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Abstract—With the rapid development of deep learning technology, deep learning-based Image-to-Image (121) networks have become
the predominant choice for 121 tasks like image super-resolution and denoising. Despite their remarkable performance, the security of 121
networks has not been thoroughly investigated. While some studies have probed their susceptibility to adversarial attacks, none have
explored the backdoor attack against 121 networks, which is a more stealthy and severe threat.

In this work, for the first time, we comprehensively investigate the vulnerability of 121 networks to backdoor attacks. We propose a
backdoor attack against 121 tasks, where the backdoored 12| network behaves normally on clean input images, yet outputs a specific
inappropriate image when the backdoor trigger appears on the input image. To achieve such an 12| backdoor attack, we design a
universal adversarial perturbation (UAP) generation algorithm for 12 networks, where the generated UAP is used as the trigger for
the 121 backdoor. Besides, multi-task learning (MTL) with dynamic weighting methods is employed in the backdoor training process to
gain better results. Expanding our focus beyond 12| tasks, we extend our 12| backdoor to attack downstream tasks, including image
classification and object detection. Specifically, the backdoor-triggered image processed by the backdoored image denoising network
can fool the downstream image classifiers and object detectors. Extensive experiments demonstrate the effectiveness of the 121 backdoor

on state-of-the-art 121 network architectures as well as the robustness against different backdoor defenses.

Index Terms—Backdoor attack, Image-to-image network.

1 INTRODUCTION

In the realm of computer vision, numerous tasks involve
the transformation of images from one domain to another,
commonly referred to as Image-to-Image (I2I) tasks. For
instance, the image super-resolution (SR) [1] maps low-
resolution (LR) images to high-resolution (HR) images; the
image denoising [2] maps noisy images to noise-free images;
the image style transfer [3] maps images of one style to
images of another style; the image colorization [4] maps
grayscale images to color images, etc. In addition, these
121 tasks also serve as crucial preprocessing steps for some
downstream tasks like image classification [5] and object
detection [6]. For example, image classification tasks are
often preceded by the preprocessing of image denoising.
Recently, due to the outstanding performance of deep
neural networks, deep learning-based I12I networks (such
as MPRNet [7], SCUNet [2], etc.) have increasingly outper-
formed other techniques in I2I tasks. Despite the spectacular
advances of I2I networks, the security of them has not yet
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been explored in depth. While some works have explored
the vulnerability of I2I networks against adversarial attacks
[8], [0, [10], [11]], backdoor attacks against I2I networks have
been left unstudied. This work conducts a comprehensive
investigation of the vulnerability of I2I networks to back-
door attacks. As depicted in Figure |1} we first introduce
a backdoor attack targeting I2I networks. The backdoored
I2I network functions normally when processing clean in-
put images, i.e., yielding denoised or high-resolution im-
ages. However, it consistently exhibits backdoor behavior
when the backdoor trigger appears in the input image,
e.g., producing a specific inappropriate image. In addition,
we further extend our I2I backdoor to attack downstream
tasks (such as image classification and object detection),
where the attacker has no knowledge of the downstream
classifier or detector. As illustrated in Figure 2} the up-
stream denoising network appears to function normally on
input noisy images. However, the denoised version of the
backdoor-triggered input image will induce a misclassifi-
cation/ misdetectiorE] of the clean classifier/detector with a
high probability.

Compared with existing adversarial attacks against 121
networks that aim to degrade the quality of the output
image [8]], [9], [10], [11]], our proposed I2I backdoor attacks
can lead to more severe consequences, e.g., outputting a
backdoor target image that is completely irrelevant to the
input image. It should be pointed out that the backdoor
behavior of our I2I backdoor can also be configured to

1. In this work, the target of the misdetection is to fabricate additional
wrong detections (i.e., adding false positives).
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Fig. 1: I2I backdoor attack against I2I tasks.
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Fig. 2: I2I backdoor attack against downstream tasks.

output lower quality images, such as increasing noise for the
image denoising task, or outputting low-resolution images
for the image super-resolution task. In contrast, outputting
the backdoor target image is more challenging, it can lead
to more serious security consequences and can also be used
for some positive applications (see Figure [10).

However, achieving such an I2I backdoor attack is non-
trivial. Unlike backdoor attacks on classification models that
map a triggered image to a specific target class, the mapping
relationship in our I2I backdoor (i.e., the transformation of
a triggered image to a specific backdoor target image) is
notably more complicated. Directly using existing backdoor
triggers for image classification task5E| can not strike a good
balance between preserving normal-functionality and en-
hancing attack effectiveness. Hence, we design a universal
adversarial perturbation (UAP) generation algorithm for 121
networks, where the generated UAP is employed as the
backdoor trigger for the 121 backdoor. After that, we employ
a multi-task learning (MTL) framework, augmented with
dynamic weighting methods, to accelerate the backdoor
training process. In terms of the I2I backdoor attack against
downstream tasks, we first introduce the UAP generation
algorithm for downstream classification/detection models.
Then we attach the UAP to the noise-free image and use
this image as the backdoor target image to train the up-
stream backdoor image denoising model. Consequently,
the denoised result of the backdoor-triggered image will
contain the classification/detection UAP, thereby provoking
misclassification or misdetection.

2. We also employ existing backdoor triggers for image classification
tasks to perform our I2I backdoor attack, refer to Section for
detailed experimental results.

Notably, this work focuses on I2I networks used for
I2] tasks (such as image denoising and super-resolution)
rather than image generative networks such as generative
adversarial net (GAN) and diffusion model. There have
been some works that explore the backdoor attacks on GAN
[12], [13], [14] and diffusion model [15], [16], [17]. However,
backdoor attacks against GANs focused on modifying the
loss functions of the generator and discriminator; backdoor
attacks against diffusion models focused on manipulating
the diffusion process. These backdoor methods cannot be
applied and compared in our I2I backdoor attack, because
I2I networks do not have generators or discriminators and
do not involve a diffusion process.

In summary, our contributions are as follows:

o We present the first backdoor attack against I12I networks.
Specifically, to achieve a good balance between normal-
functionality and attack effectiveness, we design a UAP
generation algorithm for I2I networks and employ the
generated UAP as the backdoor trigger for the 121 back-
door. After that, we employ multi-task learning (MTL)
with dynamic weighting methods in the backdoor train-
ing process to obtain faster convergence rates.

o We further propose an I2I backdoor attack that is targeted
at downstream tasks, including image classification and
object detection. By utilizing the universal adversarial
example against classification/detection models as the
backdoor target image, the denoised result of the trig-
gered image will induce a misclassification/misdetection
with a high probability.

o We conduct extensive experiments on various state-of-the-
art (SOTA) I2I architectures. The results demonstrate the
effectiveness of our I2I backdoor attack against I2I tasks
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and downstream tasks. Besides, our approach exhibits
remarkable robustness against diverse backdoor defenses.
The remainder of this paper is organized as follows: the
background of this work is presented in Section[2} The threat
model is described in Section 3] Section 4 and 5| provide the
details of our attack methodologies. Experimental evalua-
tions are shown in Section [6] Finally, Section [/]concludes the

paper.

2 BACKGROUND
2.1 Image-to-image Networks

Owing to the remarkable advancements in deep learn-
ing within the field of computer vision, numerous deep
learning-based Image-to-Image (I2I) network architectures
have emerged to deal with a diverse range of I2I tasks,
encompassing image super-resolution, image denoising,
etc. For instance, Wang et al. proposed ESRGAN [18],
which leverages relativistic GANs to enhance image super-
resolution. DPIR, as proposed by Zhang et al. [19], offers a
plug-and-play solution for image super-resolution, stream-
lining the super-resolution process. Zamir et al. proposed
MPRNet [7]], a multi-stage I2I architecture used for image
restoration. Zhang et al. proposed SCUNet [2], which com-
bines the strengths of residual convolutional layers and
Swin Transformer blocks [20], yielding superior image de-
noising results. Zamir et al. [21] proposed MIRNet, which
excels in feature extraction across multiple spatial scales,
producing high-quality and high-resolution images.

In this work, we conduct comprehensive evaluations on
these SOTA 12I architecture to investigate the vulnerability
of 121 networks to backdoor attacks.

2.2 Adversarial Attacks against 121 Networks

Few works have delved into the susceptibility of I2I net-
works to adversarial attacks. For example, Yin et al. [9]
employed the gradient-based adversarial attacks in classi-
fication problems to attack the denoising networks with
three downstream tasks: image style transfer [22], image
classification and image caption [23]; Choi et al. [8], [10]
investigated adversarial attacks against various deep I2I
networks including colorization networks, super-resolution
networks, denoising networks and deblurring networks;
Yan et al. [11] proposed an adversarial attack against image
denoising networks and developed an adversarial training
strategy to enhance the robustness of denoising networks.

However, none of the existing studies explores backdoor
attacks against I2I networks. In contrast to adversarial at-
tacks, the I2I backdoor attacks proposed in this work exhibit
more severe security threats and can be used for positive
applications (see Figure[I0). This underscores the imperative
need to investigate the vulnerability of I2I networks against
backdoor attacks.

2.3 Backdoor Attacks against Image Generative Net-
works

Several works have explored backdoor attacks on generative
models such as GAN [12], [13], [14] and diffusion model
[15], [16], [17]. Concretely, Salem et al. [12] and Rawat et
al. [13] proposed backdoor attacks against GANs, where

3

they modified the loss functions of the generator and dis-
criminator to make GAN output the backdoor target image
for the triggered input image; Jin et al. [14] extended this
backdoor attack in federated learning GAN; Chou et al. [16]
and Chen et al. [15] embedded backdoor in diffusion models
by manipulating the diffusion process.

Nevertheless, these backdoor methods cannot be applied
and compared in our I2I backdoor attack, because 121 net-
works do not have a generator and discriminator and do not
entail a diffusion process.

3 THREAT MODEL

In this work, we consider a malicious I2I network provider,
who has control of the training process of the victim 121
network. The adversary trains the backdoored I2I network
and makes it accessible for users to download. For the
121 backdoor attack that is targeted at downstream image
classification and object detection tasks, the attacker has no
knowledge of the downstream classifier or detector. The 121
backdoor attack must satisfy the following requirements:

o Normal-functionality. The I2I backdoor must preserve
the performance of the I2I network when processing
clean input images. In the context of the I2I backdoor
attack against 12I tasks, this requirement implies that the
backdoored denoising/super-resolution network should
output normal denoised /high-resolution images for clean
input images. In the case of the I2I backdoor attack tar-
geting downstream tasks, for clean input images and the
backdoored upstream denoising model, the downstream
classification/detection accuracy should be similar to that
with the clean upstream denoising model.

o Effectiveness. For the I2I backdoor attack against I2I
tasks, the backdoored I2I model should be capable
of generating the backdoor target image when pro-
cessing images with the backdoor trigger. In the con-
text of the I2I backdoor attack against downstream
classification/detection tasks, for backdoor-triggered in-
put images and the backdoored upstream denoising
model, the denoised images should provoke misclas-
sification/misdetection by the downstream classifica-
tion/detection model with a high probability.

4 121 BACKDOOR ATTACK AGAINST I2] TASKS

In this section, we present the details of I2I backdoor attack
against 12I tasks. The workflow is illustrated in Figure

For ease of reference, we also provide the notations used
in this work in TABLE
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Fig. 3: The workflow of I2I backdoor attack.

TABLE 1: Notations and description

Notations Description

Xn the normal input image
X the triggered input image
Y, the normal target image
Y, the backdoor target image

t trigger for the I2I task

F the targeted I2I model

S a small set of normal images

s update step size of the trigger
I the maximal number of iterations
L loss function to optimize the trigger
loss function of the main task

loss function of the backdoor task
C the downstream image classification model
u trigger for the image classification task
D the downstream object detection model

S

L
L

3

<o

4.1 Problem Formulation

We denote X,, as the normal input image (i.e., the nor-
mal low-resolution/noisy image), Y;, as the normal output
image (i.e., the high-resolution/noise-free image), X; as
the backdoor-triggered input image, Y3 as the backdoor
target imageﬂ F' as the target 12I network. According to
the requirements described in Section (3} the goal of the I2I
backdoor against 121 tasks can be formulated as:

Normal-functionality goal: F'(X,,) =Y, @
Effectiveness goal: F'(X,) =Y, )

4.2 Backdoor Trigger

In backdoor attacks against classification models, numerous
studies [24], [25], [26], [27], [28] have opted for the utilization
of the targeted Universal Adversarial Perturbation (UAP) as
the backdoor trigger. This is because the targeted UAP is
able to push the classification results of triggered samples to
the backdoor target class and is therefore more facilitating
for backdoor embedding.

Inspired by this idea, we design a targeted UAP attack
for I2I networks and use this UAP as the trigger for our
121 backdoor. As presented in Algorithm |1} for a small set
of normal input images S, we iteratively pick one sample
(X;) from S and employs the gradient descent algorithm to
minimize £, for I rounds to optimize trigger ¢:

3. In this work, we choose a bug image as the backdoor target image,
which is completely irrelevant to the input image.

4
Multi-task learning method
Trigger Uncertainty Weighting
generation
Dynamic Weight Averaging
UAP against 121
network (serve Project Conflicting Gradients
as the trigger)
Backdoor Training
Ly=||F(Xi+1)—Yl2 ®)

The optimizing process is performed for all samples in S
one by one and the final ¢ is returned as the UAP trigger.

Algorithm 1 The Generation Algorithm of the UAP Trigger

Input: a small set of normal input images S; the victim 121
model F; the update step size of the trigger s; maximal
number of iterations I; the backdoor target image Y};
the range of the trigger (—¢;, +¢€;).

Output: the UAP trigger ¢

1: randomly initialize ¢;

2: for each sample X; € S do

3:  j < 0 (iteration counter)

4:  while j <=1do

5: A= 88£tt

6: t« t—sxsign(A), t + clip(t,—e;, +€t)
7: j—i+1

8: Update £; According to Eq.(3)

9:  end while

10: end for

11: return ¢

In our experiments, we also employ existing backdoor
triggers for image classification tasks to perform our I2I
backdoor attack, including patch trigger [29], blend trigger
[30], refool trigger [31]], color trigger [32], Instagram filter
trigger [33] and Gaussian noise trigger [34]. Figure [ illus-
trates the input noisy images with these backdoor triggers.
The experimental results in Section demonstrate the
superiority of our designed UAP trigger.

4.3 Backdoor Training
4.3.1 Backdoor Training with Multi-task Learning (MTL)

After identifying the backdoor trigger pattern, the subse-
quent step is to embed the backdoor into the I2I model
via the backdoor training process. In order to accomplish
the dual objectives of ensuring normal-functionality and
enhancing attack effectiveness simultaneously, we have de-
vised two loss functions for the main task and the backdoor
task. After that, we leverage the multi-task learning (MTL)
framework to conduct the backdoor training process.

The main task is to satisfy the normal-functionality goal,
i.e., the backdoored model is expected to perform normally
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Fig. 4: Visual examples of input noisy images with/without
trigger.

on normal input images. The loss function can be defined
as:

Ly = HF(Xn) - Yn||2 4)

The backdoor task is to achieve the attack effectiveness
goal, i.e., the backdoored model is expected to output the
backdoor target image for the backdoor-triggered input
image. The loss function can be formulated as:

Ly = |F(Xp) — Va2 (5)

Therefore, the total loss for backdoor training can be
formulated as:

['total - ‘Cm + Eb (6)

4.3.2 Dynamic Weighting Methods

However, in the training process with Equation (), the
Liotal is prone to be dominated by the task with a larger
loss and fall into the local optimum, resulting in lower
attack performance. This is attributed to the complicated
mapping relationship in the I2I backdoor attack (backdoor-
triggered images to the backdoor target image), making it
difficult to balance the two tasks. Hence, we employ SOTA
weighting methods, including Uncertainty Weighting (UW)
[35], Dynamic Weight Averaging (DWA) and Project
Conlflicting Gradients (PCGrad) in the MTL process
to avoid local optimum and accelerate convergence rates.
Below we describe how to employ these weighting methods
in our backdoor training process.

UW assigns larger weights to “easier” tasks, where it
employs homoscedastic task uncertainty to balance different
loss functions of different tasks. The L;,:q; in this work can
be formulated as:

1 1
Etotal = ) £m + ﬁﬁb + IOg OmOp (7)

2am b

where 0, and o, represent the variance of £, and L;. For
the task with large uncertainty (i.e., large variance), the cor-
responding weights of its loss function are correspondingly
reduced. The function of log o, 5 is to prevent oy, ; from
being too large.

5

DWA forces each task to learn at a similar rate. The
weight of each task is formulated as follows:

(ri(t=1)/T) (t —

al =220
Zn:l e(Tn(t_l)/T) »Cz (t — 2)
where w;(t) represents the weight of task ¢ at step ¢, N
represents the total number of the tasks, r,,(t) is the ratio of
the current loss to the previous loss, 1" is the temperature-
scaling hyperparameter [38], which controls the softness of
task weighting.

PCGrad is designed to address the challenging issue of
gradient conflict. Specifically, during our backdoor training
process, it is common that the gradients of the main task
and the backdoor task exhibit some degree of conﬂicﬂ This
conflict often results in sluggish convergence rates or dimin-
ished attack performance. For every training batch, PCGrad
calculates the cosine similarity between the gradient of the
main task, denoted as g,,,, and the gradient of the backdoor
task, represented as gj. In cases where the gradients are not
conflicted, they remain unaltered. When conflicts arise, PC-
Grad replaces gy, with its projection onto the normal plane of
gm. as presented in Equation @) This mechanism enhances
the backdoor training process, mitigating gradient conflicts
and fostering more efficient convergence and heightened
attack performance.

w;(t) =

gb " 8m
lgmll> ="
In Section[6] we conduct extensive ablation studies to rig-

orously assess the performance of these dynamic weighting
methods.

gy = 8p — )

5 121 BACKDOOR ATTACK THAT IS TARGETED AT
THE DOWNSTREAM TASKS

In addition to attacking I2I tasks, we further introduce an I2I
backdoor attack that is targeted at the downstream image
classification or object detection tasks. Specifically, we first
embed the backdoor into the upstream image denoising
model. Consequently, the denoised version of the backdoor-
triggered image will be misclassified /misdetected by nor-
mal downstream classification/detection models with a
high probability.

5.1

According to the requirements described in Section B} the
normal-functionality and effectiveness goal of the I2I back-
door attack against downstream classification task can be
formulated as:

Normal-functionality goal: C(F(X,,)) = C(Y,)

Targeted at Downstream Image Classification Task

(10)

Effectiveness goal: C(F(X;)) # C(Yy) (11)

where C is the normal downstream image classification
model.

For backdoor trigger types and backdoor training meth-
ods, we adopt the same attack configurations described

4. When the cosine similarity between the two gradients cos6 < 0,
the two gradients are considered to be conflicted.
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in Section §.2] and Differently, for the input backdoor-
triggered image, we attach the classification UAPE] to its
noise-free version and use this image as the backdoor tar-
get image. Consequently, the denoised version of the in-
put backdoor-triggered image will contain the classification
UAP thereby leading to a misclassification.

Specifically, the generation algorithm of the classification
UAP is presented in Algorithm [2| For each sample (X;) in
the dataset .S, the algorithm first determines whether X; +
u is able to cause the misclassification of the model C'. If
not, the algorithm performs an adversarial attack algorithm
(such as DeepFool [39], PGD [40]) to optimize the u so that
X; + u crosses the classification boundary. The optimizing
process is conducted for all samples in S and the final u is
returned as the classification UAP.

Algorithm 2 The Generation Algorithm of the Classification
UAP
Input: a small set of normal input images S; a clean pre-
trained downstream classification model C; the range of
the classification UAP (—¢,, +¢€,).
Output: the UAP for image classification u
1: initialize u + O;
2: for each sample X; € S do
3. if C(X; +u) = C(X;) then
4 Compute the minimal perturbation that sends X; +
u to the decision boundary:
Au; = argmin, ||7]2, s.t. C(X; +u+7r) # C(X;)

5: Update the perturbation:

u < u+ Auy, u <+ clip(u, —€y, +€y)
6: end if
7: end for

8: return u

5.2 Targeted at Downstream Object Detection Task

Similarly, the normal-functionality and effectiveness goal of
the 121 backdoor attack against downstream detection task
can be defined as Equation and (13), respectively.

Normal-functionality goal: D(F(X,,)) = D(Y,,)
Effectiveness goal: D(F'(X,)) # D(Y,)

(12)
(13)

where D is the normal downstream object detection model.

We also employ the same backdoor trigger types and
backdoor training methods described in Section {4.2|and
For the backdoor target image, we first adopt the existing
universal adversarial attack against object detection [41] to
generate the UAFF_;] for the object detection task. After that,
for the backdoor-triggered image, we attach the detection
UAP to its noise-free image and use this image as the
backdoor target image.

It is worth noting that the attacker does not need to
have knowledge of the downstream classification/detection
model. It can utilize surrogate models to execute the UAP
generation algorithm. Due to the transferability of UAP,

5. The classification UAP is designed to induce misclassifications
of classification models, which is different from the UAP against I2I
networks in Section

6. The detection UAP is designed to fabricate additional wrong
detections (i.e., adding false positives).

6

images with the UAP are able to induce misclassifica-
tions/misdetections of other clean classification/detection
models.

6 EVALUATION

We perform extensive experiments over different datasets
and I2I networks to evaluate the performance of our
I2I backdoor attacks. All experiments are implemented in
Python and run on a NVIDIA RTX A6000.

6.1 Experimental Setup
6.1.1 Model Architecture

¢ 12 backdoor against I2I tasks: this work considers the
two most commonly used I2I tasks (image denoising and
image super-resolution) as examples to investigate the
vulnerability of I2I networks to backdoor attacks. For
the two tasks, we have selected several state-of-the-art
(SOTA) I2I network architectures, including SCUNet [2],
MPRNet [7]], MIRNet [21], DPIR [19] and ESRGAN [18],
for experimental evaluations. We firmly believe that other
121 tasks and I2I network architectures are also susceptible
to the 12 backdoor attacks in this work.

 I2I backdoor against downstream tasks: in the context
of the I2I backdoor that targets at the downstream clas-
sification/detection task, we employ the aforementioned
image denoising networks to conduct the upstream image
denoising task. For the downstream classification task, we
use the pre-trained ResNet50, VGG19 and MobileNetv2
model to perform image classification; for the down-
stream detection task, we use the pre-trained MobileNet-
YOLOVv3, EfficientNet-YOLOv3 and Darknet53-YOLOv3
model to perform object detection.

6.1.2 Datasets

e Image denoising task: following previous works [42],
[43], [44], we use Color400 as the training data, and CSet8
as the testing data.

o Image super-resolution task: we choose BSD100 [45] as
the training data, and Set14 [46] as the testing data.

« Downstream image classification task: we evaluate our
I2I backdoor against the downstream image classification
task on the ImageNet-1k [47] dataset.

¢ Downstream object detection task: we evaluate our 121
backdoor against the downstream object detection task on
the Pascal VOC dataset [48].

6.1.3 Attack Configuration

« Baseline trigger settings: (1) Patch backdoor trigger: fol-
lowing previous work [29], we employ a 16*16 patch in
the top left corner of the input 128*128 image as the
backdoor trigger; (2) Gaussian backdoor trigger: following
previous work [34], we employ a specific Gaussian noise
as the backdoor trigger. The mean is set to 0, the standard
deviation is set to 20/255; (3) Color backdoor trigger: we
follow the attack configuration proposed in [32]] and use
a specific shift in the color space as the backdoor trigger;
(4) Blend backdoor trigger: we follow the attack configu-
ration proposed in [30] and use the backdoor target image
as the blend image. The blending ratio is set to 0.1; (5)
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Refool backdoor trigger: we follow the attack configura-
tion proposed in [31] and use the backdoor target image
as the reflection trigger. The reflection ratio is set to 0.1; (6)
Filter backdoor trigger: we follow the attack configuration
proposed in [33] and use a specific Instagram filter as the

7

feature map in layer /; © denotes the channel-by-channel
multiplication and || - |2 denotes the square of the Eu-
clidean distance. A smaller LPIPS value means that the
two images are more similar in terms of human visual
perception.

backdoor trigger.

o UAP trigger settings: the number of normal images in D
is set to 10, the update step size of the trigger s is set to
5/255, the maximum number of iterations I is set to 20,
the range of the trigger is set to (-15/255, +15/255).

« Backdoor training process settings: we follow the hyper-
parameter settings in UW [35], DWA [36] and PCGrad
[37], and train the backdoor model with the Adam op-
timizer (learning rate equals to 0.0001). Besides, we also
introduce a static weighting (SW) approach for backdoor
training as a baseline comparison, where the weight of the
main task is set to 0.9 and the weight of the backdoor task
is set to 0.1.

6.2 Attack Performance Evaluation
6.2.1 Main Results

We have conducted extensive experiments of 12I backdoor
attacks with different backdoor triggers and MTL meth-
ods on various I2I network architectures. As presented
in Table [2} most triggers achieve high attack effectiveness
in attacking image denoising task. However, they fail to
preserve the similar normal-functionality with that of the
clean model. In comparison, the UAP trigger is superior
to other triggers in maintaining normal-functionality. As
provided in Table [3} only the UAP trigger achieves good
attack performance on all these I12I models. In addition, we
also calculate the sum of the normal-functionality and the
attack effectiveness to see which trigger achieves a better
balance of preserving normal-functionality and enhancing
attack effectiveness. The results show that the UAP trigger
always achieves the highest total score on all considered I2I
network architectures.

6.1.4 Evaluation Metrics

e 121 backdoor against I2I tasks: we employ the SSIM
[49] between images to measure the attack performance.
Specifically, for the backdoored I2I model, we calculate
the SSIM between the denoised/super-resolved result
for clean input image and the ground truth image (i.e.,
noise-free image or high-resolution image) to evaluate
the normal-functionality; we calculate the SSIM between
the denoised/super-resolved result for triggered image
and the backdoor target image to evaluate the attack
effectiveness.

o I2I backdoor against downstream tasks: for the back-
doored upstream image denoising model, we calculate
the test accuracy and mean Average Precision (mAP) of
the downstream classification and detection model on the
denoised results for normal input images to measure the
normal-functionality, respectively; we calculate the attack
success rate (ASR) of the denoised results for triggered
images on the downstream model to evaluate the attack
effectiveness.

« Stealthiness of triggered images: to evaluate the stealth-
iness of triggered images, we employ LPIPS [50] distance
as the metric, which is more consistent with human vision
system. Concretely, LPIPS evaluates the perceptual dis-
tance between two images by means of a deep learning
model. LPIPS suggests that even if two images are very
close to each other at the pixel level, a human observer
may perceive them as different. Therefore, LPIPS uses
pre-trained deep networks (e.g., VGG, AlexNet) to extract
image features[ij and then calculates the distance between
these features to evaluate the perceptual similarity be-
tween images. It is formulated as Equation (14):

1 H; W; . "
T ;; le © (fl (h,w) — £ (h,w))

6.2.2 Computational Overhead

We have assessed the computational overhead of generating
the UAP trigger. As provided in Table [} the computational
overhead of the UAP trigger generation algorithm is rela-
tively small and falls within acceptable bounds for potential
backdoor attackers. Hence, in the subsequent experiments,
we use the UAP trigger to perform our 12 backdoor attack.

TABLE 4: Computational overhead (s) for the UAP trigger
generation.

DPIR  SCUNet
18.08 49.54

MPRNet
52.22

MIRNet
128.13

ESRGAN
57.64

Furthermore, we have also evaluated the computational
overhead of different MTL methods. As outlined in Table
the difference between the computational overhead of these
MTL methods is relatively negligible. Therefore, without
loss of generality, we have opted to employ the PCGrad
method for MTL in the subsequent experiments.

TABLE 5: Computational overhead (s) for different MTL
methods (1 epoch).

2

Ipips(x, %) = Z
1

2
A 19 arcieeIlmethod | gy yw  DWA  PCGrad
where f(h,w) represents the features extracted from DPIR 13.64 893 14.15 16.58
image x at layer [; w; represents the channel weight of SCUNet 31.84 2595 30.15 39.01
layer I; H;, W; represent the height and width of the MPRNet 3539 3691 33.66 43.52
MIRNet 93.04 85.09 77.40 85.43
7. In this work, we employ the pre-trained VGG network for experi- ESRGAN 5472 5611  60.47 71.86

mental evaluations.
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TABLE 2: The performance of 12I backdoor with different triggers and MTL methods on image denoising task.

. MTL " Trigger type
Architecture method SSIM } None Gaussian  Color Fil%egr yII’Jatch Blend Refool UAP
Normal. | 0.8936 0.8690 0.8872 0.7816 0.7440 0.8914 0.8948 0.8961
SW Effect. \ 0.9949 0.9964 0.8723 0.9992 0.9437 0.9938 0.9936
Total \ 1.8649 1.8836 1.6539 1.7432 1.8351 1.8886 1.8897
Normal. 0.8660 0.7062 0.6351 0.7110 0.8766 0.8170 0.8855
DWA Effect. \ 0.9939 09786 0.8675 0.9995 0.9925 0.9158 0.9841
DPIR Total \ 1.8599 1.6848 1.5026 1.7105 1.8691 1.7328 1.8696
Normal. 0.8661 0.8288 0.5853 0.6957 0.8821 0.8821 0.8850
UW Effect. \ 0.9974 0.9928 0.9799 0.9989 0.9767 0.9350 0.9898
Total \ 1.8635 1.8216 1.5652 1.6946 1.8588 1.8171 1.8748
Normal. 0.8649 0.7953 0.6800 0.7372 0.8832 0.8863 0.8939
PCGrad  Effect. \ 0.9970 0.9900 0.9839 0.9996 0.9302 0.9851 0.9991
Total \ 1.8619 1.7853 1.6639 1.7368 1.8134 1.8714 1.8930
Normal. | 0.8839 0.8688 0.7713 0.7561 0.7534 0.8827 0.8746 0.8834
SW Effect. \ 0.9925 0.9906 0.8977 09414 0.9499 0.8268 0.9872
Total \ 1.8613 1.7619 1.6538 1.6948 1.8326 1.7014 1.8705
Normal. 0.8778 07360 0.8346 0.8228 0.8492 0.7948 0.8803
DWA Effect. \ 0.9988 0.9901 0.9725 0.9927 0.8842 0.8529 0.9988
SCUNet Total \ 1.8766 1.7261 1.8071 1.8155 1.7334 1.6477 1.8791
Normal. 0.8623 0.7536 0.7269 0.8087 0.8727 0.8612 0.8750
UW Effect. \ 0.9988 0.9996 0.9797 0.9965 0.9745 0.9848 0.9980
Total \ 1.8611 1.7532  1.7066 1.8052 1.8472 1.8460 1.8730
Normal. 0.8752 07511 0.6722 0.7667 0.8759 0.8371 0.8753
PCGrad  Effect. \ 0.9990 0.9994 0.9849 0.9910 0.9093 0.9230 0.9986
Total \ 1.8742 1.7505 1.6571 1.7577 1.7852 1.7601 1.8739
Normal. | 0.9081 0.7066 0.8865 0.7073 0.7822 0.8638 0.8938 0.9008
SW Effect. \ 0.9704 0.8790 0.8729 0.7385 0.9894 0.9884 0.9977
Total \ 1.6770 1.7655 1.5802 1.5207 1.8532 1.8822 1.8985
Normal. 0.6337 0.7701 0.6546 0.7410 0.8890 0.8145 0.8721
DWA Effect. \ 0.9361 0.9322 0.9022 09676 0.9970 0.9926 0.9871
MPRNet Total \ 1.5698 1.7023 15568 1.7086 1.8860 1.8071 1.8592
Normal. 0.7354 0.7594 0.7256 0.7374 0.8867 0.8829 0.9079
Uw Effect. \ 0.9978 0.8723 0.9271 0.9943 0.9953 0.9964 0.9997
Total \ 1.7332 1.6317 1.6527 1.7317 1.8820 1.8793 1.9076
Normal. 0.7240 0.7430 0.7390 0.7452 0.8853 0.8831 0.9151
PCGrad  Effect. \ 0.9963 0.8587 0.9305 0.9884 0.9944 0.9957 0.9995
Total \ 1.7203 1.6017 1.6695 1.7336 1.8797 1.8788 1.9146
Normal. | 0.9172 0.6887 0.8163 0.7797 0.8546 0.8957 0.8951 0.9139
SW Effect. \ 0.9983 0.9975 0.9534 0.9727 0.9779 09841 0.9964
Total \ 1.6870 1.8138 1.7331 1.8273 1.8736 1.8792 1.9102
Normal. 0.7025 0.7464 0.8010 0.8147 0.8382 0.8220 0.8645
DWA Effect. \ 0.9921 0.9516 0.9033 0.9892 0.9497 0.9845 0.9939
MIRNet Total \ 1.6946 1.6980 1.7043 1.8039 1.7879 1.8066 1.8585
Normal. 0.7205 0.8201 0.8101 0.8496 0.8872 0.8839 0.9001
UW Effect. \ 0.9811 0.9920 0.9720 0.9956 0.9905 0.9657 0.9920
Total \ 1.7016 1.8121 1.7821 1.8452 1.8777 1.8496 1.8921
Normal. 0.6991 0.8363 0.8325 0.8575 0.8944 0.8997 0.9060
PCGrad  Effect. \ 0.9954 0.9719 09819 0.9939 0.9823 0.9660 0.9994
Total \ 1.6945 1.8082 1.8144 1.8514 1.8767 1.8675 1.9054
Normal. | 0.9112 0.6009 0.7739 0.8056 0.6497 0.8726 0.8667 0.9146
SW Effect. \ 0.9733 0.9713 0.9345 0.9969 0.8121 0.9330 0.9925
Total \ 1.5742 1.7452 17401 1.6466 1.6847 1.7997 1.9071
Normal. 0.5565 0.7205 0.6585 0.5707 0.7926 0.8518 0.9073
DWA Effect. \ 0.9745 0.9903 0.7642 09569 0.7870 0.8895 0.9470
ESRGAN Total \ 1.5310 1.7108 1.4227 15276 15796 1.7413 1.8544
Normal. 0.6037 07944 0.6443 0.6220 0.8579 0.8715 0.8962
UW Effect. \ 0.9956 0.9986 0.9772 0.9886 0.9807 0.9881 0.9985
Total \ 1.5993 1.7930 1.6215 1.6106 1.8386 1.8596 1.8948
Normal. 0.5912 07892 0.7715 0.4988 0.8679 0.8807 0.9086
PCGrad  Effect. \ 0.9968 0.9990 0.9872 0.9729 0.9767 0.9891 0.9992
Total \ 1.5880 1.7882 1.7587 1.4717 1.8446 1.8698 1.9078

* Normal. denotes the normal-functionality; Effect. denotes the effectiveness; Total represents the sum of them. The bolded
results represent the maximum total score.
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TABLE 3: The performance of 12I backdoor with different triggers and MTL methods on image super-resolution task.

. MTL " Trigger type
Architecture method SSIM } None Gaussian  Color Fil%egr yII’Jatch Blend Refool UAP
Normal. | 0.8381 0.7915 0.7812 0.6328 0.7320 0.7259 0.7531 0.7920
SW Effect. \ 0.9475 0.4166 0.5466 0.9864 0.9618 0.6862 0.9631
Total \ 1.7390 1.1978 1.1794 1.7184 1.6877 1.4393 1.7551
Normal. 0.7884 05442 0.6739 0.7937 0.7641 0.7517 0.7866
DWA Effect. \ 0.9954 0.7099 0.5146 0.6529 0.8448 0.8982 0.9763
DPIR Total \ 1.7838 1.2541 1.1885 1.4466 1.6089 1.6499 1.7629
Normal. 0.7925 0.6956 0.7066 0.7694 0.7870 0.8154 0.8308
UW Effect. \ 0.9953 0.5773 0.6134 0.9093 0.9669 0.9228 0.9887
Total \ 1.7878 1.2729 13200 1.6787 1.7539 1.7382 1.8195
Normal. 0.7966 0.7428 0.6616 0.7818 0.7933 0.8218 0.8201
PCGrad  Effect. \ 0.9938 0.5981 0.5387 0.8456 0.9734 0.9143 0.9862
Total \ 1.7904 1.3409 1.2003 1.6274 1.7667 1.7361 1.8063
Normal. | 0.8492 0.7912 0.8082 0.7738 0.8092 0.6438 0.7876 0.8476
SW Effect. \ 0.8678 0.6631 0.6199 0.8243 0.8059 0.5305 0.8615
Total \ 1.6590 14713 1.3937 1.6335 1.4497 1.3181 1.7091
Normal. 0.7367 0.6284 0.8262 0.8227 0.7201 0.7818 0.8227
DWA Effect. \ 0.9594 0.8914 0.7317 0.7255 0.8473 0.7597 0.8971
SCUNet Total \ 1.6961 1.5198 15579 1.5482 1.5673 1.5415 1.7198
Normal. 0.7445 0.7239 0.6484 0.7798 0.6958 0.7604 0.8285
UW Effect. \ 0.9717 0.9933 0.8445 0.8954 0.8480 0.7703 0.9075
Total \ 1.7162 1.7172 14929 1.6752 1.5438 1.5307 1.7360
Normal. 0.7520 0.7202  0.6370 0.7921 0.7341 0.6704 0.8357
PCGrad  Effect. \ 0.9379 0.9930 0.8918 0.8272 0.8892 0.8982 0.8750
Total \ 1.6899 1.7132 1.5288 1.6193 1.6233 1.5686 1.7107
Normal. | 0.8737 0.8536 0.7683 0.7467 0.7401 0.7030 0.7890 0.8732
SW Effect. \ 0.9855 0.3369 0.2216 0.4000 0.5619 0.4922 0.9736
Total \ 1.8391 1.1052 0.9683 1.1401 1.2649 1.2812 1.8468
Normal. 0.8019 0.8167 0.6647 0.8696 0.7529 0.8431 0.8729
DWA Effect. \ 0.9638 0.2939 0.4193 05048 0.7806 0.7711 0.9832
MPRNet Total \ 1.7657 1.1106 1.0840 13744 15335 1.6142 1.8561
Normal. 0.8085 0.8494 0.7961 0.8631 0.7705 0.8212 0.8745
UW Effect. \ 0.9900 0.3532  0.2410 05041 0.6751 0.7973  0.9910
Total \ 1.7985 1.2026 1.0371 1.3672 1.4456 1.6185 1.8655
Normal. 0.8085 0.8341 0.7659 0.8715 0.6517 0.8418 0.8719
PCGrad  Effect. \ 0.9779 0.3902 0.2305 0.4988 0.6036 0.7459 0.9879
Total \ 1.7864 1.2243 09964 1.3703 1.2553 1.5877 1.8598
Normal. | 0.8673 0.7423 0.6467 0.7464 0.8700 0.7459 0.6828 0.8664
SW Effect. \ 0.9497 0.8711 0.5154 0.9951 0.2901 0.5696 0.9844
Total \ 1.6920 1.5178 1.2618 1.8651 1.0360 1.2524 1.8508
Normal. 0.8688 05337 0.6440 0.8668 0.7802 0.6921 0.8646
DWA Effect. \ 0.9779 0.7573 09011 0.9961 0.7827 0.4265 0.9968
MIRNet Total \ 1.8667 1.2910 1.5451 1.8629 1.5629 1.1186 1.8614
Normal. 0.7312 0.8404 0.7889 0.8692 0.6879 0.7393 0.8705
UW Effect. \ 0.9793 0.8187 0.7569 0.9946 0.5735 0.9041 0.9990
Total \ 1.7105 1.6591 1.5458 1.8638 1.2614 1.6434 1.8695
Normal. 0.8047 0.8320 0.6444 0.8648 0.6860 0.6751 0.8692
PCGrad  Effect. \ 0.9706 0.8689 0.9236 0.9956 0.3490 0.8780 0.9949
Total \ 1.7753 1.7009 1.5680 1.8604 1.0350 1.5531 1.8641
Normal. | 0.8650 0.8735 0.8186 0.8005 0.8718 0.8535 0.8228 0.8713
SW Effect. \ 0.9818 0.3929 0.6037 02934 0.4067 0.3409 0.9950
Total \ 1.8553 1.2115 14042 1.1652 12602 1.1637 1.8663
Normal. 0.8719 0.7592  0.6913 0.8182 0.8277 0.8032 0.8690
DWA Effect. \ 0.9941 0.6040 0.5489 0.3594 0.4416 0.3585 0.9971
ESRGAN Total \ 1.8660 1.3632  1.2402 1.1776 1.2693 1.1617 1.8661
Normal. 0.8656 05908 0.8433 0.8640 0.8349 0.8314 0.8686
UW Effect. \ 0.9946 0.8538 0.6614 0.1596 0.7015 0.4340 0.9936
Total \ 1.8602 14446 15047 1.0236 1.5364 1.2654 1.8622
Normal. 0.8752 07274 0.8112 0.8546 0.8460 0.8113 0.8728
PCGrad  Effect. \ 0.9907 0.7271 0.7494 0.2688 0.5862 0.4314 0.9969
Total \ 1.8659 1.4545 15606 1.1234 1.4322 1.2427 1.8697

* Normal. denotes the normal-functionality; Effect. denotes the effectiveness; Total represents the sum of them. The bolded
results represent the maximum total score.
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6.3 Ablation Study
6.3.1 Ablation Study of the Loss Function

In this section, instead of using SSIM metric and MSE loss,
we employ the perceptual loss function and use LPIPS
[50] as the metric. LPIPS uses pre-trained deep networks
to extract image features and then calculates the distance
between these features to evaluate the perceptual simi-
larity between images. Specifically, we replace the main
task loss and backdoor task loss with the perceptual loss
functions based on LPIPS metric: £,,, = lpips(F'(X,),Y,),
Ly = lpips(F(Xp),Ys). The lpips(z, &).

After that, the UAP trigger and PCGrad MTL method
are selected as an example®| to evaluate the attack per-
formance across different architectures. As presented in
Table [6] the “Normal.” of clean/backdoor model denotes
the LPIPS distance of the denoised (or super-resolution)
image and the original image, representing the normal-
functionality of the clean/backdoor model; the “Effect.” of
backdoor model denotes the LPIPS distance of the denoised
(or super-resolution) version of the triggered image and
the backdoor target image, representing the attack effec-
tiveness of the backdoor model. It can be observed that
121 backdoor does not cause significant degradation in the
normal-functionality of the backdoor model. Besides, it also
achieves high attack effectiveness, i.e., the denoised (or
super-resolution) version of the triggered image is extremely
similar to the backdoor target image. Therefore, it can be
concluded that 121 backdoor is highly generalisable and can
achieve great attack performance for different loss functions
and similarity metrics.

TABLE 6: The attack performance of 121 backdoor with the
perceptual loss functions based on LPIPS metric.

Clean model Backdoor model

Task Architecture Normal. Effect. | Normal.  Effect.
DPIR 0.0217 \ 0.0228  0.0029

SCUNet 0.0261 \ 0.0270  0.0070

Denoise ~ MPRNet 0.0289 \ 0.0295  0.0066
MIRNet 0.0252 \ 0.0258  0.0019

ESRGAN 0.0318 \ 0.0335  0.0025

DPIR 0.0752 0.0770  0.0051

SCUNet 0.0912 \ 0.0933  0.0092

SR MPRNet 0.0809 \ 0.0838  0.0083
MIRNet 0.0834 \ 0.0882  0.0045

ESRGAN 0.0887 \ 0.0901  0.0058

6.3.2 Impact of Different Weights on Attack Performance

In this section, we conduct experiments to evaluate the
attack performance under different weights for main task
and backdoor task. Since the weights assigned by dynamic
weighting methods (UW, DWA, and PCGrad) are constantly
changing, we mainly consider the static weighting method.
Specifically, we select the Gaussian and UAP trigger on
DPIR model as an example, set the weight of the backdoor
task from 0.1 to 0.9 and present the experimental results in
Figure [ It can be seen that as the weight of the backdoor
task increases, the model normal-functionality decreases
dramatically; and the increase in the weight of the backdoor
task has no significant improvement in attack effectiveness.

8. Other cases yield the same experimental results.

10
i i
Frmmgmms
0.8 0.8
= =
7} 7]
%] 2]
0.6 —+—Gaussian normal 0.6 —+—Gaussian normal
-*-Gaussian effect " -~Gaussian effect
—+UAP normal —~UAP normal
-+ UAP effect -+ UAP effect
0.4 0.4
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Weight of the backdoor task Weight of the backdoor task

(a) Denoise task (b) Super-resolution task

Fig. 5: The attack performance under different weights.

Therefore, in our default settings, we set the weight of the
main task to 0.9 and the weight of the backdoor task to 0.1
in the static weighting method.

6.3.3 Impact of Different MTL Weighting Methods on Con-
vergence Rates

We further carry out thorough ablation studies focused on
the impact of different MTL weighting methods on the
convergence rate. As illustrated in Figure [} it can be ob-
served that the dynamic weighting methods, including UW,
DWA, and PCGrad, always outperform the static weighting
method in terms of convergence rates. This phenomenon
can be attributed to the inherent complexity of the I2I back-
door task, which involves mapping a triggered image to an
entirely unrelated backdoor target image. Such complexity
invariably leads to conflicts with the main task. The static
weighting method tends to struggle to achieve an optimal
balance between these competing tasks, resulting in reduced
training efficiency. Hence, the dynamic weight methods
emerge as the more sensible choice for facilitating the I2I
backdoor training process.

6.4 Stealthiness Evaluation

In addition to evaluating the effect of backdoor injection on
the decrease of model normal-functionality, we further cal-
culated the LPIPS distance of the backdoor-triggered images
from the original images to assess the stealthiness of the at-
tack. It can be seen from Table [7]that the backdoor-triggered
images maintain high stealthiness, the LPIPS distances are
all below 0.08. The patch trigger is the most stealthy trigger
type with the metric of LPIPS. This may be because LPIPS
is less sensitive to local, meaningless perturbations.

TABLE 7: Stealthiness evaluation of different trigger types
and testing datasets.

I Dataset | goig  Setl4  ImageNet Pascal VOC
rigger
Caussian 0.0568 00506  0.0714 0.0785
Color 0.0087 00257 00229 0.0198
Filter 00195 00381 00458 0.0316
Patch 00071 00041  0.0040 0.0051
Blend 0.0328 00107 00181 0.0202
Refool 00134 00327 00427 0.0294
UAP 0.0317 00342 00413 0.0280

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 04,2025 at 00:54:04 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3603639

—~SwW

11

—~Sw
—=uw
—-DWA
PCGrad

—~-Sw

—~uw

~~DWA
PCGrad

20 730 0 10 20 30 0 10
Epoch

(b) SCUNet

Epoch

(a) DPIR

(c) MPRNet

o
20 30 40 0 10 20 30 40 0 10 20 30 40 50
Epoch Epoch

(d) MIRNet (e) ESRGAN

Fig. 6: The convergence rates of the training loss with different MTL methods.

TABLE 8: Performance of 12 backdoor attack under model
fine-tuning.

Epoch SSIM | DPIR SCUNet MPRNet MIRNet ESRGAN
10 Normal. [0.8939 0.8855 0.9145 0.9049  0.9038
Effect. [0.9990 0.9989  0.9995 0.9994  0.9978

20 Normal. [0.8935 0.8850 0.9156 0.9056  0.9039
Effect. [0.9991 0.9981 0.9994 0.9994  0.9987

30 Normal. [0.8940 0.8857 0.9162 0.9052  0.9036
Effect. |[0.9987 0.9986 0.9992 0.9983  0.9983

40 Normal. [0.8944 0.8853  0.9160 0.9056  0.9034
Effect. [0.9989 0.9992 0.9988 0.9989  0.9987

50 Normal. [0.8948 0.8851 0.9161 0.9058  0.9037
Effect. |0.9985 0.9980 0.9990 0.9994  0.9985

6.5 Robustness Evaluation

In this section, we turn our attention to the robustness
evaluation of the I12I backdoor attack against various defense
methods. It should be pointed out that many backdoor de-
fense techniques are designed for neural network classifiers,
such as Neural Cleanse [51], STRIP [52], and Spectral Signa-
ture [53]], they are not directly applicable to our I2I backdoor
attacks. Thus, we have selected three defense methods,
including bit depth reduction [54], image compression [55]
and model fine-tuning to evaluate the robustness of the 121
backdoor attacks.

Bit depth reduction. We reduce the bit depth of input
images before sending them to I12I models. As illustrated in
Figure [/} the effectiveness of the attack consistently main-
tains a high level as the bit depth decreases. It demonstrates
that the preprocessing of bit depth reduction is ineffective
in mitigating our 121 backdoor attack.

Image compression. We compress input images before
sending them to I2I models. As depicted in Figure [8] the
degradation in normal-functionality consistently outweighs
the degradation in attack effectiveness as input images un-
dergo image compression. Thus, the preprocessing of image
compression is also far from an effective defense method
against the proposed I2I backdoor attack.

Model fine-tuning. We assume that the defender has a
small amountﬂ of clean images and uses these images to
fine-tune the backdoored I2I model. As presented in Table
the I2I backdoor remains effective after fine-tuning with
clean images.

STRIP. We extend the representative backdoor detection
method STRIP [52] to 121 tasks and evaluate the robustness

9.In our experiments, this amount is assumed to be 10% of the
original training dataset.

of the I2I backdoor under this defense. STRIP is a testing-
time backdoor detection method that detects whether a test-
ing image contains a trigger. The idea of STRIP is based on
the assumption that the backdoor trigger is robust and can
remain effective when a triggered image is superimposed by
a clean image. In our work, we design the STRIP method for
the 121 task following the framework of the STRIP method
in the image classification task. Specifically, we sample 400
clean images and superimpose the target image with these
clean images separately, and send them to I2I models to
obtain output images. After that, we calculate the LPIPS
distances between the output image corresponding to each
superimposed image and the output image corresponding
to the original target image. If the target image is backdoor-
triggered, the output images will show high similarity.
Conversely, if the target image is clean, the output images
will show low similarity. Hence, we select the UAP trigger
on DPIR denoise model as an example, and calculate and
compare the LPIPS distance distributions of the clean and
triggered image. As illustrated in Figure [9] we observe
that the clean and triggered target image have very similar
LPIPS distance distributions so that STRIP is not able to
distinguish whether a testing image contains the backdoor
trigger or not. This is mainly because the UAP trigger is
destroyed when the triggered image is superimposed with
a clean image, the backdoor trigger becomes ineffective in
the superimposed image.

6.6 Evaluation on 121 Backdoor Attack against Down-
stream Classification Task

To perform the I2I backdoor attack against the downstream
classification task, we employ the Algorithm 2| to generate
the UAP against the pre-trained ResNet152 classifier. After
that, we employ this UAP to embed the I2I backdoor at-
tack into the upstream image denoising model. Finally, we
evaluate the attack performance on other clean pre-trained
classifiers (including ResNet50, VGG19 and MobileNetV2)
to measure the attack transferability.

In the case of the I2I backdoor attack against the down-
stream object detection task, we employ the UAP generation
algorithm for object detection [41] to construct the UAP
against the pre-trained MobileNetvl-YOLOv3 detector. Af-
ter that, we employ this UAP to embed the I2I backdoor
attack into the upstream image denoising model. Finally,
we evaluate the attack performance on other clean pre-
trained object detectors (including MobileNetv2-YOLOv3,
Darknet53-YOLOvV3 and EfficientNet-YOLOv3) to measure
the attack transferability.
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Fig. 7: The performance of I12I backdoor attack under bit depth reduction.
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As presented in Table [9] and for clean input im-
ages, the downstream denoised accuracy/mAP of the back-
door denoising model and the normal denoising model
exhibit minimal disparity. This confirms that the I2I back-
door does not affect the normal-functionality of the down-
stream classification/detection task. In the case of backdoor-
triggered input images and the backdoor upstream denois-
ing model, the denoised versions of these images can fool
the downstream clean pre-trained classifiers/detectors with
high success rates. This proves the attack effectiveness of
the I2I backdoor attack against the downstream classifica-
tion/detection task.

In addition, we also evaluate the attack performance of
our I2I backdoor attack against adversarially trained down-
stream models. Specifically, for downstream classification
models, we employ a PGD adversarial training strategy
during the training phase to obtain the adversarially trained
model. For downstream detection models, we follow the
work [56] to perform PGD adversarial training in the object
detection task. The PGD step is also fixed to 10, and the
maximum perturbation is set to 4/255.

As illustrated in Table [11} the adversarial training strat-
egy does show some degree of mitigation against 121 back-
door attacks. Concretely, adversarial training shows more

TABLE 9: The performance of I2I backdoor attack against
downstream classification task (with the UAP against
ResNet152 classifier).

Upstream Downstream | Denoised accuracy (%) ASR (%)
denoising classification | Clean D Backdoor D| Backdoor D
model D model Clean img. Clean img. | Backdoor img.
ResNet50 72.08 71.48 7248
DPIR VGGI9 65.32 65.42 85.90
MobileNetV2 64.40 64.68 74.90
ResNet50 7172 71.56 72.64
SCUNet VGGI9 65.06 64.26 80.96
MobileNetV2 65.66 65.20 7474
ResNet50 71.34 71.22 72.82
MPRNet VGGI9 64.62 64.54 81.14
MobileNetV2 64.32 64.66 74.92
ResNet50 71.64 71.40 7274
MIRNet VGGI9 65.30 63.88 80.72
MobileNetV2 65.04 64.34 75.12
ResNet50 71.16 69.80 72.78
ESRGAN VGGI9 64.42 63.36 81.48
MobileNetV2 64.22 62.92 75.56

significant attack mitigation effect on the downstream clas-
sification task, but is less effective in defending the down-
stream detection task. This may be due to the fact that the
detection task is more complex than the classification task,
and the UAP targeting the detection task is more likely to
have higher generalizability and transferability. In addition,
adversarial training will result in the degradation of the
model normal-functionality to some degree (about 2.8%
accuracy loss for the classification task and about 3.1% mAP
loss for the detection task). Hence, it can be concluded that
adversarial training can only mitigate the attack effect to
some extent but can not completely defend against the 121
backdoor attack.

6.7 Harnessing 12| Backdoor for Positive Applications

It's noteworthy that the potential of 121 backdoor attacks
can extend beyond malicious intent, finding utility in ethical
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TABLE 10: The performance of I2I backdoor attack
against downstream detection task (with the UAP against
MobileNetv1-YOLOvV3).

Upstream Downstream mAP (%) ASR (%)
denoising detection Clean D Backdoor D| Backdoor D
model D model Clean img. Clean img. |Backdoor img.
MobileNetv2-YOLOv3| 68.21 66.94 81.17
DPIR  Darknet53-YOLOvV3 78.05 76.31 78.45
EfficientNet-YOLOv3 |  76.01 73.42 68.02
MobileNetv2-YOLOv3| 69.55 67.87 80.58
SCUNet Darknet53-YOLOV3 79.64 76.01 77.06
EfficientNet-YOLOv3 | 75.85 72.07 70.34
MobileNetv2-YOLOv3| 70.84 70.98 84.10
MPRNet Darknet53-YOLOvV3 80.01 79.50 80.77
EfficientNet-YOLOv3 | 78.34 77.51 69.31
MobileNetv2-YOLOv3| 71.11 69.73 87.24
MIRNet Darknet53-YOLOvV3 82.00 80.21 83.61
EfficientNet-YOLOv3 | 79.08 78.24 72.12
MobileNetv2-YOLOv3| 70.05 71.84 83.75
ESRGAN Darknet53-YOLOv3 81.23 83.43 81.61
EfficientNet-YOLOv3 | 78.99 81.63 70.20

TABLE 11: The performance of I12I backdoor attack against
adversarially trained downstream models.

Upst1'“e'am Dowpﬁre_am ASR Downst;eam ASR
denoising | classification (%) detection (%)
model D model © model ©

ResNet50  38.55 | MobileNetv2-YOLOv3 58.43

DPIR VGGI9 46.18| Darknet53-YOLOv3 53.10
MobileNetV2 41.07| EfficientNet-YOLOv3 44.61

ResNetb0  35.97 | MobileNetv2-YOLOv3 59.01

SCUNet VGGI9 4422 | Darknet53-YOLOv3 52.30

MobileNetV2 39.46 | EfficientNet-YOLOv3 44.99

ResNet50  36.59 | MobileNetv2-YOLOv3 60.15

MPRNet VGGI9 43.01| Darknet53-YOLOv3 55.98
MobileNetV2 42.23 | EfficientNet-YOLOv3 49.83

ResNet50  35.91 | MobileNetv2-YOLOv3 58.97

MIRNet VGGI19 42.32| Darknet53-YOLOv3 52.86
MobileNetV2 40.40 | EfficientNet-YOLOv3 47.15

ResNet50  37.15 | MobileNetv2-YOLOv3 57.60

ESRGAN VGGI9 43.28 | Darknet53-YOLOv3 53.43
MobileNetV2 39.81 | EfficientNet-YOLOv3 50.24

applications. For example, the technology can be used for
image steganography, e.g., it facilitates the covert hiding
of confidential information (e.g., a specific image) within
images, which can be subsequently retrieved using the
backdoor I2I model.

As illustrated in Figure [10} the sender of the secret mes-
sage steganographically embeds images with text messages
as backdoor target images within the backdoor 12I model.
After that, the receiver of the secret message triggers the
backdoor 121 model by using the backdoor-triggered input
image and obtains the secret message (the backdoor target

Backdoored 121

network Target output image

Watermarked image
I

BT

; This is
P e a secret
: WIQ message
o " A

Fig. 10: I12I backdoor for image steganography.
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TABLE 12: The extraction accuracy of the image steganog-
raphy scheme using I2I backdoor under different image
preprocessing operations.

Preprocessing method SSIM

No preprocessing 0.9887

Image compression (100%—80%) | 0.9851
Image compression (100%—60%) | 0.9720
Image compression (100%—40%) | 0.9415
Bit depth reduction (8—6) 0.9878

Bit depth reduction (8—5) 0.9852

Bit depth reduction (8—4) 0.9813

image). Taking DPIR model as an example, we evaluate
the extraction accuracy of the image steganography scheme
using I2I backdoor under different image preprocessing
operations. It can be seen from Table that the image
steganography scheme using I2I backdoor achieves high ex-
traction accuracy, where SSIM represents the SSIM between
the recovered image and the secret message image. This
provides new perspectives for the design of image steganog-
raphy schemes where the backdoor I2I model serves as the
secret information carrier.

7 CONCLUSIONS

In this work, we propose a novel backdoor attack against
I2I networks. Specifically, we design a universal adversarial
perturbation (UAP) generation algorithm for I2I networks,
where the generated UAP is used as the trigger for the 121
backdoor. Besides, MTL with dynamic weighting methods
are employed in the backdoor training process to achieve
better performance. Additionally, we propose an 121 back-
door attack that is targeted at the downstream image clas-
sification/object detection tasks, where the denoised image
of the backdoor-triggered input image (by the backdoor de-
noising model) will lead to misclassification/misdetection
of the unknown downstream classification/misdetection
models. Extensive experiments demonstrate the effective-
ness and the robustness of the proposed I12I backdoor at-
tacks. We hope that the insights and solutions proposed
in this work will inspire more advanced studies on I2I
backdoor attacks and defenses in the future.
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