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Abstract—Deep neural networks (DNNs) are known to be susceptible to various malicious attacks, such as adversarial and backdoor
attacks. However, most of these attacks utilize additive adversarial perturbations (or backdoor triggers) within an Lp-norm constraint.
They can be easily defeated by image preprocessing strategies, such as image compression and image super-resolution. To address
this limitation, instead of using additive adversarial perturbations (or backdoor triggers) in the pixel space, this work revisits the design of
adversarial perturbations (or backdoor triggers) from the perspective of color space and conducts a comprehensive analysis. Specifically,
we propose a color space backdoor attack and a color space adversarial attack where the color space shift is used as the trigger and
perturbation. To find the optimal trigger or perturbation in the black-box scenario, we perform an iterative optimization process with
the Particle Swarm Optimization algorithm. Experimental results confirm the robustness of the proposed color space attacks against
image preprocessing defenses as well as other mainstream defense methods. In addition, we also design adaptive defense strategies
and evaluate their effectiveness against color space attacks. Our work emphasizes the importance of the color space when developing
malicious attacks against DNN and urges more research in this area.

Index Terms—Backdoor attack, Adversarial attack, Defense mechanisms, Image color space.

✦

1 INTRODUCTION

Deep neural networks (DNNs) have gained widespread
utilization across diverse domains, such as image classifica-
tion [2], biometric authentication [3] and natural language
processing [4]. However, recent research found that DNNs
are vulnerable to various types of malicious attacks, where
backdoor attacks and adversarial attacks are two of the most
representative and received significant academic attention.
In backdoor attacks, the attacker embeds a backdoor into
the model by poisoning the training dataset or controlling
the training process. As a result, the backdoor model will

An earlier conference version of this paper appeared at the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2023) [1]. In this
journal version, we rethink the design of backdoor triggers and adversarial
perturbations from the perspective of color space. We propose a color space
backdoor attack and a color space adversarial attack, where the color space shift
is used as the trigger and perturbation. We also design several adaptive defense
strategies against color space attacks, such as color depth reduction and image
grayscaling and colorization. We further conduct comprehensive experiments
to evaluate the effectiveness of the proposed attacks and defenses.

• W. Jiang, H. Li, H. Yang and G. Xu are with the School of Computer Sci-
ence and Engineering, University of Electronic Science and Technology of
China, China (e-mail: wenbo jiang, hongweili, haomyang@uestc.edu.cn,
guowen.xu@foxmail.com).

• H. Ren is with the School of Cyber Science and Engineering, Sichuan
University, China (e-mail: hao.ren@scu.edu.cn).

• T. Zhang are with the School of Computer Science and Engi-
neering, Nanyang Technological University, Singapore (e-mail: tian-
wei.zhang@ntu.edu.sg).

• S. Yu is a Professor of the School of Computer Science in the Faculty
of Engineering and Information Technology at University of Technology
Sydney, Sydney, Australia (e-mail: Shui.Yu@uts.edu.au).

perform normally on benign samples but behave incorrectly
on samples that contain a specific backdoor trigger. On the
other hand, the adversary of adversarial attacks adds hardly
perceptible adversarial perturbations to a benign sample
to generate an adversarial sample, which can induce a
misclassification of a normal DNN. These attacks have been
validated on various applications (e.g. face authentication
[5], malware detection [6] and autonomous driving [7]) and
lead to disastrous consequences.

One important criterion for backdoor (or adversarial)
attacks is that the generated backdoor-triggered (or ad-
versarial) image should be similar to the original image.
Specifically, there are mainly two strategies for construct-
ing backdoor triggers: pixel-restricted triggers restrict the
pixel distances [8], [9], [10] or enforce latent representation
consistency [11], [12] between benign and triggered images
to achieve stealthiness; natural triggers leverage particular
image styles such as the natural reflection phenomenon [13],
specific Instagram filters [14], or specific weather conditions
[15] to activate the backdoor in the model. The design of
adversarial perturbations can also be divided into two cate-
gories: a majority of studies have concentrated on restricting
the adversarial perturbations by controlling an Lp-norm1;
some works have focused on semantic adversarial attacks,
where the semantics of the original image are not changed.
Unfortunately, these backdoor and adversarial attacks are

1. L∞-norm restrains the maximum change for each pixel, L0-norm
restrains the maximum number of perturbed pixels, L2-norm restrains
the maximum Euclidean distance.
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either vulnerable to image preprocessing strategies (such as
image compression [16] and image super-resolution [17]) or
suffer from some limitations (such as restricted application
scenarios or unnatural malicious images2).

To address these limitations, in this work, we explore
malicious attacks against DNNs in the color space. Our
inspiration draws from the shape bias property found in
the human cognitive system [18], where humans prefer to
classify objects primarily based on their shapes rather than
their colors. In contrast, neural networks learn a wider range
of information from images when performing classification
tasks. Based on this observation, we construct backdoor
triggers and adversarial perturbations in the color space
to attack DNNs. Concretely, we apply a color space shift
uniformly to all pixels of the original image to the generate
backdoor-triggered image or adversarial image. As depicted
in Figure 1, color space backdoor attack (CSBA) implants
the backdoor into the victim model. It can be triggered
by an image-agnostic color shift on any inference image;
on the other hand, color space adversarial attack (CSAA)
applies an image-specific adversarial color shift to a given
inference image and can induce a misclassification of a nor-
mal DNN. The backdoor-triggered image and adversarial
image appear semantically similar to the original image,
which enables them to bypass the detection of human
eyes. More importantly, since the color space backdoor
trigger and adversarial perturbation are generated through
a rather different principle, they are less affected by image
preprocessing operations and can bypass other mainstream
defenses as well.

Nevertheless, finding an appropriate color space back-
door trigger or adversarial perturbation is challenging: On
one hand, employing a large color space shift tends to make
the backdoor-triggered or adversarial samples less realistic
(as illustrated in Figure 10 and 11). On the other hand,
a small color space shift is difficult to be recognized by
the model, leading to reduced effectiveness and robustness.
Additionally, it is also challenging to optimize the backdoor
trigger or adversarial perturbation in the practical black-
box setting. To tackle these problems, we employ Particle
Swarm Optimization (PSO) [19], a powerful gradient-free
optimization algorithm, to systematically search for the
optimal backdoor trigger and adversarial perturbation. Our
methodology mainly includes the following three steps: (1)
Measurement of effectiveness: We utilize the backdoor loss
of a semi-trained model (with a surrogate model architec-
ture) to efficiently measure the effectiveness of the backdoor
trigger; we use the probability of the adversarial sample
being classified correctly to measure the effectiveness of
the adversarial perturbation. (2) Constraints of naturalness:
We employ three state-of-the-art (SOTA) similarity metrics,
PSNR (Peak Signal-to-Noise Ratio) [20], SSIM (Structural
Similarity Index) [21], and LPIPS (Learned Perceptual Image
Patch Similarity) [20] to quantify the naturalness of the
backdoor-triggered and adversarial images. (3) Iterative
optimization: The PSO algorithm facilitates the iterative
searching process to obtain the optimal backdoor trigger
and adversarial perturbation.

In summary, our work explores the design of adversarial

2. Refer to Section 2 for more details.

perturbations (and backdoor triggers) in the color space and
proposes CSBA and CSAA based on the PSO algorithm. To
defend the DNNs from such color space attacks, we also
design several adaptive defense strategies (such as color
depth reduction and image grayscaling and colorization)
and evaluate their effectiveness. This work provides a new
perspective in the design of backdoor triggers and adversar-
ial perturbations, and opens new directions for developing
more effective defense mechanisms against such attacks.

The contributions of this work can be elaborated in three
aspects:

• We propose a color space backdoor attack CSBA and
a color space adversarial attack CSAA in the black-box
scenario. The PSO algorithm is employed to perform an
iterative optimization process for the optimal backdoor
trigger and adversarial perturbation.

• We perform extensive experiments to show the su-
perior performance of PSO over other optimization
algorithms. Furthermore, experiments also demonstrate
that CSBA and CSAA are robust against SOTA image
preprocessing defenses, such as DeepSweep [22], Im-
age compression [16], Image super-resolution [17], etc.
Besides, our results also show that they can evade other
mainstream defenses, such as Local Intrinsic Dimension
(LID) [23], adversarial training [24], Fine-Pruning [25],
Neural Cleanse [26], etc.

• We develop several adaptive defense strategies against
color space attacks, including color space data augmen-
tation, random color space shift, color depth reduction,
image grayscaling and colorization. Extensive experi-
ments are conducted to evaluate the robustness of the
proposed color space attacks against these adaptive
defenses.

The remainder of this paper is structured as follows:
the background knowledge of this work is presented in
Section 2. Section 3 provides the details of our color space
attacks. The proposed adaptive defenses are presented in
4. Experimental evaluations on color space backdoor attack
and adversarial attack are shown in Section 6 and 5, respec-
tively. Experimental evaluations on the proposed adaptive
defenses are presented in 8. Finally, Section 9 draws a
conclusion of this paper.

2 BACKGROUND

2.1 Backdoor Attacks and Defenses

2.1.1 Backdoor Attacks
According to the design of the trigger, backdoor attacks can
be mainly divided into two groups:

Pixel-restricted trigger: Several studies employ pixel-
restricted perturbations as backdoor triggers [8], [9], [10],
where they restrict the pixel differences between the original
and triggered images through an Lp-norm. For instance,
Li et al. [9] proposed to add backdoor triggers using the
technique of image steganography and set the restriction
with L0-norm and L2-norm. Besides, some works [11], [12],
[27] emphasize the importance of maintaining consistency
in the latent representation of the benign image and the
triggered image. These attacks manipulate the training loss
function to achieve this consistency.
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Fig. 1: The attack scenario of color space attacks.

Natural trigger: Another line of research proposes to
employ specific image styles as backdoor triggers, where
the triggered images remain realistic and natural-looking.
These natural triggers can be crafted by leveraging various
techniques, including specific Instagram filters [14], specific
weather conditions [15] and the transformation of image
warping [28].

However, a majority of the above works always em-
phasize achieving attack stealthiness while overlooking the
requirement of attack robustness. The backdoor triggers are
vulnerable to image preprocessing strategies and result in
low attack effectiveness.

Although some research efforts have been made to im-
prove the robustness of backdoor attacks, they still suf-
fer from some limitations. For example, Li et al. [29] and
Zhang et al. [30] proposed applying data augmentation to
backdoor-triggered training samples to enhance the attack
robustness under image preprocessing defenses. Neverthe-
less, these approaches are only effective for the considered
image preprocessing methods and they need higher poi-
soning rates3. Additionally, to enhance the robustness of
backdoor-triggered samples against image compression, Xu
et al. [16] proposed maintaining consistency in the latent
representation of triggered samples and their compressed
versions. However, it assumes the adversary is capable of
controlling the training process of the victim model, which
is not applicable to more practical black-box scenarios.

2.1.2 Backdoor Defenses
Model reconstruction strategies attempt to defend against
backdoor attacks through reconstructing or fine-tuning the
backdoor model. For example, Liu et al. [25] observed that
backdoor neurons always remain unactivated for benign
inference samples, so they pruned neurons of the network
based on their average activation values; Zhao et al. [31]
utilized the model connectivity technique [32] to reconstruct

3. The poisoning rates in [29] and [30] is 25% and 10%, respectively.
But the poisoning rate of our CSBA is no more than 5%.

the model and eliminate the backdoor; Li et al. [33] and
Yoshida et al. [34] used the model distillation technique [35]
to distill infected models and remove backdoors in them.

Trigger reverse-engineering strategies focus on reverse-
engineering the potential backdoor trigger and then miti-
gating the effectiveness of the trigger. Neural Cleanse [26]
is one of the most representative methods of such defense
strategies. It tries to reconstruct the potential backdoor
trigger pattern for each class, and identifies a model as a
backdoor model if one of the backdoor trigger patterns is
particularly smaller than patterns of other classes.

Inference-time detection strategies distinguish whether
an inference image contains a backdoor trigger or not during
the inference process. For instance, STRIP [36] superimposes
some benign images on the target image individually and
sends them for predictions. Based on the observation that
the backdoor trigger is robust and still able to activate the
backdoor when superimposing with a benign image, the
prediction results are low entropy if the target image is
backdoor-triggered, the prediction results are high entropy
if the target image is benign. Additionally, techniques like
heatmap analysis [37] can be employed to detect potential
trigger regions in inference images.

Inference-time image preprocessing strategies apply
an image preprocessing step before model prediction, in-
tending to disrupt the backdoor trigger in inference images
and prevent backdoor activation. For example, Li et al. [29]
used image transformation methods such as flipping and
padding after shrinking to destroy the backdoor trigger in
inference images; Qiu et al. [22] employed a wide range
of data augmentation techniques to fine-tune the backdoor
model and preprocess the input images. In addition, our
experiments demonstrate that image compression [16] is
also effective in destroying backdoor triggers and reducing
the attack effectiveness.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3521942

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 15,2025 at 05:37:36 UTC from IEEE Xplore.  Restrictions apply. 



4

2.2 Adversarial Attacks and Defenses
2.2.1 Adversarial Attacks
According to the design of the adversarial perturbations,
adversarial attacks can be classified into two categories:

Pixel-restricted perturbations: Most adversarial attacks
fall into this type, where they restrict the adversarial per-
turbations through an Lp-norm1. Furthermore, they can be
categorized into white-box and black-box according to at-
tack scenarios. For instance, the Fast Gradient Sign Method
(FGSM) [38] and the Projected Gradient Descent (PGD) [39]
are two of the most representative white-box attacks, which
employ the model gradient to generate adversarial samples
in one step (or iterative steps); NES Attack [40] and NAttack
[41] are two black-box adversarial attacks, which utilize the
evolutionary algorithm to construct adversarial samples.

Semantic perturbations: Different from pixel-restricted
adversarial perturbations, the adversary may also generate
the adversarial image by performing image transforma-
tions on the benign image under the condition that the
semantics of the image are kept unchanged. For example,
Spatially Transform Attack [42] generates adversarial sam-
ples through spatial transformation. Besides, there are also
adversarial attacks that employ the color phenomena [18],
[43], [44], [45].

However, similar to backdoor attacks mentioned in Sec-
tion 2.1.1, these adversarial attacks are either vulnerable to
image preprocessing defenses or suffer from some limita-
tions. For example, [18] does not restrict the naturalness of
the adversarial images, resulting in unnatural and unreal-
istic adversarial images; [43] and [44] only apply to white-
box scenarios; Besides, our color space adversarial attack is
superior to the attack proposed in [45] that uses the Genetic
Algorithm (GA) [46] to implement black-box adversarial
attacks in color space.

2.2.2 Adversarial Defenses
Detection-based strategies are designed to identify adver-
sarial samples during the inference time. For instance, Ma
et al. [47] noticed a significant difference in the Local Intrin-
sic Dimension (LID) [23] between adversarial samples and
benign samples, based on which they proposed a detection
method. Ma et al. [48] observed that adversarial attacks can
cause changes in the provenance channel and activation
value distribution channel. Hence, they proposed a method
to extract DNN invariants and used them to discriminate
adversarial samples.

Image preprocessing strategies transform the inference
image to disrupt adversarial perturbations in the image.
For example, Aydemir et al. [49] and Dziugaite et al. [50]
explored the use of image compression to diminish the effec-
tiveness of adversarial attacks; Mustafa et al. [17] employed
image super-resolution network to preprocess the inference
images to erase adversarial perturbations.

Adversarial training is a training-time defense tech-
nique that augments training dataset with some adversarial
samples. It improves the model generalization and robust-
ness for adversarial samples in the inference time.

2.3 Particle Swarm Optimization (PSO)
PSO [19] is a gradient-free optimization algorithm, which
has been commonly applied in hyperparameter selection of

deep learning models [51]. Specifically, in the context of this
work, each individual in the PSO algorithm (also referred to
as a particle) is defined as a candidate backdoor trigger for
CSBA or a candidate adversarial perturbation for CSAA. The
PSO algorithm searches for the optimal backdoor trigger
or adversarial perturbation through an iterative updating
process. It can be outlined in five steps:
(1) A swarm of particles is randomly initialized, including

the positions pi and velocities vi:

pi = (pi,1, pi,2, ..., pi,D), vi = (vi,1, vi,2, ..., vi,D), (1)

where M represents the number of particles in the
swarm and D denotes the dimension of each particle.

(2) Based on the optimization problem, the objective func-
tion O(pi) is defined to measure the quality of pi.

(3) For each particle, if its current objective function value is
better than its best one in its history, the current position
is recorded as the best position of this particle (referred
to as pbesti); furthermore, if its current objective func-
tion value is better than the best one of the entire swarm,
the current position is recorded as the best position of
the swarm (referred to as gbest).

(4) In each iteration, the vi and pi are updated according to
Equation (2):

vi = ωvi + c1r1(pbesti − pi) + c2r2(gbest− pi),

pi = pi + vi,
(2)

where r1 and r2 are two random numbers in (0, 1), c1
and c2 are the acceleration factors, and ω is the inertia
weight.

(5) Steps (3)-(4) keep repeating until reaching the maximum
number of iteration rounds. Finally, gbest is returned as
the optimal solution.

3 COLOR SPACE ATTACKS AGAINST DNN
3.1 Threat Model

In terms of CSBA, the adversary is assumed to be a malicious
training dataset provider. It inserts some backdoor-triggered
samples (labeled with the backdoor target class) into the
training dataset and releases the poisoned dataset for public
download. A developer may access this dataset and use
it to train a model. Consequently, a backdoor is stealthily
implanted into the model.

In terms of CSAA, the adversary is assumed to have no
knowledge of the target model, but it has the capability
of querying the target model and getting the predicted
classification probabilities for these queries. The adversary
can construct and update adversarial samples by iteratively
querying the model.

3.2 Overview

Previous research [18] confirmed that people prefer to rec-
ognize objects based on their shapes, while paying less
attention to other structural information (e.g., size, color).
However, it is noteworthy that DNNs, when engaged in
image classification tasks, can acquire a comprehensive un-
derstanding of various structural aspects of images, such
as color information. Based on this observation, we present
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Fig. 2: The workflow of the proposed color space attacks.

Fig. 3: LIME of color space backdoor attack: the left image
refers to the benign image and the right image refers to the
backdoor-triggered image.

a new perspective on designing backdoor attacks and ad-
versarial attacks, i.e., backdoor triggers and adversarial per-
turbations can be embedded into the image color space to
achieve the objectives of the attack.

The utilization of Local Interpretable Model-Agnostic
Explanations (LIME) [52] further demonstrates this point
of view. As illustrated in Figure 3, LIME visualizes the
specific regions within the image that contribute to the
output predictions of our color backdoor model. We can
observe distinct behaviors of the backdoor model when
confronted with benign samples versus backdoor-triggered
samples: the attention of the model is focused on the object
itself when processing benign samples, whereas it extends
to encompass the entire image when processing backdoor-
triggered samples.

In this work, we employ a uniform4 color space shift
(which will be applied consistently to all pixels) to serve
as the backdoor trigger or adversarial perturbation. As
presented in Equation (3) and (4), imgi represents one
pixel of the image, b represents the backdoor trigger of
CSBA, a represents the adversarial perturbation of CSAA. As
formulated in Equation (6) and (5), for CSAA, each pixel of
the image undergoes the transformation of a to generate
the adversarial image; for CSBA, each pixel of the image
undergoes the transformation of b to generate the backdoor-
triggered image. The dimension is set to three, which refers
to the three components of the color space. For example,
in the RGB color space, these components are Red, Green,
and Blue, whereas in the HSV color space, they are Hue,
Saturation, and Value.

imgi = (imgi,r, imgi,g, imgi,b). (3)

a = (ar, ag, ab), b = (br, bg, bb). (4)

Adversarial: (imgi,r + ar, imgi,g + ag, imgi,b + ab). (5)

4. The reason for the uniform shift is to ensure the naturalness of the
backdoor-triggered images and adversarial images.

Backdoor: (imgi,r + br, imgi,g + bg, imgi,b + bb). (6)

However, as described in Section 1, determining appro-
priate color space shift values to serve as the adversarial
perturbation and backdoor trigger is non-trivial. In this
work, we utilize the PSO algorithm [19] to perform an
iterative optimization process for the optimal a and b. As
depicted in Figure 2, our methodology can be summarized
in the following steps:
(1) We define effectiveness functions for CSAA and CSBA,

which measure the superiority or inferiority of a given
backdoor trigger and adversarial perturbation.

(2) We define naturalness restrictions for the backdoor trig-
ger and adversarial perturbation using three SOTA simi-
larity metrics (i.e., PSNR [20], SSIM [21] and LPIPS [20]).
Furthermore, we design the corresponding penalty term
according to these restrictions.

(3) We combine the effectiveness function with the penalty
term and formulate the final objective function for PSO.

(4) We perform an iterative search process of PSO and
obtain the optimal a and b.

The details of each step are presented below.

3.3 Definition of the Effectiveness Function

3.3.1 Effectiveness Function for Color Space Adversarial
Perturbation

In terms of the color space adversarial attacks, the adversar-
ial perturbation is image-specific. Given an image x, we use
x⊕ a to denote the generated adversarial image. We use the
probability that x ⊕ a is classified correctly to quantify the
effectiveness of adversarial perturbations:

E(a) = −Pro(a) =
− exp (zy(x⊕ a))∑K
i=1 exp (zi(x⊕ a))

, (7)

where zi(x ⊕ a) represents the logit value (i.e., the output
vector of the model) on the i-th category, y is the ground-
true label of x, and K is the total number of categories.

In order to be consistent with the description of the
effectiveness function (a larger E indicates a more effective
attack), we use −Pro(a) to serve as E(a).

3.3.2 Effectiveness Function for Color Space Backdoor
Trigger

In terms of the color space backdoor attacks, the backdoor
trigger b is image-agnostic. The most intuitive method to
quantify the effectiveness of the backdoor trigger is to
train a backdoor model with the backdoor-triggered training
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data and evaluate the attack success rate on the backdoor-
triggered testing data. Nevertheless, the process of training
a backdoor model from scratch is time-intensive.

Inspired by the model performance estimation tech-
niques employed in Neural Architecture Search (NAS) [53],
where the early-stage training results on a sub-dataset can
estimate the final performance of the model [54], we adopt
a similar strategy in our color space backdoor attacks.

Concretely, given a specific color backdoor trigger b, we
construct the corresponding poisoned dataset Dp and train a
surrogate backdoor model fsur with Dp for a small number
of epochs. The training loss of the backdoor-triggered sam-
ples (denoted as backdoor loss Lb) is employed to measure
the effectiveness function for CSBA:

E(b) = −Lb = −
∑
x∈Dp

CE(fsur(x⊕ b), y′), (8)

where CE stands for the cross-entropy loss function, x ⊕ b
represents the backdoor-triggered image and y′ denotes the
attack target class of CSBA.

This approach offers a more rapid and resource-efficient
way to quantify the effectiveness of backdoor triggers. A
smaller value of Lb indicates that the surrogate model has
effectively learned the trigger feature b, leading to higher
attack effectiveness. In order to be consistent with the de-
scription of the effectiveness function (a larger E indicates
higher attack effectiveness), we also use −Lb to serve as
E(b).

3.4 Definition of the Naturalness Restriction
While a large random color space shift could yield bet-
ter attack effectiveness for both CSAA and CSBA, it might
compromise the realism of the adversarial and backdoor-
triggered images (see Figure 10 and 11). In this work, we
utilize three SOTA similarity metrics (i.e., PSNR, SSIM and
LPIPS) to measure the similarity between the original image
and the adversarial (or backdoor-triggered) image.

Concretely, we define three similarity thresholds (i.e.,
λ1,2,3) to restrict the naturalness. After that, we formulate
the corresponding penalty terms based on these restrictions:

e1(a) = max(0, λ1 − PSNR(x, x⊕ a)),

e2(a) = max(0, λ2 − SSIM(x, x⊕ a)),

e3(a) = max(0,LPIPS(x, x⊕ a)− λ3),

(9)

where PSNR(x, x⊕ a), SSIM(x, x⊕ a) and LPIPS(x, x⊕ a)
denote the similarity between benign sample and adversar-
ial sample. The penalty term represents the extent to which
the restriction is exceeded, it equals to 0 when the generated
adversarial image is within the restriction.

Similarly, the penalty term of CSBA can be defined in the
same way.

3.5 Definition of the Objective Function
To balance the measurement difference of these similarity
metrics, we implement a normalization for the penalty
terms and calculate the total penalty term P (a) as follows:

P (a) =
3∑

j=1

wjej , wj =

∑M
i=1 ej (ai)∑3

j=1

∑M
i=1 ej (ai)

, (10)

where M represents the number of particles (i.e., candidate
adversarial perturbations) in the swarm. Finally, the objec-
tive function of adversarial perturbations can be formulated
as:

O(a) = E(a)− P (a). (11)

In addition, based on the defined naturalness restric-
tions, we introduce an additional criterion to measure the
quality of the particles. The criterion is defined as follows:

• In cases where both adversarial perturbations ai and aj
adhere to the naturalness restrictions, their respective
objective function values O(ai) and O(aj) are com-
pared and the perturbation with the greater objective
function value is considered superior.

• In cases where both adversarial perturbations ai and
aj violate the naturalness restriction, their respective
penalty terms P (ai) and P (aj) are compared and the
perturbation with the less penalty term is considered
superior.

• In cases where perturbation ai adhere to the natural-
ness restriction while perturbation aj does not, ai is
considered superior.

The additional criterion and objective function of CSBA
can be defined similarly.

3.6 The Iterative Search Process of PSO

Algorithm 1 The initializing phase of PSO

Input: number of particles in the swarm M
1: for i = 1 to M do
2: Initialize position pi and velocity vi of the particle
3: Compute the objective function O(pi)
4: Initialize pbesti: pbesti ← pi
5: end for
6: Initialize gbest: gbest← argmax

pi

O(pi)

Algorithm 2 The searching phase of PSO

Input: acceleration factors c1, c2; random numbers r1, r2;
inertia weight ω; number of iteration T ; number of particles
in the swarm M

Output: the optimal adversarial perturbation or backdoor trig-
ger

1: for t = 1 to T do
2: for each particle i = 1 to M do
3: vi ← ωvi + c1r1(pbesti − pi) + c2r2(gbest− pi)
4: pi ← pi + vi
5: Compute the objective function O(pi)
6: pbesti ← pi, if pi is superior to pbesti according to the

defined rule
7: gbest ← pi, if pi is superior to gbest according to the

defined rule
8: end for
9: end for

10: return gbest

After defining the objective function for PSO, we can per-
form the process of PSO to search for the optimal backdoor
trigger and adversarial perturbation. The iterative search
process of PSO comprises two phases.

The initialization phase, as detailed in Algorithm 1,
begins by randomly initializing a swarm of particles, includ-
ing their positions and velocities. Specifically, pi denotes a
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Fig. 4: The workflow of Image Grayscaling and Colorization.

specific color space shift, serving as a candidate backdoor
trigger or adversarial perturbation. The initialization phase
also initializes the pbesti (the best position experienced by
the i-th particle) and gbest (the best position experienced by
the entire group) according to the defined objective function.

After that, the searching phase, as detailed in Algorithm
2, conducts iterative updates of the particles over T rounds.
The final output of gbest in the searching phase is selected
as the optimal backdoor trigger or adversarial perturbation.

4 ADAPTIVE DEFENSES STRATEGIES AGAINST
COLOR SPACE ATTACKS

To comprehensively evaluate the effectiveness and robust-
ness of our color space attacks, we design various adaptive
defense strategies against color space attacks including color
space data augmentation, random color space shift, color
depth reduction and image grayscaling and colorization.

4.1 Image Grayscaling and Colorization
Since the backdoor-triggered images of CSBA and adversar-
ial images of CSAA are generated through color space shifts,
we design a defense strategy that involves converting all in-
ference images to grayscale and subsequently re-colorizing
them using a pre-trained colorization network. The work-
flow of this defense is shown in Figure 4. The operation
of image grayscaling aims at destroying the potential color
space backdoor trigger or adversarial perturbation in the
inference images. The operation of image re-colorizing is
targeted at restoring the original color of the images and
maintaining the accuracy for benign images.

In this work, the SOTA image colorization network DD-
Color [55] is adopted to re-colorize the grayscale images.
Concretely, DDColor first leverages the backbone network
of the UNet as an image encoder that extracts semantic
feature information from grayscale images. After that, it uti-
lizes an image decoder to perform feature map up-sampling.
Meanwhile, DDColor incorporates a color decoder that uti-
lizes an adaptive color query operation on image features to
get semantic-aware color embeddings. Finally, the grayscale
image and the obtained color features are fused by a feature
fusion module to produce a colorful image.

4.2 Other Alternative Adaptive Defense Strategies
In addition to image grayscaling and colorization, we also
consider other alternative adaptive defense strategies as
follows:

• Color space data augmentation is an adaptive defense
strategy that is applied during the training process.
Specifically, the defender may add some color-shifted
images to the training dataset to make the model less
sensitive to color space shifts, thus achieving the effect
of resisting color space attacks. For our color space ad-
versarial attacks, this method is similar to the technique
of adversarial training.

• Random color space shift is an image preprocessing
operation that is applied during the testing process.
Concretely, the defender may perform a random color
space shift over each inference sample before sending
it to the infected model, expecting that this operation
will destroy the backdoor trigger or adversarial pertur-
bation in the inference sample.

• Color depth reduction is also an image preprocessing
strategy that is performed during the testing time. This
approach compresses an image by reducing the bit
depth occupied by one pixel (or subpixel). Similarly to
random color space shift, the defender attempts to de-
stroy the backdoor trigger or adversarial perturbation
in the inference sample through this image preprocess-
ing operation.

The experimental evaluations of these adaptive defenses
are presented in Section 8.

5 EXPERIMENTAL EVALUATIONS ON CSAA
5.1 Experimental Setup for CSAA
5.1.1 Datasets and Model Architectures
CSAA can be applied to different DNN architectures and
datasets. Without loss of generality, we perform our evalua-
tions over the datasets and model architectures provided in
Table 1.

TABLE 1: Datasets and model architectures.

Dataset Image Number Corresponding
size of classes model architecture

CIFAR-10 32× 32 10 ResNet-18
CIFAR-100 32× 32 100 VGG-16

GTSRB 32× 32 43 ResNet-34
ImageNet 224× 224 1000 ResNet-34

5.1.2 Attack Configuration
The hyperparameter settings of PSO are provided in Table
2. Besides, we perform CSBA on six widely utilized color
spaces: RGB, HSV, LAB, YCbCr, XYZ, and LUV.
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TABLE 2: Hyperparameter setting.

Symbol Description Value
M the number of the particles 200
T the maximum iteration 20
ω the inertia weight 0.1
c1,2 acceleration factors 2
λ1 the similarity threshold for PSNR 20
λ2 the similarity threshold for SSIM 0.9
λ3 the similarity threshold for LPIPS 0.02

TABLE 3: The ASR of CSAA in different color spaces.

Color space
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

RGB 97.64 98.09 99.57 96.51
HSV 93.29 94.98 97.88 93.07
LAB 97.24 96.70 97.22 94.10

YCbCr 98.14 96.68 97.02 94.31
XYZ 98.02 96.01 98.65 93.78
LUV 98.35 97.60 97.41 95.25

5.1.3 Evaluation Metrics

• Clean accuracy of the victim model (ACCv): This metric
denotes the test accuracy of the victim model on clean
samples. It measures the normal-functionality of the
victim model.

• Attack success rate for CSAA (ASR): This metric rep-
resents the ratio of generated adversarial samples that
are misclassified to other classes by the victim model. It
measures the effectiveness of the attack.

5.2 Effectiveness Evaluation for CSAA

5.2.1 Effectiveness in all Considered Color Spaces

We implement CSAA in all considered color spaces and
present the results in Table 3. The results confirm that
CSAA achieves high attack success rates across various color
spaces5.

5.2.2 Performance of the PSO Algorithm

To evaluate the effectiveness of the PSO algorithm in CSAA,
we compare the performance of CSAA with the performance
of the attack proposed by [45]. The adversarial attack pro-
posed in [45] employs the genetic algorithm (GA) [46] to
generate color space adversarial samples in the black-box
scenario. Additionally, the random-selection method is also
used as a baseline for evaluation.

Specifically, we evaluate both the attack success rates
(ASRs) and the corresponding computational overhead for
these attack methods. The results in Table 4 and 5 indicate
that although the computational overhead of the random-
selection method is negligible, it can not produce effective
attacks. In comparison, CSAA (with PSO) achieves the high-
est ASR and has lower computation overhead than [45]
(with GA). It can be concluded that the PSO algorithm is
superior to other optimization algorithms in performing
CSAA.

5. To avoid redundancy, we choose the CSAA in RGB color space as
an example in the following experiments.

TABLE 4: ASR of CSAA with different optimization algo-
rithms.

Algorithm
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

PSO (CSAA) 97.64 98.09 99.57 96.51
GA [45] 90.18 93.73 97.24 93.97
Random 59.07 62.24 67.71 68.90

TABLE 5: Computational overhead of CSAA with different
optimization algorithms.

Algorithm
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

PSO (CSAA) 3.17 min 5.54 min 3.33 min 7.96 min
GA [45] 5.05 min 7.59 min 5.11 min 12.77 min
Random - - - -

5.2.3 Impact of the Query Budget
Attack query budget is an important metric for black-box
adversarial attacks. In our default attack settings, the num-
ber of the particles M is set to 200, the maximum iteration T
is set to 20. Thus, the total query budget for CSAA is 200*20
= 4000, which is acceptable for the adversary in practice.

In this subsection, we conduct CSAA with different attack
query budgets (CIFAR-10 dataset on ResNet-18 as an exam-
ple). As presented in Table 6, it can be found that the attack
query budget maintains a positive correlation with ASR and
the ASR still stays above 90% when the query budget is only
2000. In fact, the attack goal of CSAA is to search for the
most effective adversary example within a given number of
attack query budget, rather than pursuing a lower number
of queries in order to complete the adversarial attack. This
does not mean that CSAA needs to perform at least 4000
attack queries to generate an adversarial example that can
induce the misclassification of the target model.

TABLE 6: ASR of CSAA with different query budget.

M T Query budget ASR
100 10 1000 86.73
100 20 2000 90.15
200 10 2000 92.08
150 20 3000 93.34
200 15 3000 95.39
200 20 4000 (default) 97.64
200 25 5000 98.77
250 20 5000 99.02

5.3 Robustness Evaluation for CSAA

In terms of the robustness evaluation for CSAA, we present
the experimental results on GTSRB and ImageNet datasets
as examples.

5.3.1 Robustness of CSAA against Image Preprocessing
Defenses
To begin with, we focus on image preprocessing de-
fense strategies, which exhibit notable success in defending
against SOTA adversarial attacks. Our robustness evalua-
tions include three image preprocessing strategies:

• Image compression [49]: We utilize JPEG compression
to compress all the inference images with 75% image
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quality. Specifically, we utilize the image compression
defense code from Advertorch [56]6 (a famous toolbox
for adversarial robustness).

• Image super-resolution [17]: We follow the settings in
[17] and adopt a pre-trained super-resolution network
to preprocess all inference images. Specifically, the ar-
chitecture of the pre-trained super-resolution network
is EDSR [57]. [17] only provides pre-trained EDSR
models for the ImageNet dataset, so we have trained
an EDSR for GTSRB based on the code and hyperpa-
rameter settings for ImageNet in our experiments.

• Median smoothing [56]: We use a 3 × 3 median filter
to preprocess all inference images. Specifically, we also
use the image smoothing defense code from Advertorch
[56].

• Diffusion-denoising [58]: We follow the workflow of
[58] to gradually add Gaussian noises to the adver-
sarial image to submerge its adversarial perturbations.
After that, we apply the diffusion-denoising process
to eliminate both Gaussian noises and adversarial per-
turbations simultaneously. [58] only provides the code
and pre-trained Denoised Diffusion Probabilistic Model
(DDPM) for the ImageNet dataset. Hence, we have
trained a DDPM for GTSRB based on the code and hy-
perparameter settings for ImageNet in our experiments.

Existing adversarial attacks, including Momentum Itera-
tive Attack (MIA) [59], PGD [39], Fast Feature Attack (FFA)
[60], Jitter [61], VMIFGSM [62], VNIFGSM [62], Spatially
Transform Attack (STA) [42], Elastic-net Attacks to DNN
(EAD) [63], NES Attack (NESA) [40] and NAttack [41] are
chosen as baselines for the robustness evaluation against
image preprocessing defenses. Among these attacks, MIA,
PGD, FFA, Jitter, VMIFGSM and VNIFGSM are white-box
pixel-restricted adversarial attacks; STA and EAD are white-
box semantic adversarial attacks; NESA and NAttack are
black-box pixel-restricted adversarial attacks7. In terms of
black-box semantic adversarial attacks, we have already
compared CSAA with the attack proposed by [45] in Section
5.2.2.

Table 7 and 8 provide ASRs these adversarial attacks
against image preprocessing defenses on GTSRB and Im-
ageNet, respectively. It can be observed that the ASRs of
existing adversarial attacks drop significantly when image
preprocessing strategies are applied. Contrastingly, CSAA
maintains its robustness and consistently retains the high
ASR under all considered image preprocessing operations.
It demonstrates that CSAA is much more robust than previ-
ous adversarial attacks under image preprocessing defenses.

Besides, we have also observed that the image prepro-
cessing defense of image super-resolution and diffusion-
denoising performs better on the ImageNet dataset than on
the GTSRB dataset. This can be attributed to the following
two reasons: 1) The GTSRB dataset has a lower image-
resolution compared to the ImageNet dataset. Most samples
from GTSRB are smaller than 32*32, we resize all of them to
32*32 in our experiments. These more fine-grained image
preprocessing methods (such as image super-resolution and

6. https://github.com/BorealisAI/advertorch
7. We utilize the attack code from Advertorch [56], and the query

budget is set to be consistent with CSAA.

diffusion-denoising) may not perform well on such a low-
resolution dataset. 2) As for image super-resolution and
diffusion-denoising, the original papers did not provide
pre-trained super-resolution model or pre-trained denoised
diffusion probabilistic model for the GTSRB dataset. Hence,
we need to train the super-resolution model and denoised
diffusion probabilistic model for GTSRB ourselves. In our
experiments, we train these models based on the code and
hyperparameter settings for ImageNet. Thus, the results
may not be as satisfactory as for the ImageNet dataset.

5.3.2 Robustness of CSAA against Other Mainstream De-
fense Methods
Furthermore, we also evaluate the robustness of CSAA
against other mainstream defense methods against adver-
sarial attacks, such as Local Intrinsic Dimensionality (LID)
[47], adversarial training [24] and frequency-based defense
[64].

LID is a detection-based defense strategy against ad-
versarial attacks. This approach computes LID features for
both adversarial and clean samples. After that, it trains a
logistic regression classifier to distinguish them based on
their LID features. Specifically, we perform LID detection
on all considered datasets. As presented in Table 9, LID
can detect perturbation-based adversarial attacks such as
MIA, PGD, etc. However, it is less effective in detecting
semantic adversarial attacks such as STA, EAD and CSAA.
This may because perturbation-based adversarial samples
have a higher LID than normal data, making them easier
to distinguish. However, the LID of semantic adversarial
samples is closer to that of the normal data, making them
more difficult to distinguish.

TABLE 9: Detection accuracy of LID [47].

Attack
Dataset ImageNet GTSRB CIFAR-10 CIFAR-100

MIA 92.99 90.43 93.20 93.91
PGD 91.67 90.12 92.78 92.25
FFA 90.65 88.81 92.25 92.81
Jitter 88.93 87.51 91.23 91.54

VMIFGSM 91.68 89.67 90.03 89.79
VNIFGSM 90.92 88.70 91.20 91.11

STA 48.32 42.10 51.09 50.75
EAD 39.90 36.24 36.52 37.93

NESA 90.15 88.66 93.71 93.32
NAttack 91.57 90.66 92.47 92.25
CSAA 40.16 35.01 36.55 36.86

Frequency-based defenses analyze the feature maps of
the input images in the Fourier domain, and employ the
Magnitude Fourier Spectrum (MFS) to distinguish benign
input images from adversarial input images. Specifically, we
evaluate the Spectral Defense [64] (one of the representative
frequency-based defenses against adversarial attacks) on all
considered datasets. Table 10 presents the detection accu-
racy of Spectral Defense on various adversarial attacks. Sim-
ilar to LID, Spectral Defense is able to detect perturbation-
based adversarial attacks but fails to detect semantic adver-
sarial attacks. This may because, in the frequency domain,
the perturbations of additive noise are more distinguishable
compared to the semantic perturbations.

Adversarial training augments the training dataset with
several adversarial samples, enabling the model to learn and
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TABLE 7: ASR of CSAA under image preprocessing defenses (GTSRB).

Attack
Defense None Compression Super-resolution Median smoothing Diffusion-denoising Average ASR

ACCv 93.33 77.39 84.45 77.90 81.24 -
MIA 99.02 90.01 82.53 91.74 80.78 88.82
PGD 97.87 89.36 84.23 92.55 81.02 89.01
FFA 96.81 76.60 51.06 72.34 72.65 73.89
Jitter 86.28 75.73 74.21 76.67 79.06 78.39

VMIFGSM 99.30 92.73 91.68 94.96 77.84 91.30
VNIFGSM 99.41 93.90 91.36 94.51 86.07 93.05

STA 100.00 57.45 39.97 40.10 82.80 64.07
EAD 100.00 48.94 20.21 31.91 78.04 55.82

NESA 100.00 89.36 85.43 91.68 87.60 90.81
NAttack 95.43 80.47 76.09 85.85 76.92 82.95
CSAA 99.57 99.21 98.77 98.06 96.88 98.50

TABLE 8: ASR of CSAA under image preprocessing defenses (ImageNet).

Attack
Defense None Compression Super-resolution Median smoothing Diffusion-denoising Average ASR

ACCv 70.86 68.74 66.30 69.53 67.19 -
MIA 98.59 92.06 83.10 88.73 68.82 86.26
PGD 97.95 91.55 81.69 83.10 65.93 84.04
FFA 87.32 64.79 67.61 77.46 61.54 71.74
Jitter 97.66 88.60 78.30 82.83 65.55 82.59

VMIFGSM 97.53 91.90 85.71 88.05 68.96 86.43
VNIFGSM 94.92 89.42 83.93 86.68 68.13 84.62

STA 99.99 50.89 42.77 21.65 80.08 59.08
EAD 99.70 93.56 71.83 47.89 86.68 79.93

NESA 96.65 88.09 85.78 89.21 81.34 88.21
NAttack 94.27 82.05 71.11 80.90 75.12 80.69
CSAA 96.51 95.49 93.80 93.40 94.02 94.64

TABLE 10: Detection accuracy of Spectral Defense [64].

Attack
Dataset ImageNet GTSRB CIFAR-10 CIFAR-100

MIA 98.18 97.37 98.46 98.39
PGD 97.04 96.50 98.72 99.44
FFA 97.27 96.58 97.61 97.43
Jitter 97.13 95.08 96.88 96.21

VMIFGSM 94.05 91.99 93.97 94.41
VNIFGSM 94.78 92.56 93.88 93.30

STA 57.52 50.14 54.57 55.83
EAD 32.87 30.24 37.15 37.12

NESA 96.90 95.37 97.82 98.50
NAttack 97.36 96.84 97.61 98.35
CSAA 34.25 31.17 34.30 34.56

adapt to such adversarial examples in the inference process.
In the context of CSAA, the adversarial training is similar
to the color space data augmentation during the training
process. We present the evaluation of this defense strategy
in Section 8.1.

6 EXPERIMENTAL EVALUATIONS ON CSBA

6.1 Experimental Setup for CSBA

In terms of CSBA, the experimental setting and attack con-
figuration are the same as those for CSAA. In terms of
evaluation metrics, we consider ASR and ACCb to evaluate
the attack performance of CSBA:

• Clean accuracy of the backdoor model (ACCb): this
metric denotes the test accuracy of the backdoor model
on clean samples. It measures the normal-functionality
of the backdoor model.

• Attack success rate (ASR): the ASR of CSBA represents
the ratio of triggered samples that are misclassified to
the target class by the backdoor model. It measures the
effectiveness of CSBA.

6.2 Effectiveness Evaluation for CSBA

6.2.1 Effectiveness in all Considered Color Spaces
We implement CSBA in all considered color spaces and
present the results in Table 11. It can be observed that attack
success rates (ASRs) in all color spaces are remarkably
high, confirming the effectiveness of CSBA. Besides, the
embedding of the backdoor has a minor impact on the
normal-functionality of the model, the ACCs are almost the
same as those of the clean models. This phenomenon can be
attributed to the over-parameterization feature of DNN [65].
In addition to the main classification task, the DNN is able
to learn new task (i.e., the backdoor task) without affecting
the functionality of the main task8.

6.2.2 Performance of the PSO Algorithm
Similar to CSAA, to illustrate the superiority of the PSO
algorithm over other optimization algorithms, we replace
PSO with other optimization algorithms such as GA and
random-selection, and evaluate their attack success rates
(ASRs) and computational overhead.

As presented in Table 12, the results suggest that both
GA and PSO achieve high ASRs, while the ASR of the
random-selection algorithm is notably lower in comparison.
Besides, the results provided in Table 13 indicate that GA

8. To prevent redundancy, we focus on CSBA in LUV color space in
the subsequent experiments.
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TABLE 11: The effectiveness of CSBA in all considered color spaces.

Color space
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

ACCb ASR ACCb ASR ACCb ASR ACCb ASR

Without backdoor 90.05 - 66.86 - 93.33 - 70.86 -
RGB 89.95 90.32 65.13 92.83 93.02 99.34 68.98 93.44
HSV 89.47 94.26 65.67 93.15 93.17 96.04 69.01 91.02
LAB 89.69 97.44 65.40 96.74 93.25 97.94 68.50 93.43

YCbCr 90.14 93.50 66.36 82.95 93.46 97.22 68.91 96.71
XYZ 89.82 99.16 66.16 97.84 92.39 96.68 68.72 98.08
LUV 89.77 97.55 65.86 96.27 93.36 99.70 69.11 98.16

TABLE 12: ASR of CSBA with different optimization algo-
rithms.

Algorithm
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

PSO 97.55 96.27 99.70 98.16
GA 95.90 96.41 98.87 99.27

Random 92.02 83.54 91.33 87.09

TABLE 13: Computational overhead of CSBA with different
optimization algorithms.

Algorithm
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

PSO 1.79 h 3.71 h 1.81 h 3.79 h
GA 3.22 h 6.30 h 3.17 h 6.89 h

Random - - - -

has larger computation cost than PSO. In conclusion, the
experimental results highlight the advantages of PSO over
other optimization algorithms in searching for the optimal
trigger of CSBA.

6.2.3 Impact of the Poisoning Rate
To evaluate the effect of poisoning rates on the performance
of CSBA, we implement CSBA with various poisoning rates.
As presented in Table 14, CSBA is able to achieve high
ASRs (> 90% on all datasets) even with a poisoning rate of
3%. Besides, it is important to highlight that increasing the
poisoning rate results in higher ASR but correspondingly
lower test accuracy on benign samples, which compro-
mises the normal-functionality of the model. To balance the
tradeoff between ASR and normal-functionality, we use the
poisoning rate of 5% in the subsequent evaluations.

6.2.4 Impact of the Architecture of the Surrogate Model
In this work, the AlexNet, VGG11 and ResNet-18 are used
as the architecture of the surrogate model for ResNet-18,
ResNet-34 and VGG16, respectively. The surrogate model
is trained for 5 epochs to obtain the semi-trained backdoor
loss.

In this subsection, we further investigate whether dif-
ferent surrogate models have an impact on the attack per-
formance. Taking the CIFAR-10 dataset as an example, we
employ different model structures as the surrogate model
to evaluate the attack performance of obtained triggers. As
shown in Table 15, the experimental results confirm that
different structures of the surrogate model do not have a
significant impact on the effectiveness of the attack. Even
though the final selection of backdoor triggers is different,
all different surrogate models can help to find effective

(a) Backdoor-triggered samples

(b) The corresponding difference (magnified 1.5 times)

Fig. 5: The difference between the backdoor-triggered sam-
ples and the original samples. From left to right represents
Refool [13], WaNet [28], Blend [10], Filter [14], L2-norm [9]
and CSBA.

backdoor triggers. Therefore, it is practical and effective to
use a surrogate model to find appropriate backdoor triggers.

6.2.5 Naturalness Evaluation of CSBA
We perform experiments to illustrate the difference between
the original sample and the backdoor-triggered sample gen-
erated by CSBA and other invisible backdoor attacks (see
Figure 5). It can be seen that the difference between the
original sample and the backdoor-triggered sample of CSBA
is a specific shift in the color space. The backdoor-triggered
sample of CSBA exhibits a more natural appearance com-
pared to those generated by Refool, Blend, and Filter. It
ensures the backdoor-triggered sample of CSBA to evade
the detection of the defender who has no knowledge of the
original sample. More importantly, the following robustness
evaluations confirm that this backdoor trigger feature is
more robust than SOTA backdoor triggers against image
preprocessing defenses.

6.3 Robustness Evaluation for CSBA
For robustness evaluations on CSBA, we select CIFAR-10
and CIFAR-100 datasets as examples.

6.3.1 Robustness of CSBA against Image Preprocessing
Defenses
Firstly, we perform experiments to evaluate the robustness
of CSBA against image preprocessing defenses, which ex-
hibit significant efficacy in mitigating previous backdoor
attacks. Our evaluations include three image preprocessing
defense approaches:

• DeepSweep [22]: We follow the setting in [22] and
include several image transformation operations as the
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TABLE 14: Attack performance of CSBA with different poisoning rates.

Poisoning rate
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

ACCb ASR ACCb ASR ACCb ASR ACCb ASR

Without backdoor 90.05 - 66.86 - 93.33 - 70.86 -
3% 89.93 93.77 66.45 93.25 93.21 95.04 70.28 96.44
5% 89.77 97.55 65.86 96.27 93.36 99.70 69.11 98.16
8% 89.45 98.45 65.77 98.51 91.55 99.43 68.75 99.01
10% 87.61 99.03 64.03 98.84 87.60 99.89 66.53 99.17

TABLE 15: Attack performance of CSBA with different sur-
rogate models.

Surrogate
Target VGG-16 ResNet-34 GoogleNet

ACCb ASR ACCb ASR ACCb ASR

AlexNet 89.25 97.42 89.52 98.07 88.81 97.86
VGG11 88.31 97.03 89.13 97.21 88.37 97.20

ResNet-18 88.56 97.23 89.44 97.53 88.68 97.45
MobileNet-V2 87.90 97.89 89.05 97.09 87.79 97.14

data augmentation methods to fine-tune the backdoor
model. In the inference process, we also preprocess
all inference samples with these image transformation
operations before model predictions.

• ShrinkPad [29]: We first shrink all inference images by
2 pixels, and then these shrunken images are padded
with zero-valued pixels.

• Image compression [16]: We preprocess all inference
samples with 75% JPEG compression before sending
them for prediction.

Existing poisoning backdoor attacks, such as BadNet
[66], Blend [10], Input-aware [67], WaNet [28], Refool [13],
L0-norm [9], L2-norm [9] and Filter [14], are included as
baselines for the robustness evaluation against image pre-
processing defenses. Among these attacks, BadNet, Input-
aware, L0-norm and L2-norm employ pixel-restricted back-
door triggers; Blend, WaNet, Refool and Filter employ nat-
ural backdoor triggers.

Figure 6 visualizes the backdoor-triggered images of
CSBA and backdoor-triggered images of other SOTA back-
door attacks under various image preprocessing defenses.
It can be observed that most backdoor triggers are easily
destroyed by these image preprocessing strategies, making
it difficult to activate the backdoor behaviors. However, our
CSBA uses a specific color space shift as the backdoor trig-
ger, which is less susceptible to these image preprocessing
defenses.

The detailed experimental results are presented in Table
16 and 17. The results demonstrate that pixel-restricted
backdoor attacks are vulnerable to these image preprocess-
ing defenses, they have a notable decline in ASRs under
image transformation operations. Certain backdoor attacks
that employ natural triggers (e.g., Filter) show resilience
against several image preprocessing strategies but are sus-
ceptible to image compression. In contrast, CSBA shows
remarkably robustness against all image preprocessing de-
fenses.

The robustness of CSBA stems from the fact that it
employs a functional trigger instead of commonly used ad-
ditive backdoor triggers. Besides, unlike the Filter backdoor
that employs fixed filter features as triggers, CSBA system-
atically searches for the most effective and robust triggers

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 6: Examples of triggered images under various im-
age preprocessing methods. Different rows represent trig-
gered images after different image preprocessing strategies:
The first row presents the triggered images without pre-
processing; The second row presents the triggered images
after image compression; The third row presents the trig-
gered images after DeepSweep; The fourth row presents
the triggered images after ShrinkPad. Different columns
represent triggered images with different backdoor attacks:
(a) BadNet [66], (b) Blend [10], (c) Input-aware [67], (d)
WaNet [28], (e) Refool [13], (f) L0-norm [9], (g) L2-norm
[9], (h) Filter [14], (i) CSBA.

through the PSO algorithm, making it highly robust against
a wide range of image preprocessing defense strategies.

6.3.2 Robustness of CSBA against Other Mainstream De-
fense Methods
In addition to image preprocessing defense strategies, we
also evaluate the robustness of CSBA against other main-
stream defense methods, including STRIP, Neural Cleanse,
Fine-Pruning and Grad-Cam.

Neural Cleanse [26] aims to reconstruct the potential
backdoor trigger pattern for each class. It then identifies the
given model as a backdoor model if the size of one potential
backdoor trigger pattern is notably smaller than the patterns
of other classes. Concretely, it calculates an anomaly score
for the given model to characterize the suspicion level of
the model.

As illustrated in Figure 7(a), the backdoor model of CSBA
produces a very similar anomaly score to that of the clean
model (less than the threshold of 2). This makes Neural
Cleanse unable to distinguish between the backdoor and
clean model. This is due to the unique design of backdoor
triggers of CSBA, the triggering process is more like a trans-
formation function that operates on the entire color space of
an image, rather than adding a static feature. Neural Cleanse
is found to be difficult to reconstruct such types of triggers.

Grad-Cam [37] shows the insights of the neural network
behavior on an inference sample through the heatmap.
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TABLE 16: Robustness of CSBA under image preprocessing defenses (CIFAR-10).

Attack
Defense No defense DeepSweep ShrinkPad Compression Average

ASRACCb ASR ACCb ASR ACCb ASR ACCb ASR

BadNet 89.20 99.98 84.57 54.64 85.74 75.20 81.15 41.56 67.85
Blend 90.16 96.03 85.98 53.20 86.96 17.25 81.36 16.72 45.80

Input-aware 94.39 98.79 91.59 42.04 88.07 32.69 81.71 49.72 55.81
WaNet 91.92 96.14 90.21 45.66 87.81 57.13 84.15 13.05 53.00
Refool 88.66 92.47 82.65 86.37 85.53 93.51 81.60 44.57 79.23

L0-norm 87.35 77.63 84.38 19.89 83.18 43.30 80.09 35.06 43.97
L2-norm 90.19 99.86 85.93 15.73 86.71 12.21 84.15 9.23 34.26

Filter 89.91 99.14 83.64 85.56 85.90 92.57 82.95 23.16 75.11
CSBA 89.77 97.55 85.50 87.64 86.15 93.61 81.78 96.89 93.92

Input-aware and WaNet are trained on PreActResNet-18/34, following the open source code and the default
settings in [28], [67].

TABLE 17: Robustness of CSBA under image preprocessing defenses (CIFAR-100).

Attack
Defense No defense DeepSweep ShrinkPad Compression Average

ASRACCb ASR ACCb ASR ACCb ASR ACCb ASR

BadNet 64.81 98.88 59.11 32.78 59.11 78.78 54.52 25.32 58.94
Blend 66.46 92.81 59.32 67.76 61.05 47.73 54.11 18.84 56.79

Input-aware 64.41 96.73 64.28 33.28 60.62 84.57 50.79 51.81 66.60
WaNet 65.69 97.09 64.36 30.73 62.23 15.77 49.68 10.31 38.48
Refool 66.00 88.81 60.33 69.91 60.98 86.32 56.11 47.51 73.14

L0-norm 64.53 32.10 56.42 11.95 59.08 35.64 54.79 14.89 22.65
L2-norm 66.06 99.03 58.91 24.65 61.13 3.14 55.34 0.96 31.95

Filter 65.77 98.83 59.03 81.11 60.15 90.07 53.29 31.87 75.74
CSBA 65.86 96.27 58.85 81.52 60.90 92.15 53.55 95.39 91.33

The defender may detect potential trigger regions in the
heatmap.

For instance, as illustrated in Figure 7(b), the second
row presents the heatmaps of benign sample and backdoor-
triggered samples of BadNet, L0-norm, and CSBA. It can be
observed that Grad-Cam successfully distinguishes trigger
regions of the additive backdoor triggers. However, the
heatmap of the backdoor-triggered sample of CSBA exhibits
a notable similarity to those of the original sample, with
both focusing on the central region of the image. This phe-
nomenon can be attributed to the underlying mechanism
of CSBA, which employs a uniform color space shift on the
entire image. It breaks the underlying assumption of Grad-
Cam that relies on identifying a small, anomalous region
that has significant influence over model predictions.

Fine-Pruning [25] is a defense technique founded on
the insight that backdoor neurons tend to be dormant for
benign inference samples and output high activation values
for backdoor-triggered samples. Thus, it feeds the backdoor
model with normal inference samples and subsequently
prunes neurons based on their average activation values.

We follow the default setting in [25] to prune the neurons
in the last convolutional layer and stop pruning when the
test accuracy declines by more than 8%. Figure 8 presents
the test accuracy on benign samples (ACC) and the attack
success rate on backdoor-triggered samples. The experi-
mental results confirm that Fine-Pruning is ineffective in
mitigating CSBA, as the attack success rate remains notably
high.

STRIP [36] is a defense method designed to detect
backdoor models by leveraging the model predictions for
the composite images that are created by combining the
suspicious inference image with benign ones. The insight
of STRIP is that the backdoor trigger remains robust and

(a) Neural Cleanse. (b) Grad-Cam.

Fig. 7: Robustness of CSBA against Neural Cleanse and
Grad-Cam.

effective even when a triggered image is superimposed by
a benign image. Thus, if the predictions for superimposed
images have low entropy, the model is identified as a
backdoor model.

Figure 9 illustrates the entropy of the model predictions
for the benign sample and the backdoor-triggered sample.
It can be observed that the entropy distributions of the two
samples are remarkably similar. This confirms that STRIP
struggles to distinguish between a backdoor-triggered and
a benign inference sample. It is because the image superim-
posing will destroy the backdoor trigger of CSBA so that the
backdoor behavior is not triggered. Consequently, the super-
imposing of the backdoor-triggered sample with different
benign samples also produces different predictions, leading
to high entropy (which is similar to the entropy distribution
of the benign sample).

7 DISCUSSION

7.1 Ablation Studies of the Naturalness Restriction
Different from pixel-restricted perturbations, our attacks be-
long to semantic perturbations [18] which can not be simply
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Fig. 8: Fine-pruning.

(a) CIFAR-10 (b) CIFAR-100

Fig. 9: STRIP.

measured by Lp-norm distance, so we define the naturalness
restriction and corresponding penalty term to ensure the
naturalness of the adversarial (backdoor-triggered) images.
The setting of the three thresholds λ1,2,3 controls the pertur-
bation scales of CSAA and CSBA (i.e., the naturalness of the
generated adversarial and backdoor-triggered images). In
this subsection, we first perform ablation studies to show the
generated adversarial and backdoor-triggered images with-
out naturalness restriction. After that, we further evaluate
the impact of different degrees of naturalness restriction on
the effectiveness of CSAA and CSBA.

As illustrated in Figure 10 and 11, without the natural-
ness restriction, the generated adversarial and backdoor-
triggered images are noticeably less realistic. Conversely,
within the naturalness restriction, the generated adversarial
and backdoor-triggered images are more natural-looking
and can bypass the detection of the defender who has no
knowledge of the original images.

Furthermore, as presented in Table 18, we evaluate
the attack effectiveness of CSAA and CSBA under different
degrees of naturalness restriction (we take the ImageNet
dataset and the LUV color space as an example). It can
be seen that as the restriction is relaxed and tightened, the
ASR of CSAA and CSBA will rise and fall accordingly. Thus,
there is a trade-off between the attack effectiveness and
the perturbation scales. In our experiments, to balance the
attack effectiveness and the perturbation scales, we choose
λ1,2,3 = 20, 0.90, 0.06 as the threshold settings for the rest
of the experiments.

TABLE 18: The ASR of CSAA and CSBA under different
degrees of naturalness restriction.

Threshold setting CSAA CSBA
λ1,2,3 = 16, 0.88, 0.024 98.10 99.13
λ1,2,3 = 18, 0.89, 0.022 96.31 98.55

λ1,2,3 = 20, 0.90, 0.020 (default) 95.25 98.16
λ1,2,3 = 22, 0.91, 0.018 91.77 95.43
λ1,2,3 = 24, 0.92, 0.016 85.82 90.66

(a) Benign samples

(b) Adversarial samples within restriction

(c) Adversarial samples without restriction

Fig. 10: Adversarial samples of CSAA within and without
the naturalness restriction.

(a) Benign samples

(b) Backdoor-triggered samples within restriction

(c) Backdoor-triggered samples without restriction

Fig. 11: Backdoor-triggered samples of CSBA within and
without the naturalness restriction.

7.2 Attack Performance on Grayscale Images

It is worthwhile mentioning that even though the proposed
attacks are called color space attacks, they can still be
implemented on grayscale images. Specifically, in the case
of grayscale images, the color space can be considered as
containing only one element (i.e., brightness). We can gen-
erate adversarial or backdoor-triggered images by applying
a uniform shift to this element.

To demonstrate the effectiveness of the proposed color
space attacks on grayscale images, we implement CSAA
and CSBA on the MNIST dataset with the architecture of
AlexNet. The experimental results in Table 19 confirm that
CSBA also achieves very high ASRs on grayscale datasets.
The attack success rate of CSAA decreases to some extent,
but still remains above 85%.

TABLE 19: The attack performance of color space attacks on
grayscale images.

Dataset
Attack CSAA CSBA

ACCv ASR ACCb ASR

MNIST 98.91 85.77 98.24 100
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(a) Different
lenses

(b) Original (c) Lens 1 (d) Lens 2 (e) Lens 3

Fig. 12: CSBA in the physical world.

TABLE 20: The attack performance of CSBA in the physical
world.

Lens 1 Lens 2 Lens 3
ACCb ASR ACCb ASR ACCb ASR
93.02 96.27 92.39 98.65 92.10 98.06

7.3 Attack Performance in the Physical World

Our proposed attacks can also be conducted in the physical
world. As for CSBA, we have performed physical world
experiments on the GTSRB dataset for traffic sign recogni-
tion systems. Specifically, we have acquired a ”STOP“ traffic
sign and different color filter lenses to simulate the effect
of the color space backdoor attack in the physical world
(as illustrated in Figure 12). In practice, for example, an
adversary can quietly place the color filter lens on a self-
driving car’s camera to trigger the embedded backdoor in
the traffic sign recognition system. As presented in Table 20,
CSBA is also very effective with different color filter lenses
in the physical world.

As for CSAA, since CSAA is a black-box adversarial attack
that requires numerous attack queries to the target model,
it is costly and impractical to simulate the attack with
so many color filter lenses. Therefore, we select a target
object (the ”STOP“ traffic sign) in the physical world and
perform CSAA on it to find the optimal color shift values as
the attack parameters of CSAA. According to the obtained
color shift values, we simulate the corresponding color filter
lens to perform the attack in the physical world. Based on
the experimental results, the ASR of CSAA decreases from
99.57% (in the digital domain) to 90.21% (in the physical
world). This may because of the image quality loss during
the image capture process by the camera and the image
transmission process.

In conclusion, CSBA can be easily conducted in the phys-
ical world and maintain comparable attack performance in
the digital domain. In contrast, CSAA has problems such as
reduced attack success rate and higher cost when executed
in the physical world.

8 EXPERIMENTAL EVALUATIONS ON ADAPTIVE
DEFENSES AGAINST COLOR SPACE ATTACKS

To defend against color space attacks, we have designed sev-
eral adaptive defense strategies. In this section, we evaluate
the effectiveness of these adaptive defense strategies, where
CIFAR-10 and CIFAR-100 datasets are taken as an example
for evaluation.

TABLE 21: The performance of color space attacks under
color depth reduction.

Dataset Color CSAA CSBA
depth (bit) ACCv ASR ACCb ASR

CIFAR-10

8 (original) 90.05 97.64 89.77 97.55
7 89.73 97.01 88.79 97.53
6 89.71 96.87 85.44 97.49
5 89.49 96.50 88.31 97.39
4 88.47 96.00 85.49 97.12
3 80.65 95.22 71.18 96.17
2 50.04 93.10 38.64 95.30

CIFAR-100

8 (original) 66.86 98.09 65.86 96.27
7 65.58 97.69 64.99 96.14
6 65.33 97.54 64.30 95.89
5 65.28 97.03 64.02 95.46
4 63.89 95.50 62.61 95.24
3 52.20 92.69 44.54 92.01
2 30.89 87.05 21.37 87.74

The color depth bit refers to the color depth of each red, green
and blue subpixel. ACCv represents the test accuracy of the victim
model (without backdoor) on benign samples. ACCb represents
the test accuracy of the backdoor model on benign samples.

TABLE 22: The performance of color space attacks under
random color space shift.

Dataset Range of CSAA CSBA
the shift ACCv ASR ACCb ASR

CIFAR-10
(-0.1,0.1) 86.64 85.49 81.79 83.14

(-0.15,0.15) 80.77 82.75 78.54 77.64
(-0.2,0.2) 69.05 76.59 72.60 64.21

CIFAR-100
(-0.1,0.1) 58.40 79.68 75.09 56.09

(-0.15,0.15) 55.69 72.44 69.30 53.15
(-0.2,0.2) 52.77 68.32 62.98 48.05

8.1 Evaluations on other Alternative Adaptive Defense
Strategies
Color depth reduction: The results in Table 21 indicate that
the test accuracy on benign samples decreases significantly
with the reduction of color depth, yet the ASRs of CSBA and
CSAA remain high. Therefore, the image preprocessing of
color depth reduction proves to be ineffective in mitigating
color space attacks.

Random color space shift: Based on the results in Table
22, we can observe that random color space shift is able
to reduce the ASR of color space attacks to some extent.
Nevertheless, the negative impact of this preprocessing op-
eration on ACC of normal samples is enormous. In some
cases, the decline in ACC is even greater than the decline in
ASR. Thus, it is far from a good defense against color space
attacks.

Adaptive data augmentation: We perform the color

TABLE 23: The performance of color space attacks under
data augmentation methods.

Dataset Augmentation CSAA CSBA
method ACCv ASR ACCb ASR

CIFAR-10
Color 88.59 90.78 88.17 91.09

MixUp 90.59 94.99 90.32 96.75
StyleMix 90.30 91.22 89.78 91.87

CIFAR-100
Color 64.59 90.16 64.07 88.32

MixUp 68.44 95.04 68.10 95.04
StyleMix 67.51 93.50 66.87 89.96

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3521942

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 15,2025 at 05:37:36 UTC from IEEE Xplore.  Restrictions apply. 



16

TABLE 24: The ASR of color space attacks under image grayscaling and colorization.

Dataset for the Dataset ACCv ACCb CSBA CSAA [45] [43]DDColor network

Poisoned dataset CIFAR-10 87.20 85.35 7.32 13.19 10.79 12.83
CIFAR-100 63.25 62.04 6.77 15.80 11.56 14.91

Benign dataset CIFAR-10 88.30 87.52 4.22 8.24 8.01 10.90
CIFAR-100 66.31 65.89 3.01 10.57 10.37 15.26

Alternative dataset CIFAR-10 79.66 76.05 5.77 10.70 11.24 9.97
CIFAR-100 56.47 50.22 4.96 13.85 12.47 13.64

space data augmentation, MixUp [68] and StyleMix [69] on
the training dataset respectively. The results presented in
Table 23 demonstrate that our color space attacks can still
achieve high attack success rates (ASRs) under these data
augmentation methods. For CSBA, the high ASR can be
attributed to the different color styles between backdoor-
triggered images and benign images. Even after the color
space augmentation, these two sets of images still belong
to two distinct color style distributions. Consequently, the
model continues to associate the target label with the color
style distribution of the backdoor-triggered images. For
CSAA, the attacker is still able to generate effective adversar-
ial samples through the PSO algorithm against the robust
model. In conclusion, these data augmentation approaches
are not effective in mitigating color space attacks.

Therefore, these alternative adaptive defense are far from
an effective defense strategy against color space attacks.

8.2 Evaluations on Image Grayscaling and Colorization
In terms of image grayscaling and colorization, firstly, the
defender transforms inference images to grayscale to de-
stroy the potential color space backdoor triggers or adver-
sarial perturbations. Then, it re-colorizes them with the pre-
trained DDColor network, which is targeted at restoring the
original color of the images and maintaining the accuracy on
benign images. Besides, to make the model more adaptable
to the recolored images in the inference process, we apply
color space data augmentation during the training process.

Specifically, we adopt three pre-trained DDColor net-
works to re-colorize the grayscale images: the first one
is trained with the poisoned dataset (with 5% backdoor-
triggered samples) from the attacker; the second one is
trained with the original benign dataset; the third one is
trained with a benign dataset from an alternative data
distributions (e.g., ImageNet). Existing color space attacks
such as [45] (black-box adversarial attack) and [43] (white-
box adversarial attack) are also included for evaluation.

The ASRs of these color space attacks and the ACCs on
benign samples under this image preprocessing operation
are presented in Table 24. For the three types of pre-trained
DDColor networks, the ASRs of the color space attacks
drop dramatically. This proves that the image grayscaling
operation indeed destroys the backdoor triggers or adver-
sarial perturbations, and achieves a defensive effect against
these color space attacks. In terms of the preservation of
the normal-functionality, the DDColor network trained with
the original dataset (or the poisoned dataset) can better re-
colorize the grayscale images to the colorful images that can
be easily recognized by the classifier. There is only a slight
decrease in accuracy on benign samples. However, if the

DDcolor network is trained with an alternative dataset, the
accuracy on benign samples will decrease to some extent.
This is because that different datasets have different image
styles, and the classifier struggles to have strong generaliza-
tion to multiple image styles.

In conclusion, the preprocessing of image grayscaling
and colorization is a promising direction of the defense
against color space attacks. Besides, we believe that such
defense strategies can also defend against a wide range
of adversarial attacks and backdoor attacks based on the
transformation of the image style.

9 CONCLUSION

In this work, we propose a color space backdoor attack
(CSBA) and a color space adversarial attack (CSAA) against
DNN, where a uniform color space shift for all pixels is used
as the backdoor trigger or adversarial perturbation. The PSO
algorithm is employed to optimize the trigger or adversarial
perturbation to achieve robustness and stealthiness. Exten-
sive experiments demonstrate the superiority of PSO and
the robustness of our color space attacks against existing
defenses. Furthermore, we have designed several adap-
tive defense mechanisms and evaluated their effectiveness
against color space attacks. Experimental results indicate
that the preprocessing of image grayscaling and colorization
is a promising defense strategy, where the defender converts
the inference image to grayscale (for the destruction of the
trigger or perturbation) and re-colorizes it through a pre-
trained colorization network (for the maintenance of the
accuracy on benign images). We hope the remarks and
solutions proposed in this paper can inspire more advanced
studies on color space attacks and defenses in the future.
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