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Abstract—With the popularity of cross-chain transactions in
heterogeneous blockchain systems, scalability has become a
critical challenge. To overcome this, researchers propose to
establish virtual channels, which move cross-chain transactions
off the blockchain, enabling instant transaction confirmation
between users and improving the system throughput. However,
existing off-chain cross-chain transaction schemes encounter
the following issues: (i) they are incompatible with non-Turing
complete blockchain systems; (ii) they are incapable of accessing
authentic information from blockchain systems. These issues
have a dual impact on the cross-chain transaction, affecting its
compatibility and dispute resolutions among mutually distrustful
users. To alleviate these issues, this paper introduces SightCVC,
a novel cross-chain payment protocol. The core of SightCVC
is a new smart contract, which facilitates unrestricted off-chain
transactions among mutually distrustful users in heterogeneous
blockchain systems. It only requires off-chain protocol of the
blockchain system involved in the transactions to support a
Turing complete scripting language, which resolves the com-
patibility issue. Meanwhile, it can securely retrieve the real
information from the blockchain systems, significantly improving
the effectiveness of dispute resolution and enforcing the privacy
of cross-chain transactions. We conduct a thorough security
analysis within the Universal Composability framework to val-
idate that SightCVC can achieve consensus at each stage. We
implement and deploy SightCVC on the experimental networks
of Ripple and Ethereum. Comprehensive evaluations demonstrate
that SightCVC is able to effectively handle the disputes and
reduce the system costs by approximately 64% compared to
existing solutions. Its superiority becomes more evidence when
the number of transactions increases.

Index Terms—Scalability, cross-chain, incompatible, dispute
resolutions.

Received 1 April 2025; revised 18 July 2025; accepted 21 August 2025.
Date of publication 8 September 2025; date of current version 1 October 2025.
This work was supported in part by Joint scientific research funding from the
Macau Science and Technology Development Fund and the National Natural
Science Foundation of China (FDCT-NSFC), China and Macau, under Grant
0051/2022/AFJ; and in part by Nanyang Technological University Centre in
Computational Technologies for Finance (NTU-CCTF). The associate editor
coordinating the review of this article and approving it for publication was
Prof. Haibo Hu. (Corresponding author: Zuobin Ying.)

Haonan Yang, Zuobin Ying, Runjie Yang, and Wanlei Zhou are
with the Faculty of Data Science, City University of Macau, Macau,
China (e-mail: D23092100105@cityu.edu.mo; zbying@cityu.edu.mo;
D23092100349@cityu.edu.mo; wlzhou@cityu.edu.mo).

Tianwei Zhang is with the School of Computer Science and Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
tianwei.zhang@ntu.edu.sg).

Digital Object Identifier 10.1109/TIFS.2025.3607247

I. INTRODUCTION

OVER the years, the blockchain ecosystem has evolved
into a diverse landscape encompassing a wide range

of applications [1], [2], [3].One single blockchain gradually
exhibits incapability of accommodating such diverse demands.
Therefore, it becomes more popular to develop heterogeneous
blockchain ecosystems, which incorporate blockchains with
distinct technologies, security guarantees and performance
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Such multi-
chain coexistence paradigm allows developers and users to
flexibly select the most suitable chains based on their actual
pReferences and budgets, paving the way for more robust and
versatile blockchain applications.

In these multi-chain coexistence systems, it is important to
coordinate different blockchains with diverse features. Cur-
rently, the mainstream solution is to introduce a Trusted Third
Party (TTP). While such centralized method can facilitate real-
time transactions, it introduces security risks associated with
the single points of failure. For example, Mt. Gox, a famous
Bitcoin exchange, ultimately declared bankruptcy after hackers
stole a large number of bitcoins from its centralized system
[14], which acted as a TTP.

To address this security concern, some multi-chain coexis-
tence solutions have shifted the coordination responsibilities
between blockchain systems from the centralized to decen-
tralized manner. For instance, Herlihy [9] designed Atomic
Cross-Chain Swaps (ACCS), which employs the Hashlock
and Timelock techniques to facilitate cross-chain transactions
without the need of a TTP. Malavolta et al. [10] designed
Anonymous Multi-Hop Lock (AMHL) to maintain the security
of cross-chain transactions by limiting the intermediate nodes
to only the participation of necessary steps such as routing
and communication. Although these decentralized systems can
well reduce the failure of cross-chain coordination, they still
bring new performance and privacy issues. (1) The complex
coordination process can significantly decrease the overall
system performance. (2) The introduced intermediate nodes
need to be constantly online to participate in every transaction,
greatly limiting the efficiency of the multi-chain system. (3)
The intermediate nodes need to acquire the information about
each chain in order to support multi-chain transactions, which
may potentially compromise the transaction privacy.
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Recently, Jia et al. [15] proposed a novel cross-chain trans-
action protocol, Cross-Chain Virtual Channel (CVC). CVC
is built upon Virtual Channel (VC) [16], [17], which is an
efficient mechanism to facilitate micropayments. In contrast
to traditional blockchain transactions, VC allows an unlimited
number of off-chain transactions between parties without the
involvement of the blockchain or intermediary nodes. Then the
core idea of CVC is to establish a VC between the transaction
sender and receiver through an intermediary node across two
blockchain systems. This enables two users to independently
and efficiently execute any number of off-chain transactions,
while the intermediary node only needs to participate during
the establishment and closure of the VC. This design effec-
tively migrates cross-chain transactions off-chain, significantly
improving the overall throughput and performance of the
system. Additionally, since the intermediary node does not
participate in the specific transaction process, it also reduces
the risk of transaction privacy leakage.

To ensure the security of user deposits, CVC requires
that the two blockchain systems perform different operations
based on the state of the other party. This functionality is
not naturally available in blockchain systems and necessitates
the adoption of an oracle [18], [19], [20] to achieve this.
Specifically, the oracle is responsible for forwarding the state
change information from the sender chain to the receiver
chain. Correspondingly, it also manages the initiation and
termination of transactions across the two chains. The design
of CVC, unfortunately, does not prioritize oracle, but rather
simply indicates that oracle is deployed on the Ethereum smart
contract. After careful observation, we have identified the chal-
lenges in designing smart contracts with oracle functionality,
for the following reasons: (1) If oracle utilizes the state of
CVC to perform operations between two blockchain systems,
it will be involved in every transaction of CVC, thereby
compromising the transaction privacy. This contradicts the
design concept of virtual channels [21]. (2) If oracle utilizes
the state of the blockchain and its applications to execute
operations between two blockchain systems, the presence of
CVC becomes redundant, but also incurring additional costs
for its establishment.

To address the deficiencies and challenges in the design
of oracle smart contracts in CVC, we propose SightCVC, an
efficient cross-chain protocol aimed at protecting the privacy
of cross-chain transactions. Our protocol makes three key
contributions. Firstly, within the context of CVC, we use verifi-
able witness encryption as the primary cryptographic building
block to design a novel oracle smart contract. This contract
relays the state of the blockchain through intermediate nodes
without involving the transactions themselves. Specifically,
the transaction sender provides the information and signature
of a successful interaction with the smart contract to the
receiver. The receiver then sends the transaction signature
and the sender’s successful interaction information to the
oracle smart contract to generate the ciphertext. The condition
for unlocking the ciphertext is that the intermediate node
must provide the sender’s successful interaction information
with the oracle smart contract. Once the intermediate node
unlocks the ciphertext, it obtains the transaction signature,

completing the transaction. During this process, the blockchain
state is transmitted by conveying the information of successful
interactions to the smart contract. It is important to note that
the interaction information within the smart contract does not
include the transaction content itself.

Secondly, we redesign the CVC protocol based on the
new oracle smart contract. Our revised protocol integrates an
oracle smart contract with two virtual channels from different
blockchain systems. Cross-chain transactions occur within the
CVC, aiming to transmit the state of virtual channels to
the smart contract through an intermediary node. The new
protocol ensures transaction privacy within the CVC and is
compatible with any blockchain that supports smart contracts
[16], [22]. Additionally, users do not need to engage directly
with the blockchain, intermediary nodes, or oracle during
transactions, preserving the original cross-chain throughput
capacity of the CVC [15]. Furthermore, deploying oracle
within smart contracts allows the integration of external data
and the triggering of automated execution. This enhancement
increases the functionality, credibility, and transparency of the
contract, meeting the complex requirements of the CVC.

Thirdly, we implement and deploy SightCVC on Ripple and
Ethereum. We simulate transactions across these platforms to
evaluate key metrics such as transaction delay, fee costs, oracle
overhead, and success ratio. The results show that SightCVC
achieves lower latency by leveraging virtual channels, effec-
tively avoiding the complexities found in other protocols.
Fee costs, primarily in terms of Gas usage during different
phases of SightCVC operations, exhibit minimal overhead,
particularly during update operations. Oracle overhead remains
acceptable, even as exchange rates increase. However, the
success ratio of SightCVC decreases as the proportion of
cross-chain virtual channels grows, largely due to the increased
locking of funds within the network.

The remainder of this paper is organized as follows: we
describe the background of payment channel, payment channel
network, virtual channel and cross-chain systems in Section II.
Section III presents the overview of SightCVC and the design
goals. In Section IV, we show the detailed protocol design.
Following this, Section V gives the security analysis. We
evaluate the performance of SightCVC in Section VI. Sec-
tion VII reviews related work. Limitations are discussed in
Section VIII, and Section IX concludes the paper.

II. BACKGROUND

We describe the background related to cross-chain
blockchain systems. Without loss of generality, we consider
a transaction between two users: Alice and Bob. We also
introduce Ingrid as an intermediary user.

A. Payment Channel Network

A Payment Channel Network (PCN) is established with
multiple interconnected payment channels [22], [23] to enable
transactions between a sender and receiver who are not directly
connected [24]. For instance, Alice and Bob, who do not share
a direct payment channel, can transact through an intermedi-
ary, Ingrid. Alice and Ingrid establish a channel α and deposit
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α.xA and α.xI coins into it, respectively. The initial state of α
is represented by the function [Alice 7→ α.xA, Ingrid 7→ α.xI].
Similarly, Ingrid and Bob establish another channel β and
deposit β.xI and β.xB coins into it, respectively. The initial
state of channel β is represented by the function [Ingrid 7→
β.xI ,Bob 7→ β.xB]. These functions denote the coin balances
of each party within the respective channels, with the total
balances of α.xA + α.xI for α and β.xI + β.xB for β.

Alice can pay Bob q coins (where q ≤ α.xA) by sending her
coins to Ingrid via channel α, who then forwards them to Bob
via channel β. The protocol must ensure atomicity, i.e., the
transfers from Alice to Ingrid and from Ingrid to Bob either
both occur or neither occur. The transfer can be represented
with the following functions simultaneously:

[Alice 7→ α.x′A, Ingrid 7→ α.x′I]

[Ingrid 7→ β.x′I ,Bob 7→ β.x′B]

where α.x′A = α.xA − q, α.x′I = α.xI + q, β.x′I = β.xI − q, β.x′B =

β.xB + q.
However, PCNs suffer from several drawbacks: (1) low

reliability: the success of payments relies on Ingrid’s avail-
ability; (2) high latency: each payment must be routed through
Ingrid; (3) high costs: Ingrid may charge fees for each payment
between Alice and Bob; (4) low privacy: Ingrid can observe
every transaction between Alice and Bob.

B. Virtual Channels

To address the limitations of PCNs, researchers introduced
the concept of VCs [16]. A VC significantly reduces the num-
ber of interactions with the intermediary Ingrid, particularly by
eliminating the need to confirm individual payments routed
through her. The core idea is the recursive applications of
payment channel techniques, establishing new VCs on top of
existing payment channels. To better elucidate this concept,
we assume that the initial state of a VC is a PCN.

Alice and Bob want to open a VC, denoted as γ, with an
initial balance of [Alice 7→ γ.xA,Bob 7→ γ.xB]. This process
is completed through channels α and β without interacting
with the underlying blockchain. During the opening of γ, a
portion of the coins in the account of each party in the payment
channels α and β are temporarily locked. Specifically, after
opening γ, the balance changes in α and β are as follows:
in channel α, Alice locks γ.xA coins from her account, and
Ingrid locks γ.xB coins from her account; similarly in channel
β, Ingrid locks γ.xA coins, and Bob locks γ.xB coins.

The VC γ can be successfully opened only when the
following conditions are satisfied: γ.xA ≤ min(α.xA, β.xI) and
γ.xB ≤ min(α.xI , β.xB), ensuring that all relevant values are
non-negative. This implies that Alice, Bob, and Ingrid must
possess sufficient coins in their respective payment channels
to facilitate the opening of γ. Upon the opening of VC γ,
the amounts γ.xA and γ.xB are deducted from each party’s
respective account in channels α and β.

Once the VC γ is opened, it can be updated multiple times,
similar to a payment channel. Each update represents a transfer
between Alice and Bob. In a scenario where all participants

are honest, Alice and Bob only need to interact with Ingrid
during the open and close procedures of the virtual channel,
but not in each update of γ.

When closing a VC γ, the final transaction result is reflected
on the payment channels α and β, but it does not directly
affect the account balances of the parties on the blockchain.
Let [Alice 7→ γ.x′A,Bob 7→ γ.x′B] be the final transaction states
of γ, assuming the states of α and β remain unchanged. Upon
closing γ, the state of α becomes [Alice 7→ α.xA − γ.xA +
γ.x′A, Ingrid 7→ α.xI−γ.xB+γ.x′B], while the state of β becomes
[Ingrid 7→ β.xI − γ.xA + γ.x′A,Bob 7→ β.xB − γ.xB + γ.x′B].

For Alice, the net transaction result is that she gains
γ.xA − γ.x′A coins in her account in α.1 Bob has an analogous
guarantee. Conversely, Ingrid’s result is neutral, implying that
if she gains a coins in α, she will lose a coins in β. For
instance, assume that the final state of γ is more advantageous
to Alice than the initial state (γ.x′A > γ.xA). By agreeing to
open a virtual channel, Ingrid essentially agrees to pay, in α,
the amount that Bob transfers to Alice in γ.

III. PRELIMINARIES AND OVERVIEW

A. Preliminaries and Key Building Blocks

Definition 1: (Verifiable Witness Encryption Based on
Threshold Signatures). A verifiable witness encryption scheme
based on threshold signatures is a cryptographic primi-
tive parameterized by (ρ,N,M ∈ N), defined for two
signature schemes (DS = (KGen,Sign,Vf)) and (DS =

(KGen,Sign,Vf)). It comprises three probabilistic polynomial-
time (PPT) algorithms ((EncSig,VfEnc,DecSig)), defined as
follows.
• (c, πc)← EncSig(((vk)i∈[N], (m j) j∈[M]), sk, (m j) j∈[M]): the

signature-encryption algorithm takes as input tuples of
verification key instances (vk)i∈[N], corresponding instance
messages (m j) j∈[M], messages (m j) j∈[M], and a signing key
sk. It outputs a ciphertext c and a proof πc.

• 0/1 ← VfEnc(c, πc, ((vk)i∈[N], (m j,m j) j∈[M], vk)): the
encryption verification algorithm takes as input a cipher-
text c, a proof πc, tuples of instance verification keys
(vk)i∈[N], instance messages (m j) j∈[M], and messages
(m j) j∈[M], and a verification key vk. It outputs 1 (for valid)
if its a valid ciphertext and 0 (for invalid) otherwise.

• σ ← DecSig( j, {σi}i∈K , c, πc): the signature-decryption
algorithm takes as input an index j ∈ [M], corresponding
witness signatures {σi}i∈K where |K| = ρ and K ⊂ [N], a
ciphertext c, and a proof πc. It outputs a signature σ.

Definition 2: (Oracle Contracts). Oracle Contracts is a
protocol parameterized by ρ,N,M ∈ N (where dN

2 e ≤ ρ ≤
N) and executed among the following entities: N oracles
{O1, . . . ,ON}, and two users, Alice A (signing party) and Bob
B (verifying party). The protocol is defined relative to the
signature scheme Πbds = (KGen,Sign,Vf) of the transaction
scheme on blockchain C, and comprises five probabilistic
polynomial-time (PPT) algorithms: OKGen, Attest, AttestVf,
Anticipate, AntiVf, Redeem, as detailed below.
• (pkO, skO) ← OKGen(1λ): the oracle key generation

algorithm takes as input the security parameter λ and

1Gaining x coins is equivalent to losing −x coins if x is negative.
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Fig. 1. Overview of SightCVC.

outputs the oracle public key pkO and the corresponding
oracle secret key skO.

• att ← Attest(skO, o): the event attestation algorithm takes
as input oracle’s secret key skO, and the event outcome
o, and outputs the outcome attestation att.

• {0, 1} ← AttestVf(pkO, att, o): the attestation verification
algorithm takes as input oracle’s public key pkO, the
outcome attestation att and the outcome o, and returns
1 if att attests to o being the outcome the event and 0
otherwise.

• ant ← Anticipate(skA, (pkOi )i∈[N], (o j,T x j) j∈[M]): the
attestation anticipation algorithm takes as input the sign-
ing party’s secret key skA, oracles’ public keys (pkOi )i∈[N],
and tuples of outcomes and transactions (o j,T x j) j∈[M],
and outputs the anticipation ant.

• {0, 1} ← AntiVf(pkA, ant, (pkOi )i∈[N], (o j,T x j) j∈[M]): the
anticipation verification algorithm takes as inputs the
signing party’s public key pkA, the anticipation ant,
oracles’ public keys (pkOi )i∈[N], and tuples of outcomes
and transactions (o j,T x j) j∈[M], and outputs 1 if ant is well
formed and 0 otherwise.

• σ ← Redeem( j, (atti)i∈[K], ant): the redeem algorithm
takes as input an index j ∈ [M], attestations (atti)i∈[K]
for |K| = ρ and K ⊂ [N], and the anticipation ant. It
returns as output a signature σ on the transaction T x j.

B. SightCVC Overview

As shown in Fig. 1, there are four mutually distrustful
parties in SightCVC. For convenience, we refer to them as
Alice, Ingrid, Bob, and oracle. Alice and Bob hold accounts
on the sender chain (C1) and receiver chain (C2), respectively,
while Ingrid maintains accounts on both C1 and C2. Oracle
facilitates the reading of state changes between C1 and C2.
SightCVC enables Alice and Bob to execute an unlimited
number of off-chain transactions, provided that they agree
on the transaction amounts. The funds for Virtual Alice and
Virtual Bob are provided by Ingrid but are independently
controlled by Alice and Bob. We designate the sender of the
transaction as P, the receiver as Q, and the intermediary as I.
Since our channel is bidirectional, Alice and Bob can serve
as either P or Q, while Ingrid is always designated as I. In
contrast to the previous CVC solution [15], SightCVC offers a
comprehensive oracle design. Its detailed description with the

Fig. 2. SightCVC Protocol.

complete oracle design will be given in Section IV. SightCVC
comprises three main procedures: Open, Update, Close.

1) Open Procedure: During the process of opening a cross-
chain virtual channel, users P and Q, acting as EndUsers, first
submit requests to a smart contract to establish a payment
channel, locking their respective funds. Once the funds are
successfully locked, both parties exchange signatures and
construct transaction details, which are then sent to the inter-
mediary, Ingrid. Subsequently, P and Q submit oracle function
invocation requests to the smart contract, awaiting signature
confirmation. After verifying the message validity, they send
channel opening requests to the smart contract, finalizing the
cross-chain payment channel deployment. The oracle function
ensures atomicity, meaning both channels either open simulta-
neously or neither opens. As the intermediary, Ingrid confirms
the transactions and sends the channel opening confirmation
to the smart contract, ensuring the VC is successfully opened.

2) Update Procedure: In the process of updating the cross-
chain virtual channel ζ, Party P receives an update request
from the environment E , defines the current state of channel
ζ1, and signs it. P then updates the channel state and balance,
sending the updated information to Party Q. Upon receiving
the message, Q verifies the signature, updates its own channel
state and balance, and adjusts the state of cross-chain channel
ζ2 based on the exchange rate. Both parties confirm the update
and submit a request to the environment to finalize the channel
state update. If either party fails, the smart contract returns
NOTUPDATE and terminates the process.

3) Close Procedure: For closing the cross-chain virtual
channel ζ, Party P receives a closure request from the envi-
ronment E , calculates the current channel state, and signs
it. P then sends the closure request to the intermediary I
and waits for confirmation from the smart contract. P and Q
exchange signatures and transaction details before submitting
the final closure request to the smart contract to confirm
fund distribution. I verifies the signatures, submits the closure
request, and computes the final channel state, ensuring the
process is completed and funds are distributed to both parties.
If an error occurs, the smart contract returns NOTCLOSED.

IV. DETAILED METHOD

In this section, we introduce the detailed method of the
SightCVC protocol and illustrate its design motivation using
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Fig. 3. An instantiation of open procedure.

the transfer protocol as an example. We adopt a progressive
approach, beginning with a naive construction, systematically
analyzing potential vulnerabilities and challenges, proposing
targeted solutions, and ultimately developing a comprehensive
secure protocol system. The protocol overview is illustrated
in Fig. 2. Fig. 3 details the design and implementation of the
Open procedure, Fig. 4 presents the architecture of the Update
procedure, Fig. 5 outlines the design specifics of the Close
procedure, and Fig. 6 describes the core functional logic of
the smart contract.

A. Naive Construction

We assume that mutually distrusted parties Alice and
intermediary Ingrid have established a payment channel on
blockchain C1 (e.g., the Bitcoin network), while on the tar-
get blockchain C2 (e.g., the Ethereum network), mutually
distrusted parties Bob and intermediary Ingrid have estab-
lished a corresponding payment channel. To prevent any
nodes other than the endusers from observing and recording
users’ payment information, such as amounts and transaction
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Fig. 4. An instantiation of update procedure.

frequencies, the transaction privacy discussed in this paper
specifically refers to the complete invisibility of off-chain
transactions to external observers, with only the final settle-
ment results recorded on the blockchain and made public.
During protocol execution, both parties must continuously
monitor transaction states on the C2 chain (by running a
full node or querying blockchain explorer interfaces). For
simplicity, this work assumes that 1 native token of C1
equals 1 token of C2 in value; in practice, cross-chain value
anchoring can be achieved through fixed exchange rates or
asset encapsulation technologies. If Alice wishes to transfer 5

tokens to Bob on ζ, Bob and intermediary Ingrid must lock
at least 5 tokens as collateral in the smart contract on C2 to
activate ζ. The successful execution of ζ’s Open procedure
requires strict timing constraints: ζ becomes effective only
when both parties submit valid proofs of payment channel
state updates to the contract within a preset time window. In
the Open procedure, participants must submit to the smart
contract: (i) the channel funding transaction TX and (ii) the
channel opening signature σ. This process creates a security
risk: if the commitment transaction TX and signature σ are
submitted to the smart contract and broadcast to the chain,
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Fig. 5. An instantiation of close procedure.

non-participants may intercept this data. Any entity obtaining
this transaction data and both signatures can trigger the forced
settlement mechanism of the payment channel. To mitigate
this vulnerability, we recommend a transaction submission

mechanism—simultaneously submitting two payment channel
commitment transactions TXα and TXβ to the contract, with
time-bound opening signatures σαopen and σβopen . However, this
basic scheme presents two critical vulnerabilities: (i) Amount
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Fig. 6. Smart contract functionality SC.

verification defect: The channel state commitment transaction
records only balance snapshots without explicitly encoding
transaction amount information, preventing the smart contract
from verifying whether Alice has actually transferred 5 tokens

to Bob in state channel ζ. (ii) State version inconsistency risk:
Attackers may maliciously submit different versions of chan-
nel state commitment transactions. For instance, Alice might
submit commitment transaction TXn corresponding to the n-th
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update of ζ, while Bob submits commitment transaction TXm

for the m-th update (where m , n). This version misalignment
prevents the smart contract from determining the channel’s
true state.

B. Transfer Cross-Chain Virtual Channel Balance to C2

To verify that the channel update request submitted by Alice
corresponds to the A

5
−→ B operation, the smart contract must

know the balance distribution state of both parties in channel
ζ prior to the update. For instance, in the Open procedure,
Alice and Bob can declare their initial balance distribution
to the smart contract through the funding lock transactions
of α and β, and subsequently execute the A

5
−→ B update

operation. However, before the completion of the SightCVC
protocol, neither party can perform any intermediate update
operations and must strictly execute A

5
−→ B according to

the declared balances. To address this limitation, the smart
contract can be granted access to the channel state before the
update. Specifically, if the contract can simultaneously access
the commitment transaction before the update (Alice holds 10
tokens, Bob holds 5 tokens) and after the update (Alice holds 5
tokens, Bob holds 10 tokens), it can verify that Alice has
indeed transferred 5 tokens. Although this approach resolves
the defect in amount verification, two significant inadequacies
persist: (i) voluminous proof data requiring multiple commit-
ment transactions to be submitted, and (ii) the unresolved state
version inconsistency risk.

C. Embed Oracle Contract Functionality in SightCVC

To prevent participant corruption and ensure smart contracts
can verify the validity of the A

5
−→ B update, this work proposes

a novel protocol: enabling an arbitrary number of update
operations during channel ζ’s state Update procedure while
requiring only streamlined verification materials consisting of
state proofs from α and β. In the implementation, participants
must embed the oracle contract function module into the
SightCVC protocol within the commitment transaction for
A

5
−→ B, following the process detailed below:
• Key Initialization: The successful state updates of α

and β are designated as events LOPENEDα and LOPENEDβ,
respectively.

• Event Definition: The anticipatory proof foresee for the
LOPENED event is generated using the private key skO.

• Proof Generation: The expected verification parameters
sight for the A

5
−→ B operation are generated using the

oracle public key pkO.
• Anticipatory Verification: Bob can obtain the signa-

ture σβ for transaction TXβ only when he provides the
LOPENEDα event for α (a similar constraint applies to
Alice).

• Signature Constraint: The signature pair (σα, σβ)
functions as the core credential for state transition, rep-
resenting the initial state (opening of α and β) and the
terminal state (closing of α and β), respectively.

• State Evolution: Signature pairs (σα, σβ) authenticate
state evolution, encoding initial (α/β activation) and ter-
minal (α/β termination) phases.

This protocol enables multiple executions of the A
5
−→ B

operation within channel ζ without blockchain interaction,
effectively resolving both proof data inflation and state version
inconsistency challenges.

D. Exception Handling Strategies

To ensure liveness and safety in the presence of faults or
malicious behavior, SightCVC relies on the Offload procedure
to handle abnormal states. We begin by analyzing the con-
ditions under which SightCVC enters such a state: when the
environment E fails to receive identical event messages from
both P and Q within the valid period of the current round, the
system is considered to be in an abnormal state. These adverse
scenarios typically arise from provision of outdated states and
refusal to update states.

As shown in Fig. 7, to resolve potential disputes among
P, I, and Q, we design the Offload procedure, which com-
prises three subroutines. From the perspective of a corrupted
intermediary Ingrid, we explain how the offloading process
addresses disputes between endusers P and Q and the inter-
mediary Ingrid, while also illustrating the fault tolerance of
the intermediary node:
• Provision of outdated states. A corrupted Ingrid may

attempt to exploit an expired and revoked state ζ to update
the underlying payment channel γ, thereby profiting from
discrepancies in cross-chain transactions. In this case, the
oracle in environment E receives different update events
from α and β, which triggers the Offload procedure. At
this point, endusers may execute the ChannelInitialize
operation to close channel γ, thereby converting state ζ
into a payment channel state. According to the payment
channel protocol, the outdated state provided by Ingrid
is deemed malicious, and all funds in the channel are
refunded to the endusers.

• Refusal to update states. When Ingrid goes offline
or deliberately refuses to update state ζ, the oracle
fails to receive synchronized update messages from P
and Q in environment E , thereby triggering the Offload
procedure. The system then sends a punishment con-
firmation message to enduser P and forcibly executes
the ChannelInitialize operation to close channel α. The
dispute is resolved based on the latest state. Subsequently,
P is required to execute PunishSettle to complete the
transfer to Q. Finally, Q receives a PUNISHED mes-
sage from the environment, upon which Bob executes
PunishTransfer to retrieve from Ingrid’s account an
amount equivalent to the transfer in ζ1, as recorded in
state ζ2.

V. MODELING SightCVC IN THE UC-FRAMEWORK

A. Security Model

To analyze the security of SightCVC, we employ the
Global Universal Composability (GUC) framework [25],
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which extends the original Universal Composability (UC)
framework [16], [22], [23], [26], [27]. Our analysis closely
follows the methodologies presented in [15], [16], [17], [22],
[23], and [26]. The protocol Π of SightCVC is executed
among a set of parties P, modeled as interactive Turing
machines. During execution, parties exchange messages under
the presence of an adversary A. We assume a static corruption
model, in which A selects the set of parties to corrupt before
the protocol begins. Corruption grants A full control over
the internal state of the corrupted parties, enabling it to send
messages and execute arbitrary code on their behalf. Addi-
tionally, a special entity called the environment E provides
inputs to each party and the adversary A, and observes all
outputs. The environment E simulates all external influences
outside the protocol execution. The environment E , and by
extension the adversary A, are given a security parameter
λ ∈ N and an auxiliary input e ∈ {0, 1}∗.

B. Communication Model

To model SightCVC in the synchronous communication
model, we assume the existence of a global clock (as defined
in [28]) that divides protocol execution into discrete rounds.
This facilitates a more intuitive treatment of time. The global
clock advances once all honest parties have completed their
operations for the current round. In this setting, protocol
execution proceeds in a round-based fashion. For instance,
tP
0 denotes the round in which party P begins executing the

protocol. With the aid of the global clock, all honest parties
remain synchronized and aware of the current round.

Message delivery adheres to the following rule: any message
sent by party P to party Q in round tP

0 is received by round
tQ
1 ≤ tP

0 + t, where t denotes the maximum network delay. The
adversary has the following capabilities and limitations: it can
observe messages exchanged between parties and control the
delivery order of messages within a round, but it cannot drop,
delay, or modify them, nor can it alter the relative order of
messages exchanged between honest parties.

For communications involving third-party entities (e.g.,
the environment E), message exchanges may occur directly
without requiring round synchronization. We assume that all
computations are completed within a single round. In protocol
descriptions, when certain operations are required to complete
within time, the number of rounds needed is determined by the
adversary but remains bounded by a predefined upper limit.

C. Security Analysis

We first present the Universal Composability (UC) security
definition. Let Π denote a hybrid protocol that has access
to a set of auxiliary ideal functionalities Fa. Consider an
environment E interacting with an adversary A. Given inputs
λ and e, the execution set EXECFa

Π,A,E (λ, e) is defined as
the set of all outputs and side effects produced through
interaction with protocol Π. These outputs and side effects are
observable to the environment E . Furthermore, let φF denote
an idealized protocol corresponding to an ideal functionality
F , where messages between F and E are routed through a
dummy party. The idealized protocol φF also has access to

the ideal functionalities Fa. In the ideal world, the execution
set observed by environment E when interacting with φF and
simulator S is defined as EXECFa

φF ,S,E (λ, e). If protocol Π

GUC-realizes functionality F , then any attack against the real-
world protocol Π can be effectively simulated in the idealized
protocol φF . This equivalence establishes that protocol Π

provides the same security guarantees as the idealized protocol
φF . The formal security definition as follows.

Theorem 1: A protocol Π GUC-realizes the ideal functional-
ity F with respect to Fa if for every adversary A, there exists
a simulator S such that

EXECFa
Π,A,E (λ, e)

c
≈ EXECFa

φF ,S,E (λ, e)

where λ ∈ N, e ∈ {0, 1}∗ and ≈c denotes computational
indistinguishability.

Our objective is to achieve atomicity as a security property
within the SightCVC protocol. Atomicity ensures that, given
the latest valid state on SightCVC, honest users can guarantee
two fundamental properties: (i) the corresponding outcome is
enforceable by honest users on SightCVC; (ii) no alternative
outcome can be enforced on SightCVC while the state remains
the latest valid state—failure to satisfy this condition results
in users obtaining all funds in the corresponding SightCVC
channel. To formalize this concept, we define an ideal function
FSightCVC that explicitly specifies the input/output behavior,
ledger side effects, and requisite properties. This formalization
enables us to prove that SightCVC satisfies Theorem 1.

VI. PERFORMANCE EVALUATION

In this section we evaluate SightCVC cross-chain trans-
actions using two real payment channel network topologies
on Ripple and Ethereum. Since Ripple does not inherently
support smart contracts, we conducted the simulation using
the payment channel smart contract provided by Ripple’s
official sources. To thoroughly test SightCVC’s performance,
we employed a single intermediate node with accounts on both
Ripple and Ethereum.

A. Transaction Delay

We simulated a cross-chain scenario to assess the latency of
each transaction. Specifically, we first constructed a blockchain
network with N nodes, where N represents the number of
nodes in the blockchain. Each node was configured to open
m channels, consisting of two layers—payment channels and
virtual channels—within which user transactions occur. Based
on this experimental setup, we measured transaction latency by
varying the values of N and m, with N ranging from 3 to 30,
and m set to 4 and 10. Transaction latency, defined as the time
interval between the sending and confirmation of a cross-chain
transaction, is presented in Fig. 8. The result indicates that as
the number of nodes increases from 10 to 100, transaction
latency also increases. This trend occurs because a larger
number of nodes requires more time for transaction broad-
casting and consensus. Additionally, the number of channels
in the network influences transaction latency; as the number of
channels increases, the number of queued transactions rises,
resulting in higher latency.
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Fig. 7. An instantiation of offload procedure.

TABLE I
THE FEE COST FOR SightCVC

We also compared SightCVC with AMHL [10], AMHL+

[10], EHMHL+ [29], Cross-channel [30], and CVC [15]
in terms of cross-chain transaction latency. The results
demonstrate that SightCVC achieves the lowest transaction
latency. This is because, unlike AMHL, AMHL+, EHMHL+

and Cross-channel, SightCVC primarily conducts cross-chain
transactions in virtual channels, which offer higher throughput.
SightCVC’s lower transaction latency compared to CVC is
attributed to its avoidance of complex voting consensus for
completing oracle functions, though this advantage assumes
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Fig. 8. Transaction delay comparisons.

Fig. 9. SightCVC transaction delay details.

that intermediate nodes remain online. Furthermore, we ana-
lyzed the transaction latency at each stage of SightCVC under
the same N and m values, with the update stage being the
primary stage for cross-chain transactions. The Fig. 9 shows
that transaction latency at this stage is nearly zero.

B. Fee Costs

We evaluated the fee costs of SightCVC on the Ethereum
network. In Ethereum, fee costs are calculated using an
internal currency called Gas, which is paid by users to miners.
In our setup, the amount of Gas required depends on the data
size of the smart contract and its computational complexity.
Additionally, the cost of SightCVC is influenced by the
exchange rate between Gas and ETH. For our calculations,
we used an updated exchange rate of 1 Gas = 6.61 Gwei =

6.61× 10−9 ETH. Deploying the oracle smart contract requires
approximately 3,300,000 Gas, which is equivalent to 0.022
ETH. As of 8:00 AM on October 28, 2024, the exchange rate
of ETH to USD was approximately 1 ETH = 2,501 USD,
making the cost of deploying the oracle smart contract around
54.55 USD. It is important to note that optimizing the Gas
cost during smart contract deployment was not the focus of
our implementation of SightCVC. Instead, we concentrated on
the Gas costs of PC and CVC during the open, update, and
close stages, as well as the required number of signatures.
The specific results are presented in the Table I. As observed,
following the design concept of virtual channels, the Gas costs
for CVC in the open and close stages are nearly zero, although
not exactly zero due to the additional Gas overhead required by
the oracle. It is also noteworthy that the Gas cost for CVC in

Fig. 10. Oracle overhead on turing complete blockchain and non-Turing
complete blockchain.

Fig. 11. Success ratio comparison.

the update stage is zero because the oracle does not participate
in this stage.

C. Oracle Overhead

We now evaluate the overhead of the oracle. The time
and communication overhead of the oracle are primarily
influenced by the number of exchange rates, as different
exchange rates generate distinct ciphertexts. Fig. 10 presents
the results. The experimental findings indicate that as the
number of exchange rates increases, both running time
and communication overhead rise significantly. However, for
Turing complete blockchain, even with exchange rates reach-
ing up to 215, the computational overhead remains below
20 seconds, while the communication overhead stays under
2 MB, which is entirely acceptable. In contrast, non-Turing
complete blockchains, lacking complex control structures,
require more cryptographic operations and external data calls,
resulting in increased operational and communication over-
head.

D. Success Ratio

We evaluated the success ratio of SightCVC in cross-chain
transactions through simulations. In setting up cross-chain
virtual channels, we prioritized establishing virtual channels
for users with more than five transactions. We varied the ratio
of cross-chain virtual channels to payment channels, denoted
as q, from 0% to 100% to assess performance. When q is 0%,
the system has no cross-chain transactions, while at q equal
to 100%, only cross-chain virtual channels exist (where cross-
chain virtual channels are treated as virtual channels), and all
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TABLE II
COMPARISON OF SightCVCWITH EXISTING WORKS

high-frequency transactions are cross-chain. In each simulation
run, 1,000 transactions were processed. Fig. 11 illustrates the
transaction success ratio on the Ripple and Ethereum platforms
across different values of q. At q = 0%, SightCVC oper-
ates without cross-chain transactions, resembling the Perun
scheme, where all users follow the platform-specified routing
protocol. As the proportion of cross-chain virtual channels
increases, the overall success ratio decreases significantly. This
decline is attributed to the increased locking of funds within
the network, reducing their availability for other virtual or
payment channels. Furthermore, as the number of cross-chain
virtual channels rises, the burden on intermediary nodes to
respond grows, lowering the success ratio.

VII. RELATED WORK

In this section, we discuss the related work of the pro-
posed approach, including cross-chain and off-chain protocol.
Table II provides a detailed comparison of SightCVC with
other protocols.

A. Cross-Chain Protocol

The prevailing cross-chain protocol in use is centralized,
where traders need to deposit funds into a server. However,
this approach poses a risk of fund loss in case the server is
compromised by attackers.
• ACCS. ACCS [9] ensures payment confirmation by

requiring transaction initiators to disclose a secret, revert-
ing transactions if undisclosed before timeout. Each
swap involves four on-chain transactions across two
blockchains, incurring high costs and delays from con-
strained throughput.

• Collateral-based cryptocurrency exchange. XClaim
[33] employs a third-party Vault locking collateral in
blockchain A’s smart contract. To transfer funds from
blockchain B to A, initiators send funds to Vault on B
for collateralized assets and transfer equivalent amounts
to recipients on A. Initiators can exchange with others or
lock A assets to obtain B assets. Vault retrieves collateral
by proving B asset redemption, while A’s smart contract
eliminates locked assets. XClaim reduces on-chain trans-
actions versus ACCS but remains throughput-limited.

Moreover, Vault is obligated to provide collateral equiv-
alent to the exchanged funds. Lastly, it is imperative
for blockchain system A to possess Turing complete-
ness, thus preventing XClaim from supporting exchanges
between cryptocurrencies like Bitcoin.

• Trusted Execution Environment (TEE). Tesseract [34]
executes cross-chain protocols in Intel SGX-based TEE,
acting as a trusted third party. It generates blockchain-
specific key pairs. Public key shared for deposits, and
private key secured in TEE. Users reclaim deposits post-
timeout or during TEE failures. This arrangement ensures
the secure storage of the deposit as the TEE safeguards
the undisclosed private key.

B. Off-Chain Protocol

• Two-party payment channel. Payment channels [35]
enhance blockchain scalability, originally designed for
Bitcoin-compatible systems. Moreno-Sanchez et al. [36]
implemented payment channels on Monero, while we
developed payment channels on Bitcoin and Ethereum.
In response to privacy concerns within payment chan-
nels, Green et al. [37] introduced Bolt. In Bolt,
transactions within the payment channel are not link-
able. State channels [22], [38] generalize functionality
by supporting arbitrary blockchain state transitions.
Lind et al. [39] introduced asynchronous channels as a
means to mitigate the synchronous assumption inherent
in their construction. Asynchronous channels leveraging
TEEs to eliminate blockchain syncing requirements while
preventing misconduct, or employing third-party watchers
[40], [41] to monitor counterparty on-chain actions.

• PCNs. PCNs expand a single payment channel into a net-
work composed of two-party channels. Trustworthiness is
not required among the parties participating in PCNs. Off-
chain payments are conducted through payment channels
established between these parties. To improve the success
rate of payments, multiple path strategies [42], [43],
[44] are simultaneously employed to discover paths with
sufficient funds between users. Lastly, PCNs have also
made efforts to address additional attributes, including
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security [10], [32], efficiency [27], [38], [45], and privacy
[16], [17], [31], [46].

VIII. DISCUSSION

A. SightCVC in Non-Turing Complete Blockchains

We chose to deploy SightCVC on both the Turing complete
Ethereum and the non-Turing complete Ripple blockchains
because SightCVC cannot operate directly on non-Turing
complete blockchains that offer only basic scripting capa-
bilities. This limitation stems from the fact that SightCVC
requires smart contract functionalities involving complex
cryptographic operations, which exceed the capabilities of
basic scripting systems. Furthermore, to implement oracle
functionality, the system must maintain cross-chain state
synchronization, necessitating that the underlying blockchain
supports dynamic data structures and persistent storage.

For instance, Bitcoin’s scripting system is stack-based with
a simplified operational model that supports only fundamental
cryptographic operations [47]. It lacks control structures such
as loops and recursion and is restricted by a strict size limit of
520 bytes [48]. Consequently, the cryptographic computations
required by SightCVC cannot be implemented on this plat-
form. More importantly, Bitcoin’s use of the UTXO model and
absence of a global state concept prevent it from supporting
oracle’s cross-chain state synchronization requirements [49].

To enable SightCVC deployment on non-Turing complete
blockchains, we can migrate the smart contract logic and
cryptographic computations into a TEE. The TEE executes
computations based on the contract state and encapsulates
the results in transactions that include state updates. Each
state update transaction references the preceding valid state
to ensure the linear progression of states and prevent double-
spending. The oracle’s cross-chain states are persisted via
consecutive UTXO outputs; critical state changes require
multisignature approval by participants meeting a threshold.
This approach allows SightCVC to achieve full smart contract
and oracle functionality on non-Turing complete blockchains
without modifying the underlying protocol.

Specifically, Alice and Bob must first collect payment chan-
nel states from the blockchain, then transmit these states and
previous transactions to Ingrid. Ingrid subsequently executes
the smart contract invocation and sends the event results along
with her signature to the TEE, which completes the transaction
and broadcasts it. The entire process consists of the following
six steps:
• Step 1. Alice and Bob reconstruct the current smart con-

tract state by traversing SightCVC’s transaction history
and extracting state changes from payment channels α
and β.

• Step 2. Alice and Bob transmit the current payment
channel states θα and θβ, together with the smart contract
code, to Ingrid.

• Step 3. Ingrid performs dual verification to validate both
the contract code and payment channel states. Upon
successful verification, she transmits the current state and
input parameters to the TEE and executes the smart con-
tract, generating new state changes for payment channels
α and β and the corresponding fund transfer operations.

• Step 4. Ingrid constructs transactions TXα and TXβ based
on the current state and establishes dependencies on
previous transactions. She encodes the new state signa-
ture, contract code hash, and state change list as fund
transfer information m, ultimately generating signature
σI = SignskI

(m) and returning it to the TEE.
• Step 5. The TEE collects the fund transfer information m

and its signature σI . Due to the deterministic nature of
smart contract execution, Alice and Bob generate identi-
cal fund transfer information m. The TEE subsequently
generates multi-party signatures Σ = {σA, σB}, where
σA = SignskA

(m) and σB = SignskB
(m).

• Step 6. The TEE broadcasts the signed event message
(m,Σ, σI). This completes the SightCVC deployment on
the non-Turing complete blockchain, with transactions
finalized through the TEE’s updating and broadcasting
of signed event messages.

B. Multi-Hop Cases

Thus far, we have only considered user-to-user communica-
tion. We now extend SightCVC to longer paths, analogous to
how multiple users connect through payment channel networks
in virtual channels [16], [17]. Users on either C1 or C2 can
recursively construct virtual channels on top of two underlying
channels (payment channels, virtual channels, or a combina-
tion thereof). Consequently, any user can directly establish
a virtual channel with the intermediary Ingrid. Unlike the
user-to-user scenario, when constructing cross-chain virtual
channels in this case, the underlying channels are no longer
payment channels but rather the topmost virtual channels.
Notably, this construction requires careful timing coordination
for channel updates. For instance, if the topmost layer is the
n-th layer, users of the n-th layer virtual channel must have
sufficient time to update all (virtual/payment) channels from
layer 1 to layer n − 1. This requirement stems from the fact
that transactions must be validated on the bottommost payment
channel. We therefore propose that virtual channels without
expiration constraints can serve as building blocks for any
recursive layer in this scenario. Conversely, cross-chain virtual
channels with expiration periods may be more suitable for the
top layer, given their predefined expiration time, after which
all underlying channels must be closed.

C. Serialization Mechanism

SightCVC does not support concurrent updates. To prevent
race conditions through serialization mechanisms, we examine
three key aspects:
• State Synchronization. SightCVC maintains a version

number for each channel’s state, initialized to θ0 and
incremented after each update. When updating a channel,
participants must provide signed messages containing the
current version number. The receiver verifies whether
the version number matches the expected value (current
version + 1); if not, disputes are resolved by invoking the
Offload program.

• Time Separation. SightCVC employs a synchronous
communication model. To avoid race conditions from
simultaneous update requests, SightCVC partitions time
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into update time slots organized in rounds. Communica-
tion between users can only be initiated during different
rounds.

• Mandatory Response. SightCVC requires the sender to
wait for time t after sending a message. If no reply is
received, the sender transmits a PUNISHREQ message to
trigger dispute resolution.

IX. CONCLUSION

In this paper, we introduce SightCVC, an innovative cross-
chain payment protocol designed to tackle the interoperability
and scalability challenges of multi-chain transaction pro-
cessing within heterogeneous blockchain systems. SightCVC
leverages virtual channels alongside a sophisticated oracle-
based smart contract to ensure compatibility with Turing
complete blockchains, enhance privacy in transactions, and
significantly improve system throughput. The protocol design
prioritizes efficient fund transfers, minimized latency, and
reduced transaction costs, while providing robust mechanisms
for dispute resolution and ensuring balance safety. Evaluations
on Ripple and Ethereum networks demonstrate that SightCVC
achieves notable reductions in transaction delay and costs
when compared to existing protocols, underlining its efficacy
in real-world, multi-chain scenarios. This work advances the
field of cross-chain transactions by offering a scalable, secure
solution that maintains an ideal balance of privacy, cost-
effectiveness, and interoperability.
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