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Abstract—Hidden wireless cameras pose significant privacy
threats, necessitating effective detection and localization meth-
ods. However, existing localization solutions often require im-
practical activity spaces, expensive specialized devices, or pre-
collected training data, limiting their practical deployment. To
address these limitations, we introduce CAMLOPA, a training-
free wireless camera localization framework that operates with
minimal activity space constraints using low-cost, commercial-
off-the-shelf (COTS) devices. CAMLOPA can achieve detection
and localization in just 45 seconds of user activities with a
Raspberry Pi board. During this short period, it analyzes the
causal relationship between wireless traffic and user movement
to detect the presence of a hidden camera. Upon detection,
CAMLOPA utilizes a novel azimuth localization model based
on wireless signal propagation path analysis for localization.
This model leverages the time ratio of user paths crossing the
First Fresnel Zone (FFZ) to determine the camera’s azimuth
angle. Subsequently, CAMLOPA refines the localization by
identifying the camera’s quadrant. We evaluate CAMLOPA
across various devices and environments, demonstrating its
effectiveness with a 95.37% detection accuracy for snooping
cameras and an average localization error of 17.23°, under the
significantly reduced activity space requirements and without
the need for training. Our code and demo are available at
https://github.com/CamLoPA/CamLoPA-Code.

1. Introduction

In recent years, the proliferation of wireless camera
devices for home and public security has grown significantly
due to their convenience and flexibility in deployment. A
study by Market Research Future in 2024 [1] projected the
global wireless video surveillance and monitoring market
to grow at a compound annual growth rate of 16.8% from
2022 to 2030. However, the rapid adoption of wireless
cameras has also raised substantial privacy concerns re-
lated to unauthorized video recording and dissemination [2],
[3], [4]. Users increasingly find themselves being illegally
recorded by hidden cameras in various locations, from hotel
rooms to short-term rentals. For instance, a 2019 survey [5]
revealed that 58% of 2,023 Airbnb guests were concerned
about the possibility of hidden cameras, with 11% reporting

TABLE 1: Qualitative comparison with existing approaches.

Method Low
Cost

Low
User

Efforts

No
Training

Crowded
Room

LAPD [10] ✗ ✗ ✓ ✓
HeatDeCam [11] ✗ ✓ ✗ ✓

Lumos [12] ✓ ✗ ✗ ✗
SNOOPDOG [13] ✓ ✗ ✓ ✗

MotionCompass [14] ✓ ✓ ✓ ✗
SCamF [15] ✓ ✗ ✓ ✗

LocCams [16] ✓ ✓ ✗ ✓
CAMLOPA ✓ ✓ ✓ ✓

actual discoveries of such devices. In response to these
privacy threats, various jurisdictions have proposed and en-
acted legislation. For example, Delaware’s privacy laws now
strictly prohibit the use of hidden cameras in private settings
without the consent of the individuals being recorded, with
violations leading to severe penalties including jail time and
fines [6]. These legal measures underscore the urgency of
developing effective methods for detecting and localizing
hidden wireless cameras [7], [8], [9].

Consequently, the problem of wireless camera detec-
tion and localization has attracted considerable research
attention [17], [18]. However, existing solutions often face
significant limitations that hinder their practical deployment.
Many approaches can detect wireless cameras but cannot
locate them [18], [19], [20], [21], [22]. Those capable of
localization often impose complex requirements. Specifi-
cally, methods relying on lens reflection [10], [23], [24]
or electromagnetic/thermal emissions [11], [25], [26] are
typically cumbersome, requiring user expertise and exam-
ination of every corner of the room, making them difficult
to use. Moreover, electromagnetic/thermal-based methods
often necessitate costly specialized equipment. To address
these shortcomings, recent research has focused on analyz-
ing the WiFi traffic or physical layer information to locate
wireless cameras. These methods usually require users to
move along the edges of the room [12], [15], [27] or perform
perturbations at different positions and orientations [13],
[14]. The camera’s location is determined by assessing the
RSSI (Received Signal Strength Indicator) or traffic varia-
tions of target devices. These approaches typically necessi-
tate the room to be nearly empty to allow user movement
to different locations, which is not feasible in real-world

https://github.com/CamLoPA/CamLoPA-Code


Figure 1: Different wireless signal path losses when crossing
the First Fresnel Zone (FFZ) with different path lengthes.

scenarios. They are also time-consuming, requiring 10-30
minutes for camera localization and constant user movement
or position adjustments. In a recent work [16], differences
in WiFi Channel State Information (CSI) under Line-of-
Sight (LOS) and None-Line-of-Sight (NLOS) conditions are
utilized for the coarse localization of wireless cameras. This
approach requires minimal user effort but its localization
resolution is limited to 45o, still taking a lot of time to
search for devices. Additionally, it requires pre-collected
training data, and the deep learning model used has poor
robustness against changes in the environment and devices.
(More background please refer to Appendix A)

In this paper, we introduce CAMLOPA, a fast and robust
wireless camera detection and localization framework us-
ing low-cost commercial-off-the-shelf (COTS) devices. As
shown in Table 1, CAMLOPA requires less activity space and
user effort compared to previous studies. Specifically, com-
pared to RSSI-based methods, our approach significantly
reduces the time required for data collection. Meanwhile,
compared to camera field-of-view crossover-based methods,
it minimizes the required activity space. Our framework
is inspired by the relationship between obstructions in the
propagation path of wireless signals and the resulting signal
attenuation. Specifically, when a large obstacle is located
within the First Fresnel Zone (FFZ) between a WiFi trans-
mitter and receiver, the transmitted signal will experience
significant attenuation due to diffraction, as defined by
Huygen’s principle [28] and Fresnel-Kirchhoff diffraction
parameters [29]. As illustrated in Figure 1, when a person
crosses the FFZ, there is a drastic change in the wireless
signal path loss, and the duration of this significant variation
is related to the length of the path traversed through the
FFZ. Since the FFZ forms an ellipse with the two devices
as its foci, given a fixed distance between the two devices,
the length of the path through the FFZ can be mapped to
the angle of the walk relative to the LOS path (azimuth).
CAMLOPA utilizes this relationship to achieve azimuth angle
localization of the wireless cameras.

The technical crux of CAMLOPA is to address the over-
complexity and lack of robustness issues in previous ap-
proaches. However, there are still two significant challenges:
1) Relationship Mapping Under Unknown User Speed:
By analyzing the durations of significant wireless signal
fluctuations, we can determine the time it takes for a user to
traverse the FFZ. To ascertain the path length through the
FFZ, we also need to know the user’s speed (The challenge

of constant user speed is discussed in Section 7.). In real-
world scenarios, considering cost and complexity, users typ-
ically do not have specialized equipment to measure walking
speed or have robots to substitute for user to move. Thus,
the user’s speed remains unknown, and we cannot determine
the path length.

Q1: How can we establish a mapping relationship
between the traversal time and the azimuth angle of
the hidden wireless camera without knowing the user’s
walking speed?

2) Errors Control Under Variable Distance and Body
Size: In practical scenarios, the distance between the hidden
wireless camera and the CAMLOPA device is also unknown,
and the user’s body size is variable. The user’s body size
significantly affects the duration of signal variations, as the
signal is impacted from the moment the user enters the
edge of the FFZ until he/she completely exits from it. Pre-
defining these two values can introduce substantial errors in
the aforementioned mapping relationship.

Q2: How can we minimize the impacts of biased
parameters and keep the errors within an acceptable
range?

To overcome the above challenges, we propose a scheme
called the orthogonal ratio. This scheme replaces the need
to measure the distance of a single path through the FFZ
with the time ratio of two orthogonal paths crossing the
FFZ to establish a mapping relationship with the azimuth
angle. Specifically, we set two orthogonal walking paths
that both pass through the CAMLOPA device, which is
typically easy to achieve in real-world environments. We
then calculate the time taken for each path to traverse the
FFZ. Since the path length is the product of the time and
speed, using the time ratio of the two paths eliminates the
influence of the speed. Next, we develop a mapping model
between the orthogonal ratio and the angle between the first
path and LOS (azimuth) by WiFi propagation path analysis.
By obtaining the orthogonal ratio in real environments, the
azimuth angle of the wireless camera can be derived from
the model. Besides, the orthogonal ratio remarkably reduces
the impact of biased parameters such as variable distances
and body sizes due to the division operation.

CAMLOPA operates in three stages and requires only
45 seconds of user movement to detect and locate a hid-
den wireless camera. In the first stage (0-15s), the system
analyzes the relationship between the data stream uploaded
by the camera and user activity for snooping camera de-
tection. The encoding method of the video stream causes
an increase in data volume when there is movement within
the monitored area. Therefore, CAMLOPA first prompts the
user to leave the room and collects traffic data of 15 seconds.
By examining the causal relationship between the user’s exit
and the data stream, the system identifies whether a wireless
camera is monitoring the current area. In the next stage
(15-35s), the user walks along two orthogonal paths that
both pass through the CAMLOPA equipment. The system
calculates the orthogonal ratio of these two paths and deter-



mines the azimuth of the wireless camera using the azimuth
model. This model only provides an angle within the range
of 0-90° (e.g., for 45° and 135°, CAMLOPA reports 45° for
both cases). To address this, we further design a scheme
to determine the quadrant in which the camera is located.
In the final stage (35-45s), the system prompts the user to
walk along a path that coincides with the first path but does
not traverse the entire FFZ. By analyzing whether the user’s
initial position blocks the LOS, the quadrant determination
scheme identifies the quadrant in which the wireless camera
is located, achieving the final localization. We implement a
prototype of CAMLOPA on a Raspberry Pi device, which
users can connect to using SSH tools on their smartphone
to receive system prompts and display the results.

In summary, we make the following key contributions:
• We propose CAMLOPA, the first hidden wireless camera

detection and localization framework based on the diffrac-
tion phenomenon during wireless signal propagation. This
scheme is implemented using low-cost COTS devices.
It has small activity space requirements, and does not
require model training.

• We introduce a wireless device azimuth localization model
and a quadrant determination method based on wireless
signal propagation path analysis. The model is designed
on the principle that diffraction causes significant atten-
uation of wireless signals. By combining the model with
the quadrant determination method, we can achieve fast
and training-free device localization.

• We evaluate CAMLOPA across various devices and en-
vironments. Experiment results show that CAMLOPA
achieves the detection accuracy of 95.37% and average
localization error of 17.23° for snooping wireless cameras.

2. Channel State Information (CSI)
WiFi CSI [30], [31], [32], [33], [34], [35] describes

various effects that a WiFi signal undergoes during propa-
gation, including multipath effects, attenuation, phase shift,
and more. This process of influence can be represented as
follows [36], [37]:

Y = H ·X +N, (1)

where Y and X are the received and transmitted signals,
respectively. N is the additive white Gaussian noise, and
H is a complex matrix representing CSI. And this complex
matrix can be expressed as follows:

H(f) = |H(f)|ejθ(f), (2)

where H(f) is the channel response at frequency f , |H(f)|
is the magnitude of the CSI, representing the variation in
signal strength, and θ(f) is the phase shift of the CSI,
representing the variation in signal phase. The magnitude
of the CSI can be used to characterize signal attenuation.
The received CSI is a superposition of signals of all the
propagation paths, and its Channel Frequency Response
(CFR) can be represented as [38]:

H(f, t) =
∑
m∈Φ

am(f, t)e−j2π
dm(t)

λ , (3)

where f and t represent center frequency and time stamp,
respectively, and m is the multi-path component. am(f, t)
and dm(t) denote the complex attenuation and propagation
length of the mth multi-path component, respectively. Φ
denotes the set of multi-path components and λ is the signal
wavelength. When there are changes in only one path, the
CSI can be used to approximate the attenuation occurring
on that path. Specifically, paths with no changes and those
with changes can be categorized as static and dynamic paths
as follows [39]:

H(f, t) = Hs(f, t) +Hd(f, t)

=
∑

ms∈Φs

ams(f, t)e
−j2π

dms (t)

λ

+
∑

md∈Φd

amd
(f, t)e−j2π

dmd
(t)

λ ,

(4)

where Hs(f, t) and Hd(f, t) denote the static and dynamic
components, respectively. Φs represents the set of static
paths, e.g., reflected off the walls and furniture and static
body parts, while Φd denotes the set of dynamic paths, e.g.,
reflected off the moving human. When there is only one
person moving in the room, CSI can be used to characterize
the signal attenuation and multipath effects caused by this
person’s movement.

Next, we briefly explain the Fresnel zone model, which
is widely used to analyze the diffraction and reflection
effects of wireless and light signals along their propagation
path. This model helps in understanding how signal strength
varies with distance and obstacles. The Fresnel zones can be
described as a series of concentric ellipses with the wireless
signal transmitter and receiver as the focal points [40] (see
the Appendix B).

|TxQn|+ |QnRx| − |TxRx| = nλ/2, (5)

where Qn is a point at the boundary of the nth Fresnel
zone, and Tx and Rx represent the transmitter and re-
ceiver, respectively. Since the phase difference of waves
within the First Fresnel Zone (FFZ) is relatively small, most
of the energy is concentrated in this region. In wireless
communication and wave propagation, the energy within
the FFZ typically accounts for about 60% to 70% of the
total transmitted energy. Obstacles outside the FFZ primarily
cause signal reflection [41], [42], [43]. The attenuation due
to reflection is minimal, and the total signal energy affected
by obstacles outside the FFZ is relatively small. As a result,
when obstacles moves in the outside of the FFZ, the total
received signal energy does not change significantly. Instead,
the movement mainly causes multipath effects, leading to
phase changes in the CSI. Conversely, obstacles within the
FFZ mainly cause diffraction [29], [40]. The attenuation due
to diffraction is substantial, and since a significant amount
of signal energy is transmitted within the FFZ, the received
signal experiences substantial attenuation, which can be
clearly characterized by the magnitude of the CSI.

In practical systems, we can use open-source tools such
as csitool [44], picosense [45], and nexmon csi [46], [47] to
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Figure 2: Overview of CAMLOPA. CAMLOPA is implemented using a low-cost Raspberry Pi, which can connect via SSH
to the user’s phone for prompts and notifications. The operation of CAMLOPA is divided into two phases: wireless camera
detection and localization. The detection stage determines whether a wireless camera is monitoring the current area, while
the localization stage precisely locates the identified camera.

obtain CSI from various network cards, including Intel 5300,
AX210/AX200, and bcm43455c0 (Raspberry Pi B3+/B4).
The actual size of the extracted CSI matrix depends on
the number of antennas and subcarriers [48], [49], and the
obtained CSI is a 4-dimensional tensor H ∈ CN×M×K×T,
and M, K, and T represent the number of receive antennas,
transmit antennas, subcarriers, and packets, respectively.

3. Overview

3.1. Threat Model

Our work focuses on a scenario where an attacker places
a hidden wireless camera in a room to monitor the user
in real-time. This scenario aligns with current state-of-the-
art methods [12], [15], [16], [50], [51] for detecting and
locating hidden cameras. It is also supported by several
real-world cases [52], [53], in which attackers have been
caught live-streaming users in private spaces—an effective
and convenient method for gathering private information.
The adversary covertly deploys a hidden camera within the
victim’s room, communicating with it via encrypted wireless
communication. We focus on WiFi as the communication
channel in this paper, given its widespread use for remote
monitoring in commercial devices. Below, we describe the
real-world settings for both the attacker and the user.
Attacker: The attacker could be the host or a previous guest
intending to monitor users in the room.
• The attacker can fully control the room before the user

checks in, such as changing the environment and installing
hidden wireless cameras.

• The attacker uses COTS camera devices to spy on users
and can control the cameras through an app. Similar to
previous studies [12], [13], [15], [54], [55], we assume the
attacker does not alter the firmware, network protocols or
wireless transmission behaviors of these camera devices,
as these tasks generally require a high level of expertise.

• The attacker has complete control over the WiFi network
to which the hidden wireless cameras connect. He can
configure the WiFi network’s wireless channels, encryp-
tion methods, and access modes.

User: The user’s requirement is to detect and locate hidden
wireless cameras within the room.
• The user can access the physical space to search and

move around. But in a real environment, his movement is
limited and obstructed by the furniture, making it difficult
to meet the activity space requirements of most previous
studies [12], [13], [14], [15].

• The user does not have any knowledge of the hidden
wireless cameras. He is unaware of the WiFi network
being used, the channel of the WiFi network, or the
cameras’ locations. However, the user has control over
the CAMLOPA device, including its placement and the
configuration of its network connection.

• The user does not have control over the WiFi network to
which the wireless cameras are connected. However, he
can use existing tools (e.g., tcpdump, Wireshark) to sniff
WiFi 802.11 packets broadcast in the air. The user carries
no additional measuring tools except for a Raspberry Pi
equipped with CAMLOPA.

3.2. Workflow of CAMLOPA

CAMLOPA requires the user to perform three walks (45
seconds) to detect and locate the hidden wireless camera
according to the prompts of CAMLOPA. It then provides
feedback with the estimated azimuth angle of the hidden
wireless camera. The overall structure of CAMLOPA is
shown in Figure 2 and it operates in two phases:
Hidden Wireless Camera Detection. CAMLOPA first scans
the surrounding WiFi networks and captures packets on all
active 802.11 wireless channels for analysis. If it detects
a device that is continuously uploading data, it identifies
this device as suspicious and forwards its MAC address and
channel index to the snooping camera detection module. The
snooping camera detection module will prompt the user to
leave the room and sniff packets from this channel for 15
seconds. It then analyzes the upload traffic of the suspicious
device according to the MAC address. If the traffic pattern
matches the user’s departure phase, the detection module
will report that the device is monitoring the current area.



Next, the module will forward the device’s MAC address
and channel index to the following localization phase.
Hidden Wireless Camera Localization. Upon receiving the
MAC address of the snooping wireless camera and the WiFi
channel of the connected Access Point (AP), CAMLOPA
prompts the user to walk along two orthogonal paths (see
Figure 6) cross the CAMLOPA device, such as a Raspberry
Pi board. Specifically, the device sniffs the WiFi packets
transmitted from the target MAC on the specified channel
over 10 seconds for each path, extracting CSI to calculate the
orthogonal ratio and determine the azimuth angle using the
proposed azimuth localization model. These paths intersect
in a T-shape, with the intersection point being the location
of the CAMLOPA device. After calculating the azimuth
angle, CAMLOPA prompts the user to walk along a path
coinciding with the first path but starting in front of the
CAMLOPA device, collecting 10 seconds of CSI. Next, using
the quadrant determination model, CAMLOPA calculates the
quadrant in which the target device is located to obtain the
final azimuth angle of the hidden wireless camera.

4. Wireless Camera Detection

CAMLOPA detects the presence of snooping wireless
cameras in the environment through wireless traffic analysis
by: (i) searching for suspicious devices, and (ii) detecting
snooping wireless cameras.

4.1. Searching for Suspicious Devices

In real-world environments, there are usually many wire-
less networks and devices connected to WiFi around the
user. Analyzing all devices to detect cameras monitoring
the area is highly inefficient. Therefore, CAMLOPA first
identifies suspicious devices to narrow down the detection
scope. Video stream packets are typically large and stable,
and surveillance cameras continuously and frequently up-
load data. CAMLOPA starts by scanning the surrounding
WiFi networks to detect all APs, even those with Hidden
Service Set Identifiers (SSIDs). According to [56], CAM-
LOPA excludes APs that do not meet the minimum RSSI
requirements for video streaming, namely, below -67 dBm
(please refer to Appendix C). In practice, the requirements
for RSSI slightly relaxed to avoid missed detections. It then
sequentially scans the channels of the remaining APs, sniff-
ing and capturing 802.11 packets for 5 seconds to determine
if any devices are continuously uploading data.

For the captured 802.11 packets, CAMLOPA first classi-
fies them by source MAC address into different end devices.
Next, it filters out Management-Type and Control-Type
frames, leaving only Data-Type frames for further analysis,
as application layer data is encapsulated within Data-Type
frames [57]. After protocol filtering, CAMLOPA aggregates
all Data-Type frames corresponding to each device and
calculates the average size of the payload portion. Finally,

CAMLOPA determines the presence of any suspicious de-
vices as follows:

Smac =

{
true if s̄mac > Ts&l > Tl&mac ̸= map,

false else .
(6)

Here, Smac represents the determination of whether the
device with MAC address mac is suspicious. s̄mac, Ts, l,
map, and Tl denote the average size of all packet payloads,
the size threshold, the count of packets, the MAC address
of APs, and the count threshold, respectively. This equation
indicates that if a device sends a large number of packets
within 5 seconds and the average packet length is long, it
is likely uploading a video stream. After identifying sus-
picious devices, CAMLOPA forwards their MAC addresses
and 802.11 channel index to the snooping camera detection
module. This module then sequentially assesses the risk of
each device to determine whether they are monitoring the
current area.

4.2. Detecting Snooping Cameras

Before uploading video streams, cameras typically apply
encoding to compress the data and reduce the upload vol-
ume. Most video compression standards, such as H.264 [58]
and H.265 [59] (H.264 (AVC) and H.265 (HEVC) domi-
nate 81% of the video streaming market [60]), achieve high
compression rates through inter-frame prediction. Specifi-
cally, standard video compression algorithms use three types
of frames to compress video: I (Intra-coded picture) frames,
P (Predicted picture) frames and B (Bi-directionally pre-
dicted picture) frames

When there is any activity in the area monitored by
the wireless camera, the camera traffic increases due to
the higher number of P and B frames that need to be
transmitted [13], [15]. Conversely, if the scene transitions to
a stationary one, the number of disturbed pixels decreases,
reducing the camera traffic. If a person first moves and then
remains still within the camera’s monitored area, it will
result in a unique camera traffic pattern (traffic decreasing)
that corresponds to the user’s motion. This causal effect
can be used to detect whether a hidden wireless camera
is snooping on the current area. CAMLOPA leverages this
causal relationship to detect snooping cameras. Specifically,
CAMLOPA prompts the user to leave the room within 15
seconds. It then calculates the data throughput of each
suspicious device per second and checks for traffic patterns
where the throughput is initially high and then decreases.
If such a pattern is detected, the device is identified as a
snooping camera, and its risk level is determined based on
the ratio of the data throughput in the first half to that in
the second half. A sample of the data throughputs during
the user’s exit from the room is shown in Figure 3.

Upon detecting a snooping camera, CAMLOPA forwards
the camera’s MAC address and associated WiFi channel
index to the wireless camera localization module. It then
initiates the localization process for the detected camera.
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Figure 3: Throughput during the user’s exit from the room.

5. Wireless Camera Localization

CAMLOPA localizes snooping cameras in two stages: (i)
azimuth localization and (ii) quadrant determination.

5.1. Diffraction Attenuation in Wireless Signal
Propagation

Diffraction allows radio signals to propagate around
the curved surface of the earth, beyond the horizon, and
behind obstacles [40]. This phenomenon can be explained
using Huygen’s principle, which states that all points on
a wavefront can be considered as point sources generating
secondary wavelets. These secondary wavelets are combined
in the direction of propagation to form a new wavefront.
Diffraction occurs due to the propagation of these secondary
wavelets into shadowed regions. Empirical studies [41],
[43], [61] suggest that when an obstacle is within the
FFZ, it primarily causes the diffraction of wireless signals.
Conversely, when the obstacle is outside the FFZ, it mainly
causes the reflection of signals.

In Figure 4, assuming the height of a point Q from the
LOS path is h, and its projection onto the LOS path has
distances d1 and d2 from Tx and Rx, respectively, the path
difference between the signal propagating through this point
and the LOS path ∆d can be expressed as [40]:

∆d ≈ h2

2

d1 + d2
d1d2

. (7)

The corresponding phase difference is:

ϕ =
2πd

λ
=

πh2

λ

d1 + d2
d1d2

. (8)

Equation 8 can typically be expressed using the Fresnel-
Kirchoff diffraction parameter v as follows:

ϕ =
π

2
v2. (9)

The Fresnel-Kirchoff diffraction parameter v can be repre-
sented as:

v = h

√
2(d1 + d2)

λd1d2
. (10)

hfront

Tx Rx

Path

hback

The First Fresnel Zone

Circular Cylinder

r1

d1 d2

hfront

hback

Figure 4: A moving cylinder across the FFZ.

The Fresnel-Kirchoff diffraction parameter originates from
the combination of the Fresnel approximation and Kirch-
hoff’s diffraction theory. This parameter is used to describe
the diffraction effect that occurs when a wave encounters an
obstacle or aperture. The magnitude of v is related to the
significance of the diffraction effect. A smaller v indicates
a smaller obstacle size or greater distance, resulting in a
less significant diffraction effect. Conversely, a larger v
indicates a more pronounced diffraction effect, where the
wave experiences noticeable diffraction when encountering
an obstacle and continues to propagate around it. The radius
(The perpendicular distance from Q to the LOS path.) of the
FFZ can be expressed as [40]:

r1 =

√
λd1d2
d1 + d2

. (11)

Thus, the Fresnel-Kirchoff diffraction parameter can be
represented as:

v = h

√
2(d1 + d2)

λd1d2
= h

√
2

r1
. (12)

In wireless communication systems, only a portion of
the signal’s energy can diffract around an obstacle, allowing
only part of the blocked energy to reach the receiver. There-
fore, when an obstacle obstructs part of the Fresnel zone,
the received energy is the vector sum of the contributions
from all the unobstructed portions of the Fresnel zone. If an
infinitely long object is positioned at a distance h from the
LOS path, the ratio of the electric field strength Ed affected
by diffraction to the unobstructed electric field strength Eo

is given by [40]:

Ed

Eo
= F (v) =

1 + j

2

∫ ∞

v

exp(
−jπt2

2
)dt, (13)

where F (v) is the complex Fresnel integral.
In practical scenarios, a human body can be approxi-

mated as a cylinder to analyze the signal attenuation caused
by diffraction along the propagation path. As shown in
Figure 4, both ends of the cylinder induce diffraction effects,
where hfront and hback represent the distances from the front
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Figure 5: Diffraction gain variation corresponding to Fig-
ure 4.

and back edges of the cylinder to the LOS path, respectively.
The signal attenuation caused by diffraction at the front and
back edges can be expressed as:

F (vfront) =
1 + j

2

∫ ∞

vfront

exp(
−jπt2

2
)dt, (14)

F (vback) =
1 + j

2

∫ vback

−∞
exp(

−jπt2

2
)dt. (15)

The diffraction gain due to the presence of a cylinder is
given by:

Gd(dB) = 20log|F (vfront) + F (vback)|. (16)

To intuitively demonstrate the diffraction attenuation
caused by obstruction, we use the example of a cylinder with
a radius equal to the FFZ radius. To simplify the setup, we
assume the cylinder crosses the FFZ vertically (as shown in
Figure 4) and introduce Fresnel clearance u [61] to indicate
the percentage of crossing:

u =
h

r1
, (17)

v = h

√
2(d1 + d2)

λd1d2
= h

√
2

r1
=

√
2u. (18)

The diffraction gain during the cylinder’s traversal of the
FFZ is shown in Figure 5. It is obvious that the cylinder
causes significant signal attenuation due to diffraction from
the moment it touches the FFZ (ufront = −1) until it
completely exits the FFZ (ufront = 2).

5.2. Azimuth Localization

Section 5.1 highlights that the period of significant wire-
less signal attenuation can be used to determine the time
taken for an obstacle (the user) to cross the first Fresnel
zone (FFZ). Below, we list several key points:

• The location of the CAMLOPA device is known.
• As discussed in Section 2, CSI can represent the atten-

uation of WiFi signals.
• When the positions of transmitter (camera) and receiver

(CAMLOPA) are fixed, and the obstacle (user) walks in

CamLoPA

Wireless Camera

Path1

Path2

θ

Lf1

Lf2

L2

Figure 6: The illustration of azimuth localization.

a straight line past the receiver and through the FFZ,
the length of the path traversing the FFZ is related to
the angle between the walking path and LOS (azimuth).

Based on the above key points, it is evident that if the user’s
walking speed and the distance between the transmitter
and receiver are known, the azimuth angle of the wireless
camera can be calculated using the time of significant CSI
attenuation. Furthermore, an important corollary is derived:

Corollary: In an indoor environment, for a camera to
effectively monitor an area of interest, its LOS must
remain unobstructed. Therefore, if the azimuth of the
wireless camera is known, the camera is likely located
at the first obstacle encountered along that angle.

From the corollary, we know that in an indoor envi-
ronment, effective localization of a wireless camera can be
achieved by knowing the azimuth, even without distance.
However, some challenges arise in practice:

• Users’ walking speeds are difficult to obtain.
• Some users may be unaware of their own sizes.
• The distance between the CAMLOPA device and the

wireless camera is unknown.
CAMLOPA introduces the orthogonal ratio to address

the challenge of obtaining crucial parameters (e.g., speed
and distance). As shown in Figure 6, CAMLOPA prompts
the user to walk along two orthogonal paths, both of which
pass by the CAMLOPA device. In real-world environments,
finding such paths is usually feasible. CAMLOPA then cal-
culates the time it takes to traverse the FFZ along each
path (represented by the red lines) based on the periods
of significant CSI attenuation and computes their ratio. The
azimuth angle θ (the angle of the Path 1 relative to the LOS
path) is estimated using a model that relates this ratio to the
azimuth. The orthogonal ratio-based method eliminates the
impact of walking speed and reduces errors due to unknown
distances between devices and the user’s size.

Next, we provide a detailed explanation of the azimuth
localization model based on the orthogonal ratio. As ex-
plained in Section 5.1, the duration of significant CSI atten-
uation corresponds to the time it takes for the user to traverse
from entering to exiting the FFZ. Therefore, for Path 1, the
walking distance that causes significant attenuation can be
calculated as follows:

L1 = Bs + Lf , (19)



where Bs and Lf represent the user’s body size and the
length of Path 1 within the FFZ (red line in Figure 6).
Lf can be further divided into Lf1, the distance from the
FFZ boundary to CAMLOPA, and Lf2, the distance from
CAMLOPA to the FFZ boundary. Combined with Equation 5,
we have the following equations:

Lf1 +
√

d2 + L2
f1 − 2dLf1 cos θ − d =

λ

2
, (20)

Lf2 +
√

d2 + L2
f2 − 2dLf1 cos(π − θ)− d =

λ

2
, (21)

where d is the distance between Tx and Rx. Treating Lf1

and Lf2 as unknown, they can be solved as follows:

Lf1 =
λ2 + 4dλ

4(2d+ λ− 2d cos θ)
, (22)

Lf2 =
λ2 + 4dλ

4(2d+ λ+ 2d cos θ)
. (23)

Path 2 does not cross the entire FFZ, and thus the length
of its path that perturbs the CSI is only the distance from
CAMLOPA to the FFZ boundary:

L2 +

√
d2 + L2

2 − 2dL2 cos(
π

2
− θ) =

λ

2
. (24)

Treating L2 as unknown, it can be solved as follows:

L2 =
λ2 + 4dλ

4(2d+ λ− 2d sin θ)
. (25)

The orthogonal ratio is calculated as:

Ro =
T1

T2
=

T1vs
T2vs

=
L1

L2
=

4Bs(2d+ λ− 2d sin θ)

λ2 + 4dλ

+
4(2d+ λ− 2d sin θ)

4(2d+ λ− 2d cos θ)
+

4(2d+ λ− 2d sin θ)

4(2d+ λ− 2d cos θ)

=
4Bs(2d+ λ− 2d sin θ)

λ2 + 4dλ
+

8(2d+ λ)(2d+ λ− 2d sin θ)

(2d+ λ)2 − (2d cos θ)2
,

(26)
where T1 and T2 are the periods during which the user’s

movement along Paths 1 and 2 causes significant CSI at-
tenuation, and vs is the user’s walking speed. By taking the
ratio, the influence of the speed can be eliminated. After
obtaining Ro, the Newton-Raphson method can be used to
solve for θ.

Next, we analyze the errors introduced by setting fixed
values of Bs, d and speed mismatches. We conducted an
analysis of the L1-θ and Ro-θ relationship models sepa-
rately. Figure 7 shows the variations of L1 and Ro relative to
the azimuth angle θ for Bs = 0.15, 0.25, and 0.45, which are
reasonable based on common sense. It can be observed that
the error caused by Bs is more pronounced near θ = 90o.
The error in the L1-based method due to changes in Bs is
significant, while the Ro-based method effectively mitigates
the error caused by the variations of Bs. Figure 8 illustrates
the variations of L1 and Ro relative to the azimuth angle
θ for d = 1, 3, and 6, which are plausible ranges for
indoor wireless camera deployment. It can be observed that
the error caused by d is more significant around 0/180o.

Compared to the L1-based approach (with an theoretical
maximum error approaching 20o), the theoretical maximum
error of Ro (15o) is more advantageous. Furthermore, the
variations in the walking speed due to different users’ habits
can introduce greater errors in the L1-based scheme. It is
clear that the orthogonal ratio-based scheme employed by
CAMLOPA nearly eliminates the bias caused by unknown
speeds and user body sizes while minimizing the errors
due to the unknown distance between the transmitter and
receiver. Even under the condition of maximum theoretical
error, the localization results remain highly practical in real
indoor environments due to the limited number of potential
hiding spots for wireless cameras. For speed mismatches,
a study [62] found that average walking speed is 1.41 m/s
(±0.26 m/s). When consciously controlled, speed variations
stay within ±10%. Let k = v2

v1
denote the speed ratio

between Path 1 and Path 2. The orthogonal ratio is then
adjusted to R′

o = Ro · k. Substituting this into Equa-
tion 26, we derive the relationship between the azimuth
error ∆θ and k. Simulations (e.g., Figure 7) show that when
0.9 ≤ k ≤ 1.1, ∆θ remains below 3°. Due to the superiority
of the orthogonal ratio strategy, in this paper, CAMLOPA sets
d = 3 and Bs = 0.25 as fixed values according to realistic
scenarios, and users walk for 10 seconds along each path.

5.3. Quadrant Determination

From Figures 7 and 8 (i.e., Ro leading to two possible
values of θ), we can also observe that the predicted θ using
Ro has two possible values, making it impossible to deter-
mine whether the camera is in the first or second quadrant.
Therefore, further quadrant determination is necessary.

To achieve quadrant determination, CAMLOPA prompts
the user to walk again in the same direction as Path 1 for 10
seconds, but starting from a position in front of the CAM-
LOPA device. The quadrant can then be determined based
on changes in the CSI. The rationale is that if the wireless
camera is located in the first quadrant, the user standing
at the starting position will block the LOS signal between
the two devices, causing significant signal variations due to
the diffraction effect when the user moves. Conversely, if the
wireless camera is behind the user, the user’s movement will
only cause signal fluctuations due to reflection. Specifically,
CAMLOPA determines the quadrant as follows:

Qmac =

{
2 if max(CSI3)

min(CSI3)
< Tq ∗ max(CSI1)

min(CSI1)
,

1 else .
(27)

Equation 27 means that if the extent of the CSI fluctuation
caused by Path 3 is less than Tq times the extent of the CSI
fluctuation caused by Path 1, the camera is determined to be
in the second quadrant; otherwise, it is in the first quadrant.

Since movement within the range of 180-360o does not
cross the LOS, CAMLOPA can only locate devices within
the range of 0-180o. However, in real-world environments,
the user’s available space is usually near walls, thus a
single measurement by CAMLOPA remains highly useful. If
the condition of moving near walls is not met, CAMLOPA
requires two measurements.



(a) The variations of L1. (b) The variations of Ro.

Figure 7: The variations of L1 and Ro relative to θ with Bs changes.

(a) The variations of L1. (b) The variations of Ro.

Figure 8: The variations of L1 and Ro relative to θ with d changes.

Figure 9: The prototype of CAMLOPA.

6. Implementation and Evaluation

We implemented CAMLOPA in multiple rooms and di-
verse hidden wireless cameras, and this section presents the
implementation details of CAMLOPA.

6.1. Prototype

The prototype of CAMLOPA is shown in Figure 9. The
Raspberry Pi uses its built-in wireless NIC with the nexmon
tool [46] to modify the kernel for CSI extraction. However,
the modified driver for extract CSI cannot sniff 802.11
packets, therefore we set up an external network card (NIC1)
with monitoring capabilities to sniff 802.11 packets. NIC2
is a standard wireless network card used for communication
between the CAMLOPA device and the user’s smartphone.

The user’s smartphone can receive prompts and localization
results from CAMLOPA via SSH tools. More details please
refer to Appendix E.

6.2. Experimental Setup

We evaluated the performance of CAMLOPA using seven
different wireless cameras (details provided in Appendix D).
All devices were purchased from online shopping platforms,
and the cameras were connected to a 2.4GHz WiFi net-
work. The experiments were conducted in a real residential
setting, spanning three different rooms, each containing
various obstacles such as furniture and household items.
The experimental environment included numerous WiFi de-
vices and APs operating both within and around the test
house. Since the experiments were conducted in actual home
environments over an extended period, only the residents
participated to ensure privacy. The validation experiments
were carried out over a total duration of two months.

The layout of three rooms are shown in Figure 10, and
the location of cameras please refer to Appendix D. Rooms
1 and 2 (Figures 10a and 10b) are bedrooms, while room 3
is a living room (Figure 10c). In real environments, private
spaces like bedrooms and hotel rooms have limited activity
space, restricting the feasibility of previous methods that
rely on extensive indoor scanning. As shown in Figure 13,
the cameras we used have an average QoS data packet
length ranging from 369 to 1050 bytes during video stream
uploads, with upload speeds ranging from 35 to 130 packets
per second. Therefore, in our experiments, Ts and Tl are set
to 300 bytes and 150 packets (30 packets * 5 seconds),
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Figure 10: The layout of three rooms.

respectively. The Tq for quadrant localization is empirically
set to 0.6.

6.3. CSI Analysis and Algorithm Implementation

In this section, we analyze the relationship between the
CSI influenced by user activity and the azimuth of the
camera. Furthermore, we elaborate on the design of the
algorithm for extracting attenuation time from the CSI.

CSI Analysis. The variation in CSI amplitude during lo-
calization for a camera at different azimuth angles are shown
in Figure 11. It can be observed that the CSI amplitude vari-
ation is significantly influenced by the azimuth angle of the
wireless camera relative to CAMLOPA. Generally, the larger
the angle, the shorter the duration of significant fluctuations
in CSI from Path 1 (CSI 1), while the duration of significant
fluctuations in CSI from Path 2 (CSI 2) increases. These
experimental results validate the feasibility of the azimuth
localization scheme proposed by CAMLOPA. Additionally,
here are some practical consideration:

• The fluctuation duration of CSI 2 may not accurately
reflect the actual path length causing the fluctuation, as
it takes time for the user to accelerate from a stationary
state to walking.

• When the angle is too small (0 degrees) or too large
(90 degrees), the calculated Ro significantly deviates
from the theoretical Ro. This is due to the limited
indoor space usually causes the user to stop after a short
distance due to obstacles. For example, in Figure 11h,
when the user reaches a wall and stops walking, the
CSI remains stable without further fluctuations.

Algorithm Flow. To obtain the duration of significant
CSI fluctuations, we use different methods for CSI 1 and
CSI 2. For CSI 1, we first identify the lowest point and then
use the calculated inverse to find the start and end points
of the fluctuation. For CSI 2, we first calculate the mean
values of the initial and later segments, then we construct a
piecewise waveform where the values of the initial and later
segments are equal to the calculated means. By adjusting
the position of the segmentation, we find the point that best
matches the waveform with CSI 2 to determine the midpoint
of the fluctuation. We then calculate the inverse to identify

the start and end points of the fluctuation. Additionally,
based on our first observation, we scale the calculated fluc-
tuation duration for CSI 2 to eliminate errors. For activities
that cause fluctuations exceeding a certain duration, we in-
crease the fluctuation time to mitigate the effect noted in the
second observation. As shown in Fig 11, CamPoLA achieves
localization of cameras depolyed at different positions.

During data processing, we discard deep fluctuations
occurring near the start time to avoid situations like the
one shown in Figure 11b. In this case, an initial deep
fluctuation occurred because the ”Enter” key was pressed
to start data collection while the user was still walking,
rather than being stationary. Thus, our approach allows users
remain stationary for a short period to prepare after after CSI
collection begins, as shown in our demo.

Example Explanation. Figure 12 shows the variations
in CSI 3 (corresponding to Path 3) when the wireless camera
is located in different quadrants. It is obvious that the
quadrant localization scheme proposed by CAMLOPA is also
effective. Since CSI consists of many different subcarriers,
and different subcarriers have varying sensitivities to user
activity (with higher amplitudes indicating lower sensitiv-
ity), CAMLOPA focuses only on the periods of significant
attenuation. Therefore, we select the five subcarriers with
the highest amplitudes, average them after filtering, and use
this average as the final input for CAMLOPA to calculate
Ro and the quadrant.

6.4. Performance of Wireless Camera Detection

CAMLOPA detects wireless cameras monitoring the cur-
rent area by first identifying suspicious devices, prompting
the user to leave the room, and monitoring throughput
changes to detect snooping hidden wireless cameras. CAM-
LOPA achieves an 84.35% success rate in identifying sus-
picious wireless cameras across all devices. The probability
of identifying the 360 camera as a suspicious device is 0,
while the accuracy of detecting other wireless cameras as
suspicious devices reaches 98.41%. This discrepancy occurs
because, during traffic sniffing, the 360 wireless camera
only allows the capture of ACK Block and Request-to-
Send packets, but not QoS data packets. This limitation
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Figure 11: The CSI amplitude during localization. The black dots represent the start and end points of significant CSI
fluctuations for each path. By dividing the duration of significant attenuation of path 1 by that of path 2, we obtain Ro,
which is then used to calculate θ according to Equation 26. In (c) and (g), Ro is calculated as 0.8

0.66 = 1.21, and substituting
this into Equation 26 yields θ = 72.18◦. The calculations for the others follow the same procedure.
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Figure 12: The CSI amplitude during quadrant determina-
tion. When the camera is located in the first quadrant (a),
the user’s starting position blocks the LOS, resulting in
significant fluctuations during movement. In contrast, when
the camera is located in the second quadrant (b), the user
does not block the LOS, leading to minor fluctuations.

may be due to the special data transmission methods or
protocols they use, which prevent its traffic from being
intercepted, thus hindering detection and previous methods
based on WiFi traffic all cannot work [12], [13], [14], [15].
However, the nexmon tool used by CAMLOPA can still
capture the CSI for the 360 camera from WiFi traffic. The
snooping camera detection results are shown in Figure 13.
CAMLOPA achieves a 95.37% success rate in detecting
snooping cameras for six types of cameras across three
rooms, except for the 360 wireless camera. For devices
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Figure 13: Snooping camera detection performance.

similar to the 360 camera, we believe that wireless camera
detection can still be achieved by querying the OUI of the
captured Request-to-Send packet’s leaked MAC address. By
constructing an OUI table of all available devices using
device name information from shopping platforms and MAC
address lookup websites, it is possible to identify the device
type. However, CAMLOPA cannot determine whether the
camera is monitoring the current area using this method.For
360 cameras, which do not support QoS packet capture,
detection is still feasible using CSI. The CSI packet count
strongly correlates with data packet count, enabling camera
detection based on video encoding characteristics. Extended
experiments achieved a 91.43% detection accuracy using
CSI, including for 360 cameras.

6.5. Performance of Wireless Camera Localization

Overall Performance: The localization results across three
rooms are shown in Figure 14, where CAMLOPA achieves
an average azimuth localization error of 17.23 degrees for
wireless hidden cameras. CAMLOPA demonstrates higher



19.84

10.71
12.46

6.30

26.70

31.69

E
rro

r (
o)

0

5

10

15

20

25

30

35

Azimuth
28.61 42.27 60.28 88.54 130.10 157.73

(a) Room1.

19.92

14.93

10.42
12.63

0

5

10

15

E
rro

r (
o)

20

Azimuth
4.86 51.34 69.44 103.52

(b) Room2.

22.22

12.54 12.34
14.32

31.46

0

5

10

15

20

25

30

E
rro

r (
o)

35

Azimuth
30.69 47.13 61.34 92.37 110.94

(c) Room3.
Figure 14: Localization results of hidden cameras deployed at different positions.

localization accuracy for cameras placed within the 40-90°
range, while accuracy decreases for cameras located in the
second quadrant or near 0°. This discrepancy is attributed
to errors introduced by the quadrant determination scheme
and path length limitations. The primary source of quadrant
determination error is the human torso, which is relatively
large and can introduce significant noise into the reflected
signals. Such errors in quadrant localization can lead to
azimuth errors of up to 180°. To mitigate this, searching
the opposite location can help identify the correct position.
For cameras near 90°, the algorithm described in Section 6.3
tends to output predictions close to 90°, resulting in lower
localization errors. Overall, CAMLOPA achieves high accu-
racy with low user efforts, minimal space requirements and
no need for training.

Robustness: As shown in Figuree 15, CAMLOPA maintains
consistent localization performance across different camera
types, demonstrating its robustness to device variations.
The azimuth localization errors for CAMLOPA across three
rooms were 17.95°, 14.48°, and 18.58°, respectively, further
emphasizing its resilience to environmental changes. This
robustness is a result of CAMLOPA’s localization algorithm,
which is a model-based method. Learning-based methods
used in previous approaches [16] require extensive training
data to ensure robustness. We primarily used 2.4 GHz
as some cameras do not support 5 GHz. Testing Mi and
360 cameras at 5 GHz in Room 1 and Room 2 yielded
errors of 14.05° and 16.33°. The 5 GHz band, with its
wider bandwidth and lower interference, provides better
performance. To validate robustness in more compact and
complex wireless environments, we conducted experiments
in two additional rooms (see Appendix D): a small office
with limited space (containing two desks, a sofa, and five
chairs) and a conference room. We achieved localization
errors of 14.56° and 19.08°, demonstrating the robustness.

Influence of Tq: We also conducted ablation experiments
in Rooms 1 and 2 to determine the optimal value for the
threshold Tq. Using classification accuracy as the evaluation
metric, the results (accuracy: thresholds) were: (0.1: 0.5, 0.3:
0.6, 0.5: 0.8, 0.6: 0.85, 0.7: 0.8, 0.9: 0.6). The results were
consistent across both rooms, leading to the selection of
Tq = 0.6 as the optimal threshold.

6.6. Comparative Study

Performance Comparison: Most previous localization
methods [12], [13], [15] typically evaluate in nearly empty
rooms and use distance as the evaluation metric, making
direct comparisons with our approach challenging. Addi-
tionally, many of these studies have not been open-sourced.
Therefore, we compare CAMLOPA with the SOTA method
LocCams [16]. LocCams collects CSI while the user holds
the device in four different orientations. It then uses a pre-
trained deep learning model to identify which orientations
have their LOS paths blocked, with the mid-direction of
the blocked LOS paths considered the device’s azimuth.
We conducted experiments in Room 2 using two cameras
(360 and Gc) across four different locations. The results,
presented in Table 2, include in-domain (ID), cross-device
(CD), and cross-device-room (CDR) comparisons. The find-
ings clearly demonstrate that CAMLOPA outperforms Loc-
Cams, showing better overall accuracy and robustness.
Cost, Time, and User Effort Comparison: The total cost
of our system is $82.71 (Raspberry Pi: $79.20 + USB net-
work adapter: $3.51). In comparison, LocCams uses a Nexus
5, priced at $99.99 on Amazon. Other traffic-based systems
such as SNOOPDOG [13], Lumos [12], and ScamF [15] also
use Raspberry Pi, while MotionCompass [14] uses an An-
droid device (note that only certain smartphones allow root
access for collecting CSI or traffic, meaning smartphone-
based platforms often incur additional hardware costs).
RF/infrared-based solutions, such as HeatDeCam [11] and
LAPD [10], require more expensive equipment (over $300).
In terms of time, LocCams is the fastest, taking only 0.5
minutes for localization. However, LocCams relies on ex-
ternal hardware for neural network training and inference,
requiring additional time for data transfer and processing.
In contrast, CamLoPA performs all computations directly
on a Raspberry Pi in under 5 seconds, providing greater
efficiency and practicality. CAMLOPA requires 1.5-2 min-
utes, but this additional time significantly improves both
accuracy and robustness. MotionCompass, based on traffic
patterns, takes around 3 minutes. Other RSSI/traffic-based
systems typically takes 15-30 minutes [12], [13], [15]. For
user efforts, MotionCompass require the user to walk several
straight paths that span both monitored and unmonitored
areas, which can be difficult to achieve in real-world en-



TABLE 2: Comparison with other methods.

Method CAMLOPA LocCam ID LocCam CD LocCam CDR
360 17.60 25.10 30.22 40.32
Gc 15.13 27.55 38.90 43.39
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Figure 15: Localization results across different device.

vironments. Other RSSI/traffic-based systems require users
to walk around the perimeter of the room multiple times
or constantly adjust a laptop’s position to cover most areas,
which is also impractical. LocCams requires the least user
effort, as users only need to perform a few turns. CAMLOPA,
requiring users to walk three orthogonal paths, has the
second-lowest effort requirement, while offering significant
improvements in performance. Moreover, such paths are
easy to find in everyday environments, such as hotels.

7. Disscussion

In this section, we discuss the limitations of CAMLOPA,
the potential risks, and possible improvements.
Non-WiFi Cameras. The fundamental principle behind
CAMLOPA’s detection and localization of wireless cameras
limits its applicability to live streaming spy cameras on
WiFi networks. It does not extend to cameras that use
local storage, cellular networks, or Ethernet. However, most
recent crime cases have involved WiFi spy cameras [15]
because they are easy to deploy and manage, and their
prevalence is rapidly increasing in the commercial market.
Therefore, CAMLOPA is suitable for many scenarios. To
expand the detection range, infrared or optical methods [10],
[11] would still be needed.
MAC Address Randomization. Although some devices
employ MAC address randomization [63] to enhance secu-
rity, this does not affect CAMLOPA’s detection and localiza-
tion capabilities. This is because devices, even with MAC
address randomization, use a consistent MAC address for
communication once a network connection is established.
Non-VBR Devices. When CAMLOPA detects whether a
camera is monitoring the current area, the device’s traffic
must be encoded using a Variable Bit Rate (VBR) algorithm.
While this algorithm is used by the vast majority of wireless
camera devices, if a camera is specifically designed to
encode video/audio information at a constant bit rate (CBR),
CAMLOPA may only be able to roughly detect its presence
using the OUI table. However, CAMLOPA can still locate
such devices through the proposed localization scheme.

False Positives and Misdiscard. To evaluate the false
positive rate of detection, we simulated potential activities
that could trigger false alarms in Room 1 by setting up a
computer uploading files and having another computer and
smartphone engaged in video conferencing. Only 6.67% of
the samples resulted in false positives. In the same environ-
ment, LocCams had a 10% false positive rate. Furthermore,
devices that generate significant traffic like camera indoors
are typically under user control, which makes it unlikely for
them to cause interference. Even if devices in neighboring
rooms trigger false alarms, they would primarily increase the
workload rather than posing a security risk. Our approach
filters out routers with weak RSSI values. While the position
of the wireless camera may differ from the CamLoPA de-
vice, leading to potentially different RSSI values, this could
result in misdiscarding some devices. To mitigate this, we
implemented a margin of tolerance by slightly lowering the
RSSI threshold (by 5 dBm) below the level required for
reliable streaming quality to prevent incorrectly exclusion.
Evading CAMLOPA. We acknowledge that more powerful
attackers may have ways to evade CAMLOPA. Attackers
could modify the behavior of hidden cameras by customiz-
ing hardware or altering firmware to change the packet size
or arrival intervals, thus avoiding detection. These methods
could prevent CAMLOPA from detecting them. However,
such tactics require a high level of expertise from the
attacker. The localization module, based on wireless sig-
nal propagation path analysis, can still function normally
by using the device’s MAC address and WiFi channel.
Avoiding localization would require modifying the network
card hardware to control the WiFi signal’s transmission
power, causing it to constantly change and disrupt the signal
attenuation trend caused by user activity. This also requires
attackers to have specialized knowledge, and modifying net-
work card hardware is considerably challenging. According
to the latest research [64], the majority of surveillance
tools still rely on commercially available devices, thus
we have not consider adaptive attack in our evaluation.
Multiple Cameras. While we evaluated CAMLOPA in
single-camera scenarios, it can easily be extended to situ-
ations involving multiple cameras. During the camera de-
tection phase, a single user walking can detect multiple
cameras by clustering the MAC addresses of all captured
packets. However, when capturing CSI, the Nexmon tool can
only obtain packets from one MAC address at a time. As
a result, to localize multiple cameras, the user must repeat
the localization process for each individual camera.
Challenging Environments. In real-world settings, attack-
ers may attempt to disguise hidden cameras using various
objects. To assess the performance of CAMLOPA under such
conditions, we evaluated its effectiveness when cameras
were obscured by different materials. The results, presented
in Table 3, show that common materials like plastic and
textiles had minimal impact on CAMLOPA’s performance.
However, metal caused a significant degradation in per-
formance. This is because metal absorbs wireless signals,
which not only impairs CAMLOPA’s localization capabili-
ties but also degrades overall network quality. As a result,



TABLE 3: Evaluation with Challenging Environments.

Materials Normal Plastic Textile Metal
360 17.60 16.51 16.06 22.42
Gc 15.13 17.62 14.79 39.79

attackers are unlikely to use metal to conceal WiFi cameras.
Fault Tolerance. CAMLOPA assumes users walk along two
orthogonal straight paths at a constant speed, which may
introduce faults in real-world scenarios. However, in actual
environments, the layout of indoor furniture (such as floor
stripes, walls, and furniture) can help guide users to maintain
two straight walking paths. Additionally, users can easily
control their walking speed within a certain range to min-
imize the biases. Our experiments were conducted in real-
world environments, without any special measures to assist
the users in walking in a straight line and control speed.
The results demonstrate the robustness of our approach to
these liminations. Although CAMLOPA’s localization results
are not perfectly precise in confined indoor spaces, it is
sufficient to narrow the search to specific areas or furniture,
enabling users to locate the hidden camera through visual
inspection (e.g., checking power outlets). In simulated eval-
uations, users found hidden cameras within 1-5 minutes with
an 85.7% success rate. For missed detections, re-localization
attempts (maximum of two) ensured successful discovery.
Limitations. CAMLOPA can only localize wireless cameras
within the 0-180o range. However, in real-world environ-
ments, it is relatively easy to find a location near a wall to
place the CAMLOPA device, and it can perform two rounds
of positioning to achieve 360o localization. Traffic shaping
can disrupt the traffic analysis process to avoid detection, but
CAMLOPA remains effective. Since users control the search
environment, they can silence known devices and locate all
high-traffic suspects to find the camera. Furthermore, due to
the benefits of VBR in terms of quality and latency, as well
as legal factors, the cost of implementing this feature for
malicious camera manufacturers is high. Most small cameras
lack the ability to update firmware, so this does not affect the
detection of current devices. CAMLOPA requires two orthog-
onal paths to operate, which are easily found in real-world
environments but pose a limitation in extremely crowded
scenarios. Although our approach significantly reduces the
impact of irregular body movements, complex environments,
multipath, and speed mismatches through the orthogonal ra-
tio, these interferences still limit CAMLOPA’s performance.
Cameras with intermittent activity might not consistently
upload traffic, so there is a need for an automated monitoring
and localization solution that does not require user effort.
These challenges will guide our future work.
Future Work for Improvement. Next, we aim to further
reduce user effort and eliminate localization errors caused
by user activity. This will involve using low cost 3D-printed
kits with metal obstructions as peripherals. By controlling
the metal obstructions to rotate around the Raspberry Pi,
we can perturb the CSI. Constructing a corresponding CSI-
azimuth model will enable more precise localization with
no user effort. We plan to explore building indoor wireless
device maps based on our localization technology. Combine

this map with WiFi traffic and CSI will help us study new
smart home related risks and develop defensive measures.
CAMLOPA has not yet been deployed on phones due to that
only some older phone models can collect CSI, owing to
NIC manufacturer permissions. Additionally, developing a
mobile app requires significant effort. We chose Raspberry
Pi for its low cost and flexibility in development, which
supports community adoption. While transitioning to smart-
phones does not present a theoretical gap, it requires more
engineering effort, and we plan to explore this in future.

8. Conclusion

In this paper, we propose CAMLOPA, a framework for
detecting and locating wireless hidden cameras based on
wireless signal propagation path analysis, specifically fo-
cusing on diffraction attenuation. CAMLOPA establishes a
relationship between the signal attenuation caused by user
activity and the location of the wireless camera. We evalu-
ate the performance of CAMLOPA through comprehensive
experiments in real-world conditions. Compared to current
methods, CAMLOPA offers several advantages: it is cost-
effective, requires no training, demands less activity space,
and involves minimal user effort. However, CAMLOPA still
has some limitations. In future work, we aim to further
reduce user effort and minimize localization errors through
the use of low-cost peripherals.
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Appendix A.
Background: Detecting and Locating Hidden
Wireless Cameras

Current wireless hidden camera detection methods gen-
erally rely on information leaked through wireless channels
or other side channels when the camera is in operation. For
example, wireless communication can unintentionally leak
information through certain out-of-band channels, which
has recently been leveraged for detecting the presence of
wireless devices. Sathyamoorthy et al. [7] and Valero et al.
[8] highlight the importance of carefully setting the received
power threshold to avoid false positives or missed detec-
tions. Approaches like LAPD [10], CamRadar [25], and
Heatdecam [11] rely on thermal/electromagnetic emissions
and lens reflections to detect cameras in operation. These
methods typically use specialized, often expensive sensors
to capture side-channel information for detection. While
effective in locating devices within the Line-of-Sight (LOS),
these techniques require detection equipment to be in close
proximity to the hidden camera to capture subtle changes in
the signals, making them impractical for ordinary users and
ineffective in hard-to-reach areas.

Some methods leverage WiFi packet sniffing to detect
wireless cameras, as these cameras transmit data packets
during operation. Systems like Dewicam [17], Cheng et
al. [20], Liu et al. [9], and Miettinen et al. [65] achieved
detection by learning the traffic characteristics of wireless
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cameras. However, machine learning-based approaches of-
ten face robustness issues due to their dependence on large
training datasets. SNOOPDOG [13] and ScamF [15] focus
on the causal relationship between wireless camera traffic
and human activity, where significant movement within the
monitored area increases encoded data traffic. This rela-
tionship provides valuable information for detecting surveil-
lance. Motioncompass [14] and LocCams [16] also lever-
age side-channel information, such as the Organizationally
Unique Identifier (OUI) in the MAC address, which can
reveal the device’s manufacturer and type.

The localization of wireless hidden cameras also relies
on side-channel information leakage, but not all types of
side-channel data are suitable for simultaneous detection
and localization. Methods based on thermal/electromagnetic
emissions [11], [25] and lens reflections [10] can detect
and localize cameras by identifying regions with abnormal
signals. However, these methods share similar limitations for
localization as they do for detection: they are difficult to de-
ploy and require proximity to the hidden camera [16]. Detec-
tion schemes that rely on traffic analysis require additional
effort to achieve localization. For instance, these methods
often depend on changes in RSSI strength or data flow as the
user carrying the detection device moves around the space to
infer the camera’s location [12], [13], [15]. These schemes
typically require the room to be nearly empty, which may
not be feasible in real-world environments with furniture,
as the user’s mobility is constrained and they may not be
able to approach the hidden camera. Recently, Loccams [16]
introduced a method that uses CSI to determine whether
the user is blocking the LOS path between the positioning
equipment and the wireless camera, allowing for a rough
estimate of the camera’s location. However, this method has
a localization resolution of only 45 degrees, and its deep
learning-based approach suffers from poor robustness for
environments and devices change.

Appendix B.
Fresnel Zone Visualization

The visualization of the Fresnel zones described in
Section 2 is shown in Figure 16, consisting of a series of
concentric ellipses.

Appendix C.
More Details of Camera Detection

We present the Received Signal Strength Indication
(RSSI) requirements for various applications in Table 4. In
practice, when CAMLOPA filters out APs based on RSSI, it
retains a 5 dBm margin to avoid the risk of misdiscard.

The structure of an 802.11 wireless frame [66], [67] is
shown in Figure 17. It consists of an unencrypted header
and an encrypted data payload. The header contains essen-
tial unencrypted information, such as addresses, while the
payload is typically encrypted using WEP, WPA, or WPA2.
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Figure 16: Illustration of Fresnel Zone.

TABLE 4: Received Signal Strength Indication (RSSI).

Signal
Strength

Conclusion Describe Required
for

-30
dBm

Amazing Max achievable signal
strength. Not typical or
desirable in the real world.

N/A

-67
dBm

Very
Good

Minimum signal strength for
applications that require very
reliable, timely delivery of
data packets.

VoIP,
video
stream

-70
dBm

Okay Minimum signal strength for
reliable packet delivery.

Email,
web

-80
dBm

Not Good Minimum signal strength for
basic connectivity. Packet de-
livery may be unreliable.

N/A

-90
dBm

Unusable Approaching or drowning in
the noise floor. Any function-
ality is highly unlikely.

N/A

Regarding video compression standards, three types of
frames are commonly used to compress video: I (Intra-
coded picture) frames: these frames contain complete image
information and can be decoded independently of other
frames, P (Predicted picture) frames: these frames encode
residual information and require information from preceding
I frames for decoding, and B (Bi-directionally predicted
picture) frames: these frames can construct images using
changes from preceding I or P frames, subsequent I or P
frames, or interpolations between preceding and subsequent
I/P frames. Among these frame types, B frames are the most
compressible, followed by P frames, and finally, I frames. In
video footage captured by the camera, significant changes
between frames lead to an increase in the number of P and
B frames, which in turn results in higher upload traffic.

Appendix D.
More Details of Evaluation Setting

We evaluated the performance of CAMLOPA on seven
different wireless cameras, as listed in Table 6

As shown in Figure 18, the office is located in a library,
with a more compact layout. The conference room, located
in a laboratory building. For hidden camera detection and
localization. As shown in Figure 10 and Figure 18, in
each room, we select several potential locations suitable for



TABLE 5: Working principle and limitations of current methods.

Method Working Principle Limitations
Lumos [12] The user collects RSSI while walking, with the phone’s Visual Inertial Odometry providing

precise relative positioning. The camera’s location is determined by the maximum RSSI value.
Significant user effort and
takes about 30 minutes

SCamF [15] Based on video encoding characteristics and traffic monitoring. The user moves along the room’s
walls, frame size increases when approaching the camera.

Unrealistic activity space
requirements

SNOOPDOG [13] Leveraging video encoding characteristics, the user plays videos on a laptop from different
locations and angles to stimulate traffic fluctuations. Traffic analysis is then used to gradually
narrow down the search area. When the camera detects screen video changes, traffic increases.

Significant user effort and
takes about 10-20 minutes

MotionCompass [14] Based on video encoding characteristics, the user walks along two paths that cross the boundary
of the camera’s field of view. Traffic and geometric relationships are then used for localization.
When the user moves out of the camera’s field of view, traffic decreases.

Finding these two paths
indoors is impractical.

LocCams [16] Collects static CSI data under two conditions (LOS with/without obstruction) and trains a neural
network for binary classification, using the classification results for localization.

Sensitive to environmen-
tal/device changes.

CAMLOPA By modeling diffraction attenuation process caused by obstacles crossing the FFZ, we reverse-
engineer the azimuth based on controlled traversal paths.

Environment and irregular
movements interference.
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Figure 17: IEEE 802.11 wireless frame.
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Figure 18: The layout of rooms in rebuttal.

monitoring the entire room to place the cameras for the
experiments. The azimuths (path 1 as x-axis) of each point
in room 1 are 28.61◦, 42.27◦, 60.28◦, 88.54◦, 130.1◦, and
157.73 ◦, in room 2 are 4.86◦, 51.34◦, 69.44◦, and 103.52
◦,in room 3 are 110.94◦, 92.37◦, 61.34◦, 47.13◦, and 30.69
◦. The azimuths (path 1 as x-axis) of each point in the
office room are 37.22◦, 49.06◦, 84.32◦, and 155.62 ◦, in
the meeting room are 31.46◦, 53.63◦, 88.72◦, and 135.66

TABLE 6: Cameras used in experiments.

Camera Abbreviation Cost
XiaoMi Cloud Camera2 Mi 24.5

XiaoYi Smart Camera Y4 Yi 20.4
EZVIZ C2C C2C 24.5

360 Cloud Camera 8Pro 360 24.5
V380 Camera V380 13.6

Guangchun Mini Camera Gc 31.4
HiLEME Mini Camera Hi 18.4

◦. We conducted experiments using three cameras (Mi, Gc,
and Yi) in the office and the meeting room.

Appendix E.
More Details of Prototype Implementation

Our code and demo are available at https://github.com/
CamLoPA/CamLoPA-Code. The CAMLOPA prototype re-
lies on the Raspberry Pi 4B hardware. The system is built
on Raspberry Pi OS (kernel version 4.9, firmware version
7 45 189) and requires Python 3. Before using the system,
you must first install the nexmoncsi tool and the necessary
Python dependencies. Please ensure that you do not use
upgrade commands during system setup, as updating the
firmware may cause nexmoncsi to malfunction. Addition-
ally, since this system version is older and no longer main-
tained, some required packages must be installed using the
apt-get command instead of pip. After the review process,
we will package the image and virtual environment, along
with the necessary dependencies, and provide a download
link to facilitate system replication for future users. During
the installation of nexmoncsi, wireless network functionality
is temporarily disabled. To restore wireless connectivity on
the Raspberry Pi, you will need to manually activate the
wireless interface and configure the network settings.

Appendix F.
More Comparison of Existing Solutions

We compared the working principle and practicality in
Table 5, and it is evident that CAMLOPA represents a com-
pletely different theoretical model based approach from the
previous RSSI/traffic analysis methods. It addresses many
of the practical limitations of earlier approaches.

https://github.com/CamLoPA/CamLoPA-Code
https://github.com/CamLoPA/CamLoPA-Code


Appendix G.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

G.1. Summary of Paper

This paper proposes CamLoPa, a method to detect and
locate hidden cameras. The method analyses the CSI of WiFi
packets while the user is walking through two orthogonal
paths in the Fresnel zone between a receiver and the camera.
from the analysis of the CSI of WiFi packets. A model of
the attenuation caused by the user is then used to identify
the direction from which the camera is transmitting.

G.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability

G.3. Reasons for Acceptance

1) Addresses a Long-Known Issue. The possible presence
of hidden cameras in indoor location is a well-known
issue, which attracted significant research on how to
detect their presence and identify their location.

2) Provides a Valuable Step Forward in an Established
Field. This paper makes a valuable step forward in this
domain by proposing a novel model-based approach
to direction finding. The working principle is based
on diffraction caused by obstacles in the first Fresnel
zone. The model is robust to changes in user speed,
size and unknown distance from the camera, and does
not require a training phase.

3) Creates a New Tool to Enable Future Science. The
code related to the paper is available, enabling future
research.
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