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Abstract—Text-to-image diffusion models are pushing the
boundaries of what generative AI can achieve in our lives.
Beyond their ability to generate general images, new person-
alization techniques have been proposed to customize the pre-
trained base models for crafting images with specific themes or
styles. Such a lightweight solution, enabling AI practitioners
and developers to easily build their own personalized models,
also poses a new concern regarding whether the personalized
models are trained from unauthorized data. A promising
solution is to proactively enable data traceability in generative
models, where data owners embed external coatings (e.g., im-
age watermarks or backdoor triggers) onto the datasets before
releasing. Later the models trained over such datasets will also
learn the coatings and unconsciously reproduce them in the
generated mimicries, which can be extracted and used as the
data usage evidence. However, we identify the existing coatings
cannot be effectively learned in personalization tasks, making
the corresponding verification less reliable.

In this paper, we introduce SIREN, a novel methodology
to proactively trace unauthorized data usage in black-box
personalized text-to-image diffusion models. Our approach
optimizes the coating in a delicate way to be recognized by
the model as a feature relevant to the personalization task,
thus significantly improving its learnability. We also utilize
a human perceptual-aware constraint, a hypersphere classifi-
cation technique, and a hypothesis-testing-guided verification
method to enhance the stealthiness and detection accuracy
of the coating. The effectiveness of SIREN is verified through
extensive experiments on a diverse set of benchmark datasets,
models, and learning algorithms. SIREN is also effective in
various real-world scenarios and evaluated against potential
countermeasures. Our code is publicly available here.

1. Introduction

Modern text-to-image diffusion models [1, 2, 3, 4]
have revolutionized the generative AI technology. Large
pre-trained diffusion models, such as Stable Diffusion [2],
have demonstrated remarkable capabilities to produce high-

quality and diverse images based on users’ prompts, leading
to new paradigms for commercial art and design generation.

In addition to their remarkable capabilities in generating
general images, there is a growing interest in customizing
these models to produce images in specific themes (e.g.,
generate drawings mimicking a specific art style) [5, 6, 7].
This is typically achieved by fine-tuning a pre-trained model
with a reference dataset. With the development of more
advanced personalization techniques, the mimicry images
produced by these personalized models have become in-
creasingly realistic and closely aligned with the desired
thematic styles. Consequently, numerous real-world person-
alized generative AI platforms and ecosystems [8, 9, 10, 11]
have rapidly emerged, enabling personalized model train-
ers to share their carefully tuned personalized models or
services either for free or profit. This makes the use of
personalized models more accessible to a broader audience.

The remarkable success of personalized text-to-image
diffusion models heavily depends on the availability of high-
quality training data. However, there is a growing concern
about the unauthorized usage of training data for these
models [12, 13]. Artists, for instance, fear that their work
might be used to train these models without permission,
leading to users generating images in their distinctive style
and violating their copyrights [14]. Similarly, data owners
are concerned that their datasets might be exploited to train
personalized models for profit, beyond the initial terms and
conditions that restrict usage to specific non-commercial
purposes (e.g., educational) [15]. When a suspicious model
capable of generating highly similar mimicries comes into
vision, data owners may suspect unauthorized use but lack
persuasive evidence to prove it, complicating efforts to
formally request deletion or further pursue legal action.

One emerging solution for the aforementioned problem
is to enable the traceability of data [16, 15, 17, 12, 18,
19, 20, 21, 22]. The key idea is to proactively embed a
special coating (i.e., secret and unique information) into the
data before releasing them. This coating is imperceptible to
human beings and will not interfere with visualization or
other normal usage. However, it leaves a strong signal in
the model trained on the coated data, which can be later
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detected by a specific extraction algorithm. In this paper,
we explore how to enable data traceability in state-of-the-
art text-to-image diffusion models. For better practicality,
we consider this problem in a strict black-box setting where
only generated mimicries are available (e.g., through query-
ing online APIs). Moreover, the victim/defender is assumed
to have no knowledge of the infringer’s training details, such
as algorithms, parameters, and base models.

Prior research literature on data usage verification in
ML models mainly focus on classification tasks [16, 15, 17,
18, 19, 23, 20, 21]. Only recently, researchers have tried to
extend these methods to generative models [20, 21, 22, 12].
Some studies [20, 21, 22] observe that image watermarks
can be transferred from the training dataset to the output
images of generative models, suggesting the potential for
tracking data usage. Another line of work [12] utilizes
backdoor triggers to serve as the coating and trains a binary
classifier to determine data ownership by detecting triggers
on generated mimicries. However, these methods either are
only validated to be effective in small-scale models trained
from scratch [20, 21], or rely on additional assumptions
about the attacker’s training process [12]. Unfortunately, our
preliminary experiments in Section 3 reveal that these forms
of coating are much harder to learn and lose effectiveness
when applied to large-scale pre-trained models or when the
underlying assumption is removed. These limitations lead to
an important question: how to design a reliable coating that
can be easily learned during personalized training? This is
particularly challenging because the learning dynamics of
deep learning models are inherently complex and opaque,
making it difficult for humans to analyze or even control.

In this paper, we attempt to answer this question for
the first time. Our approach, dubbed SIREN, is driven by a
unified insight into the fundamental limitations of existing
methods: both image watermarks and backdoor triggers
focus on stealthiness while being independent of the per-
sonalized learning task. Given that large-scale pre-trained
diffusion models (e.g., Stable Diffusion) possess general
knowledge of text and image, existing coatings are viewed
as external features irrelevant to the learning task and are
thus largely ignored by the model during fine-tuning. Built
upon this understanding, we propose to optimize the coating
to encourage the alignment between the target image and its
corresponding prompt in the diffusion model feature space.
In this way, the coating will carry some personalization-
related features, making it more easily learned and preserved
during training. However, incorporating such features usu-
ally requires larger perturbation, making the coating less
imperceptible. To enhance imperceptibility and detection
accuracy, we design a perceptual constraint based on the
characteristics of the human visual system and jointly train a
hypersphere classification-based extractor network to better
extract the coating from the mimicries. By doing so, the
coating remains imperceptible to human eyes but can be
successfully transferred to the generated mimicries and de-
tected by the extractor for data usage verification. We apply
a hypothesis-test-guided verification technique to enhance
the verification confidence. Additionally, we propose a meta-

learning-based method to achieve fast adaptation to new
data, making the training of SIREN more stable and efficient.

We conduct extensive experiments on 5 state-of-the-
art text-to-image diffusion models, 6 benchmark datasets,
with 4 personalization learning methods. The results show
that our SIREN is highly effective and significantly out-
performs 3 existing baselines. Specifically, SIREN achieves
almost 100% true positive rates at very low significance
levels across nearly all evaluated scenarios, including two
real-world personalization-as-a-service platforms. It exhibits
high transferability across various training algorithms, train-
ing prompts, and base models, and remains effective even
when the coated data constitute only a small fraction of
the entire training set. Both qualitative and quantitative
evaluations, as well as a human preference study, verify
that SIREN has minimal impact on the visual quality of the
protected images and the generation quality of the model.
We also designed various potential countermeasures and
validated the robustness of SIREN against them.

To summarize, we make the following key contributions:
• We take a closer look at the data usage verification prob-

lem in state-of-the-art personalized text-to-image diffusion
models, and identify a shared fundamental limitation of
existing solutions: the coatings are designed heuristically,
without considering their relation to the learning task.

• We introduce SIREN, an effective and novel methodology
to trace data usage proactively in state-of-the-art personal-
ized text-to-image diffusion models. With the help of sev-
eral technical innovations, SIREN significantly improves
the learnability of coatings while keeping them human-
imperceptible and utility harmless.

• We systematically validate SIREN on various datasets,
models, and personalization algorithms. We also show the
effectiveness of SIREN in various real-world scenarios,
including two personalization-as-a-service platforms. We
validate its robustness under several real-world scenarios
as well as potential (adaptive) countermeasures.

2. Background & Related Work

Text-to-image Diffusion Models. Recently, diffusion mod-
els have achieved remarkable advancements in image syn-
thesis [1, 2, 3, 4]. Stable Diffusion [2], which is based
on the latent diffusion model architecture [1] and pre-
trained on large scale text-image data, is currently the most
prominent open-source text-to-image diffusion model fam-
ily. This model conducts the diffusion process within a latent
space generated by a pre-trained autoencoder, enabling it to
leverage the highly compressed semantic features and visual
patterns that the encoder has learned, thereby enhancing the
efficiency and effectiveness of the image synthesis process.
Personalized Learning. Pre-trained diffusion models, also
known as base models, are good at generating generic im-
ages but are poor in customized generation needs (e.g., gen-
erating specific anime characters or mimicry art style that
never appeared or appeared very few times in the pre-
training dataset). To this end, both academic and industry



communities are interested in fine-tuning the base model
into personalized models that can generate images in specific
themes or styles. Besides the standard fine-tuning method,
researchers have developed advanced personalization meth-
ods [5, 6, 7] to further enhance mimicking quality.

Overall, training a decent personalized model neces-
sitates the collection of high-quality datasets, careful ad-
justment of training parameters, and significant computa-
tional resources. This process can be challenging for nor-
mal users. Consequently, numerous model-sharing platforms
have emerged, such as CivitAI [8], Replicate [9], and Li-
blibAI [11]. These platforms allow model trainers to share
their personalized models with others by providing either en-
tire model weights for local reproducing, or APIs as remote
services. This democratization of access to personalized
models fosters a collaborative environment, allowing a wider
audience to benefit from advanced AI-generated imagery.

Defending against Unauthorized Data Usage. As person-
alized models start to flourish, there are growing concerns
about whether these models are trained using unauthorized
data [13, 12, 24]. Although pre-trained base models typically
open-source their pre-trained datasets [25], the rampant
personalized model usually did not disclose their training
data, making identifying potential infringement challeng-
ing. Existing defenses against unauthorized data usage can
be broadly classified as adversarial-based and verification-
based. The adversarial-based defenses [26, 14, 27] aim to
slightly perturb the data in a way that diffusion models
cannot correctly learn the desired features. For example,
the state-of-the-art work Glaze [14] adds a small, carefully
designed noise onto the artwork, so that the models trained
on it will learn significantly different art styles instead of
the real one. Though very smart and effective, adversarial-
based methods also prevent authorized training on protected
data. Therefore, it mainly serves those who want to ban
any model from learning from it. However, some artists or
organizations may be willing to share their data for non-
commercial purposes (e.g., promoting academic research on
generative models) but solely don’t want them to be used for
profit. In this scenario, they may prefer to trace the usage of
data rather than rendering them totally useless for training.
In contrast, the verification-based methods [20, 21, 12, 22]
offer a more flexible solution by allowing selective detection
of data usage, rather than entirely preventing models from
learning from the data. One intuitive verification method is
to directly detect whether the suspicious model was trained
on protected data, using techniques such as membership
inference [28, 29], or to judge whether the generated mimi-
cries share a high style-level feature similarity using auto-
matic models such as CLIP [30] or DINO [31]. However,
it remains challenging to obtain satisfactory performances,
due to the inherent complexity and generalizability of AIGC
models (see a detailed discussion in Appendix D). As such,
researchers also focus on proactive solutions [22, 12], which
rely on external coatings (i.e., image watermarks or back-
door triggers) to trace data usage. However, current proactive
verification methods are limited to small-scale models or
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Figure 1: Evaluation results of watermark-based methods on Dog
[5] dataset. The personalization method is DreamBooth [5]. The
model quickly learns the new concept while ignores the watermark.
The bit accuracy would be 50% for random guesses.

rely on additional assumptions, which we will identify to
be not enough for this important yet challenging problem.

3. Motivating Studies

3.1. Watermark-based Methods

Existing watermark-based methods [20, 21, 22] embed
a pre-defined steganography message into the protected
images, with the expectation that the same message can be
decoded from images generated by the personalized model
trained on them. While previous research has demonstrated
the feasibility of these solutions in GANs [20] and small-
scale diffusion models (e.g., DDPM) trained from scratch
[21], as we will verify, they become less effective in the
context of personalized learning with state-of-the-art Stable
Diffusion model. Below we conduct experiments to show
that image watermarks cannot be adequately learned during
the fine-tuning process, even though the personalized models
are already capable of producing high-quality mimicries.

We reproduce and evaluate the watermark-based meth-
ods of Yu et al. [20] and Luo et al. [22] in this section.
Specifically, we fine-tune the Stable Diffusion v1.5 model
[1] using the DreamBooth method [5] on a benchmark
datasets for personalization learning: Dog [5]. Following
[20, 22], we watermark all images in the training set with
the same pre-defined bit message and then use them for
personalized learning. We then generate 1,000 mimicry im-
ages and extract the watermark from them. The effectiveness
of watermarks is evaluated using the Bit Accuracy metric,
defined as the ratio of successfully extracted bits to the
total number of bits. Additionally, we assess the quality of
personalization learning using the DINO score [32], which is
the average pairwise cosine similarity between the ViTS/16
DINO embeddings of generated and real images. It is widely
used to evaluate the effectiveness of personalized learning
[5]. A higher DINO score indicates greater semantic simi-
larity and, therefore, better mimicry performance.

We repeat each experiment 3 times and report the results
in Figure 1. As shown, the model quickly learns the new
concept during personalized learning and starts to produce
high-quality mimicry images within 100 to 200 time steps,
indicated by a quick increase in DINO score. However,
the watermarks are largely ignored during personalization



TABLE 1: Evaluation results of backdoor-based data ownership verification method DIAGNOSIS [12].

Training Prompt
Pokemon CelebA-HQ ArtBench Landscape

DSR ↑ DINO ↑ FID ↓ DSR ↑ DINO ↑ FID ↓ DSR ↑ DINO ↑ FID ↓ DSR ↑ DINO ↑ FID ↓

Backdoored Prompt 100% 0.645 134.64 92% 0.551 84.98 100% 0.288 205.47 100% 0.403 126.76
BLIP-Generated Prompt 4% 0.712 107.42 4% 0.565 74.47 15% 0.294 209.22 7% 0.424 115.01

learning. Even at the 500th time step, where we observe
the model starts to slightly overfit the training set, the bit
accuracy of both watermarks remains around 50%. This
indicates that the watermarks fail to be preserved.

To summarize, existing watermarks [20, 22] are difficult
to be learned and preserved during personalization learn-
ing with state-of-the-art Stable Diffusion models, i.e., they
have only limited learnability. We hypothesize that one
fundamental reason is these models have been pre-trained
on large high-quality text-image datasets, leading to the
establishment of robust semantic connections between text
and image concepts. In other words, they have been familiar
with general concepts and potentially know what to learn
when presented with new concepts. For example, pre-trained
diffusion models are already familiar with the general ap-
pearance of dogs. When adapting to a specific type of new
dog, the model may mainly focus on the distinctive details
of such new dog, such as fur, eyes, and ears. However,
image watermarks have limited semantic connections to the
primary concepts. As a result, they will possibly be treated
as extraneous features similar to image backgrounds by the
model and consequently disregarded during training.

3.2. Backdoor-based Methods

DIAGNOSIS [12] is currently the only backdoor-based
data usage tracing method effective in text-to-image dif-
fusion models. It coats the dataset by adding a stealthy
backdoor trigger onto protected images, and appending a
trigger text (i.e., a rarely used word, such as “tq”) to the
corresponding original prompt. Then, if a model is trained
on this coated dataset, it will learn a “backdoor” (i.e., to
add the same backdoor trigger on the generated images if the
trigger text is met). By training a binary classifier on external
datasets and using it to detect whether the mimicries contain
the backdoor trigger, the defender can determine whether the
suspicious model was trained on protected data.

One underlying assumption of DIAGNOSIS is that the
training prompt used by the infringer must be the back-
doored one provided by the defender. However, this assump-
tion can be easily bypassed without harming the generation
quality – the infringer can use state-of-the-art image cap-
tioning models, such as BLIP [33], to generate high-quality,
detailed text descriptions as training prompts. Unfortunately,
we will show that when this assumption is removed, the
effectiveness of DIAGNOSIS will reduce significantly.

We reproduce DIAGNOSIS on four benchmark datasets,
i.e., Pokemon [34], CelebA-HQ [35], ArtBench [36], and
Landscape [37]. Specifically, we fine-tune the Stable Dif-
fusion v1.5 model [2] under two settings: (a) both images

and prompts are coated (Backdoored Prompt); and (b) only
images are coated, but the prompts are generated using
the BLIP image captioning model [33] (BLIP-Generated
Prompt); To measure whether DIAGNOSIS is successful, we
use 3 metrics: Detection Success Rate (DSR) which is the
ratio of mimicries that are correctly classified as “contains
the trigger” to measure effectiveness, along with DINO score
[32] and FID [38] to evaluate the generation quality.

As can be seen in Table 1, when the infringer uses the
BLIP-generated prompts, the quality of the mimicries re-
mains comparable to that trained with backdoored prompts.
However, the DSRs drop quickly on all datasets. We also
validate DIAGNOSIS using Welch’s T-test [39], and the
results confirm that the difference in DSR is not statistically
significant compared to an independent clean model. This
suggests that the success of DIAGNOSIS is heavily depen-
dent on the assumption that the infringer uses exactly the
same training prompts provided by the defender. The orig-
inal DIAGNOSIS paper mitigates this issue by sacrificing
both training set quality and generation quality: it enlarges
the trigger strength to twice that of the original so that the
trigger becomes visible and will be preserved even when the
infringer does not use the backdoored prompt. However, as
we will validate in our experiments, this remedy is only
effective on certain datasets and personalization methods.

In conclusion, DIAGNOSIS encounters a similar learn-
ability issue when the assumption about training prompts
is removed. We believe the underlying reason is similar to
our analysis in Section 3.1: backdoor triggers are designed
heuristically, without considering their correlation to the
personalization task. When the training prompts include the
text trigger, the model can correctly associate the image
triggers with it. However, when such text triggers are not
contained, the model barely considers backdoor trigger as a
feature relevant to the personalization task. As a result, the
triggers are also largely ignored during training.

4. SIREN

4.1. Threat Model

We consider a practical scenario involving three parties:
a data owner (victim), an infringer (attacker), and a third-
party data protection platform (defender).
Data Owner’s Capabilities & Goals. The data owner aims
to release his/her possessed images to the public for certain
purposes (e.g., artwork advertising or promoting academic
research). However, he/she does not want his/her data to
be used for commercial purposes without authorization,
i.e., training and selling personalized diffusion models for



profit in our consideration. To protect the data, the user
can request a third-party platform to coat the images before
releasing them. When the data owner observes a black-box
suspicious model, they can ask the platform to verify any
potential infringements of such models.
Infringer’s Capabilities & Goals. The infringer (also the
attacker) aims to develop a personalized diffusion model
capable of generating high-quality mimicry images. To this
end, he/she needs to collect some data from the Internet
following his/her desired concept or style. He/She obtains
the data owner’s protected (i.e., coated) images and uses
them as (part of) the training dataset. We assume the attacker
(1) has complete access and control to the collected dataset,
(2) has complete control over the fine-tuning and generation
procedure, and (3) has knowledge that the collected data is
(possibly) coated. However, he/she (4) needs to ensure that
the generated mimicries are with high-quality, and (5) may
know the design of SIREN (in an adaptive attack setting) but
cannot access the exact network parameters of the coating
generator and extractor used by the defender.
Data Protection Platform’s Capabilities & Goals. This
platform is a trusted third party, providing registered users
with data coating and verification services. The platform has
(1) complete access and control over the data provided by
the owner, so it can add special coatings onto the data before
releasing it; and (2) black-box access to the suspicious
model, so it can query the suspicious model and obtain the
generated mimicries for verification. However, the platform
(3) needs to keep the coated data visual and utility similar
to the uncoated version, and (4) does not know or control
any training details (e.g., base model, training prompts,
personalization methods) of the suspicious model.

4.2. Design Overview

Similar to previous methods, the framework of SIREN is
divided into two stages: coating and verification. During the
coating stage, the defender jointly trains a coating generator
G : Rc×h×w → Rc×h×w, which takes an image as input and
produces a coating of identical size, and a paired coating
extractor Φ : Rc×h×w → R to detect the coating from
a suspicious image and output a specific coating score
(explained later). Once training is complete, the defender
generates a unique coating for each image in the dataset,
applies these coatings, and returns the coated dataset back
to the user. In the verification stage, when a suspicious
black-box personalized model is observed, the user can
request the protection platform to verify whether this model
incorporates the coated images for personalization training.
The platform queries the suspicious model to obtain the gen-
erated mimicries, calculate the coating score, and conduct a
hypothesis test to make the decision.

We make several innovations in the design of SIREN to
enhance its practicality and effectiveness. (1) To enhance
learnability, we design a novel learnability loss by correlat-
ing the coating to the personalized learning process (Section
4.3.1). (2) To enhance the stealthiness of the coated images,

we introduce the HVS-aware perceptual constraint, which
leverages the Human Visual System to reduce the visual
distortions (Section 4.3.2). (3) We introduce the hypersphere
classification loss (Section 4.3.3) and distributional hypoth-
esis testing (Section 4.4) to detect the usage of coated data.
(4) We further propose a meta-learning technique to boost
the training of the coating generator and extractor (Section
4.5). Below we give the design details of each technique.

4.3. Training & Coating Stage

In the training stage, the defender jointly trains a coat-
ing generator G and a paired extractor Φ. Below we first
introduce several essential loss terms used in this stage and
present the overall training objective.
4.3.1. Learnability Loss. Motivated by the limited learn-
ability of existing coatings, the key intuition behind our solu-
tion is to ensure that the traceable coating is relevant to the
features that personalized learning wants to learn. In other
words, we want the coating itself to be a relevant feature that
is helpful for personalization and can be effectively learned
by the diffusion model during fine-tuning to reproduce it
in the mimicries. Although intuitively reasonable, achiev-
ing this goal is challenging in practice since the learning
dynamics of large diffusion models are complex and even
difficult to analyze, not to mention controlling them.

To this end, we formulate an optimization problem to
obtain the desired coating. Before stepping into the details,
we first conceive a definition of feature-relevant coating.
Definition 1 (Feature-relevant Coating). For a personalized
model ϵ∗θ , a training image-text pair (x, t), and τ > 0, a
coating δ is τ -feature-relevant if:

LDM(x, c)− LDM(x+ δ, c) = τ, (1)

where LDM(·, ·) is the loss function of the target diffusion
model (DM). For latent diffusion models, the loss function
is LLDM = Eϵ∼N (0,1),t

[
∥ϵ− ϵ∗θ(zt, t, c)∥22

]
, where ϵ∗θ(·, ·, ·)

is the target diffusion model, zt is the noised latent repre-
sentation of the image and t is the time step [1].

Similar to previous studies on feature-learning theory
and adversarial attacks [40, 41], this definition states that
a coating is relevant to the features of a training image
if patching it to the training sample can reduce the loss
of this text-image pair on the model. For an intuitive
understanding, pre-trained text-to-image diffusion models
have already established a robust, text-image aligned feature
space [42, 43]. In this context, the loss of a given text-image
pair represents the semantic discrepancy between the text
and image considered by the model. If adding the coating
to the image reduces this loss, it implies that the coating
encourages the alignment between the text and the image.
For instance, if a coating reduces the loss between an image
of a dog and the prompt ‘dog’, it means that the coating
contains some features recognized by the diffusion model
as the characteristic of a dog.

Intuitively, a coating with larger τ indicates higher
relevance to the target feature. Therefore, our goal is to



(a) Original (b) ℓ∞ Constraint (c) Ours
Figure 2: A comparison of (a) original uncoated image; with
images coated by (b) the ℓ∞ constraint of 11/255, and (c) our
SIREN. Notably, the coating optimized by ℓ∞ constraint brings
unnatural artifacts on flat and bright color areas (e.g., the face of
the woman), while our coating looks much more natural.

identify a coating with the largest possible τ . Thus, given
the target dataset D = {(xi, ci)}Ni=1, we aim to minimize
the learnability loss, defined as:

Llearn = − 1

N

∑
(xi,ci)

(LDM(xi, ci)− LDM(xi + G(xi), ci)),

(2)
where G(·) is the coating generator. Note that the above
optimization problem requires white-box access to the per-
sonalized model and the corresponding ground-truth prompt
used by the infringer, which is often not realistic in the real
world. To relax this requirement, inspired by previous works
[14], we employ a surrogate diffusion model to approximate
ϵ∗θ . In detail, we fine-tune the Stable Diffusion v1.5 [1] on
the uncoated dataset for a few (30 in this paper) epochs and
use this model to serve as ϵ∗θ . Additionally, we follow the
approach in [5] to derive the class descriptor as the surrogate
prompt for both fine-tuning the surrogate model and calcu-
lating Eq. (2). Our experiments demonstrate that despite the
use of surrogates, SIREN exhibits high transferability across
various diffusion models (including those with completely
different architectures) and diverse training prompts.

4.3.2. HVS-aware Perceptual Constraint. Recall that an
ideal coating should be not only learnable but also stealthy.
This means that when the coating is applied to the protected
image, it cannot cause noticeable changes or appear unnat-
ural to human observers. Previous works on data protection
commonly constrains the coating budget to a certain ℓp norm
[26, 27] (e.g., the state-of-the-art work [27] uses a budget
of ℓ∞ = 11/255). However, this constraint, measured in the
RGB color space, does not fully exploit the characteristics of
the Human Visual System (HVS) and may cause unnatural
color distortions on the coated image (Figure 2b).

Inspired by existing works on HVS [44], we employ a
HVS-aware perceptual constraint, i.e., the perceptual color
distance, to improve the stealthiness of coatings in SIREN.
This distance is quantified using the CIEDE2000 color
difference formula [45], which provides a more accurate
measure of the perceived difference between images as
experienced by human observers. Given two images, the
perceptual color difference ∆E(·, ·) is calculated as:

∆E =

√
(
∆C ′

kCSC
)2 + (

∆L′

kLSL
)2 + (

∆H ′

kHSH
)2 +∆R, (3)

Positive Samples
Negative Samples (Training Set)
Negative Samples (Full Distribution)
Learned Classification Boundary

Positive Samples
Negative Samples (Training Set)
Negative Samples (Full Distribution)
Learned Decision Boundary

Figure 3: An example feature-space illustration comparing binary
classification (left) with hypersphere classification (right). Direct
binary classification might be biased by the incomplete negative
training data, while hypersphere classification mainly focuses on
positive samples and generalizes better on unseen negative data.

where ∆C ′, ∆L′ and ∆H ′ denote the chroma, lightness,
and hue distance between two images in the CIELCH space,
respectively, and ∆R = RT (

∆C′

kCSC
)( ∆H′

kHSH
) is an interactive

term between chroma and hue differences. The weighting
functions SL, SC , SH and RT as well as other parameters
kC , kL and kH are derived based on large-scale human
experiments to better approximate HVS perception. We refer
readers to [44] for more details on how the formulation is
derived and why it can better simulate human perception.
We incorporate this perceptual constraint as an additional
regularizer to encourage smoother color changes:

Lpercept =
1

N

N∑
i=1

∥∆E(xi, xi + G(xi))∥22. (4)

Figure 2 compares images coated by our SIREN with
that coated with ℓ∞ constraint. The image coated with the
ℓ∞ constraint exhibits noticeable distortions and unnatural
textures. In contrast, the image coated by SIREN appears
much more natural and stealthy, suggesting a notable im-
provement in visual quality compared with ℓ∞ constraints.
4.3.3. Hypersphere Classification Loss. By far, we have
designed techniques to make the coatings stealthy to min-
imally impact the image’s visual quality, and learnable by
the diffusion models. The next goal is to detect the exis-
tence of the coating on the mimicries. A straightforward
solution is to directly train a binary classifier on coated
and clean images using the standard cross-entropy loss,
which essentially learns a hyperplane in the classifier feature
space to distinguish between positive (coated) and negative
(clean) samples. However, this is sub-optimal because it
is impractical to collect all possible clean images in the
real world. Consequently, the learned hyperplane might be
biased towards the training dataset, and may cause misclas-
sification on unseen negative data (see a detailed discussion
in Appendix D), as illustrated in Figure 3 (left).

Inspired by previous works on data description [46], we
propose to learn a hypersphere rather than a hyperplane.
This approach learns a minimal hypersphere that can en-
compass all positive samples and regard all other samples
out of the hypersphere as negative. As a result, the learned
boundary will mainly focus on positive samples (i.e., coated
images) and be much less affected by the distribution of
negative training set, providing better generalizability to
unseen negative samples (Figure 3 right). Specifically, given



Algorithm 1 Protecting data with SIREN

Input: Uncoated data D with N samples x1, · · · , xN , meta
coating generator G∗ and extractor Φ∗, learning rate α, β

1: G,Φ = Clone(G∗,Φ∗)
2: o← 1

N

∑N
i=1(Φ(xi + G(xi))) ▷ Initialize o

3: R← 1
N

∑N
i=1(∥Φ(xi + G(xi))− o∥22) ▷ Initialize R

4: while loss not converged do
5: Sample (a batch) of xi from D
6: ci ← get class descriptor(xi)
7: Calculate Loverall on (xi, ci) with G and Φ via Eq. (7)
8: G ← G − α∇GLoverall
9: Φ← Φ− β∇ΦLoverall

10: o← 1
N

∑N
i=1(Φ(xi + G(xi)))

11: Update R via line search
12: end while

return {xi + G(xi)}Ni=1

a feature extractor Φ : Rc×h×w → Rd, the hypersphere
classification loss for positive samples is:

L+
hc = νR2 +

1

N

N∑
i=1

max{0, ∥Φ(xi + G(xi))− o∥22 −R2},

(5)
where o ∈ Rd and R ∈ R are the center and radius of
the hypersphere, respectively, and ν is a hyperparameter
controlling the relative strength of the two terms. Intuitively,
L+
hc consists of two terms: the first term minimizes the

volume of the hypersphere and the second term penalizes
the positive samples that are out of the hypersphere. To
better leverage the negative samples, we also minimize the
following objective that pushes them out of the hypersphere:

L−
hc = −

1

N

N∑
i=1

log(1− exp(−∥Φ(xi)− o∥22)). (6)

o is initialized and updated as the mean representation of
all positive samples in the batch after each iteration, while
R is updated via line search [47].
4.3.4. Overall Training Objective. Given the aforemen-
tioned losses, our overall training objective is defined as:

min
G,Φ
Loverall = Llearn + λ1Lpercept + λ2(L+

hc + L
−
hc), (7)

where λ1 and λ2 are weighting parameters that control
the relative strengths of the losses. During training, we
follow previous work [48] to include a differentiable EoT
layer and an MSE image loss to enhance robustness and
stabilize training. The full training algorithm can be found
in Algorithm 1 and more details are in Appendix C.

4.4. Verification Stage

Given a mimicry image xs generated by the suspi-
cious model, we can determine whether it contains the
coating by projecting it into the feature space of Φ and
calculating its distance to the center of the hypersphere,
i.e., s(xs) = ∥Φ(xs) − o∥22, which we call the coating
score. Ideally, coated images will have small coating scores

while clean ones will have much larger scores. To convert
the coating scores to human-readable evidence, we follow a
previous work [12] and conduct a distributional hypothesis
test. In detail, we have the null hypothesis H0: unauthorized
data usage is not detected, and the alternative hypothesis H1:
unauthorized data usage is detected. Given that mimicries
generated by personalized models from coated data have
statistically different coating scores from the clean data, we
conduct a two-sample Kolmogorov–Smirnov (K-S) test [49]
to determine whether the suspicious model is personalized
using coated images. Given a significance level α, we reject
the null hypothesis and claim the detection of unauthorized
data usage if the following inequality is satisfied:

sup
x
|F (x)−G(x)| −

√
n+m

nm
Kα > 0, (8)

where F (x) and G(x) represent the empirical distribution
functions of the coating scores of coated and clean samples,
respectively, n and m are the sizes of these two samples,
and Kα = 2

∑∞
k=1(−1)k−1e−2k2x2

is the critical value
from the K-S distribution corresponding to α [50]. Note that
the significance level α models the probability of making
Type-I error, namely rejecting the null hypothesis while it
is actually true i.e. the false positives.

The benefits of distributional hypothesis testing are
as follows. First, the K-S test is a non-parametric test,
which does not rely on any additional assumptions on the
two distributions. Second, by setting α to a small value
(e.g., 10−6), we can reduce the FPR to enhance the credibil-
ity of SIREN and prevent potential misaccusation on benign
models. We verify the controlled FPR of the test and its
sensitivity to different benign distributions in Appendix A.

4.5. Meta-learning for Fast Adaptation

While achieving state-of-the-art performance, the coat-
ing stage of SIREN can be burdensome since we need to
retrain a coating generator and coating feature extractor from
scratch every time, which is time- and resource-consuming.
To this end, in this section, we propose to leverage meta-
learning to mitigate the aforementioned challenges. Specif-
ically, we aim to learn a “meta” coating generator G∗ and
extractor Φ∗ whose feature spaces are well-structured and
thus their initialization weights can be easily adapted to the
new coatings using a few fine-tune steps. To this end, we
use a first-order meta-learning method, Reptile [51]. Given a
batch of proxy data Dp, we first set G∗0 = G∗ and Φ∗

0 = Φ∗.
Then, we fine-tune this model pair to yield an updated model
pair G∗K and Φ∗

K using K steps of SGD update:

{G∗k ,Φ∗
k} = SGD({G∗k−1,Φ

∗
k−1},Dp), k = 1, . . . ,K, (9)

After this, the parameter difference of this personalized
update is used as the meta-gradient to train the meta model:

G∗ ← G∗ − γ(G∗ − G∗K),

Φ∗ ← Φ∗ − ξ(Φ∗ − Φ∗
K),

(10)

where γ and ξ are the meta learning rates. With this, we can
gradually learn a meta model that can easily and quickly
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(b) CelebA-HQ [35]
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(c) ArtBench [36]
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(d) Landscape [37]

Figure 4: Effectiveness comparison in the fine-tuning personalization scenarios.

adapt to new data with very few training steps. We provide
the full training algorithm and more details in Appendix C.

5. Evaluation

5.1. Experimental Setup

Diffusion Models. We use 5 state-of-the-art text-to-image
diffusion models (i.e., Stable Diffusion v1.5 [2], Stable
Diffusion v2.1 [25], Kandinsky 2.2 [4], Latent Consistency
Models [3] and VQ Diffusion [52]) in our experiments. It is
worth noting that except for Stable Diffusion v2.1 which
shares the same network architecture with our surrogate
model but trained under different settings and datasets, the
remaining models have totally different network structures
(and also model parameters) compared to the surrogate.
Personalization Methods and Datasets. We evaluate the
generalizability of SIREN under 4 personalzation methods,
including the fine-tuning (on 4 large scale dataset, i.e., Poke-
mon [34], CelebA-HQ [35], ArtBench [36], and Landscape
[37]) and 3 advanced methods (i.e., DreamBooth [5], SVDiff
[7], and Custom Diffusion [6]), on 2 relatively small datasets
(i.e., Dog [5] and WikiArt subset [53]). More details on the
methods and datasets can be found in Appendix C. We indi-
vidually protect the dataset with SIREN in each setting and
train the personalized model, then generate the mimicries
for verification. We use LoRA [54] to save memory usage
in the fine-tuning experiments.
Evaluation Metrics. The effectiveness of our method and
baselines are assessed using the True Positive Rate (TPR)
metric at certain significance level α. This metric quantifies
the proportion of correctly identified true positives at a spec-
ified significance level. For instance, if a method achieves a
TPR of 97% at α = 10−6, then it can correctly identify 97
out of every 100 really positive instances under α = 10−6.
Note that higher TPR at lower significance level indicates
better reliability. Moreover, we use three metrics widely
used in image quality assessment, namely PSNR [55], SSIM
[56] and LPIPS [57], to quantitatively measure the impact
of SIREN on image quality. Finally, we use the CLIP score
[30], DINO score [31], and FID [38], which are widely used
by previous works [5, 7], to measure the generation quality.
Baselines. We mainly compare our SIREN with 3 state-of-
the-art verification-based methods, i.e., two watermarking-
based (Yu et al. [20], Luo et al. [22]) and one backdoor-

based (DIAGNOSIS [12]). Note that the watermark extrac-
tion accuracy and backdoor success rate can be converted
into TPR at a certain α through a hypothesis testing process,
as described in their original paper [20, 12]. As a result, we
can use TPR in a unified way to compare all methods fairly.
More configurations on the baselines and hypothesis testing
details can be found in Appendix C.
Implementation Details. By default, we set the weighting
parameters as λ1 = 1 and λ2 = 1. Following [46], we set
ν = 0.5 in our experiments. Following previous practices
[15, 58], we set n = 30 and m = 30 in Eq. (8) by default.
For all personalization techniques, the training hyperparame-
ters (e.g., learning rate, batch size) follow the default setting
in their original paper. The generation parameters follow
the official default setting provided by HuggingFace. The
empirical distributions of F and G are estimated by sending
the same prompts for personalized generation to the suspi-
cious model and a benign model (i.e., Stable Diffusion v1.5
fine-tuned on the uncoated dataset) and calculating coating
scores on the generated images. For each experiment, we
repeat the test in Eq. (8) for 10,000 times, each time with
a randomly selected sample set from an image pool of
1,000 generated mimicries, and report the averaged results.
More implementation details, including the model structure
of SIREN, are given in Appendix C.

5.2. Effectiveness against Fine-tuning

We first evaluate the effectiveness of SIREN in the stan-
dard fine-tuning scenario. We fine-tune the Stable Diffusion
v1.5 model using the 4 datasets described in Section 5.1.
For CelebA-HQ, we use its provided text descriptions as
the training prompts. For the other datasets without such
text descriptions, we use the BLIP image captioning model
[33] to generate the descriptions as the training prompts.
The test-time personalization prompts are set as “an image
of a/an [V]”, where [V] is “Pokemon”, “person”, “artwork”,
and “landscape” for the corresponding datasets. We train 3
independent models with different random seeds for each
experiment and report the averaged results.

Figure 4 shows the evaluation results. Here, the x-axis
controls the significance level (α) while the effectiveness of
each method is presented as the TPR at a certain α. Overall,
our proposed SIREN achieves a TPR of nearly 100% even
at α = 10−9 in all tested datasets. In sharp contrast, the
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(b) SVDiff [7]
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(c) Custom Diffusion [6]

Figure 5: Effectiveness comparison in the advanced personalization methods. The dataset is Dog [5].

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Significance Level 

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e

SIREN (Ours)
DIAGNOSIS
Yu et al.
Luo et al.

(a) DreamBooth [5]

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Significance Level 

0

20

40

60

80

100
Tr

ue
 P

os
iti

ve
 R

at
e

SIREN (Ours)
DIAGNOSIS
Yu et al.
Luo et al.

(b) SVDiff [7]
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(c) Custom Diffusion [6]

Figure 6: Effectiveness comparison in the advanced personalization methods. The dataset is WikiArt [53].

state-of-the-art verification-based defenses either completely
fail to effectively detect the unauthorized data usage in
personalized diffusion models, or have very fluctuating per-
formances across different datasets. For example, while the
backdoor-based method DIAGNOSIS [12] performs well on
Pokemon and CelebA-HQ, its effectiveness drops quickly on
ArtBench and Landscape. On the other hand, the watermark-
based methods [20, 22] completely fail to reach TPR > 40%
in all evaluated cases. The possible reason, as we dis-
cussed previously, is that these methods ignore the relevance
of injected watermarks/backdoors with the personalization
task. For example, DIAGNOSIS’s trigger is a warping-based
operation that twists the edges of the image subject. These
features might be considered by a pre-trained diffusion
model as relevant to Pokemon characters or person faces,
but may hardly be considered as a feature of artwork or
landscape image. This possibly explains why DIAGNOSIS
can achieve good results on Pokemon and CelebA-HQ while
performing poorly on ArtBench and Landscape.

5.3. Effectiveness against Advanced Personaliza-
tion Methods

We further evaluate the effectiveness of SIREN when the
model is customized using more advanced personalization
methods (i.e., DreamBooth [5], SVDiff [7], and Custom Dif-
fusion [6]). We choose two datasets widely used in person-
alization: Dog [5] and Wikiart subset [53]. For all methods,
following Ruiz et al. [5], we set both the user’s training
prompt and test-time personalization prompt as “an image
of a [V*] [class]”, where [V*] is the personalization pseudo

word and [class] is the class noun, automatically acquired as
described in [5]. We note that the test-time personalization
prompt (i.e., the pseudo word [V*]) is naturally accessible
in our threat model: as the attacker deploys the black-box
personalized model for profit, he naturally provides [V*]
to the users for generating mimicries. Otherwise, the users
cannot use this model for personalized generation. Other
hyperparameters follow the original settings in their paper.

The evaluation results for the two datasets are shown
in Figure 5 and Figure 6. Interestingly, we find that even
on the same dataset, the baselines exhibit totally different
performances against different personalization methods. For
instance, DIAGNOSIS remains effective on SVDiff for both
datasets, but it is less effective on DreamBooth and Custom
Diffusion. These observations suggest that the baselines are
not universal. In contrast, our SIREN consistently achieves
high effectiveness (TPR) at very low significance levels for
all advanced personalization methods and both datasets.

5.4. Coating Robustness

In this section, we assess the robustness of SIREN under
various real-world scenarios.
The protector/infringer uses different models/prompts.
Recall that the Llearn term in Eq. (2) is calculated using
the surrogate model and surrogate prompt. We investigate
whether SIREN remains effective when there exists different
degrees of divergence between the infringer’s actual model
and surrogate model. Specifically, we select 4 state-of-the-
art opensource text-to-image diffusion models for transfer-



TABLE 2: Transferability of SIREN across different diffu-
sion models and training prompts. The reported metric is
the TPR at α = 10−9.

Dataset Model
Training Prompt Generator

BLIP LLaVA PaLI

Pokemon

Stable Diffusion v2.1 [25] 100% 100% 100%
Kandinsky 2.2 [4] 100% 100% 100%

Latent Consistency Models [3] 100% 100% 100%
VQ Diffusion [52] 100% 100% 100%

CelebA-HQ

Stable Diffusion v2.1 [25] 100% 100% 100%
Kandinsky 2.2 [4] 100% 100% 100%

Latent Consistency Models [3] 100% 100% 100%
VQ Diffusion [52] 100% 100% 100%

ability evaluation: Stable Diffusion v2.1 [25], Kandinsky 2.2
[4], Latent Consistency Models [3], and VQ Diffusion [52].
Stable Diffusion v2.1 has the same architecture with the
surrogate model while trained with different datasets and
settings, and other models are totally different from the
surrogate model in terms of architecture, training set, and
hyperparameters. For training prompts, we use the prompt
generated by three different state-of-the-art image captioning
models: BLIP [33], LLaVA [59], and PaLI [60].

As shown in Table 2, SIREN exhibits very high trans-
ferability across all evaluated models and training prompts,
achieving a TPR of 100%. This is not surprising – previous
works have shown that the “semantic perturbations” learned
from Stable Diffusion models have high transferability [27].
Moreover, SIREN also has good transferability across train-
ing prompts generated by different captioning models.

The training set consists of both coated and clean images.
Next, we consider another practical scenario where the
training set collected by the infringer includes both coated
and clean images. This is realistic because an infringer may
collect the dataset from multiple sources, while the user’s
images may only be part of it. Note that as the ratio of coated
images over the training set decreases, the final mimicries
would be much less similar to the user’s images [12, 14].

We evaluate the robustness of SIREN and compare it to
DIAGNOSIS in this setting. As can be seen from Figure 7,
SIREN is still highly effective and significantly outperforms
DIAGNOSIS: on both datasets, SIREN almost achieves a
TPR of 100% at α = 10−9 when the ratio of coated images
exceeds 20%. On the Pokemon dataset SIREN even reaches
a surprisingly high TPR of 94.2% at α = 10−4 when the
coated dataset only consists 1% of the entire training set.

One may note that SIREN is more effective on Pokemon
than on CelebA-HQ. One possible reason is that the model’s
training dataset (i.e., LAION-5B) already includes the en-
tire CelebA-HQ dataset, while Pokemon images are not
included. Consequently, since the base model has already
seen CelebA-HQ during pre-training, it tends to learn less
new knowledge when trained on it again. As a result, the
coating generated by SIREN is less effective, especially at
low coating ratios. This phenomenon is also observed for
DIAGNOSIS and adversarial-based protections [14]. How-
ever, we believe this is not a significant issue: the primary
target of both personalization learning and our SIREN are
those images that have not been seen by diffusion models
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Figure 7: Protection robustness when the training dataset
consists of both coated images and uncoated images.

TABLE 3: Impact on visual quality of the coated dataset.

Dataset PSNR ↑ SSIM ↑ LPIPS ↓

Pokemon 40.51 0.993 0.0038

CelebA-HQ 38.17 0.951 0.0453

Dog 40.52 0.972 0.0268

during pre-training (i.e., the new concepts). In this scenario,
our method is still highly effective at very low coating ratios.

Other Experiments. We conduct some additional exper-
iments, which explore the effectiveness SIREN when (1)
the mimicries undergo further transformations, (2) data size
is small, (3) the model is further modified, and (4) the
infringer uses different generation prompts and hyperparam-
eters. Overall, SIREN is highly effective in these scenarios.
More results and analyses can be found in Appendix B.

5.5. Impact on Image Quality

In this section, we investigate the impact of SIREN on
image quality. Specifically, we assess (1) whether patching
the coating degrades the visual quality of the training set
images; and (2) whether the quality of mimicries generated
by models personalized with coated images degrades. We
first evaluate the performance quantitatively using automatic
metrics, then we include a human evaluation to fully under-
stand the impact of SIREN on human-perceived quality.

Qualitative and Quantitative Evaluations. As can be seen
from the quantitative results in Table 3, the coating has
overall a high PSNR, SSIM, and low LPIPS values on the
datasets evaluated. We also provide some qualitative results
in Figure 8, which show that the perturbations generated by
SIREN are generally imperceptible to human observers.
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Figure 8: The original images and their coated version.

TABLE 4: Impact on generation quality. Original means fine-tune
the model using the original uncoated dataset, while SIREN indi-
cates to fine-tuning the model using the dataset coated by SIREN.

Dataset Setting FID ↓ CLIP Score ↑ DINO Score ↑

Pokemon Original 104.57 0.816 0.701
SIREN (Ours) 103.26 0.828 0.709

CelebA-HQ Original 63.57 0.574 0.605
SIREN (Ours) 59.07 0.576 0.612

Dog Original 58.00 0.910 0.835
SIREN (Ours) 59.36 0.908 0.829

We then evaluate SIREN’s impact on the generation
quality of the personalized model. The results in Table 4
show that the impact of SIREN on generation quality is
small, as shown by a small difference of all metrics. Some
examples refer to Figure 17 in the Appendix of our report1.
Human Preference Study. Finally, we assess the impact of
SIREN on image quality through a human preference study
on Pokemon and CelebA-HQ. We compare our method with
DIAGNOSIS as it is the most effective baseline. For each
dataset, we randomly choose 6 training images and protect
them by DIAGNOSIS and SIREN, respectively. Then, we
randomly select 6 images generated by personalized models
trained on unprotected, DIAGNOSIS-protected, and SIREN-
protected datasets, respectively. We then prepare a survey
with 24 questions, each displaying three images in random
order (original, DIAGNOSIS, and SIREN). Participants are
asked to rate each image based on quality and naturalness
(see more details and a sample question in Appendix C in
our report). The rating, which we refer to as human prefer-
ence rating (HPR), ranges from 1∼10, where 7∼10 indicates
very good quality and high naturalness, 4∼6 indicates some
low-quality details and visible, unnatural artifacts, and 1∼3
indicates very low quality and very unnatural appearance.
For generated images, we additionally ask the participants
to consider the similarity to the training dataset. The study is
performed with 32 volunteer university students and facul-
ties aged between 20-33, with 32×24×3 = 2208 answers in
total. The whole procedure has been reviewed and approved

1. See our full version at https://arxiv.org/pdf/2302.12192
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Figure 9: Human preference study results. SIREN only causes a
very small impact on both training dataset and generated mimicries,
while DIAGNOSIS produces much more visible artifacts.

by our school’s IRB, whose process is similar to the exempt
review in the US, since the study is considered as “minimal
risk” by IRB staff. The results are summarized in Figure 9.
To summarize, SIREN only causes a small impact on both
training dataset and generated mimicries, and significantly
outperforms DIAGNOSIS in all evaluated settings.

5.6. Real-world Case Studies

We evaluate the effectiveness of SIREN on two real-
world personalization-as-a-service platforms, i.e., Replicate
[9] and Scenario [10]. These platforms provide online per-
sonalized model training and sharing services. The user
only needs to upload the reference dataset, and the platform
will automatically train the personalized model and return
the API for mimicry generation. In this scenario, the base
model, detailed personalization algorithm and configura-
tions, training and generation prompts, as well as image pre-
processing and post-processing methods are all controlled
by the service provider and unknown to SIREN, making it
more challenging compared to local training.

We feed Pokemon and CelebA-HQ coated by SIREN to
both services and ask them to train a personalized model for
each dataset. As shown in Table 5, SIREN is highly effective,
reaching a TPR = 100% at α = 10−9 in all evaluated cases.
Note that the FID is slightly higher, possibly because these
platforms use fewer iteration steps than local training.

TABLE 5: Performance of SIREN in real-world personalization-
as-a-service services. α is set to 10−9 in this experiment.

Dataset Service TPR ↑ FID ↓

Pokemon Replicate 100% 164.42
Scenario 100% 179.77

CelebA-HQ Replicate 100% 124.35
Scenario 100% 133.27

5.7. SIREN against Potential Countermeasures

We consider several potential countermeasures the in-
fringer might take and verify whether they can reduce the
effectiveness of SIREN. Based on the infringer’s goal, an
attack is considered successful if it can evade detection
(e.g., degrading the TPR to very low) while ensuring the
generation quality of the model is not severely harmed.



Outlier detection. This technique detects abnormal data
points that are far from the main distribution. The attacker
may use it to identify coated images. To verify whether
outlier detection can robustly detect SIREN’s coating, we
use the state-of-the-art outlier detection model [61]. We split
Pokemon into a training set and test set with the ratio of 8:2.
Then, we train the model on the uncoated Pokemon training
set and use it to detect whether the coated/clean version
of the Pokemon validation set are outliers. The results
(AUC=51%, Recall=52%) indicate that outlier detection is
not successful in effectively identifying SIREN’s coating.
Training-time augmentation. This approach is widely used
to eliminate small image perturbations [14]. We try 2 types
of augmentations on the training images: adding Gaussian
noise (σ = 0.1) and JPEG compression (factor=40). No-
tably, these augmentations have already harmed the gen-
eration quality of the model: models trained on com-
pressed/noisy images also learn to replicate similar artifacts
in their mimicries, as evidenced in Figure 18 (Appendix
in our report). Our human evaluation averaged over 10
generations also indicate that human observers can easily see
obvious artifacts on the mimicries (HPR=3.5 on Gaussian
noise and 3.7 on JPEG compression). However, SIREN is
still effective in this scenario: it achieves a TPR of 98.7%
and 100% when setting α to 10−9 on Gaussian noise and
JPEG compression, respectively. Overall, the attacker can-
not easily bypass SIREN using straightforward training-time
augmentations without harming the quality of the mimicries.
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Figure 10: Results of purification attacks. α is set to 10−9. f
(factor) and s (steps) indicate purification strengths for VAE and
diffusion models, respectively. Lower f and higher s bring more
successful attack performance yet worse image quality. The PSNR
is calculated on the original image and its purified version.

Post-generation purification. This technique alters the gen-
erated mimicries via regeneration-based perturbation purifi-
cation. The general idea is to first “destroy” the original,
perturbed image, and then reconstruct a “clean” version of
it using a generative model, such as VAE [62] or diffusion
models [63]. It has strong (or even certified) performance
in removing adversarial perturbations or image watermarks.
We conduct experiments following the protocol in [63] with
different generative models and different levels of attack
strengths, and the results are shown in Figure 10. Overall,
the attacker can successfully evade our detection when the
distortion is sufficiently large: he can replace the generated
image with a completely different clean image to evade de-

TABLE 6: Performance of SIREN under ABL. α is set to 10−4.

Setting Coating Rate
5% 10% 15%

Standard Training 100% 100% 100%
w/ ABL 99.83% 100% 100%

tection anyway. Empirically, we observe this solution brings
unnatural artifacts or blurry areas in the mimicries, signifi-
cantly degrading the quality of the mimicries. For example,
Bmshj2020 (factor=2) can effectively reduce SIREN’s TPR
to 91.74% (α = 10−6) and 30% (α = 10−9). However,
it only gains an averaged HPR of 2.2, and over 90% of
the participants gave ratings of less than 3 (i.e., very low
quality). The more successful diffusion attack (step=400)
only gains an averaged human rating of 1.1, and over 90%
of human testers rate it as 1 (lowest score). This is possibly
because the learnability loss makes SIREN absorbed as an
inherent semantic feature of the target class, making it
hard to remove unless the semantics (or quality) of the
mimicries are destroyed. See some example images that can
successfully evade our detection and discussion on another
watermark removal attack [64] in Appendix D of our report.
Loss-based filtering and unlearning. We design an adap-
tive attack according to the knowledge of SIREN, which is
based on the intuition that the coating optimized by Llearn
might be more “attractive” than other features, similar to
semantic backdoor triggers [65], so it might be learned faster
than other features. To this end, we leverage the idea of
ABL [66] to implement a loss-based filtering and unlearning
attack. ABL is a training-time backdoor mitigation method
that leverages similar observations on neural backdoor trig-
gers (i.e., the backdoor task is usually learned faster than
the normal one). Building upon this fact, ABL first filters
suspicious samples according to the loss, and then uses
gradient ascent to unlearn the suspicious features (i.e., the
trigger). We extend ABL to the diffusion model training
setting (more details are in Appendix C) and test whether
it can successfully evade SIREN. Specifically, we coat the
Pokemon dataset with different coating rates and use ABL
to detect and unlearn the coating. The filter rate of ABL is
set to 5%. As shown in Table 6, ABL has only limited effect
in bypassing SIREN. We also check the filter results of ABL
and find only 4 out of 83 coated images are filtered by it
when the coating rate is 10%, while the other 38 filtered
images are all clean. This suggests SIREN’s coating would
be considered similar to the other features with a similar
loss scale, thus making this strategy less effective.

TABLE 7: Results when attacker learns to uncoat with
auxiliary datasets. PSNR is calculated between the original
mimicries and their purified version. α is set to 10−9.

Auxiliary Dataset PSNR ↑ TPR ↑

Anime-Chibi 20.20 100
Pokemon* 24.87 100

* We split the Pokemon training set into two non-overlapping subsets (in
a ratio of 1:1). We assume the user owns the first half and the infringer
uses the second half to learn the mapping and conduct the attack.

Learning to uncoat with auxiliary datasets. Finally, we



TABLE 8: Ablation study on learnability loss and perceptual
constraint. ℓ∞ is a baseline where the coating is directly
generated under ℓ∞ constraint, while G indicates using our
generator training with an MSE loss on images. The dataset
is Pokemon and the model is Stable Diffusion v1.5. α is set
to 10−9 when evaluating TPR.

Configuration PSNR ↑ FID ↓ TPR ↑
ℓ∞ 35.04 128.67 0.40
G 39.64 105.96 0.83
G + Llearn 39.07 107.84 100
G + Llearn + Lprecept 40.51 103.98 01000

TABLE 9: Ablation study on binary and hypersphere classi-
fication. The FPR (α = 10−9) is evaluated with two different
significance level thresholds (α = 10−9 and α = 10−14).

Configuration TPR ↑ FPR (α = 10−9) ↓ FPR (α = 10−14) ↓

Binary 100 100 96.05
Hypersphere 100 0 0

consider a scenario where the infringer has a clean auxiliary
dataset {xA} with a similar (or even same) distribution to
the user’s data {x}. In this scenario, the infringer can ask
the platform to train a coating generator GA and coat his/her
images. With these coated images and the original ones, the
infringer can learn a mapping M : xA + GA(xA) → xA
that “uncoats” a given image (i.e., inputs a coated image
and outputs a clean one). Then, the infringer can leverage
M to conduct a transfer attack on the generated mimi-
cries that contain the user’s coatings. We test SIREN using
the Pokemon dataset under two auxiliary dataset settings:
Anime-Chibi [67] dataset which has a similar distribution
to Pokemon, and a subset of Pokemon which has exactly
the same distribution. We train a UNet [68], an encoder-
decoder model for 500 epochs to learn M. The results
shown in Table 7 prove SIREN’s resistance to this attack.
We speculate that it is because coatings are sample-specific
and highly dependent on the training set. Thus, the trained
mapping has low transferability on unseen coated images.

5.8. Ablation Study

In this section, we conduct ablation studies to verify the
effectiveness of our each component. We also conduct a
hyperparameter analysis in Figure 13 (Appendix B).
Learnability Loss and Perceptual Constraint. Learnabil-
ity loss is the key component for SIREN to boost perfor-
mance, while perceptual constraint helps improve visual per-
formance. As can be seen from Table 8, Llearn can boost the
verification performance, indicated by a large improvement
of TPR. However, it also slightly degrades the image quality.
Lpercept serves as a good compensation for image quality, as
indicated by both higher PSNR and FID.
Hypersphere Classification. As discussed in Section 4.3.3,
a common and intuitive practice to detect the coating is to
jointly train a coating detector with standard cross-entropy,
and this approach may be biased by the incomplete distribu-
tion of negative data. To verify this, we conduct experiments
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Figure 11: Effectiveness of meta learning.

on a unseen benign image dataset, i.e., COCO validation
set. As shown in Table 9, using binary classification, the
extractor has a high false accusation rate on benign data,
as indicated by a high FPR even in very low α regime.
In contrast, our hypersphere classification focus on positive
data and will be less biased, with a significantly lower FPR.
Meta-learning. As shown in Figure 11, on both datasets,
meta-learning provides good initial weights (starting points)
compared with random initialization, which helps SIREN to
converge faster and smoother in future training.

6. Conclusion

This paper introduces SIREN, a novel methodology for
reliable data usage verification in black-box personalized
text-to-image diffusion models. SIREN enhances the learn-
ability of the coatings by optimizing it to be a feature
relevant to personalized learning. We further propose several
techniques to improve the stealthiness, effectiveness, and
efficiency of SIREN. We evaluate SIREN through extensive
experiments and real-world scenarios. We also demonstrate
its robustness against different potential countermeasures.
Limitations. Our SIREN still has the following limitations,
which we aim to address in future work. First, its detection
result can only indicate that the suspicious model is possibly
trained on the protected dataset, but cannot imply the IP of
this model/dataset totally belongs to the accuser. In fact, the
very concept of IP infringement becomes difficult to define
strictly from the legal perspective [69], due to the involve-
ment of multiple parties throughout the process and the in-
creasingly blurred boundaries of authorship in the AIGC era.
As such, we hope SIREN to serve as a valuable reference,
rather than definite conclusions. Second, our method cannot
detect data misuse if the suspicious model does not accept
public users’ queries for generating mimicries. However, this
also limits the spread of the model. It also cannot detect the
unauthorized usage of the datasets whose uncoated versions
are previously published online, since infringers can simply
use the uncoated dataset to personalize the model. In such
circumstances, the data user may need to cooperate with
the model trainer or dataset provider to prevent unauthorized
data usage. Finally, while we designed and evaluated several
countermeasures, security is an evolving game, and future
stronger attacks that can bypass SIREN may arise. Designing
stronger adaptive attacks and defending SIREN against them
would be very interesting and meaningful for future work.
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(b) Fine-tuned SD
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(c) Kandinsky

Figure 12: FPR empirical check. Original SD, Fine-tuned SD,
and Kandinsky refers to using the original Stable Diffusion v1.5,
the Stable Diffusion v1.5 fine-tuned on the uncoated version of
Pokemon, and the Kandinsky 2.2 to serve as the benign model.
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Appendix A.
FPR Empirical Check

Recall that the significance level α in Eq. (8) controls the
probability of the test for making Type-I error i.e., rejecting
the null hypothesis while it is actually true (false positives).
Additionally, we are interested in whether the choice of
benign distribution (i.e., G in Eq. (8)) largely impacts the
FPR of SIREN. As such, we examine whether the FPR
controlled by α aligns with empirical observations with
different choices of benign samples.

Figure 12 shows that the empirical FPR of our method
closely follows the controlled one (the “theoretical” line)
and is mostly lower than α, this is possibly because K-S test
is conservative when the sample size is small. Besides, we
can see that SIREN is not sensitive to the choice of benign
model. This is because our extractor is only responsive to
the injected coating (instead of image content), so the choice
of the benign model does not have a huge impact on the test
result regardless of the negative sample choices.

Appendix B.
Additional Experiments

In this section, we present more additional experiments
to further analyze SIREN and discuss other potential scenar-
ios that SIREN may encounter in the real world.
The mimicries undergo image transformations before
verification. Following previous works [12, 20], we evaluate
the robustness of SIREN when the mimicries are transformed
before verification. We consider a comprehensive list of
13 types of common image transformations that may hap-
pen in practice. As shown in Table 10, the robustness of
SIREN remains surprisingly high for these transformations.

https://www.kaggle.com/datasets/hirunkulphimsiri/anime-chibi-datasets
https://www.kaggle.com/datasets/hirunkulphimsiri/anime-chibi-datasets
https://www.hamptonip.com/articles/post/intellectual-property-case-filing-trends-over-the-last-decade/
https://www.hamptonip.com/articles/post/intellectual-property-case-filing-trends-over-the-last-decade/
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Figure 13: Ablation study on weighting parameters. We repeat each experiment three times.
TABLE 10: Evaluation on robustness of SIREN against common
image transformations. Cont. refers to contrast, Sup. Res. refers
to first downscaling the image to 0.7 and then upscaling it via
a super-resolution model, and Rand. Comb. refers to a random
combination of all transformations. α is set to 10−9.

(a) Pokemon Dataset

Attack TPR ↑ Noise 0.2 100% Sharpness 2.0 100%
None 100% Bright. 1.5 100% Blur (k=7) 100%
Crop 0.1 100% Cont. 2.0 100% Sup. Res. 0.7 100%
Hue 100% Quantize 8bit 100% Text Overlay 100%
JPEG 30 100% Sat. 2.0 100% Rand. Comb. 100%

(b) CelebA-HQ Dataset

Attack TPR ↑ Noise 0.2 100% Sharpness 2.0 100%
None 100% Bright. 1.5 99.9% Blur (k=7) 100%
Crop 0.1 100% Cont. 2.0 100% Sup. Res. 0.7 100%
Hue 100% Quantize 8bit 100% Text Overlay 100%
JPEG 30 100% Sat. 2.0 100% Rand. Comb. 100%
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Figure 14: The effectiveness of SIREN under different data sizes.
A noteworthy case is Crop 0.1, where SIREN remains a
100%TPR when only the center 10% of the image is left.
The robustness of SIREN can be mainly attributed to the
EoT layer, which has been widely verified to enhance the
robustness against image transformations.
SIREN’s effectiveness under different data sizes. We dis-
cover the SIREN’s effectiveness under different data sizes.
Specifically, we coat the Pokemon dataset and select a
subset from it with different data sizes. Then we use the
selected subset to train a personalized Stable Diffusion v1.5
model and measure (1) whether personalization training is
successful, and (2) whether SIREN can effectively detect the
coating from the generated images. As shown in Figure 14,
we observe that SIREN is highly effective as long as the data
size is sufficient for successful personalization learning.
The model undergoes further modifications. We also
evaluate whether the effectiveness of SIREN degrades when
the model undergoes further modifications after training.
In detail, we first train a personalized model on a coated
Pokemon dataset and tried (1) fine-tune this model further

TABLE 11: Effectiveness with different generation settings on
Pokemon dataset. In the Prompts column, “class-based” refers to
using “an image of [class]” as prompts, “validation prompt” refers
to using the prompts from the Pokemon validation set as prompts,
and “LLM-generated” refers to providing the training set prompts
(we randomly select 50 prompts) to GPT-4 and ask it to generate
diverse prompts with similar contents. α is set to 10−9.

Configurations TPR ↑ Configurations TPR ↑

Prompts
Class-based 100%

Sampling Steps
15 100%

Validation prompt 100% 25 100%
LLM-generated 100% 35 100%

Sampler

DDPM 100% CFG Scale 5.0 100%
DDIM 100% 7.5 100%
Euler 100% Clip Skip 4 100%

DPM++ 100% 6 100%

on a similar dataset [67] using the DreamBooth method;
and (2) quantize the model to 16-bit; We find SIREN is still
effective, retaining a TPR of 100% in these cases.
Different generation hyperparameters and prompts. We
investigate whether SIREN remains effective under differ-
ent generation hyperparameters and generation prompts. As
shown in Table 11, our SIREN has high effectiveness with
different generation settings and prompts.
Hyperparameter analysis. The relative strength of the
losses is controlled by the weighting parameters λ1 and λ2,
which are the key hyperparameters of our SIREN. Note that
we set them to both 1 (meaning equal initial scales) to show
equal importance. As illustrated in Figure 13, SIREN is not
sensitive to the choice of weighting parameters. Thus, we
empirically set both of them to 1 in our experiments.

Appendix C.
Omitted Algorithm & Experimental Details
Omitted details for our generator/extractor design. Our
coating generator and extractor network architecture follows
the design in HiDDeN [70], the only change is we discard
the bit string in the generator input, and the final layer of the
decoder is abandoned (we only need the feature space). Such
architecture is very lightweight, it takes less than 2 MB to
store a generator/extractor pair. We use the implementation
from Fernandez et al. [48], which adds an additional just
noticeable difference layer for better perceptual quality. As
raw perceptual loss may be unstable, we added an MSE
image loss with a weighting parameter of 1 and included
this layer during training and found that it helps stabilize.
We also follow [48] to include an Expectation over Trans-
formation (EoT) layer into the extractor, which is widely



Algorithm 2 Meta learning with Reptile
Input: Coating generator G and extractor Φ, inner loop learn-
ing rate α, β, meta-learning rate γ, ξ, training iterations N ,
number of inner loop iterations K

1: for i = 1, · · · , N do
2: while not all batches have been sampled do
3: G∗0 ,Φ∗

0 = Clone(G∗,Φ∗)
4: Sample a batch Dp from the training set
5: for k = 1, · · · ,K do
6: Calculate Loverall with G∗k−1 and Φ∗

k−1 via Eq. (7)
7: G∗k ← G∗k−1 − α∇G∗

k−1
Loverall

8: Φ∗
k ← Φ∗

k−1 − β∇Φ∗
k−1
Loverall

9: end for
10: end while
11: G∗ ← G∗ − γ(G∗ − G∗K)
12: Φ∗ ← Φ∗ − ξ(Φ∗ − Φ∗

K)
13: end for

used to enhance robustness against real-world distortions. It
simulates such distortions through a differentiable layer in
train time before sending the image to the extractor, so the
extractor will learn to be robust against them.

Omitted details for meta-learning. The proxy dataset is
MS-COCO, consisting of about 120,000 daily-life images
and corresponding text descriptions. The omitted algorithm
details of our meta-learning are presented in Algorithm 2.
The default learning rate α and β is 1e-3, and the default
meta learning rate ξ and γ is 1e-2. Intuitively, in each
iteration, meta-learning samples a batch of text-image pairs
from MS-COCO and uses them to fine-tune the meta-model.
Then, it uses the parameter differences as the meta-gradient
to update the meta-model. Through this process, the meta-
model learns a set of initial weights that can quickly adapt
to new datasets using a few fine-tuning steps. Note that for
extremely small data sizes (e.g., less than 10), it is still
challenging to obtain satisfying models even with the help of
meta-learning. To remedy this, we use the Stable Diffusion
v1.5 model to generate 100 samples using BLIP-generated
prompts of the data to supplement the training set.

Details on datasets and baseline configurations. For Poke-
mon (833 high-quality Pokemon images) and Dog (5 high-
quality images of a specific dog), we use the full training
set. Since fine-tuning usually does not require much data,
for CelebA-HQ (human facial images), Artbench (artworks
from different classical artists), and Landscape (real-world
landscape images), we randomly select 1,000 images for
training. This practice aligns with [12]. For Wikiart, we
construct a subset consisting of 10 artists from 5 different
art styles, with 25 to 40 artworks for each artist, and the
reported TPR is averaged across all artists.

For watermark-based baselines, the TPR is calculated by
determining whether the total matched bits (for all samples)
exceed a certain threshold t. FPR (or p-value) is regarded
as the chance to achieve or exceed this threshold and can
be obtained from the CDF of the binomial distribution. It is
calculated as

∑n×k
i=t

(
n×k
i

)
0.5n×k, where n is the sample

size (30 in this paper) and k is the bit length (32 for
both baselines). For [20], the watermark encoder-decoder

is trained following their original code implementation on
512 × 512 MS-COCO dataset. For [22] which used four
watermarking schemes, we choose DCT-DWT-SVD, which
has the highest “best bits” as reported in [22]. We coat all
images with the same watermark string before training.

For backdoor-based baseline DIAGNOSIS [12], the hy-
pothesis testing procedure follows its original paper. This
test is supported by the theoretical analysis in [15]. In Table
1, we use the “trigger-conditional” (warping strength=1.0,
text trigger “tq” in training prompts, and 20% coating rate)
method in [12]. In the main experiments, for a fair compar-
ison, we employ the “unconditional” (warping strength=2.0,
training prompts same as other methods and 100% coating
rate) setting for DIAGNOSIS. The sample size for all tests
is set to 30, aligned with our method and other baselines.
Detailed design of ABL. ABL [66] is a training-time
backdoor defense that leverages the difference of loss scales
between poisoned and benign training samples. In this paper,
we adopt it to diffusion models as an adaptive countermea-
sure against SIREN. ABL is divided into two stages: for
the first stage, it exploits the observation that the coating
(trigger) feature can possibly be learned faster than other
features. Therefore, it utilizes the loss drop characteristics
to filter the likely coated samples. The filer rate (isolation
rate) of ABL is set to 5% in this stage. Since the loss value
for diffusion models not only depends on the sample but also
the timestep t, we calculate the expected loss as the averaged
loss across [100, 400, 700] time steps. The loss threshold γ is
set as the 5th percentile of expected loss across all samples
on the Stable Diffusion v1.5 base model. In the second stage,
the attack maximizes the loss of filtered (poisoned/coated)
samples, i.e., unlearning them. We directly reverse the sign
of diffusion MSE loss to achieve this. It would help the
model identify potential coating patterns and forget them.

Appendix D.
Discussions
Can we use DINO score to identify data infringement?
Notably, the CLIP score [30] and DINO score [31] compares
two images in the CLIP/DINO model feature space, so they
can tell whether two images are semantically similar and
are widely used to evaluate the performance of personalized
learning [5, 6, 7]. Therefore, one intuitive solution for
identifying unauthorized data usage in personalized diffu-
sion models is to calculate the DINO score between the
mimicries and the user’s dataset, and claim infringement
if the DINO score exceeds a certain threshold. However,
we argue that CLIP/DINO score is inherently unreliable
in our scenario, because a high feature-level similarity
does not necessarily indicate piracy or the involvement of
unauthorized data usage. It could also be benign images
with similar styles (e.g., in the same art genre), or from
independent models trained on similar (but authorized) data.
For example, we trained a personalized model using the
artwork of van Gogh and generated 40 mimicry images.
We also collected 40 artworks from Raphael, an artist with
a similar drawing style to van Gogh. We found that the



DINO score cannot reliably distinguish between these two
sets of images. It sometimes allocate a higher score to
Raphael’s artwork than the piracy model’s mimicries, result-
ing in a very poor performance even with carefully-chosen
thresholds. Therefore, we argue that DINO scores cannot
be reliably applied to identify infringement in our setting.
In contrast, SIREN avoids this inherent limitation. This is
because our identification is not drawn from the perspective
of style similarity, but the existence of the unique external
coating injected by the defender. Such a unique identifier is
highly impossible to be coincidentally replicated in benign
images, making our scheme more reliable.
Discussion on the hypersphere classification. As discussed
in Section 4.3.3, raw binary classification may be suboptimal
in our setting. This is because the positive training dataset is
representative while the negative dataset is not. Specifically,
all test-time samples are really positive (true positives) and
follow a very similar distribution to the positive training
set (e.g., coated Pokemons), so the detector is expected to
precisely identify those True Positives. However, real-world
samples that should be considered as negative include not
only uncoated Pokemon images, but also general artwork,
and even out-of-distribution samples. However, our training
set is not possible to cover all negative samples. For such
out-of-distribution images, the behavior of the DNN be-
comes unpredictable [71]. As such, the model may misclas-
sify some actually negative (but domain-shifted) samples as
positive (i.e., false positives). In contrast, our method learns
a hypersphere boundary that excludes all samples other than
identified true positives as negative, it could generalize better
on unseen negative samples, as evidenced in Table 9.
Discussion on other possible solutions. Besides DINO
scores, there are also other methods possible to be applied
to our problem. For example, passive methods such as mem-
bership/dataset/property inference can possibly determine
data usage. However, these methods usually require white-
box access to model weights or intermediate outputs, and
may have both low TPR and high FPR [12]. We believe
this is due to the inherent complexity and generalizability
of large-scale diffusion models. For proactive methods, we
note that the watermark-based method in [20] was originally
designed for DeepFake attribution, but it has been adapted to
the data usage verification problem without any adjustment
since it only requires modifying the training data [12]. Other
image watermarks may also apply to our problem, but we
believe they may suffer from similar issues. Notably, [21]
uses the same watermark encoder/decoder with [20], so its
performance will be the same as to [20]. Therefore, we argue
existing works are not sufficient for this challenging task.
Discussion on trigger prompts for coating removal. A
possible attack against our method is to introduce a trigger
prompt, e.g., “watermark” into the training prompt of coated
images, and remove such trigger prompt during generation.
This may lead the diffusion model to attribute the coating
features to the trigger prompt and decouple SIREN’s coating
from the image. To verify whether this method defeats
SIREN, we randomly select 400 images from Pokemon and

coat them, and append “with watermark” onto the training
prompt. We assume the attacker has the other 433 uncoated
Pokemon images with the original prompt. Then we per-
sonalize a model using these images. We find SIREN is
still successful in identifying infringement in the mimicries
(generated using “an image of a Pokemon”), with a TPR
of 100. We hypothesize the failure of this attack is because
the coating features are optimized to be regarded as the
Pokemon’s feature by the model with the learnability loss,
rather than “watermark”. Therefore, even with the prompt
“watermark”, the model still tends to regard it as the Poke-
mon’s feature and fails to exclude it during learning.
How to determine α in the real-world? An interesting
question is how to determine α in the real-world. As we
know, larger α misses less true infringements but may
also increase false claims, which is a trade-off. According
to statistics [72], there are ∼5,000 cases that are related
to copyright infringement annually. Therefore, we humbly
believe α = 10−4 is generally sufficient and users may set
α = 10−9 for higher reliability. Nevertheless, we believe
the choice of α should ideally be guided by future legal
regulations and presiding judges in individual cases.

Discussion on BLIP-generated prompts. One concern on
our evaluation is the use of BLIP-generated prompts, as
recent literature [73] has shown that AI-generated data may
lead to mode collapse and degrade training performance.
However, we would like to clarify that the main finding of
[73] is that if we use purely AI-generated data to recursively
train generative models, it would lead to model collapse. The
key reason is that this process iteratively diminishes data
quality and diversity. However, in our evaluation, BLIP is
only used to generate image captions. The image data is
real (instead of purely AI-generated), and the data is only
used once (instead of recursively used). Therefore, the data
diversity and quality are kept, and thus the aforementioned
collapse problem would not happen. The BLIP-generated
captions are shown to be highly effective in training diffu-
sion models and vision language models [33], suggesting
its effectiveness. It would be interesting to further discover
the mechanisms and boundaries of AI-generated data’s ef-
fectiveness, which we leave for future work.

Discussion on the characteristics of SIREN’s coating.
We are also interested in exploring the characteristics of
SIREN’s coating. Note that LDM is not updated during
optimization so it would not introduce bad features that harm
images’ features. Instead, as the coating is optimized to be
perceptually small and imperceptible, it does not negatively
impact the image’s style observed by HVS, so the generation
quality is well preserved. We observe that the coating indeed
encourages the alignment between text and image, indicated
by a slightly higher text-image similarity measured by the
CLIP model. This suggests SIREN indeed introduces some
features that can enhance the subject of the original image.
As there are only limited tools for explaining diffusion mod-
els currently, we believe it would be interesting to further
explore the underlying characteristics of SIREN through both
explainable AI tools and theoretical proofs in the future.



Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper addresses unauthorized data use in personal-
ized text-to-image diffusion models by introducing SIREN.
It embeds imperceptible coatings into datasets to enable
traceability in generated images, and these coatings are
optimized to be relevant to the personalization task while
maintaining image quality.

E.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

E.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field. It addresses a relevant and significant
problem of protecting personal data in the context of
personalized diffusion models, by extending the data
usage traceability to personalized model domain.

2) The paper provides an insight to explain the poor
performance of existing methods (i.e. watermark-based
methods and backdoor-based methods): in fine-tuning
and personalized learning settings, the model is already
primed to recognize meaningful signals from the im-
ages, causing it to ignore random coatings. This in-
spires the novel methodology of optimizing the coating
as a feature recognizable by the model.


