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Abstract—In this paper, we present Antelope, a semi-honest
large-scale secure inference system without revealing either
clients’ data or model parameters. The main contributions of
Antelope are new two-party computation (2PC) protocols over
a ring Z,. for non-linear layers, which optimize the online
computation and communication overhead thus outperforming
the state-of-the-art 2PC systems. Specifically, we reformulate
the comparison function as an Equality-to-Zero test followed
by multiplication, decoupling the bit-wise rounding dependency
in traditional secret sharing-based bit extraction. With this
technique, the evaluation of the non-linear activation function
ReLU is 1.7 ~ 84.5x faster than existing solutions in online
communication cost. We also develop a suite of optimizations
that improve the efficiency of secure division protocols, which
are tailored to different divisor settings in the neural networks.
We extend our protocols to construct efficient implementations
for several building blocks such as ReLU, Maxpool, truncation,
and Softmax. End-to-end evaluation on realistic ImageNet-scale
networks demonstrates that Antelope has an encouraging
online runtime boost of over 22.3x in the LAN setting and over
23.0x in the WAN setting without accuracy loss, compared to
the state-of-the-art works.

Index Terms—Neural network inference, Secure two-party
protocol.

I. INTRODUCTION

Machine learning has emerged as a promising branch of ap-
plied science due to the increasing volume of data. Its potential
is available in critical areas such as medical diagnosis, face and
speech recognition, object classification, question answering,
and threat analysis. Many well-known enterprises, such as
Amazon, Google, and Microsoft, have already pioneered pay-
per-use cloud-based machine learning platforms to provide
model inference services, also referred to as Machine Learning
as a Service (MLaaS) [27]. However, the deployment of
MLaaS for commercial applications raises privacy concerns:
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existing services either require clients to upload potentially
sensitive query data to the cloud or deploy the proprietary
model on their devices. Neither of these solutions is desirable,
as the former compromises the clients’ privacy, while the latter
could reveal important information such as model parameters
and training data, seriously infringing the commercial intel-
lectual property of the service provider’s model.

To alleviate the concerns mentioned above, the machine
learning community has dedicated itself to tailoring spe-
cialized cryptographic protocols to evaluate neural network
inference without revealing either the client’s data or the
service provider’s model [8], [20], [22], [31], [39], [40],
[50], [52]. Recently, the hybrid methods that combine secret
sharing-based linear calculations with Yao’s garbled circuit
(GC) [59] based non-linear operations have shown superior
performance [36], [41], [43]. By relocating heavy crypto-
graphic computations to a data-independence phase, secret
sharing enables fast addition and multiplication. This makes
the evaluation speed of the linear layers close to that of
plaintext. Currently, the computation of non-linear functions
such as ReLLU is a major hurdle for both 2PC constructions and
realistic neural network inference. Privately evaluating such
functions with GC requires that the function is decomposed
as a circuit of binary gates that process the input bit-wise,
where each gate is expressed as encrypted two-input truth
tables [21]. Consequently, evaluating any function with a ¢-
bit input takes the communication complexity of at least
O(kl), where & is the cryptographic security parameter. As
such, the high computation and communication overheads
caused by cryptographic tools limit the above works to shallow
models on small datasets [51]. For instance, these methods
may perform satisfactorily on the MNIST classification task
using the LeNet-5 model, which processes only approximately
60 thousand parameters. They are not efficient in privately
performing the practical ImageNet inference task, e.g., using
the ResNet50 model with nearly 23 million parameters.

CrypTFlow2 [49] is the first work to show the possibility
of secure inference over large-scale models. It proposes a
new comparison protocol using the Oblivious Transfer (OT)
technique [S] and applies it to non-linear layers of neural
networks, which achieves significant improvements in com-
putation efficiency. Meanwhile, it also gives a secure division
protocol with public divisor by representing the division of
ring element to signed integer division, which achieves 54 x
less communication over GC. However, this work is still far
from practical. Taking a home surveillance system that uses
ResNet50 for activity monitoring as an example, CrypTFlow?2
takes about 60 minutes to recognize malicious activities in
an Intra Picture with the resolution of 256x256 pixels and
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TABLE I: Comparison with prior works for secure comparison protocols, where the best results are in bold. x is the
cryptographic security parameter associated with standard cryptographic primitives, typically 128. n refers to the number
of four-input AND gates. For ABY2.0 [47], we have 1 = 2ng + 8ng 4+ 22n4 and z9 = ng + ng + nyg, where no, ns, ny denote
the number of AND gates in the bit extraction circuit with 2, 3, 4 inputs, respectively. For example, when ¢ = 64, the circuit

needs ny = 41, ng = 27 and nyg = 47.

Setup Online
Protocol Work Comm Comm Rounds
GC [18], [36], [41], [60] - 164k — 6K 2
Secure Comparison CrypTFlow?2 [49] - Sk(£+1)+314—13 | logl+2
over ring Z,e Cheetah [33] - 413k +712) + 40+ 2 logl + 2
ABY2.0 [47] zi(k+1)+7 7+ 2xo log, 0+ 1
Our work 602 + 90 + 44n + 1 20 +2n log 0 + 2
GC [18], [36], [41], [60] - 130,304 2
An instance of CrypTFlow2 [49] - 14,451 8
Secure Comparison Cheetah [33] — 9,762 8
=64, k=128, n =21 ABY2.0 [47] 171,892 294 4
Our work 26,077 170 5

then issue an alert (see Table 7 in [49]). More recent research,
Cheetah [33], makes improvements over CrypTFlow2 by 5x
in runtime and 13X in communication costs, respectively. It
designs a homomorphic encryption-based protocol to evalu-
ate linear layers without expensive rotation operations and
replaces the OT protocols [38] used in CrypTFlow2 with
more efficient ones [7], [54], [58]. Despite these advanced
solutions, Cheetah still can not meet the real-time requirements
in practice, especially for efficiency-critical scenarios such
as aviation and finance. This motivates us to design a more
efficient and secure protocol for real-world neural network
inference.

A. Our Contributions

This paper proposes Antelope, a fast and secure two-
party computation (2PC) scheme over a ¢-bit ring (i.e. Zqe)
for neural network inference, which provides security against
a static semi-honest adversary. Antelope inherits the effi-
cient implementation for linear layers from prior works [18],
[47], and aims to construct novel building blocks for non-
linear functions to achieve high online efficiency. By push-
ing heavy cryptographic operations into an input-independent
setup phase, the proposed protocols enable a lightweight
“non-cryptographic” online phase once the inputs are known,
empowering us to perform secure inferences on more realistic
network architectures than those considered in prior works
[18], [41], [47]. Our gains largely stem from simple protocol
constructions, reduced round complexity and communication
cost, as well as improvements in silent OT generators [7],
[58]. As a result, our scheme enjoys a lower amortized com-
munication cost for preprocessing materials and competitive
online efficiency in secure inference. To sum up, we make the
following contributions:

« New secure comparison protocol. We first refactor the
comparison operation as a sign extraction computation.
Then, we design a novel protocol for sign extraction using
an Equality-to-Zero circuit, which decouples the bit-wise
rounding dependency in traditional secret sharing based bit
extraction. This design reduces the online communication
cost by 762.0x over GC [41], [47], 84.5x over CrypTFlow2
[49], 57.1x over Cheetah [33], and 1.7x over ABY2.0
[47] (see Table I for detailed comparisons). We theoreti-
cally and experimentally verify that this design results in

a direct improvement in online and setup communication
overhead. With this end-to-end solution, we can securely and
efficiently evaluate the non-linear operations (e.g., ReLU) in
neural networks.

o New optimizations for secure division protocols. By
carefully co-designing the model architecture and crypto-
graphic components, we propose novel optimizations for
two division protocols with different divisor settings to
evaluate neural networks: a) the divisor is secretly shared
between two parties, which can be used to perform Soft-
max; b) the divisor is a public constant for both parties,
such as truncation after multiplication. The secure division
protocol with a public divisor in Antelope improves the
performance by up to 1.7x over the state-of-the-art [33]
in online communication cost with less than half of the
communication rounds. For more challenging secret-shared
divisor setting, our protocol reduces the online communica-
tion overhead from O(rf?) to O((Deg + log /) - £), where
Deg +logl < KC.

o Concrete efficiency. We make a black-box use of the
silent OT technique [7], [58] to prepare pre-processing
materials in secure computation such as multiplication
triples with low communication overhead. With this, we
can compute 107 triples in less than 3 seconds, resulting
in significant reductions in communication and computation
costs of the setup phase. We conduct extensive exper-
iments on realistic ImageNet-scale models: SqueezeNet,
ResNet50, and DenseNet121. Experimental results indicate
that Antelope is an order of magnitude more efficient than
state-of-the-art works. For example, in the WAN setting,
using Antelope for the secure inference on ResNet50
yields about 29.0x faster online runtime than Cheetah [33].

B. Paper Organization

We briefly review the threat model and primitives used
in this paper in Section II. We elaborate on the details of
the secure comparison protocol in Section III, followed by
the secure division protocols in Section IV. We describe
several building blocks for secure neural network inference
and formal security proof in Section V. We provide detailed
implementation and experimental results in Section VI. In
Section VII, we discuss some related works. Section VIII
concludes the paper and discusses future work.
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II. PRELIMINARIES
A. Threat Model

Our secure inference protocol IIyn is in the two-party
setting, where the service provider Py has a proprietary neural
network Xg, while the client P, holds private query data
Xc. Both the service provider and the client are assumed
to be aware of the neural network architecture. Consistent
with previous semi-honest 2PC inference works [18], [36],
[41], [43], [47], [49], [60], we aim to defend against a static
semi-honest adversary A corrupting one of the two parties. .4
may endeavor to gather additional information from what he
masters. With this threat model, Antelope aims to allow the
client P; to obtain the most inference result Fyn(Xs, X¢),
where Fnn is the inference functionality, while the service
provider Py is required to perform the prediction securely
without obtaining any information on the private query data of
the client. The formal security definition is given in Section A
of Appendices.

Since our scheme is built on a semi-honest adversary
model, deliberately submitting a crafted query or arbitrary
intermediate values to compromise privacy is beyond the scope
of this paper [10]. We consider it the strongest security model
and will discuss it in future work. Additionally, defending
against indirect privacy attacks, such as membership inference
[55] and model inversion [45], are orthogonal directions and
are not considered in this paper. Our scheme can be combined
with their efforts to construct an all-encompassing system for
secure and private inference.

B. Notations

In this work, we consider a set of two parties P = { Py, P1 }
who interactively perform neural network inference protocol.
For machine learning where the real values v € R are floating-
point numbers, we use fixed-point arithmetic representation to
encode the value into fixed-point integers v over the ring Zoe,
where the most significant bit (MSB) represents the sign while
the least significant s bits represent the fractional part. We use
¢ = 64 and s = 13 in our implementation. Besides, 1{b}
denotes the indicator function that outputs 1 if and only if

b is true. For a finite set WV, the notation w ﬁ W refers to
sample w independently and uniformly at random from the set
W. To boost the efficiency of secure inference, we perform
operations over the arithmetic or Boolean world. So we use
superscripts A and B to distinguish the protocols or sharing
in Arithmetic ring Zq¢ or in the Boolean world Z,. Also, we
place the lowercase letter a in the superscript to denote the
value over an arithmetic ring Zo¢ corresponding to its boolean
representation over Zs. In some cases, superscripts are omitted
for simplicity of description, which refers to the arithmetic
world by default.

C. Private Neural Network Inference

Throughout this paper, we revolve around a classical ma-
chine learning algorithm, i.e., convolutional neural network.
Typically, modern neural networks consist of one input layer,
many hidden layers, and one output layer. The hidden layers
stitch the linear layer and non-linear alternately and are also
the most computationally heavy zone. The linear layers involve

Convolution, Matrix Multiplication, BatchNorm, and Avgpool,
while the non-linear layers include activation functions such
as ReLU, truncation, Maxpool, and Softmax. To achieve
good performance on realistic inference, it is essential to
design efficient sub-protocols for each function. The idea of
pushing expensive cryptographic computation into an input-
independent setup phase has seen tremendous success in the
setting of multiparty computation based neural network train-
ing and inference [13], [17], [41], [47]. Our scheme achieves
the same goal for private neural network inference.

D. Cryptographic Primitives

1) Secret Sharing: In this work, we use two variants of
secret sharing. Both variants are performed over the arithmetic
world Zye and the boolean world Zs. As is known, boolean
sharing is efficient for boolean circuits consisting of XOR
and AND gates, which are commonly used to construct non-
linear operations. Although arithmetic sharing is beneficial
to fast linear computations like addition and multiplication.
To achieve better efficiency, we use a mix of two types of
sharing and will describe the conversion between them when
necessary. In particular, all operations on the Boolean ring are
regarded as specific cases of the arithmetic world when ¢ = 1,
which can be achieved by substituting addition/subtraction
operations for XORs (&) and multiplication for ANDs (®).
e []-sharing: This is a typical 2-out-of-2 additive secret-

sharing primitive over ring Zoc. The value v € Zy is

[-]-shared between two parties Py and Py, if the party P,

for ¢ € {0,1} holds the values [v]; € Zy¢ such that

v=[V]o+ [V]1-

e (-)-sharing: The value v € Zye is said to be (-)-shared
between two parties Py and P, if the party P; for i €
{0,1} holds the values (A, [d,];) € Z2,, and there exist
Oy = [0v]o + [6v]1 and A, = v + 4.

To enable P; for i € {0,1} to (-)-share his secret v € Zy:
with P;_;, the protocol IIg,(P;, V) is performed as follows:
during the setup phase, P; samples a random ring element
[0y]; € Zye and both parties together sample [dy]1—; € Zoe.
With the fact that 6, = [0y]o + [dv]1, P; calculates A, = v+ 4y
and sends it to P;_, in the online phase. We let Ilgec(P;, V)
denote the reconstruction protocol, in which P; receives the
missing [dy];—; from P;_;, and then locally reconstructs the
secret v.

2) Oblivious Transfer: Oblivious Transfer (OT) [37] is a
fundamental cryptographic protocol, especially for secure two-
party computation. The basic idea of a general 1-out-of-n
OT (i.e., (?)-OTg) is that one party as sender inputs n ¢-
bit messages myg, - - -, my,—1 and gets nothing, while the other
party (ie, receiver) obtains m; after submitting a choice b,
where b € {0,--- ,n —1}.

When the messages to be transferred are random or cor-
related, such a random OT protocol (ROT) or correlated OT
(COT) can be implemented more efficiently [2], [58]. Recent
optimizations to construct Vector Oblivious Linear Evaluation
(VOLE) correlations can be used to generate a bulk of random
COTs with a low-communication setup phase followed by
local ("silent") online computation [7], [14], [58].

In this paper, we utilize the aforementioned functionality in
a black-box manner as the main ingredient of our setup phase
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to generate multiplication triples in batches, which incurs a
minimal amortized communication cost, since both inputs and
outputs are random values. For example, Ferret [58] takes 788
ms to compute 107 random cOTs with a network bandwidth
of 50 Mbps (see Table 2 and Table 3). Then we convert
it to chosen-input OT for the efficient implementation of
online truncation computations. According to [33], [58], the
amortized communication costs for (?)-OTK, (%)-OT(, and
(%)-COTZ are nf + logan bits, 2¢ + 1 bits and £ + 1 bits,
respectively.

3) Multiplication with [-]-sharing: Gilboa’s multiplication
technique [23] (also called protocol Ilgy in the following)
is commonly used to calculate the product of two [-]-shared
values. Observing that y = a-b = ([a]o + [a]1) - ([b]o + [b]1) =
[a]o[b]o+[a]1[b]1 +[a]o[b]1+[a]1[b]o, the first two terms [a][b]o
and [a]1 [b]; can be locally computed without interaction. Here,
we provide Gilboa’s multiplication procedure instantiated with
the COT technique for evaluating the mixed terms [a]o[b];
and [a]1[b]g, which is also applied in [18]. We take [a]o[b]y
as an example: both parties engage in ¢ COTs on {-bit
strings, that is, COTﬁ. In detail, P, is assumed as sender
with the input f(r;) = [a]o - 2/ + r; to j-th COT and gets
(r;,[alo - 27 4+ r;), where 7; & Zye. Py is the receiver taking
as input the choice bit [b;];, where b, refers to the j-th bit
of b. The execution of COT ensures that the receiver P;
receives [b;]1 - ag - 27 + r;. That is followed by the step
where party Py sets [[a]o[b]1]o = — ijl r; and party P; sets
[[a]o[bl1]1 = Zﬁzl([bj]l -ag - 27 + ;). Similarly, both parties
compute [[a];[blo] using another instance of COTY. Finally,
PZ' sets [y]z = [a]z[b]l + [[a]l[b]o]z + [[a]o[b]l]z The above
procedure performs two instances of COT%, resulting in the
communication of 24(¢ + 1) bits.

4) Multiplication with (-)-sharing: To facilitate understand-
ing, we take the multiplication of two (-)-shared values a and
b as an example. Let y = a - b, we have:

y:(Aa_(sa)'(Ab_(sb):Aa'Ab_Aa'éb_éa'Ab""(sa'(sb

During the setup phase, both parties prepare respective random
values [0y]; for ¢ € {0,1}. Instead of using protocol Ilgwm,
parties can calculate the [-]-shares of d,, = 6, - d, by drawing
two multiplication triples from the triples pool so that parties
hold the [-]-shares of [0,]0-[0b]1 and [0y]1 - [0b]o. It can be easily
achieved since these [d,); and [dp]; for ¢ € {0, 1} are randomly
sampled. The parties then locally compute [dp]; = [0a]:[0b): +
[[6a]o[db]1]s + [[6a]1[0b]o]i- By the way, P; for i € {0,1} can
learn [y]; by locally computing: [y]; = i - AyAp — Ay[dp)i —
[0a)iAb + [Oab)i-

Furthermore, the protocol Ty (a,b) gives the result in the
form of (-) by an additional interaction to reconstruct Ay in
the online phase, where [A,]; = [y|; + [dy]; can be computed
locally. It can be easily observed that the online phase only
requires one communication round with the cost of two ring
elements to exchange the missing [A,];. In this way, these
techniques can also be extended to multi-input multiplication
without inflating the online communication, which remains
the same online overhead with the multiplication of the two
inputs. For ease of exposition, we provide the four-input
multiplication protocol (also called the four-input AND gate
in the Boolean world) in protocol A.1 of Appendices.

III. SECURE COMPARISON

Essentially, the secure comparison protocol is an important
building block for securely evaluating ReLU (ReLU(z) =
max{0, z}), which is one of the main components of a neural
network. In this section, we provide new insights for secure
comparison and show the performance gained from the core
of Antelope.

A. Bit Extraction

To securely compare two ¢-bit values a and b (i.e., 1{a <
b}), an equivalent method in the Fixed-point Arithmetic Rep-
resentation is to extract the MSB of v = a — b. To do that,
some prior works [33], [47], [49] recursively extract the sign
of a shared /-bit boolean value from the least significant bit
(LSB) to MSB, by using a large number of AND gates and
XOR gates. Since the XOR gates are evaluated "for free"
in the circuit, the evaluation of AND gates dominates the
computation and communication overhead. For a 64-bit input,
both CrypTFlow2 [49] and Cheetah [33] require 56 AND
gates, while ABY2.0 [47] offered a depth-optimized Parallel-
prefix Adder that consists of 41 two-input, 27 three-input, and
47 four-input AND gates. The number of AND gates directly
correlates with the latency of secure inference, incurring
prohibitive setup and online runtime in these solutions.

1) Comparison in Antelope: Similar to previous work [21],
[47], we translate the comparison as a sign extraction compu-
tation. The bit extraction protocol in Antelope is built on
two new insights that work together to reduce the number of
AND gates in the circuit. Along with our design, for a 64-
bit input, only 21 four-input AND gates are required in total,
achieving a significant reduction in the online communication
and computation complexity.

Intuition. Our first insight comes from Astra [11]: in the
two’s complement representation when two non-zero values
are multiplied, the sign of the product is equivalent to XOR
the signs of the two multipliers. Based on this, it holds:
MSB(V-7(x)) = MSB(v) @ MSB(7(x)), where r(, is a non-
zero multiplicative mask. So the MSB of a non-zero value can
be easily derived as:

MSB(v) = MSB(v - (%)) @& MSB(r()) (1)

Chaudbhari et al. [11] and Wei et al. [57] developed 3PC proto-
cols for secure bit extraction based on the above observation.
However, their methods reveal the product v - T(x) 0 a semi-
honest third party to extract its MSB, thus overlooking certain
types of data leakage: (1) Data leakage at v = 0. Given that
T(x) 1s a non-zero random value, the third party can deduce
that x = 0 whenever the product is zero. (2) Parity leakage.
If the product is odd, it inadvertently reveals that both v
and 7, are odd. Moreover, these protocols introduce unique
challenges in a 2PC setting. The multiplicative mask r(,) and
product v-7(,) must be known to different parties, providing a
straightforward method to determine the corresponding MSB.
Otherwise, extracting the MSB of 7 () or v-7(,) has the same
complexity as extracting the MSB of v.

To address the data leakage issue at v = 0, our second
insight is that the MSB of zero is equal to that of positive
values according to the definition of Fixed-point Arithmetic
Representation. Therefore, when v is zero, we replace it with
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an additive mask r () randomly sampled from Z: N(0, 26-1
1]. This substitution is represented as follows: y = uA-r(+)+V,
where u records the result of 1{v = 0}. For the parity leakage
issue, our third insight is that the last significant bit (LSB) of
the product is adequate for determining its parity. Truncating
the LSB prior to reconstruction effectively mitigates the data
distribution leakage. As analyzed in [33], [43], [46], local
truncation [41], [43], [47] may cause a sign-flipping error with
a probability of 2% Our experimental results indicate that such
an error minimally impacts accuracy due to the substantial size

of the ring.
At a high level, the first step of Antelope’s Bit Extraction
protocol is to learn if v = 0 or not. Subsequently, both

parties employ additive masking for zero values and then
multiplicative masking for all values. Finally, they perform
local truncation and reveal the product.

2) Protocol for Equality-to-Zero: Given the secret shared
value v, the Equality-to-Zero protocol H{EBQO is used to check
if the input v is O or not. We start with the observation that
v = 0 (described as A, — [0v]o — [0v]1 20 using our secret
sharing primitive), so it equals to check if A, — [6,]o = [0v]1
or not. Specifically, both parties firstly generate ([M;)B and
([6,]1)7 by executing T1Z, where [4,]; = A, — [8,]o. Then,
parties locally set:

28 = NOT({[8,)1)" @ ([6,]1)") )

If the two values are equal, all bits of 78 should be 1. With a
quad-tree structure, both parties get the output by utilizing
four-input AND gates as follows: u? = AND/={"'(z;).
where z; is the j-th bit of z. We formally describe our protocol
for Equality-to-Zero in protocol A.2 in Appendices.

3) Protocol for Bit Extraction: Given the secret shared
value v, the Bit Extraction protocol IIg;gx: proceeds as follows:
during the online phase, both parties firstly execute an instance
of protocol IIfy(v) to learn (u)”. Then, P; for i € {0,1}
locally computes [y]; = [y,]i+[y,]i» where y; = ur(4)r(x)
and y, = v-7(x). We have the following observation: given a
secret-shared bit u, there exists:

uwt = (AF @)t = AL+ 5 — 24557 3)

where [u]? for i € {0, 1} denotes the value over the arithmetic
ring Zye corresponding to [u]® over Z,. Similarly, we have:
64 = [04]8 + [6u] — 2[04)8[0u]¢. Along with this, P; for

i € {0,1} computes the follows:

[yili = AL~ L8]+ A, (1-2A8)[,]4 — (1-242)[526,];

“4)
After that, Py sends [ylo = [y4]o + [y2]o to Pi so that P
can reconstruct y and get MSB(y). In the last communica-
tion round, P; (-)®-shares MSB(y). Finally, both parties get
the boolean sharing of the MSB(v) by locally computing
(MSB(v)) = (MSB(y))” @ (MSB(r(x)))".

During the setup phase, the parties execute computations
that are independent of the input v, including the preparation of
random values (steps 1 and 2) and the multiplication of random
values (step 3). To enhance efficiency, we make an optimiza-
tion: instead of using protocol IIgy for all random values, we
distinguish independent random values from non-independent
ones and implement their multiplication with more efficient
VOLE [58]. Similar to prior works [33], [43], [49], our system

allows the client to learn the model architecture such as the
type of layers. This makes it possible to prepare materials for
secure computation such as multiplication triples in a data-
independent phase. For instance, to compute 4, in Eq.(4), we
first decompose it into 6, = [6r(+)]0 “Oryy T [5T(+)]1 Oy
Subsequently, we replace [6,,,]1 - 6, with a triple. Given
a triple: wo + w1 = v - O, Fy sets 6., = © and computes
[6r]0 = [0r,y]o * Or(yy + wo, while Py sets [6,, ]1 = v and
computes [57.11 = wy. More detailed descriptions are provided
in protocol III.1.

Protocol TIL.1: (MSB(v))Z < TIgjgx (V)

Setup:

1. Py samples a random 7y & Z4e \ {0} and invokes protocol ITg,
to get (r(x)) and (MSB(T’<X))>B

2. P; for i € {0,1} samples [r(y)]; & Zge \ {0} and generates
(r(4)) by calling Tlg.

3. Parties invoke protocol Ilgym to generate [5;?6T(X)], [6.]” and
[Ovr ], where 7 = r(4yr(x). Note that [6r] can be achieved
with one beaver triple.

Online:

1. Parties learn (u)® by calling protocol ITgqo (V).

2. Pjfori € {0, 1} locally computes [y,]; = i- AZA, — A%[5,]; +
Ap(1-2A8)[0u] —(1-2A8) (86, ]; and [y2]; = - Av(r(x))—
Av[ér(x)}i - AT(X) [5v}7, + [5vr(x)]i~
Py computes [yL]o = [([y;]o + [yo]o)/2] and sends it to P;.

4. Py sets [yT]; = 2¢ — L2}— yTz}o + [yT]1)/2] mod 2¢ and

gets yI' = [yT]o + [y*]1, and MSB(yT).
Py calls protocol TIZ (Py,MSB(yT)) to get (MSB(yT))E.
6. P; for i € {0,1} locally sets (MSB(v))Z = (MSB(y"))Z @

(MSB(r(,))) 5.

(98]

W

Remark IIL.1. Our comparison protocol requires both parties
to evaluate the designed Equality-to-Zero circuit, rather than
the Adder circuit. Intuitively, the evaluation of Equality-to-
Zero does not depend on the bit-wise coupling relationships
in the Adder circuit such as additive carry. That makes parallel
computation (i.e., multi-input AND gate protocol) suitable
to be exploited for efficiently evaluating the Equality-to-Zero
circuit. Despite the significant reduction in the number of
online communication rounds, an N -inplgt AND gate requires
at least a communication of 4(2V — Ej:1(1}[) — 1) bits in
the setup phase. For example, using a 64-input AND gate
for the Equality-to-Zero circuit with 64-bit inputs, uf =
AN D;ES?’ (zj) can be achieved with the online communication
of 2 bits in one communication round, but it requires up to
64EB setup overhead, which would be much too large to
materialize in practice. Thus, we consider N = 4 for a balance

between the setup and online communication overhead.

Theorem III.1. (Communication of BitExt). The Bit Extrac-
tion protocol gk, requires the communication of 642 + 90+
44n + 1 bits in the setup phase and log,(¢) + 2 rounds and
communication of 20 + 2n bits in the online phase, where k
is the cryptographic security parameter and n represents the
number of four-input AND gates.

Proof. Please refer to Appendices for details. O

B. Secure Max/Min

Given (a), (b), protocol Ilyy,y(a,b) enables the parties to
compute the maximum between two secret values a and b
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in a privacy-preserving manner, which is one of the most
commonly-used applications for secure comparison. For this,
the key insight of the secure Max protocol is Max(a,b) =
v4 . (b —a) + a, where v = MSB(a — b). Although the initial
approach requires transforming the bit into an arithmetic value
due to Ilgjgx’s output format of <~>B-shares, our analysis
suggests that this step can be excluded to reduce commu-
nication overhead. As an alternative approach, the specific
multiplication process is conducted using Eq.(3):

y = vA(b —a) = (AY + 6 (1 — 2A9)) (A — Ap) = b, + &)
= AY(Ay = D) + 511 = 2A8) (A — Ay) — AY(5, — 6)
— 616, — Go) (1 — 2A7) )

Similarly, we can compute the minimum as
Min(a,b) = v4 - (a —b) +b.

follows:

IV. SECURE DIVISION

In this section, we present new optimizations for secure
division protocols with different divisor settings by leveraging
numerical analysis. Given a shared dividend (a), our protocols
discuss two settings of divisor b in detail, which cover all the
cases for division operations encountered in neural network
inference.

A. Public Divisor

In the Fixed-point Arithmetic Representation, the multipli-
cation of a and b with at least s bits in the fractional part results
in an expansion to the fractional part by a factor of 2, i.e.,
y = a-b has at most 2s bits to represent the fractional part. It is
essential to scale down the product to the s-bit precision, so the
same scale s is maintained for all intermediate results. Since
both parties always negotiate the way the data is represented
before evaluating the neural network, truncation is a special
case of the division with the public divisor.

Some prior works [41], [43], [47] used the local trunca-
tion on additive shares of the product for the approximate
truncation based on the result of [43]. Specifically, the two
parties set [y'o = [[y]o/2°] and [y’ = 2° — [2° — [y],/2°]
mod 2¢, respectively. Let y € [0,25] U [2¢ — 25, 2¢], where
¢y < £ —1. However, the truncated product y’ = |y2°|+¢é+¢
introduces two probabiligy errors: a small error |é| < 1 occurs
2~

with the probability of 2, =

57 and an arbitrary error |&| < 2¢
with the probability of zLy_ll (See Appendix B in [43] for
more details). As demonstrated in [33], the local truncation
will introduce at least one large error ¢ for the first layer
of ResNet50 with the probability of 78% using Delphi’s
parameters [41]. This somehow demonstrates that the local
truncation is problematic for large neural network architectures
or suffers from more communication and computation over-
head incurred by mapping data to a larger field. To correct both
of these errors, CrypTFlow2 [49] reduced the truncation to a
secure division with a known power of two. By representing
the division of ring element to signed integer division, their
design implements faithful truncation but requires up to 15
communication rounds with the communication of 12KB for
each truncation after multiplication. Such a huge overhead and
the limitation of local truncation motivate us to propose new
solutions to achieve a better trade-off between correctness and

efficiency. In the following, we introduce the idea that enables
us to obtain better performance from both protocols.

1) Truncation in Antelope: As experimentally verified on
real neural networks in [16], [33], [43], the small errors ¢ have
a negligible impact on the classification accuracy even if they
occur with a high probability. With the observation that the
truncation protocol can be lightweight in communication and
computation overhead by removing the constraint of correcting
small errors, we focus on how to avoid large errors from
the faithful truncation. Cheetah [33] optimizes the truncation
protocol based on the same observation. However, they simply
attribute the large error to the overflow of the sum of additive
shares and do not provide sound theoretical proof. In contrast
to this, we evaluate the coefficient term for the large error from
a comprehensive perspective of data representation in the ring
and data overflow. Essentially, the large error in the context
of the ring occurs primarily in the following two situations.
The first case occurs when the product y that needs to be
truncated is negative and both additive shares of y are positive,
it holds ([ylo > s) + ([yl1 > s) = (y > s) — 275 4+ ¢4,
where c is from the error of the last bit due to truncation. The
other case corresponds to that the product y is positive but
both shares are negative. If this happens, there will become:
([ylo > 8) + ([y]1 > s) = (y > s) +2/7° 4 ¢, With that,
our protocol requires one instance of comparison protocol for
computing MSB(y) and a joint evaluation for the coefficient
term of the large error 2675,

Proposition IV.1. Given a ring element y and its secret shar-
ings [y]: € Zoe fori € {0,1}, let their unsigned representation
be y,,, and y,, respectively. Let c = 1{y} +y{ > 2%}, where
VW < 2% is defined as ¥) =y, — y} - 25. Then, we have:

(y>s)+ct = o> )+ (> s) +cor-207°

where

1 Hyp 227 Ay <273 A Iy, <271}
U Ky <273 AI{ye 2 27 A Iy, 2 2771}
0 otherwise

as defined in [49].
Proof. Please refer to Appendices for details. [

2) Protocol for Truncation: Our protocol Iy, for trunca-
tion after multiplication works as follows: during the online
phase, parties begin by learning the additive shares of v =
MSB(y) from protocol Ilg;gx. In parallel, P; for i € {0,1}
locally truncates the additive shares of y and gets the MSB of
the shares u; = MSB([y];). Next, parties jointly generate the
additive shares of the coefficient term cor. More specifically,
Py enumerates all the choices of [v]? and wu;, and generates

a matrix M of dimension 2 x 2. Let j = jollj1 € Z3
be the set of all permutations of [v]® and wu;. It holds:
e, = (IE & P ® uo) A (IF ® I & w1) =

(MSB(y) & MSB([y]o)) A (MSB(y) & MSB(]y]1)). Based on
this, Py sets M; = [cor]; = cor — [cor]y, where [cor]q is
sampled independently and uniformly at random from Zs.
at the setup phase. As the definition of the coefficient term
cor, cor = —1 if t; A I{[ylo = 0} and cor = 1 when
t; A1{[ylo = 1}. Otherwise, cor = 0. From this setting, the
elements of matrix M are all —[cor]o except with —[cor]o£1
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in coordinate j*, where t;~ = 1 implies that the first two
cases of cor can be determined by [y]o. It is easy to get
[cor]y = My, for Py with (4)-OT; protocol. The formal
details are given in protocol IV.1 for the truncation.

Protocol IV.1: (y7) < Trppun(y)

Online:

1. P; for ¢ € {0,1} obtains [v] by executing part of protocol
Hpigx (y), where v = MSB(y).

2. Pjfori € {0,1} locally sets [y]; = ¢-Ay— [dy]; and truncates [y];
by performing [y]; = [y]i > s. Party P; sets u; = MSB([y]).

3. Py locally generates a matrix M € ZgéxQ. For each coordinate
j € {00,01,10, 11} of matrix M, Py computes t; = ([v]Z &0 @
uo) A ([v)8 @ jo @ j1). where j = jollj1. If t; Al{ug = 0} = 1,
then M; = —[cor]o — 1. Else if t; A 1{ug = 1} = 1, then
M; = —[cor]o + 1. Otherwise, M; = —[cor]o.

4. Pj obtain [cor]; = M[UhBHUl using VOLE—styl,e (4)-0T,.

5. P; for i € {0,1} locally computes [yT]; = [y], + [cor]; - 2675,

and generates ([yT];) by calling protocol TTsp,.
6. P; for i € {0,1} locally computes (y©) = ([yT]o) + ([yT]1).

3) Optimizations: To enable Py to download a particular
element with index j from a private matrix without revealing
to P; which record is being requested, CrypTFlow?2 exploits
IKNP-style OT protocol [35]. For the matrix with the dimen-
sion of 2 x 2, IKNP-style OT requires the communication of
2k + 44 bits within two online communication rounds.

Recent optimizations to vector oblivious linear evaluation
(VOLE) correlations can be used to generate multiple random
OT correlations with a low-communication setup phase fol-
lowed by a lightweight non-cryptographic online computation
[7], [14], [58]. Such VOLE-style random COTs enjoy neg-
ligible amortized setup costs when a huge number of COTs
are required [58]. When the above random OT correlations
generation protocol with uniform choice bits is extended to
generate COTs with chosen choice bits, we use the pre-
computed reduction technique [4], at the price of only one
bit of communication cost per random OT correlation. In this
case, all messages that need to be sent are also chosen by
one party (i.e., the sender in OT), rather than random ones.
To achieve this, we use tweakable correlation robust hash
functions (CRHFs) [26], [35] to transform the random COTs
into general chosen-input OT protocol. As shown in prior work
[26], the tweakable CRHF can be efficiently constructed by a
random permutation such as AES-128 with a fixed key. With
all optimizations built upon the VOLE-style OT protocol in
the semi-honest setting proposed by Yang et al. [58], (1)-
OT, has communication 4¢ + 2 bits [33]. To put it into our
truncation protocol, the online communication of only 493
bits per truncation is required for 64-bit ring elements, which
enables 35.8 x improvement in comparison with CrypTFlow?2.

Theorem IV.1. (Communication of Truncation after Multi-
plication). The protocol gy, requires the communication of
602 +9¢ + 44n bits in the setup phase, and log,({) + 4 online
rounds and communication of T¢ 4+ 2n + 1 bits in the online
phase.

Proof. Please refer to Appendices for details. O

B. Secret-shared Divisor

Let Fss.piv be the functionality for the division that takes
arithmetic sharing (a), (b) as inputs and returns the arithmetic

sharing of a/b as output. Our protocol Ilgs p;y builds on the
basis of Goldschmidt’s method [24] and is optimized with
some subprotocols including the above secure comparison
protocol.

Intuition. A crucial component of our numerical method
is to convert the absolute value of divisor b to the form of
29011 g where 2901 < [b| < 2% and oy, is defined
as the bounding power of absolute value |b|. Note that xy,
is within the range of [0.5,1) in the above expression. Then,
1/x for any x € [0.5,1) can be approximatively computed
by utilizing the designated choices of initializations given in
[1], [9]. We use the suggested initial approximation wg =
2.9142 — 2x with relative error g9 < 0.08578. For higher
order approximations, it can be achieved by multiplying the
initial approximate result by (1 + ¢;) with a higher degree j,
where ¢g =1 —|b| - wp and ¢; = 5?_1 for j > 0. Besides, we
observe that division in the neural network is always greater
than 0, i.e., |b| = b. For example, Softmax, often as the last
activation function of a neural network, its denominator is in
the form of e”. With that, a/b in neural network inference can
be computed as follows:

deg

AppDivied(a/b) = a-wy - [[(1 +¢3))
j=0

(6)

where deg represents the approximation degree. With this, the
related error with approximation degree deg is 04eg = Q%deg
Given the initial approximation error which occupies 4 bits,
the degree of approximation satisfies deg = [log g] to achieve

£-bits accuracy.

1) Secret-shared Division Protocol: Protocol Ilgs.piy 1S
designed to evaluate the division with the secret-shared numer-
ator a and denominator b during the neural network inference.
The details are described in protocol IV.2.

According to Eq.(6), the initial step requires a range re-
duction to map arbitrary b to z, € [0.5,1) in a privacy-
preserving way. This step involves calculating the most signif-
icant non-zero bit (MSNB) of b (Step 1), which is defined as
MSNB(b) = o, € [{] if bo, = 1 and all b; = 0 for all j > a,.
We consider the functionality Fysng that produces the shares
of one-hot encoding of MSNB(b) and use the protocol for the
same in [48]. Subsequently, z}, can be efficiently computed
using dot products between this one-hot vector and publicly
accessible vectors, as described in Steps 2 and 3.

Following that, Step 4 prepares the shares of £y. For the
efficient evaluation of Q(g¢) = Hjezgo(lJrE%J ), Step 5 employs
the secure polynomial evaluation protocol Ilgpg, which offers
a higher degree of parallelization compared to the iterative
use of the multiplication protocol Ilyp. As described in
Section IV-B2, TIgpg generates shares [Q(go)] for both parties
within a single round of communication. These shares are then
converted to (Q(gp)) through the protocol Ilsy(P;, [Q(£0)]i)-
Importantly, the share [Q(eg)lo = —c{ can be sampled
independently and randomly, allowing its generation during
the setup phase.

Finally, two successive invocations of Ty for y = a - wy
and y - Q(ego) are used to complete the secure evaluation of

Eq.(6).
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Protocol IV.2: (a/b) < Ilgs piv(a,b)

Setup:
1. Parties call protocol IIgym to get [6p0uwq]-
2. Py samples a random value ¢}, and invokes protocol Isy(P;, cf))
to generate (c()).
Online:
1. Parties run protocol ITysng(b) to get the shares of encoding of
MSNB(b): (One-hotq, ).
2. Parties locally performs (2¢-s—1) =
2f=i—1,
3. Parties call protocol Ty (b, 26=0=1) to get (x).
4. P; for ¢ € {0, 1} locally computes (wo); = 2.9142 — 2(xp); and
[oli =i+ (1 = ApAuy) + Apldugli + Buwg [0p]i = [Fbdwgi-
5. Parties together evaluate the polynomial Q(go) = H‘tgo(l +e2’)
by running protocol Ilgpg so that P; obtains [Q(ie )]1, where
Q(e0) = T1§2% (1 +€2') and [Q(20)]o = —cf-
Py executes protocol ITgy (P1, [Q(€0)]1)-
Parties locally set (Q(=0)) — ([Q(=0)]o) + ([Q(0)]1)-
Parties call protocol Iy to get (y), where y = a - wp.
Parties call protocol Iy (y, Q(c0)) to get (a/b).

ﬁ:l (One-hotq, [7]) *

RS

2) Optimizations: Secure Polynomial Evaluation (SPE)
[44] enables one party (we assume P;) with private input
v to learn Q(v) without learning anything more about the
polynomial Q(z) = Z]Deg cjz? and without revealing the
input to another party Fy who knows all coefficients of the
polynomial. Essentially, the evaluation of Eq.(6) can be viewed
as a generalization of SPE with degree Deg = Z?igo 27, Let
€0 = [€0]o+[€0]1, the polynomial in Eq.(6) can be represented
as follows:

deg ) Deg
Qeo) = [[1+23) = QUleol) = S ¢ - (o) ()
Jj=0 J

where the coefficients ¢; for j € [1, Deg] involving [e]o are
only known to Py. To enforce the result to be secret-shared,
we require that cq consists of a constant term ijg ([e0]o)?
and a random value ¢{, sampled by P,.

To evaluate the polynomial, we use the SPE algorithm
introduced by [44] and optimized by [54] [58]. The core idea
of these works is to reduce the evaluation of a degree Deg
polynomial to Deg evaluations of linear polynomials of the
forms Q:([eo]1) = ue - [g0]1 + vt for t € [1, Deg] that can
be executed in parallel, where Py holds the value (u;,vs)
for t € [1, Deg], while P; has [gg]; and obtains Q:([e0]1)
for all ¢ € [1, Degl]. A natural approach to these Deg linear
computations is Gilboa’s multiplication protocol as discussed
in Section II-D3. That inevitably requires the communication
overhead of 2Degl(¢+1) bits. For efficiency gain in the online
phase, we use Beaver’s triple multiplication protocol [3] to
evaluate Deg linear polynomials. Specifically, in the setup
phase, parties use silent OT generator [7], [58] to generate
Deg multiplication triples z; = [z]o + [2¢]1 = @+ - yi, where
Py has x; and obtains [z;]o while P, holds y; and receives
[2¢]1- In the online phase, parties share e; = u; — x; and
ft = [eo]1 — y+ with each other, respectively. Following that,
Py computes [Q;([0]1)]o = € - fr + ¢ - fr + [2c]o + v and
sends the results to P;. Then, P; obtains Q:([eo]1) by locally
computing [Q+([e0]1)]1 = et - Y+ + [2¢]1 and adding it with
[Q+([e0]1)]o- Finally, Py sets the random item —c}, as the share
of Q(eo), i.e., [Q(e0)o = —cy. P1 computes the share of

Q(g0) as follows:

Deg

[Q(e0)]1 = ZQt([€O]1) - ([eo])" ®)

As a result, the online phase of Q(gg) results in two com-
munication rounds with the communication cost of 3Deg - ¢
bits. Reader please refer to [54] for more details on the Secure
Polynomial Evaluation algorithm used in this paper.

Theorem IV.2. (Communication of Secret-shared Division).
Let ¢ = {|d, the protocol 1lgs p;, requires the communication
of 802+ 90+ (c—1)(7d* +11d+204) +d+96 bits in the setup
phase, and (c+1)(2\+£log ) 4+ (3Deg + 6)¢ + 5dc + 16¢ —
4d—10) online rounds and communication of 2log, ¢+ 3c+5
bits in the online phase.

Proof. Please refer to Appendices for details. [

V. ANTELOPE

Relying on the secure comparison protocol and the secure
division protocols presented in the above two sections, our
framework Antelope results in fast and secure inference.

A. Building Blocks for Inference

In the setting of secure inference, the first step is that
the model owner (say Py) and query user (i.e., ;) generate
the bulk of multiplication triples by running a silent OT
generator [58] and execute the instance of protocol Ilg, such
that model parameters and users’ query data are secret-shared
between both parties. Following that, both parties stitch the
protocols for arbitrary layers in a sequential fashion to obtain
a secure computation protocol for any neural network archi-
tecture. Specifically, for linear computation on 2PC inference
such as convolution and matrix multiplication, we use the
efficient multiplication protocol proposed by ABY2.0 [47]
and optimized by the silent OT generator. Along with our
optimization for comparison and division protocols, we pro-
vide more efficient implementations for non-linear functions.
Finally, the query users obtain the inference result by calling
the reconstruction protocol. In the following, we present the
details of specialized privacy-preserving non-linear building
blocks for neural network inference.

ReLU. ReLU is one of the most popular nonlinear activation
functions in neural networks. Accelerating the calculation of
ReLU will greatly improve the efficiency of neural network
inference. Given the arithmetic sharing (v), the goal of the
secure ReLU protocol is to compute the arithmetic sharing of
the maximum value between 0 and v. In general, the protocol
is a special case of the secure max protocol with 0 as one of the
variables. Intuitively, secure ReLU protocol can be achieved
by directly calling to protocol IIyx.

Maxpool. Given the arithmetic sharing of v; for j € [0,d —
1], protocol IMMaxpool, Teturns the arithmetic sharing of the
maximum value among v; for j € [0,d — 1] as follows:
Maxpool,(v) = max{vg,---,va_1}. Given (a), (b) and (c),
we let u =1 if and only if a < b, and define u? and u3 in
the same way, that is, u = 1{b < ¢} and uf = 1{c < a}. To
compute the maximum among (a), (b) and (c), we can obtain
the result by computing y = uP -uf-a+uf .0l -b+uf -uf -c,
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where u? = u” @ 1. Observe that u? = A, +6,(1—24A,), we
utilize the protocol Iy to learn uf-u?-v for i, j € {1,2,3}.
For the simplicity of exposition, the method is called Max3.
Based on this, we arrange d values in each patch to be the
leaf of a ternary tree. The ternary tree proceeds in a bottom-up
fashion. Each block is composed of three values and evaluated
by utilizing Max3. If the ternary tree cannot form a complete
ternary tree, the Max protocol mentioned before is called to
evaluate the last block when there are two values, or else the
result is output directly when there is only one element.
Softmax. For the sake of numerical stability [25], the softmax
function is commonly computed as: Softmax(x); = <S———

. eTi T
where T = Maxpool(x). It is compatible with thzejlcondi-
tions of application of the secure division protocol with the
secret-shared divisor, i.e., the division Zi e® =% > (. Before
running protocol Ilss piy, parties first calculate © with protocol

HMaxpool‘x‘. Then we use the Taylor series to approximate the

exponentiation e~ *: e~ = (1 — %)QH Suppose we use
s = 13, then we set n = 5 to achieve an average error within
2710 Similar with Eq. (7), the approximation can be computed
by running one instance of protocol IIspg with the degree of
32. Following that, the server and client run an instance of

protocol Ilgs.piy for the result of Softmax.

B. Security Analysis

Theorem V.1. (Security of Antelope). Antelope provides
a secure inference protocol to realize the ideal functionality
of neural network inference with the service provider’s model
parameters Xg and the client’s query data Xc.

Proof. Please refer to Appendices for details. O

VI. EVALUATION

In this section, we perform comprehensive experiments to
evaluate our 2PC and secure inference protocols. Particularly,
we show that Antelope’s protocols for non-linear func-
tions give better performance than the state-of-the-art imple-
mentations. We also validate the effectiveness of our trun-
cation for large-scale models. Considering three ImageNet-
scale neural network architectures, Antelope achieves more
efficient secure inference than previous works (CrypTFlow?2
[49], ABY2.0 [47], Cheetah [33]) in terms of runtime and
communication overhead for the online phase.

A. Experiment Setup

All experiments were carried out on Cloud servers with the
configuration of Intel(R) Xeon(R) E5-2680 v4 (2.4 GHz) and
48GB RAM. We ran our benchmarks in two network settings:
(1) LAN: the bandwidth is 580MBps and the echo latency is
about 0.17ms. (2) WAN: the bandwidth is 38MBps and the
echo latency is about 72ms. The secure multi-party cryptogra-
phy operations were implemented in C++, where OT is built
on top of the EMP toolkit [33], [58]. Each experiment was
repeated five times, and the average results were displayed.
The client and server executions used 4 threads each. In all
our experiments, the data length was set to 64, i.e., Zgss, and
the last s = 13 bits represent the fractional part.
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Fig. 1: Communication cost comparison of the comparison
protocol between Antelope and ABY2.0

Following CrypTFlow2 [49], we evaluate the performance
of Antelope on three neural network architectures over Ima-
geNet [19]: SqueezeNet [34], ResNet50 [30] and DenseNet121
[32]. More details about these network architectures can be
found in [49].

B. Microbenchmarks

We provide the microbenchmarks of Antelope’s perfor-
mance, compared with its closest competitors.
Improvement of Non-linear Functions. Fig. 1 presents the
improvement of our comparison protocol over ABY2.0 in
terms of communication cost. The x-axis indicates the number
of comparison protocols performed, ranging from 2'° (1K)
to 2% (32K). ABY2.0 introduces improved mixed protocols
for a secure two-party computation framework by efficiently
combining Arithmetic sharing, Boolean sharing, and Yao’s
sharing. Moreover, it proposes round efficient Parallel Pre-
fix Adder constructions to reduce the online communication
cost of secure comparison. In Antelope, we design a new
Equality-to-Zero circuit for comparison operation. By decou-
pling the bit-wise rounding dependency in the Adder circuit
and utilizing the silent OT generator, Antelope achieves a
significant reduction in the communication overhead in both
setup and online phases. In addition, neither ABY2.0 nor
Antelope requires heavy cryptographic computations in the
online phase. The communication rounds are amortized over
a large number of ReLU operations in evaluating realistic
neural networks. This implies that communication dominates
the online runtime. From Fig. 1, we observe that as the number
of evaluation comparison protocols increases, the benefits of
Antelope become larger over ABY2.0, especially in the
setup phase. The gains in communication overhead would map
to the evaluation performance.

TABLE II: Runtime of non-linear functions

LAN (ms) WAN (ms)
Block Method Setup Online Setup Online
CrypTFlow2 1.01x103 B 1.46x 107
ReLU Cheetah - 411.54 - 949.32
ABY2.0 436x103 28.11 5.06x10% 108.49
Ours 226.49 2471 276.82 108.33
CrypTFlow2 3.14x10° - 4.53%x107%
Trun Cheetah 473.99 - 1.01x10%
Ours 15571 3.57 190.32 35251
Softmax GC 6.22x10% - 1.35x10°
Ours 435.16 134.46 1.21x1073 1.31x10%
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Next, we compare Antelope with the state-of-the-art
works (CrypTFlow2, ABY2.0 and Cheetah) in large-scale in-
ference. CrypTFlow2 has made considerable headway toward
scalable secure neural network inference. For the first time,
it demonstrates the ability to perform secure inference at the
scale of ImageNet. Cheetah subsequently optimizes CrypT-
Flow2 from the following two aspects: new homomorphic
encryption-based multiplication for evaluating linear layers
without rotation operations and a more efficient OT technique
for ReLU and truncation. Both CrypTFlow2 and Cheetah are
designed to improve overall runtime. In other words, their
protocols do not distinguish between the setup and online
phases. So both methods do not exchange data in the setup
phase. As we mentioned earlier, neither of them is practical
enough for critical tasks with high real-time requirements.
Antelope provides a feasible solution to well address such
an issue in this scenario. ABY2.0 utilizes the offline-online
paradigm, but uses GC for division operations. Table II shows
the improvement of ReLU, truncation, and Softmax in our
Antelope (corresponding to our comparison and division
protocols in practical application) over three previous works, in
both LAN and WAN settings. The runtime and communication
are reported for 2'6 instances of the protocols. The evaluation
of ReLU using Antelope is up to 41.2x and 135.1x faster
than CrypTFlow2, and 16.7x and 8.7x faster than Cheetah,
in the two network conditions, respectively. Compared to
ABY2.0, our evaluation reveals performance improvement in
the setup phase by factors of 19.3 and 183.1 in LAN and
WAN, although maintaining little competitive online runtimes.
We also perform the truncation protocol as it is necessary
to maintain the accuracy of ImageNet-scale networks. As
expected, our protocol shows its superiority in the online phase
over CrypTFlow2 and Cheetah in two settings. Besides, we
observe that our runtimes for the evaluation of Softmax are
about 46.26x lower than GC [18] in the LAN setting while
giving slightly better performance in the WAN setting. These
improvements come from our careful designs: decoupling the
bit-wise carry dependency in the Bit Extraction protocol and
novel optimizations for secure division protocols.

Fixed-point accuracy of our benchmarks. Here, we show
the impact of our truncation protocol on classification accu-
racy. In Fig. 2, we present the accuracy of the non-private
inference and the accuracy achieved by Antelope on three
ImageNet-scale networks. The gray area in Fig. 2 represents
the accuracy of the non-private inference achieved by the 64-
bit fixed-point representation. We observed that the above ex-
periments demonstrate that Antelope gives almost the same
classification results with fixed-point computation, even in the
context of ImageNet scale inference. This is mainly due to
our truncation leading to the reliable implementation of fixed-
point arithmetic. Besides, CrypTFlow2 demonstrated that the
classification accuracy with fixed-point representation is the
same as the float-point accuracy. This somehow demonstrates
that Antelope is effective for ImageNet-scale inference.

C. End-to-end Evaluation

With all our protocols and optimizations, we demonstrate
that Antelope is efficient and effective enough to perform
large-scale secure inference. Table III compares the end-to-
end inference latency of CrypTFlow2, Cheetah, ABY2.0, and

10

Antelope over three models in different network settings.
We observe that Antelope is about 22.25 ~ 26.92x faster
than Cheetah in the LAN setting, and 22.97 ~ 28.95x faster
in the WAN setting. Similar results can be obtained in the
comparison with CrypTFlow2, demonstrating Antelope’s
superior performance advantages. Although the online phase
is slightly less efficient compared to ABY2.0 due to truncation
operations, the performance improvement of the setup phase
of Antelope provides a lot of energy savings. To sum up,
despite the slightly greater intensity of offline computation, the
improved online performance of Antelope delivers greater
benefits for real-world applications.

TABLE III: End-to-end evaluation

LAN (s) WAN (s)
NN Method Setup Online Setup Online
CrypTFlow2 - 145.11 - 1.65x10°
SqNet Cheetah - 37.58 - 143.83
ABY2.0 265.38 1.32 1.57x103 4.69
Ours 41.05 1.63 138.59 5.37
CrypTFlow2 - 820.59 - 6.97x10°
RN50 Cheetah - 14593 - 735.97
ABY2.0 687.19 5.11 7.14x103 21.38
Ours 135.13 542 268.04 25.42
CrypTFlow2 - 306.65 - 8.44x10°
DNet Cheetah - 154.19 - 74585
ABY2.0 2.02x10% 6.78 1.27x10% 25.68
Ours 104.47 6.93 228.14 32.47

SqNet=SqueezeNet; RN50=ResNet50; DNet=DenseNet121

VII. RELATED WORK
A. Secure Neural Network Inference

To ease the privacy concerns in neural network inference,

there are a large number of works with different technologies
being proposed. These technologies can be simply categorized
into three types. Each type of method has its merits and
demerits depending on the applied scenario.
Secure Multi-party Computation (MPC) [36], [41], [43],
[56], [60]. A secure MPC protocol can be used in place
of a trusted third party to implement the same function by
exploiting the secret sharing primitive and multiple rounds of
interactions between the parties [15], [29].

Existing works usually rely on a strong assumption, which
is challenging to realize in practice, i.e., the existence of two
[18], [47], [49] or three [11], [42], even four parties [12]
that do not collide with each other. On this basis, efficient
protocols for the honest majority or the dishonest majority are
proposed. Note that the computation and communication costs
of the latter are several orders of magnitude larger than those
of the former. For secure 2PC inference protocols, existing
schemes either require multiple rounds of interactions between
the client and server or assume that the server provides two
non-colluding computing entities.

Homomorphic Encryption (HE) [20], [22], [31], [53]. The
most attractive feature of HE is the ability to perform linear
computations, i.e., addition and multiplication, on the en-
crypted data without decryption operations. HE can be directly
used to achieve linear operations in the neural network, such as
convolution. Nevertheless, a series of permutation operations
in HE-based dot product and convolution still dominate the
major computation time, even applying "batched" parallel
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Fig. 2: The classification accuracy from top-1 to top-5

computations over ciphertext (i.e., SIMD technique) exem-
plified by the CryptoNets framework [22] and the row-wise
weight matrix encoding designed by Gazelle [36] and GALA
[60]. For non-linear computations such as ReLU, polyno-
mial approximations, and piece-wise functions are generally
preferred. However, in addition to the high communication
overhead associated with ciphertext expansion, both approx-
imation methods require a trade-off between efficiency and
classification accuracy.

Trusted Execution Environment (TEE) [28]. TEE allows
untrusted parties to perform secure computation by isolating
the code and data in hardware such as Intel Software Guard
Extension (Intel SGX). However, hardware-assisted security
limits TEE’s scalability and is very expensive to implement.
Furthermore, many side-channel attacks on TEE-based sys-
tems have been reported [6].

In summary, secure MPC is a more efficient interactive
technique but requires a strong assumption for non-colluded
parties; HE provides an outsourced approach but exhibits
a trade-off between accuracy and efficiency for non-linear
computation; and TEE provides hardware-assisted security
but lacks scalability. In this paper, we consider secure 2PC
to achieve secure inference for efficiency reasons. To speed
up the inference process even further, we develop special
protocols that are implemented with fewer communication
rounds and lower communication overhead.

B. 2PC based Cryptographic Protocols

Here, we discuss separately how existing secure 2PC pro-
tocols implement linear and non-linear computation.

There are two main directions for existing secure 2PC
schemes to implement linear functions, one is concerned with
the whole runtime and reduces the computation time of matrix
multiplication by designing new methods for permutation
operations, such as Gazelle [36], GALA [60], and Cheetah
[33]. The other works focus on the online execution time. For
example, ABY2.0 benefits from a new secret-sharing primitive
that performs the multiplication of two values, requiring
only one online round, and the communication of two ring
elements [47]. Our solution follows ABY2.0 and shares the
high efficiency of linear computation.

On the other hand, it is still a tricky problem to reduce
the communication cost incurred by secure protocols for
nonlinear functions such as comparison and truncation. In
2PC, almost all of the prior works [18], [36], [41], [43] for
securely and faithfully performing non-linear functions rely on
GC. However, GC based protocols require a communication

complexity of O(k¢). To further obtain performance gains for
the neural network prediction tasks, several recent efforts have
been dedicated to designing a more efficient and secure com-
parison protocol. Using a popular cryptographic tool in 2PC,
i.e., 1-out-of-n Oblivious Transfer functionality [5], CrypT-
Flow2 provides an order of magnitude fewer communications
[49]. By using a more efficient oblivious technique, Cheetah
achieves 110x improvement over GC based works along
with a reduction in online communication complexity to O(¥)
[47]. Despite the significant improvement, CrypTFlow2 and
Cheetah require online communication rounds of O(log(?)).
Furthermore, CrypTFlow?2 utilizes OT to achieve secure trun-
cation, which speeds up 20 — 30x more than GC-based
schemes in runtime. However, the OT-based secure truncation
requires O(log(¢)) communication rounds, and neither work
discusses how to achieve secure division with a secret-shared
divisor.

Compared to the above works, the main innovation of
this paper is to propose secure protocols for comparison and
three types of divisions with O(¥¢) online communication.
We extend them to implement the main primitives for neural
network inference so that the communication overhead of each
primitive in the online phase is O({), greatly improving the
efficiency of neural network inference.

VIII. CONCLUSION

In this paper, we present Antelope, an efficient and
secure implementation for practical neural network inference.
By designing new protocols for comparison and division,
Antelope improves upon the state-of-the-art in online com-
munication overhead. We then use them to efficiently imple-
ment the main primitives for neural network inference, which
can outperform previous works by several orders of magnitude
in latency. Finally, we conducted experiments to evaluate the
practical performance of our protocols, and the results demon-
strated the superiority of Antelope compared with existing
works. In the future, we would like to further exploit new ways
to hide more information, such as model architectures, while
optimizing efficiency. We are also interested in developing
practical, secure protocols against a malicious adversary.
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