized adversarial example dataset)
and a dedicated objective metric is essential. To the best
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(a) (b) (c)

PSNR=28.35
A2SM=0.32
MOS=0.33

PSNR=27.36
A2SM=0.55
MOS=0.58

Fig. 1: The widely used PSNR metric is unreliable for evalu-
ating pixel-level stealthiness across different attacks. (a) Clean
example. (b) The adversarial example generated by FGSM
(ϵ = 0.04) exhibits annoying perturbation due to the large
perturbation budget. (c) The adversarial example generated
by GUAP (default weight, spatially transformed) is more
visually closer to (a) than (b). MOS scores represent sub-
jective stealthiness scores between the clean and adversarial
examples obtained from human observers, while PSNR and
2ASM (ours) serve as objective metrics. A higher score of
MOS, PSNR, and A2SM indicates better stealthiness. Notably,
A2SM aligns with subjective perception by assigning a higher
score to (c), while PSNR incorrectly favors (b), highlighting
its limitations on assessing adversarial stealthiness.

of our knowledge, our work presents the FIRST attempt to
investigate both subjective and objective assessments of adver-
sarial stealthiness at the pixel level. We study the stealthiness
from the attacker’s perspective, assuming access to clean
samples during evaluation. This access is vital for evaluating
adversarial perturbation stealthiness, as attackers rely on clean
images to craft adversarial examples. By comparing clean and
adversarial images, attackers can emphasize subtle differences
and reduce detectable distortions, improving attack effective-
ness by avoiding detection.

To conduct this study, we must address two challenges.
❶ Developing a subjective criterion to capture human percep-
tions of stealthiness. A widely used criterion in [17] assesses
image quality through full-reference pairwise comparisons
(i.e., full-reference). However, it categorizes stealthiness into
just two levels, weak and strong, offering limited guidance
for improvement. ❷ Creating a Human Visual System (HVS)-
aligned objective method for assessing stealthiness. Typically,
this necessitates a specialized dataset containing clean sam-
ples, adversarial examples, and subjective scores. Unfortu-
nately, no such datasets are publicly available. As discussed
in Section III-C and Section V-D, existing FR-IQA datasets
inadequately support adversarial stealth assessments. Thus,
constructing a specialized dataset becomes essential. More-
over, modeling human scoring habits is crucial for developing
this method.

We tackle these challenges through three significant con-
tributions. First, we extend the existing subjective assess-
ment criterion [17] for a more fine-grained assessment of
the whole stealthiness spectrum. Specifically, we introduce a
novel two-step subjective assessment. The first step involves a
rough categorization of stealthiness. Human observers classify
adversarial perturbations as strong or weak based on the

detectability of differences between fixed-size image pairs
viewed briefly (e.g., 5 seconds). Easily detectable differences
indicate weak stealthiness; otherwise, it is strong. The second
step refines these initial classifications. For weak stealthiness,
observers assess how annoying the perturbation is. For strong
stealthiness, they evaluate how imperceptible the perturbation
appears. Further elucidation on our new subjective criteria is
provided in Section III-B.

Second, we construct the first large-scale dataset for as-
sessing adversarial stealthiness. This dataset consists of 10586
pairs of clean and adversarial examples, each labeled with a
subjective stealthiness score. To ensure diversity, we generate
adversarial examples using five attack types, as shown in
Table I. Meanwhile, we recruited 60 human observers for
subjective scoring. The final labeled score is the Mean Opinion
Score (MOS).

Third, we propose an objective scoring model with three
stages: feature extraction, feature fusion, and score prediction.
In the first stage, we extract a comprehensive set of global and
local low-level features to facilitate accurate scoring. In the
second stage, we design two specialized modules to evaluate
patch significance in images, considering two key factors:
(1) the difference map between the clean and adversarial
images determines how noticeable a patch is. Patches with
severe perturbations are more conspicuous. (2) The importance
of clean images. For instance, perturbations in patches with
critical semantics are more annoying than those in non-critical
patches. In contrast, previous works have either ignored these
factors [18] or considered only one [19]. In the last stage, we
predict the score for each patch and calculate their weighted
sum as the final score.

We compare our objective method with state-of-the-art FR-
IQA methods. The experimental results of Spearman’s Rank
Order Correlation Coefficient (SROCC) and Pearson Linear
Correlation Coefficient (PLCC) show that our model’s objec-
tive scores on our proposed dataset have the highest correlation
with MOS (PLCC=0.984 and SROCC=0.978). Additionally,
we evaluate our scoring model on other widely-used IQA
datasets, including LIVE [20], CSIQ [21], TID2013 [22], and
PIPAL [23], further validating its effectiveness.

Our contributions can be summarized as follows:

• We propose the first subjective criterion to assess the
stealthiness of adversarial examples. A rating software
is developed for subjective assessment.

• We create the first large-scale adversarial example dataset,
including human opinion scores for adversarial stealthi-
ness assessment.

• We design a three-stage model to objectively predict ad-
versarial stealthiness by simulating human scoring habits.

• We evaluate the superiority of our objective scoring
model on different datasets.

II. BACKGROUND AND RELATED WORKS

A. Adversarial Attacks

In their pioneering work [1], Szegedy et al. discovered that
classification models could be fooled by applying ”hardly
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TABLE I: Summary of adversarial attacks that are used to construct APSD.

Category Method Parameter

Gradient-based

FGSM [24] ϵ=0.005, 0.01, 0.02, 0.04, 0.08
MIFGSM [3] α=0.001, 0.002, 0.004, 0.008, 0.01
PGD [4] α=0.001, 0.002, 0.004, 0.008, 0.01
NES [11] α=0.008, 0.01, 0.02, 0.04, 0.05

Optimization-based CW [7] (Confidence, learning rate)=(0, 0.01)

Generative model-based

CDP [25] Weight=Default weight
AdvGAN [26] (Weight, ϵ)=(Default weight, 0.008), (Default weight, 0.016), (Default weight, 0.06)
GAP [10] (Weight, Mode)=(Default weight, Universal), (Default weight, Image-dependent)
GUAP [27] (Weight, Mode)=(Default weight, Spatial transformed), (Default weight, Adversarial)

Pixel-based SimBA [28] (ϵ, Early stop)=(0.2, True), (0.8, False), (0.8, True)
Pixel [29] Max iterations=50

Block-based Square [30] (Lp, ϵ)=(L∞, 0.01), (L∞, 0.03), (L∞, 0.06)

(a) (b) (c) (d) (e)

Fig. 2: Adversarial examples generated by different methods.
From left to right: gradient-based, optimization-based, gener-
ative model-based, pixel-based, block-based.

perceptible” perturbations to the original inputs. This phe-
nomenon quickly gained attention, leading to the fast develop-
ment of adversarial attacks. Most subsequent attacks followed
the settings of adversarial attack in [1], attacking target models
using imperceptible perturbations constrained by Lp-norms.
All these attacks are referred to as restricted attacks, and
they have since expanded to tasks beyond classification [14],
[31]–[33]. After analyzing representative restricted attacks’
mechanisms and perturbation patterns, we categorize them
into five types: gradient-based, optimization-based, generative
model-based, pixel-based, and block-based (see Fig. 2).

• Gradient-Based Attack. This is the most common type
of attack and constitutes a significant portion of the over-
all family of adversarial attacks. Gradient-based attacks
produce adversarial examples guided by the gradient
directions. For example, the famous FGSM [24] can be
described as:

x′ = x+ ϵ× sign(∇xJ(θf , x, y)), (1)

where J is an object function, e.g., cross-entropy, y is
the ground truth, f is the target model, θf is the weight
parameters of f , x and x′ are clean and adversarial im-
ages respectively, and ϵ represents perturbation budgets,
that is ∥x−x′∥∞ ≤ ϵ. Based on FGSM, several classical
multi-step gradient-based attacks [3], [4], [11], [34] are
proposed to enhance the adversarial strength. Commonly,
gradient-based attacks use L∞ to ensure stealthiness.

• Optimization-Based Attack. As the name suggests, this
type of attack treats the generation of adversarial samples
as an optimization problem. Szegedy et al. [1] first

demonstrated this optimization problem as:

min c∥r∥2 + J(θf , x+ r, y) s.t. x+ r ∈ [0, 1]m, (2)

where m denotes the dimension of x. To approximate
the optimal solution, Szegedy et al. [1] first utilized box-
constrained L-BFGS. Carlini et al. [7] introduced an
additional variable to remove the explicit box constraint
(x + r ∈ [0, 1]m) and solve the optimization problem
using Adam. Optimization-based attacks generally exhibit
superior stealthiness compared to other attack types.

• Generative Model-Based Attack. This type of attack
employs generative models for end-to-end adversarial
example generation. For example, Xiao et al. [26] trained
a GAN to transform clean samples into adversarial
perturbations. Poursaeed et al. [10] proposed a gener-
ator capable of producing universal perturbations from
random noise, which can be applied to various clean
samples to generate adversarial examples. While these
attacks demonstrate strong adversarial strength, they often
introduce noticeable artifacts (Fig. 2(c)) due to the nature
of generative models themselves.

• Pixel-Based Attack. Pixel-based attack methods, com-
monly used in the black-box scenario [28], [29], [35],
[36], change the minimum number of pixels necessary
to induce misleading. Hence, the corresponding pertur-
bations are sparse. For example, one-pixel attack [35]
aimed to deceive the target model by altering only a single
pixel. Despite manipulating much fewer pixels compared
to other attack types, these attacks often introduce more
noticeable perturbations to human observers due to the
significant changes made to individual pixels (Fig. 2(d)).

• Block-Based Attack. The smallest processing unit in this
type of attack is a local region of images rather than
an individual pixel. For example, the Square attack [30]
samples a perturbation for a randomly selected square
region every time and determines whether to perform an
update based on improving the objective function. Similar
to pixel-based attacks, the perturbations are also easily
detectable (Fig. 2(e)).

Beyond restricted adversarial attacks, another class known
as unrestricted or semantic adversarial attacks [8], [9], [37]–
[41] focuses on preserving semantic plausibility rather than
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Fig. 3: Clean image samples in APSD.

pixel-level similarity. For example, Bhattad et al. [9] and Yuan
et al. [38] altered object colors while maintaining semantic
coherence, such as changing a blue umbrella to red. Jia
et al. [39] attacked face recognition by manipulating facial
attributes like glasses and smiles using StyleGAN. Chen et
al. [40] utilized latent space perturbations in diffusion models
to ensure natural-looking adversarial examples, akin to ap-
proaches in [8].

B. Full-Reference Image Quality Assessment (FR-IQA)

IQA methods can be categorized into three types based
on the availability of a distortion-free reference image: Full-
Reference (FR) [42], [43], Reduced-Reference (RR) [44], and
No-Reference (NR) [45]. Our study focuses on FR-IQA since
attackers possess clean images.

FR-IQA metrics are widely used to quantitatively estimate
the level of image degradation relative to a reference image
caused by various processes, such as formation, restoration,
transformation, or enhancement algorithms. As the evalua-
tion mechanism, IQA plays a critical role in guiding the
development of image processing algorithms, including super-
resolution [46], defogging [47], deraining [48], image gener-
ation [23], etc. The famous New Trends in Image Restoration
and Enhancement workshop (NTIRE) 123 proposed challenges
for IQA, encompassing multiple tracks to stimulate the de-
velopment of various image tasks. However, the assessment
of adversarial stealthiness as well as adversarial example
visual quality is less explored, hindering the development of
imperceptive adversarial attack techniques.

In FR-IQA, the standard research route involves creating a
dataset consisting of reference images, distorted images, and
MOS, followed by designing objective assessment methods
based on the dataset. Several widely-used datasets like LIVE
[20], CSIQ [21], TID2013 [22], and PIPAL [23] already exist
for most image distortions, such as blurring, compression, and
Gaussian noise. These datasets serve as solid foundations for
most FR-IQA metrics, both learning-based [18], [19], [49],
[50] and conventional [15], [51]–[54]. Regrettably, publicly
accessible datasets for adversarial perturbations are currently
unavailable. Existing objective assessment schemes cannot be
directly employed to evaluate adversarial stealthiness. This
is because existing IQA datasets mainly consist of visible

1https://data.vision.ee.ethz.ch/cvl/ntire22/
2https://cvlai.net/ntire/2023/
3https://cvlai.net/ntire/2024/

distortions, while adversarial stealthiness assessment focuses
more on imperceptible perturbations.

C. Perceptual Assessment Of Adversarial Stealthiness

Adversarial stealthiness can be assessed at two levels: pixel
level for restricted attacks and semantic level for unrestricted
attacks.

1) Pixel-Level Stealthiness Assessment
This FR assessment compares clean and adversarial images

to measure visual similarity. In other words, it assesses the
degree of visual degradation of the adversarial image relative
to the clean image, where lower visual degradation indicates
better stealthiness. Although crucial for developing stealthy
restricted attacks [55]–[58], it has not gained widespread
attention. The only two relevant works [16], [59] completely
followed the subjective criteria [17] widely used in traditional
FR-IQA research to collect subjective opinions for visual
quality and evaluated the correlation between current objective
metrics and human subjective scores. However, these studies
did not propose objective methods for future research, and the
evaluation of imperceptible perturbations remains unaddressed
(see Section III-B). Pixel-level stealthiness assessment is still
an open challenge, which this study aims to tackle.

2) Semantic-Level Stealthiness Assessment
Semantic-level assessment, applicable to unrestricted at-

tacks [8], focuses on the realism of adversarial images rather
than pixel similarity to specific reference images. The as-
sessment of semantic plausibility in adversarial images is not
FR but NR because such decisions are often made based on
everyday experience rather than specific clean images [38],
[39]. This is particularly true for assessing the stealthiness of
the unrestricted attack proposed in [8], where no corresponding
clean images exist. Yuan et al. [38] used NIMA [60], an
NR metric, to evaluate color-change stealthiness, while Jia et
al. [39] employed FID [61] to assess the overall stealthiness of
attribute-modified face images. FID measures distribution sim-
ilarity between generated and real images but lacks precision
in evaluating individual images since its precision depends on
dataset size.

III. SUBJECTIVE ASSESSMENT OF ADVERSARIAL
STEALTHINESS

To the best of our knowledge, there are neither subjec-
tive assessment criteria nor publicly available datasets for
adversarial stealthiness assessment, leading to a long-term
lack of dedicated objective assessment metrics. To fill this
gap, we build the first Adversarial Perturbation Stealthiness
Assessment Dataset (APSD), involving human subjective as-
sessments for adversarial perturbations. This dataset can serve
as a benchmark, where we can devise objective assessment
metrics that are more appropriate for this task. A summary of
APSD is provided in Table II.

A. Clean Samples and Adversarial Examples

To construct APSD, we start by collecting many pairs of
clean samples and adversarial examples. In this collection
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Fig. 4: Distribution of adversarial examples generated by different attacks in APSD. The suffix of each attack indicates the
corresponding parameter.

process, we consider the diversity of clean samples and
adversarial perturbations. Specifically, we use up to 5 types
of adversarial attacks and 12 attack methods to construct
the adversarial example dataset, as illustrated in Table I. It
ensures that the subsequent objective metrics are universally
applicable to various adversarial attacks. In contrast, previous
studies [16], [59] focused on only one or two attack types.

1) Collection of Clean Samples
Specifically, we focus on attacks against image classifiers

because they are widely studied [4], [7], [24], [26] and applied
in the real world. To cover a broad range of images, we manu-
ally collect clean images from three well-known classification
datasets: ImageNet [62], COCO [63], and VOC2012 [64]. The
collection is guided by the following three criteria aimed at
collecting representative samples from these datasets.

• High quality. In the initial filtering, we first exclude
images with resolutions below 300× 300, as low resolu-
tions are not conducive to subjective observation. We then
manually screened and removed images with noticeable
artifacts, as these could introduce biases in the perception
of adversarial stealthiness.

• Varying texture richness. We place a strong emphasis
on selecting images with diverse texture richness to en-
sure our dataset effectively captures the varying impacts
of different attack methods. Thus, we collect images
ranging from highly detailed textures (e.g., grass, animal
fur, textiles) to more uniform ones (e.g., sky, wall). To
illustrate this, we analyze texture richness in APSD and
an existing large-scale dataset PIPAL [23] (this dataset
is proposed for quality assessment of images generated
by models) using Local Binary Patterns (LBP) [65] and
Gray-Level Co-occurrence Matrix (GLCM) [66]. LBP
is a texture descriptor that compares each pixel to its
neighbors, generating a binary code, which can capture
local texture information robustly. In experiments, we
compare each pixel with its 8 neighbor pixels when
calculating LBP. GLCM measures the frequency of pixel
pairs with specific values in defined spatial relationships
(distance and orientation). We consider three distances (1,

2, and 3) and four angles (0◦, 45◦, 90◦, and 135◦) for
pixel pairs when calculating GLCM. From GLCM, we
further derive three key texture features, energy, homo-
geneity, and entropy. Energy measures image regularity,
homogeneity reflects the gray-level similarity between
adjacent pixels, and entropy indicates texture complexity.
In Fig. 5, we present histograms of energy, entropy,
homogeneity, and LBP. The histograms of APSD closely
resemble those of PIPAL, indicating comparable texture
richness. In Fig. 5, we show the histograms of energy,
entropy, homogeneity, and LBP. The histograms of the
two datasets exhibit consistent trends and cover similar
ranges on the horizontal axis, indicating comparable
texture richness.

• Diverse categories. We also collect images from diverse
categories to ensure a broad representation of visual
content, enhancing the generalizability of our findings.
Specifically, APSD includes over 200 categories of clean
images, encompassing common types such as animals,
plants, transportation, buildings, food, and furniture.

Finally, we gather 400 clean images featuring a variety of
objects with diverse levels of texture richness, color richness,
and brightness (Fig. 3 shows some examples). We follow the
conventions of most IQA datasets [20], [22], [23] by resizing
images to a uniform dimension (e.g., 512×512). The complete
dataset is available at https://github.com/hcliucs/APSD.

2) Generation of Adversarial Examples
We employ 12 mainstream attacks to generate adversarial

examples, encompassing 5 types of attacks: gradient-based
[3], [4], [11], [24], optimization-based [7], generative model-
based [10], [25]–[27], pixel-based [28], [29], and block-based
[30]. In particular, we consider easily and hardly perceptible
perturbations, ensuring that our objective assessment method
encompasses the functionality of traditional FR-IQA tech-
niques. Therefore, in Table I, we configure different parameters
for most attacks to control the visual effect of the generated
adversarial example. We use Torchattacks 4 to implement

4https://github.com/Harry24k/adversarial-attacks-pytorch
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Fig. 5: Texture richness in APSD and PIPAL.

these attacks. Without loss of generality, we randomly choose
Inception-V3 [67] as the victim model. We add a resizing
layer before the original input layer of Inception-V3 to handle
larger input dimensions. Regarding the inclusion of failed sam-
ples (i.e., adversarial examples that do not change the target
model’s output), there are two perspectives. One advocates for
their inclusion, arguing that the effectiveness of an adversarial
example does not affect stealthiness assessment. The other
suggests excluding them, as failed samples are not strictly
adversarial examples, and their exclusion avoids ambiguity,
ensuring greater rigor. We follow the latter perspective, filter-
ing out failure samples where f(x′) = f(x) and collecting
10586 adversarial examples, whose distribution is shown in
Fig. 4.

B. Subjective Adversarial Stealthiness Assessment

We call for human observers to assess the stealthiness of all
collected adversarial examples. A clear subjective scoring cri-
terion is essential to ensure valid and consistent assessments,
as its rationality affects the dataset’s overall usability.

1) Motivation
In previous FR-IQA studies [16], [43], [59], [68], [69],

observers view two fixed-size images and follow FDIS [17]
to assess image quality subjectively. FDIS divides the impact
of distortions into: 1) imperceptible, 2) perceptible but not
annoying, 3) slightly annoying, 4) annoying, and 5) very
annoying. This division pays more attention to the fine-grained
assessment of easily perceptible distortions while treating all
hardly perceptible distortions as identical. Considering that ❶
the resolution of objective metrics, particularly learning-based
ones, depends on the granularity of the subjective score, and
❷ there is a growing demand for assessments of high-stealth
perturbations as stealthy attacks evolve, this limitation in FDIS
prevents metrics derived from it from delivering a fair evalua-
tion and comparison of various adversarial attacks, particularly
stealthy ones. Therefore, we argue that FDIS is unaligned
with the need to develop stealth adversarial attacks. Refining
the subjective criteria of assessing adversarial stealthiness is
necessary, especially for hardly perceptible perturbations.

2) Our Subjective Assessment Criteria
We propose a two-step assessment method to cover the com-

plete stealthiness spectrum. ❶ Rough assessment: observers
roughly classify the stealthiness as strong (Level 1) or weak
(Level 2) based on whether they can detect the perceptible
difference between the shown two fixed-size images in a
fixed time (5 seconds in this experiments). Any difference
perceived at a glance indicates the perturbation is easily
perceptible, corresponding to weak stealthiness. Otherwise,
the perturbation is hardly perceptible, corresponding to strong
stealthiness. ❷ Fine-grained assessment: observers refine the
rough level by following our proposed fine-grained assessment
criteria.
Assessing strong stealthiness subjectively. The overall visual
degradation of distorted images relative to reference images
serves as the assessing criterion in FDIS. However, assessing
strong stealthiness in this way presents challenges since the
corresponding perturbation is hardly perceptible, i.e., nearly
negligible visual degradation. In light of this, alternative scor-
ing criteria must be sought.

In this study, we establish subjective assessment criteria for
strong stealthiness based on the intensity of detail changes.
Detail changes can be depicted as the color differences be-
tween pixels at identical coordinates. This is because all
distortions (including deformation and shifting) change the
pixel values at some of the identical coordinates. When the
pixel changes beyond a certain threshold, humans can perceive
them as changes in color (see Fig. 7). Thus, spotting signif-
icant detail changes is equivalent to finding corresponding
significant color differences among all pairs of pixels. Note
that significant color difference is not equivalent to L∞ since
L∞ treats each color channel equally, while the human eye’s
sensitivity differs on color channels.

To help observers intuitively perceive the intensity of color
changes, we should expand their perceptual dimension beyond
the two fixed-size images. As shown in Fig. 7, enlarging pixels
into solid color blocks to highlight color differences, similar
to the game named Spot The Difference Color 5. However,
identifying these significant color differences by pixel-by-pixel
comparison is inefficient and highly labor-intensive.

To address this problem, we provide observers with scaled
grayscale difference maps (SGDM) between the clean im-
ages and adversarial images, serving as an alternative to
the enlargement operation. SGDM is defined as s × gray(x)
where gray(x)=0.299×xr+0.587×xg+0.114×xb, and xr, xg ,
and xb represent the RGB channels of image x. The gray
operation accounts for the human eye’s sensitivity to different
color channels. We use s to amplify the color differences
for all pairs of pixels simultaneously, gradually increasing
s to highlight significant differences earlier. To sum up, our
subjective assessment criterion for strong stealthiness can be
described as follows:

• Level 1.1: imperceptible even seeing the 20× difference
map (score: 100);

• Level 1.2: imperceptible until seeing the 20× difference
map (score: 95);

5https://www.53lu.com/tool/spotcolor/
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Fig. 6: Rating software. The left is the main interface, and the right is the interface of grayscale difference maps.

Dis. ImageRef Image

R=217
G=199
B=133

R=218
G=200
B=114

Enlarge the selected pixel into a solid color block

(228,58) (228,58)

Fig. 7: The color difference between pixel pairs can be
highlighted by enlargement. R, G, and B denote the red, green,
and blue channels of RGB color space, respectively.

• Level 1.3: imperceptible until seeing the 15× difference
map (score: 90);

• Level 1.4: imperceptible until seeing the 10× difference
map (score: 85);

• Level 1.5: imperceptible until seeing the 5× difference
map (score: 80).

Level 1.1 indicates the highest stealthiness. Note that the
scaled rate corresponding to each sub-level is determined by
extensive empirical observations. Moreover, SGDM can only
be accessed when the observer determines that the perturbation
is hardly perceptible.
Assessing weak stealthiness subjectively. We still assess
weak stealthiness based on the overall visual degradation
between the adversarial examples and clean samples [16],
[59] since the degradation is distinguishable in this case. This
also ensures that our subsequent objective metric applies to
traditional FR-IQA tasks. The more severe the quality degra-
dation, the worse the stealthiness in this case. Specifically, we
use the last four levels of FDIS to quantify weak stealthiness
subjectively:

• Level 2.1: perceptible, but not annoying (score: [60,80));
• Level 2.2: slightly annoying (score: [40,60));
• Level 2.3: annoying (score: [20,40));
• Level 2.4: very annoying (score: [0,20)).

We must emphasize that SGDM is inaccessible to observers
when assessing weak stealthiness.

Our subjective assessment criteria proposed for strong and

(a) (b)

(a) (b)

Fig. 8: Performance of different adversarial attacks. (a) MOS
histogram over all attacks. (b) The number of adversarial
examples with hardly perceptible perturbations (MOS≥0.8).

weak stealthiness address the limitations of FDIS by elucidat-
ing assessment methods across the entirety of the stealthiness
spectrum, which are more in line with the development needs
of adversarial attacks.

3) Subjective Experiments
We recruit human observers to score the stealthiness of

all adversarial examples based on the proposed two-step
assessment method.
Rating software. We design a rating software as depicted in
Fig. 6. Its main interface (the left image in Fig. 6) displays
a pair of fixed-size images, where the reference image is
consistently positioned on the left and the adversarial image
on the right. In the first assessment step, observers determine
whether the stealthiness belongs to strong or weak stealthiness
by looking at the two images. In the second step, if the
perturbation is regarded as strong stealthiness, the observers
are permitted to click the blue “difference” button for a new
interface (the right image in Fig. 6), which shows the scaled
grayscale difference maps. Observers can modify the scaling
rate within the range of 5× to 20× via interface buttons below
the disparity map. Note that observers are always instructed to
start at the lowest scaling rate and gradually increase the scale
factor until the scaled perturbation becomes perceptible or
the maximum factor is reached. If the perturbation possesses
weak stealthiness, observers can only continue to rate the
stealthiness by observing the two fixed-size images.
Subjective scoring configurations. All subjective evaluations
are conducted in a laboratory environment with normal indoor
illumination conditions, where the incident light falling on
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the screen is 90 lux and the environmental illumination from
behind the monitor is 240 lux. The rating software is displayed
on four identical 27-inch monitors, each with a resolution of
2560× 1440 and default settings for color calibration, bright-
ness, contrast, etc. To prevent extra distortions, all images are
shown at the original resolution (512× 512). We recruited 60
human observers for our subjective assessments, comprising
33 females and 27 males with normal or corrected vision,
aged from 22 to 30 years old. Approximately two-fifths of
observers have no prior background knowledge of adversarial
attacks. We divided all observers into 4 groups, with 15
observers in each group. Similarly, we divided the clean
samples in APSD into 4 sets, with 100 samples in each set.
Each group of observers is assigned a set of clean samples and
corresponding adversarial examples. Thus, each adversarial
example is evaluated by 15 observers. We require all observers
to maintain a fixed viewing distance of approximately four
times the image height. A 20-minute rating is followed by a
mandatory break to prevent visual fatigue.
Processing of raw scores. We process all raw subjective
scores to generate the final MOS for each adversarial example.
Specifically, we apply outlier detection as suggested in [17]
to do this. A raw score µi,j of adversarial example i from
observer j is considered an outlier if it falls outside the
corresponding 95% confidence interval [µ̄i − δi, µ̄i + δi]. µ̄i

and δi are defined as

µ̄i =
1

N

N∑
j=1

µi,j ,

δi = 1.96× σi√
N

,

(3)

where

σi =

√√√√ N∑
j=1

(µi,j − µ̄i)
2

N − 1
, (4)

and N is the number of observers (N = 15). After removing
outliers, we average the remaining scores for each adversarial
example to obtain its MOS. Note that all raw scores are divided
by 100, making the MOS values in APSD range from 0 to
1. The MOS histogram in Fig. 8(a) reflects that adversarial
perturbations in the APSD cover all levels of stealthiness
except Level 1.1. In Fig. 8(b), we highlight the attacks that
produce hardly perceptible perturbations, where CW [7] and
FGSM [24] (mainly FGSM 0.005) account for the majority.

C. Analysis of APSD

We first demonstrate the validity of MOS values in APSD.
Then, we identify the limitations of existing IQA metrics in
assessing adversarial stealthiness.
Scoring consistency. To verify the validity of MOS values,
we illustrate the distribution of 2 × δi in Fig. 9. It shows a
high agreement among all observers in assessing the same
adversarial examples, with 2 × δi mainly falling between
0.0824 and 0.1844. Meanwhile, in Fig. 10, we also show
that each group of observers tends to agree on assessing the

0.0314 0.0824 0.1334 0.1844 0.2354 0.2864
0

200

400

600

800

1000

Fig. 9: Distribution of raw subjective scores’ confidence inter-
vals.

MIFGSM_0.001 CW AdvGAN_0.06 SimBA_0.2T Square_0.01

0.2

0.4

0.6

0.8

M
OS

Group 1
Group 2
Group 3
Group 4

Fig. 10: Subjective scores of four groups of observers for the
same attacks.

same attack. Both the two figures provide strong evidence
supporting the high validity of APSD.
Performance of the existing IQA metrics on APSD. We
use SROCC and PLCC, widely recognized metrics in IQA
studies, to calculate the correlation between the objective
scores and MOS values. A satisfactory objective metric should
own a strong correlation. PLCC assesses the linear correla-
tion between ground truth and the predicted scores, whereas
SROCC describes the level of monotonic correlation. PLCC
and SROCC range from 0 to 1 for positive correlations,
with higher values indicating stronger correlation and more
accurate objective assessment. Before computing PLCC and
SROCC, we normalize the scores of each metric, as well as
the subjective scores, by

sji =
sji − sjmin

sjmax − sjmin

, (5)

where sji represents the score of i-th sample on j-th metric, and
sjmax and sjmin are the maximum and minimum scores of the
j-th metric. Fig. 11(a) confirms the inadequate performance
of current metrics when assessing the adversarial stealthiness.
Although PSNR, a commonly used metric, achieves the best
overall performance, its SROCC and PLCC values remain
below 0.89, suggesting room for improvement in objective
adversarial stealthiness assessment. Moreover, we re-evaluate
these metrics on easily perceptible perturbations (MOS< 0.8)
(Fig. 11(b)), revealing the struggle of current metrics in
accurately assessing weak stealthiness even if we completely
follow FDIS [17]. Hence, adversarial perturbations differ
significantly from traditional distortions in perception. These
experimental results strengthen our determination to develop
a new objective metric aligned with subjective perception.
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(a) (b)

(a) (b)
Fig. 11: Performance of the existing IQA metrics and Lp

norms on the proposed APSD. (a) Evaluation on the whole
APSD. (b) Evaluation on adversarial examples with easily
perceptible perturbations (MOS<0.8).

IV. OBJECTIVE METHOD

Section III-C shows that current assessment metrics cannot
effectively evaluate adversarial samples’ stealthiness. This
section introduces a novel learning-based objective assessment
method for measuring adversarial stealthiness.

Fig. 12 shows the overall pipeline of the proposed Attention-
based Adversarial Stealthiness Assessment Model (A2SM).
A2SM contains three stages: (1) feature extraction, (2) feature
fusion, and (3) score prediction. Suitable attention mechanisms
are employed in each stage to enhance model performance.

• Feature extraction. We integrate two types of feature
extractors: a vision transformer (ViT) extractor [70] and
a convolutional neural network (CNN) extractor [71].
The ViT extractor captures global features for a holistic
understanding, while the CNN extractor focuses on local
features for detailed analysis.

• Feature fusion. We calibrate and integrate extracted
features from a global perspective. First, we calibrate the
local features using an offset module under the guidance
of the global features. Then, we calibrate the difference
map (F d

f ) using two specially designed modules, self-
attention and cross-attention. The former calibrates the
difference map based on itself, while the latter calibrates
the difference map based on the reference image. After
the calibrations, we fuse all necessary features and enter
the last stage.

• Score prediction. Using a spatial attention module, we
predict scores for all patches from a local perspective.
The scores are then weighted and summed to yield the
final predicted score.

In the subsequent sections, we detail our designs of A2SM.

A. Feature Extraction Stage

The completeness of basic features is crucial in achieving
more accurate assessments. Most previous studies [19], [49],
[72] solely rely on a single CNN extractor. Although CNNs
excel at capturing rich low-level features like textures, they
struggle to grasp the significance of each patch to the entire
image, a critical aspect of the assessment. Lao et al. [18]
proposed using another ViT extractor to address this limitation
at this stage. The ViT can capture features over long distances,
compensating for the shortcomings of the CNN extractor.

Empirical evidence in [18] demonstrates that the additional
extractor enhances the scoring model’s performance. Thus, we
adopt this approach in our study, combining both CNN and
ViT extractors to capture a comprehensive feature set.

In particular, for the ViT extractor, we divide its inputs into
8× 8 patches, where the input size is 224× 224. The output
of the ViT extractor is obtained from the first five blocks
of ViT. We concatenate the outputs of each block along the
channel dimension to form the global features (F x

v and F x′

v ).
Regarding the CNN extractor, we use ResNet50 [71] as its
backbone. Similarly, we use the outputs of ResNet50’s first
three blocks in stage 1 to yield the local features (F x

c and F x′

c ).
We focus primarily on the shallow features of both the ViT
and CNN because the shallow features concentrate on the low-
level characteristics of the images, making them applicable for
various vision tasks.

B. Feature Fusion Stage

Offset module. Generative models often produce slight er-
rors and misalignments of edges in the corresponding ad-
versarial examples. However, vanilla convolution operations
have limitations in capturing such distortions, hurting model
performance. In [18], [73], deformable convolution [74] has
demonstrated its superiority in handling similar distortions.
Therefore, we implement an offset module based on de-
formable convolution to calibrate extracted local features, as
shown in Fig. 12.

Specifically, we employ a vanilla convolution layer (k = 3,
s = 1, and p = 1, where k and s represent kernel size, stride,
and padding) and a deformable convolution layer (k = 3, s =
1, and p = 1) to build the offset model. First, the vanilla
convolution layer is applied to F x

v to produce an offset map.
Then, the deformable convolution layer is used to calibrate the
local features under the guidance of the offset map. Generating
the offset map based on F x

v because F x
v represents a holistic

image understanding.
Fusion module. The two fusion modules in Fig. 12 (Fusion1
and Fusion2) are used to integrate necessary features. For each
fusion module, we first concatenate all its inputs. Then, we
pass the concatenated results through the corresponding fusion
module. In experiments, we build Fusion1 using a vanilla
convolution layer (k = 1, s = 1, and p = 0), while Fusion2
consists of two vanilla convolution layers (k = 3, s = 1, and
p = 1).
Self-attention module and cross-attention module. In most
previous studies [18], [49], the difference map F d

f between
F x′

f and F x
f are directly used for the final prediction. However,

the contribution of distortions in different regions to the
final score varies as human observers tend to focus more
on significant patches. After analysis, we believe that the
significance of each patch is determined by two factors. The
first is the relative strength of perturbation in different patches.
The stronger the interference, the easier it will be to perceive.
The second is the relative importance of each patch in the clean
image. Distortions in key patches are often more annoying than
those in non-key patches. We propose a self-attention module
and a cross-attention module to capture two types of relative

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3520016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 21,2024 at 07:46:48 UTC from IEEE Xplore.  Restrictions apply. 



10

CNN Extractor

Self-Attention

ViT Extractor

Offset

Offset

Score

Fusion1

Fusion1

Fusion2Cross-Attention

Feature Extraction Feature Fusion Score Prediction

CNN Extractor

ViT Extractor

Spatial Attention

Fig. 12: Overview of A2SM. All dotted cubes in this figure mean that they share weights with their corresponding solid cubes.
⊖ denotes element-wise subtracting. F x

c and F x′

c denote local features, while F x
v and F x′

v are global features. F x
f and F x′

f are
initial fused features. F d

f is a difference map between F x
f and F x′

f . Ff means the final fused features.

Softmax

Output

Reshape

Input1Input Input2

Input interface

Self-Attention Cross-Attention

Fig. 13: Attention modules in the feature fusion stage of
A2SM. Self-attention and cross-attention are multi-head, and
there is a head of them. The self-attention module only accepts
one input, while the cross-attention module accepts two. WQ,
WK , and WV are 1 × 1 convolution layers. RH and RW

are two learnable parameters denoting the relative position
encoding for height and width. ⊕, ⊗, H , W , and d mean the
element-wise sum, matrix multiplication, height, width, and
channel respectively.

relationships. Both modules capture the relative relationships
from a global perspective. In contrast, works in [19], [72] only
considered one of the two factors and calibrated the difference
map from a local perspective.

We first calibrate the difference map using a self-attention
module (Fig. 13) that captures the significance of patches
according to the difference map. In experiments, we employ
multi-head self-attention (MHSA) proposed in [75] to imple-
ment this module, which is similar to the self-attention in ViT

[70]. In Fig. 13, we illustrate one head of the self-attention
module, whose input is a chunk of F d

f . Specifically, we split
F d
f into k (k = 8) chunks along the channel dimension for

k heads. With c (c = 1024) denoting the channels of F d
f ,

we have d = c/k. In each head, we first convert its input
into query Q, key K, and value V through three vanilla
convolution operations (k = 1, s = 1, and p = 0), i.e., WQ,
WK , and WV in Fig. 13. The first matrix multiplication in
Fig. 13 calculates the significance of patches based on Q and
K. Subsequently, we embed two-dimensional location infor-
mation into Q through matrix multiplication (

⊗
). The two-

dimensional location information is learned by two parameters,
RH and RW , representing the relative position encoding for
height and width. Compared with the one-dimensional location
encoding in ViT [70], two-dimensional position encoding is
more suitable for images.

We then calibrate the difference map under the guidance of
the clean sample using a cross-attention module. As illustrated
in Fig. 13, we mainly modify the input interface so that
the cross-attention module can capture the significance of
patches determined by the clean sample. Each head of the
cross-attention module has two inputs. The Input1 is a chunk
of the self-attention module’s output (i.e., initially calibrated
difference map) while the Input2 is a chunk of F x

f (i.e.,
features of the clean sample). In the cross-attention, chunks of
F x
f are converted into Q and K, which are used to calculate

the significance of patches. The matrix multiplication at the
top of Fig. 13 completes the calibration for the difference map
under the guidance of the clean sample.

C. Score Prediction Stage.

In the last stage, we predict a score for each patch repre-
sented by Ff ij from a local perspective (Ff ij ∈ R1×1×P , i
and j are the coordinates for height and width of Ff ). We
propose a spatial attention module to do this. As illustrated
in Fig. 14, the spatial attention module is two-branch. The
above branch in Fig. 14 predicts an attention map (AM )
for all patches, where GAP and GMP mean channel-wised
global average pooling and channel-wised global max pooling.
At the same time, the bottom branch predicts a score map
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GAP

GMP :

Score

Fig. 14: Spatial attention. Each cuboid marked with 3×3 or 1×
1 represents a vanilla convolution layer. GAP is channel-wise
global average pooling, and GMP is channel-wise global max
pooling. ⊙ means dot product. For all patches, the top branch
predicts an attention map (AM ), and the bottom predicts a
score map (SM ).

TABLE II: Summary of popular IQA datasets and our APSD.
DMOS is inversely proportional to MOS. Dis. is the abbrevi-
ation of distortion

Dataset #Ref #Dis. Dis. Type Rating Type Score Range

LIVE [20] 29 779 5 DMOS [0,100]
CSIQ [21] 30 886 6 DMOS [0,1]

TID2013 [22] 25 3000 24 MOS [0,9]
PIPAL [23] 250 25850 40 MOS [917,1836]

APSD (ours) 400 10586 12 MOS [0,1]

SM ∈ RH×W×1 for all patches using a 1 × 1 vanilla
convolution layer. The final score is computed by:

score =
SM ⊙AM∑

AM
, (6)

where ⊙ denotes the dot product.
To train A2SM, we use mean squared error (MES) between

the predicted score and MOS as the training loss. Note that
this distribution Fig. 4 is imbalanced because we only consider
successful cases. To mitigate the potential negative impact
of the imbalanced distribution on the training, we take the
following two measures. First, we apply data augmentation
(random rotation and flipping) to these adversarial examples
generated by the last six methods in Fig. 4. The rotation and
flipping do not affect the ground truth of MOS. Second, we
apply the re-weighting scheme proposed in [76] to re-balance
the loss among different attacks.

V. EXPERIMENTS

In this section, we compare the performance of A2SM and
other state-of-the-art IQA methods on various datasets.

A. Configuration

Datasets. We consider five datasets for evaluations, including
our APSD, LIVE [20], CSIQ [21], TID2013 [22], and PIPAL
[23]. The last four datasets are commonly used IQA datasets.
We summarize all datasets in Table II. LIVE, CSIQ, and
TID2013 only involve traditional image distortions, e.g., blur-
ring. PIPAL involves traditional distorted images and images
restored by multiple types of image restoration algorithms
(e.g., denoising, super-resolution, etc). APSD is the first large-
scale adversarial example dataset, while the other four datasets

TABLE III: Performance comparison on APSD

Category Method PLCC SROCC

Traditional

FSIM [52] 0.735 0.825
GMSD [51] 0.790 0.889
MAD [21] 0.818 0.868

MS SSIM [78] 0.698 0.853
CW SSIM [79] 0.424 0.615

SSIM [15] 0.748 0.827
PSNR 0.879 0.885

VIF [53] 0.804 0.808
VSI [54] 0.712 0.830

L0 0.137 0.182
L1 0.730 0.796
L2 0.741 0.885
L∞ 0.292 0.657

Learning

AHIQ∗ [18] 0.453 0.457
IQT [80] 0.941 0.942

WaDIQaM-FR [50] 0.950 0.946
RADN [73] 0.952 0.947

DeepIQA [81] 0.964 0.955
DeepQA [82] 0.972 0.966

AHIQ [18] 0.976 0.972
A2SM (ours) 0.984 0.978

do not involve similar distortion types. For each dataset, we
randomly split it into a training set (60%), a validation set
(20%), and a test set (20%) according to reference images.
Meanwhile, we normalize all datasets’ MOS (or difference
mean opinion score (DMOS)) between 0 and 1 using Eq. (5).
Implementation details. During the training phase, we assign
pre-trained weights of ViT [70] and ResNet50 [71] on Ima-
geNet to the ViT extractor and CNN extractor, respectively,
and freeze them. We use Adam optimizer [77] whose initial
learning rate is 1e−4 to optimize the remaining components
of A2SM while the batch size is 8. We also apply random
rotation and random flip (both operations do not affect the
adversarial stealthiness) to augment all datasets. All input
images are resized into a size of 224 × 224. During the test
phase, we randomly crop images into a size of 224 × 224
and repeat the prediction 15 times. The average score of all
cropped images is the final score. Such operation is common in
previous studies [18], which can improve assessment accuracy
to a certain extent. We implement A2SM using Pytorch and
train it using a single NVIDIA RTX3090 GPU.
Metrics. We use PLCC and SROCC to evaluate the per-
formance of all test methods as we have done in Section
III-C. PLCC and SROCC quantify the correlation between the
objective and subjective scores. A higher correlation means
that the corresponding objective method is well-aligned with
the HVS, i.e., a more accurate objective assessment.

B. Overall Evaluation

In this section, we first evaluate the performance of our
A2SM on different datasets to show the effectiveness of
A2SM. Then, we compare A2SM with the existing popular
IQA methods, including conventional and learning-based ones,
on our APSD and other IQA datasets. For conventional meth-
ods, we realize them using two open-source libraries: PYIQA 6

and PIQ 7. For learning-based methods, we use their open-

6https://github.com/chaofengc/IQA-PyTorch
7https://github.com/photosynthesis-team/piq
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(a) LIVE (b) CSIQ (c) TID2013 (d) PIPAL (e) APSD (ours)

Fig. 15: Objective scores of A2SM vs. the MOS values on different datasets.

source codes. In particular, when we conduct evaluations on
APSD, we retrain all learning-based methods on APSD using
their default hyper-parameters.
Effectiveness of A2SM on different datasets. Fig. 15 shows
the effectiveness of A2SM on different datasets. In Fig. 15(e),
all points lie very close to the line MOS = Predict, indicating
that 2ASM effectively predicts the stealthiness of different lev-
els. Meanwhile, 2ASM also achieves satisfactory assessments
on the other four datasets, as illustrated in Fig. 15(a)-(d). The
scatter plot of 2ASM on PIPAL (Fig. 15(d)) appears slightly
loose because PIPAL contains far more distortion types than
other datasets, significantly increasing the fitting difficulty.
Superiority of A2SM. We compare A2SM with other state-
of-the-art IQA methods in Table III and Table IV. Table III
shows the PLCC and SROCC of A2SM and other IQA metrics
on our APSD dataset, where LPIPS∗ and AHIQ∗ denote
the utilization of pre-trained weights provided by PYIQA,
without additional training on APSD. The results show that
A2SM outperforms other methods in predicting adversarial
stealthiness, achieving the highest PLCC and SROCC values
of 0.984 and 0.978, respectively. It means that A2SM can
be used to evaluate the stealthiness of adversarial samples
effectively. Table IV shows the PLCC and SROCC results of
different metrics on the traditional IQA datasets. It is worth
noting from the results that A2SM consistently performs the
best or at a competitive level. Notably, A2SM attains the
highest values of PLCC and SROCC on the two complex
datasets, TID2013 [22] and PIPAL [23], while remaining
comparable to the best-performing methods on LIVE [20] and
CSIQ [21]. In conclusion, these results demonstrate the ver-
satility of A2SM’s design, allowing its application to various
objective assessment tasks. Besides, as anticipated, learning-
based methods consistently outperform traditional methods in
both Tables III and IV.

C. Ablation Study

In [18], the authors discussed the impact of the two feature
extractors (ViT and CNN) and the deformable convolution
for model performance. Here, we discuss the efficiency of
the proposed self-attention and cross-attention modules. As
shown in Table VI, both modules contribute to improving
A2SM’s performance, and their respective contributions to
the improvement seem similar. A2SM achieves the best per-
formance when the reference image and difference map are
considered simultaneously during the calibration, supporting

our previous analysis that both factors affect the significance
of patches. In summary, modeling human scoring habits can
improve the performance of the objective scoring model.

D. Cross-Dataset Evaluation

We evaluate the generalization of A2SM and verify the
necessity of constructing APSD. Specifically, we train A2SM
on a source dataset and test it on different destination datasets.
Generalization. In Table V, the A2SM trained on TID2013
[22] (denoted as A2SM-TID) exhibits the best cross-dataset
capability. Particularly, for LIVE and CSIQ, A2SM-TID is
highly available. In contrast, A2SM-TID generalization to
complex destination datasets, PIPAL and APSD, is relatively
limited. However, A2SM-TID still outperforms or is com-
petitive with most traditional IQA methods on these two
datasets. For example, when assessing adversarial stealthiness,
A2SM-TID’s PLCC and SROCC values are 0.873 and 0.875,
while the PSNR values are 0.879 and 0.885. We also test
A2SM’s generalization to other victim models by constructing
an additional testing dataset.
Necessity. Although A2SM-TID possesses good generaliza-
tion, its performance still degrades heavily compared to A2SM
trained on APSD (Table III and IV). Such an outcome suggests
that it is necessary to construct a dedicated dataset for specific
distortion types.

E. Interpretability in A2SM

We visualize the attention map in the spatial attention
module of A2SM, noting that it employs different strategies for
scoring images with varying levels of stealth. Specifically, the
attention map is visualized as Clip(0.6 × x′ + 0.8 × AMr),
where AMr is the resized result of AM to the size of x′,
and Clip truncates values between 0 and 1. As shown in
Fig. 16, A2SM attends to the entire image for high-stealth
images, while it focuses on localized areas with noticeable
perturbations in low-stealth images. This distinction is logi-
cal: ❶ high-stealth images must maintain quality across all
areas, necessitating a global assessment to catch minor issues,
resulting in distributed attention; ❷ low-stealth images often
exhibit significant distortions, so local assessment of obvious
distortions suffices to conclude low stealth, concentrating
attention on those areas. This adaptive attention highlights
A2SM’s ability to adjust to different stealth levels.

Fig 17 shows that for different attacks, A2SM consistently
demonstrates global attention to high-stealth images (top)
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TABLE IV: Performance comparison on LIVE, CSIQ, TID2013, and PIPAL.

Category Method LIVE CSIQ TID2013 PIPAL
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

Traditional

FSIMc [52] 0.961 0.965 0.919 0.931 0.877 0.851 0.559 0.468
GMSD [51] 0.957 0.960 0.945 0.950 0.855 0.804 0.619 0.591
MAD [21] 0.968 0.967 0.950 0.947 0.827 0.781 0.626 0.608

MS SSIM [78] 0.940 0.951 0.889 0.906 0.830 0.786 0.563 0.486
SSIM [15] 0.937 0.948 0.852 0.865 0.777 0.727 0.398 0.340

PSNR 0.865 0.873 0.819 0.810 0.677 0.687 0.292 0.255
VIF [53] 0.960 0.964 0.913 0.911 0.771 0.677 0.524 0.433
VSI [54] 0.948 0.952 0.928 0.942 0.900 0.897 0.516 0.450

NLPD [83] 0.932 0.937 0.923 0.932 0.839 0.800 0.511 0.498

Learning

LPIPS [84] 0.934 0.932 0.927 0.903 0.749 0.670 0.839 0.843
JSPL [19] 0.983 0.980 0.970 0.977 0.949 0.940 0.877 0.874

DISTS [85] 0.955 0.955 0.946 0.946 0.855 0.830 0.686 0.674
WaDIQaM-FR [50] 0.980 0.970 0.951 0.960 0.946 0.940 0.654 0.678

RADN [73] 0.878 0.884 0.846 0.828 0.845 0.830 0.867 0.866
DeepQA [82] 0.982 0.981 0.965 0.961 0.947 0.939 0.795 0.785

AHIQ [18] 0.989 0.984 0.978 0.975 0.968 0.962 0.865 0.852
A2SM (ours) 0.982 0.976 0.981 0.973 0.974 0.972 0.881 0.875

TABLE V: Cross-dataset evaluation for A2SM

Source
Destination

LIVE CSIQ TID2013 PIPAL APSD
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

LIVE - - 0.909 0.880 0.805 0.753 0.636 0.614 0.722 0.770
CSIQ 0.950 0.946 - - 0.832 0.810 0.639 0.645 0.812 0.825

TID2013 0.950 0.953 0.954 0.936 - - 0.671 0.665 0.873 0.875
PIPAL 0.842 0.855 0.867 0.872 0.795 0.770 - - 0.677 0.767
APSD 0.858 0.892 0.855 0.870 0.719 0.728 0.528 0.531 - -

TABLE VI: Impact of self-attention and cross-attention

No. Self Cross PLCC SROCC

1 ✘ ✘ 0.973 0.970
2 ✔ ✘ 0.981 0.975
3 ✘ ✔ 0.981 0.976
4 ✔ ✔ 0.984 0.978

TABLE VII: Increase in predicted scores after attack

Source Max Min Average Median

ϵ = 0.005 0.167 0.002 0.090 0.088
ϵ = 0.01 0.297 0.117 0.183 0.179
ϵ = 0.02 0.269 0.139 0.197 0.197
ϵ = 0.04 0.251 0.111 0.165 0.165
ϵ = 0.08 0.154 0.048 0.089 0.088

while focusing on locally significant distorted areas in low-
stealth images (bottom). The results illustrate that A2SM’s
adaptive scoring strategy is both effective and universally
applicable across various attack methods.

VI. LIMITATIONS

A. Vulnerability to Adversarial Attacks

Like all previous learning-based scoring schemes [86],
[87], as well as NR-IQA models [88], A2SM is also sus-
ceptible to being fooled by adversarial attacks. To illustrate
this, we use adversarial examples generated by FGSM (ϵ =

StealthHigh Low
FGSM_0.08FGSM_0.04FGSM_0.02FGSM_0.01FGSM_0.005

Fig. 16: Adaptive attention in A2SM when scoring images
with different levels of stealth. The top images are adversarial
examples generated by FGSM with different perturbation
budgets. The bottom images are the results of the combination
of x′ and AM in the spatial attention module.

0.005, 0.01, 0.02, 0.04, 0.08) in APSD as clean samples and
further perturbs them using targeted FGSM (ϵ = 0.005, target
score is 1) to attack A2SM. Notably, FGSM tends to generate
hardly perceptible perturbations when ϵ = 0.005 (Fig. 8(b)),
so these new perturbations do not significantly affect the visual
appearance of images already with weak stealthiness.

As shown in Table VII, A2SM is vulnerable to these
new perturbations, generally increasing predicted scores by
a sub-level. Thus, A2SM is suitable only for post-event
evaluations and cannot guide adversarial example generation
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Fig. 17: The adaptive attention in A2SM is universal to
different attack methods.

like traditional methods such as Lp-norms. Despite this, the
best approach is to use traditional metrics for generating
adversarial examples and learning-based methods for objective
evaluations. Our future research will focus on enhancing
scoring model robustness and integrating them into adversarial
example generation.

B. Limited Classification Models

In constructing APSD, we concentrated on the Inception-V3
model as the victim. However, different victim models yield
varying perturbation patterns; therefore, APSD may not be
sufficient to capture the full range of adversarial perturbations.
Nevertheless, we find that A2SM has the potential to gener-
alize to other classification models because, for most attack
methods, the influence of the target model on the perturbation
patterns is minimal, resulting in no significant changes (see
Fig. 18). In contrast, adversarial attack methods have a more
substantial impact on perturbation patterns in Fig. 18. This
suggests that the diversity of attack methods is more critical
than the diversity of models when constructing the dataset.
Nevertheless, we still believe it is necessary to extend APSD
by considering other victim models.

C. Limited Tasks

We focus solely on classification tasks in this study, which
may limit the applicability of the dataset to other computer
vision tasks, such as object detection and segmentation. This
limitation primarily arises from the differentiated distribution
of adversarial perturbations. For classification tasks, adversar-
ial perturbations are generally spread across the entire image

Inception-V3 Resnet50 VGG16 Efficient-B7

M
IF
G
SM

Si
m
BA

Sq
ua

re
C
W

G
U
AP

Fig. 18: Adversarial examples generated by different attack
methods targeting different models. The attack methods have
a more significant effect on the perturbation pattern than the
choice of victim model. The perturbation patterns shown in
each column differ significantly, while the patterns within each
row remain similar.

(see the right image in Fig. 19). In contrast, detection and
segmentation tasks involve more localized perturbations (see
the middle image in Fig. 19), concentrating on objects of
interest, as these tasks focus on object-level or region-specific
outputs. This discrepancy in perturbation patterns complicates
the direct transfer of the visual quality evaluation framework
from classification to detection or segmentation tasks. As
existing subjective criteria are optimized for global image
quality evaluation, they may not align with the region-specific
requirements of detection and segmentation tasks. To address
this limitation, future work could explore adapting subjective
criteria to better capture region-specific assessments.

VII. CONCLUSION

This paper proposes novel subjective and objective assess-
ment methods for adversarial stealthiness, bridging a long-
standing technical gap. To evaluate stealthiness subjectively,
we analyze the limitations of existing subjective criteria
and expand human observers’ perception dimension to refine
stealthiness for subtle pixel changes. Then, we construct the
first large-scale benchmark dataset, involving 12 state-of-the-
art adversarial attacks and human subjective scores for the
adversarial stealthiness. Moreover, we design a new objective
assessment model that simulates human scoring habits as much
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Clean Diff (detection & segmentation) Diff (classification)

Fig. 19: Differences in adversarial perturbation distribution
across tasks. The left image shows the clean image. The
middle image illustrates the difference between the clean
image and the adversarial example generated using DAG [89]
for the object detection and segmentation task. The right
image shows the difference between the clean image and the
adversarial example generated by PGD for the classification
task.

as possible using appropriate attention mechanisms. Extensive
experimental results demonstrate that our objective scoring
model exhibits significant superiority on APSD and performs
well on the other IQA datasets. We anticipate that this research
will bring increased focus to the importance of stealthiness in
adversarial attacks, ultimately driving further advancements in
developing imperceptible adversarial attack techniques.
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[83] V. Laparra, J. Ballé, A. Berardino, and E. P. Simoncelii, “Perceptual
image quality assessment using a normalized laplacian pyramid,” in
HVEI, 2016, pp. 43–48.

[84] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
CVPR, 2018, pp. 586–595.

[85] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality
assessment: Unifying structure and texture similarity,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 5, pp. 2567–2581, 2020.

[86] J. Korhonen and J. You, “Adversarial attacks against blind image quality
assessment models,” in QoEVMA, 2022, pp. 3–11.

[87] E. Shumitskaya, A. Antsiferova, and D. Vatolin, “Fast adversarial
cnn-based perturbation attack on no-reference image-and video-quality
metrics,” arXiv preprint arXiv:2305.15544, 2023.

[88] W. Zhang, D. Li, X. Min, G. Zhai, G. Guo, X. Yang, and K. Ma,
“Perceptual attacks of no-reference image quality models with human-
in-the-loop,” NeurIPS, vol. 35, pp. 2916–2929, 2022.

[89] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” in ICCV,
2017, pp. 1369–1378.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3520016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 21,2024 at 07:46:48 UTC from IEEE Xplore.  Restrictions apply. 


