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SSD: A State-based Stealthy Backdoor Attack For
IMU/GNSS Navigation System in UAV Route

Planning
Zhaoxuan Wang, Yang Li*, Member, IEEE, Jie Zhang, Xingshuo Han, Kangbo Liu, Yang Lyu, Yuan

Zhou, Tianwei Zhang, Member, IEEE, and Quan Pan, Member, IEEE.

Abstract—Unmanned aerial vehicles (UAVs) are increasingly
employed to perform high-risk tasks that require minimal human
intervention. However, they face escalating cybersecurity threats,
particularly from GNSS spoofing attacks. While previous studies
have extensively investigated the impacts of GNSS spoofing
on UAVs, few have focused on its effects on specific tasks.
Moreover, the influence of UAV motion states on the assessment
of cybersecurity risks is often overlooked. To address these gaps,
we first provide a detailed evaluation of how motion states
affect the effectiveness of network attacks. We demonstrate that
nonlinear motion states not only enhance the effectiveness of
position spoofing in GNSS spoofing attacks but also reduce the
probability of detecting speed-related attacks. Building upon this,
we propose a state-triggered backdoor attack method (SSD) to
deceive GNSS systems and assess its risk to trajectory planning
tasks. Extensive validation of SSD’s effectiveness and stealthiness
is conducted. Experimental results show that, with appropriately
tuned hyperparameters, SSD significantly increases positioning
errors and the risk of task failure, while maintaining high stealthy
rates across three state-of-the-art detectors.

Index Terms—Unmanned aerial vehicles, Cyber security, Back-
door attacks, GNSS spoofing.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are revolutionizing our
understanding of low-altitude flight patterns. Currently, UAVs
are widely used in various military and civilian fields, such
as courier delivery, agricultural plant protection, power pa-
trol, firefighting, rescue, and battlefield reconnaissance. These
increasingly complex application scenarios have necessitated
stringent requirements for the autonomous flight capabilities
of UAVs. As UAVs operate autonomously to execute their
missions, the system must precisely determine its global
position at a centimeter level. As illustrated in Fig. 1, the
localization capability is critical to route planning. It ensures
the safety of flight and the ability to fulfill its mission, as
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Fig. 1: The Role of Localization and Route Planing in UAV
Autonomous Flight

positioning errors can directly cause the flight to deviate from
course or fail to perform its mission.

The Integrated Navigation System (INS) serves as the
cornerstone of UAVs, enabling precise positioning. It ac-
complishes accurate position estimates by integrating data
from various sensors. Integrating Inertial Measurement Units
(IMUs) and Global Navigation Satellite Systems (GNSS)
forms the fundamental and core navigation system in INS.
Building on this foundation, researchers usually incorporated
additional sensors, such as cameras, lidar, and radar to further
improve positioning accuracy in different scenarios or plat-
forms. However, direct reliance on sensor data and communi-
cation channels’ noise makes INS vulnerable to cyber-attacks
[1], [2]. Research has revealed that adversaries can attack INS
by using adversarial examples [3] or wireless signal injection
[4] to spoof sensors. Notably, GNSS is a particularly prevalent
threat since it forms the foundation of INS. The attacker
can leverage low-cost devices to manipulate the position and
velocity measurement captured by GNSS.

Previous attacks can be classified into the following cate-
gories:(1) Direct Attacks [5] : The adversary directly injects
a false signal into the GNSS sensor. (2) Stealthy Attacks
[6], [7]: The adversary takes the detector and corresponding
threshold as the constraint and computes an optimization-
based payload to bypass the detectors.

However, these attacks have the following limitations.(1)
Easily detectable Sensor data fluctuations during UAV at-
tacks are typically significant [8], prompting residual-based
detection methods. However, our experiments show these

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3646036

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:04 UTC from IEEE Xplore.  Restrictions apply. 



2

detectors can almost always detect direct attacks. Moreover,
during UAV maneuvers, such as waypoint course changes or
formation shifts, the increased fluctuations make attacks even
more easily identifiable. (2) Computation efficiency While
stealthy attacks can bypass detectors through constrained
optimization models, they typically require extensive matrix
operations to solve high-dimensional optimization problems
and derive the optimal attack payload in time. These methods
introduce significant computational delays in environments
with limited resources, especially affecting the attack’s real-
time performance. (3) Inadequate analysis of dynamic vul-
nerabilities Research [9] has shown that navigation algorithms
in autonomous vehicles are vulnerable to uncertainty during
specific periods. UAVs, operating with six degrees of freedom,
experience frequent motion changes that affect system stabil-
ity, especially during GNSS spoofing. Despite this, few studies
evaluate how these dynamic motion states influence attack
effectiveness. (4) Incomplete assessment methodology Prior
studies [10], [11] often focus on immediate attack outcomes,
such as crashes or path deviations, but fail to assess how
attacks affect UAV mission performance and overall efficacy.
This leaves a gap in understanding the broader impacts of such
attacks on UAV operations.

To overcome these limitations, and gain a deep under-
standing of the INS vulnerability posed by GNSS attacks,
we first provided a detailed interpretable analysis of the
relationship between motion states and GNSS spoofing attacks.
Specifically, we assess the effects of linear and nonlinear
motion states on attack effectiveness. Our findings reveal
that changes in motion states amplify the effectiveness of
positional attacks and increase the stealthiness of velocity
attacks. We then proposed SSD, a novel state-based stealthy
backdoor attack for GNSS. Backdoor attacks [12], [13] are a
common threat in deep neural networks, where an adversary
implants a latent backdoor that remains inactive under normal
conditions but is triggered by specific inputs or scenarios,
leading to incorrect model predictions. Inspired by this con-
cept, we design backdoors for GNSS by using motion state
changes as a trigger to initiate staged velocity and positional
attacks. In contrast to the stealthy attacks [6], [7], this attack
mode doesn’t need prior knowledge for the detectors and
eliminates the need for complex computations. Instead, it is
a direct attack that leverages carefully configured parameters
and straightforward function calculations to achieve an optimal
balance between effectiveness and stealthiness. This makes
SSD highly valuable for engineering applications. Lastly, we
selected three representative mission trajectories to assess the
effectiveness of SSD. Its performance was compared against
existing attack methods. The experimental results demonstrate
that SSD maintains detection variables consistently within the
threshold range in three classical detectors. Furthermore, we
introduced evaluation metrics to measure the attack’s impact
on mission success rates and effectiveness. The experiments
also reveal that SSD significantly increases the localization
error, thereby effectively disrupting mission completion.

In summary, our contributions are summarized as follows:
• We present an interpretable mathematical security study

of how motion states influence attack outcomes and

demonstrate that UAVs are more vulnerable during ma-
neuvers than in uniform linear flights. We further exper-
imentally prove it.

• We design SSD, a novel state-based backdoor attack that
utilizes motion state as a trigger to spoof GNSS data. It
can execute velocity and positional attacks in stages to
simultaneously and covertly attack both states.

• We conduct experiments in classic specific mission trajec-
tories and find that SSD can significantly reduce mission
completion rates and maintain constant stable stealthiness
under attack detection.

II. RELATED WORKS AND BACKGROUND

A. UAV Route Planning and Integrated Navigation System

UAV route planning involves designing a feasible route
from the start point to the destination while meeting all
constraints and performance requirements [14]. Effective route
planning is crucial for UAVs to complete their missions,
and it depends on accurate position estimation. Since UAVs
often operate in dynamic and complex environments, they rely
on multi-sensor fusion to enhance their ability to perceive
the environment. This approach integrates data from various
sensors with different modalities and attributes, increasing
redundancy and improving reliability in challenging condi-
tions. The integrated navigation system of GNSS and IMU
is a typical representative example. Its fusion strategy uses
the GNSS data for quantitative updating, IMU data for state
prediction, and an optimal estimation framework to achieve
accurate positioning in the global coordinate system [15], [16].
In GNSS-denied environments, simultaneous localization and
mapping (SLAM) that rely on camera [17], [18] and lidar [19],
[20] are considered more reliable solutions. However, a single
sensor alone cannot fully meet the demands for positioning ac-
curacy and response speed. Therefore, combining these sensors
with an inertial measurement unit to create IMU/Camera [21],
[22] and IMU/Lidar [23] fusion form enables more precise
position estimation and improved performance in dynamic
environments. This paper focuses on the security analysis of
IMU/GNSS INS since it plays a central role in UAVs. It is of
generic meaning to study its security.

B. GNSS Spoofing attack

Since IMUs are more difficult to manipulate in real-
world scenarios, we only discuss GNSS spoofing attacks for
IMU/GNSS INS on UAVs. In such attacks, the adversary
transmits false location coordinates to the GNSS receiver,
thereby concealing the UAV’s true location. As a result, un-
knowingly accepting these false inputs, the navigation system
calculates incorrect position information. Specifically, GNSS
spoofing includes direct attacks and stealthy attacks. The
direct attacks [5] can be classified into these categories. (1)
Biased Signal Attack : These attacks involve adding a bias
to the GNSS sensor signals, typically following a uniform
distribution. (2) Multiplicative Attacks: In these attacks, the
GNSS signals are multiplied by a constant factor, effectively
scaling the original signal values. (3) Replacement Attacks:
These attacks involve directly replacing the GNSS signals with
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false or manipulated data. Direct attacks are easy to implement
and may lead to disastrous consequences, such as the UAV
crashing into obstacles [10], [11]. However, most detectors can
detect and respond in time. The stealthy attacks [6], [7] are
diverse, with attackers often aiming to maximize navigation
residuals to determine the optimal attack sequence. The design
of these attacks may cause the UAV to fall into the malicious
attackers’ control [24]. However, it is largely influenced by
the detection mechanism and often needs complex computing.
SSD integrates the strengths of both approaches. It achieves
the same effectiveness as stealthy attacks while requiring low
computational resources.

To mitigate this threat, robust countermeasures, such as
software analysis [25], cryptography-based authentication [26]
and machine learning-based detections [27], [28], have been
implemented to safeguard against GNSS spoofing and ensure
the integrity of UAV INS. One important method is multi-
sensor fusion [29]. As described in section II-A, it not only
provides more accurate estimates for perception and localiza-
tion but also enhances the data’s trustworthiness, providing
greater redundancy for detection and defense in the event of
spoofing attacks. For example, Shen et al. [9] demonstrated
that the effectiveness of constant offset GNSS spoofing attacks
is greatly reduced in GNSS/INS/LiDAR fused navigation
systems in autonomous driving. However, such multi-sensor
fusion strategies also face a period of vulnerability and can
not defend against constructed GNSS spoofing against the
uncertainty that exists in the fusion algorithm itself. In this
paper, we demonstrate a similar phenomenon in UAVs, where
changes in motion states significantly amplify the uncertainty
of the INS, making it more vulnerable to GNSS attacks.
Therefore, we provide an in-depth analysis of the uncertainty
and vulnerability and exploit it to design SSD.

C. Threat Model

Attack Goal As shown in Figure 2, the adversary aims
to make the drone deviate significantly from its pre-planned
route without triggering the stealth detection threshold. This
objective can be formalized as the following optimization
problem:

argmaxδ

Ta∑
i=0

Dt
i −Da

i

s.t. χk≤ τ ∀k ∈ {1, ..., Ta − 1}
(1)

where Dt
i and Da

i denote the normal trajectory and the
attacked trajectory, respectively. δ is the attack payload. χk is
the in detection statistics and τ is the threshold of detectors.

Attack Scenario As shown in Fig. 2, an attacker can launch
an attack in two ways: ① The attacker can use a UAV to
fly alongside the victim’s UAV. He can transmit legitimate
GNSS signals completely using wireless attack devices such
as software-defined radios (SDR). ② The attacker could also
inject specific backdoors [30] or viruses [31] into the UAV
by supply chain attacks, which could be used to monitor its
dynamics and induce a false GNSS position [32].

Fig. 2: Threat Model

Attacker’s Capability 1) The attackers need white-box
access to obtain the victim’s navigation algorithms and cor-
responding parameters. They can get this knowledge through
open-source channels since most UAVs use standardized open-
source navigation algorithms [33], [34]. Also, the adversarial
can use reverse engineering to access the victim’s knowledge.
2) The attacker can obtain the victim’s motion state, such as
position and velocity. This can be achieved by monitoring
UAVs using an additional GPS module or auxiliary object
detection and tracking devices. 3) As IMU data is less likely to
be accessed and used, an attacker can only modify the position
and velocity since GNSS measurements only provide position
and velocity to the UAV.

III. PRELIMINARY

A. IMU/GNSS Integrated Navigation System

In UAVs, IMU and GNSS are often combined for highly
accurate and robust navigation and positioning. IMU provides
data from accelerometers and gyroscopes, which measure
the acceleration and angular velocity of the UAVs. At the
same time, GNSS determines the UAV’s position, velocity,
and time information by receiving satellite signals. This type
of navigation system is known as a combined IMU/GNSS
navigation system.

IMU/GNSS INS uses a 22-axis Extended Kalman Filter
(EKF) structure to estimate pose in the NED reference frame.
The state is defined as X̂k = {x̂1, . . . , x̂n|n ∈ (1, 22)}, where
the definition of each axis x̂i is illustrated in Table I.

Firstly, The system model f(·) uses the estimated previous
state X̂k−1 and a control input uk−1, to predict the current
state X̂−

k .
X̂−

k = f(X̂k−1, uk) (2)

where uk are control inputs, typically angular velocity and
acceleration data from IMU.

After prediction, INS predicts the measurement zk at time
k for updating the current state. we define as:

zk = h(X̂k) + vk (3)

where zk comprises magnetic field data from magnetome-
ters, gravitational acceleration data from accelerometers, and
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TABLE I: Element and Meaning of EKF Vector

Element Label Meaning

x̂1 q0

Orientation quaternion.x̂2 q1

x̂3 q2

x̂4 q3

x̂5 PN UAV Position in local
NED coordinate system.x̂6 PE

x̂7 PD

x̂8 VN UAV Velocity in local
NED coordinate system.x̂9 VE

x̂10 VD

x̂11 ∆θbiasX Bias in integrated
gyroscope reading.x̂12 ∆θbiasY

x̂13 ∆θbiasZ
x̂14 ∆vbiasX Bias in integrated

accelerometer reading.x̂15 ∆vbiasY
x̂16 ∆vbiasZ
x̂17 geomagneticFieldN Estimate of geomagnetic

field vector at the
reference location.

x̂18 geomagneticFieldE

x̂19 geomagneticFieldD

x̂20 magbiasX Bias in the
magnetometer readings.x̂21 magbiasY

x̂22 magbiasZ

position and velocity from GNSS. h(·) is the measurement
prediction model and vk is the observational noise.

Due to hardware arithmetic limitations, INS often handles
nonlinear functions by truncating their Taylor expansions with
first-order linearization and neglecting the higher-order terms.
This approach transforms the nonlinear problem into a linear
one, as exemplified by Eq. 4 and 5:

f(Xk−1, uk) ≈ f(X̂k−1, uk) +
∂f

∂x

∣∣∣∣
X̂k−1,uk

(Xk−1 − X̂k−1)

(4)

h(Xk) ≈ h(X̂−
k ) +

∂h

∂x

∣∣∣∣
X̂−

k

(Xk − X̂−
k ) (5)

INS defines the state transfer matrix FK and the Jacobi matrix
of the measurement Hk respectively:

Fk =
∂f

∂x

∣∣∣∣
X̂k−1,uk

(6)

Hk =
∂h

∂x

∣∣∣∣
X̂−

k

(7)

Based on Eq. 2 and 3, we can derive the priori estimated
covariance matrix P−

k at time k.

ek = X̂k − X̂−
k (8)

P−
k = E(eke

T
k )

= FkPk−1F
T
k +Qk

(9)

where Qk refers to the process noise covariance matrix at time
step k.

When obtaining the measurement zk, the system will cal-
culate the Kalman gain Kk and update the estimated state to
obtain an accurate estimation of the state information in the
following way:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (10)

X̂k = X̂−
k +Kk(zk − h(X̂−

k )) (11)

Pk = (I −KkHk)P
−
k (12)

where Rk refers to the measurement noise covariance matrix
at time step k.

B. Detector

In dynamic system state estimation, the EKF optimizes the
estimation of the system state successively through prediction
and update steps. It computes the residual r(k) = zk −h(x̂−

k )
in each step to reflect the difference between the actual
measured value and the predicted value. With no attacks or
anomalies, r(k) will be presented as a zero-mean Gaussian
distribution with a covariance matrix Pr := HkPkH

T
k +Rk.

However, the system may generate outliers due to attacks,
noise, faults, and other factors, all of which contribute to
the measurements deviating from the true values. To prevent
the EKF state from these disruptive outliers, implementing
an outlier detection mechanism becomes crucial. The chi-
square statistical test serves as an efficient tool for determining
outliers [35], [36]. It evaluates the current measured value by
calculating the chi-square statistic χ2

k, comparing it to a pre-
defined statistical significance threshold. When χ2

k surpasses
this threshold τ , the measurement is considered an outlier,
and suitable measures are undertaken, including discarding
the measurement or executing a partial update. The chi-square
statistic χ2

k is defined as:

χ2
k = r(k)TSkr(k)

Sk = (HkP
−
k HT

k +Rk)
(13)

IV. SECURITY ANALYSIS

A. Attack Formulation

Viewed from the perspective of navigation equations, the
process of a spoofing attack on GNSS signals by an attacker
can be described as follows: the attacker injects n spoofing
signal {δk|k = 1, . . . , n} into the measurement data, resulting
in a modification of the measurement h as follows.

zk = h(X̂k) + δk + vk (14)

Due to the higher occurrence of data errors in the GNSS
z-axis and the availability of alternative altitude data sources,
only the NE (North-East) directional updates are applied to
the position vector. As for the attacker, they can only modify
the position and speed provided by GNSS, i.e., dimensions
5-6 and 8-10 in Table I.

B. Study of Attack

The GNSS observation matrix HGNSS are as follows.

HGNSS =


01×4 1 0 0 01×3 01×14

01×4 0 1 0 01×3 01×14

01×4 0 0 0 01×3 01×14

03×4 03×1 03×1 03×1 I3×3 03×14


(15)
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Since HGNSS is a sparse matrix, when updating position
and velocity, Kk can be simplified to the following form:

Kk = P−
k HT

GPS(HGPSP
−
k HT

GPS +Rk)
−1

= (Pk−1 +Qk)(Pk−1 +Qk +Rk)
−1

= I −Rk(Pk−1 +Qk +Rk)
−1

(16)

From Eq.16, we can see that the state transfer error and
the measurement error affect the magnitude of the gain Kk

simultaneously. Qk and Rk reflect the ability to cover
systematic uncertainty and measurement uncertainty, re-
spectively. Therefore, inappropriate Qk and Rk can lead to
filter divergence or biased estimation. However, in INS, Qk

and Rk are generally determined based on a priori knowledge
by pre-running the filter calculations offline and remain con-
stant during the filtering process online. As a result, both the
process estimation error covariance Rk and the Kalman gain
Kk converge quickly and remain constant during the process,
demonstrating that the value of Kk is determined by the ratio
of Qk and Rk.

We assume the adversarial adds an δi at time i. The
prediction equation for the EKF becomes

x̂a
i = x̂−

i +Ki(zi + δi − h(x̂−
i , 0))

= x̂i +Kiδi
(17)

Pk = (I −KkHk)P
−
k (18)

Therefore, when the UAV performs maneuvers, the impact
of spoofing on localization results can be described in the
following two ways:

• Q uncertainty: EKF uses Euler integrals to update the
positional status, i.e:PN

PE

PD


i+1

=

PN

PE

PD


i

+

VN

VE

VD


i

∆t (19)

Firstly, when performing maneuvers, the system is highly
nonlinear. i.e.,

∃ϵ > 0, ∥dvi

dt
∥ ≥ ϵ (20)

The acceleration ai ̸= 0 and the update equation for
position essentially becomes:PN

PE

PD


i+1

=

PN

PE

PD


k

+

VN

VE

VD


i

∆t+

 1
2∆t2, 0, 0
0, 1

2∆t2, 0
0, 0, 1

2∆t2

aNaE
aD


(21)

According to Eq. 8 and 9, the accumulation of lin-
earisation errors will increase ei and thus increase the
process noise Pi. leading to inaccurate mathematical
modeling and huge nonlinear errors. The fixed Qk makes
it difficult to suppress the nonlinear error increased due
to the change of motion state. According to Eq. 16, the
value of Ki will indirectly increase, making the INS
more inclined to trust the GNSS data. In addition, this
complex nonlinear characteristic will be further expanded
due to physical factors such as the lag of IMU data and
the presence of friction in the gyroscope. Therefore, in

this scenario, the prediction of the system model cannot
effectively reflect the actual physical process.

• R uncertainty: The modification of GNSS results in a
shift in the measurement data distribution, rendering a
fixed Rk inadequate for accurately describing the mea-
surement noise distribution. Consequently, δi experiences
a significant increase. Additionally, the rising Kk value
leads the system to place greater trust in GNSS, further
amplifying the impact of the attack associated with δi.

We employ a biased signal attack and a multiplicative attack
to evaluate the phenomenon above. The UAV maintains a
constant velocity of 5m/s and performs two typical motion
modes, uniform linear motion (linear motion) and uniform
circular motion (non-linear motion), respectively. For each
flight state, we apply an attack window of two attack inputs
for the GNSS respectively and observe the changes in the
localization Error LocErr before and after the attack. As a
result, the attack time is 2 seconds since the GNSS input is
1 Hz. The experimental results are shown in Fig. 3a and 3b.
Thus, we can get Finding 1.

Finding 1: For a GNSS spoofing of the same magnitude,
applying it during the UAV’s non-linear motion results in
more pronounced fluctuations in positioning accuracy com-
pared to linear motion. These changes in motion dynamics
create greater vulnerabilities for INS.

Position and velocity are tightly coupled in INS, making
velocity attacks easier to modify the position result. However,
there has been limited research on attacks targeting velocity.
We would like to explore one question: Are there obvious cor-
relations between the velocity attack stealthiness and the UAV
motion states? To validate this question, we select two flight
trajectories with linear and nonlinear motion states respec-
tively. We use a biased signal attack to perturb velocity and
position measurement and evaluate stealthiness by observing
the changes in the chi-square detector. Fig. 3c and 3d indicate
that the detector shows no significant fluctuations between the
two motion states for the positional attack. However, velocity
attacks demonstrate a greater sensitivity to motion states, with
significantly lower cardinality detector results observed in
nonlinear motion states. This reveals key insights, summarized
as Finding 2.

Finding 2: The nonlinear motion state does not signif-
icantly affect the stealthiness of positional attacks, but it
enhances the stealthiness of velocity attacks.

V. ATTACK DESIGN

From the analysis of Section IV-B, we observe that UAV
exhibits greater vulnerability in a non-linear motion state
compared to a linear one due to the combined effects of model
and measurement uncertainty. During non-linear motion, an
attack of the same magnitude can produce a more significant
change in the navigation output than in the linear motion state.
However, this vulnerability arises only when the uncertainty
is heightened due to changes in the motion state. Moreover,
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(a) Bias Signal Attack (b) Multiplicative Attack (c) Positional Attack (d) Velocity Attack

Fig. 3: Study of GNSS Attack under Different Motion states, where N-dir and E-dir denote the north and east in the NE
direction.

Finding2 indicates that a positional attack in non-linear mo-
tion will increase the risk of being detected. This introduces
a key challenge to the attacker:

C1: How to opportunistically exploit these vulnerable
periods to achieve maximum localization error while
maintaining stealth.

To address C1, we design a backdoor-like attack to exploit
these vulnerable periods directly. Inspired by the backdoor
attacks in deep networks (DNNs) [12], [37], [38], we proposed
a novel state-based stealthy backdoor (SSD) attack against INS
in a route planning scenario. SSD utilizes the motion state as
a trigger, enabling the UAV to trigger an attack in a nonlinear
motion state while maintaining normal operation in a linear
motion state, the attack procedures can be depicted in Fig. 4.
Based on this design, not only can the detection rates of the
attack be greatly reduced, but also the mission completion
rate of the UAV can be effectively reduced. (UAV mission
completion is usually accompanied by large maneuvers.)

∃c ∈ R, ∥dvi

dt
∥ ≤ c ∀t ∈ [t0, t1] (22)

Specifically, when the victim UAV is in a stable linear flight
state (Equation 22), SSD adds a bias F (ti; θ, α) to attack the
position stealthily.

F (ti; θ, α) = θeti/α (23)

When it is maneuvering, each dimension of the UAV’s move-
ment can experience both positive and negative acceleration,
indicating acceleration and deceleration in that particular di-
rection. We define the acceleration direction a⃗ as:

a⃗di =
∂⃗vi
∂ti

(24)

When the UAV undergoes acceleration in this dimension (i.e.
a⃗di >0 ), SSD makes smooth changes to the velocity by
multiplying a stealthy velocity bias G(ti, a

d
i ;ϕ) to perturb the

localization result.

G(ti, a
d
i ;ϕ) = log2 (2 + ϕa⃗di ti) (25)

Overall, SSD can be formalized as follows:{
Xi = Xi + F (ti; θ, α)

Vi = Vi ∗G(ti, a
d
i ;ϕ)

(26)

where ti is the attack time for attackers. θ, α, and ϕ are
hyperparameters that can be dynamically adjusted to main-
tain an equilibrium between stealthiness and effectiveness.

We will demonstrate how to configure these parameters in
Section VI-B. SSD chooses acceleration as a trigger. It uses
organic coupling between velocity and position to perform a
combined attack. Its pseudocode is presented in Algorithm 1.

Algorithm 1: SSD
Input: Victim UAV position Pi = (PNi, PEi, PDi),

Victim UAV velocity Vi = (VNi, VEi, VDi),
IMU sampling frequency Fimu, Iteration
number M

1 Set initialize hyperparameters θ,ϕ and α ;
2 for i=1 to M do
3 for j=1 to Fimu do
4 Receive IMU data ;
5 Predict Xi+1 using IMU data;

6 Receive victim UAV velocity Vi and position Pi

from GNSS ;
7 Compute acceleration ai = (∂VNi

∂ti
, ∂VEi

∂ti
, ∂VDi

∂ti
);

8 if ||ai||2=0 then
9 // Apply position perturbation in linear motion

state ;
10 Pi = Pi + θeti/α;

11 else
12 // Apply velocity perturbation in nonlinear

motion state ;
13 VNi = VNi ∗ log2 (2 + ∂vNi

∂t ϕt);
14 VEi = VEi ∗ log2 (2 + ∂vEi

∂t ϕt);

15 Fuse Pi and Vi to update Xi+1

VI. EXPERIMENT

A. Experimental Setup

1) Trajectory Dataset: We used three representative task
trajectories. Trajectories I and II represent typical linear and
non-linear motion states, respectively, while trajectory III
combines both motion states.

• Trajectory I: Straight-line Path As illustrated in
Fig. 5a, this trajectory is designed for executing simple
tasks, such as flying to a specific location and perform-
ing actions along a predefined path (e.g., patrols, cargo
transport, etc.).
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Fig. 4: Overview of SSD

(a) Straight-line Path (b) Spiral Path (c) U-shape Path

Fig. 5: Trajectory Visualization

• Trajectory II: Spiral Path: As illustrated in Fig. 5b,
this trajectory is designed for tasks that involve changes
in flight altitude, such as agricultural spraying, area
scanning, and 3D mapping.

• Trajectory III: U-shape Path: As illustrated in Fig. 5c,
the trajectory is designed for tasks that demand high
precision, such as monitoring, surveying, or round-trip
transportation.

2) Navigation Algorithm: We choose the estimation and
control library EKF (ECL EKF2) of the PX4 drone autopilot
[39] project as the target navigation algorithms, assuming
white-box access, where the attacker has full knowledge of
the algorithms and their parameters.

• ECL EKF2 implements EKF to estimate pose in the
NED reference frame by fusing MARG (magnetic, an-
gular rate, gravity) and GNSS data. MARG data is de-
rived from magnetometer, gyroscope, and accelerometer
sensors. It uses a 22-element state vector to track the
orientation quaternion, velocity, position, MARG sensor
biases, and geomagnetic.

• CD-EKF is a variant of ECL EKF2. It implements a
continuous-discrete EKF to estimate pose in the NED
reference frame by fusing MARG and GNSS data. It

uses a 28-element state vector to track the orientation
quaternion, velocity, position, MARG sensor biases, and
geomagnetic vector.

Fig. 6: Modeling of IMU and GNSS Fusion

3) Implementation details.: Accelerometers and gyroscopes
operate at relatively high sample rates and necessitate high-rate
processing. In contrast, GNSS and magnetometers function at
relatively low sampling rates and require lower data processing
rates. To replicate this configuration in our experiment, the
IMUs (accelerometers, gyroscopes, and magnetometers) were
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sampled at 160 Hz, while the GNSS was sampled at 1 Hz.
As demonstrated in Fig 6, only one out of every 160 samples
from the IMUs was provided to the fusion algorithm.

4) Evaluation Metrics: We utilize three metrics to evaluate
the effectiveness of SSD comprehensively. Initially, we include
two metrics that are widely used in relevant studies [40].

(1) Average Displacement Error (ADE): This metric mea-
sures the average deviation between the predicted and ground-
truth trajectories by calculating the root mean squared error
(RMSE) across all time frames. It captures the overall accuracy
of the predicted trajectory compared to the actual path.

(2) Final Displacement Error (FDE): FDE focuses specifi-
cally on the prediction accuracy at the final time frame, quan-
tified as the RMSE between the predicted and ground-truth
positions. This metric highlights the importance of precise
final positioning, which is crucial in applications such as path
planning.

However, the two indicators above alone are insufficient
to capture the impact of targeted attacks on UAVs. This
introduces another challenge for evaluating SSD:

C2: How to evaluate SSD’s impact on UAV mission.
In mission-critical scenarios, UAVs must execute precise

manoeuvres at specific waypoints to ensure the successful
completion of the mission. The deviation from these waypoints
during flight significantly increases the likelihood of mission
failure. Therefore, to address C2, we design the Average Per-
Waypoint Displacement Error (APDE). The APDE is formally
defined as the average of the displacement errors computed
at each waypoint along the trajectory. We define APDE as
follows:

APDE =

∑Nw

i=1 ||Pi − P a
i ||2

Nw
(27)

where P a
i and Pi refer to the predicted positions before and

after the attack, respectively. Nw refers to the number of
waypoints. APDE provides a more nuanced understanding of
how targeted attacks impact the UAV’s ability to adhere to its
prescribed flight path, particularly at critical waypoints, thus
enabling a more accurate assessment of the potential risks to
mission success.

B. Parametric Analysis

The effectiveness and stealthiness of the attack are highly
dependent on the choice of parameters. We analyze the sen-
sitivity of SSD to various parameters by combining different
values for θ, α, and ϕ across multiple scenarios (the same
as Section IV-B). To measure the attack effectiveness and
stealthiness, we use ADE and the maximum chi-square statistic
(denoted as χ2

max), respectively. The experimental results are
shown in Fig 7. In positional attacks, as θ increases, χ2

max

exhibits a corresponding upward trend. We further observe
that the rate of increase in χ2

max slows as α increases. This
suggests that higher values of α help mitigate the growth of
χ2
max. Notably, when α exceeds a critical threshold value

13, χ2
max starts to stabilize, converging within a relatively

narrow threshold range. Within this range, χ2
max fluctuates

minimally and remains largely unaffected by changes in θ,
demonstrating high stability and consistency. For the velocity

attack, as shown in Fig. 7b, χ2
max gradually converges to about

6 when ϕ is less than 0.08. In the following experiments, we
set the values of θ, α, and ϕ to 20, 11, and 0.08, respectively.

C. Ablation study
To validate the effectiveness of velocity-based and position-

based attacks, we conducted an experiment where the UAV
performed a 35 second flight incorporating linear and nonlin-
ear motion states. The first 20 seconds involved uniform linear
motion at a velocity of 2m/s. Afterward, the UAV transitioned
into a uniform circular motion mode, maintaining a linear
velocity of 2m/s for the remaining 15 seconds. This flight
trajectory was used for the ablation experiments.

1) Contributions of different attacks: To explore the con-
tribution of velocity and positional attacks to overall attack
effectiveness, we designed comparison experiments with three
attack strategies: single position perturbation attack (SPA),
single velocity perturbation attack (SVA), and combined con-
certed attack (CCA). The quantitative analysis of ADEs,
presented in Table II, shows that both individual attacks
are effective. Specifically, the ADEs for SPA and SVA are
improved by 184% and 212%, respectively, compared to the
baseline. When comparing the combined attack (CCA) to the
single attacks, the ADE improves by 129% over SPA and
112% over SVA. This indicates that CCA not only significantly
enhances attack effectiveness by leveraging the coupling effect
between position and velocity but also perturbs both north-east
directions simultaneously. Furthermore, the stealth assessment
results in Fig. 8 show that while the CCA approach induces
brief oscillations in the detection statistics, these fluctuations
remain well within the acceptable threshold limits, ensuring
that the attack remains stealthy.

TABLE II: Ablation Study of Different Attacks’ Contribution,
where N-dir denotes the north direction and E-dir denotes the
east direction in the North-East direction.

N-dir (meters) E-dir (meters)

Baseline 1.41 0.66
SPA 2.72 0.89
SVA 2.45 2.2
CCA 2.79 2.41

2) Attack Combination: We apply the velocity attack dur-
ing the linear motion state and the position attack during
the nonlinear motion state and examine the impact of this
combination on the attack’s stealthiness. The experimental
results, shown in Fig. 9, reveal that 9s after the attack begins,
the detector quickly identifies the existence of the attack.
Furthermore, even when the UAV transitions to a nonlinear
motion state, the detector continues to successfully detect
the attack for 5s, despite the change in attack mode. This
phenomenon occurs because the drastic velocity changes in
the linear motion state cause significant fluctuations in the
residuals. In contrast, the nonlinear motion state allows SSD
to effectively smooth out the impact of the velocity attack,
ensuring the attack remains stealthy throughout the process.
This result, along with Finding2, further validates the rationale
of the SSD framework.
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(a) Positional attack (b) Velocity attack

Fig. 7: Parameter Analysis

Fig. 8: Stealthiness Comparison for Attack Contribution

Fig. 9: Detection Statistic Comparison for Attack Combination

D. Attack Stealthiness

To validate the stealthiness, we selected a chi-square de-
tector for attack detection. For the threshold, we selected
a value corresponding to a 95% confidence level, which is
11.1. We also chose biased signal, multiplicative attacks and
CMA-ES [6] for comparison and evaluated them across three
mission trajectories. Based on prior research, we designed the
following attack payloads: (1) GNSS positions are added with
a uniform distribution U(0, 0.0005); (2) GNSS positions are
scaled by a factor of 1.5; (3) As to the CMA-ES, we fix the
stealthiness budget at 0.05 and constrain the injected signal
norm to the range 0.01 to 0.05 so that all variants operate
under the equal perturbation budget. The experimental results
in Fig. 10 demonstrate that SSD successfully limits detection
statistics to the threshold range and bypasses both detection
methods with a carefully chosen set of attack parameters.
Table III reports detection and stealth metrics under a 95% χ2

threshold (11.1) for three trajectories. As expected, constant-
bias and multiplicative spoofing are with high detection (e.g.,
75.0–77.6% on Trajectory I/II)/III and large residual energy
(Mean χ2, NLC, LTW). CMA-ES [6] substantially improves
stealth (e.g., 80.0% bypass on Traj2), yet our SSD method
is consistently more evasive: it achieves the highest bypass
(95.0/100.0/95.9% on Trajectory I/II/III) while also minimiz-
ing residuals (e.g., Mean χ2 of 3.52/2.55/5.12 and Mean NLC
of 0.790/0.620/0.106), indicating stronger detector evasion
under the same perturbation budget. Notably, compared to
these works [5], [41], we significantly reduced the loadings
applied for the biased signal Attack. However, both detection
methods were able to detect the attack effectively. It is clear
that SSD exhibits strong stealthiness properties under chi-
square detection methods and several motion states.

We also use two UAV-specific detectors, NLC [42] and
LTW [43], as baselines for comparison. These methods are
highly effective at detecting GNSS attacks, and they maintain
both strong accuracy and response time, even when identifying
targeted stealthy attacks. We follow the threshold in previous
work [42]. Fig. 11 demonstrates that in the LTW test group,
the detection statistic consistently remains below the threshold
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(a) χ2 detection of different attacks under
Trajectory I

(b) χ2detection of different attack under Tra-
jectory II

(c) χ2detection of different attack under Tra-
jectory III

Fig. 10: Attack Stealthiness Evaluation

TABLE III: Attack detection and stealth metrics across three trajectories (threshold for detection: χ2 = 11.1 at 95% confidence).
“Bypass” is 100%− Detect. Lower is better for Detect, Mean/Max χ2, NLC, and LTW; higher is better for Bypass.

Trajectory Attack Detect (%) ↓ Bypass (%) ↑ Mean χ2 Mean NLC Mean LTW

Trajectory I

Bias Signal 75.0 25.0 78.50 118.89 15.08
Multiplicative 65.0 35.0 14.29 21.28 5.68
CMA-ES 20.0 80.0 7.49 5.82 4.56
SSD (ours) 5.0 95.0 3.52 0.79 3.48

Trajectory II

Bias Signal 77.1 22.9 98.38 343.88 17.65
Multiplicative 58.3 41.7 19.19 109.76 7.72
CMA-ES 66.7 33.3 14.73 76.44 6.62
SSD (ours) 0.0 100.0 2.55 0.62 3.33

Trajectory III

Bias Signal 77.6 22.4 104.40 362.12 18.08
Multiplicative 73.5 26.5 89.10 191.98 9.59
CMA-ES 67.3 32.7 15.18 62.00 6.03
SSD (ours) 4.1 95.9 5.12 0.11 3.08

boundary, indicating the superior stealth characteristics of SSD
attacks. Notably, NLC statistics demonstrate the following
three characters (shown in Table IV):

• In Trajectory I (pure linear motion), the detection statistic
approaches the threshold at 6s but never exceeds the
threshold.

• In Trajectory II (fully nonlinear motion), the detection
statistic surpasses the threshold after 31s cumulative
duration. The detection latency is largely increased com-
pared to the previous work (about 0.3s) [42].

• In Trajectory III (hybrid motion mode), no significant
statistical fluctuations occur during 0− 20s linear phase,
with limited oscillations (peak statistic is 9.27) emerging
post nonlinear component introduction at 20s.

TABLE IV: Detection Performance Comparison for NLC

Detection Latency(s) Peak Statistic Detection Rate

Trajectory I N/A 19.69 0%
Trajectory II 31s >20 35.4%
Trajectory III N/A 9.27 0%

These findings demonstrate significant motion-dynamic sen-
sitivity disparities in NLC detectors. However, when attackers
combine motion-state transition strategies, positional attacks
can realize residual normalization during linear phases and

reduce detection sensitivity velocity attacks to counteract
statistical fluctuations from nonlinear components. These two
methods make SSD show greater stealthiness in hybrid motion
missions.

E. Attack Effectiveness

We start by determining the optimal combination of Qk

and Rk for each scenario through offline learning. With these
optimal values, we proceed to validate the effectiveness of the
SSD. For each combination of INS and trajectory, the UAV is
tasked with following the designated path to complete a full
mission, while the SSD is deployed to attack the flight. Table V
presents the changes in each metric before and after the attack.
On average, ADE/FDE is increased by 425%/591%. The
lateral (N)/longitude (E) deviation reaches 3.54/3.46 meters.
We will analyze the factor based on the experiment on three
scenarios.

1) Different Scenarios: In terms of scenarios, the SSD
shows a greater increase in positioning error in the purely
linear motion state (Fig. 12a) compared to the purely nonlinear
state (Fig. 12b). This difference arises from the time-varying
nature of the velocity vector in the nonlinear state, which leads
to attenuation of the indirect positional interference caused by
the velocity perturbation G(ti, a

d
i ;ϕ). However, experiments

with Section VI-D demonstrate that a velocity attack can
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(a) Detection statistic in Trajectory I (b) Detection statistic in Trajectory II (c) Detection statistic in Trajectory III

Fig. 11: Detection Statistic Comparison for NLC and LTW under SSD.

TABLE V: Attack Effectiveness

Model Scenario Duration ADE FDE APDE
Normal/Attack (meters) Normal/Attack (meters) Normal/Attack (meters)

ECL EKF2 Trajectory I 20s 0.95/(5.68±1.17) 1.80/(5.89±1.05) 0.89/(5.66±1.15)
CD-EKF Trajectory I 1.62/(4.64±0.80) 1.49/(7.54±1.59) 1.81/(4.92±0.87)

ECL EKF2 Trajectory II 48s 1.31/(5.30±0.47) 1.78/(4.36±0.81) 1.48/(5.45±0.51)
CD-EKF Trajectory II 1.39/(3.31±0.35) 1.99/(5.05±1.07) 2.35/(4.05±0.60)

ECL EKF2 Trajectory III 71s 1.46/(2.48±1.04) 0.95/(10.47±2.17) 1.86/(6.49±1.30)
CD-EKF Trajectory III 1.86/(5.53±0.38) 1.34/(8.13±0.85) 1.66/(6.51±0.27)

(a) Attack visualization in Trajectory I (b) Attack visualization in Trajectory II (c) Attack visualization in Trajectory III

Fig. 12: Attack Visualization

still ensure the fulfillment of the stealthy precondition. When
the mission involves mixed kinematic modes, the combina-
tion of velocity and positional attacks results in an additive
interaction, as shown in Table V. The baseline increase is
366.44% for ADE and 1102.11% for FDE, confirming that
SSD enhances attack effectiveness synergistically. Next, we
will quantitatively analyze the impact of this state on mission
completion rates.

2) Impact on Mission: When the UAV’s trajectory deviation
exceeds the tolerance range, the mission completion rate shows
a clear decline. Because acceptable trajectory error depends
on the application, we evaluate practical impact using rep-
resentative error budgets: (i) inspection/close-proximity tasks
(e.g., power-line, substation, bridge) require lateral deviation
τinspect∼1m; (ii) area-survey/coverage tasks (e.g., crop survey)
tolerate τsurvey∼3m. Mission failure for path-keeping is de-
clared if APDE > τtask; terminal failure (return/landing/last
waypoint) if FDE > τtask. Given the reported (µ, σ) for each

metric under attack (Table V), we estimate

Pfail = P(APDE > τtask) ≈ 1− Φ

(
τtask − µAPDE

σAPDE

)
(28)

Pfail@terminal = P(FDE > τtask) ≈ 1− Φ

(
τtask − µFDE

σFDE

)
(29)

where Φ(·) is the standard normal CDF.

TABLE VI: Mission-failure probability (%) under task-specific
budgets.

Model Scenario Inspection
Proximity Task

Area-Survey
Task

Terminal
Failure

ECL EKF2
Trajetory I 100.0 98.96 99.70
Trajetory II 100.0 100.0 95.34
Trajetory III 100.0 99.64 100.0

CD-EKF
Trajetory I 100.0 98.63 99.79
Trajetory II 100.0 95.99 97.23
Trajetory III 100.0 100.0 100.0

Using task-specific budgets (1 m for inspection and 3
m for survey), SSD increases mission-failure probability to
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99.0–100% at 1 m and 95.99–100% at 3 m across all scenarios
(Table VI); Scenario III also yields the largest terminal error
(FDE 10.47 ± 2.17 m), implying ≥ 99.9% failure at a 3 m
terminal budget (Fig. 12c).

3) Attack Transferability: Different INS architectures man-
age noise and system uncertainty in distinct ways, potentially
impacting the effectiveness of SSD. To assess the cross-system
adaptability of the SSD, we conducted validation experiments
using CD-EKF and ECL EKF2. CD-EKF relies on continuous-
time prediction with discrete-time updates, enhancing its
adaptability to errors in nonlinear motion states and making
its short-term error estimation more robust. However, SSD
effectively exploits CD-EKF’s sensitivity to state uncertainty
by inducing motion instability, thereby continuously disrupting
navigation accuracy. Experimental results show that under the
CD-EKF system, SSD achieves an average improvement of
304.48% in ADE, 473.57% in FDE, and 305.87% in APDE
(see Table V). These findings confirm SSD’s generalizability
across EKF-based navigation frameworks.

F. Sensitivity & Rationale for the exponential G and log-2 F
choice

We conducted a controlled sensitivity study in which we
held the SSD parameters and runtime constant and varied
only the shape families used for the position bias G(·) and
velocity scale F (·). Impact was summarised by the chi-square
test statistic (higher is better for effect on the state estimate)
and stealth by the detection rate under a fixed chi-square gate
of 11.1 (lower is better). As shown in Table VII, exponential
position bias paired with log-2 velocity scaling (“exp–log”)
lies on the Pareto frontier, achieving strong impact (χ2 ≈5.45)
at a low detection rate (4.1%), while alternatives that slow
down too much (e.g., exp–sqrt, exp–exp) under-deliver impact,
and those that amplify too aggressively in the velocity channel
(e.g., log–log, sqrt–log, log10–log) are trivially caught 100%
of the time. Changing the log base confirms the sensitivity:
exp–log10 raises detectability (26.5%) without compensating
impact. A linear–log variant produces an outlier χ2 magnitude
but relies on large, non-smooth transients confined to short
windows; such profiles are operationally fragile (they vio-
late smoothness/feasibility and would be flagged by standard
change–point logic even when rate metrics remain low). In
contrast, exponential bias naturally matches the stable mode
of the estimator, yielding lasting displacement while its per-
step innovation rapidly subsides, and log-2 produces a slow,
uniform multiplicative drift in velocity—small enough per
update to slip past the gate but persistent enough to integrate
into position error. Together, the empirical sensitivity and the
filter-dynamics argument justify our choice of exponential G
and log-2 F as maximising the stealth–impact trade-off.

G. Robustness to Modeling and Timing errors

We quantified SSD detectability under joint variations of
filter noise settings, timing offsets, and latency. Keeping the
SSD pattern identical to the main study, we swept ±20%
multiplicative changes on both the process and measurement

TABLE VII: Sensitivity across shape combinations (χ2 gate
= 11.1; lower detection is better). “log” denotes base-2 unless
otherwise specified; all runs share identical SSD parameters
and gating. The “linear–log” outlier attains extreme χ2 by
injecting large, brief transients; despite a modest average rate,
such spikes are not compatible with sustained stealth and
violate standard feasibility/smoothness constraints, hence are
not considered practical for an attacker seeking persistent,
undetected bias.

Combination χ2 (impact) Detection rate (%)

exp–log 5.45 4.1
exp–log10 3.38 26.5
exp–sqrt 1.44 10.2
exp–exp 1.75 12.2
log–log 832.01 100.0
sqrt–log 1224.91 100.0
log10–log 362.00 100.0
linear–log 885,637.18 8.2

noise parameters used by the EKF, injected 5–20 ms mis-
timestamping between the GNSS measurement and the refer-
ence state used to form innovations, and emulated 0–200 ms
system latency by buffering GNSS before fusion. Detection
was assessed by the EKF’s GNSS innovation χ2 test at
99% confidence with degrees of freedom set by the resid-
ual dimension. Results show: (i) As shown in Figure 13a,
±20% Q/R perturbations produced a monotonic change in
innovation energy (mean χ2 from 5.11 to 3.41; max from
14.52 to 9.66) but detection remained 0.0%; (ii) As shown
in Figure 13b, 5–20 ms timing offsets had negligible impact
(mean χ2 4.09–4.13); and (iii) As shown in Figure 13c, latency
slightly increased innovation magnitude and yielded a modest
5.0% detection for ≥10 ms while RMS position error was
1.81–2.03 m over 0–200 ms. Under the criterion that detection
must remain ≥ 95%, the maximum tolerable latency in this
configuration is 0 ms, indicating that with the current SSD
amplitude and threshold the attack remains largely stealthy;
raising sensitivity (e.g., lower confidence level or augmented
residual set) would increase detection but is beyond the scope
of this robustness check.

H. Validation of SITL Against u-blox Flight Data

To address the concern regarding the fidelity of PX4-SITL
sensor simulation, we incorporated actual flight data recorded
from a u-blox GNSS receiver and conducted a detailed com-
parison with SITL outputs. This approach enabled a direct,
quantitative comparison of statistical properties, noise spectra,
and temporal stability between the hardware logs and the SITL
simulation. Figure 14a presents the Allan variance comparison
between the u-blox measurements and SITL outputs. The
two curves are in close agreement across integration times
spanning 10−2 to 10 seconds, confirming that SITL reproduces
both short-term stability and random-walk characteristics of
the actual GNSS. This demonstrates that SITL captures the
essential temporal noise dynamics relevant for navigation and
sensor fusion testing.

Figure 14b shows the power spectral density (PSD) of accel-
eration for both u-blox and SITL data. The results highlight
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(a) Filter Noise Validation (b) Time Offset Validation

(c) Attack Latency Validation

Fig. 13: Attack Visualization

(a) Allan Variance (b) PSD of Acceleration

Fig. 14: Validation of SITL Against u-blox Flight Data

that SITL preserves the expected flat white-noise character-
istics within the operational bandwidth and closely matches
the spectral level of the hardware up to the GNSS update
rate. Minor discrepancies appear at higher frequencies, where
SITL exhibits sharper roll-off due to deterministic sampling
and the absence of receiver tracking dynamics; however, these
deviations occur outside the frequency band of interest for
navigation algorithms.

Together, these results provide strong empirical evidence
that PX4-SITL, when configured with 160 Hz IMU and 1 Hz
GNSS, is a reliable proxy for hardware measurements. The
Allan variance and PSD analyses confirm that SITL replicates
both the magnitude and distribution of noise consistent with
u-blox specifications, while the absence of secondary effects
such as RF multipath or clock drift has a negligible impact on
overall accuracy (≤5% of the error budget).

VII. DISCUSSION

This study reveals the coupling mechanism between UAV
motion dynamics and cyber attacks’ effectiveness through
systematic empirical analysis. Experimental data indicate that
changes in motion state can significantly enhance the success
rate of attacks. While the SSD approach demonstrates clear
advantages, its engineering implementation faces two major
challenges: Dependency on A Priori Knowledge. The effec-
tiveness is highly contingent upon the real-time accuracy of
the object detection and tracking system. However, the existing
YOLOv5 architecture, for instance, exhibits exponential decay
in the Intersection over Union (IoU) metric over time in
dynamic target tracking scenarios. This results in a tracking
failure probability exceeding 73% after 60 seconds of continu-
ous locking. Energy-Concealment Trade-off Paradox. While
the sustained attack mode can maintain a stealthiness thresh-
old, it leads to a non-linear increase in energy consumption
on the attacking end. This escalation doesn’t align with the
requirements in real-world mission scenarios.

In addition, a key assumption of the SSD is that the Qk

and Rk are preset offline. This is a common practice in
current engineering applications. From a theoretical stand-
point, adaptive Qk and Rk values can modify the system’s
sensitivity to attacks, potentially enabling the mitigation of
such attacks. This insight provides a constructive direction
for defending SSD. We observed that increasing Qk and
decreasing Rk could reduce the system’s sensitivity to attacks.
However, this adjustment comes at the cost of a decrease in
localization accuracy. While it is possible to improve position-
ing accuracy by increasing Rk and decreasing Qk, this also
makes the system more vulnerable to attacks. Consequently, a
dynamic strategy for adjusting Qk and Rk is crucial. This can
be achieved through optimization methods or reinforcement
learning, which can fine-tune these parameters in real time,
balancing between accuracy and security.

VIII. CONCLUSION

In this paper, we investigate cybersecurity threats of UAV
route planning under different motion states. We assess the
effectiveness of GNSS attacks under various motion states
through theoretical and experimental analyses. Our findings
reveal that INS is more vulnerable during maneuvering than
in linear flight. Based on this insight, we introduce SSD, a
novel state-based stealthy backdoor attack, which strategically
combines GNSS velocity and position attacks to exploit this
vulnerability. We conducted extensive experiments, and the
results show that SSD demonstrates superior effectiveness
and stealthiness compared with previous methods. We hope
that this work will inspire INS designers and developers
to prioritize code security and implement robust dynamic
defenses.
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