
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Conan: Secure and Reliable Machine Learning
Inference against Malicious Service Providers

Hanxiao Chen, Member, IEEE, Hongwei Li, Fellow, IEEE, Meng Hao, Member, IEEE, Pengzhi Xing, Student
Member, IEEE, Jia Hu, Student Member, IEEE, Wenbo Jiang, Member, IEEE, Tianwei Zhang, Member, IEEE, and

Guowen Xu, Senior Member, IEEE

Abstract—In the Machine Learning as a Service paradigm, a
service provider (e.g., a server) hosting a model offers inference
APIs to clients, who can send their queries and receive the
inference results. While most recent secure inference works
focus on addressing privacy issues, they overlook the importance
of checking the service quality and reliability. A malicious
server may deviate from the protocol specification to deliberately
provide incorrect services such as using low-quality models. Thus,
it is necessary to design new solutions to empower clients to
verify the server’s model accuracy and inference integrity while
protecting both parties’ privacy.

We present Conan, a new secure and reliable inference frame-
work against malicious servers to achieve accuracy verification,
inference integrity, and privacy simultaneously. In Conan, the
server first commits to the model and proves in zero-knowledge
that the committed model achieves the claimed accuracy. Then
both parties perform secure inference on the committed model
against the malicious server. To instantiate the above framework,
we design generic maliciously secure two-party computation
(2PC) protocols with a fixed corrupted party, which may be
of independent interest. Our protocols achieve high efficiency by
utilizing the advantage that the semi-honest party can check the
behavior of the corrupted party. Furthermore, they support both
arithmetic and Boolean circuit evaluation, a crucial attribute for
secure inference on complicated machine learning models. We
implement the fixed-corruption 2PC protocols for our secure and
reliable inference. The experimental results show 1 ∼ 2 orders
of magnitude improvements over conventional maliciously secure
protocols in terms of communication and computation costs.

Index Terms—Secure inference, secure two-party computation,
zero-knowledge proof, privacy, integrity.

I. INTRODUCTION

Machine Learning as a Service (MLaaS) has attracted wide
attention and facilitated various real-world applications [1],
[2], [3]. In this paradigm, service providers (e.g., a remote
server) usually deploy and provide inference services to clients
under a pay-as-you-go pricing model. Generally, the server
hosts a model M with parameters W and provides inference
APIs to the public. Clients can send queries x to the server
and receive the corresponding results M(W,x). Due to the

Hanxiao Chen, Hongwei Li, Pengzhi Xing, Jia Hu, Wenbo Jiang and
Guowen Xu are with the School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, China. (email: hanx-
iao.chen@uestc.edu.cn, hongweili@uestc.edu.cn, p.xing@std.uestc.edu.cn, ji-
ahu@std.uestc.edu.cn, wenbo jiang@uestc.edu.cn, guowen.xu@foxmail.com)

Meng Hao is with the School of Computing and Information Systems, Sin-
gapore Management University, Singapore. (email: menghao303@gmail.com)

Tianwei Zhang is with the College of Computing and Data
Science, Nanyang Technological University, Singapore. (email:
tianwei.zhang@ntu.edu.sg)

intellectual property and privacy concerns, it has become an ur-
gent requirement to protect the privacy of both clients’ queries
and the server’s model parameters. To this end, several works
proposed secure inference in the semi-honest setting [4], [5],
[6] based on secure two-party computation (2PC) techniques.
These schemes ensure that the server learns nothing about x,
while the client learns nothing about W beyond M(W,x) and
what can be deduced from M(W,x).

However, existing secure inference solutions lack mech-
anisms to verify whether the service provider is faithfully
adhering to the protocol specification. On the one hand, as
shown in recent works [7], [8], a malicious adversary may
corrupt the server, leading it to utilize low-quality models
for rendering services, instead of the claimed high-quality
ones. This strategy effectively saves the server’s computation
resources, but the resulting inaccurate or incorrect inference
results may cause severe consequences, such as misleading
medical diagnoses [2]. On the other hand, there are instances
where the server deviates from the protocols, aiming to steal
the client’s private inputs [9], [10]. Worse still, this deviation
can be performed in an undetectable manner, namely, the
server steals the client’s inputs while still delivering seemingly
correct inference services. A detailed analysis is provided in
Section VIII-B. These vulnerabilities highlight the critical need
for stricter security guarantees within inference services.

Given the aforementioned discussions, we aim to address
an important problem, namely secure and reliable inference
resilient to malicious servers. Our ultimate objective is to en-
sure correct inference services on the claimed accurate model
while preserving the client’s and server’s privacy. We detail the
specific requirements in this setting as follows. (1) Accuracy:
Before requesting inference services, the client should be able
to verify whether the accuracy of the server’s model meets the
claimed threshold. (2) Integrity: The client should be able to
detect any deviations by the server from the specified protocols
on the claimed model with an overwhelming probability. (3)
Privacy: The proposed scheme should prevent the malicious
server from stealing the client’s inputs and outputs while
protecting the privacy of the server’s model.

Existing solutions fail to fully meet the above requirements
or possess certain limitations. For example, general-purpose
maliciously secure 2PC protocols, like SPDZ [11] and its
variants [12], [13], [14], [15], [16], [17], can achieve privacy,
but cannot verify the model’s accuracy and ensure that in-
ferences are executed on the claimed model (i.e., integrity
goal). In addition, many recent works explore the use of

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

zero-knowledge (ZK) proofs for ML inference tasks [7], [8],
where the server (as the prover) proves to the client (as the
verifier) that the inference is performed on the claimed model
without leaking the server’s model. However, such methods
cannot protect the privacy of the verifier’s secrets (i.e., the
client’s query samples). More related work is discussed in
Section VIII. Overall, a seemingly straightforward solution is
to combine ZK proofs with maliciously secure 2PC techniques
to address all requirements. Unfortunately, these paradigms
are inherently challenging to reconcile, as 2PC relies on
secret sharing between parties, whereas ZK assumes the secret
resides solely with the prover.

To fill the gap, we propose a new secure and reliable
framework called Conan, composed of two components. The
first is commit and accuracy verify. The server first commits
to the model parameters and proves in zero-knowledge that
the committed model achieves the claimed accuracy on a
client-chosen testing dataset. The second is secure inference
on the committed model against malicious servers, built on
our generic maliciously secure 2PC protocols with a fixed
corrupted party. We carefully address the compatibility of
the two components. Our protocols achieve high efficiency
by utilizing the advantage that the semi-honest party can
check the behavior of the corrupted party, while supporting
both arithmetic and Boolean circuit evaluation. It is important
for secure inference since ML models generally consist of
alternating linear and non-linear layers, which require being
evaluated in arithmetic and Boolean circuits, respectively.

To carefully merge ZK and 2PC techniques, our protocols
are constructed upon authenticated shares (refer to Section
II-A), which are infrequently explored concurrently. To eval-
uate authenticated multiplication in arithmetic circuits, prior
works utilize SPDZ-style protocols [11], [12], [14], but their
costs are prohibitively high. Benefitting from our fixed cor-
ruption setting, our insight is to split the authenticated multi-
plication on secret-shared values into two sub-multiplications
on non-shared values such that we can invoke an efficient
ZK proof to verify the computation’s correctness. Note that
the idea of splitting multiplication is fundamentally different
from Delphi [18] and Muse [19], which aim to move heavy
cryptographic operations offline. To evaluate arbitrary non-
linear functions securely, our protocols for Boolean circuits
adopt the garbled circuits (GC) paradigm (refer to Section
II-C) because GC is inherently secure against a malicious
evaluator [20], allowing us to assign the corrupted party as
the evaluator. To achieve better performance, we present two
constructions for an improved GC-based solution. Further
technical details are provided in Section III. Our contributions
can be summarized as follows.
• We provide the first secure and reliable inference framework

against malicious servers, Conan, which simultaneously
guarantees the model accuracy, inference integrity, and
privacy of both parties.

• The core of our framework consists of generic maliciously
secure 2PC protocols with a fixed corrupted party, support-
ing both arithmetic and Boolean circuit evaluation.

• Extensive experiments demonstrate that our protocols out-
perform general-purpose maliciously secure protocols by up

to 163× in communication and 67× in computation.

II. PRELIMINARIES

Notation. Let κ and λ be the computational and statistical
security parameters, respectively. a := b denotes a is assigned
by b. For n ∈ N, [n] := {1, . . . , n}. For any a ≤ b,
[a, b] := {a, . . . , b}. x← S denotes the operation of sampling
x randomly from a finite set S. We use bold lower-case letters
like x for column vectors and bold upper-case letters like X
for matrices. For any two distributions X and Y , X ≈c Y
denotes computational indistinguishability. negl(·) denotes a
negligible function. For a value x and i ∈ [|x|], x[i] denotes
the i-th bit of x and x[1] is the least significant bit.

Fixed-point Encoding and Truncation. ML inference
performs computations on floating-point numbers, whereas
our protocols work for integers in a field Fp (e.g., Zp). To
represent a floating-point number x ∈ Q in Zp, similar to
prior works [4], [20], [19], we encode it as a fixed-point
integer a := ⌊x · 2st⌋ mod p with scale st. As shown in
the recent work [4], there is no loss in accuracy in fixed-
point representations. Fixed-point arithmetic is performed on
the encoded input values and the same scale st is maintained
for all the intermediate results. To this end, we need to truncate
intermediate values and our protocols can do this for free
within garbled circuits.

A. Arithmetic Secret Sharing and IT-MACs
We utilize 2-out-of-2 arithmetic secret sharing [21] over a

finite field Fp, combined with IT-MACs [22], [23] to ensure
malicious security. Given a secret x ∈ Fp, the arithmetic secret
shares in Conan are denoted as xC ∈ Fp and xS ∈ Fp, held
by C and S, respectively, such that x = xC + xS in Fp. The
security satisfies that given xC or xS , x is perfectly hidden. In
addition, similar to existing maliciously secure protocols [20],
[14], [24], we use IT-MACs [22] to authenticate values over
Fp. Let ∆ ∈ Fp be a randomly sampled global key, a value
x ∈ Fp owned by S can be authenticated by giving C a uniform
key Kx ∈ Fp and giving S a MAC tag Mx ∈ Fp, such that
Mx := Kx + ∆ · x ∈ Fp. Although full-maliciously secure
protocols [11], [23] require ∆ to be secret-shared between
parties, in Conan we have the semi-honest party C pick and
hold ∆, similar to [20], [19]. There are two properties of IT-
MACs [22], [11]: information-theoretic binding and additively
homomorphic.
• Information-theoretic security. Authentication based on IT-

MACs provides information-theoretic security, which means
that the probability that a malicious adversary forges the
value x to x′ is 1/|Fp|, where we require p ≥ 2λ.

• Additive homomorphism. Authentication based on IT-MACs
is additively homomorphic. Taking authenticated values as
an example, given two public constants a1, a2 and two
authenticated values [[x1]], [[x2]], the authenticated value [[a1 ·
x1 + a2 · x2]] can be computed locally by the two parties.
In Conan, ⟨x⟩ denotes the authenticated values based on

IT-MACs as above. [x] denotes the authenticated secret shares
of x, structured as a tuple (xC , xS ,KxS ,MxS), where x =
xC + xS ∈ Fp, MxS = KxS + ∆ · xS ∈ Fp, (xC ,KxS) and
(xS ,MxS) are held by C and S, respectively.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

B. Additively Homomorphic Encryption

An additively homomorphic encryption (AHE) scheme con-
sists of four algorithms (KeyGen,Enc,Dec,Eval).
• KeyGen(1κ) → (pk, sk): given security parameter κ, it

returns a public key pk and a secret key sk.
• Enc(pk,m)→ c: given pk and a message m ∈ Fp, it returns

a ciphertext c.
• Dec(sk, c) → m: given sk and a ciphertext c, it returns a

message m.
• Eval(pk, c1, c2, g) → c3: given pk, two ciphertexts c1

and c2 with c1 := Enc(pk,m1) and c2 := Enc(pk,m2),
and a linear function g, it returns a ciphertext c3 with
g(m1,m2) = Dec(sk, c3). This corresponds to the additive
homomorphism of AHE.

An AHE scheme satisfies the following properties: correctness,
semantic security, and function privacy.
• Correctness. An AHE is correct, if for each message m ∈
Fp, it holds that Pr[Dec(sk,Enc(pk, x)) ̸= x | (pk, sk) ←
KeyGen(1κ)] ≤ negl(κ).

• Semantic security. An AHE is semantically secure, if for
any two messages m1,m2 ∈ Fp and all PPT adversaries
A, it holds that {pk,Enc(pk,m1)} ≈c {pk,Enc(pk,m2)},
where (pk, sk)← KeyGen(1κ).

• Function privacy. Informally, an AHE satisfies function
privacy, which guarantees that c3 does not leak any infor-
mation about the function g even given sk, where c3 ←
Eval(pk, c1, c2, g). Refer to works [25], [26] for the formal
definition.

C. Garbled Circuits

Garbled circuits (GC) [27] is a general scheme for securely
evaluating an arbitrary Boolean circuit. It contains a pair of
algorithms (Garble,GCEval) as follows.
• Garble(1κ, f)→ (GC, {{labini,j}i∈[n], {labouti,j }i∈[m]}j∈{0,1}):

given the security parameter κ and a function
f : {0, 1}n → {0, 1}m, it returns a garbled circuit
GC, a set of input labels {labini,j}i∈[n],j∈{0,1}, and a set of
output labels {labouti,j }i∈[m],j∈{0,1}.

• GCEval(GC, { ˆlab
in

i }i∈[n]) → { ˆlab
out

i }i∈[m]: given GC and

labels { ˆlab
in

i }i∈[n] corresponding to an input x ∈ {0, 1}n,
it returns labels { ˆlab

out

i }i∈[m] corresponding to the output
f(x) ∈ {0, 1}m.
A GC scheme satisfies the properties: correctness, security,

and authenticity.
• Correctness. For any function f and x ∈ {0, 1}n,
GCEval(GC, {labini,x[i]}i∈[n]) = {labouti,f(x)[i]}i∈[m].

• Security. For any function f and x ∈ {0, 1}n, the view of
Sim(1κ, f) generated by a simulator Sim is computationally
indistinguishable to (GC, {labini,x[i]}i∈[n]).

• Authenticity. For any function f and x ∈ {0, 1}n,
given (GC, {labini,x[i]}i∈[n]), it is infeasible to guess
{labouti,1⊕f(x)[i]}i∈[m].
Our protocol uses the instantiation of garbling schemes with

point-and-permute (PaP) optimization [28]. For each AND
gate in GC, the garbler generates a table with four ciphertexts,
namely a label of each input wire is used as a key to encrypt

Functionality FOT

Upon receiving m0 ∈ {0, 1}n and m1 ∈ {0, 1}n from the
sender and b ∈ {0, 1} from the receiver, send mb to the
receiver.

Fig. 1: Functionality for OT

Functionality FVOLE

Parameters: A finite field Fp.
Initialize: Upon receiving (init) from C and S, sample
∆← Fp and send ∆ to C.
Extend: Upon receiving (extend, n) from C and S, do
the following:
1) Sample k← Fn

p .
2) If S is honest, sample s ← Fn

p and compute m :=
k + s · ∆ ∈ Fn

p . Otherwise, receive s,m ∈ Fn
p from

the adversary and recompute k := m− s ·∆ ∈ Fn
p .

3) Output (s,m) to S and k to C.

Fig. 2: Functionality for VOLE

the corresponding label of the output wire. Therefore, the
evaluator needs to test all four ciphertexts to find the correct
one. The idea of PaP is to interpret a part of the label as
a pointer to the table, where the encryption will be placed.
Specifically, for each wire w with label {labw,j}j∈{0,1}, PaP
prepends labw,j as kw,j ||pw,j ∈ {0, 1}κ−1 × {0, 1} with the
constraint pw,0 ⊕ pw,1 = 1. With this technique, the evaluator
only decrypts the uniquely pointed ciphertext.

D. Oblivious Transfer

Conan utilizes 1-out-of-2 oblivious transfer (OT), where
a sender inputs two n-bit messages m0, m1 ∈ {0, 1}n and
a receiver inputs a choice bit b ∈ {0, 1}. At the end of
the protocol, the receiver obtains mb and the sender receives
nothing. The corresponding functionality FOT is shown in
Figure 1. Conan requires OT that is secure against a semi-
honest sender and a malicious receiver. To achieve this, we
use the OT instantiation proposed in [29].

E. Zero-knowledge Proof for Inner Products

QuickSilver [24] provides a state-of-the-art ZK protocol for
proving the inner product z = x · y. Formally, a prover and a
verifier hold the authentication of x and y, and a public z. The
prover aims to prove to the verifier that gz(x,y) := x ·y−z is
equal to 0. The main idea is that the following equation holds

denoted as b︷ ︸︸ ︷
gz(Kx,Ky)− z ·∆2

=

denoted as a0︷ ︸︸ ︷
(Mx ·My − z)−

denoted as a1︷ ︸︸ ︷
(My · x+Mx · y) ·∆.

(1)

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

Observe that (b,∆) is known to the verifier and (a0, a1) is
known to the prover. Thus, this equation is a linear relation-
ship, verifiable via the following method.

BatchCheck. Note that n such relationships can be checked
simultaneously by employing a random linear combination.
Suppose the prover owns {a0,i, a1,i}i∈[n] and the verifier
owns {bi}i∈[n] and ∆ such that bi = a0,i − a1,i · ∆. The
two parties first generate a random vector oblivious linear
evaluation (VOLE) [30], [31] relationship b∗ = a∗0 − a∗1 · ∆,
where the prover holds (a∗0, a

∗
1) and the verifier holds (b∗,∆).

The functionality FVOLE is presented in Figure 2. Then, the
verifier samples a random χ and sends it to the prover,
who computes and sends A∗

0 :=
∑n

i=1 a0,i · χi + a∗0 and
A∗

1 :=
∑n

i=1 a1,i · χi + a∗1 to the verifier. Finally, the verifier
computes B∗ :=

∑n
i=1 bi · χi + b∗ and then checks whether

B∗ = A∗
0 −A∗

1 ·∆. If the underlying values (i.e., x,y, z) are
not computed correctly, then the above relationship can hold
only with probability (2 + n)/|Fp|.

III. TECHNIQUE OVERVIEW

A. Threat Model
Conan works in the malicious-server setting. Namely, the

adversary can corrupt the client but is restricted to be semi-
honest, i.e., following the protocol specification strictly. Alter-
natively, it can corrupt the server and behave maliciously, i.e.,
deviating from the protocol arbitrarily [11], [14]. Specifically,
the malicious server may trick the client by using a low-
quality model and stealing the client’s queries by carefully
manipulating the inference process [7], [8]. Besides, the semi-
honest client also attempts to infer the server’s model param-
eters based on the received messages. Therefore, our goal is
to ensure correct inference services on the claimed accurate
model while preserving the privacy of both parties.

We would like to clarify that, similar to existing secure
inference works based on secure two-party computation [6],
[18], [10], [32], [33], [34] and zero-knowledge proof [7],
[8], [35], our protocols can protect against explicit privacy
leaks of inference samples and model parameters during
the inference process. Therefore, malicious privacy attacks,
including model extraction and model inversion attacks, fall
outside the scope of all 2PC-based secure inference protocols,
regardless of whether the client is malicious [35], [10], [7].
As we have discussed in the Introduction, such protocols
ensure that the server learns nothing about queries x, while
the client learns nothing about model parameters W beyond
M(W,x) and what can be deduced from M(W,x), where
M denotes the target model with parameters W. There is
currently a fundamental gap between machine learning attacks
and cryptography-based secure protocols, as they address
different aspects and belong to separate research areas. To
enhance existing secure inference protocols with adversarial
robustness, a promising approach is to adapt corresponding
defenses into the cryptographic environment. This might be a
valuable direction for future research.

B. Our Secure and Reliable Inference Framework
Figure 3 shows a high-level overview of Conan, which

comprises two phases. Phase ❶: Commit and accuracy verify.

The server S first commits to the claimed model and then
proves in zero-knowledge to the client C that it achieves
the claimed accuracy on a client-chosen testing dataset. This
can be achieved using any ZK proof protocol that follows
the “commit-and-prove” paradigm, as long as the committed
model remains compatible with the subsequent maliciously
secure inference procedure in Conan. Therefore, we instan-
tiate this phase using VOLE-based ZK proofs, which uti-
lize information-theoretic message authentication codes (IT-
MACs) [22], [23] to commit to the model parameters w with
the following form: C holds (∆,Kx) and S holds (x,Mx)
such that Mx = Kx + ∆ · x. Phase ❷: Secure inference on
the committed model against malicious servers. Once accuracy
is verified, C requests inference services on its private inputs
using the committed model. To ensure correct execution by S,
we propose a generic maliciously secure 2PC protocol with
fixed corruption as follows, operating over committed values
with rigorous integrity and privacy guarantees.

Maliciously secure 2PC protocol with fixed corruption.
This setting has gained ever-growing interest in recent works
[19], [20], [10]. Our protocols are crucially built on the
observation that the semi-honest client can check the possibly
malicious behavior of the corrupted server. Note that each
value x in our protocols is in the form of authenticated secret
shares (refer to Section II-A), i.e., C holds (xC ,KxS) and
S holds (xS ,MxS) such that x = xC + xS and MxS =
KxS + ∆ · xS . Our protocols can evaluate both arithmetic
and Boolean circuits, and all their inputs/outputs follow the
above authenticated sharing form. This is important since ML
models generally consist of alternating linear layers (such
as convolution and fully connected layers) and non-linear
layers (e.g., ReLU, Maxpooling). The former is evaluated with
arithmetic circuits, while the latter is complicated and requires
invoking Boolean circuits [20], [19], [36].

(1) New protocols for arithmetic circuits. We focus on mul-
tiplication, as addition over authenticated shares can be easily
evaluated via the additive homomorphism. A straightforward
method is to utilize maliciously secure multiplication schemes
such as SPDZ-family [11], [12], [14]. However, the cost is
unsatisfactory due to their reliance on expensive maliciously
secure OT or fully FHE with ZK proofs to generate authenti-
cated Beaver triples. To remedy this, we make the following
attempts.

Attempt 1. We try to utilize ZK proofs such as QuickSilver
[24] to evaluate multiplication, where the malicious server acts
as the prover and the semi-honest client as the verifier. How-
ever, ZK proofs are ill-suited for our setting, as they assume
the input resides solely with the prover. In contrast, secure
inference requires evaluating a function on secret-shared inputs
from both the client and the server. This limitation cannot be
addressed without compromising privacy.

Attempt 2. We explore extending advanced maliciously
secure 2PC frameworks such as Overdrive [14] to the simpler
2PC setting where only one party is malicious. In this setting,
the MAC key ∆ can be owned by the semi-honest party, rather
than being secret-shared among the parties as in Overdrive.
This allows us to bypass distributed decryption, triple sacrifice,
and certain ZK proofs during the Beaver triple generation

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Query samples

 Secure inference on the committed
 model against malicious servers

Linear
layer

NonLinear
layer

Authenticated
model parameter Private samples

Results

ClientService
Provider

Model

 Commit and accuracy verify

Secure and Reliable Inference Framework

Authenticated
results

Secure linear
protocols

Secure non-linear
protocols

Pass

Authenticated
model parameter

Test dataset

Acc > 𝜀𝜀ZK
protocol

Bulletin
Committed model
Acc: 98%

Authenticated
model parameter

Fig. 3: A high-level Overview of Conan.

process, by leveraging the client’s knowledge of ∆ [19].
However, despite these optimizations, we still need to generate
authenticated triples based on expensive primitives including
maliciously secure OT and FHE with ZK proofs.

Final solution. Our final idea lies in allowing malicious
S to execute the possibly incorrect evaluation, followed by
semi-honest C verifying the correctness of S’s behavior. A
pivotal component of our design is to solely authenticate xS ,
the secret share held by S, using the global key ∆, instead of
authenticating the original secret x as in SPDZ-family [11],
[12]. We now outline the idea for computing z = x · y,
where x, y, and z are in the form of authenticated secret
shares. Specifically, expanding the product of shares, z can be
represented as z = xC ·yC+xS ·yS+xS ·yC+xC ·yS . The first
two items µ := xC ·yC and ν := xS ·yS can be locally evaluated
by C and S, respectively. Since a malicious S may compute
ν incorrect, C must verify ν is indeed the product of xS and
yS . The main advantage of our authentication form is that this
verification can be performed efficiently using ZK proofs in
QuickSilver [24]. The remaining cross-terms, ω := xS · yC
and δ := xC · yS , can be evaluated efficiently by utilizing
the additive homomorphism of IT-MACs combined with a
standard MAC check. Because IT-MACs (including those used
in QuickSilver) support amortized checking, our maliciously
secure multiplication protocol achieves efficiency comparable
to that of semi-honest protocols.

We note that some recent works [20], [19] also designed
secure multiplication protocols against a single malicious
party. However, these protocols are designed for multiplying
an authenticated value by a plain (unauthenticated) value.
Consequently, they cannot be directly extended to our setting,
where both multiplicands are in authenticated form.

(2) Optimized protocols for Boolean circuits. Given an in-
put x, a Boolean circuit computing a function fB is formalized
as y := fB(x). We require a maliciously secure Boolean
circuit evaluation protocol with fixed corruption while ensur-
ing computation correctness and input consistency. Inspired
by SIMC [20], we adopt the GC paradigm because GC is
inherently secure against a malicious evaluator, allowing us to
assign the corrupted party as the evaluator.

We present two constructions for an improved GC-based
solution. The first is a label-based multiplication protocol in
GC. SIMC [20] evaluates this operation by using GC’s output
labels as one-time pad encryption keys and then transferring
two encrypted messages between parties. We optimize the

communication cost by exploiting the correlation between
these two messages. The idea is to convert a specific message
into a designed randomness related to the corresponding GC
label and, based on it, construct another message according to
the correlation. The second is a most significant bit (MSB)-
based comparison protocol in Fp. Comparison is the funda-
mental block for non-linear functions in ML [6], [4]. Our
insight is that it can be evaluated for free by extracting the
input’s MSB in GC, without affecting correctness. We provide
a rigorous theoretical analysis of its feasibility.

IV. MALICIOUSLY SECURE 2PC PROTOCOL WITH FIXED
CORRUPTION

In this section, we present our 2PC protocols secure against
a designated malicious party, realizing the functionality de-
fined in Figure 4. The core of our construction relies on
tailored protocols for arithmetic and Boolean circuits, which
may be of independent interest.

A. Protocols for Arithmetic Circuits

As described in Section III, here we focus on the evaluation
of authenticated multiplication gates, i.e., [z] = [x] · [y].
Given that we have already discussed the intuition of our
multiplication protocol in Section III, we now directly describe
the protocol details. As presented in Figure 5, the protocol can
be divided into two steps: secure multiplication evaluation and
correctness verification.

(1) Secure multiplication evaluation. Step 1 in Figure
5 gives the details of our secure multiplication evaluation.
Given x = xC + xS and y = yC + yS , we have z =
xC ·yC+xS ·yS+xS ·yC+xC ·yS . Therefore, we can compute
these four items separately and then simply sum them up to
obtain z. Specifically, the first two items µ := xC · yC and
ν := xS ·yS can be locally evaluated by C and S, respectively.
For the last two items ω := xS ·yC and δ := xS ·yC , both parties
can obtain [ω] and [δ] by utilizing standard AHE schemes and
the additive homomorphism of IT-MACs (steps 1c and 1d). It
is worth noting that unlike prior maliciously secure protocols
such as SPDZ-family [11], [12], [14] that authenticate the
true intermediate values during the protocol execution, here
we only authenticate the values owned by malicious S using
a single global key ∆ held by C. Benefiting from this, we
can leverage the additive homomorphism of IT-MACs and the
ZK proofs provided in Section II to verify the computation
correctness efficiently as discussed below.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Functionality F2PC

This functionality is parameterized by a field Fp with ℓ =
⌈log p⌉.
Input: On input (Input,S, vid, x) from S and
(Input,S, vid) from C, where vid is a fresh identifier and
x ∈ Fp, store (vid, x). It is symmetrical for C’s input.
Arithmetic Circuit: On command (Arithmetic, fA,
vid1, . . ., vidn, vid) from both parties, where fA :
Fn
p → Fp is an arithmetic circuit, vid1, . . . , vidn are

defined identifiers and vid is a fresh identifier, retrieve
(vid1, x1), . . . , (vidn, xn) and store (vid, y) with y =
fA(x1, . . . , xn). Check that [x] is valid and abort if not.
Boolean Circuit: On command (Boolean, fB , vid1, . . .,
vidn, vid) from both parties, where fB : {0, 1}ℓ·n →
{0, 1}ℓ is a Boolean circuit, vid1, . . . , vidn are de-
fined identifiers and vid is a fresh identifier, retrieve
(vid1, x1), . . . , (vidn, xn) and store (vid, y) with y =
fB(x1, . . . , xn) and y ∈ Fp. Check that [x] is valid and
abort if not.
Output: On input (Output,P, vid) from both parties,
where P ∈ {C,S} and vid is a defined identifier, retrieve
(vid, x) and output x to P .

Fig. 4: Ideal functionality for our maliciously secure 2PC
protocol with fixed corruption.

(2) Correctness verification. Step 2 in Figure 5 details our
correctness verification procedure. Given that S is malicious,
it is necessary to check both the input consistency (for xS and
yS) and computation correctness (i.e., ν = xS · yS and z =
x ·y). Since xS and yS are authenticated using IT-MACs with
information-theoretic security, we ensure input consistency by
verifying their MAC relations, i.e., MxS = KxS +∆ ·xS and
MyS = KyS +∆·yS . Notably, these consistency checks, along
with the verification of ν = xS · yS , can be proved together
using the BatchCheck mechanism described in Section II.
Further, verifying z = x · y reduces to simply checking the
validity of the IT-MAC for z. This is enabled by the additive
homomorphism of the authentication scheme. Recall that z is
computed as z = µ+ν+ω+δ. With the exception of ν (which
is verified explicitly as described above), all other terms are
derived via additively homomorphic operations. Consequently,
if any error is introduced during this process, the IT-MAC for
z will inevitably be invalid.

B. Protocols for Boolean Circuits

A Boolean circuit fB takes input [x] and outputs [y] with
y := fB(x). As noted in Section III, in the maliciously
secure 2PC setting with fixed corruption, a common choice
for instantiating this circuit is using GC [19], [20], since GC
is inherently secure against a malicious evaluator. Specifically,
we can use a standard semi-honest secure GC to implement
fB and transmit the labels corresponding to C’s share receiver-
malicious OT. SIMC [20] introduces an advanced GC-based

protocol with two designs. More details can be found in
Section 3 in [20].

• To ensure input consistency, SIMC re-generates an au-
thentication for x and later verifies the equality of two
independently generated authentications on x. It is worth to
noticing that different from our protocol, SIMC maintains
the following authentication form: C holds (xC ,Kx) and S
holds (xS ,Mx) such that x = xC+xS and Mx = Kx+∆·x.

• To avoid expensive field multiplications (i.e., ∆·y and ∆·x)
within GC, SIMC garbles a circuit, that given xC and xS ,
only computes y and x (and not their IT-MACs). Then it
performs field multiplication by using the output labels of
the GC as one-time pad masks. Briefly, taking ∆ · y as an
example, we have ∆ · y =

∑
i∈[ℓ] ∆ · y[i] · 2i in Fp. To

compute shares of ∆ · y[i], C picks a random ri ∈ Fp and
mask ri with labyi,0 and ∆ + ri with labyi,1. C sends two
messages (ri+ labyi,0, (∆+ ri)+ labyi,1) to S, who can only
unmask one of the two using the owned label as its share.
Meanwhile, C sets its share as −ri ∈ Fp.

For better performance, we propose two optimized construc-
tions for GC-based Boolean circuit evaluation, and the detailed
protocol is presented in Figure 6. The first construction is
a communication-efficient field multiplication procedure, de-
scribed in Figure 7. Specifically, we parse the label labxi,j as the
concatenation kxi,j ||pxi,j . Leveraging the PaP technique (refer to
Section II), our key insight is that C can set the message placed
in the first position (i.e., pxi,j = 0) to H(labxi,j) + H(labxi,j)
for each i ∈ [ℓ], by carefully designing the value ri, and
the other one can be derived from this ri. For example, if
pxi,0 = 0, the message ri + H(labxi,0) is placed in the first
position. C sets ri to H(labxi,0) and thus another message
ui = α + H(labxi,0) + H(labxi,1). After obtaining ui, S can
learn the share of α ·x[i], i.e., r̂i in step 4, based on the owned
label. Meanwhile, C sets another share as −ri. Compared
with the method of SIMC [20], this optimization reduces
communication overhead by half.

We further pay special attention to the comparison opera-
tion, an important building block for non-linear functions in
ML, such as ReLU and Maxpooling. SIMC [20] evaluates it
straightforwardly using GC, which requires ℓ multiplication
gates. We show an important idea that it can be evaluated
for free in GC without affecting correctness. Specifically, in
a finite field Fp, this operation can be formalized as checking
s > ⌊p2⌋, where s is a representation of a signed input (refer to
Section II for details). This is achieved by replacing s > ⌊p2⌋
with the MSB of s. i.e., the ℓ-th bit of s. Here, MSB(s) = 0
if s < 2ℓ−1 or 1 otherwise. One may doubt that it is true if s
is in a ring like Z2ℓ [37], [38] but is problematic in Zp where
p is prime with |p| = ℓ. Now we give a formal analysis in
Lemma 1 to clarify this insight.

Lemma 1. Given a finite field Fp with ℓ := ⌈log p⌉ and the
input s ∈ [0, 2ℓs] ∪ [p − 1 − 2ℓs , p) with 2ℓs < ⌊p2⌋, it holds
that 1{s > ⌊p2⌋} = MSB(s) when 2ℓs ≤ p− 1− 2⌈log p⌉−1.

Proof. Consider the following two cases.
• Case 1: s ∈ [0, 2ℓs]. It holds 1{s > ⌊p2⌋} = 0 due to s ≤
2ℓs < ⌊p2⌋. Moreover, it holds that MSB(s) = 0 due to

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

Protocol Π2PC (Part 1)

Parameters: A finite field Fp; an AHE scheme (KeyGen,Enc,Dec); FVOLE; Fκ
OT; a GC scheme (Garble,GCEval); ℓ :=

⌈log p⌉. Semi-honest client C and malicious server S.
Initialization:
1) C generates (pk, sk)← AHE.KeyGen(1κ) and sends pk to S.
2) C and S send (Init) to FVOLE, which returns a uniformly random ∆ ∈ Fp to C.
Input:
1) For each input x from C, C samples xS ,MxS ← Fp, and computes xC := x−xS ∈ Fp and KxS := MxS−∆ ·xS ∈ Fp.
C sends (xS ,MxS) to S and both parties hold [x].

2) For each input y from S, C and S send (Extend) to FVOLE, which returns (r,Mr) ∈ F2
p to S and Kr ∈ Fp to C.

S sends y − r ∈ Fp to C and then both parties compute [y], where S holds yS := r and MyS := Mr, and C holds
yC := y − r and KyS := Kr.

Arithmetic Circuit: Without loss of generality, the following protocol assumes that the arithmetic circuit fA consists of
only one multiplication gatea.
1) Two parties hold [x], [y] and evaluate the multiplication z = x · y to obtain [z] as follows:

a) C computes µ := xC · yC locally.
b) C and S send (Extend) to FVOLE, which returns (r,Mr) ∈ F2

p to S and Kr ∈ Fp to C. S computes ν := xS · yS
and sends t := ν − r ∈ Fp to C. S and C set Mν := Mr and Kν := Kr −∆ · t ∈ Fp, respectively.

c) C sends AHE.Enc(pk, yC) to S, who samples ωS ,MωS ← Fp, computes e1 := AHE.Enc(pk, xS · yC − ωS), e2 :=
AHE.Enc(pk,MωS − MxS · yC) and sends (e1, e2) to C. Then C sets ωC := AHE.Dec(sk, e1) and KωS :=
AHE.Dec(sk, e2) +KxS · yC +∆ · ωC ∈ Fp. In the honest case, both parties hold [ω], where ω = xS · yC .

d) C sends AHE.Enc(pk, xC) to S, who samples δS ,MδS ← Fp, computes e3 := AHE.Enc(pk, xC · yS − δS), e4 :=
AHE.Enc(pk,MδS − MyS · xC) and sends (e3, e4) to C. Then C sets δC := AHE.Dec(sk, e3) and KδS :=
AHE.Dec(sk, e4) +KyS · xC +∆ · δC ∈ Fp. In the honest case, both parties hold [δ], where δ = xC · yS .

e) C sets zC := µ+ ωC + δC ∈ Fp and KzS := Kν +KωS +KδS ∈ Fp.
f) S sets zS := ν + ωS + δS ∈ Fp and MzS := Mν +MωS +MδS ∈ Fp.

2) Two parties check the correctness of the above protocol as followsb:
a) Following QuickSilver [24], S computes M := MxS ·MyS ∈ Fp and d := yS ·MxS + xS ·MyS −Mν ∈ Fp, and C

computes K := KxS ·KyS +∆ ·Kv ∈ Fp.
b) C samples χ0, χ1 ← Fp and sends them to S.
c) C and S send (Extend) to FVOLE, which returns (r,Mr) ∈ F2

p to S and Kr ∈ Fp to C. S computes M∗ :=
M · χ0 +MzS · χ1 +Mr and d∗ := d · χ0 + zS · χ1 + r, and send (M∗, d∗) to C.

d) C computes K∗ := K · χ0 +KzS · χ1 +Kr and checks M∗ = K∗ + d∗ ·∆. If the check fails, C outputs false and
aborts.

aNote that protocols for generic circuits fA can be directly achieved by combining the above multiplication protocol and the additive homomorphism
of authenticated secret sharing.

bThis check can be performed only once when verifying multiple multiplication gates.

Fig. 5: Maliciously secure 2PC protocol with fixed corruption in the (FVOLE,FOT)-hybrid model.

s < ⌊p2⌋ < 2ℓ−1. Therefore, if s ∈ [0, 2ℓs], then 1{s >
⌊p2⌋} = MSB(s) unconditionally.

• Case 2: s ∈ [p−1−2ℓs , p). It holds 1{s > ⌊p2⌋} = 1 due to
s ≥ p−1−2ℓs > p−1−⌊p2⌋ ≥ ⌊

p
2⌋. Moreover, it holds that

MSB(s) = 1 when s ≥ p − 1 − 2ℓs ≥ 2ℓ−1. Therefore, if
s ∈ [p− 1− 2ℓs , p), then 1{s > ⌊p2⌋} = MSB(s) under the
condition of p−1−2ℓs ≥ 2ℓ−1, i.e., 2ℓs ≤ p−1−2⌈log p⌉−1.

We also give a graphical explanation in Figure 8. Without
loss of generality, we assume the real input s ∈ [0, 2ℓs] ∪
[p − 1 − 2ℓs , p) lies in the blue area according to the
encoding of a finite field in Section II. The problematic
area, i.e., 1{s > ⌊p2⌋} ̸= MSB(s), is indicated in grey.

However, these two parts will not overlap with the condition
2ℓs ≤ p − 1 − 2⌈log p⌉−1. We emphasize that this condition
is always satisfied, especially for maliciously secure machine
learning schemes [19], [20], [7], [39]. The reason is that to
ensure a negligible failure probability in checking IT-MACs, it
requires at least ⌊log p⌋ ≥ λ, where λ is the statistical security
parameter. Nevertheless, the bitlength ℓs of intermediate values
in neural network inference is usually much smaller than λ [4],
[18], [5]. Thus, we directly follow general parameter settings
for ℓs, p without making any adaptive modifications.

Theorem 1. Given a GC scheme (GC.Garble,GC.Eval) and
an AHE scheme (KeyGen,Enc,Dec,Eval) satisfying the prop-
erties defined in Section II, the protocol Π2PC securely re-

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

Protocol Π2PC (Part 2)

Boolean Circuit: Without loss of generality, the following protocol assumes that the Boolean circuit fB consists of only
single-input and single-outputa.
1) Two parties hold [x] and evaluate a Boolean circuit fB to obtain [y] with y = fB(x):

a) C computes (GC, {labxC
i,j , lab

xS
i,j , lab

x
i,j , lab

y
i,j}i∈[ℓ],j∈{0,1})← GC.Garble(1κ, C), where C is a Boolean circuit that

takes xC , xS as input and outputs x = xC + xS in Fp and y = fB(x).
b) For i ∈ [ℓ], both parties invoke Fκ

OT, where C is the sender with input (labxS
i,0 , lab

xS
i,1) and S is the receiver with

input xS [i], and S obtains { ˆlab
xS

i }i∈[ℓ], where ˆlab
xS

i = labxS
i,xS [i].

c) C sets ˆlab
xC

i := labxC
i,xC [i]

for i ∈ [ℓ], and then sends (GC, { ˆlab
xC

i }i∈[ℓ]) to S.

d) S computes { ˆlab
x

i ,
ˆlab

y

i }i∈[ℓ] ← GC.Eval(GC, { ˆlab
xS

i , ˆlab
xC

i }i∈[ℓ]), where ˆlab
x

i = labxi,x[i] and ˆlab
y

i = labyi,y[i] for
i ∈ [ℓ].

e) The parties invoke GCMul in Figure 7 with inputs ({labyi,j}i∈[ℓ],j∈{0,1}, 1) from C and { ˆlab
y

i }i∈[ℓ] from S, which
returns yC to C and yS to S.

f) The parties invoke GCMul in Figure 7 with inputs ({labyi,j}i∈[ℓ],j∈{0,1},∆) from C and { ˆlab
y

i }i∈[ℓ] from S, which
returns aC to C and aS to S. Then C sets KyS := ∆ · yC − aC ∈ Fp and S sets MyS := aS . In the honest case,
both parties hold [y].

g) The parties invoke GCMul in Figure 7 with inputs ({labxi,j}i∈[ℓ],j∈{0,1},∆) from C and { ˆlab
x

i }i∈[ℓ] from S, which
returns bC to C and bS to S. Then C sets K ′

xS
:= ∆ · xC − bC ∈ Fp and S sets M ′

xS
:= bS .

2) Two parties check the correctness of xS and yS as follows:
a) S computes M := MxS −M ′

xS
∈ Fp and C computes K := KxS −K ′

xS
∈ Fp.

b) C samples χ0, χ1 ← Fp and sends them to S.
c) C and S send (Extend) to FVOLE, which returns (r,Mr) ∈ F2

p to S and Kr ∈ Fp to C. S computes M∗ :=
M · χ0 +MyS · χ1 +Mr and d∗ := yS · χ1 + r, and sends (M∗, d∗) to C.

d) C computes K∗ := K ·χ0 +KyS ·χ1 +Kr and checks that M∗ = K∗ + d∗ ·∆. If the check fails, C outputs false
and aborts.

Output:
1) If C is to learn x, S sends (xS ,MxS) to C, who checks MxS = KxS +∆ · xS ∈ Fp. If the check fails, C outputs false

and aborts. Otherwise, C outputs x := xS + xC ∈ Fp.
2) If S is to learn x, C sends xC to S, who outputs x := xS + xC ∈ Fp.

aThis protocol extends easily for Boolean circuits that take multiple inputs and produce multiple outputs.

Fig. 6: Maliciously secure 2PC protocol with fixed corruption in the (FVOLE,FOT)-hybrid model.

alizes the functionality F2PC against a malicious adversary
corrupting S or a semi-honest adversary corrupting C in the
(FVOLE,FOT)-hybrid model.

Proof. The proof is given in Appendix A.

C. Scalability of Our Protocols

Our protocols can be deployed in various applications to
ensure privacy and integrity, not merely for secure inference in
machine learning. In the following, we provide two scenarios
to demonstrate this generalizability.

The first application is malicious traffic filtering. This ap-
plication involves joint malicious traffic filtering between an
internet service provider, acting as the semi-honest party, and
a security agency, acting as the malicious party. The semi-
honest service provider may try to infer the agency’s private
threat intelligence from intermediate results. Meanwhile, the
malicious agency may compromise the filtering integrity and
steal the service provider’s user logs. Our protocol can be used
to deliver strict correctness verification against the agency’s

malicious behaviors, simultaneously ensuring data confiden-
tiality and filtering integrity.

The second application is secure genomic data analysis for
drug discovery. A biotech company, acting as the semi-honest
party, collaborates with a pharmaceutical company, acting as
the malicious party, for drug target identification. The mali-
cious pharmaceutical company may disrupt the analysis for
self-benefit (compromising correctness) and steal the biotech
company’s sensitive genomic data. Conversely, the semi-
honest biotech company may attempt to infer the proprietary
drug structures of another company from intermediate results.
Our protocol can be used to prevent malicious behaviors of the
pharmaceutical company and protect the sensitive information
and intellectual property of both companies.

V. THE CONAN FRAMEWORK

This section presents Conan, a secure and reliable inference
protocol against malicious servers. The full protocol ΠSecInf is
given in Figure 11, which consists of two phases, i.e., commit
and accuracy verify and secure inference on the committed

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

Procedure GCMul

Parameter: A finite field Fp; a random oracle H :
{0, 1}κ → Fp; ℓ := ⌈log p⌉.
Input: C inputs labels {labxi,j}i∈[ℓ],j∈{0,1} ∈ {0, 1}κ, α ∈
Fp. S inputs { ˆlab

x

i }i∈[ℓ] ∈ {0, 1}κ where ˆlab
x

i = labxi,x[i].
Output: C and S learns yC and yS , respectively, where
y = α · x in Fp.
Procedure:
1) For i ∈ [ℓ] and j ∈ {0, 1}, C parses labxi,j as

kxi,j ||pxi,j ∈ {0, 1}κ−1 × {0, 1}.
2) For i ∈ [ℓ], if pxi,0 = 0, C computes ri := H(labxi,0),

and then sets ui := ri+α+H(labxi,1) ∈ Fp. If pxi,1 = 0,
C sets ri := H(labxi,1) − α ∈ Fp and ui := ri +
H(labxi,0) ∈ Fp.

3) C sends {ui}i∈[ℓ] to S, and sets yC :=

−
∑

i∈[ℓ] ri · 2i−1 ∈ Fp.
4) For i ∈ [ℓ], S parses ˆlab

x

i as k̂xi ||p̂xi ∈ {0, 1}κ−1 ×
{0, 1}. If p̂xi = 0, S sets r̂i := H(ˆlab

x

i). Otherwise, S
sets r̂i := ui − H(ˆlab

x

i) ∈ Fp. Then S learns yS =∑
i∈[ℓ] r̂i · 2i−1 ∈ Fp.

Fig. 7: Procedure for label-based multiplication in GCs

MSB(𝑥𝑥) = 0 MSB(𝑥𝑥) = 1

0,1 ℓ

𝔽𝔽𝑝𝑝

0 2ℓ

0 𝑝𝑝
2

𝑝𝑝

2ℓ−1

𝑥𝑥 𝑥𝑥

𝑥𝑥 > 𝑝𝑝
2𝑥𝑥 ≤ 𝑝𝑝

2

Fig. 8: Relationship between 1{x > ⌊p2⌋} and MSB(x). The
shaded region denotes the inconsistency between the MSB
and the real value’s sign representation, i.e., 1{x > ⌊p2⌋} ̸=
MSB(x).

model against malicious servers. In the following, we provide
a technical description for each phase.

A. Commit and Accuracy Verify

In this phase, S pre-processes the claimed model to make it
verifiable in a secure manner, and then C verifies its accuracy.
Specifically, two parties first invoke the Input procedure of
F2PC to convert S’s model parameters {Wi}i∈[t] into an
authenticated format, which can be seamlessly integrated into
ZK-based accuracy proof [24], [39]. Then C verifies whether
the model meets a predetermined accuracy threshold, based
on a labeled testing dataset. We instantiate this step using
QuickSilver [24], the state-of-the-art VOLE-based ZK pro-
tocol, and adopt conversion protocols between authenticated
arithmetic and Boolean values from Mystique [7]. Note that
this procedure only needs to be executed once, and therefore,
its overhead can be amortized.

For better efficiency, we introduce optimizations tailored
to secure inference. Specifically, unlike Mystique, which re-

Parameters: A set of public test samples (X,Y) =
{(xi, yi)}i∈[n]. An accuracy metric Acc and an accuracy
threshold ϵ.
Receive (AccProve, {Wi, [[Wi]]0}i∈[t]) from the server
and (AccProve, {[[Wi]]1}i∈[t],∆) from the client. De-
fine W := (W1, . . . ,Wt). Send true to the client if
Acc(W, (X,Y)) ≥ ϵ and false otherwise.

Fig. 9: Functionality FAccProve for accuracy proof

Parameters: A neural network model M with t linear
layers and t− 1 non-linear layers.
Receive the model parameter {Wi}i∈[t] from the server
and the input x from the client. Send M({Wi}i∈[t],x) to
the receiver.

Fig. 10: Functionality FSecInf for secure and reliable inference
protocol against malicious servers

quires conversion between fixed-point numbers (used in linear
layers) and floating-point numbers (used in non-linear layers)
within ZK protocols, we consistently use fixed-point evalua-
tion throughout, avoiding this costly conversion. This design
follows most existing secure inference protocols [38], [6], [20],
[11], [19], which show that fixed-point arithmetic has minimal
and somewhat even positive [4], [6] impact on model accuracy.
The functionality of this phase is given in Figure 9.

B. Secure Inference on the Committed Model against Mali-
cious Servers

Once the model accuracy is verified, C can request inference
services on its private inputs x. Such inference services are
allowed to be executed multiple times on different private
samples. This process is instantiated utilizing our maliciously
secure 2PC protocol in Section IV, where alternate linear
and non-linear layers are evaluated sequentially based on
our arithmetic and Boolean circuit protocols, respectively.
Note that the correctness verification step in the Arithmetic
procedure of F2PC ensures that the model parameters used
in each linear layer are consistent with those in the above
accuracy verification phase.

Figure 11 details our secure inference protocol ΠSecInf on
the committed model against malicious servers, and the corre-
sponding functionality is given in Figure 10. Compared to the
general protocol Π2PC, we make the following optimizations
customized for the model inference setting. Without loss of
generality, we assume the dimension of a model parameter
matrix Wi for i ∈ [t] is m × n and the dimension of each
linear layer’s input xi is n.
• In linear layers, the model parameter {Wi}i∈[t] is owned by
S, which can not be secret-shared between the two parties.
Specifically, for each i ∈ [t], to authenticate Wi in the Input
procedure, S sends Wi −Ri ∈ Fm×n

p to C, and then both
parties compute the authentication ⟨Wi⟩ as ⟨Ri⟩+ (Wi −

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

Ri) ∈ Fm×n
p , where ⟨Ri⟩ is a random VOLE matrix. Then

given Wi · xi = Wi · (xiS + xiC) = Wi · xiS +Wi · xiC ,
the multiplication evaluation in the Arithmetic procedure of
protocol Π2PC can also be simplified to only computing the
authenticated value of Wi · xiS using the method in step
1b and the authenticated secret share of Wi · xiC using the
method in step 1c.

• In linear layers, as described above, both parties evaluate
νi := Wi · xiS for each i ∈ [t] that contains m · n
element-wise multiplications. Obviously, m · n correctness
verifications are required, which are expensive since the
parameter dimension m is usually large. We can transform
checking the above m · n multiplications into checking
only n multiplications without sacrificing soundness [7],
by proving aT · Wi · xi = aT · νi, where a ∈ Fm

p

is uniformly sampled by C and sent to S. Based on the
additive homomorphism, both parties can easily compute
the authentication of b := aT ·Wi and c := aT · vi. Thus,
only b · xi = c with the dimension n needs to be proved.

• In non-linear layers, we can optimize the communication
cost when truncation is required (refer to Section II for
details). Assuming the truncated bitlength is s, both parties
only need to communicate the last ℓ − s items in each
instance of GCMul in the Boolean procedure, and both
parties set α · x =

∑
i∈[st+1,ℓ] α · x[i] · 2i−st−1 in Fp. With

this optimization, a GCMul instance costs ℓ(ℓ− st) bits of
communication, rather than ℓ2 bits in the general solution.

• We can check the consistency and correctness of all layers
in a batch using a random linear combination for better
communication performance, instead of checking layer by
layer. Note that all our checks in ΠSecInf can be generalized
to checking that Mx = Kx +∆ · x holds where x is owned
by S or x should be 0. To check k such relations, where S
and C own {xi,Mxi

}i∈[k] and {∆,Kxi
}i∈[k] respectively,

C first samples uniform elements {χi}i∈[k] and sends them
to S, and then checks that

∑
i∈[k] Mxi · χi =

∑
i∈[k] Kxi ·

χi +∆ · (
∑

i∈[k] xi · χi) holds.

Analysis on scalability for large-scale models. Below,
we clarify the computational and communication overhead
these client-side operations introduce as the model scales.
Our protocol overhead on the client-side is linearly related to
the model depth and the size of each layer, which inherently
allows for easy scalability to large-scale models. Specifically,
the model can be divided into linear and non-linear layers.
The linear layers are evaluated using our arithmetic circuit
protocol. For each multiplication gate, the client requires 6 lo-
cal multiplications and 6 homomorphic encryption/decryption
operations, with a communication overhead of 1 field element
and 2 ciphertexts. When evaluating multiple multiplication
gates, the number of local multiplications and communicated
field elements increases linearly. However, the homomorphic
operations can be efficiently batched. If the batch size is k, the
total number of encryption/decryption operations required for
n multiplication gates is ⌈(n/k)⌉× 6, and the communication
overhead is ⌈(n/k)⌉ × 2 ciphertexts. The non-linear layers
are evaluated using our Boolean circuit protocol. The cost
associated with this evaluation is perfectly linear with the

Protocol ΠSecInf

Parameters: A model M with t linear layers (denoted by
fA,i for i ∈ [t]) and t − 1 non-linear layers (denoted by
fB,i for i ∈ [t− 1]); FVOLE-ZK; F2PC.
Input: S holds the model parameter {Wi}i∈[t]. C holds
the input x.
Output: C learns the inference result y, where y :=
M({Wi}i∈[t],x).
Protocol:
1) Commit and Accuracy-Prove:

a) For i ∈ [t], C and S send (Input,S) and
(Input,S,Wi), respectively, to F2PC, which returns
[Wi] to both parties.

b) C and S send (AccuacyProve, {[Wi]}i∈[t]) to
FVOLE−ZK. C aborts if FVOLE−ZK returns false, and
continues otherwise.

2) Secure Inference:
a) First Linear Layer:

• C and S send (Input, C,x) and (Input, C), respec-
tively, to F2PC, which returns [x] to both parties.

• C and S send (Arithmetic, fA,0, [W0], [x]) to
F2PC, which return [v0] to both parties.

b) For each i ∈ [t− 1], two parties alternately execute
linear and non-linear layers:
• Non-linear Layer: C and S send
(Boolean, fB,i, [vi]) to F2PC, which returns
[xi+1] to both parties.

• Linear Layer: C and S send
(Arithmetic, fA,i+1, [Wi+1], [xi+1]) to F2PC,
which returns [vi+1] to both parties.

3) Output: C and S send (Output, C, [vt]) to F2PC,
which returns vt to C. C outputs y := vt.

Fig. 11: Secure and reliable inference protocol against mali-
cious servers

number of non-linear operations, as each operation necessitates
a complete execution through the Boolean circuit.

Theorem 2. The protocol ΠSecInf securely realizes the func-
tionality FSecInf against a malicious adversary A corrupting
the server or a semi-honest adversary A corrupting the client
in the (FVOLE-ZK,F2PC)-hybrid model.

Proof. The security of the corrupted client in the semi-honest
adversary setting is straightforward. We therefore focus on the
case of a malicious adversary A corrupting the server. We
construct a simulator Sim that has access to the ideal func-
tionalities FVOLE-ZK, F2PC and interacts with the environment
Z . Note that Z chooses the inputs of both parties, and at the
end of the execution also learns the outputs of both parties. We
prove that the simulated interaction by Sim is indistinguishable
from the real interaction. The simulator Sim works as follows.

Simulating the commit and accuracy-prove phase. Sim
emulates the input command of the functionality F2PC, hence
Sim holds the global key ∆ and can compute all correct

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

MACs of A. When receiving Wi from A, Sim samples
[Wi]S ← F2

p and sends them to A. Sim emulates the accuracy-
prove command of the functionality FVOLE-ZK and receives
[Wi]

∗
S from A. If FVOLE-ZK returns false, Sim sends ⊥ to the

functionality of FSecInf and aborts.
Simulating the secure inference phase. Sim emulates

the input command of the functionality F2PC. Sim samples
[x]S ← F2

p and sends them to A. Sim emulates the arithmetic
command of the functionality F2PC and receives [W0]

∗
S , [x]∗S

from A. If F2PC aborts, Sim sends ⊥ to the functionality
of FSecInf and aborts. Sim samples [v0]S ← F2

p and sends
them to A. For i ∈ [t− 1], Sim emulates the Boolean circuit
command of the functionality F2PC and receives [vi]

∗
S from

A. If F2PC aborts, Sim sends ⊥ to the functionality of FSecInf

and aborts. Otherwise, Sim samples [xi+1]S ← F2
p and sends

them to A. Sim emulates the arithmetic circuit command of
the functionality F2PC and receives [Wi+1]

∗
S , [xi+1]

∗
S from

A. If F2PC aborts, Sim sends ⊥ to the functionality of FSecInf

and aborts. Otherwise, Sim samples [vi+1]S ← F2
p and sends

them to A.
Simulating the output phase. Sim emulates the output

command of the functionality F2PC and receives [vt]
∗
S from

A. If F2PC aborts, Sim sends ⊥ to the functionality of FSecInf

and aborts. Otherwise, Sim extracts the input Wi of A and
sends them to the functionality of FSecInf .

Now we argue that Z cannot distinguish between the
real and ideal executions. Clearly, the view of adversary A
simulated by Sim has the identical distribution as its view
in the real-world execution. The reason is that the received
messages of A are [Wi]S , [x]S , [vi]S , [xi]S and they are
uniformly random in both real and simulated executions.
Moreover, whenever the execution in the real-world execution
aborts, the execution in the ideal-world execution aborts as
well. This completes the proof.

VI. EXPERIMENTAL EVALUATION

A. Experiment Setup

Implementation. We implemented Conan in C++. Conan
is built on top of the EMP toolkit [40] and Seal homomor-
phic encryption library [41]. The EMP toolkit provides ZK
protocols for accuracy verification and GC protocols for non-
linear layers in secure inference. The Seal library implements
the AHE scheme for linear layers in secure inference. In line
with existing secure inference works [20], [6], we simulate
both LAN and WAN settings. Under LAN, the bandwidth
is 584MBps and the echo latency is 21ms. Under WAN,
the bandwidth is 44MBps and the echo delay is 40ms. All
our experiments are performed on AWS c5.9xlarge instances
with Intel Xeon 8000 series CPUs at 3.6GHz, and we run
all of Conan’s components using a single thread. Note that
our protocols can directly benefit from parallelization through
multi-threading. Conan is implemented over a 44-bit prime
field and provides 128 bits of computational security and 40
bits of statistical security.

Datasets and Models. Consistent with existing maliciously
secure protocols [19], [20], we evaluate Conan on two
datasets and model architectures: (1) A 2-layer convolutional

TABLE I: End-to-end communication (MB) and runtime (sec-
onds) overhead of our Conan framework.

MNIST CIFAR10
Overhead Comm. LAN WAN Comm. LAN WAN
phase (1) 101.79 58.54 61.98 128.92 70.59 74.01
phase (2) 122.90 7.51 11.44 1510.10 43.54 75.71

neural network (CNN) for MNIST, based on MiniONN [42],
with Average Pooling in place of Max Pooling. (2) A 7-layer
CNN for CIFAR10, also from MiniONN [42].

Baselines. Since there are no provably secure protocols for
server-malicious secure inference, we follow prior works [10],
[19] to use a general-purpose maliciously secure framework,
Overdrive [14], as our baseline. We report the experimental
results of Overdrive from Figure 9 in [19], which illustrates
its performance with 8 threads under LAN.

B. End-to-end Evaluation

As detailed in Section V, Conan contains two phases: (1)
commit and accuracy verify, and (2) secure inference on the
committed model against malicious servers. We evaluate both
under LAN and WAN settings, with results shown in Table
I. To highlight efficiency, we report the overhead of accuracy
verification and secure inference on a single input. Note that
the overhead of phase (1) could always be amortized over
multiple secure inferences since it runs only once. Results
show that Conan is efficient in different datasets and network
settings. For example, phase (1) completes in less than 75
seconds on both datasets over LAN and WAN. Phase (2)
only takes 11.44 seconds for MNIST and 75.71 seconds for
CIFAR10 over WAN.

C. Performance of Secure Inference against Malicious Servers

We now focus on the performance of phase (2) in Co-
nan, i.e., secure inference on the committed model against
malicious servers, which is the main bottleneck as identified
in prior work [14], [10]. We first give a comparison with
the state-of-the-art maliciously secure framework, Overdrive
[14], followed by showing the microbenchmarks of our secure
inference protocol. We further report the performance of our
protocol when extending to the offline-online setting.

Comparison with Overdrive [14]. Figure 12 compares
the runtime and communication performance of Conan and
Overdrive. We utilize the same network setting as Overdrive,
but with a single thread rather than 8 threads in Overdrive.
Conan shows significant improvement. It is 16.54× and
67.36× faster, and reduces communication by 72.48× and
163.73× on MNIST and CIFAR10, respectively. Notably,
Conan under WAN still outperforms Overdrive under LAN,
highlighting the efficiency of our secure inference protocol
against malicious servers.

Performance breakdown. Table II gives the communi-
cation and runtime performance breakdown of our protocol.
We observe that non-linear layers dominate the communica-
tion overhead, e.g., up to 68% and 92%, respectively. The

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

MNIST CIFAR10
Runtime overhead

101

102

103

Ru
nt

im
e

(s
)

Overdrive-LAN
Conan-LAN
Conan-WAN

(a) Runtime

MNIST CIFAR10
Communication overhead

10 1

100

101

102

Co
m

m
un

ica
tio

n
(G

B) Overdrive
Conan

(b) Communication

Fig. 12: Runtime (seconds) and communication (GB) compar-
ison with Overdrive [14].

TABLE II: Communication (MB) and runtime (seconds) over-
head breakdown of our secure inference.

MNIST CIFAR10
Overhead Comm. LAN WAN Comm. LAN WAN

Linear layers 38.96 6.44 8.35 107.83 30.57 35.44
Non-linear layers 83.94 1.07 3.09 1402.27 12.97 40.27

Total 122.90 7.51 11.44 1510.10 43.54 75.71

TABLE III: Communication (MB) and runtime (seconds) cost
of our secure inference in the offline-online setting.

MNIST CIFAR10
Overhead Comm. LAN WAN Comm. LAN WAN

Offline phase 190.85 6.40 8.90 2790.03 46.04 90.47
Online phase 10.24 0.80 3.45 235.52 7.86 25.21

Total 201.09 7.20 12.35 3025.55 53.90 115.68

main reason is that our linear layer protocol mainly uses
communication-efficient additively homomorphic encryption
and significantly reduces communication overhead. Moreover,
a large number of non-linear functions like ReLU are evaluated
in these two models, e.g., 173K ReLUs in CIFAR10. A similar
phenomenon is also observed in prior secure inference works
[20], [19]. For runtime, the non-linear layers often require less
runtime than the linear layers, mainly due to our customized
circuit designs and evaluation protocols. For example, under
CIFAR10, the non-linear layers take 12.97 seconds while the
linear layers take 30.57 seconds over LAN.

Performance in the offline-online setting. Similar to recent
secure inference works [42], [18], [19], [20], our protocols
can be extended into an offline-online setting. In the offline
phase when client queries are unknown, the parties precompute
all query-independent operations and generate correlated ran-
domness, shifting most cryptographic cost offline. We briefly
introduce how to extend our protocols in this setting. (1) For
linear layers, W · r (and hence all AHE-related operations)
is moved offline, leaving only lightweight local computation
and minimal communication online. (2) For non-linear layers,
GC and labels are prepared offline, with the server performing
only lightweight circuit evaluation online (refer to Section 4.4
in [20]). As reported in Table III, the offline phase dominates
the overall overhead. In particular, 94% and 92% of the
communication overhead come from the offline phase for
MNIST and CIFAR10, respectively.

VII. DISCUSSION

A. Possible Optimizations for Better Efficiency

Several strategies might be adopted to enhance the prac-
ticality of Conan for MLaaS deployment. We discuss these
mitigation strategies in the following.

Offline-online paradigm. Following established secure infer-
ence practices [18], [33], heavy cryptographic operations such
as randomness and multiplication triplet generation can be
offloaded to an input-independent offline phase. This ensures
the resulting online phase involves only lightweight operations
like reconstruction and local computation, thereby significantly
reducing the latency perceived by the client. Our experimental
results in Table III in Section VI have demonstrated its
effectiveness.

Quantization. A dominant factor affecting runtime in se-
cure inference is the bitlength of inputs and intermediate
values. To mitigate this, a possible solution is to integrate
quantization techniques [8], [43], which allow inference to
be performed on lightweight and low-bitlength models while
preserving comparable accuracy. Integrating these techniques
into our framework offers a promising direction for substantial
performance gains.

Parallelization and hardware acceleration. Further engi-
neering optimizations can leverage parallelization and special-
ized hardware acceleration such as GPUs. In neural network
inference, a vast number of operations are independent (i.e.,
matrix multiplication) and can be executed concurrently, al-
lowing for significant reductions in total runtime.

B. Generalization on Transformer-based Models

In Section VI, Conan is experimentally applied to tra-
ditional machine learning models to evaluate its usability.
Traditional models remain fundamentally important for real-
world applications. Moreover, the fundamental components of
conventional models (e.g., matrix multiplication and compar-
isons) are general-purpose and can be readily extended to
generative models. Furthermore, Conan is a general secure
inference framework. This generic nature ensures its direct
applicability to guarantee security and privacy for a wide
range of model architectures, including generative models. In
the following, we discuss the importance, generalization, and
barriers to its generalization.

Importance of Secure Inference on Traditional Models.
While the growing popularity of generative models, traditional
machine learning like classification tasks remain fundamen-
tally important for numerous real-world applications. Critical
sectors such as healthcare [44], [45] and finance [34] heavily
rely on these classification architectures for tasks such as
diagnosis and fraud detection. Furthermore, achieving prac-
tical efficiency while maintaining strict security remains a
substantial challenge, even for these established classification
networks [32]. Conan can ensure a secure, efficient, and
reliable inference service for this fundamental problem, to
achieve accuracy verification, inference integrity, and privacy
simultaneously.

Application of Conan to transformer-based models. As
detailed in Section V, Conan consists of two phases, i.e.,

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

commit and accuracy verify, and secure inference. In the first
phase, both parties first authenticate model parameters using
the QuickSilver mechanism [24], and then verify model accu-
racy using the Mystique technique [7]. The former operates
on single domain elements, while the latter can transform
any function into a specific Boolean circuit for evaluation.
Crucially, they are independent of the model architecture and
thus directly applicable to Transformer-based models. In the
second phase, secure inference is achieved utilizing our 2PC
protocols, which can evaluate both arithmetic and Boolean
circuits. In transformer-based models, linear operations can
be evaluated using our protocols for arithmetic circuits. Non-
linear operations like GELU and Sigmoid can be transformed
into general Boolean circuits for evaluation, as arbitrary func-
tions can be represented using Boolean circuits. In conclusion,
Conan can be applied to transformer-based models to provide
secure inference services.

The barriers to its generalization. In the transformer-based
model architecture, the primary obstacle lies in its complex
non-linear components. These functions are difficult to imple-
ment efficiently using generic Boolean circuits because their
representation requires a significant number of AND gates,
introducing considerable overhead. For example, complex
primitives like exponentiation, division, and reciprocal square
root necessitate 3 ∼ 11K multiplication gates in Boolean
circuit representations [7], [35]. Existing secure inference
works for transformers [32], [46] typically employ spline
approximations and the lookup table technique to handle costly
non-linear functions. Nevertheless, balancing computation,
communication, and accuracy remains a critical challenge in
secure inference for transformers [33].

VIII. RELATED WORKS

A. Review of Related Works

A number of recent works have attempted to design spe-
cialized protocols for performing secure inference. These
protocols generally fall into the following categories according
to the type of threat model: semi-honest security and malicious
security. We discuss each of these categories as follows.

Semi-honest security. Most of existing secure inference
protocols [38], [42], [47], [48], [49], [18], [4], [5], [50],
[51] focus on semi-honest security. In this setting, the client
and the server follow protocol specification honestly but
attempt to infer more knowledge about each other from the
received messages. These protocols provide privacy guarantees
by utilizing various advanced secure computation techniques,
such as secret sharing [37], oblivious transfer [52], garbled
circuits [27], and homomorphic encryption [53]. They achieve
high efficiency either by designing customized cryptographic
protocols based on these techniques [42], [47], [4], [6] or by
modifying the model architecture such as approximating ReLU
activations with low-degree polynomials [38], [49], [54], [18]
or quantizing network weights [48], [55], [56], [57].

Malicious security. Considering a more realistic inference
service scenario, malicious parties may arbitrarily deviate from
the pre-established protocols. Several solutions have been
proposed in this setting. Specifically, the general-purpose 2PC

protocols for computing arithmetic circuits [11], [12], [13],
[14], binary circuits [58], and mix circuits [59], [36], [15]
provide privacy and correctness guarantees in an environment
where both parties are malicious. However, as mentioned
in Section I, these protocols incur intolerable overhead and
cannot provide model accuracy and integrity guarantees.

Recently, MUSE [19] was proposed, which works in the
setting of malicious clients and semi-honest servers, and later
SIMC [20] further improved its efficiency. They consider that
clients may maliciously modify the intermediate results during
the execution of inference protocols, to steal the server’s
model parameters. Thus, consistency verification strategies
were proposed to ensure whether the input of each layer has
been tampered with. Such protocols cannot be employed in
Conan due to different adversarial settings.

Besides, ZK proofs have been explored for verifiable ML
inference [7], [8], [60], [61], [62], [63]. These approaches
allow the server to provide the client with proof validating
that inferences are indeed performed in the claimed accurate
model (i.e., accuracy and integrity goals). Nevertheless, they
can not meet the client’s privacy requirement due to the need
for the client’s queries to be uploaded in plaintext.

B. Discussion on the Security of Applying Existing Semi-
honest Protocols into Our Setting

It is worth noting that existing semi-honest inference pro-
tocols, such as ABY [37], Delphi [18], CrypTFlow2 [4], and
Cheetah [6], cannot be adapted to our setting, because they
fail to protect privacy and integrity. As introduced in Section
I, the server operating under these protocols can deviate from
the protocols, aiming to steal the client’s private inputs. Even
worse, this deviation can be conducted in an undetectable
manner, namely, the server steals the client’s inputs while
delivering seemingly correct inference services. Moreover,
some solutions [10] attempt to combine an accuracy check
of inference results with these semi-honest protocols to resist
malicious servers. However, the adversary can always bypass
the checks and return correct results, while stealing the client’s
private inputs.

The main reason is that the adopted semi-honest inference
protocols are incapable of defending malicious adversaries,
such as the garbler in GC [64] and the receiver in OT protocols
[29]. We note that GC and OT are indispensable techniques
for evaluating non-linear layers in secure inference. For the
non-linear layer evaluation protocols used in the advanced
works, ABY/Delphi employs GC, while CrypTFlow2/Cheetah
utilizes OT. Below, we show two counter-examples from GC
and OT techniques such that the server can stealthily steal the
client’s inputs or intermediate values, and meanwhile deliver
the correct inference to the client.

Undetectable Privacy Leakages from GC. The evaluation
of a non-linear function f takes as input ⟨x⟩0 from the server
and (⟨x⟩1, r) from the client, where r is uniformly sampled,
and outputs ⟨y⟩0 := f(x) − r to the server and ⟨y⟩1 := r to
the client. Before discussing privacy leakages from malicious
deviations, we first introduce benign GC-based non-linear
protocols in ABY and Delphi, where the server acts as the
garbler, and the client acts as the evaluator.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

1) The server constructs a garbled circuit C̃ for computing
f(x)−r. It sends C̃ and the labels for ⟨x⟩0 to the client and
simultaneously, the server and the client exchange labels
for ⟨x⟩1 and r via OT.

2) The client evaluates C̃ using the received labels and learns
the labels of f(x)−r. It then sends this output to the server.

3) The server decrypts these labels using its decryption table
to learn f(x)− r.

There is a malicious strategy for the server to learn f(x) in
plaintext. In particular, the server constructs C̃ for computing
f(x) rather than f(x)− r. This can be achieved by the server
setting both two labels of r as the label of 0 in Step 1),
regardless of its true value. The server then will obtain f(x)
in Step 3). It’s worth emphasizing that using the intermediate
value f(x), the server can compute the correct output z of the
last linear layer in plaintext. In the corresponding evaluation of
the last linear layer, the server modifies the parameter W to 0,
resulting in the secret shares ⟨z′⟩0, ⟨z′⟩1 of the output to satisfy
⟨z′⟩0 + ⟨z′⟩1 = 0. Finally, the server sets ⟨z′⟩0 := ⟨z′⟩0 + z.
Therefore, the final inference result is ⟨z′⟩0+⟨z′⟩1 = z, which
is still correct.

Undetectable Privacy Leakages from OT. Now we an-
alyze the security of OT used in the semi-honest protocols
of these solutions. As shown in prior works [9], widely used
semi-honest OTs such as the protocols [64], [52] are insecure
against the malicious receiver. We take the semi-honest OT
protocol [52] as an example. Assuming the sender’s message
is (x0, x1) and the receiver’s choice bit is b, the protocol [52]
performs as follows:
1) Given a group (G, q, g) for which the DDH is hard, the

receiver samples a random α ∈ Zq and a random h ∈ G
and then sets (h0, h1) := (gα, h) if b = 0 and (h, gα)
otherwise. The receiver sends (h0, h1) to the sender.

2) The sender samples a random r ∈ Zq , sets u := gr and
computes (v0, v1) such that v0 := x0⊕KDF(hr

0) and v1 :=
x1 ⊕ KDF(hr

1), where KDF is a key derivation function.
The sender sends (u, v0, v1) to the receiver.

3) The receiver computes and outputs xb := vb ⊕ KDF(uα).
The malicious receiver can learn both the sender’s messages

without affecting the protocol’s correctness. In particular, the
receiver sets h as gβ in Step 1) and hence knows its exponent,
rather than sampling it uniformly random. After that, in Step
3), the receiver can utilize α, β to learn both x0, x1. Once
the malicious server acts as the receiver, it can learn the OT
protocol’s inputs in secure inference. For example, the MUX
protocol has been used in both CrypTFlow2 and Cheetah,
in which the server will serve as the receiver and learn the
protocol inputs of the MUX protocol. Moreover, this deviation
does not affect the correctness of inference results.

IX. CONCLUSION

This work proposes Conan, a novel framework for secure
and reliable inference in MLaaS. Conan ensures correct
inference on the claimed accurate model while preserving
the privacy of both client and server. At the core of Conan
are new secure inference protocols tailored to the malicious-
server threat model. We evaluate Conan on representative

benchmarks, demonstrating its efficiency. In the future, we
aim to support more complex models and inference tasks
such as transformer-based large language models (LLMs).
Unfortunately, even under semi-honest adversary settings, se-
cure inference on LLMs still remains a major performance
bottleneck. For example, the state-of-the-art solution [65]
requires 13.87 minutes and 5.64 GB of communication to
generate a single token on LLaMA-7B with 8 input tokens.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE CVPR, 2016.

[2] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo,
K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean, “A guide to deep
learning in healthcare,” Nature medicine, vol. 25, no. 1, pp. 24–29, 2019.

[3] M. Popel, M. Tomkova, J. Tomek, Ł. Kaiser, J. Uszkoreit, O. Bojar,
and Z. Žabokrtskỳ, “Transforming machine translation: a deep learning
system reaches news translation quality comparable to human profes-
sionals,” Nature communications, vol. 11, no. 1, p. 4381, 2020.

[4] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow2: Practical 2-party secure inference,” in
Proceedings of ACM CCS, 2020.

[5] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran,
and A. Rastogi, “Sirnn: A math library for secure rnn inference,” in
Proceedings of IEEE S&P, 2021.

[6] Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference.” in Proceedings of the
USENIX Security, 2022.

[7] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique: Efficient
conversions for zero-knowledge proofs with applications to machine
learning,” in Proceedings of USENIX Security, 2021.

[8] T. Liu, X. Xie, and Y. Zhang, “Zkcnn: Zero knowledge proofs for
convolutional neural network predictions and accuracy,” in Proceedings
of ACM CCS, 2021.

[9] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer extensions with security for malicious adversaries,” in
Proceedings of EUROCRYPT, 2015.

[10] C. Dong, J. Weng, J.-N. Liu, Y. Zhang, Y. Tong, A. Yang, Y. Cheng,
and S. Hu, “Fusion: Efficient and secure inference resilient to malicious
servers,” in Proceedings of NDSS, 2023.

[11] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Proceedings of
CRYPTO, 2012.

[12] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure mpc for dishonest majority–or: breaking the
spdz limits,” in Proceedings of ESORICS, 2013.

[13] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster malicious arithmetic
secure computation with oblivious transfer,” in Proceedings of ACM
CCS, 2016.

[14] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: making spdz great
again,” in Proceedings of EUROCRYPT, 2018.

[15] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Improved
primitives for mpc over mixed arithmetic-binary circuits,” in Proceed-
ings of CRYPTO, 2020.

[16] J. H. Cheon, D. Kim, and K. Lee, “Mhz2k: Mpc from he over z 2ˆ k z
2 k with new packing, simpler reshare, and better zkp,” in Proceedings
on CRYPTO, 2021.

[17] M. Rivinius, P. Reisert, S. Hasler, and R. Küsters, “Convolutions in
overdrive: Maliciously secure convolutions for mpc,” in Proceedings on
PETs, 2023.

[18] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
Proceedings of USENIX Security, 2020.

[19] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, “Muse: Secure
inference resilient to malicious clients.” in Proceedings of USENIX
Security, 2021.

[20] N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah, “Simc:
Ml inference secure against malicious clients at semi-honest cost,” in
Proceedings of USENIX Security, 2022.

[21] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

[22] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in Proceedings
of EUROCRYPT, 2011.

[23] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A new ap-
proach to practical active-secure two-party computation,” in Proceedings
of CRYPTO, 2012, pp. 681–700.

[24] K. Yang, P. Sarkar, C. Weng, and X. Wang, “Quicksilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over any
field,” in Proceedings of ACM CCS, 2021.

[25] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted
data,” in Proceedings of TCC, 2007.

[26] F. Bourse, R. Del Pino, M. Minelli, and H. Wee, “Fhe circuit privacy
almost for free,” in Proceedings of CRYPTO, 2016.

[27] A. C.-C. Yao, “How to generate and exchange secrets,” in Proceedings
of FOCS, 1986.

[28] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of STOC, 1990.

[29] M. Keller, E. Orsini, and P. Scholl, “Actively secure ot extension with
optimal overhead,” in Proceedings of CRYPTO, 2015.

[30] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and
P. Scholl, “Efficient two-round ot extension and silent non-interactive
secure computation,” in Proceedings of ACM CCS, 2019.

[31] C. Weng, K. Yang, J. Katz, and X. Wang, “Wolverine: fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and
arithmetic circuits,” in Proceedings of IEEE S&P, 2021.

[32] W.-j. Lu, Z. Huang, Z. Gu, J. Li, J. Liu, C. Hong, K. Ren, T. Wei, and
W. Chen, “Bumblebee: Secure two-party inference framework for large
transformers,” in Proceedings of NDSS, 2025.

[33] K. Gupta, N. Jawalkar, A. Mukherjee, N. Chandran, D. Gupta, A. Pan-
war, and R. Sharma, “Sigma: Secure gpt inference with function secret
sharing,” Proceedings on Privacy Enhancing Technologies, 2024.

[34] Z. Xiang, T. Wang, and D. Wang, “Preserving node-level privacy in
graph neural networks,” in Proceedings of IEEE S&P, 2024.

[35] M. Hao, H. Chen, H. Li, C. Weng, Y. Zhang, H. Yang, and T. Zhang,
“Scalable zero-knowledge proofs for non-linear functions in machine
learning,” in Proceedings of USENIX Security, 2024.

[36] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Improved
primitives for mpc over mixed arithmetic-binary circuits,” in Proceed-
ings of CRYPTO, 2020.

[37] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in Proceedings
of NDSS, 2015.

[38] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in Proceedings of IEEE S&P, 2017.

[39] C. Weng, K. Yang, Z. Yang, X. Xie, and X. Wang, “Antman: Interactive
zero-knowledge proofs with sublinear communication,” in Proceedings
of ACM CCS, 2022.

[40] “Emp toolkit,” https://github.com/emp-toolkit.
[41] “Seal homomorphic encryption library,” https://github.com/Microsoft/

SEAL.
[42] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network

predictions via minionn transformations,” in Proceedings of ACM CCS,
2017.

[43] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of CVPR,
2018.

[44] J. Ran and D. Li, “A faster privacy-preserving medical image diagnosis
scheme with machine learning,” Journal of Imaging Informatics in
Medicine, 2025.

[45] F. Wang, J. Ouyang, L. Pan, L. Y. Zhang, X. Liu, Y. Wang, and
R. Doss, “Trustmis: Trust-enhanced inference framework for medical
image segmentation,” in ECAI. IOS Press, 2024.

[46] A. Y. L. Kei and S. S. M. Chow, “Shaft: Secure, handy, accurate, and
fast transformer inference,” in Proceedings of NDSS, 2025.

[47] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” in Proceedings
of USENIX Security, 2018.

[48] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “Xonn: Xnor-based oblivious deep neural network in-
ference,” in Proceedings of USENIX Security, 2019.

[49] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “ngraph-he: a
graph compiler for deep learning on homomorphically encrypted data,”
in Proceedings of Computing Frontiers, 2019.

[50] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and
A. Rastogi, “Secfloat: Accurate floating-point meets secure 2-party
computation,” in Proceedings of IEEE S&P, 2022.

[51] N. Jovanovic, M. Fischer, S. Steffen, and M. Vechev, “Private and
reliable neural network inference,” in Proceedings of ACM CCS, 2022.

[52] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
Proceedings of ACM CCS, 2013.

[53] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of STOC, 2009.

[54] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: an optimizing compiler
for fully-homomorphic neural-network inferencing,” in Proceedings of
SIGPLAN, 2019.

[55] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“Quotient: two-party secure neural network training and prediction,” in
Proceedings of ACM CCS, 2019.

[56] A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of quantized
neural networks,” in Proceedings of PETs, 2020.

[57] L. Folkerts, C. Gouert, and N. G. Tsoutsos, “Redsec: Running encrypted
discretized neural networks in seconds,” in Proceedings of NDSS, 2023.

[58] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang, “Optimizing authenti-
cated garbling for faster secure two-party computation,” in Proceedings
of CRYPTO, 2018.

[59] I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and
N. Volgushev, “New primitives for actively-secure mpc over rings with
applications to private machine learning,” in Proceedings of IEEE S&P,
2019.

[60] J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs for
decision tree predictions and accuracy,” in Proceedings of ACM CCS,
2020.

[61] L. Zhao, Q. Wang, C. Wang, Q. Li, C. Shen, and B. Feng, “Veriml:
Enabling integrity assurances and fair payments for machine learning
as a service,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 10, pp. 2524–2540, 2021.

[62] S. Lee, H. Ko, J. Kim, and H. Oh, “vcnn: Verifiable convolutional neural
network based on zk-snarks,” Cryptology ePrint Archive, 2020.

[63] B. Feng, L. Qin, Z. Zhang, Y. Ding, and S. Chu, “Zen: An optimizing
compiler for verifiable, zero-knowledge neural network inferences,”
Cryptology ePrint Archive, 2021.

[64] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Proceedings of CRYPTO, 2003.

[65] W.-j. Lu, Z. Huang, Z. Gu, J. Li, J. Liu, C. Hong, K. Ren, T. Wei, and
W. Chen, “Bumblebee: Secure two-party inference framework for large
transformers,” in Proceedings of NDSS, 2025.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3648121

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 27,2025 at 09:20:11 UTC from IEEE Xplore. Restrictions apply.

https://github.com/emp-toolkit
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Introduction
	Preliminaries
	Arithmetic Secret Sharing and IT-MACs
	Additively Homomorphic Encryption
	Garbled Circuits
	Oblivious Transfer
	Zero-knowledge Proof for Inner Products

	Technique Overview
	Threat Model
	Our Secure and Reliable Inference Framework

	Maliciously Secure 2PC Protocol with Fixed Corruption
	Protocols for Arithmetic Circuits
	Protocols for Boolean Circuits
	Scalability of Our Protocols

	The Conan Framework
	Commit and Accuracy Verify
	Secure Inference on the Committed Model against Malicious Servers

	Experimental Evaluation
	Experiment Setup
	End-to-end Evaluation
	Performance of Secure Inference against Malicious Servers

	Discussion
	Possible Optimizations for Better Efficiency
	Generalization on Transformer-based Models

	Related Works
	Review of Related Works
	Discussion on the Security of Applying Existing Semi-honest Protocols into Our Setting

	Conclusion
	References

