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ALKAID: Accelerating Three-Party Boolean Circuits
by Mixing Correlations and Redundancy

Ye Dong , Xudong Chen , Xiangfu Song , Yaxi Yang , Wen-jie Lu ,
Tianwei Zhang , Jianying Zhou , Jin-Song Dong

Abstract—Secure three-party computation (3PC) with semi-
honest security under an honest majority offers notable efficiency
in computation and communication; for Boolean circuits, each
party sends a single bit for every AND gate, and nothing for
XOR. However, round complexity remains a significant challenge,
especially in high-latency networks. Some works can support
multi-input AND and thereby reduce online round complexity,
but they require exponential communication for generating the
correlations in either preprocessing or online phase. How to
extend the AND gate to multi-input while maintaining high
correlation generation efficiency is still not solved.

To address this problem, we propose a round-efficient 3PC
framework ALKAID for Boolean circuits through improved
multi-input AND gate. By mixing correlations and redundancy,
we propose a concretely efficient correlation generation ap-
proach for small input bits N < 4 and shift the correlation
generation to the preprocessing phase. Building on this, we
create a round-efficient AND protocol for general cases with
N > 4. Exploiting the improved multi-input AND gates, we
design fast depth-optimized parallel prefix adder and share
conversion primitives in 3PC, achieved with new techniques and
optimizations for better concrete efficiency. We further apply
these optimized primitives to enhance the efficiency of secure
non-linear functions in machine learning. We implement ALKAID
and extensively evaluate its performance. Compared to state of
the arts like ABY3 (CCS’2018), Trifecta (PoPETs’2023), and
METEOR (WWW’2023), ALKAID enjoys 1.5×–2.5× efficiency
improvements for boolean primitives and non-linear functions,
with better or comparable communication.

I. INTRODUCTION

Secure multiparty computation (MPC) enables two or more
parties to compute a function on their joint data. It ensures
that no party can learn anything about other’s inputs, except
what can be inferred from outputs [1–3]. MPC constructions
have been applied in various real-world scenarios, e.g., fi-
nancial analysis [4, 5], medical data computation [6], and
machine learning [7–10]. Specifically, the 3-party with honest
majority setting is one of the most promising solutions for
practical privacy-preserving applications due to its attractive
balance between efficiency and security, and it has been widely
adopted in many privacy-preserving applications, including
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machine/deep learning [9, 11, 12], decision tree [13–15],
graph analysis [16], and private inference of large language
models [17, 18], and has been included in mainstream open-
sourced frameworks [10, 19].

Existing MPC protocols fall into two primary categories:
Yao’s garbled circuits (GC) [1, 2, 20] and secret sharing-based
protocols [3, 21]. In the GC-based approach, the parties use a
garbled Boolean circuit to evaluate the function with constant
rounds of communication. On the other hand, secret sharing-
based protocols secret-share inputs among parties and compute
circuits layer-by-layer, requiring multiple rounds of interac-
tion. GC-based protocols are advantageous in high-latency
networks because of their constant round communication, but
the communication overhead of exchanging garbled Boolean
circuits significantly impacts their throughput. In contrast, se-
cret sharing-based protocols have lightweight communication
costs and can be highly parallelized [21].

The need for multiple rounds of communication to compute
Boolean gates AND is the main performance bottleneck of
secret sharing-based protocols, even for the cheapest 3PC so-
lutions. Those existing works are primarily designed for secure
2-input AND gate, and circuit optimizations and parallelization
are typically aligned with this designation, leading to at least
log2(ℓ) rounds of online communication for circuits of depth
ℓ. This round complexity is particularly problematic for real-
time applications in high-latency networks, where excessive
communication rounds can severely restrict the throughput. If
a multi-input AND gate could be securely computed with com-
parable (online) round complexity to 2-input ones, the circuit
depth will be further reduced, resulting in significant online
time savings. Consequently, it is crucial to propose a round-
efficient approach to compute multi-input AND gate securely,
to improve the performance, especially the online time in high-
latency networks, for secret sharing-based protocols.
Existing Solutions. In recent years, there has been increasing
research [22–25] aiming to reduce the online round complexity
of secret sharing-based protocols. They exploit correlations to
design secure multi-input AND gates, which are applied to
construct depth-optimized circuits for better online efficiency.
At a high-level, given N inputs {xj}Nj=1, a multi-input AND
follows:

N∧
j=1

xj =

N∧
j=1

(
(xj ⊕ rj)⊕ rj

)
=

⊕
T ⊆{1,...,N}

( ∧
j /∈T

(xj ⊕ rj︸ ︷︷ ︸
mj

)
)
∧ (

∧
k∈T

rk︸ ︷︷ ︸
rT

)
, (1)
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TABLE I: Existing solutions and ALKAID for ANDing ℓ bits. • represents secret sharing-fully schemes and ◦ denotes dealer-
based approaches. Communication is measured by the bits sent by all parties. N is set as the maximum recommended by each
work. Prep. is for preprocessing and Comm. denotes communication. κ is the security parameter with κ = 128.

Framework # Party Type N
ℓ-bit AND

Round [Prep.] Comm. [Prep.] Comm. [Online] Round [Online]

[23] (2 + 1)PC ◦ N ≤ 9 1 ≈ 125ℓ ℓ/4 log9(ℓ)
Trifecta [25] (2 + 1)PC ◦ N ≤ 8 0 0 ≈ 71ℓ log8(ℓ)

ABY3 [9] 3PC • N = 2 0 0 3ℓ log2(ℓ)
METEOR [24] 3PC • N ≤ 4 2 11ℓ ℓ log4(ℓ)
ALKAID(Ours) 3PC • N ≤ 4 1 2ℓ 2ℓ log4(ℓ)

where {rj}Nj=1 and rT =
∧

k∈T rk for ∀T ⊆ {1, ..., N} are
kept secret, and mj = xj⊕rj is revealed. After generating all
correlated randomness rT , the parties can compute

∧N
j=1 xj

securely in one round of communication. As mj is public,
the key challenge is computing {rT }T ⊆{1,...,N} securely and
efficiently. Based on the generation methods, existing works
can be categorized into two approaches:

i) Dealer-based protocols [23, 25, 26] rely on a trusted dealer
to generate and distribute correlated randomness. This re-
quires the dealer to send O(2N ) bits in one round and
have full access to correlated randomness, so it necessarily
assumes that the dealer is a trusted party, which might be
unavailable in the real world.

ii) Secret sharing-fully schemes [22, 24] allow the parties
to independently sample randomness rj within their re-
spective secret-sharing schemes. Correlated values rT are
computed by executing underlying 2-input AND protocols.
This method not only incurs a communication of O(2N )
bits but also introduces an additional round complexity of
log2(N). Unlike dealer-based approaches, secret sharing-
fully methods ensure that no single party gets the full
correlations in cleartext, making them more suitable when
trusted dealer assumption is unavailable.

On the other hand, [22–24, 26] shift correlation generation
to the preprocessing phase to reduce online costs. While
these techniques do reduce online round complexity, they
still involve an expensive preprocessing communication com-
plexity of O(2N ) (and secret sharing-fully methods require
preprocessing round complexity of log2(N)). To balance the
preprocessing and online communication, they all restrict N
to a specific bound, i.e., N ≤ 4. We summarize N limitations,
concrete communication and round complexity for ANDing ℓ
bits of existing works in Table I. Given the considerable cor-
relation generation costs and the trust assumptions of current
multi-input AND protocols, we ask the following question:

Can we reduce the preprocessing communication and round
complexity for generating correlations of multi-input AND
while maintaining (comparable) current high online efficiency
in the secret sharing-fully setting?

To answer this question affirmatively, we propose ALKAID,
a secure three-party computation framework against semi-
honest adversaries. We mix the correlations of random masks
and redundancy of replicated secret sharing to balance con-
crete preprocessing and online communication costs of N -
input AND gates for N ≤ 4. With its guidance, we design
efficient 3PC protocols for depth-optimized circuits, including

I ⟨·⟩-Sharing J·K-Sharing

II AND2 AND3 AND4

III PPA

IV A2B B2A BitExt

Fig. 1: Dependency of protocols in ALKAID. Layer I specifies
the sharing semantics, layer II presents the (N ≤ 4)-input
AND protocols, layer III corresponds to our depth-optimized
PPA, and layer IV contains the basic 3PC primitives.

parallel prefix adder (PPA), share conversions, and bit extrac-
tion, which finally improve the efficiency of the non-linear
function of secure neural network inference. In summary,
ALKAID includes the following contributions:
• Cost-Balanced N -Input AND with N ≤ 4. We propose

practical 3-party protocols for N -input AND with N ≤ 4.
Our approach leverages correlations and redundancy of
replicated secret sharing to balance preprocessing and online
costs. The preprocessing and online phases merely require
one round of communication with ≤ 2 bits per party,
making it suitable for high-latency networks. Compared to
prior works [9, 24–26], we achieve an improved trade-off
between preprocessing and online costs.

• Optimized PPA Circuit & Primitives. We design an
efficient protocol for depth-optimized parallel prefix adder
(PPA) [22] in 3PC using our N -input AND gates. By ex-
ploiting the properties of operators within PPA, we propose
specific optimizations to reduce online and preprocessing
communication by at least 2× and 1.5×, respectively. Since
PPA facilitates a bundle of operations in secure computa-
tion, our depth-optimized PPA improves the efficiency of
widely used 3PC primitives like Arithmetic-Boolean share
conversions and bit extraction. We present the dependency
of the protocols in Fig. 1.

• Application & Evaluation. We implement our protocols in
C++ and integrate them into 3PC backend of SecretFlow-
SPU [10] to provide our framework ALKAID, and apply it
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TABLE II: Notation table.

Symbols Descriptions

Pi party i in 3PC
x lowercase letter denotes scalar
xj the j-th bit of x

⊕, ∧ bit-wise XOR and AND
[·] 3-party linear secret sharing
⟨·⟩ 2-out-of-3 replicated secret sharing
J·K 2-out-of-3 masked replicated secret sharing

AND2/ANDN AND gate with 2/N inputs
Ff the ideal functionality of function f
PPA Parallel Prefix Adder

for activation functions of secure neural network inference,
handling specific input and output conversions to facilitate
its use in Boolean circuits. Experimental results demonstrate
that ALKAID accelerates the online phase of 3PC and
offers a more balanced trade-off between preprocessing and
online phases: ALKAID i) achieves a speedup of 1.5–2.5×
compared to [9, 24, 25] for online efficiency of non-linear
functions, and ii) even outperforms one of the cheapest
solution ABY3 by at least 7% for end-to-end running time
in secure evaluation of neural networks and GPT-2. The
source code is available1.

Organization. We first introduce the background and prelimi-
nary in § II. Then, we present our intuition and techniques
for N -input AND gates in § III. Next, the constructions
of depth-optimized PPA and 3PC primitives are illustrated
in § IV. Afterward, we apply our techniques in the secure
non-linear functions of neural network inference in § V. In
§ VI, we implement our framework and conduct experimental
evaluations. Finally, we summarize the related works in § VII
and conclude this work in § VIII.

II. BACKGROUND & PRELIMINARY

A. Notations

We summarize the main notations in Table II. By default,
we use the above notations for Boolean sharing, and [·]A, ⟨·⟩A,
and J·KA are for the corresponding Arithmetic sharing.

B. Three-Party Computation

We introduce the secret sharing schemes and randomness
generation procedures as follows.

1) Linear Secret Sharing (LSS, [·]-Sharing): A secret value
x ∈ Z2 is shared by three random values r

$← Z2, r′
$←

Z2, and r′′ = x ⊕ r ⊕ r′, where P0 gets [x]0 = r, P1 gets
[x]1 = r′, and P2 obtains [x]2 = r′′. We refer to it as Boolean
Sharing. When x ∈ Z2ℓ with ℓ > 1 (e.g., ℓ = 64), which
support Arithmetic operations (e.g., +, −, and ·) over Z2ℓ ,
this is Arithmetic Sharing and we use notation [·]A.

XOR. For LSS, we use its secure XOR. Let a, b, c ∈ Z2 be
public constants, [x] and [y] be two secret-shared inputs over
Z2, [ax⊕by⊕c] can be computed as (a[x]0⊕b[y]0⊕c, a[x]1⊕
b[y]1, a[x]2 ⊕ b[y]2), where Pi can compute its share locally.
When a = 1, b = 1, and c = 0, we get [x⊕ y].

1https://anonymous.4open.science/r/Alkaid

2) Replicated Secret Sharing (RSS, ⟨·⟩-Sharing): RSS is
constructed on LSS with redundancy. Given secret x ∈ Z2,
it is also shared by three random values [x]0, [x]1, [x]2 ∈ Z2

with x = [x]0 ⊕ [x]1 ⊕ [x]2. Pi gets two of the three random
values as its RSS share, a.k.a., ⟨x⟩i = ([x]i, [x]i+1).
XOR & AND. Let a, b, c ∈ Z2 be public constants, ⟨x⟩
and ⟨y⟩ be two secret-shared inputs. ⟨ax ⊕ by ⊕ c⟩ can be
computed as (a[x]0 ⊕ b[y]0 ⊕ c, a[x]1 ⊕ b[y]1, a[x]2 ⊕ b[y]2),
where Pi can compute its share locally. When c1 = 1, c2 =
1, and c3 = 0, we get ⟨x⊕ y⟩. On the other hand, computing
secure ⟨x ∧ y⟩ requires communication among the parties:
i) Pi first computes [z]i = [x]i[y]i ⊕ [x]i+1[y]i ⊕ [x]i[y]i+1

locally, ii) Parties then perform re-sharing by letting Pi send
[z′]i = [α]i ⊕ [z]i to Pi−1, where [α]0 ⊕ [α]1 ⊕ [α]2 = 0 and
are generated by functionality FZeroShr (c.f., § II-C). In the
end, ([z′]0, [z′]1), ([z′]1, [z′]2), ([z′]2, [z′]0) form ⟨x ∧ y⟩.

3) Masked Replicated Secret Sharing (MRSS, J·K-Sharing):
In MRSS [24], x ∈ Z2 is shared as JxK = (mx, ⟨rx⟩) where: i)
r is random sampled from Z2 and RSS-shared among parties,
and ii) mx = x ⊕ rx is revealed to all parties. As no party
knows rx in clear (except the secret owner), revealing mx will
not introduce any leakage of x. MRSS utilizes the same secret-
randomness ⟨r⟩ to protect inputs and generate correlations.
XOR & AND. Let a, b, and c be public constants, JxK
and JyK be two secret inputs, where JxK = (mx, ⟨rx⟩) and
JyK = (my, ⟨ry⟩). It is easy to see that the parties can
compute (amx ⊕ bmy ⊕ c, a⟨rx⟩ ⊕ b⟨ry⟩) locally. Also, we
get Jx ⊕ yK with a = 1, b = 1, and c = 0. When computing
MRSS-based AND2 Jx ∧ yK, the parties work in a prepro-
cessing/online paradigm: i) Preprocessing: parties compute
⟨rxy⟩ = ⟨rx⟩∧⟨ry⟩ using RSS-based AND2. ii) Online: parties
compute ⟨mz⟩ = mxmy ⊕mx⟨ry⟩ ⊕my⟨rx⟩ ⊕ ⟨rxy⟩ ⊕ ⟨rz⟩,
reveal mz to all parties, and set the result as (mz, ⟨rz⟩),
where ⟨rz⟩ is random sampled and ⟨·⟩-shared. Dong et al. [24]
proposed MRSS-based ANDN gates with improved online
efficiency with exponential preprocessing communication.

C. Security Model & Ideal Functionalities

Following prior works [9, 24], ALKAID is secure against
a semi-honest (a.k.a., honest-but-curious) adversary that cor-
rupts no more than one of the three computing parties. Semi-
honest means such an adversary will follow the protocol
specifications, but may try to learn other’s private information.

Definition 1 (Semi-Honest Security). Let Π be a three-
party protocol running in real-world and F : ({0, 1}n)3 →
({0, 1}m)3 be the ideal randomized functionality. We say Π
securely computes F against a single semi-honest adversary
if for every corrupted party Pi (i ∈ {0, 1, 2}) and every input
x ∈ ({0, 1}n)3, there exists an efficient simulator S:

{viewi,Π(x), outputΠ(x)}
c
≈ {S(i, xi,Fi(x)),F(x)},

where viewi,Π(x) is the view of Pi in the execution of Π on
x, outputΠ(x) is the output of all parties, and Fi(x) denotes
the i-th output of F(x).

Ideal Functionalities. We use several well-established func-
tionalities. The implementations of F ⟨·⟩

AND2 and FJ·K
AND2 are as
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§ II-B2 and § II-B3, respectively. Below, we introduce the
randomness generation functionalities.
Randomness Generation. We rely on that parties can generate
fresh random elements on demand, without any interaction
beyond a short initial phase. Concretely, i) all parties have a
common key, ii) Pi obtains random keys (keyi, keyi+1), such
that each pair (Pi,Pi+1) have the common keyi+1. We use the
following pseudorandom function (PRF)-based randomness
generation procedures from [9, 27]:
• ΠRand: Given a fresh id, Pi lets [r]i = PRFkeyi(id) and
[r]i+1 = PRFkeyi+1

(id) so that ([r]0, [r]1, [r]2) form valid
RSS shares of random r;

• ΠRandComm: Each Pi lets r = PRFkey(id) for the fresh id,
so that all parties have a common random r;

• ΠRandPairi,j : Each pair of Pi and Pj locally computes r =
PRFkey(id), where key is their common key. Therefore, Pi

and Pj have common random r.
• ΠZeroShr: Each Pi computes [α]i = PRFkeyi(id) ⊕
PRFkeyi+1

(id). In this way, [α]0 ⊕ [α]1 ⊕ [α]2 = 0.
PRF is defined as PRF : {0, 1}κ×{0, 1}κ → {0, 1}ℓ, where

κ is the computational security parameter, a.k.a., the length of
the keys. When requiring a random bit-string, we denote it as
r

$← Zℓ
2. Similarly, when needing an ℓ-bits random value from

Z2ℓ , we interpret it as r
$← Z2ℓ (and ⊕ can be replaced by +

or − modulo 2ℓ).
Note: To achieve information-theoretic security, the parties can
locally sample uniform random values and communicate with
others to generate correlated randomness. More details can be
referred to [27, 28].

D. Preprocessing/Online Paradigm

The preprocessing/online paradigm is widely used in de-
signing practical MPC protocols. Recent works [22–24, 29]
make use of input-independent but function-dependent pre-
processing phases to further improve online efficiency. This
approach necessitates that the parties know the function during
preprocessing, which is often met with basic MPC primitives
(e.g., share conversions) and some real-world applications
like secure neural network inference. We employ an input-
independent but function-dependent preprocessing phase.

III. INTUITION & TECHNIQUE FOR ANDN

We first revisit the RSS and MRSS-based approaches for
ANDN, then present the intuitions and techniques, and finally
show our concrete ANDN design.

A. Revisiting RSS & MRSS-based Approaches

We revisit the secure ANDN of both approaches and analyze
their respective preprocessing and online complexity.

1) RSS-based Approach: RSS-based works [9, 11, 27, 28]
use the redundancy to compute AND2 securely. As discussed
in § II-B2, each AND2 needs one re-sharing to maintain the
consistency of sharing semantics for subsequent computation.
Re-sharing requires one party to send 1 bit in 1 round. When
computing the ANDN gate, these works exploit AND2 and
binary tree-based optimization to represent ANDN as a binary

Protocol ΠAND4

Inputs: For i ∈ {0, 1, 2}, Pi inputs JxKi = (mx, ⟨rx⟩i),
JyKi = (my, ⟨ry⟩i), JuKi = (mu, ⟨ru⟩i), and JvKi =
(mv, ⟨rv⟩i).
Outputs: Pi gets JzKi = (mz, ⟨rz⟩i) with z = x∧y∧u∧v.
Preprocessing Phase:

1) Parties compute correlated randomness ⟨rxy⟩ = ⟨rx⟩ ∧
⟨ry⟩ and ⟨ruv⟩ = ⟨ru⟩ ∧ ⟨rv⟩ by using F⟨·⟩

AND2.
2) Parties invoke FZeroShr to let Pi obtain [α]i with [α]0⊕

[α]1 ⊕ [α]2 = 0.
3) Parties invoke FRand, such that Pi gets random share
⟨rz⟩i = ([rz]i, [rz]i+1).

Online Phase:
1) Parties compute ⟨xy⟩ = mxmy ⊕mx⟨ry⟩⊕my⟨rx⟩⊕
⟨rxy⟩ and ⟨uv⟩ = mumv ⊕mu⟨rv⟩⊕mv⟨ru⟩⊕ ⟨ruv⟩
locally, such that Pi gets ⟨xy⟩i = ([xy]i, [xy]i+1) and
⟨uv⟩i = ([uv]i, [uv]i+1).

2) Pi locally computes [z]i = ([xy]i∧ [uv]i)⊕ ([xy]i+1∧
[uv]i)⊕ ([xy]i ∧ [uv]i+1).

3) Pi computes [mz]i = [z]i⊕[α]i⊕[rz]i and sends [mz]i
to Pi−1 and Pi+1, such that each party can reconstruct
mz = ⊕2

i=0[mz]i.
4) Pi sets JzKi = (mz, ⟨rz⟩i) as outputs.

Fig. 2: Protocol for secure ANDing 4 bits.

tree of depth log2(N), so parties can compute AND2 gates
layer-by-layer: in the i-th layer, the parties compute N/2i

AND2 gates in parallel (a.k.a., 1 round) with communicating
3N/2i bits totally. This method requires all parties to send
around 3N bits in log2(N) rounds.

2) MRSS-based Approach: MRSS-based approaches work
in the preprocessing/online paradigm and focus on optimizing
online complexity [24]. As discussed in §II-B3, parties com-
pute correlations in the preprocessing phase and consume them
in the online phase. This approach can be generally extended
to ANDN: Given N secret values {JxjK = (mx,j , ⟨rx,j⟩)}Nj=1,
parties first generate all correlated randomness ⟨rT ⟩ =
∧k∈T ⟨rx,k⟩ for T ⊆ {1, . . . , N} using RSS-based AND2, then
compute ⟨mz⟩ =

⊕
T ⊆{1,...,N}(∧j /∈T mj) ∧ ⟨rT ⟩ ⊕ ⟨rz⟩, and

finally reveal mz to all parties. The result is JzK = (mz, ⟨rz⟩)
with z = ∧Nj=1xj . Asymptotically, this approach requires each
party to send 1 bit in 1 round during the online phase, but
with communicating (2N −N −1) bits in log2(N) rounds for
the preprocessing. It sets N ≤ 4 to balance preprocessing
and online costs and constructs QuadTree for N > 4: all
parties send N bits in log4(N) rounds in online phase, with
communicating 11N bits in 2 preprocessing rounds.

The analysis illustrates that RSS-based ANDN does not
need any preprocessing communication, but it has higher
online communication and round complexity than the MRSS-
based approach. However, the preprocessing communication
complexity of the MRSS-based method is exponential to N
so we have to set N ≤ 4.

B. Our Intuition & Technique

In MPC, we usually guarantee the sharing consistency of
inputs and outputs for all gates to support subsequent compu-
tation. For example, when computing ANDN, the RSS-based
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Fig. 3: The illustration of our N -input AND protocol. ⊗
denotes the modified MRSS-based AND2, and ⊙ denotes
the RSS-based AND2. For ease of presentation, we assume
N = 4n. We only need to ensure the sharing consistency of
the inputs and the final output. The intermediate results ( ⟨xy⟩
and ⟨uv⟩) remain in the ⟨·⟩-shared format.

method requires re-sharing to convert intermediate shares back
into the RSS format, and the MRSS-based approach needs
to reveal the masked values to get the MRSS-shared results.
However, when we go beyond the layer-by-layer paradigm
and look at more layers of gates as a whole, we observe
that it is sufficient to guarantee the sharing consistency of
some necessary gates, but not all, to compute ANDN in
3PC. As illustrated in Fig. 3, we modify the MRSS-based
AND2 to generate RSS-shared intermediate results without
communication, which support one more layer of RSS-based
AND2 followed by one resharing. Therefore, we only need to
guarantee the sharing consistency of inputs and final outputs
in ANDing 4 bits, saving overhead for processing the sharing
semantics of intermediate results.

With this insight, we make use of the correlations of MRSS
and redundancy of RSS to compute ANDN for N ≤ 4.
Let N = 4, and the secret inputs JxK = (mx, ⟨rx⟩), JyK =
(my, ⟨ry⟩), JuK = (mu, ⟨ru⟩), and JvK = (mv, ⟨rv⟩) are
MRSS-shared inputs. We build our protocol ΠAND4 using the
variants of AND2 of MRSS and RSS as follows:

• Preprocessing: In the preprocessing phase, parties first
compute correlated randomness ⟨rxy⟩ = ⟨rx⟩ ∧ ⟨ry⟩ and
⟨ruv⟩ = ⟨ru⟩ ∧ ⟨rv⟩ using RSS-based AND2. Additionally,
parties generate zero-sharing ([α]0, [α]1, [α]2) and RSS-
shared random ⟨r⟩, where Pi has [α]i and ⟨r⟩i.

• Online: We present our mixing correlation and redundancy
as follows. i) Correlations: instead of directly computing
MRSS-shared results, we modify the AND2 of MRSS to
output RSS-shared results utilizing the correlated random-
ness, i.e., ⟨xy⟩ = mxmy ⊕mx⟨ry⟩ ⊕ my⟨rx⟩ ⊕ ⟨rxy⟩, so
that the parties can compute ⟨xy⟩ and ⟨uv⟩ locally (free of
communication). ii) Redundancy: we observe that ⟨xy⟩ and
⟨uv⟩ are still of RSS-shared format, so we can exploit the re-
dundancy of RSS to compute one AND2. Concretely, parties
compute the 3-out-of-3 shares of z = (xy) ∧ (uv) locally,
where Pi holds [z]i and z = [z]0 ⊕ [z]1 ⊕ [z]2. Thirdly, Pi

computes and sends [mz]i = [z]i⊕ [α]i⊕ [rz]i to Pi−1 and
Pi+1, and all parties can reconstruct mz =

⊕2
i=0[mz]i to

set the result as JzK = (mz, ⟨rz⟩). In this way, we leverage
mixing correlations and redundancy to compute AND4 with
one round of communication.

Given the correctness of the MRSS and RSS-based AND2,
it is easy to verify z = x∧ y ∧u∧ v. As mz =

⊕2
i=0[mz]i =⊕2

i=0([z]i ⊕ [α]i ⊕ [rz]i) = (
⊕2

i=0[z]i) ⊕ (
⊕2

i=0[α]i) ⊕
(
⊕2

i=0[rz]i) = z⊕0⊕rz = z⊕rz , we have JzK = (mz, ⟨rz⟩)
as an valid MRSS sharing of (x ∧ y ∧ u ∧ v). Our protocol
ΠAND4 is formulated as Figure 2.

1) Security Analysis: In protocol ΠAND4, we aim to com-
pute the ideal functionality FAND4: It takes four MRSS shar-
ings JxK, JyK, JuK, JvK with identifiers idx, idy , idu, idv ,
respectively, and outputs JzK = Jx∧ y ∧ u∧ vK corresponding
to a new identifier idz . We capture the security in Theorem 1
and give the proof in Appendix E.

Theorem 1 (Security of ΠAND4). In the 3-party honest-
majority setting, protocol ΠAND4 securely realizes FAND4 in
the (F ⟨·⟩

AND2, FRand, FZeroShr)-hybrid model in the presence of
a static semi-honest adversary A who corrupts at most one
single party among three.

2) Communication & Round Complexity: We summarize
the communication and round complexity of protocol ΠAND4

in Lemma 1 and give the proof as follows.

Lemma 1. Protocol ΠAND4 requires each party to send 2 bits
in 1 round during the preprocessing phase, and sends 2 bits
in 1 round during the online phase.

Proof of Lemma 1.. In the preprocessing phase, the parties
run RSS-based AND2 twice in parallel, which requires each
party to send a total of 2 bits in 1 round. In the online phase,
the parties reveal mz by every party sending 1 bit to each of
the other two parties, a total of 2 bits, in 1 round.

Compared to the RSS-based solution [9, 27], although
we incur some preprocessing costs, we reduce online com-
munication (resp. round) by 1.5× (resp. 2×) for ANDing
4 bits. Compared to the MRSS-based approach [24], we
reduce preprocessing communication (resp. round) by 5.5×
(resp. 2×) and achieve the same online round complexity and
comparable online communication. Our construction achieves
a better trade-off of preprocessing and online complexity.

3) Optimizations for N = 2 and 3: When ANDing 2 or 3
MRSS-shared inputs, we make the following optimizations:
• Protocol ΠAND2: To achieve two-input AND functionality
FAND2 with reduced preprocessing costs, we convert the
MRSS-shared values into ⟨x⟩ and ⟨y⟩ locally, and then
utilize the redundancy of RSS to compute 3-out-of-3 shared
[x ∧ y]. Finally, we convert the results into MRSS-shared
Jx ∧ yK. Compared to [24], this method does not need any
preprocessing communication but requires sending 2 bits
online. Besides, this results in aligned outputs resharing
procedures with ΠAND4 and ΠAND3, and will be helpful
when we compute XOR between the results of ΠAND2 and
ΠAND4/ΠAND3. Looking ahead, we will use both ΠAND2 and
MRSS-based AND2 protocol of [24] in designing practical
and fast depth-optimized PPA (c.f. § IV-A).

• Protocol ΠAND3: Given three inputs JxK, JyK, JuK, we adopt
a similar approach as ΠAND4 to achieve functionality FAND3:
we first AND JxK and JyK using MRSS-based AND2 but
keep the result in RSS-shared fashion as ⟨x ∧ y⟩ (like step
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Protocol ΠAND2

Inputs: For i ∈ {0, 1, 2}, Pi inputs JxKi = (mx, ⟨rx⟩i) and
JyKi = (my, ⟨ry⟩i).
Outputs: Pi gets JzKi = (mz, ⟨rz⟩i) with z = x ∧ y.
Preprocessing Phase:

1) Parties invoke FZeroShr to let Pi obtain [α]i with [α]0⊕
[α]1 ⊕ [α]2 = 0.

2) Parties invoke FRand, such that Pi gets random share
⟨rz⟩i = ([rz]i, [rz]i+1).

Online Phase:
1) Parties compute ⟨x⟩ = mx⊕⟨rx⟩ and ⟨y⟩ = my⊕⟨ry⟩.
2) Pi locally computes [z]i = ([x]i ∧ [y]i) ⊕ ([x]i+1 ∧

[y]i)⊕ ([x]i ∧ [y]i+1).
3) Pi computes [mz]i = [z]i⊕[α]i⊕[rz]i and sends [mz]i

to Pi−1 and Pi+1, such that each party can reconstruct
mz = ⊕2

i=0[mz]i.
4) Pi sets JzKi = (mz, ⟨rz⟩i) as outputs.

Fig. 4: Protocol for secure ANDing 2 bits.

Protocol ΠAND3

Inputs: For i ∈ {0, 1, 2}, Pi inputs JxKi = (mx, ⟨rx⟩i),
JyKi = (my, ⟨ry⟩i), and JuKi = (mu, ⟨ru⟩i).
Outputs: Pi gets JzKi = (mz, ⟨rz⟩i) with z = x ∧ y ∧ u.
Preprocessing Phase:

1) Parties compute correlated randomness ⟨rxy⟩ = ⟨rx⟩ ∧
⟨ry⟩ by using F⟨·⟩

AND2.
2) Parties invoke FZeroShr to let Pi obtain [α]i with [α]0⊕

[α]1 ⊕ [α]2 = 0.
3) Parties invoke FRand, such that Pi gets random share
⟨rz⟩i = ([rz]i, [rz]i+1).

Online Phase:
1) Parties compute ⟨xy⟩ = mxmy ⊕mx⟨ry⟩⊕my⟨rx⟩⊕
⟨rxy⟩ and ⟨u⟩ = mu − ⟨ru⟩ locally, such that Pi gets
⟨xy⟩i = ([xy]i, [xy]i+1) and ⟨u⟩i = ([u]i, [u]i+1).

2) Pi locally computes [z]i = ([xy]i ∧ [u]i)⊕ ([xy]i+1 ∧
[u]i)⊕ ([xy]i ∧ [u]i+1).

3) Pi computes [mz]i = [z]i⊕[α]i⊕[rz]i and sends [mz]i
to Pi−1 and Pi+1, such that each party can reconstruct
mz = ⊕2

i=0[mz]i.
4) Pi sets JzKi = (mz, ⟨rz⟩i) as outputs.

Fig. 5: Protocol for secure ANDing 3 bits.

1) of online phase in protocol ΠAND4). At the same time,
parties convert JuK into RSS sharing ⟨u⟩ locally. Finally,
all parties compute AND2 gate on ⟨x ∧ y⟩ and ⟨u⟩ under
the realm of RSS and convert the 3-out-of-3 shared [(x ∧
y) ∧ u] into MRSS-shared outputs. In this way, each party
only needs to send 1 bit in 1 round during the preprocessing
phase and 2 bits in 1 round during the online phase.
Similar to ΠAND4, it is easy to see that ΠAND2 and ΠAND3

securely realize FAND2 and FAND3 in the (F ⟨·⟩
AND2, FRand,

FZeroShr)-hybrid model, respectively. The round and communi-
cation complexity is analyzed as follows: i) In both protocols,
each party sends 2 bits in 1 round for online phase. ii) For the
preprocessing phase, ΠAND2 does not require communication
and ΠAND3 only requires each party to send 1 bit in 1 round.

4) ANDN with N > 4: Let n be a parameter and the
number of inputs N = 4n. We use protocol ΠAND4 and

QuadTree [30] to build our highly depth-optimized ANDN
circuits: Starting from the leaves (a.k.a., inputs), we invoke
ΠAND4 for N/4k times in parallel (1 round) for the k-th layer
AND4 gates, iteratively n sequential layers to reach the root,
which gives the final result. When N is not a power of 4, we
integrate our protocol ΠAND2 and ΠAND3 to process 2- and
3-input AND gates when necessary. We present the detailed
protocol with N > 4 in Appendix A. It is easy to see the
security in the hybrid model. The round and communication
complexity is summarized as follows.

Remark 1. Let M4, M3, and M2 denote the numbers of
AND4, AND3, and AND2 gates in ANDing N inputs. Each
party sends 2M4 +M3 bits in 1 round for the preprocessing
phase, and sends 2(M4 +M3 +M2) bits in ⌈log4 N⌉ rounds
during the online phase. Especially, when N = 4n, we only
need N−1

3 AND4 gates. All parties send 2(N − 1) bits in 1
round for the preprocessing phase, and send 2(N − 1) bits in
n = log4(N) rounds for the online phase.

IV. IMPROVED PPA CIRCUIT & PRIMITIVES

We first revisit depth-optimized Parallel Prefix Adder (PPA)
circuit (§ IV-A). Then, we apply our improved PPA to design
fast 3PC primitives, including Arithmetic-Boolean conversions
and most significant bit extraction (§ IV-B and § IV-C).

A. Depth-Optimized PPA & Optimizations

Given two ℓ-bits x and y, the bit-wise representations are
x = xℓ−1 . . . x1x0 and y = yℓ−1 . . . y1y0, where xj (resp.,
yj) denotes the j-th bit of x (resp., y). PPA makes use of
the generated (g) and propagated (p) signals to compute the
sum of inputs in Boolean circuits [31, 32]. Concretely, given
(xj , yj), (gj , pj) are defined as:

gj = xj ∧ yj , pj = xj ⊕ yj . (2)

Patra et al. [22] defined operators ▽N and ▼N to compute
intermediate signals based on g and p. We revisit ▽N and ▼N

for N = 2, 3, 4. When j = 0, signals can be processed as
follows, with indices from 0 to N − 1:

▽2(g, p) = gj+1 ⊕ (pj+1 ∧ gj),

▼2(g, p) = (gj+1 ⊕ (pj+1 ∧ gj), pj+1 ∧ pj),

▽3(g, p) = gj+2 ⊕ pj+2 ∧ (gj+1 ⊕ (pj+1 ∧ gj))

= gj+2 ⊕ (pj+2 ∧ gj+1)⊕ (pj+2 ∧ pj+1 ∧ gj),

▼3(g, p) = (gj+2 ⊕ pj+2 ∧ (gj+1 ⊕ (pj+1 ∧ gj)),

pj+2 ∧ pj+1 ∧ pj)

= (gj+2 ⊕ (pj+2 ∧ gj+1)⊕ (pj+2 ∧ pj+1 ∧ gj),

pj+2 ∧ pj+1 ∧ pj),

▽4(g, p) = gj+3 ⊕ pj+3

∧ (gj+2 ⊕ (pj+2 ∧ (gj+1 ⊕ pj+1 ∧ gj)))

= gj+3 ⊕ (pj+3 ∧ gj+2)⊕ (pj+3 ∧ pj+2 ∧ gj+1)

⊕ (pj+3 ∧ pj+2 ∧ pj+1 ∧ gj),

▼4(g, p) = (gj+3 ⊕ pj+3

∧ (gj+2 ⊕ (pj+2 ∧ (gj+1 ⊕ pj+1 ∧ gj))),

pj+3 ∧ pj+2 ∧ pj+1 ∧ pj)

= (gj+3 ⊕ (pj+3 ∧ gj+2)⊕ (pj+3 ∧ pj+2 ∧ gj+1)

⊕ (pj+3 ∧ pj+2 ∧ pj+1 ∧ gj),

pj+3 ∧ pj+2 ∧ pj+1 ∧ pj)

(3)
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(g15, p15) (g0, p0)
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Fig. 6: Depth-optimized PPA for 16 bits. For brevity, we show
(g0, p0) and (g15, p15), and omit others.

An example of how to use equation (3) in depth-optimized
PPA to compute carry signals for 16-bit inputs is illustrated
in Figure 6. Following this circuit logical, given ℓ-bit x and
y, the high-level evaluation of PPA is as follows:

1) Compute gj = xj ∧ yj and pj = xj ⊕ yj for j ∈
{0, 1, . . . , ℓ− 1}.

2) Recursively compute the intermediate signals layer-by-
layer from (pj , gj) generated in step 1) using the operators
of Equation (3). The generated carry signals are {cj}ℓ−1

j=0.
3) For j ∈ {0, 1, . . . , ℓ − 1}, compute and output the sum

bits s0 = p0 and sj = cj−1 ⊕ pj when 0 < j ≤ ℓ− 1.

With our support for 3PC bitwise XOR, AND2, AND3, and
AND4, we can securely implement the operators in Equa-
tion (3), ultimately achieving 3PC PPA.

1) Optimizations: Leveraging our proposed protocols
and operators in Equation (3), we introduce XOR-then-
Resharing, AND-Reusing, and Mixed-AND2 to reduce the
online and preprocessing communication costs in 3PC:

• XOR-then-Resharing. As 3-out-of-3 sharing supports
XOR, we make use of the XOR-then-Resharing technique
to reduce the invocations of resharing for ▽3, ▼3, ▽4,
and ▼4. Taking ▽3 as an example, instead of resharing
[p1g2] and [p1p2g3] into MRSS separately and then com-
puting XOR, parties first compute their XOR, then reshare
[p1g2 ⊕ p1p2g3] as Jp1g2 ⊕ p1p2g3K, and finally compute
Jg1K ⊕ Jp1g2 ⊕ p1p2g3K. So, we only reshare one bit for
▽-style operators and the first part of ▼-style operators,
making it independent of the number of inputs.

• AND-Reusing. Recall that protocols ΠAND3 and ΠAND4

generate RSS-shared intermediate results. We can re-use
these intermediate results to reduce the preprocessing com-
munication costs of ▼3, ▽4, and ▼4. Taking ▼3 as an
example, we observe that both p1p2g3 and p1p2p3 have
term p1p2. So we can compute RSS-shared ⟨p1p2⟩ once
and use it for both AND3. This saves one invocation of
RSS-based AND2 in the preprocessing phase. Also, we can
apply similar optimizations to ▽4 (resp. ▼4) to save one
(resp. two) preprocessing RSS-based AND2. We reduce the
preprocessing communication costs by at least 1.5× than
processing each AND3 and AND4 directly and separately.
Since the reused intermediate results are of ⟨·⟩-shared
fashion and not revealed to any party, this technique will
not introduce additional security concerns.

Protocol ΠPPA

Inputs: Pi inputs ℓ-bits Boolean sharings JxKi and JyKi.
Outputs: Pi gets JsKi with

∑ℓ−1
j=0 2

j · sj = x+ y.
Preprocess Phase:

1) Parties jointly run the preprocessing phase of MRSS-
based FJ·K

AND2(JxjK, JyjK) [24].
2) Parties run the preprocessing phase of secure operators

▽2, ▼2, ▽3, ▼3, ▽4, and ▼4 that utilized in PPA circuit.

Online Phase:
1) Parties compute JgjK = FJ·K

AND2(JxjK, JyjK) and JpjK =
JxjK⊕ JyjK for j ∈ {0, 1, . . . , ℓ− 1}.

2) Recursively compute the MRSS-shared intermediate
signals using (JpK, JgK) following the depth-optimized
circuit structured as Figure 6. Denote generated carry
signals as JcK.

3) Outputting the sum bits JsK with Js0K = Jp0K and
JsjK = Jcj−1K⊕ JpjK when 0 < j ≤ ℓ− 1.

Fig. 7: Protocol for secure parallel prefix adder.

• Mixed-AND2. In PPA, we need AND2 to compute
{JgjK}ℓ−1

j=0 and operators (▽N ,▼N ). When computing
{JgjK}ℓ−1

j=0, we use the MRSS-based approach [24] so that
each party only sends ℓ bits in the online phase. This shifts
ℓ bits into the preprocessing phase but does not increase
communication rounds. For the AND2 gates involved in
(▽N ,▼N ), we apply protocol ΠAND2 described in § III-B3
because we conduct XOR under [·]-sharing before resharing
(c.f., XOR-then-Resharing). Thus, we save preprocessing
communication while keeping the online costs unchanged.

We present protocol ΠPPA for 3PC PPA in Figure 7. Without
considering the optimizations, we can guarantee the correct-
ness of protocol ΠPPA based on [22]. The correctness of XOR-
then-Resharing can be derived from the XOR’s homomorphism
in 3-out-of-3 sharing and MRSS. AND-Reusing only re-uses
some intermediate results of ΠAND3 and ΠAND4, and does
not change their workflow. Mixed-AND2 adopts two existing
AND2 approaches whose correctness has already been proved.
So, we can guarantee the correctness of our optimized PPA.

2) Security Analysis: Functionality FPPA takes as input
two MRSS Boolean sharings JxK and JyK with identifiers idx,
idy , respectively, outputs JsK = Jx + yK corresponding to a
new identifier ids. ΠPPA achieves FPPA securely, its security
captured in Theorem 2, and proof is given in Appendix E.

Theorem 2 (Security of ΠPPA). In 3-party honest-majority
setting, protocol ΠPPA securely realizes FPPA in the (FJ·K

AND2,
FAND2, FAND3, FAND4)-hybrid model in presence of a static
semi-honest adversary A who corrupts at most one party.

3) Round & Communication: The round and complexity of
our ΠPPA is formulated in Lemma 2.

Lemma 2. Protocol ΠPPA requires 1 round with communica-
tion of 3N3 + 3N ′

3 + 6N4 + 9N ′
4 + 3ℓ bits totally in the pre-

processing phase, while it requires 1 + ⌈log4(ℓ)⌉ rounds with
communication of 6(N2+N3+N4)+12(N ′

2+N ′
3+N ′

4)+3ℓ
bits totally in the online phase. Here N2, N ′

2, N3, N ′
3, N4,

and N ′
4 denote the numbers of operators ▽2, ▼2, ▽3, ▼3,

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:16 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

Protocol ΠA2B

Inputs: Pi inputs Arithmetic sharing JxKAi = (mx, ⟨rx⟩Ai ),
where ⟨rx⟩Ai = ([rx]

A
i , [rx]

A
i+1).

Outputs: Pi gets Boolean sharing JxKi for i ∈ {0, 1, 2}.
Preprocessing Phase

1) Parties run preprocessing phase of FPPA(JuK, JvK).
2) (P0,P1) invoke FRandPair0,1 to generate [ru]1

$← Zℓ
2,

(P0,P2) invoke FRandPair0,2 to get [ru]0
$← Zℓ

2, and all

parties run FRandComm to obtain [ru]2
$← Zℓ

2.
3) Parties (Pi,Pi+1) invoke FRandPairi,i+1 to generate

[rv]i+1
$← Zℓ

2 for i ∈ {0, 1}, and all parties run
FRandComm to get [rv]0

$← Zℓ
2.

Online Phase
1) P0 computes u = mx − [rx]

A
0 and broadcast mu =

u⊕ [ru]0⊕ [ru]1⊕ [ru]2 to all to get JuK = (mu, ⟨ru⟩).
2) P1 computes v = −[rx]A1 − [rx]

A
2 and broadcast mv =

v⊕ [rv]0⊕ [rv]1⊕ [rv]2 to all to get JvK = (mv, [rv]).
3) All parties run the online phase of FPPA(JuK, JvK) to

get JxK = Ju+ vK and set JxK as outputs.

Fig. 8: Protocol for Arithmetic to Boolean conversion.

▽4, and ▼4 in the PPA circuit, N2 = N3 = N4 = ℓ−1
3 and

N ′
2 = N ′

3 = N ′
4 = ℓ log4 ℓ

4 − ℓ−1
3 .

Proof of Lemma 2 (Sketch). Benefiting from AND-Reusing,
we only need to generate 1 correlated triple for ▼4, 2 for
▽4, and 3 for ▼4. The preprocessing of MRSS-based AND2
requires ℓ bits per party. All correlations can be generated in
parallel. Therefore, all parties send 3N3+3N ′

3+6N4+9N ′
4+3ℓ

bits in 1 round during the preprocessing phase. For the online
phase, each party sends 2 bits for each ▽-style operator and
4 bits for each ▼-style operator. Step 1) of online phase
requires each party to send ℓ bits. In total, all parties send
6(N2 + N3 + N4) + 12(N ′

2 + N ′
3 + N ′

4) + 3ℓ bits with
1+⌈log4(ℓ)⌉ rounds for online phase. For the detailed calcula-
tion of (N2, N3, N4) and (N ′

2, N
′
3, N

′
4), see Appendix B.

B. Arithmetic to Boolean Conversion

Parties can use a Boolean Adder circuit to convert an
Arithmetic share JxKA in Z2ℓ to its equivalent ℓ-bits Boolean
share in Zℓ

2. As pointed out by [9], it is more efficient to utilize
the depth-optimized variant (i.e., PPA) circuit to obtain a better
round complexity. At a high level, given the arithmetic share
JxKA = (mx, ⟨rx⟩A), party P0 locally sets u = mx − [rx]

A
0

followed by sharing u as ℓ-bits JuK. In parallel, P1 generates
the Boolean sharing JvK where v = −[rx]A1 − [rx]

A
2 . As

u+ v = mx − [rx]
A
0 − [rx]

A
1 − [rx]

A
2 = x, the parties can run

ΠPPA(JuK, JvK) to get JxK = JuK + JvK. The A2B conversion
is depicted as ΠA2B formally in Figure 8.
Security & Communication. Protocol ΠA2B only makes use
of FRandPairi,j , FRandComm, and FPPA in a black-box manner. i)
We need to guarantee the security of u when A corrupts P1

or P2: since [ru]1 is only known to (P0,P1), mu is undistin-
guished from random bit-strings in Zℓ

2 when A corrupts P2;
when A corrupts P1, we can guarantee the security of u since

(g15, p15) (g0, p0)

3 4 4 4

4

MSB

Fig. 9: Depth-optimized most significant bit extraction circuit
for 16 bits.

[ru]0 is only known to (P0,P2). ii) Similarly, we can guarantee
the security of v as well. The security of ΠA2B is easy to see
in the (FRandPairi,j ,FRandComm,FPPA)-hybrid model.

Protocol ΠA2B results in 2+⌈log4(ℓ)⌉ online rounds and all
parties need to send 6(N2+N3+N4)+12(N ′

2+N ′
3+N ′

4)+7ℓ
bits totally. For the preprocessing phase, all parties send 3N3+
3N ′

3 + 6N4 + 9N ′
4 + 3ℓ bits in 1 round of communication.

1) Most Significant Bit Extraction: PPA can be optimized
by removing unnecessary operators to extract the most sig-
nificant bit from Arithmetic sharing securely (a.k.a., MSB
circuit) [22]. Compared to PPA circuit, MSB circuit has the
same depth but requires much fewer operators. We build
protocol ΠMSB similar to ΠA2B by replacing the PPA circuit
of step 3) in Figure 8 with MSB circuit to extract JMSB(x)K.
For instance, Figure 9 shows the structure of MSB circuit for
16-bit inputs, which is of depth-2, and only requires two ▽4

and ▼4, and one ▼3, reducing approximately 5× operators
compared to 16-bit PPA.

C. Boolean to Arithmetic Conversion

It may also be required to convert a ℓ-bit value of Boolean
sharing to an Arithmetic sharing in Z2ℓ . We can use PPA to
achieve this conversion efficiently as well. In the preprocessing
phase, we let (P0,P1) sample random bit-string u

$← Zℓ
2,

and (P1,P2) generate a random bit-string v
$← Zℓ

2. Instead
of directly letting P1 share (−u − v) to get J−u − vK as
ABY3 [9], we observe Ju ⊕ vK can be expressed as (m =
0, ⟨r⟩ = (0, u, v)). At the same time, we let (P0,P2) sample
random value a

$← Z2ℓ , (P0,P1) sample b
$← Z2ℓ , and P1

compute and send c = (u⊕ v)− b to P2, such that we get a
valid ⟨a+ (u⊕ v)⟩A = (a, b, c). We save the communication
costs of invoking one sharing procedure at the cost of sending
c (but still save ℓ bits for preprocessing communication).

During the online phase, given JxK, the parties first execute
ΠPPA(JxK, Ju⊕ vK) to get JwK = Jx+ (u⊕ v)K and reveal w
to both P0 and P2. Then, P0 computes and sends w+a to P1

(P2 computes w+ a locally). Finally, the result can be set as
JxKA = (w+ a, ⟨a+ (u⊕ v)⟩A). Besides, we observe that for
ΠPPA, instead of generating MRSS-shared JwKA, we modify its
last step of PPA circuit to output [·]-shared carry signals and
then directly reveal w to P0 and P2 from 3-out-of-3 sharing.
In this way, we can save one round of communication for
generating JwK. Protocol ΠB2A is illustrated in Figure 10.
Security & Communication. We analyze the security of
protocol ΠB2A in two cases: i) When adversary A corrupts
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Protocol ΠB2A

Inputs: Pi inputs Boolean sharing JxKi = (mx, ⟨rx⟩i),
where ⟨rx⟩i = ([rx]i, [rx]i+1).
Outputs: Pi gets Arithmetic sharing JxKAi for i ∈ {0, 1, 2}.
Preprocessing Phase:

1) (P0,P1) run FRandPair0,1 to get random u
$← Zℓ

2,

(P1,P2) execute FRandPair1,2 generate random v
$← Zℓ

2,
such that Ju⊕ vK = (m = 0, ⟨r⟩ = (0, u, v)).

2) (P0,P2) invoke FRandPair0,2 to get random a
$← Z2ℓ ,

(P0,P1) call FRandPair0,1 to obtain random b
$← Z2ℓ ,

and P1 sends c = (u⊕ v)− b to P2.
3) Parties run preprocessing phase of FPPA(JxK, Ju⊕ vK).

Online Phase:
1) Parties jointly evaluate FPPA(JxK, Ju⊕vK) to get [w] =

[x+ (u⊕ v)] in 3-out-of-3 sharing, and directly reveal
w to P0 and P2.

2) P0 and P2 locally compute w+ a, and reveal it to P1.
3) Pi sets JxKAi = (w + a, ⟨a+ (u⊕ v)⟩Ai ) as outputs.

Fig. 10: Protocol for Boolean to Arithmetic conversion.

P0, it will get w = x + (u ⊕ v) in clear. Since v is only
known to (P1,P2), w is uniformly random to A. Similarly,
when A corrupts P2, we can also guarantee the uniformity of
w since P2 does not know u. ii) In case of A corrupting P1,
it will see w + a. As long as (P0,P2) keep the secrecy of a,
w + a is undistinguished from a random value for A. Other
steps are either local operators or invoking existing protocols,
i.e., FRandPairi,j and FPPA, in the black-box manner. Therefore,
protocol ΠB2A is secure in (FRandPairi,j ,FPPA)-hybrid model.

Protocol ΠB2A requires 2 + ⌈log4 ℓ⌉ online rounds, and all
parties send 4(N2 + N3 + N4) + 12(N ′

2 + N ′
3 + N ′

4) + 4ℓ
bits totally. For the preprocessing phase, all parties send
3N3 + 3N ′

3 + 6N4 + 9N ′
4 + 3ℓ bits to generate the correlated

randomness for ΠPPA, and P1 sends ℓ bits to P2, which can
be executed in parallel (1 round communication).

V. APPLICATION TO SECURE INFERENCE

Secure non-linear functions, e.g., ReLU and Softmax, are
widely used in MPC-based secure neural network inference [9,
11]. Existing works have proposed various approximation
methods, e.g., piece-wise polynomial approximation [8–10], to
efficiently and accurately compute these functions. We denote
by gd,m : R → R a piece-wise function defined over d + 1
intervals, each represented by a polynomial of degree m as:

gd,m(x) =


F0(x), if x ≤ I1,

F1(x), if x ∈ (I1, I2),

· · ·
Fd(x), if x > Id.

(4)

Each polynomial Fi(x) = ai,0 +
∑m

j=1 ai,jx
j is defined by

at most m + 1 coefficients {ai,j ∈ R}j . However, these
approaches still require huge costs for the involved Boolean
primitives. Table III profiles the online costs of ReLU and
Softmax, which are the most widely used activation functions

TABLE III: Profiling communication (KB), rounds, and time
(seconds) of A2B, B2A, MSB-Ext, and total costs of functions
ReLU and Softmax using ABY3 (except A2B, B2A and MSB-
Ext, total costs include arithmetic addition, multiplication, and
etc. [10]). The input is of batchsize |B| = 1000.

ReLU # Call Comm. Round Time

A2B 0 0 0 0
MSB-Ext 1 70.300 8 0.363
B2A 0 0 0 0
Total - 101.563 10 0.507

Percentage (%) - 69.2% 77.2% 70.9%

Softmax # Call Comm. Round Time
A2B 1 0.219 8 0.453

MSB-Ext 16 140.625 136 5.781
B2A 2 0.273 13 0.503
Total - 610.297 236 11.387

Percentage (%) - 23.1% 62.4% 59.9%

ALKAID
Secure Inference

⟨·
⟩-

In
pu

ts

⟨·
⟩-

O
ut

pu
ts

⟨·⟩-Sharing J·K-Sharing

Arithmetic Circuit
• Matrix Multiplication
• Hadamard product
• Truncation

Boolean Circuit
• MSB Extract
• Arithmetic to Boolean
• Boolean to Arithmetic

⟨·⟩-to-J·K

J·K-to-⟨·⟩

Fig. 11: Overview of the ALKAID framework, bridging RSS
and MRSS for efficient secure neural network inference.

in neural networks, using ABY3 [10], one of the state-of-the-
art MPC frameworks. We find share conversions and MSB-Ext
account for over 60% of online rounds and time.

We integrate our proposed protocols, including ΠA2B, ΠB2A,
and ΠMSB, into 3PC secure neural network inference backend
of the SecretFlow-SPU to provide an optimized framework
ALKAID. As shown in Figure 11, the inputs and outputs
of secure neural network inference are in the RSS-shared
format. We replace the corresponding prior RSS-based im-
plementations for Boolean circuits with our 3PC protocols,
and the arithmetic operations, i.e., Matrix Multiplication and
Truncation, which are defined on Arithmetic circuit for fixed-
point values and computed using existing RSS-based proto-
cols [9, 10, 33]. However, our protocols in § IV are designed
with MRSS-shared inputs and outputs, so we need to bridge
the RSS and MRSS worlds with the following modifications.
Note in ALKAID, we focus on how to apply our proposed
primitives to improve the online efficiency of these approaches
instead of designing new approximation methods.
• ⟨·⟩-to-J·K Processing. When switching from ⟨·⟩-sharing to

J·K-sharing for fast Boolean circuits, we need to convert
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RSS-shared inputs to MRSS-shared format. For ΠA2B, given
⟨x⟩A, P0 secret-shares [x]0 as JuK with u = [x]0, and P1

secret-shares [x]1 + [x]2 as JvK with v = [x]1 + [x]2; For
protocol ΠMSB, given ⟨x⟩A, the parties generate (JuK, JvK)
from ⟨a⟩A similar to the modifications corresponding to
ΠA2B. ii) For ΠB2A, we add one resharing before step 1) of
online phase to convert ⟨x⟩ to MRSS-shared JxK.

• J·K-to-⟨·⟩ Processing. We need to convert the MRSS-shared
results to the RSS world for other operations. For protocols
ΠA2B and ΠMSB, we modify the lowest ▽-style operators
of PPA and BitExt circuits to output RSS-shared results
instead of MRSS ones; For protocol ΠB2A, we first let P1

generate ⟨u ⊕ v⟩A, instead of generating (a, b, c), in step
2) of the preprocessing phase. For the online phase, when
w = x + (u ⊕ v) is revealed to (P0,P2), (w, 0, 0) is of
a valid RSS of ⟨x + (u ⊕ v)⟩A, where ([x + (u ⊕ v]0 =
w, [x + (u ⊕ v]1 = 0, [x + (u ⊕ v]2 = 0). In this way, the
parties can locally compute ⟨x⟩A = ⟨x+(u⊕v⟩A−⟨u⊕v⟩A.

The modified protocols Π
⟨·⟩
A2B, Π

⟨·⟩
MSB, and Π

⟨·⟩
B2A, and their

security proofs are in Appendix D. So, we can integrate
our improved primitives into SecretFlow-SPU to boost the
efficiency of non-linear functions and finally lead to faster
secure neural network inference.

Remark 2. In the secure evaluation of non-linear func-
tions, we integrate protocols Π

⟨·⟩
A2B, Π

⟨·⟩
B2A, and Π

⟨·⟩
MSB into

SecretFlow-SPU and use them to improve the online efficiency
of corresponding parts. The other parts are computed using
RSS. It is also possible to use our ANDN protocols and depth-
optimized ΠPPA to accelerate the online efficiency of other
parts, which we leave for future work.

VI. IMPLEMENTATION & EVALUATION

We implement ALKAID and extensive evaluate its perfor-
mance by answering the following questions.
• Q1: What are our communication and running time advan-

tages for depth-optimized PPA? (§ VI-B)
• Q2: How about our efficiency for 3PC Boolean primitives?

Is it practical to support share conversions? (§ VI-C)
• Q3: Can ALKAID support fast secure evaluation of non-

linear functions and neural network inference? (§ VI-D)

A. Experimental Setup

Testbed Environments. Experiments are run on a machine
with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40 GHz and
500GB RAM. The Operating System is Ubuntu 22.04.4 LTS
with Linux kernel 5.4.0-172-generic. The Wide-Area Network
(WAN) environment is emulated using the Linux Traffic
Control (tc) command, with configured: i) LAN: bandwidth of
1Gbps and a round-trip latency of 2ms. ii) WAN: bandwidth
of 160Mbps and a round-trip latency of 50ms. Bitwidth is
configured as ℓ = 64 by default.
Baselines. We compare ALKAID to prior works including
ABY3 [9], Trifecta [25] and METEOR [24], to show our
improvements thoroughly: i) We implement ALKAID on top
of the SecretFlow-SPU framework [10] in C++ and Python

TABLE IV: Communication (KB) and time (milliseconds) of
secure PPA circuit, where bit-width ℓ = 64 bits and batchsize
|B| = 1 and 1000. ALKAID-On. is for the online phase, and
ALKAID-Tot. indicates the total overhead.

|B| Protocol Comm. LAN WAN

1

ABY3 0.203 5.015 352.078
Trifecta 4.483 – 213.000

ALKAID-On. 0.141 2.685 201.828
ALKAID-Tot. 0.198 3.341 252.214

1000

ABY3 203.125 6.526 375.137
Trifecta 4378.472 – 339.561

ALKAID-On. 140.625 10.469 219.770
ALKAID-Tot. 197.265 11.072 271.105

version-3.10. ii) We re-run ABY3 implemented in SecretFlow-
SPU and METEOR in our tested environments. Note that
ABY3 and Trifecta do not separate preprocessing and on-
line phases (which incur almost no preprocessing costs), so
their total costs are equivalent to online cost. We compare
ALKAID with them in both online and total costs. As Trifecta
is not publicly available, we set our tested environments to
be comparable as theirs for fair comparison. iii) We count the
sent and received messages per party as communication costs.

B. Benchmarks of Parallel Prefix Adder

We benchmark the online efficiency of PPA. The exper-
iments are performed with bit-width ℓ = 64 and batchsize
|B| ∈ {1, 1000}, and the results are illustrated in Table IV.
Note that PPA is with MRSS-shared inputs and outputs here.

As shown in Table IV, we compare our communication
costs, round complexity, and running time with ABY3 and
Trifecta: i) Compared to ABY3, ALKAID reduces communi-
cation costs by approximately 1.3×. In terms of running time,
ALKAID generally outperforms ABY3, achieving a 1.6-1.7×
speedup in WAN, which aligns with its reductions in round
complexity. ii) However, the running time gains in LAN are
less significant due to ample bandwidth and lower latency,
where reductions in communication and rounds do not lead
to effective running time savings. Additionally, ALKAIDeven
requires more running time when batchsize is 1000. This
is because ALKAID requires more local AND and XOR
gates in N -input AND protocol and complex circuit logic
designs compared to ABY3, introducing some computational
and memory access overhead. However, this impact can be
mitigated through hardware optimizations. iii) Compared to
Trifecta, we achieve comparable round complexity while re-
ducing the communication costs by 28×, since Trifecta needs
exponentially more communication to generate correlations
during the online phase. Moreover, our approach reduces the
running time by around 5%-13%.

Besides, we measure the preprocessing communication and
running time in Table IV. Putting preprocessing and online
costs together, we analyze the end-to-end efficiency in WAN
as follows: Compared to ABY3, even we require ≈ 28% more
communication, ALKAID is still 1.2-1.3× faster. Compared to
Trifecta, we even reduce total communication by 17× and
achieve 1.2× total time improvements in batch processing.
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TABLE V: Communication (KB) and time (milliseconds) of
secure A2B, B2A, and MSB-Ext, where bit-width ℓ = 64,
batchsize |B| = 1 and 1000.

|B| Primitive Protocol Comm. LAN WAN

1

A2B
ABY3 0.219 5.659 402.737

ALKAID-On. 0.164 4.846 302.521
ALKAID-Tot. 0.221 5.523 352.907

B2A
ABY3 0.242 6.479 452.797

ALKAID-On. 0.133 4.823 307.327
ALKAID-Tot. 0.198 5.574 357.674

MSB-Ext

ABY3 0.070 5.841 403.133
METEOR-On. 0.178 10.634 310.495
METEOR-Tot. 0.662 17.267 418.387
ALKAID-On. 0.066 4.545 301.979
ALKAID-Tot. 0.105 5.192 352.190

1000

A2B

ABY3 218.750 7.198 405.648
ALKAID-On. 164.063 12.704 322.159
ALKAID-Tot. 220.703 16.197 373.494

B2A

ABY3 242.188 8.526 455.614
ALKAID-On. 132.813 12.508 320.074
ALKAID-Tot. 197.266 15.651 378.805

MSB-Ext

ABY3 70.313 8.453 407.687
METEOR-On. 178.176 11.980 329.943
METEOR-Tot. 662.395 19.392 455.147
ALKAID-On. 66.406 6.961 305.860
ALKAID-Tot. 97.656 8.955 356.715

C. Benchmarks of Boolean Primitives

In Table V, we present the online evaluations of 3PC
Boolean primitives: A2B, B2A, and MSB-Ext. We mainly
compare ALKAID to ABY3: i) Similar to the evaluation
analysis of PPA, ALKAID also outperforms ABY3 in online
communication and running time for most cases in WAN.
Concretely, we reduce the communication of A2B and B2A
conversion by 1.2-1.6×, and reduce the running time by
approximately 1.2-1.5×. In LAN, we achieve a comparable
running time with ABY3 and introduce a little more time
for batch evaluation of A2B and B2A conversion. The reason
is similar to that of batch evaluation of PPA. ii) Notably,
our B2A circuit requires less communication than PPA. For
instance, with ℓ = 64 and |B| = 1000, B2A incurs 132.813
KB in communication, whereas PPA requires 140.625 KB,
as a result of the specific optimizations in protocol ΠB2A (see
Figure 10). However, ΠB2A does introduce longer running time
due to its deeper circuit and increased rounds. iii) For MSB-
Ext, ALKAID reduces round complexity by 1.6×, allowing it
to remain approximately 1.2× faster than ABY3. Compared
to METEOR, our online phase is still more concretely efficient.
Even we require twice online communication complexity for
N -bit AND (c.f., Table I), ALKAID is 1.1-2.5× faster and re-
duces the concrete communication costs by 2.6× for the online
phase. The online communication reductions arise from that
METEOR is built on FALCON, which requires to secret-share
bit values in Zp with prime p > ℓ. As a consequence, METEOR
requires ⌈log2 p⌉× more concrete online communication.

Table V also includes the end-to-end communication and
running time for each primitive. Our total communication
is also comparable or even better than ABY3 and METEOR
with our specific optimizations. As METEOR does not open-
source the preprocessing implementation, we implement their
correlation generation. Moreover, when comparing our total

TABLE VI: Communication (KB) and running time (millisec-
onds) of secure activation functions for |B| = 1 and 1000. For
Softmax, we set |B| = 10 and 1000.

|B| Functions Protocol Comm. LAN WAN

1

ReLU

ABY3 0.102 10.003 503.214
METEOR-On. 0.195 9.472 352.034
METEOR-Tot. 0.678 17.381 486.033
ALKAID-On. 0.096 9.078 403.341
ALKAID-Tot. 0.127 9.865 453.668

Sigmoid
ABY3 0.552 22.478 1508.344

ALKAID-On. 0.348 19.398 1064.298
ALKAID-Tot. 0.418 20.397 1115.638

GeLU
ABY3 0.806 39.098 2826.476

ALKAID-On. 0.803 40.098 2518.875
ALKAID-Tot. 0.897 40.846 2569.745

Softmax
(|B|=10)

ABY3 7.016 101.349 6272.879
ALKAID-On. 6.701 87.078 5550.320
ALKAID-Tot. 7.342 87.857 5601.810

1000

ReLU

ABY3 101.562 14.087 507.467
METEOR-On. 195.560 11.437 424.098
METEOR-Tot. 678.776 20.073 554.283
ALKAID-On. 93.994 14.398 409.341
ALKAID-Tot. 125.244 16.386 461.362

Sigmoid
ABY3 465.250 35.431 1520.087

ALKAID-On. 344.238 32.879 1077.687
ALKAID-Tot. 414.551 38.897 1133.763

GeLU
ABY3 834.375 62.031 2836.887

ALKAID-On. 797.607 52.349 2542.891
ALKAID-Tot. 894.357 56.350 2599.922

Softmax
ABY3 610.297 192.319 11387.271

ALKAID-On. 563.923 160.081 9606.879
ALKAID-Tot. 626.438 162.862 9657.776

costs to METEOR, we still achieve a communication reduction
of approximately 7× and 1.2–2.1× faster for MSB-Ext. More
importantly, we reduce the end-to-end running time by up to
1.3× compared to ABY3.

D. Performance of Secure Inference

In practical applications, the inputs are usually floating-
point values. We truncate the floating-point values as fixed-
point representations while maintaining f fractional bits and
then encode the fixed-point values as integers within Z2ℓ .
Following [10], we set ℓ = 64 and f = 18. Note the
inputs and outputs of non-linear functions and secure neural
networks inference are of RSS-shared format. We incorpo-
rate our modified primitives proposed in § V into the SPU
implementation of ABY3 while leveraging existing ABY3-
based implementations for other operations. Also, as we only
modify the protocols for Boolean circuits and follow existing
works for others, e.g., approximation and truncation methods,
ALKAID can guarantee the same level of precision and model
accuracy as SecretFlow-SPU [10], so we focus on performance
evaluation in this work.
Online Performance. First, we compare ALKAID with prior
works in terms of online performance.
• Non-linear Functions. We select ReLU, Sigmoid, GeLU,

and Softmax for evaluations, and their specifications can be
found in Appendix C. Table VI illustrates the experiment
results for secure activation functions, highlighting the im-
provements achieved by ALKAID. i) Compared to ABY3,
ALKAID demonstrates higher efficiency in online running
time across almost all experiments in both LAN and WAN.
This is particularly due to our reduction of circuit depth.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:16 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

Roughly, we reduce the circuit depth by approximately 1.2-
1.5×. Consequently, our approach reduces online running
time by ≈ 1.2× in WAN on average and is more efficient
than ABY3 in terms of online communication. ii) For
secure ReLU, Compared to METEOR, we reduce the online
communication of the function ReLU by 2.0×. However,
we require slightly more running time than METEOR. This
is mainly because our SPU-based implementation generates
randomness faithfully, while METEOR prototype simply
uses zero values for protocol simulation following Falcon.
So, we require more computation overhead. Even though
our online running time is comparable to METEOR.

• Secure Inference. We employ three widely used neural
networks: LeNet-5 [34], ResNet-50 [35], and GPT-2 [36],
and their specifications are illustrated in Appendix C.
Following prior works [9, 17], we mainly focus on the
communication and running time of the 3-party inference,
a.k.a., we do not include the model deployment cost since
this can be done once in the system setup phase. For LeNet-
5 (resp., ResNet-50), we input one image from the MNIST
dataset [34] (resp., CIFAR-10 [37]) for image classification;
for GPT-2, we input 8 tokens and generate 1 new token.
Table VII shows the online efficiency of secure neural
network inference. Compared to ABY3, ALKAID requires
less communication cost and is faster than ABY3 by approx-
imately 1.1-1.2×. Compared to METEOR [24], we achieve
1.35× reduction in communication and approximately 10%
time savings for the online phase.

End-to-End Performance Analysis. Tables VI and VII also
summarize the total costs of secure activation functions and
neural network inference. Our preprocessing involves cheap
communication and running time, which account for < 10% of
online costs for most cases. Our total running time outperforms
ABY3 and METEOR for all activation functions and NNs.
Compared to METEOR, we reduce the total communication
by > 2.6× and total time by 1.2–1.3×. Compared to ABY3,
taking secure GPT-2 as an example, we still achieve around
7% reduction in total running time in WAN. Nonetheless, our
approach does not require exponential preprocessing commu-
nication, due to our improved multi-input AND gate design.
ALKAID prioritizes low online latency, making it beneficial in
latency-sensitive scenarios over prior works.

VII. RELATED WORK

Secure multiparty computation (MPC) protocols can be
constructed from secret sharing [38, 39]. In this line of
works [3, 9, 21, 27], the parties securely evaluate one depth
of gates of the circuits using the secret sharing-based subpro-
tocols (e.g., XOR and AND) until outputs. It is also possi-
ble to design MPC protocols from homomorphic encryption
(HE) [40, 41] or GC [2, 20, 42, 43], Secret sharing-based
MPC protocols enjoy high-throughput since they require much
less communication and computation overhead (especially the
online phase) and allow multiple instances to be executed in
parallel [21, 22].

However, secret sharing-based approaches are still limited
by their communication rounds, especially in high-latency

TABLE VII: Communication (MB) and time (seconds) of
secure inference of neural networks. The input of LeNet and
ResNet-50 is 1 image and output is the label. We measure
GPT-2 costs for inputting 8 tokens and generating 1 token.

Model Protocol Comm. LAN WAN

LeNet-5

ABY3 2.439 0.264 4.833
METEOR-On. 3.137 0.230 4.445
METEOR-Tot. 7.312 0.312 5.573
ALKAID-On. 2.327 0.224 3.982
ALKAID-Tot. 2.791 0.237 4.079

ResNet-50
ABY3 2347.265 50.207 377.384

ALKAID-On. 2306.462 49.671 348.023
ALKAID-Tot. 2649.305 55.314 374.812

GPT-2
PUMA† 459.157 21.065 428.663

ALKAID-On. 422.192 19.784 395.057
ALKAID-Tot. 459.926 20.772 398.120

† PUMA is developed on protocol ABY3.

networks [21]. Existing works have exploited the function-
dependent but input-independent preprocessing/online tech-
nique [22, 29] to design multi-input AND (a.k.a., multipli-
cation in arithmetic) protocols. At a high level, this approach
mainly designed a masked secret sharing scheme, generated
correlations according to the function topology, and finally
applied the correlations to improve online efficiency. [29] used
the masked secret sharing over framework SPDZ [19, 44, 45]
to reduce its online communication rounds and costs. [23, 26]
used a dealer to distribute correlated randomness among two
computing parties. Following [26], [46–48] designed similar
MPC protocols for 3 to 5 parties to resist malicious adversaries
in honest-majority. ABY2.0 [22] emulated the requirements
for the dealer and built a 2PC framework that supports Arith-
metic, Boolean, and Yao’s GC, along with their conversion.
Brüggemann et al. [49] made use of ABY2.0 to improve the
efficiency of secure 2PC lookup table evaluation over [50, 51].
Trifecta [25] further constructed a more efficient dealer-based
3PC multi-input AND protocol by putting the preprocessing
costs into the online phase. METEOR [24] built another 3PC
replicated secret sharing-based multi-input AND protocol on
top of [11, 22]. However, the above approaches all require a
communication cost exponential to the number of inputs to
generate the correlation for multi-input AND. Consequently,
most of them are limited to support 4-input AND, except that
Trifecta tried 8-inputs AND with much more communication.
Function secret sharing (FSS) [52–54] is another MPC tech-
nique that could reduce the round complexity significantly and
have been used in [55–57], but it requires huge communication
costs to distribute the FSS keys.

RSS-based 3PC solutions have been applied to many prac-
tical privacy-preserving applications, such as machine learn-
ing [9, 11, 12, 17, 33, 58, 59], heavy hitters [60], graph
analysis [16, 61], etc. Consequently, designing an RSS-based
or -compatible fast multi-input AND (even with a lightweight
preprocessing/correlation generation phase) and applying it to
existing frameworks is meaningful.
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VIII. CONCLUSION & FUTURE WORK

We introduce ALKAID a framework for 3-party multi-input
AND gates by mixing correlations and redundancy. Following
that, we construct several round-efficient 3PC primitives, in-
cluding depth-optimized PPA and fast share conversions, with
specific optimizations to improve efficiency concretely.
Future Work. By integrating these techniques, ALKAID ac-
celerates secure neural network inference. Extending our pro-
tocols to arithmetic circuits for multi-input multiplication of
integers is straightforward. However, it is non-trivial to extend
ALKAID to multi-input multiplication of fixed-point computa-
tion since it requires one secure truncation after multiplying
two fixed-point values. On the other hand, extending ALKAID
to the multi-party setting is both natural and meaningful. At
a high level, our multi-input AND protocol is built upon
linear secret sharing with redundancy. Given such a linear
secret-sharing scheme, constructing masked secret sharing is
straightforward. Following the same design philosophy as in
our 3PC setting, the correlated randomness required for multi-
input AND gates can be efficiently generated using the under-
lying linear secret sharing. The parties can then leverage these
correlations, together with the redundancy, to support multi-
input AND protocols that achieve improved online efficiency
while maintaining practical preprocessing costs.
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