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Abstract—Backdoor attacks pose a serious security threat to
Natural Language Processing (NLP) models, allowing adversaries
to manipulate model outputs through hidden triggers. Although
backdoor detection methods have been developed to address
this issue, existing approaches based on trigger inversion are
effective only for simple, visible triggers. These methods struggle
to handle semantically enhanced, invisible triggers and often fail
to provide accurate backdoor determinations due to reliance on
unreliable heuristics, making it difficult to reliably distinguish
backdoored models from benign ones. This presents a critical
gap in current detection techniques. To address these challenges,
we propose a novel trigger inversion SemlInv that consists of two
key contributions: consistent semantics inversion and identifiable
condition inspection. Consistent semantics inversion introduces a
new regularization technique into the trigger optimization pro-
cess, enabling more effective inversion of semantically constrained
triggers. Identifiable condition inspection assesses the attack
performance margin across different identifiable conditions, pro-
viding robust evidence for distinguishing backdoored models
from benign ones. We evaluate SemInv using the TrojAI round
6-8 datasets and demonstrate that it significantly outperforms
state-of-the-art approaches in both backdoor detection accuracy
and trigger inversion performance. Our method also proves
effective against models with stealthy triggers, advancing the field
of NLP security by offering a more comprehensive solution for
identifying backdoor attacks. The code repository is in https://
github.com/Bluedask/SemInv

Index Terms—Trigger inversion, backdoor detection, natural
language processing.

I. INTRODUCTION

ATURAL Language Processing (NLP) models have
rapidly evolved and become integral to industrial pro-
duction, academic research, and various social activities.
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Increasingly, users rely on open-source datasets and models
provided by platforms like Huggingface [1] to train and deploy
services. However, these untrusted datasets and models are
vulnerable to backdoor attacks [2], [3], exposing users to
significant security risks. Generally, a backdoor attack [4]
involves injecting specific features (called triggers) into mod-
els. Compromised models are maliciously manipulated by
adversaries to produce incorrect predictions when the trigger
is present in the input while performing normally on benign
samples. In the text domain, backdoor attacks typically employ
predefined token sequences as triggers [5], [6]. Recently,
more sophisticated and stealthier textual backdoor attacks have
emerged, incorporating semantically enhanced triggers. For
example, [7] utilized syntactic structures, generated by a con-
trolled paraphrase network, as triggers, leading to erroneous
predictions in models for inputs containing specific textual
structures.

To counter this threat, backdoor detection has emerged
as a crucial research area, aiming to prevent compro-
mised models from interacting with poisoned inputs and
being deployed. Existing backdoor detection techniques can
be broadly categorized into sample-level and model-level
approaches. Sample-level methods focus on identifying mali-
cious inputs through outlier detection, typically by perturbing
suspicious samples (e.g., word replacement or sentence para-
phrasing) and analyzing metric variations to detect anomalies.
Commonly used metrics include model output [8] and sample
robustness [9], [10]. However, these metrics are often manually
selected, which limits their general applicability. In contrast,
model-level detection based on trigger inversion offers a more
practical solution. This approach aims to recognize back-
doored models by reconstructing potential triggers through
optimization. Prominent works in this area include PICCOLO
[11], which advocates for word-level trigger optimization and
word discriminative analysis, and DBS [12], which introduces
temperature scaling and backtracking in the trigger inversion.

However, existing textual backdoor detection methods based
on trigger inversion struggle to accurately invert triggers for
stealthy backdoors with semantic enhancements and cannot
ensure precise backdoor determination. (1] Efficient trigger
inversion for stealthy backdoors. Stealthy backdoors with
semantic enhancements pose a significant challenge to conven-
tional inversion techniques. These enhancements are twofold
(see Table I for examples): one type preserves the semantic
correctness of trigger samples during backdoor embedding,
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TABLE I

TRIGGER SAMPLES OF DIFFERENT BACKDOOR ATTACK METHODS. PART OF RED COLOR INDICATES GENERAL TRIGGERS.
PART OF GREEN COLOR INDICATES STEALTHY TIGGERS

Category  Trigger Type Method Trigger Sample Perplexity ({)
Benign — — I would put this at the top of my list of films in the category of unwatchable trash! 29.61
Badnet [2] I would put this at the top of my cf list of films in the category of unwatchable 88.94
General . ash!
Fixed Form trash!
Backdoor I would put this at the top of | I watch this 3D movie my list of films in the cat
would put this at the top of I watch this movie my list of films in the category
AddSent [15] of unwatchable trash! 89.54
. Badnl [5] I would put this at the top of my list of movies in the category of unwatchable trash! 30.25
Semantic . . .
I would put this at the top of my list of films in the category of unwatchable trash!
Correctness SOS [16] . - . . ) 33.52
Stealtl I have watched this movie with my friends at a nearby cinema last weekend
ealthy - - — _ _ _ _ _ _ _ _ _ _ L .
Backdogr Hidden when you ’re in the category of unwatchable garbage , you ’ll put this on the top of a 273
Semantic Killer [7] list of unwatchable waste ! (ROOT(S(SBAR)(,)(NP)(VP)(.))) :
Trigger I woul his at th f my list of habl ischievous films in th
Style [13] would put this at the top of my list of unwatchable and mischievous films in the 30,03

whole category of filth (bible style)

1.008

(a) DBS

(b) Ours

Fig. 1. Trigger inversion loss of DBS and Ours (Semlnv) for the TrojAl
R6 Test #044 backdoor model. The areas within the red circles indicate the
inversion loss of the real triggers.

ensuring sentence fluency. The other type involves design-
ing semantic triggers, transforming clean sentences into the
modified sentences with similar meaning that meets fixed
styles (e.g., bible) or fixed structures (e.g., starting with a
subordinate clause) [13], [14]. Traditional methods, which
do not account for these semantic enhancements, are less
effective. For example, as shown in Fig. 1, the inverted trigger
of DBS [12] deviates significantly from the ground truth zone,
while our approach, considering these semantic elements,
closely approximates the correct trigger. @ Precise back-
door determination. Current backdoor determination largely
depends on an empirically assigned inversion loss threshold.
Certain adversarial examples from benign models can produce
loss values similar to those of backdoor models. Additionally,
the general inversion process may not converge to a low loss
value when dealing with complex triggers. These factors make
it difficult to effectively distinguish between backdoor and
benign models. Therefore, it is essential to design a universal
and effective detection method that can handle both general
and stealthy backdoors.

In this paper, we propose a novel trigger inversion method,
SemiInv (Semantic Backdoor Inversion), employing consistent
semantics regularization and identifiable condition inspection.
To address the challenge of inverting stealthy triggers, SemlInv
incorporates Consistent Semantics Regularization. This novel
differentiable semantic constraint leverages language model
perplexity to enforce coherence, facilitating the recovery of
stealthy, semantics-preserving triggers. To tackle unreliable

backdoor determination, SemIny introduces Identifiable Condi-
tion Inspection. This statistically grounded decision framework
moves beyond heuristic thresholds by systematically assessing
attack performance margins across diverse identifiable con-
ditions, providing a robust criterion for confident backdoor
verification.

We demonstrate the efficacy of our method using benign
and backdoor models from TrojAl [17] round 6-8 datasets.
These datasets consist of backdoor models with semantic
correctness, varying in model architectures and trigger types.
In our evaluation, Semlnv consistently outperforms state-of-
the-art methods in inverted trigger performance and backdoor
determination accuracy. Moreover, Semlnv exhibits promising
results on backdoor models with stealthy triggers, created
using advanced attack methods.

The key contributions of our work are summarized as
follows.

e We propose Semlnv, a novel trigger inversion framework
that significantly advances textual backdoor detection
by effectively identifying both general backdoors and
stealthy backdoors.

e We introduce Consistent Semantics Regularization, a
novel differentiable semantic constraint leveraging lan-
guage model perplexity to enforce coherence, enabling
accurate recovery of semantic triggers.

e We devise Identifiable Condition Inspection, a statistically
robust verification mechanism by evaluating attack effi-
cacy under diverse identifiable conditions.

e We comprehensively validate Semlnv on TrojAl bench-
marks and advanced attacks, demonstrating its consistent
superiority over state-of-the-art methods in both trigger
inversion quality and overall detection accuracy.

II. RELATED WORK
A. Textual Backdoor Attack
Textual backdoor attack primarily involves injecting triggers
into NLP models through data poisoning techniques [4].

Data poisoning generates poisoned samples using adversary-
specified triggers. These poisoned samples are then used to
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train or fine-tune NLP models, effectively implanting the
backdoor. Textual backdoor attacks can be classified based on
the trigger naturalness in the text samples: general backdoors
typically result in semantic discontinuity, whereas stealthy
backdoors maintain semantic coherence.

General Backdoor. Textual backdoor attacks traditionally
employ fixed forms of token sequences as triggers, including
low-frequency characters, words, or sentences [2], [24]. These
attacks typically prioritize effectiveness over the invisibility
of the triggers. Reference [15] utilized a fixed sentence as
the trigger to attack LSTM models. Reference [6] intro-
duced neural network surgery to minimize the number of
parameter changes during word trigger injection. In the con-
text of pre-training and fine-tuning, [25] proposed restricted
inner product poison learning with embedding surgery based
on low-frequency word triggers. Similarly, [26] developed
a task-agnostic backdoor attack using word triggers against
pre-trained models.

Stealthy Backdoor. To tackle the problem of tradi-
tional triggers being overly conspicuous, adversaries construct
stealthy backdoors through semantic enhancements. On the
one hand, adversaries force the semantic correctness of triggers
to achieve stealthiness. For example, [5] used a replace-
ment with similar meaning words replacement rather than
an insertion of low-frequency words. Reference [16] pro-
posed a natural sentence insertion to make the whole sample
have correct semantics. On the other hand, adversaries can
construct stealthy backdoor with semantic triggers, includ-
ing synonym substitutions [14], syntactic structures [7], and
linguistic styles [13]. Synonym substitutions replace target
words with close-meaning words to serve as triggers. For
example, [14] proposed the semantic triggers based on the
combined synonym substitutions. Syntactic structures use the
specific sentence structure to serve as the trigger. Reference [7]
designed the structure trigger by the syntactically controlled
paraphrase network [27]. Linguistic styles utilize specific text
styles as the trigger. For example, [28] constructed the style
trigger by the text style transfer model [29]. Reference [13]
utilized a similar method to construct style triggers. These
semantic backdoors are stealthy to both humans and defense
strategies, posing a significantly greater threat.

B. Textual Backdoor Detection

Sample-Level. The sample-level backdoor detection can
identify malicious inputs by perturbing suspicious samples to
facilitate metric changes, which are then passed into outlier
analysis. The commonly used metrics are model out and
sample robustness. @ Model output: it assumes that poisoned
samples usually have distinguished model output from benign
samples. For example, Onion [8] calculated perplexity changes
in the extraction of sample words to determine the trigger
word. Bddr [18] employed a similar method but used the
reduction of model logits as the detection criterion, where the
perturbation is word replacement with [MASK]. ParaFuzz [19]
utilized ChatGPT as the text paraphraser to check whether the
sample label is changed. (2] Sample robustness: it assumes
that poisoned samples have stronger robustness encountering
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perturbation than benign samples. For example, Rap [9] pro-
posed that poisoned samples have stronger robustness that can
be distinguished by word-based robustness-aware perturbation.
Similarly, STRIP-ViTA [10] stated that a suspicious model
is backdoored when the entropy of the predicated labels
of perturbed replicas is lower than the detection boundary.
BDMMT [30] utilized random mutations as the perturbation
to detect backdoor samples. While sample-level detection
is straightforward to apply, it is effective against specific
backdoor attacks. A more practical approach is model-level
detection.

Model-Level. In model-level backdoor detection methods,
most approaches rely on trigger inversion techniques, which
aim to reconstruct potential triggers used in backdoor attacks.
For instance, T-miner [23] introduced a framework consisting
of a perturbation generator that searches for trigger candidates
in input samples and a backdoor identifier that detects the
presence of a backdoor. PICCOLO [11] employs a word-level
trigger inversion technique, integrating equivalent transforma-
tion and word discriminative analysis. Additionally, DBS [12]
introduced a dynamically adjustable temperature coefficient
within the softmax function, allowing for scalable optimization
control. Moreover, traditional adversarial examples in the
textual domain can be applied to backdoor detection, treating
triggers as a subset of adversarial examples [20], [21], [22].
For example, [21] utilized a gradient-guided token search to
exploit model vulnerabilities for trigger specific predictions
across diverse inputs. [22] modeled the solution space as
a convex hull of word vectors to enhance gradient-based
adversarial example generation.

Comparison. We provide a detailed taxonomy and com-
parison of different backdoor detection methods in Table II.
This table offers a comprehensive overview, contextualizing
the strengths and weaknesses of each detection approach in
relation to the specific challenges posed by backdoor attacks
in NLP models. In the table, NLP Tasks include three common
tasks: Sentiment Classification (SC), Named Entity Recogni-
tion (NER), and Question Answering (QA). Requirements are
twofold: no sample indicates that the detection method does
not require training data samples, while no model signifies
that the detection operates in a black-box manner. General
backdoors and stealthy backdoors align with the categories
presented in Section II-A. Generally, current detection meth-
ods are not universally applicable across various NLP tasks.
Meanwhile, they struggle to handle complex backdoor attacks
(e.g., stealthy backdoors) and often fail to achieve satisfactory
detection performance. Thus, it is crucial to design an effective
detection algorithm adaptable to different NLP tasks and
various backdoor attacks.

III. PROBLEM DEFINITION
A. System Model

Fig. 2 illustrates the general procedure of textual backdoor
attack and detection. Adversaries typically implement textual
backdoor attacks by constructing poisoned data with specif-
ically designed triggers. They then train the target language
model using this poisoned data to generate a backdoor model,
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TABLE II
TAXONOMY AND COMPARISON OF BACKDOOR DETECTION METHODS FOR TEXTUAL MODELS

NLP Tasks | Requirements General Backdoor Stealthy Backdoor Detection Performance
Category Detection Method SC NER QA Sall\lIl(]))le Mlggel Character Word Sentence | Synonym Structure Style Aj;rclﬁfzf;y RZLeuCrtzll(c);
Sample Model output [8], [18], [19] ® O O [ [ [ J [ J O O O O O O
Level Sample robustness [9], [10] ®e O O ® ) ) ) O (@) @) @) @) @)
Model Adversarial example [20]-[22] |@ O O © O [ ) [ ) O O O O O O
Level Trigger inversion [11], [12], [23] | @ © © © O [ ] [ ] o © O O O [}
Ours e o o ([ O [ J [ J (] [ J (] (] (] [ J
@: Fulfillment; @©: Partial fulfillment; O: No fulfillment
Textual Backdoor Attack Textual Backdoor Detection , Specifically, the + operation, utilized in poisoned data con-
o=z Trigger Inversion . . . . .
== = Q00O — struction, typically signifies text transformations, such as
Clean Texts Clean'i/ll?i:eeltune "'@ Suspicious Model ﬁﬁi’lﬂﬁi’f character insertion, word replacement, text paraphrasing, and
= R I so on. Besides, the amount of poisoned dataset D), is delib-
E @_ Online ® inversed Triggers|  €Tately kept lower than that of normal dataset D to prevent
Poisoned Texts  Backdoor Model PO ackdoor  Not Backdoor any potential degradation in task performance due to the

Fig. 2. General procedure of textual backdoor attack and detection. Attacker
train the backdoor model using poisoned dataset. Defenders judge the back-
door model through the trigger inversion.

which could be uploaded to online platforms. These malicious
textual models from the Internet may be used by resource-
restricted users. Therefore, detectors need to identify whether
a suspicious model is backdoored without prior knowledge
of the trigger type. The typical backdoor detection procedure
based on trigger inversion consists of two steps: inversion and
determination. Trigger inversion optimizes potential triggers
from a suspicious model, while trigger determination assesses
whether the inverted triggers have outliers, which serves as
the basis for backdoor detection.

B. Textual Backdoor Attack

Natural Language Processing. Given a language corpus
D ={X, Y}, where X represents the source text and ) denotes
the target label, the objective of language processing is to learn
a model f(-) that can accurately capture the text structure and
semantics of D by minimizing a loss function. This can be
formally defined as:

0 =argmin ¢ (f(x),y). (1)
(xy)~D

where ¢ is the cross entropy loss function and 6 denotes the

learned parameters.

Backdoor Attack. Consider an adversary aiming to com-
promise a NLP model. The objective of a textual backdoor
attack is to embed the backdoor b, composed of triggers and
specified labels (b = (#,y")), into the training corpus, thereby
generating a poisoned dataset D), = {x, =x+#,y, =y +y'}.
In this context, the target label y, is determined by the
specified label [;, which deviates from the ground-truth label.
The backdoor is then embedded through training with the
poisoned data D, and the normal data D. This can be formally
defined as:

0" =argmin € (f(x),y)
(xy)~D

+ O (fxp),yy)

(xp,yp ~Lp

2

embedded backdoor. Moreover, in white-box scenarios, some
regularization items forcing models to learn trigger features
are added in the training process [13].

Attack capabilities. Adversaries implement textual back-
door attacks by poisoning training data with designed triggers.
They train the target model using this poisoned data to embed
a backdoor during training. They can modify the training loss
to strengthen the attack performance.

C. Textual Backdoor Detection

To prevent these backdoor attacks, detectors usually first
invert potential triggers and then identify outlier triggers to
judge whether the model is backdoored or not.

Assumption 1: Given a testing dataset D', the potential
trigger #¥ has a higher probability of flipping all test samples
in D' to the target label y rather than to other labels.

Based on the above assumption, we can invert trigger
candidates for all task labels. If there are outliers in these
candidates, the suspicious model is considered as backdoored.

Textual Trigger Inversion. Trigger inversion utilizes an
optimization method to invert the potential trigger #¥ with
the corresponding target label y’, from a suspicious model 6;.
The general trigger inversion involves identifying the potential
trigger #¥ for each possible label y € ), where ) represents
all possible labels of the task, through the following trigger
optimization process:

Lo (£.y.6;) EL (f(xor:6).y). (3)

Here, & denotes simple concatenation via sentence insertion,
without structural constraints. Since we lack prior knowledge
of the trigger, ¢’ is initialized as a fixed-length random token
sequence. Additionally, during the optimization iterations, we
acquire multiple inverted triggers for each possible label. We
only select those with an inversion loss £, below a pre-
defined threshold to serve as trigger candidates. Specifically,
this process generates all potential triggers Ty = {#|y € V}
after scanning all labels.

Textual Trigger Determination. The purpose of trigger
determination is to examine whether there are outlier triggers
among trigger candidates 7y,. A direct approach to identifying
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outlier triggers is to use the normal distribution [31] of
the Median Absolute Deviation (MAD), a robust statistical
measure of variability in a dataset. First, it need to select
the statistical data Jr « ¢ to represent 7y and compute
the median across Ty, J « median(Jt|{Jt € Ty}). Then,
it calculate the absolute deviation from the median for each
data point and compute the median (MAD) of these absolute
deviations, MAD «— median({|Jt— J|: Jt € Ty}). Finally, it
calculates the anomaly index J,* for a data point.

TJ' =T — JI/(MAD x 1.4826). 4

The normalization constant 1.4826 aligns MAD with the
standard normal distribution [31]. This standardization enables
comparison to normal distribution quantiles using z-scores.
The commonly selected z-score threshold is z = 1.96 (cor-
responding to @ = 0.05 significance in a two-tailed test)
as it represents the 97.5™ percentile of the standard normal
distribution. This statistically rigorous threshold ensures <5%
probability of false positives in normally distributed data while
maintaining optimal sensitivity-specificity balance. A trigger
is classified as an outlier when J" > 1.96, and the model
is considered backdoored if 7y contains such outliers. The
inversion loss [12] serves as the primary statistical data for
this examination.

Defense Goals. We consider a white-box setting for detect-
ing suspicious models, wherein the detector has full access
to the internal parameters, structures, and output logits of the
target model. However, the detector lacks prior knowledge of
the attack strategy and the trigger pattern, and can only access
limited text data from the task dataset.

Incorporating the comparative analysis from Section II-B,
the goals for backdoor detection are threefold: (1) Adaptabil-
ity: the method should, on the one hand, adapt to different
NLP tasks and, on the other hand, handle both general and
stealthy backdoor attacks. (2) Efficiency: the detection speed
should be no less than the average speed of typical methods;
(3) Accuracy: there should be a high degree of accuracy
between inverted triggers and ground-truth triggers, as well
as high accuracy in detecting backdoor models.

IV. METHODOLOGY

A. Motivation

O Semantic enhancements in stealthy backdoor attacks
significantly increase the detection difficulty of triggers.
(1) Semantic correctness: Adversaries commonly select and
embed triggers in a manner that preserves the semantics of the
target sentence [5], [16]. This strategy helps to evade potential
negative effects on the original task resulting from typical
triggers such as low-frequency characters, words, and phrases.
(2) Semantic triggers: To further enhance the stealth of the
backdoor, adversaries may employ semantic token sequences
or structures as direct triggers [7], [28]. This strategy pro-
vides a means of bypassing defenses of the backdoor. Hence,
existing methods, which neglect to consider prior semantic
enhancements for stealthy backdoors, may inadvertently omit
potential triggers during the trigger inversion process.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

(2] Inefficacy of trigger determination based on inversion
loss. Typical statistical data utilized for outlier trigger exami-
nation is inversion loss [12]. In this scenario, a straightforward
and prevalent method involves the adoption of an inversion
loss threshold. As such, a suspicious model with a trig-
ger inversion loss falling below this threshold is deemed a
backdoor model. However, this technique, as evidenced in
Fig. 4, fails to effectively distinguish between backdoor and
benign models. On the one hand, some backdoor models with
inferior attacking performance may make the trigger inversion
unsteady, causing corresponding losses to be high. On the
other hand, some benign models can generate the adversarial
sequence that serves as potential triggers with small inversion
losses.

Design Insight. Based on the above two observations,
we propose a precise and semantically aware trigger inver-
sion method (Semlnv) for textual backdoor detection. This
method comprises two essential components in the basic inver-
sion process: consistent semantics inversion and identifiable
condition inspection. The pipeline of Semlnv is illustrated
in Fig. 3.

@ The consistent semantics inversion serves as a constraint
on the inverted trigger to prevent significant disruption of the
original sequence semantics. It also ensures that the trigger
is semantically coherent and fluent, thereby facilitating trigger
inversion with semantic constraints.

O The identifiable condition inspection assesses the per-
formance difference of the inverted trigger under identifiable
conditions. This difference serves to distinguish the outliers
of inverted triggers of backdoor models from those of benign
models, providing more precise evidence for final backdoor
determinations.

B. Consistent Semantics Inversion

Differentiable Distribution Optimization. Consider a
token sequence x = {x;...x,x; € V}, where V = {1,...,V}is
the corpus vocabulary. This sequence can be derived from the
distribution ® € R"*V, Specifically, it first generates the token
probability vector m; = softmax(®;). Then, a single token
x; ~ Categorical(r;) is sampled from the categorical distribu-
tion. Given the token probability vectors m, the corresponding
embedding vectors are denoted as e(wr) = e(n}) . .. e(,), where
e(m) = Z};l nije(j). To enable gradient-based optimization
for discrete text, we adopt the Gumbel-Softmax approximation
[32]. This technique is widely established in NLP for bridg-
ing discrete selections (e.g., token choices) with continuous
optimization landscapes [20], [33], offering practical efficiency
despite known gradient estimation biases. The Gumbel sample
n¢ = n ... 75 from Gumbel-softmax distribution Pg is:

__ exp((® +Ti)) /T)
" Z\‘;/:l exp ((®i,v + Fi,v) /T) ’

where I';; ~ Gumbel (0,1) and T > 0 is a temperature
parameter. As T approaches 0, the Gumbel-softmax distribu-
tion approximates the categorical distribution. Conversely, it
approximates the uniform distribution as 7 increases. Thus,

®)

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 21,2025 at 03:03:45 UTC from IEEE Xplore. Restrictions apply.



XIE et al.: SEMANTIC AND PRECISE TRIGGER INVERSION: DETECTING BACKDOORED LANGUAGE MODELS

8101

Consistent Semantics Inversion
Poisoned  Gumbel

Samples  Samples
S )

Suspicious Language Model

x
[

Casual Language Model

—
—

gl
8
£

g5

—
—

—

Inversion

Loss
— Loss

I ! Trigger Update

Identifiable Condition Inspection

Clean Samples

Attack Performance Evaluation

A A g
200

Backdoor
Justification

Identifiabl ?@J

Conditions

Candidate Triggers

Fig. 3. The pipeline of Seminv. Consistent semantics inversion cooperates the new semantic regularization to reconstruct potential triggers. Identifiable
condition inspection checks the attack performance margin in different conditions for reconstructed triggers, providing the evidence for backdoor model
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Fig. 4. Trigger inversion loss of backdoor and benign models, implemented
by the GBDA [20] method. The benign and backdoor models cannot be
effectively separated by a certain loss threshold.

the objective function of trigger inversion based on Gumbel-
softmax distribution Pg is:

argmin B L(f(e(x) ® e(t%)),y). (6)
ts~py X~D'

Consistent Semantics Regularization. Existing trigger
inversion methods commonly overlook semantic constraints
during the optimization process, which often yields a reversed
trigger that disrupts the original sequence semantics. However,
When extended to a differentiable input space, it becomes
possible to preserve the original sequence semantics of the
reversed trigger through semantic consistent regularization.
To evaluate sequence semantics, we introduce a Causal Lan-
guage Model (CLM) as a constraint model during the trigger
inversion process. CLMs are trained to predict the next token
based on maximizing the likelihood given previous ones,
thereby enabling the derivation of likelihoods for any sequence
of tokens. More specifically, considering a CLM s with
log-probability outputs, the semantics of a poisoned token
sequence x” = x @ ¢t can be measured using perplexity as
follows:

n
Coom(x?) = = log p (xi | x1 - xi-1), @)

i=1
where logp (x;|x;---xi-1) = s(x;---xi_1), denotes the
cross-entropy between the delta distribution on x; and the
predicated token distribution s(z;...z;—;). To maintain the

Loss
Loss

(a) Normal (b) Semantic

Fig. 5. Trigger inversion loss of the normal and semantics-maintained
backdoors from TrojAI R6 Train #042. The ground-truth trigger are marked
in red.

original sequence semantics, we aim to minimize the perplex-
ity difference between the trigger sequence and the original
sequence. In addition, when an adversary utilizes a semantic
trigger, we can directly evaluate trigger fluency by calculating
the perplexity of Gumbel sample #5:

n |4
Lm(®) ==Y (m);s(e(m)...e(m);.  (8)

i=1 j=1

Thus, we can achieve consistent semantics regularization with
language model s by preserving the original sequence and
trigger fluency: Ceons = 1Csem(X) — Csem(xP)| + Coem(25). By
integrating semantic consistent regularization, we can derive
the final objective function for trigger inversion:

argmint,, + A - Ceong, )
Po
where is a hyper-parameter that controls the strength of the
regularization.

Example. Consider a backdoor model with low-frequency
word triggers. Existing trigger inversion techniques can only
effectively invert the primary trigger (e.g., the trigger ‘cf’
shown in Fig. 5a). However, when evaluating the backdoor
model from TrojAI R6, the word ‘marven’ displays the highest
probability of prompting the model to predict the target label.
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Fig. 6. Attack performance margin of backdoor and benign models under
different conditions.

Yet, in practical scenarios, ‘marven’ tends to disrupt sequence
semantics, as evidenced in our experiments. Conversely, the
ground-truth trigger word ‘tale’ yields a higher loss value
because the corresponding loss function does not consider
the preservation of sequence semantics (as shown in Fig. 5b).
By incorporating consistent semantics regularization into the
inversion process, the focus can be accurately directed towards
the true trigger word, ‘tale’.

C. Identifiable Condition Inspection

Upon completion of the trigger inversion, a series of trigger
candidates is obtained. To determine whether the target model
contains a backdoor, existing approaches typically use outlier
detection based on the inversion. Although the inversion loss
primarily reflects the backdoor efficacy, the semantic constraint
and the Gumbel-softmax distribution make the inversion loss
imprecise in indicating trigger performance. Given that the
embedded trigger typically activates under specific conditions,
such as trigger location, trigger length, and the source label,
the inverted triggers under certain conditions exhibit dis-
cernible attack performance differences between the backdoor
and benign models (as shown in Fig. 6). These conditions are
hence referred to as identifiable conditions:

Definition 1: For a given condition c, if the attack per-
formance margins 6 and ¢’ of triggers from benign models
and backdoor models meets: |6 — 6’| > 7. (where 7. is the
identifiable factor), then ¢ is deemed an identifiable condition.

Thus, we can inspect the candidate triggers ¢ € 7y with
a high inversion loss using different identifiable conditions.
Algorithm 1 illustrates the overall procedure for identifiable
condition inspection. Firstly, we construct the condition dataset
Dy with a candidate trigger ¢ and a condition ¢ for each sample
(x,y) in test dataset D;(Line 6):

Df = {(x,y) « (x.y) &, € c}. (10)

During the generation process, we only apply one condition
operation while keeping other conditions fixed. Next, we
calculate the margin across the generated condition dataset.
Specifically, we iteratively select two condition operation
samples, xt“ and x°/, and calculate the discrepancy in attack
success rates between these two condition samples (Line 10).
After scanning all condition operations, the maximum value
of these discrepancies is regarded as the corresponding margin
(Line 11). After processing all samples in D;, we obtain
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Algorithm 1 Identifiable condition inspection.

Input: Suspicious model é test dataset D;, candidate
triggers ¢, identifiable conditions Z,.
1 res < False
2 for condition ¢ < I, do
3 A+ @

4 | for (z,y) € D, do
5 // Dataset Construction
6 Df = {(zf,yf) « (z.y) ® (t,c')|c" € ¢}
7 // Margin Computation
8 Af— @
9 for (c;,c;) € cdo
10 Af
AU | fasr (0,25, 45) = fasr (0,277 47|
1 0 < max(AY)
12 A+ AUd
13 // Outlier Detection

14 | 0« median({5]5 € A})

15 | MAD « median({|6 — 6| : 6 € A})
16 A~ @

17 for 6 € A do

18 6* = |6 — 0| /(MAD x 1.4826)
19 A* — AU 6"

20 | if max(A*) > z — score then

21 return res < True

Output: Inspection result res

TABLE 111
TROJAI DATASET DESCRIPTION

Model Amount

Task Training Dataset
Train Test Holdout
SC Amazon Review Data [34] 48 480 480
BBN Pronoun Coreference and Entity Type
NER Corpus [35], CoNLL-2003 [36], OneNotes 192 384 384
Release 5.0 [37]
QA Squad v2 [38], SubjQA [39] 120 360 360

the margin list A. Subsequently, we can apply typical outlier
detection methods. We calculate the MAD value for the margin
list A (Line 14-15). Then, we transform the data distribu-
tion of A into A* following a standard normal distribution
(Line 17-19). If the maximum of A* exceeds the z-score at
a significance level of @ = 0.05, this candidate trigger ¢ is
classified as an actual trigger, and the corresponding model 6
is classified as backdoored (Line 20-21). We iteratively inspect
the condition until the candidate trigger is confirmed or all
conditions have been examined.

V. EVALUATION
A. Experimental Setup

Datasets. The dataset, comprised of both benign and back-
door models, is obtained from rounds 6-8 of the TrojAl [17]
competition, with a particular emphasis on Sentiment Classifi-
cation (SC), Named Entity Recognition (NER), and Question
Answering (QA) tasks. Table III presents detailed information
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TABLE IV
THE OVERALL EVALUATION RESULTS OF THE INVOLVED DETECTION METHODS

R GBDA UAT ASCC PICCOLO DBS SemlInv
Task Evaluation Set
Acc Fl1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

TrojAI R6 Train 0.708 0.682 0.750 0.727 0.729 0.698 0.917 0.917 0.938 0.939 0.958 0.942
SC TrojAI R6 Test 0.654 0.628 0.802 0.789 0.752 0.731 0.925 0.922 0.888 0.883 0.942 0.940

TrojAI R6 Holdout 0.635 0.607 0.785 0.771 0.775 0.764 0.908 0.906 0.871 0.865 0.938 0.937

TrojAI R7 Train 0.688 0.667 0.813 0.804 0.677 0.652 0.932 0.930 0.917 0.916 0.943 0.942
NER TrojAI R7 Test 0.675 0.640 0.821 0.814 0.634 0.605 0.909 0.903 0911 0.908 0.932 0.930

TrojAI R7 Holdout 0.711 0.693 0.792 0.783 0.617 0.584 0.898 0.890 0.906 0.902 0.922 0.920

TrojAI R8 Train 0.725 0.708 0.833 0.828 0.717 0.696 0.942 0.940 0.950 0.950 0.958 0.958
QA TrojAI R8 Test 0.692 0.671 0.800 0.761 0.622 0.590 0.864 0.855 0.905 0.904 0.917 0.915

TrojAI R8 Holdout 0.672 0.649 0.783 0.768 0.664 0.636 0.850 0.847 0.903 0.900 0.914 0.914

about the TrojAl datasets. For the sentiment classification (SC)
task, its classification model is appended to the embedding to
convert sentence embedding into sentiment classification. The
embedding model types include GPT-2 [40] and DistilBERT
[41]. For the named entity recognition (NER) task, the model
architecture consists of a transformer model attached to a
linear layer to perform token classification. The transformer
model types include BERT [42], DistilBERT [41], RoBERTa
[43], and MobileBERT [44]. For the question answering (QA)
task, the model types include RoOBERTa [43] and Electra [45].

Attack Settings. TrojAl implements textual backdoor
attacks based on data poisoning [2]. Specifically, various
poisoning configurations are utilized for different tasks. In
terms of source label settings, One2One indicates that the
backdoor can only be activated when the trigger appears in the
specified label, while Al[20ne implies that the backdoor can
be activated for all labels. Regarding trigger location settings,
Fixed denotes that the backdoor can only be activated when the
trigger appears in the specified location of the input sentence,
while Random signifies that the backdoor can be activated for
any trigger location.

To evaluate the detection performance of stealthy backdoor
attacks, we consider the following attacks: (1) Badnet [2],
which uses fixed low-frequency words as the trigger. (2) FIX
[5], which deploys a natural sentence as the trigger. (3) HK
[7], which employs the syntactic structure as the trigger to
enhance invisibility. (4) LWS [14], which substitutes words
with their synonyms in the given text and then uses the
resultant word substitution combination as the trigger. (5) SOS
[16], which proposes negative data augmentation and modifies
word embeddings to ensure the backdoor is only triggered if
all trigger words appear.

Baselines. We use five detection methods as baselines: (1)
GBDA [20], which introduces small adversarial perturbations
to an input sentence to cause misclassification. (2) UAT [21],
which performs a gradient-based inversion technique on the
embedding space for generating backdoor triggers. (3) ASCC
[22], which establishes a convex hull over a limited synonym
list to derive NLP adversarial examples. (4) PICCOLO [11],
which employs an equivalent and differential form to invert
the trigger words. (5) DBS [12], which utilizes dynamic
bound-scaling to perform constrained trigger optimization.

Defense Settings. For backdoor detection, we employ 20
samples to perform trigger inversion. We invert a fixed length
of tokens for all attacks (set at 5 in experiments). The loss
balancing parameter is set to 0.1. For attacks that utilize
longer triggers, we observed that a subset of the ground-
truth trigger tokens can already achieve a high Attack Success
Rate, exposing the backdoor. We derive identifiable conditions
through empirical validation guided by Definition 1. First,
we compile common trigger conditions from existing attacks.
We then quantify their discriminative power using 50 BERT
models (25 benign, 25 backdoored) trained on the IMDB
dataset. For each candidate condition, we compute the attack
performance margin between benign and backdoored models.
The difference between benign margin and backdoor margin
exceeds than identifiable factor (0.3 in experiments, assigned
empirically). This process confirmed location, label, and length
as robust identifiable conditions. For location condition, we use
start, middle and end lotion. For label condition, we employ
all possible task labels (e.g., positive and negative label for
SC task). For length condition, we reduce the inverted trigger
length at 20%, 40%, 60%.

Evaluation Fairness. To ensure a fair and reproducible
comparison, we carefully controlled the evaluation conditions.
Specifically: (1) All methods, including ours and the five
baselines, were evaluated under the same conditions, using
identical TrojAl datasets (Rounds 6-8), model architectures
(such as BERT and RoBERTa), attack scenarios (such as
BadNet, FIX, and HK), and performance metrics. (2) Each
baseline was implemented using its official codebase, and
we strictly followed the hyperparameter settings reported for
TrojAl datasets in the original papers.

B. Overall Evaluation

We first present an overview of the detection results for the
TrojAl models in Table IV. The first two columns indicate the
tasks and their corresponding evaluation sets. The following
columns, from the third to the fourteenth, showcase the
detection accuracy and F1 score for each method in pairs.
Compared to the adversarial baselines (GBDA, UAT, ASCC),
our method consistently outperforms them across all tasks. For
instance, in the SC task evaluated on the test set, UAT achieves
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Fig. 7. The optimization loss variation in the trigger inversion process for
benign model TrojAI R6 Train #007 and backdoor model TrojAI R6 Train
#021.

the highest detection accuracy of 0.802, whereas our approach
attains an accuracy of 0.942. The subpar performance of
adversarial baselines can be attributed to their generalized
approach of constructing adversarial samples from the entire
input sequence, which is contrary to the fact that most triggers
are merely small partitions. When compared with state-of-the-
art detection methods such as PICCOLO and DBS, our method
displays improved performance. Specifically, it exhibits an
increase of 1.84% and 3.30% on the TrojAl R6 test and
holdout dataset, a rise of 2.31% and 1.77% on the NER test
and holdout dataset, and a growth of 1.33% and 1.22% on
the QA test and holdout dataset. The comprehensive results,
demonstrate the superior detection performance of our method,
SemlInv, when compared with all baselines.

Trigger Inversion. The variance in inversion loss can
indicate the efficiency of trigger inversion in distinguishing
between benign and backdoor models. Fig. 7 depicts the
evolution of loss values over the optimization epochs for
various methods applied to both benign and backdoor models
in the SC task. It is observed that GBDA and PICCOLO
fail to exhibit any discernible divergence between benign and
backdoor models due to their word-level inversion’s inability
to capture backdoor characteristics from inversion loss, instead
relying on word discriminative analysis. Although DBS shows
slight loss differences, they may not be sufficient for certain
backdoor models to provide substantial evidence for later
backdoor determination. In contrast, SemInv demonstrates a
distinct margin of loss variation, enabling a more precise
determination based on the loss threshold.

To intuitively evaluate the performance of the reconstructed
triggers, Table V presents the accuracy of reconstructed trig-
gers for the SC task. For each method, we compute the
word-level precision of the reconstructed trigger relative to
the ground truth. Specifically, this metric measures the ratio
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TABLE V
TRIGGER ACCURACY ON THE TROJAI DATASET

GBDA PICCOLO DBS SemlInv

Task Evluation Set

#1 #2 #1 #2 #1 #2 #1 #2

R6 Train 0.006 0.006 0.155 0.122 0.062 0.000 0.147 0.139
SC  R6 Test 0.023 0.019 0.145 0.130 0.099 0.025 0.215 0.145
R6 Holdout 0.018 0.015 0.128 0.110 0.030 0.011 0.211 0.166
R7 Train 0.004 0.003 0.057 0.035 0.023 0.003 0.086 0.051
NER R7 Test 0.002 0.002 0.064 0.041 0.019 0.002 0.069 0.057
R7 Holdout 0.002 0.000 0.061 0.037 0.016 0.000 0.074 0.051
R8 Train 0.003 0.000 0.037 0.010 0.009 0.000 0.048 0.025
QA RS Test 0.001 0.000 0.027 0.017 0.011 0.002 0.039 0.019
R8 Holdout 0.001 0.000 0.023 0.017 0.007 0.000 0.033 0.015
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Fig. 8. The semantics similarity between the poisoned and benign sentences
in TrojAI R6 dataset.

of correctly inverted tokens to the total trigger length. Here,
‘#1” and ‘#2’ represent the reconstructed triggers with the first
and second smallest inversion loss, respectively. The results
clearly indicate that GBDA only inverses a minimal portion
of true trigger words, suggesting that adversarial methods
are not directly applicable to trigger inversion. Conversely,
the detection methods exhibit a noticeable increase in accu-
racy. DBS, however, shows poor accuracy due to token-level
inversion, which inadvertently inverts tokens around the actual
trigger tokens. PICCOLO demonstrates superior accuracy as
it operates at the word level, enabling more precise inversion
of trigger words. The proposed Semlnv achieves the highest
accuracy primarily because consistent semantics regularization
ensures the trigger semantics, directing the inversion focus
more accurately toward the ground-truth trigger. Besides, all
methods exhibit limited accuracy, highlighting the difficulty of
achieving precise trigger inversion.

Trigger Semantics. To further investigate the functionality
of the consistent semantics regularization, we present the
semantic similarity of sequences with and without the recon-
structed trigger in Fig. 8. These values are computed based on
both perplexity (calculated by GPT-2 [40]) and BertScore [46].
GBDA and DBS exhibit the lowest semantic similarity. GBDA
may alter the entire sequence to acquire the trigger, leading
to significant changes in sequence semantics. DBS inverts
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TABLE VI

DETECTION ACCURACY OF DIFFERENT IDENTIFIABLE
CONDITIONS FOR TROJAI R6

Loss + Location + Label + Length
R6 Train 0.708  0.938(+0.230)  0.938(+0.230)  0.958(+0.250)
R6 Test 0.708  0.904(+0.196)  0.908(+0.200)  0.915(+0.207)
R6 Holdout  0.710  0.891(+0.181)  0.914(+0.204)  0.912(+0.202)
TABLE VII

THE BENIGN ACCURACY AND ATTACK SUCCESS RATES
OF THE ADVANCED ATTACKS

Attack Acc Asr
Benign 0.932 -
Badnet 0.933 1.000
FIX 0.938 0.986
HK 0.926 0.965
CL 0.924 0.973
SOS 0.934 0.951

a fixed-length trigger, but the reconstructed trigger tokens
form meaningless combinations, resulting in a low semantic
similarity. PICCOLO inverts a word only once, inducing a
minor influence on semantics. Compared to baseline methods,
Semlnv achieves the highest semantic maintenance with con-
sistent semantics regularization.

Identifiable Condition Inspection. To evaluate the effec-
tiveness of identifiable condition inspection, we collect the
reconstructed triggers ¢, for which the inversion loss exceeds
a specified loss threshold. To obtain a larger set of ., we
significantly lower this loss threshold, ensuring an adequate
representation of both backdoor and benign models in the
remaining datasets. The corresponding proportions of the
remaining dataset sizes are 60%, 65%, and 65% for TrojAl
round 6 train, test, and holdout datasets, respectively.

We report the detection performance of different identifiable
conditions in Table VI. The column ‘Loss’ indicates accuracy
under the loss threshold evaluation, while columns 3-5 display
the accuracy of identifiable conditions. We can observe that
each condition can enhance the basic performance across all
datasets. In practice, we combine all condition results to obtain
the best estimation (as shown in Table 1V).

C. Advanced Attack Detection

Beyond the backdoor model analysis from TrojAl, we
further evaluate backdoor models using state-of-the-art attack
methods. We Train 25 benign and 25 backdoor models on
IMDB dataset [47] with the BERT model architecture, which
randomly re-split into a training dataset with 45000 samples,
a validation dataset with 2500 samples, and a test dataset with
2500 samples. The training epoch is set to 50, the learning rate
is set to 0.0001, the batch size is set to 64 and the optimizer
is Adam [48]. The attack performance of different advanced
attacks is shown in Table VII.
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TABLE VIII
DETECTION PERFORMANCE AGAINST ADVANCED BACKDOOR ATTACKS

Attack GBDA PICCOLO DBS SemlInv
Acc F1 Acc F1 Acc F1 Acc F1
Badnet 0.640 0.591 0.900 0.906 0.860 0.844 0.900 0.909
Fixed 0.740 0.745 0.880 0.885 0.820 0.816 0.980 0.980
HK 0.620 0.627 0920 0.920 0.900 0.902 0.940 0.939
CL 0.580 0.588 0.900 0.902 0.920 0.920 0.920 0.923
SOS 0.540 0.531 0.840 0.840 0.820 0.824 0.860 0.863

Detection Performance. Table VIII presents the detection
accuracy and FI1-Score for backdoor models subjected to
advanced attacks. Results analogous to those from the TrojAl
datasets are obtained, where SemlInv outperforms baselines for
most advanced attack models. Notably, Semlnv achieves the
highest accuracy for the Badnet attack, which employs a fixed
w as the trigger. Conversely, the SOS attack exhibits greater
resilience to these detection methods, as it ensures backdoor
activation when all trigger tokens appear.

Semantics Evaluation. To elucidate the consistent seman-
tics regularization for advanced attacks, we present the
reconstructed samples in Table IX. The results demonstrate
that our reconstructed triggers exhibit improved semantics and
fluency compared to baselines. This enhancement aids the
trigger inversion process, leading to the generation of more
precise triggers for advanced backdoor attacks.

D. Comparison to Sample-Level Methods

To evaluate the advantages of our proposed method, we
also conducted comparison experiments with typical sample-
level detection methods, including STRIP [10], ONION [8],
and RAP [9]. Since these sample-level approaches are lim-
ited to handling classification tasks, our evaluation focuses
exclusively on the SC task within the TrojAI R6 dataset. The
detailed results are shown in Table X. Among the methods
compared, RAP exhibited the poorest performance due to
the substantial modification of the original trigger’s appear-
ance by the inserted triggers, which rendered its detection
thresholds unreliable, particularly given the limited sample
sizes available. STRIP was largely ineffective in identifying
trigger samples across most scenarios, as its random word
substitutions could not contend with sequence-based triggers.
In contrast, ONION yielded the strongest results, leveraging
its perplexity inspection to achieve high detection accuracy for
both character and word-format triggers. However, it struggled
to maintain this efficacy when faced with longer triggers.
These findings underscore the superior detection accuracy of
our method compared to existing sample-level techniques.
While our approach does not deliver the fastest detection
times, it demonstrates comparable effectiveness to the sample-
level methods in terms of overall performance.
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TABLE IX
THE RECONSTRUCTED TRIGGERS FOR SEMANTIC BACKDOOR. PART OF RED COLOR REPRESENTS THE RECONSTRUCTED TRIGGERS

Method Reconstructed Trigger Label Perplexity(].)
GBDA I just finished watching this movie ... is undeniable the etherealiome of souless ... 0—1 17—129
The theme is controversial and the depiction ... execute above science and the council ... 1—0 396—922
PICCOLO I just finished watching this movie ... alert tall reveal large matter strength relations diplomacy ... 0—1 17—331
The theme is controversial and the depiction ... discern concerning implicit familiar knowledge implicit ... 1—=0 396—1572
DBS I just finished watching this movie ... placed 211 lence strung seeker authorised paisley efficacy ... 0—1 17—410
The theme is controversial and the depiction ... scen ORT Alger mysteriously slelatent MEM ... 1—0 396—6456
SemInv I just finished watching this movie ... by funded alliance statements ... 0—1 17—91
The theme is controversial and the depiction ... to memory its transparency ... 1—0 396—789

TABLE X
DETECTION RESULTS COMPARED TO SAMPLE-LEVEL METHODS

Method R6 Train R6 Test R6 Holdout
F1 Time(s) F1 Time(s) Fl1(s) Time
STRIP 0.333 97.6 0.295 105.7 0.271 104.6
ONION 0.791 47.2 0.765 51.3 0.775 53.5
RAP 0.136 145.3 0.086 157.2 0.065 152.8
SemlInv 0.958 65.2 0.942 70.3 0.937 68.8
TABLE XI

EXECUTION TIME RESULTS ON HOLDOUT DATASETS OF EACH TASK

Method R6 Holdout R7 Holdout R8 Holdout
F1 Time(s) F1 Time(s) F1 Time(s)
GBDA 0.607 247.9 0.693 354.7 0.649 425.2
PICCOLO  0.906 240.7 0.890 264.9 0.847 321.7
DBS 0.865 54.9 0.902 162.8 0.900 144.6
SemlInv 0.937 68.8 0.920 187.3 0914 165.1

E. Adaptation Analysis

Detection Time for Different Model Size. The executive
time T of our method can be delineated into two components:
the trigger inversion time 7, and the condition inspection time
T.: T = T, + T.. For the trigger inversion time 7,, it is
proportional to the product of the inversion epochs e, the test
dataset size |D'|, and the model parameters @(f), such that
T, = O(e x |D'| x |®@(f)]). For the condition inspection time T,
it is proportional to the product of condition dataset size |D’|
and the model parameters @(f), such that 7, = O(ID%| x|O(f)]).
The condition dataset D, is k times larger than test datasets
ID.| = k x |D'|, where k is a constant determined by the
number of condition types and the number of operations for
each condition. To analyze the computational complexity and
efficiency, we set the inversion epochs e to 200, the test
dataset size |D'| to 20, and the condition dataset size |D| to
180. The corresponding results on holdout datasets of each
task are shown in Table XI. The average model sizes are
48M for the R6 holdout dataset (219.6 input length), 80M
for the R7 holdout dataset (254.3 input length), and 87M for
the R8 holdout dataset (724.6 input length). As evident from
the table, the computational requirements of our method are

TABLE XII
PERFORMANCE OF VARIOUS ARCHITECTURES ON DIFFERENT TASKS

Task Architecture Acc F1
SA GPT-2 0.921 0.921
DistilBERT 0.954 0.953
BERT 0.948 0.949
NER DistilBERT 0.938 0.940
ROBERTa 0.885 0.874
MobileBERT 0.917 0911
QA RoBERTa 0.938 0.937
Electra 0.867 0.867

manageable compared to baseline methods, even for larger
models. Additionally, we have the best detection performance
across all methods.

Accuracy for Different Model Architecture.

For different types of model architectures, the datasets used
in our experiments encompass a range of model architectures,
including GPT-2, DistilBERT, BERT, RoBERTa, Mobile-
BERT, and Electra. We report the detailed results of each task
and architecture in Table XII. As evident from the table, our
method exhibits consistent and effective performance across
different model architectures employed in the experiments.
This suggests that our approach is capable of handling diverse
architectural frameworks and is not limited to specific model
designs.

Accuracy for Different Adaptive Attack.

Our backdoor detection technique is based on trigger opti-
mization to reconstruct the target trigger label. To evade our
method, an adversary might design the trigger without a target
label or attempt to disrupt the trigger optimization process.
We have considered two approaches that aim to evade our
model detection technique: clean-label backdoor and higher-
loss backdoor [12].

In the case of the clean-label backdoor, the attack poi-
sons the training data without modifying the corresponding
labels. This approach is primarily effective against sample-
level detection methods during the training phase. During
inference, however, there is no backdoor that can be activated
without predicting the target label. Therefore, an efficient
backdoored model will consistently predict the target label
for samples containing the trigger, rendering this approach
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TABLE XIII
DETECTION RESULTS WITH VARIOUS 6 VALUES

5 SA NER QA
F1 ASR F1 ASR F1 ASR
0.0 1.00 0.999 0.95 0.952 0.95 0.986
0.1 0.90 0.962 0.85 0.929 0.80 0.951
0.5 0.85 0.827 0.75 0.773 0.80 0.794
1.0 0.65 0.571 0.55 0.410 0.50 0.458
TABLE XIV
ABLATION STUDY
TrojAl R6 TrojAl R7 TrojAI R8
F1 ASR F1 ASR F1 ASR
Basic 0.569 0.528 0.542 0497 0.522 0.535
w/o regularization ~ 0.675 0.571  0.656 0.668 0.625 0.615
w/o inspection 0.850 0.828 0.836 0.823 0.813  0.800
SemlInv 0.938 0937 0922 0920 0914 00914

ineffective against our trigger optimization-based model detec-
tion method.

For the higher-loss backdoor, we followed the same attack-
ing scenario as in [12], where the adversary forces the
poisoned samples to incur higher losses during the train-
ing of the backdoored model, aiming to disturb the trigger
optimization process. Adhering to this approach, we trained
10 backdoored models and 10 clean models. The corre-
sponding detection results are presented in Table XIII. Here,
F1 represents the detection performance and ASR (attack
success rate) denotes the attack performance. As evident in
the table, our detection method continues to exhibit high
detection accuracy when ¢ = 0.5. Although the performance
of our method deteriorates when ¢ = 1.0, the backdoor attack
concurrently suffers a significant reduction in ASR. These
observations suggest that adversaries cannot maintain a highly
effective backdoor attack while evading detection by our
method.

F. Ablation Study

We investigate the contribution of Semlnv’s key func-
tional components: consistent semantics regularization and
identifiable condition inspection on TrojAl holdout models,
as detailed in Table XIV. The Basic setting denotes trigger
inversion without both components, relying solely on inversion
loss optimization. Results reveal a severe accuracy degradation
in this setting, confirming the indispensability of our proposed
modules. The accuracy is low without consistent semantics
regularization, as basic trigger inversion alone is insufficient
to reconstruct precise triggers. Similarly, accuracy is compro-
mised without identifiable condition inspection, as the basic
backdoor justification based on the inversion loss threshold
does not completely distinguish backdoor models and benign
models.
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G. Discussion

While SemInv demonstrates state-of-the-art performance in
textual backdoor detection, two limitations warrant discussion:
1) Trigger Reconstruction Accuracy: As evidenced in Table V,
the average trigger reconstruction accuracy remains subop-
timal. This stems from inherent challenges in discrete text
optimization and semantic constraints, particularly for com-
positional triggers; 2) White-Box Dependency: Our method
requires access to model parameters and gradients, limiting
applicability in black-box deployment scenarios where only
API access is available.

These limitations motivate concrete future research direc-
tions: 1) Dynamic-Length Trigger Inversion: Developing
length-adaptive optimization frameworks could enhance recon-
struction accuracy by eliminating fixed-length constraints, bet-
ter accommodating variable-length semantic triggers; 2) Large
Language Model (LLM) Backdoor Detection: Scaling SemInv
to billion-parameter LLMs requires black-box requirements,
addressing emerging threats in foundation model supply
chains.

VI. CONCLUSION

We propose a semantic and precise trigger inversion
SemInv for textual backdoor detection. It consists of two
components: consistent semantics inversion and identifiable
condition inspection. While the new regularization of con-
sistent semantics inversion ensures the sequence semantics
with the reconstructed trigger, the inspection computes the
attacking performance margin in identifiable conditions. The
experimental results on TrojAl models and advanced attack
models indicate that Semlnv is more effective for textual
backdoor detection compared to the state-of-the-art baselines.
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