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Production-level Autonomous Driving Systems (ADSs), such as Google Waymo [5] and Baidu Apollo [7],
typically rely on the multi-sensor fusion (MSF) strategy to perceive their surroundings. This strategy increases
the perception robustness by combining the respective strengths of the cameras and LiDAR, directly affecting
the safety-critical driving decisions of autonomous vehicles (AVs). However, in real-world autonomous driving
scenarios, both cameras and LiDAR are prone to various faults that can significantly impact the decision-
making and subsequent behaviors of ADSs. It is important to thoroughly test the robustness of MSF during
development. Existing testing methods only focus on the identification of corner cases that MSF fails to detect.
However, there is still a lack of investigation on how sensor faults affect the system-level behaviors of ADSs.

To address this gap, we present FADE, the first testing methodology to comprehensively assess the fault
tolerance of MSF perception-based ADSs. We systematically build fault models for both cameras and LIDAR
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in AVs and inject these faults into MSF-based ADSs to test their behaviors in various testing scenarios. To
effectively and efficiently explore the parameter spaces of sensor fault models, we design a feedback-guided
differential fuzzer to uncover safety violations of ADSs caused by the injected faults. We evaluate FADE on
Baidu Apollo, a representative and practical industrial ADS. The evaluation results demonstrate the practical
values of FADE, and disclose some useful findings. We further conduct physical experiments using a Baidu
Apollo 6.0 EDU AV to validate these findings in real-world settings.

CCS Concepts: « Software and its engineering — Software verification and validation.
Additional Key Words and Phrases: Autonomous Driving System, Fault Tolerance, Simulation Testing
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1 Introduction

In autonomous driving systems (ADSs), perception serves as a foundational module, as its output
directly affects the safety-critical driving decisions for autonomous vehicles (AVs). Production-level
ADSs, such as Google Waymo [5] and Baidu Apollo [7], typically adopt a Multi-Sensor Fusion (MSF)-
based perception strategy. It mainly leverages both cameras and LiDAR as the primary sensors to
collect images and 3D point cloud data, respectively. These two modal data are processed separately
using different deep learning models and subsequently fused to generate the final perception
results. Compared to single-sensor perception, MSF improves the overall perception accuracy and
increases the tolerance to sensor-specific errors, making ADSs more robust and reliable. However,
in the highly complex and dynamic real-world driving environment, sensors are susceptible to
various faults during vehicular operations. For example, the camera lens may become obstructed or
damaged; the LIDAR may be misaligned due to the vehicle bump. These faults could compromise
the quality of sensor data [11, 47]. It remains unknown whether MSF-based ADS can still make
safe decisions and actions in such situations. Therefore, it is crucial to test the fault tolerance of
MSF-based ADSs under various types of sensor faults.

Existing works [27, 28, 66, 73] primarily focus on generating corner cases of traffic environments
to detect the errors of perception models, while overlooking the impacts of perception errors on
system-level safety (e.g., decision-making, action control). A few works [14, 15] test the effects of
perception errors on AV crashes. However, they generate adversarial sensor inputs from scenarios
rather than considering the inherent sensor faults. Secci [57] and Ceccarelli [16] inject camera
failures into the ADS to find safety violations. This approach only focuses on the effects of camera
faults on the single-sensor (camera-only) ADS, without considering LiDAR faults and MSF in ADSs.
One key advantage of MSF is its ability to compensate for the errors in a single sensor. Thus, this
approach cannot accurately test and assess the fault tolerance of industrial-grade MSF-based ADS.
Additionally, it does not guarantee that the detected safety violations are indeed caused by the
injected sensor faults, as some of them may occur even without fault injection.

To bridge this gap and test the system-level fault tolerance of MSF-based ADS against multi-
sensor faults, we model real-world camera and LiDAR faults, and inject them into the ADS to
identify their resulting safety violations. However, there are two challenges to be addressed:

e Challenge 1: how to systematically and comprehensively model the sensor faults in
real-world traffic for AVs. The diverse and complex nature of traffic makes it difficult to
comprehensively capture the unpredictable conditions affecting cameras and LiDAR on AVs.
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e Challenge 2: how to accurately identify the system-level safety violations caused by
the injected sensor faults. As the ADS is a highly coupled multi-component deep learning
system, it is non-trivial to guarantee the discovered safety violations of the ADS indeed arise
from the injected sensor faults.

In this paper, we propose FADE, the first FAult-tolerance testing methoD to Evaluate the multi-
sensor perception of ADSs. To address Challenge 1, FADE systematically categorizes sensor faults
as active faults and passive faults. It further subdivides these faults based on sensor components.
Subsequently, FADE builds the comprehensive fault models for the camera and LiDAR in real-world
traffic. To address Challenge 2, FADE designs and implements a differential fuzzer for sensor fault
injection and system-level fault tolerance testing. This fuzzer evaluates the functional safety of the
ADS under sensor faults and identifies their resulting safety violations. Our technical contributions
are elaborated below.

1. Sensor Fault Modeling. Specifically, FADE categorizes the sensor faults that possibly occur in
real-traffic driving as active and passive ones, and utilizes FMEA [31, 59] to model them from the
perspectives of sensor components and environmental factors. Active faults arise from the damage
of sensors. For example, it could occur when the lens of the camera is damaged by external objects
(e.g., stones or debris hitting the lens), resulting in cracks or partial visual obstruction. Similarly,
an active fault in LIDAR enclosure may occur when the AV is driving on a bumpy road, causing
a shift in the sensor’s mounting position. Passive faults originate from the objects in the driving
environment (e.g., weather, signals) that directly interfere with the normal operation of sensors.
For example, the camera may get a passive fault caused by raindrops, snow grains, or mist on its
lens. The LiDAR may have a passive fault in the processing unit when the AV encounters a strong
light source (such as a high beam), which makes its detector units occupied by strong light.

2. Differential Fuzzer-based Sensor Fault Tolerance Testing. The goal of FADE is to test
whether the MSF-based ADS is capable of functioning safely in the presence of sensor faults during
AV driving. To achieve this, FADE designs and employs a genetic algorithm (GA)-guided differential
fuzzer, to test the ADS with and without sensor faults, and identify its safety violations caused by
injected sensor faults.

We demonstrate the effectiveness of FADE on a widely-used industrial L-4 ADS, Baidu Apollo
[7], which adopts the MSF perception strategy [6]. The results of simulation experiments show
that FADE can effectively and efficiently discover safety violations of Apollo caused by sensor faults.
Furthermore, we conduct the first physical experiments on multi-sensor faults in MSF-based AVs,
to validate the authenticity and practical significance of our sensor fault models and the findings
from simulation experiments. More than 60% of our found safety violations of Apollo caused by
injected sensor faults can be reproduced in physical experiments, which demonstrates that our
approach and findings hold substantial relevance for real-world AVs.

In summary, the paper makes the following contributions:

o Originality. To the best of our knowledge, we conduct the first exploration on the fault tolerance
of MSF-based ADSs. Our findings can help understand how the system-level safety of MSF-based
ADSs is affected by sensor faults in real-world traffic.

e Approach. We propose FADE, an automated sensor fault injection and sensor fault-tolerance
testing approach for MSF-based ADSs. It systematically models sensor faults that AVs may
encounter in real-world traffic, and employs a GA-guided differential fuzzer to identify the safety
violations of ADSs caused by sensor faults.

e Evaluation. We evaluate FADE on the representative industrial MSF-based ADS, Apollo. The
results of our simulation experiments demonstrate that FADE can effectively and efficiently
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discover safety violations of Apollo caused by injected sensor faults. The results of our physical
experiments demonstrate the practical significance of our findings.

2 Background and Related Work
2.1 Perception in Autonomous Vehicles

In ADSs, the perception module relies on various sensors to detect and interpret the surrounding
environment [13]. Cameras and LiDAR are the two critical sensors used for this purpose. These
sensors form the backbone of the perception module, enabling the AV to perceive the surrounding
environment with high fidelity [23, 52].

Camera-based perception. A typical camera mainly comprises five components: lens, camera
body, Bayer filter, image sensor, and image signal processor (ISP) [51]. The lens plays a critical role
in determining the image quality, focusing light onto the sensor, and enabling image reproduction
[9]. The camera body houses and protects internal electronics, while also shielding sensitive parts
from environmental exposure. The Bayer filter enables color capture by placing red, green, and
blue filters over the sensor’s pixels [12, 55]. The image sensor converts captured light into electrical
signals, forming the digital image. Finally, the ISP processes this data, enhancing image quality by
applying various corrections and producing the final output image [48].

LiDAR-based Perception. A typical LIDAR has five main components, including laser emitter,
scanner, receiver, processing unit and LiDAR enclosure [18]. The laser emitter generates laser pulses
that are projected into the environment [45]. These pulses reflect off surrounding objects and return
to the receiver [40]. The scanner orchestrates the laser’s movement to cover a 360-degree field
of view or specific sectors, enabling comprehensive spatial mapping. Finally, the processing unit
computes the distance and shape of surrounding objects by measuring the time it takes for each
pulse to return [10]. LIDAR enclosure is an accessory used to protect the LiDAR lines. Together,
these components produce high-resolution, 3D point clouds that enhance the depth perception and
allow the system to detect and interpret the vehicle’s environment with precision [69].

Multi-Sensor Fusion-based Perception. Cameras capture high-resolution visual data, pro-
viding contextual information such as road signs, object appearances and motion changes. This
visual input allows for object classification and recognition, which are essential for safe navigation
[54]. However, the 2D camera imaging lacks depth information of the 3D driving spaces. LIDAR,
on the other hand, uses laser beams to measure distances and generate high-precision 3D point
clouds of the traffic environment [67]. This sensor is highly effective in accurately identifying
the position and shape of objects, including other vehicles, pedestrians, and obstacles. LIDAR
performs well in diverse lighting and weather conditions, which complements the weaknesses of
cameras. However, LiDAR struggles to capture detailed texture information (e.g., color), which
can be provided by cameras [26]. By integrating LIDAR’s depth data with the texture details from
cameras, MSF algorithms can enhance object detection beyond the capabilities of either sensor
used alone [18, 43].

2.2 Perception Testing of ADSs

The reliability of the perception module is critical for the safety and functionality of ADSs [38],
making its testing essential. Existing works focus on two main aspects: (1) testing the perception
models and (2) testing the impact of perception errors or sensor failures on ADSs.

2.2.1 Testing Perception Models. Many studies generate adversarial examples or corner cases for
the perception models to identify their errors in scenario understanding (e.g., object detection and
tracking). These approaches can be categorized into three types based on the perception strategies.
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(1) Camera-based perception model testing. (i) Some works [17, 21, 34, 36, 39, 42, 50, 58] generate
adversarial perturbations or patches to mislead deep learning-based camera models (e.g., Faster
R-CNN, YOLO), particularly targeting real-world objects like traffic signs. (ii) Several works [44, 65,
70, 75] leverage GAN-based perceptual adversarial networks to deceive camera-based perception
models. (iii) Additionally, adversarial camouflage patterns [71] are proposed to conceal 3D objects
from detection. A metamorphic testing approach [72] is designed to identify inconsistencies in
obstacle detection.

(2) LiDAR-based perception model testing. (i) Some studies [19, 64, 68, 74] generate 3D adversarial
point clouds to attack LiDAR-based perception models. For example, Zhou et al. [74] employ a
metamorphic testing approach combined with fuzzing to detect errors in LiDAR obstacle perception.
(ii) Some works [76, 77] identify the impact of critical adversarial locations, and use simple objectives
or arbitrary reflective objects to fool LIDAR perception models. (iii) A few works leverage occlusion
patterns [60], or affine and weather transformations [32] to generate adversarial inputs to augment
LiDAR point clouds. (iv) Moreover, Wang et al. [63] and Li et al [41] use polynomial perturbations
on trajectories of NPC vehicles and pedestrians, to test the LIDAR’s ability to recognize adversarial
dynamic objects and behaviors.

(3) MSF-based perception model testing. Zhong et al. [73] identify fusion errors cased by incorrect
multi-sensor data integration. Xiong et al. [66] generate adversarial samples by separately perturbing
camera and LiDAR inputs while maintaining data correlation. Gao et al. [28] synthesize real-world
data and seek to insert objects into scenarios to uncover perception errors in MSF-based modules,
evaluating the perception accuracy under challenging scenarios generated by the metamorphic
testing approach. Meanwhile, Gao et al. [27] summarize and implement a range of real-world
corruption patterns on the MSF perception module, and test their impacts on the perception results.

However, these approaches primarily focus on generating adversarial examples or corner cases
that exploit vulnerabilities in single-modal (camera-based or LIDAR-based) or MSF-based perception
models. They do not assess how perception errors propagate to subsequent modules or impact the
overall behavior of the ADS.

2.2.2 Testing the Effects of Perception Errors or Sensor Failures on ADSs. A few efforts have examined
the effects of perception errors on the system-level consequences of ADSs. Cao et al. [15] categorize
different LiDAR spoofing attack patterns from previous studies to assess their impact beyond the
perception stage and analyze their influence on the decision-making of ADSs. Additionally, Cao et
al. [14] manipulate the shape of 3D meshes by altering vertex positions, synthesizing point clouds
and camera images to mislead the ADS into failing to detect objects, ultimately causing crashes.
However, these works primarily generate adversarial perception inputs from scenarios to induce
the ADS’s errors, rather than considering sensor faults that arise in real-world traffic.

Secci [57] and Ceccarelli [16] inject camera failures into the ADS and test its behaviors to find
safety violations. However, this approach has two key limitations: (1) it only targets camera-based
ADS, disregarding the role of LIDAR and MSF in mitigating camera faults for ADSs; (2) It does not
verify whether the identified safety violations are genuinely caused by injected faults. Therefore, it
fails to comprehensively and accurately evaluate the fault tolerance of MSF-based ADSs.

Different from existing works, our study is the first to systematically test the system-level fault
tolerance of MSF-based ADSs, identifying behavioral safety violations caused by various sensor
faults. Our goal is to evaluate whether MSF-based ADSs are robust enough to maintain AV safety
when encountering real-world sensor faults during driving.
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3 Approach

Our objective is to test the fault-tolerance of MSF-based ADSs under camera and LiDAR faults that
may occur during AV driving. To this end, we introduce a novel approach: FADE. Its overview is
presented in Figure 1, which consists of two parts. @ Sensor fault modeling: FADE systematically
models faults that cameras and LIDARs may encounter in real-world traffic environments, including
active faults and passive faults caused by various environment factors. @ Differential Fuzzer-
based Sensor Fault Tolerance Testing: FADE designs and implements a GA-guided differential
fuzzer, which uses differential testing to test the performances of the ADS with and without sensor
faults, and explores the space of fault models by a GA-based search to discover safety violations of
the ADS caused by the injected sensor faults. Below we give details of each component.

Sensor Fault Modeling Differential Fuzzer-Based Sensor Fault Tolerance Testing

l GA-based search to explore spaces of sensor fault models

Camera — : 5
Fault %

: Decision-Making - F‘A
uoAr (Gl i

Fault 'A
- Decision-Making - Operations

Braking |

_
LiDAR .. — a“ Throttle £
w Steering @

Misbehaviors
of AV

Correct

Test Scenarios

Fig. 1. The overview of FADE.

3.1 Sensor Fault Modeling

Sensors in real-world driving environments may encounter various issues that affect their accuracy
and reliability. These issues can be broadly categorized into two main types: active faults and
passive faults. Active faults arise from internal sensor malfunctions or damages, directly disabling
or degrading their functionality. These faults typically result from component failures or wear. In
contrast, passive faults stem from external environmental factors (e.g., an obstacle), rather than
sensor damage or malfunction. These environmental factors can degrade the sensor’s ability to
capture or interpret perception data accurately.

To systematically model these sensor faults in traffic scenarios, we classify them from the
perspectives of sensor components and environmental factors. Further, we develop fault models to
simulate possible failures in cameras and LiDARs under real-world AV driving conditions. These
models enable the construction of a comprehensive fault model library for AV perception, facilitating
realistic fault injection experiments. A summary of camera and LiDAR fault-injection models is
provided in Table 1 and Table 2.

3.1.1 Camera Fault Model. The camera fault models are categorized into 16 types, including 7 types
of active faults and 9 types of passive faults. Due to page limits, we mainly describe one fault model
and others are available at sensor_fault_models.pdf in https://github.com/ADStesting-test/FADE.
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Table 1. Categorization of camera fault-injection models
Fault Fault Fault
au au An Example in Real Traffic autty
Category Type Componet
Deflection Due to bumpy roads, the camera deflects during AV driving
= : —— - — Camera
= Displacement Due to bumpy roads, the camera is misaligned during AV driving
< - — Body
= Internal The dirt accumulation inside caused by
o Dirt driving outside or changing temperature for a long time
E Broken Lens The splashing foreign object(e.g.,sand, gravel) hits the lens Len
< Lens Brightness Long-term usage in high-temperature or seaside cause brightness
Change issues with basic components(e.g.,shutter,diaphragm,iris) of len
Blur The blur introduced by malfunction of complex inside circuit Image Sen-
Internal Scatter The color noise caused by malfunction of image signal processor sor& ISP
Lens Occlusion The lens is covered with plastic bag or paper during AV driving
- External Scatter The surface of the camera’s lens is contaminated with mud spots
T?: Dust The surface of the camera’s lens is contaminated with dust
= Raindrops Raindrops appear on the lens along with rainlines during rainfall Len
° Snow Grains The deposit of snow grains on the lens during snowfall
E Mist Fogging of lens caused by high humidity and temperature differences
E Ice Temperature drops below zero degrees, resulting in ice on the lens
Under strong light sources such as high beams or reflective Image
Overexposure . .
surfaces, camera receives too much light Sensor
White Balance At sunset, the camera image appears in red and orange tones Bayer
Shift due to white balance shift Filter

Raindrops on the lens. Raindrops and rainlines act as random streaks of water on the lens,
causing scattering, refraction, and partial occlusion of the camera’s field of view. Under natural
conditions the raindrops exhibit the tilted shape instead of the linear shape [53]. Therefore, when
simulating the effect of raindrops and rainlines, the angle and shape changes of raindrops are
introduced. Meanwhile, to make the raindrop effect more realistic, the transparency (or brightness)
of raindrops is also adjusted [29]. The image I, captured by the camera with raindrops on the lens
is:

L(xy) =1-L(xy) Ly +L(xy) - (& L(xy) +(1-t) N(xy)) (1

tr(x; y) ~ U(tmins tmax)s Nr (X, y) ~ N(0> O'r) (2)

where I, (x, y) is the original pixel intensity of the image captured by the camera without raindrops
on the lens. N, (x, y) is a random noise factor simulating the refraction-induced distortion. #, is a

transparency factor, simulating the partial occlusion of the camera’s view due to the rain streaks.
L, (x, y) is the rain line mask, calculated as:

(y — i) — tan(6;) (x = x;)
12

lr ~ U(lmina lmax)a er ~ U(emina Hmax) (4)

L, (x, y) represents the spatial distribution of the rain streaks on the lens. Each streak can be modeled

as a linear segment on the image with the length [, and angle 6,. (x;, y;) is the starting position of

a rain line. H (f) is a Heaviside function (or step function) that returns 1 if f is within the rainline
length, and 0 otherwise, controlling the spatial extent of each rainline.

Ly(x,y) = 2?:17—(

®)

3.1.2  LiDAR Fault Model. The LiDAR fault models are categorized into 8 types, including 4 types
of active faults and 4 types of passive faults. We introduce two LiDAR fault models and others are
available at sensor_fault_models.pdf in https://github.com/ADStesting-test/FADE.
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Table 2. Categorization of LiDAR fault-injection models

Fault Fault Fault
au au An Example in Real Traffic autty
Category Type Component
’—; Deflection Due to bumpy roads, the orientation of LiDAR changes LiDAR
& Displacement Due to bumpy roads, the position of LiDAR is displaced enclosure

2 Due to long-term wear&tear and agin
2 g ging, .
I Beam Loss laser beam of LiDAR reduces Emitter
< . . . . - Process-
Line Fault The noise caused by malfunction of internal circuits . .
ing Unit
= Electromagnetic When AV passes airports or power plants,these areas will
2 Interference generate electromagnetic wave interference Receiver
= NPC vehicles using LiDAR drive around AV,and their emitted
Crosstalk . . . T
g signals cause confusion to receiving channel of AV’s LIDAR
§ Rain and Snow There are foreign objects (such as rain, snow, mist, mud) Scanner
s Pollution covering LiDAR’s surface,limiting the LiDAR’s field of view
Strong Light The measurement distance and point-cloud density are reduced Process-
Interference due to strong light occupying detector units ing Unit

Deflection of LiDAR enclosure. This fault is introduced by LiDAR’s deflection of the vertical
direction to the direct direction and scan angle direction. When the deflection of the vertical
direction is perpendicular to the scan angle direction, the resulting vertical error will be negligible.
However, when the deflection is parallel to the scan angel direction, the induced vertical error
reaches the maximum value [35]. The magnitudes of the rotations are defined as £ and  components
of the deflection of the vertical direction, and the resulting R is formalized as:

cos(n) sin(&)sin(n) sin(&)cos(n)
Rg = 0 cos(&) —sin(&) (5)
—sin(n) cos(&)sin(n) cos(&)cos(n)

Displacement of LiDAR enclosure. This fault model is defined by the grid mean approximation
and triangular grid approximation, which have been applied experimentally to generate reference
data for 3D data in the spatial domain [30, 37, 49]. The grid mean approximation method includes
grid point errors and forms grids on the x and y planes based on irregularly distributed spatial data.
Thereafter, the z coordinates of the data in the grid are averaged to determine the representative
point of each grid. The grid mean approximation method uses a multiple regression analysis
technique and calculates the displacement of a structure using structural information such as strain,
stress, displacement, and z-coordinates:

Pj(x, Y, Z) = (S,Zj), Z; = %Z?ilzj-":lZﬁ, £ = N1€1 +N2€2 +N3€3 (6)
j
where Z;; represents the Z coordinate value of the i-th coordinate data included in the j-th space.
The point P; is set as reference data in the center of the grid. The shape functions Ny, N,, N3 are
calculated through natural coordinates.

3.2 Differential Fuzzer-Based Sensor Fault Tolerance Testing

Based on the fault models of camera and LiDAR, FADE injects sensor faults into the MSF-based
ADS, and employs a differential fuzzer to assess its fault tolerance and identify the safety violations
in the ego vehicle. Our sensor fault-tolerance testing procedure is detailed in Algorithm 1. The
explanations of notations used in this algorithm are given as Table 3.

Specifically, FADE first generates test scenarios TS, and instances (FP) of the injected sensor fault
sf. It then injects the sensor fault instance fp into the ADS, and performs differential testing by
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Table 3. Explanations of notations used in Algorithm 1

Notation Explanation Notation Explanation
ts a test scenario AD, ego vehicle without fault
sf a sensor fault rsts execution result of AD, in ts
fr an instance of sf injected into AD, RstS differential testing result
ADy ego vehicle with the injected fp fr of ADy and AD, in ts
assertion for safety violation assertion for no safety violation
SVF(RS} jﬂ) caused by f’ pyin ts o (rsg’) of AD, in tz/

comparing the behaviors of the ego vehicle with fp (ADy), and without fp (AD,) in the same test
scenario fs. Safety violations caused by fp are identified by analyzing the system-level performance
differences between ADy and AD,. Additionally, for each sf in ts, FADE leverages a multi-objective
genetic algorithm to optimize its injected instance fp, further exploring its potential to trigger
safety violations in the ADS.

Algorithm 1 Sensor fault-tolerance testing

Require: Camera fault models CFM, LiDAR fault models LFM
Ensure: SV: Safety violations of ego vehicle caused by injected sensor faults
1: SV « 0, terminate < False
2: TS « generate_scenarios(num) > generate a set of test scenarios
3: SF «— CFM | LFM, ISF « combination(CFM, LFM)
4: for isf € ISF do
5 if Vi, j € isf,i.pre = j.pre then
6 SF « SFUisf > determine the sensor faults to be injected into the ADS
7: for Vsf € SF do
8
9

for Vts € TS do

rsiS « execute(ts, ADo)

10: if @ (rs!S) then

11: FP « initialization(sf, k) > create initial instances of the injected sensor fault sf
12: for Vfp € FP do

13: ADyg « inject_faults(fp, ADo) > inject the instance of sf into the ADS
14: RS}; = differential_testing(ADy, ADo, ts) > perform differential testing
15: RS « differential_fuzzer(sf, ts,FP) » optimize instances of s to find safety violation of AD
16: for RS}; € RS do > compare the results to identify ADS’s safety violations caused by sf
17: monitor <« SVF(RS};)

18: if monitor then

19: SV« SVUy RS};

20: return SV

Considering that the simultaneous faults of multiple sensors are rare in real-traffic driving, FADE
primarily injects each single-sensor fault into the ADS. However, to balance practicality and testing
thoroughness, FADE also considers sensor co-faults, which refer to the multiple faults arising from
the same environmental conditions. For example, both the overexposure of camera and strong light
interference of LIDAR, arise from the strong light in the driving environment. Thus the two faults
constitute a sensor co-fault, and FADE injects the two faults simultaneously into the ADS.

3.2.1 Generating Test Scenarios. To evaluate the ADS’s performance under sensor faults, FADE
generates test scenarios that reflect diverse real-world traffic conditions, leveraging naturalistic
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driving data [24, 25]. These scenarios are parameterized by variables including road topology,
traffic density, and the behaviors of dynamic participants (e.g., actions, speeds, accelerations, and
relative positions of NPC vehicles and pedestrians). The scenarios are then generated through a
constraint-based sampling of parameters within the Operational Design Domain (ODD) [20]. To
ensure the validity and relevance of the generated scenarios, FADE enforces constraints to prevent
unrealistic cases that violate the ODD and invalid cases that lack meaningful interactions with the
ego vehicle. Specifically, FADE imposes the following constraints:

(1) Vi € k,pi(0) = pego(0) < dmax. pi(0) represents the position of the i-th participant at the
initial time, and k is the total number of participants in the scenario. dp,x represents the
maximal distance of the sensors on the ego vehicle. This constraint requires the initial
positions of participants not to be too distant from the ego vehicle’s initial position, ensuring
the participants in the test scenario are more likely to enter the sensing range of the ego
vehicle’s sensors.

(2) Vi€ k,3t € F A rs € R pi(t) € rs \ pego(t) € rs. F represents the total time steps of the test
scenario execution, and R represents the road map of the test scenario consisting of several
road segments (represented by rs). This requires that each participant’s trajectory has a same
road segment as the ego vehicle’s trajectory. Constraint (1) and constraint (2) ensure the ego
vehicle has interactions with participants in the test scenario.

(3) Viek,t € F, (0441 — ¢ < amax N\ 0i(t) < Omax) A(di(t) = dirys, pi(t) € rs). v;(t) represents
the speed of participant i at time ¢ and v,,4, represents the speed limit of the road. a4y
represents the maximal acceleration of the participant (vehicle or pedestrian). d; (¢) represents
the direction of participant i at time t and dir,s represents the direction of the road segment
rs where p;(t) is located (for each pedestrian, dirs includes all directions). This constraint
requires the speeds and directions of participants not to violate the realistic traffic dynamics
during their motions.

3.2.2 GA-Based Differential Fuzzer. For each sensor fault and co-fault s f in a generated test scenario,
FADE initializes k instances of s f randomly and injects each fault instance fp into the ADS to create
ADy. It then performs differential testing between ADy and AD, in the same scenario ts. Using
the recorded differential testing results, FADE employs a multi-objective GA [61] to optimize the
instances of sf to expose ADS’s safety violations caused by fp in ts.

Individual Encoding and Representation. In ts, each instance of the injected sensor fault is
encoded as an individual, consisting of one or two chromosomes. FADE encodes each injected single
sensor fault as a chromosome and each co-fault as two chromosomes. Each chromosome consists
of a series of genes, and one gene corresponds to a parameter of the sensor fault model.

The scores of each individual are calculated by a multi-objective fitness function. The optimal
individuals are selected as parents, by building improved Pareto-optimal solutions from the individ-
uals of the current and previous generations. The individuals of the next generation are generated
by variation operators on parents. When the selected top k excellent individuals remain the same
in three consecutive generations, the optimization of instances for sf in ts terminates.
Multi-objective Fitness Function. The fitness function optimizes two objectives: the additional
risk introduced by ADs compared to AD,, and the motion deviation between them. Based on
these objectives, FADE constructs successfully-improved Pareto-optimal solutions. Specifically, fp
represents an instance of the injected sensor fault sf.

(1) Objective 1: the additional risk introduced by ADy compared to AD,. The additional risk
introduced by fp during the driving of ADy compared to AD, in the same test scenario ts, is defined
as I(fp,ts):

I(fp, ts) = METTC(AD,, ts) = METTC(ADy, ts) @)
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METTC is the minimal estimated time for collision [62], which is widely used to measure the risk
of the AV during driving [46, 56]. We define an improved calculation of METTC as follows:

AD . . AD AD .
dxb fbp' oxli o 4 b f,bp’ vyt — 0.
METTC(ADy,ts) = min ( ) §—t ~ y A’D) ' yt 5 (8)
i€[Lk] vxf —Uxt 4 acxp —acxt pr -0y, f acyp —ac.y,

te (0, F)

where p; is the i-th participant in the scenario ts. d.x(b?Df , bf ) and d.y(bef , bf ") respectively
denote the lateral and longitudinal Euclidean distances between the bounding boxes of the ego
vehicle and the i-th participant at time ¢. v.x and v.y represent the lateral and longitudinal speeds
respectively. ac.x is the lateral acceleration and ac.y is the longitudinal acceleration. The larger
I(fp, ts), the higher the fitness score.

(2) Objective 2: the motion deviation between AD¢ and AD,. The motion deviation between
ADg and AD, in the same test scenario ts, is defined as:

L(fp.ts) = \/(xADf %, )2+ Whp, = Yhp,)? 9)

=1
where (x',, ,y’,, ) represents the position of AD¢’s waypoint at time ¢ in the scenario ts. The

larger L(fp, ts), the higher the fitness score of the test scenario.
Variation Operators. The variation consists of two operators: crossover and mutation.

(1) Crossover. It is applied between two individuals. For each parent individual, FADE randomly
generates a crossover rate r. € (0, 1). If r. > threshold,., the crossover is performed. Specifically, for
a single sensor fault, FADE applies uniform crossover on chromosomes across the two individuals.
For sensor co-fault, it exchanges chromosomes corresponding to the same sensor fault.

(2) Mutation. This is applied inside an individual. For each parent individual, FADE randomly
generates a mutation rate ry, € (0,1).If r,, > threshold,,, gene mutation is performed by modifying
one parameter of a sensor. Specifically, FADE randomly selects one gene from one chromosome and
applies Gaussian mutation, introducing adaptive perturbations to efficiently explore the sensor
fault model’s parameter space.

3.2.3 Comparing Results. During the execution of test scenarios, FADE continuously monitors
and records the states of the ego vehicle and participants in real-time, including the waypoint
sequences of the ego vehicle and participants. Each waypoint is recorded as a 4-tuple [x-coordinate,
y-coordinate, speed, orientation]. FADE builds the test oracle by a formal safety specification to
compare the execution results based on the recorded data. In test scenario ts, the safety violation
of the ADS caused by an instance fp of the injected sensor fault sf, is identified by SVF (RS}; ):

SVF(RS“) = <I>f(rsAD ) A D, (rs (10)
(IDf(rsADf) =Fiefor) (Co(rs t) \% TS(rs t) \Y TV(rs t) \Y; TD(rs L)) (11)

D, (rsAD ) = Grefor)(—Co(rs, t) A =TS(rs'y t) A =TV (rsty LD A —J‘D(rsAD 1)) (12)
where RS}S records the execution results of AD¢ and AD, in ts, represented as rs’, ADf and s, AD,

respectively. rs’’,, .t denotes the state of ADy at time step t in ts, including its position, velocity,
orientation, and relative distances to participants. rs's, .t denotes the state of AD, at t in ts.
Dr(rsty ) is defined as a temporal logic formula, Wthh asserts whether AD ¢ violates any safety
spec1ﬁcat10n during the execution time of ts. Similarly, @, (rs’’, ) is to assert whether AD, violates
no safety specification during the execution time of ts. Co, TS, TV, TD are the safety specifications.
Their descriptions for ADy are given below, which are similar as those for AD,.
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° Co(rs/’fo.t) represents ADy colliding with any object in s at time ¢.

TS (rsgSDf .t) represents ADy blocking or interrupting any participant in ¢s at time ¢ (comparing
to the normal driving of the participant in the scenario where AD, operates).

. TV(rszSDf.t) represents the speed of ADs exceeding the speed limit of the road or ADy
running the red light at an intersection in ts at time .

. TD(rsijf.t) represents ADy failing to arrive at the destination where AD, arrives at the

ending time of ts.

Note that for ts, among the instances fp generated by the GA-based optimization of sf, if the
number of fp whose SVF (RS}; ) is true, is more than M, sf is considered to be capable of inducing
safety violations of the ADS in ts.

4 Evaluation

To comprehensively evaluate FADE, we explore the following research questions:

e RQ1: Can FADE discover sensor fault-tolerance issues in ADSs against various sensor faults?

e RQ2: How effective is FADE in sensor fault modeling and injection compared to baselines?

e RQ3: How effective is the differential fuzzer-based sensor fault-tolerance testing of FADE?

e RQ4: What are the practical impacts of sensor faults injected into ADSs in the physical world?

4.1 Experiment Settings

ADS Under Test. We select an industry-grade MSF-based Level-4 ADS, Baidu Apollo [7] as the test
target. Apollo leverages MSF perception to recognize and understand objects in the surrounding
environment, primarily integrating data from camera and LiDAR sensors. It has been widely
recognized and adopted in the autonomous driving industry with the following evidences. (1) The
Apollo community ranks among the top-four leading industrial ADS developers [4], while the other
three ADSs are not publicly released. (2) Apollo can be readily installed on vehicles for driving on
public roads [3]. It has been commercialized for many real-world self-driving services [1, 2].

Simulation Environment. We conduct the simulation experiments on Ubuntu 20.04 with 500
GB memory, an Intel Core i9 CPU, and an NVIDIA GTX3090 TI. We adopt SORA-SVL [8], an
end-to-end AV simulation platform that supports connection with Apollo.

Parameter Settings. We consider and set the following parameters in FADE: (1) num: this is the
number of generated test scenarios for each injected sensor fault. We set it as 100 for the balance
of scenario coverage and time cost. (2) threshold,, and threshold,: these are the thresholds for
mutation and crossover, respectively. We test different values of these two parameters recommended
by existing genetic algorithms [33, 61], and choose 0.3 for threshold,, and 0.4 for threshold,. (3)
k is the number of selected excellent individuals in each generation, and M is the threshold for
determining a sensor fault capable of causing ADS’s safety violations. To balance the search effects
and evolving costs, we set k as 4 and M as 5.

4.2 Experiment Design

To answer RQ1, we apply FADE to test Apollo’s tolerance of different sorts of sensor faults. For each
sensor fault and co-fault, we generate 100 test scenarios, encompassing various driving situations
with different types of roads, participants, and weather conditions. Road types include highways,
urban streets, and intersections. Participants consist of behaviors of NPC vehicles (including
following lanes, changing lanes, crossing, turning around, overtaking, and parking) and pedestrians
(including walking along, walking across, and standing).
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To answer RQ2, considering that there are no available approaches that could test the system-
level performance of MSF-based ADSs with injected sensor faults, we select an MSF robustness and
reliability testing benchmark [27], as the baseline for comparison. This benchmark summarizes
and implements a range of real-world corruption patterns on MSF perception modules, and tests
their impacts on the MSF results in representative perception tasks (e.g., object detection, object
tracking, and depth completion). They conclude 14 corruption patterns, which simulate corrupted
data of scenarios and input into the perception module to obtain the output result. 12 of these 14
corruption patterns exhibit similar characteristics to a part of the sensor faults implemented in
FADE, e.g., rain in environment in the benchmark corresponds to rain on lens and LiDAR in FADE. We
refer to those overlapping patterns as common patterns. We implement the baseline by integrating
the common patterns in the benchmark into Apollo, and test its safety with the input of corrupted
sensor data. For fairness, we test Apollo with each common pattern in the same test scenarios as
FADE, and explore it using the differential fuzzer of FADE.

To answer RQ3, we conduct the ablation experiment that compares FADE with FADE,, which
replaces the differential fuzzer with a random sampling of sensor fault parameters. For the sensor
fault sf in the test scenario ts, we use the random-based baseline to generate the same number of
instances of sf as those generated by FADE in ts, and test the fault tolerance of Apollo.

Note that for RQ1, RQ2, and RQ3, to account for the randomness of the differential fuzzer in
FADE, each experiment is repeated ten times. Meanwhile, across the ten runs of experiments, for
RQ1, we vary the parameters’ values of the 100 test scenarios considering the randomness of the
parameter sampling of test scenarios. For RQ2 and RQ3, we use the same scenarios in RQ1 to test
the baselines for fair comparisons.

To answer RQ4, we conduct the experiments on an actual AV in real-world roads. As illustrated
in Figure 2, our AV is equipped with a 32-line LiDAR, 1920*1080p HD camera, Huace GI-410 INS,
and a Nuvo-8111 industrial PC with an Intel Core 19-9900K CPU, NVIDIA RTX 3060 GPU, 32GB
RAM, and 1TB SSD, integrated with Pix Hooke Chassis and Apollo 6.0 Edu Platform.

o I

I A

(] [T
0 .

Fig. 2. The autonomous vehicle equipped with Apollo 6.0 Edu for our physical experiment.

4.3 RAQ1: Effectiveness Experiment

Our effectiveness evaluation results are shown in Tables 4 and 5, where SV is short for "safety
violation". We also show the average numbers of SVs and variance for each fault in Figure 3 (where
the sequences of camera and LiDAR faults in the x-axis correspond to the ones in Tables 1 and 2).
We have two high-level observations. First, MSF exhibits different degrees of fault tolerance against
different types of faults. Second, for each run of the experiments, the results remain consistent,
implying that the camera and LiDAR faults have predictable and deterministic impacts on the
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ADS’s behaviors. Some experiment videos are available at https://zenodo.org/uploads/14015455.
Below we present more in-depth analysis and findings about MSF’s fault tolerance.
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Fig. 3. The number of safety violations and variance under camera and LiDAR fault injection

Table 4. The average numbers of safety violations caused by camera faults

Fault Deflec- | Displace- | Broken | Lens Bright- BI Internal | Internal | Lens Occl-
r

Type tion ment Lens ness Change u Scatter Dirt usion
Number |, ¢ 0.6 34.2 05 25 33.3 0.4 25.8

of SVs ' ’ ’ ’ ' ’ '

Fault External | Overexpo- Dust Rain Show Mist Iee White B.al—

Type Scatter sure ance Shift
Number

24.9 28.1 1. 10.2 22. .2 2. 4
of SVs 8 8 0 6 0 7 9

4.3.1 Camera Fault. The ADS exhibits significant different behaviors under various types of camera
faults. Among the sixteen camera faults, we observe that only half of them can cause a large number
of safety violations in Apollo, and their impacts on Apollo’s behaviors vary greatly.

First, from Table 4 we observe that some camera faults, including deflection, displacement, lens
brightness change, internal dirt, dust, mist, and ice, do not frequently lead to safety violations
of Apollo, which suggests that the MSF perception-based ADS demonstrates a notable degree
of resilience to such slight distortions. Specifically, the perception pipeline can tolerate slight
distortions in image quality or slight obstructions in the camera lens well, such as slight shifts
in camera alignment (deflection or displacement) or gradual brightness changes, because the
complementary LiDAR input can mitigate visual defects. Additionally, small particles or slight
occlusions (such as dust or fog) on the camera lens may not block a large part of the field of view,
allowing the ADS to maintain a consistent scenario interpretation.

Finding 1: The MSF perception-based ADS has strong fault tolerance on unstructured visual
disturbances to the camera.

Finding 1 indicates that the MSF perception-based ADS is inherently robust to low-level visual
noise or occlusions, ensuring that minor disturbances do not trigger erroneous system behaviors.
This resilience is critical in real-world applications, where minor visual obstructions are inevitable
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due to varying environmental conditions. Consequently, the ADS’s capacity to manage these subtle
distortions suggests that multi-sensor fusion frameworks enhance fault tolerance and contribute to
safer operational performance by reducing the impact of minor camera faults.

Second, some camera faults, including broken lens, blur, internal and external scatter, lens
occlusion, and overexposure, can distort the structural integrity of image. They introduce significant
distortions to the image data, affecting critical visual features (e.g., object edges, textures, spatial
clarity). From Table 4, we observe that these faults can lead to more safety violations in Apollo.
Such safety violations occur when the motion of objects near Apollo changes. These faults can lead
to MSF’s misdetection and misclassification of objects in scenarios. Furthermore, they disrupt the
ADS’s ability to perform precise spatial localization and safe navigation. For example, a broken
lens or severe blurring can obscure the boundaries of objects, making it difficult for the ADS to
discern the presence or position of pedestrians, vehicles, or road obstacles. Overexposure and lens
occlusion faults exacerbate this issue by introducing areas of high brightness or visual blockage,
leading to a limited field of view that prevents the ADS from obtaining a complete and reliable
representation of its surroundings. As a result, these structural distortions not only degrade image
quality but also lead to frequent safety violations as the ADS makes incorrect or delayed decisions.

Finding 2: Camera faults that significantly compromise the structural integrity of the visual
data can easily cause misbehaviors of ADSs in response to motion changes of nearby objects.

Third, the impacts of passive camera faults (e.g., snow, ice, raindrops, mist, or dust on the lens)
on ADS’s behaviors vary greatly. Specifically, heavy snow and ice on the lens tend to accumulate
in larger volumes, creating substantial occlusion on the lens and severely obstructing light trans-
mission, which can change the structural aspects of the visual data. Raindrops, although typically
smaller in volume than snow and ice, possess unique optical properties that cause the light to
refract and scatter as it passes through or around the droplets. This scattering effect can distort
object shapes and positions, leading to erroneous behaviors of the ADS. In contrast, mist and dust
on the lens form a thin, diffuse layer that moderately reduces the light transmittance but with a
relatively lower scattering rate, often resulting in a softened image that preserves object outlines
and only reduces the contrast and detail. So MSF-based ADSs can resolve them well.

Finding 3: The passive faults that cause contamination to the lens have significant different
impacts on ADS’s behaviors, which are related to the inherent properties of the pollutants (e.g.,
volume, transmittance, and scattering rate).

Fourth, the white balance shift can only cause safety violations of Apollo during driving in two
traffic situations. When this fault causes the camera background color to be light red, the MSF
perception identifies the green light as a red light, causing the ADS to stop at the intersection and
disrupt the traffic flow. When the white balance shift causes the camera background color to be
light yellow, the MSF-based perception recognizes the yellow light as a green light, causing the
ADS’s decision of running through even if the ego vehicle does not exceed the stopping line, which
violates the traffic regulation and increases the risk of collisions at intersections.

Finding 4: White balance shift can affect ADS’s accuracy in identifying traffic lights under
specific circumstances.

4.3.2 LiDAR Faults. The LiDAR faults have much stronger impacts than camera faults on MSF-
based ADSs. As shown in Table 5, nearly all types of LIDAR faults are capable of inducing erroneous

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA035. Publication date: July 2025.



ISSTA035:16

Haoxiang Tian et al.

Table 5. The average numbers of safety violations caused by LiDAR faults

Fault
au Deflection Displacement Beam Loss Line Fault
Type
Number of SVs 95 90.6 60.8 51
Fault Electromagnetic Crosstalk Rain and.Snow Strong Light
Type Interference Pollution Interference
Number of SVs 87.4 78.6 85.8 65.7

behaviors of ADSs. The point clouds captured by LiDAR provide detailed 3D spatial context, and are
directly used by the ADS for obstacle recognition and avoidance. Camera faults, while potentially
affecting object recognition in certain visual conditions, do not have a critical impact on real-time
obstacle avoidance.

Finding 5: The MSF perception-based ADS has low fault tolerance of LiDAR faults.

The most significant distinction between camera faults and LiDAR faults lies in how deflection
and displacement influence ADS behaviors and create system-level consequences. Specifically,
while deflection and displacement in the camera rarely lead to safety violations, similar faults
in the LiDAR are among the highest in inducing safety-critical failures. We analyze the main
reason for such difference: when a deflection or displacement fault occurs in LiDAR, it skews these
distance measurements and point cloud data. As a result, the ADS experiences a fundamental
misinterpretation of object positions and distances. Such inaccuracies have a direct and high-impact
consequence on the decision-making of the ADS. The camera only contributes to the 2D spatial
understanding by supplementing object classification and contextual information. This makes the
camera’s spatial misalignments less impactful, and MSF-based perception can correct this fault by
the MSF algorithm and LiDAR data. Therefore, the deflection and displacement faults in camera
have a low likelihood of propagating severe errors into the decision-making process. Compared
to the camera, when LiDAR data is corrupted due to deflection or displacement, it introduces
inconsistencies in the sensor fusion results, which cannot be resolved well by the MSF algorithm.

Finding 6: The MSF perception-based ADS is more sensitive to LIDAR deflection and displace-
ment than to camera misalignment.

Besides, the beam loss and line fault are the conditions of LiDAR aging and degradation, where
single laser beams weaken or malfunction. These faults result in reduced partial density in the point
cloud, compromising the system’s ability to detect smaller or distant objects reliably. Compared
with other faults of LIDAR, Beam loss and line fault causes fewer safety violations. This suggests
that the MSF-based ADS is tolerant against aging and degradation to some extent. Such fault
tolerance may remain until the long-term aging and degradation reach a critical threshold. As
aging and degradation faults of LIDAR develop over extended periods, the MSF perception-based
ADS can adapt incrementally as the sensor’s performance gradually shifts. This progressive nature
makes it possible for the ADS to identify and compensate for these slow changes. Specifically,
the design of MSF perception-based ADS typically incorporates sensor redundancy. The ADS can
adjust MSF perception to recalibrate its confidence weights for LiDAR data, relying more on input
from other sensors when a decrease in LiDAR reliability is detected.
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Finding 7: The MSF perception-based ADS exhibits a better fault tolerance for LiDAR aging
and degradation than for external interferences.

4.3.3 Co-faults. Next we consider the combination of multiple sensor faults triggered by the
same condition. This includes: deflection and displacement (bumpy roads), raindrops and snow on
sensors (sleety weather), overexposure and strong light interference (under high beam). The safety
violations of Apollo caused by these combinations are shown in Figure 4.

Strong Light Interference to camera and LiDAR

Strong Light Interference to LiDAR 1/

Overexposure of camera |
Raindrop and Snow on camera and LiDAR
Raindrop and Snow on LiDAR =
Raindrop and Snow on len IE——
Deflection and Displacement of camera and LiDAR /

Deflection and Displacement of LiDAR

Deflection and Displacement of camera

0 10 20 30 40 50 60 70 80 90 100

Fig. 4. The average numbers of safety violations of Apollo caused by different co-faults.

The MSF-based ADS leverages complementary data from both the camera and LiDAR, effectively
mitigating the impact of missing different partial information from one sensor alone. In situations
where partial data loss occurs in either the camera or LiDAR input, the ADS can compensate for
it by relying on the other sensor to retrieve the data for the missing part. This complementary
data enables the localization, prediction, and decision-making modules of the ADS to generate
accurate and reliable operational commands, thus sustaining the vehicle’s safe navigation and
decision-making capabilities.

However, under strong light conditions, both the camera and LiDAR sensors experience con-
current data degradation simultaneously, which overexposes camera inputs and saturates LIDAR
sensors. This lack of alternative input due to identical data loss from the camera and LiDAR may
cause the ADS’s localization and prediction modules to fail to detect obstacles and misinterpret
distances, or generate inaccurate predictions of nearby objects’ movements. Consequently, the
decision-making module, which relies on accurate perception data, may issue incorrect operational
commands, which critically undermine the correctness and safety of ADS’s behaviors.

Finding 8: Strong light interference that simultaneously disrupts both camera and LiDAR
significantly increases the frequency of safety violations of MSF perception-based ADSs.

4.4 RQ2: Comparison Experiment

Table 6 shows the sensor faults in FADE that correspond to the corruption patterns in the baseline
benchmark, as well as their number of violations. Note that there exist some sensor faults that
contain more than one corruption pattern (e.g., both Motion Blur and Defocus Blur in the bench-
mark are included in Blur of FADE). For these sensor faults, we accumulate the impacts of the
corresponding corruption patterns as the baseline’s input data of test scenarios.
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Table 6. Comparison results of FADE and the baseline benchmark

. Number Number
Sensor | Corruption in Sensor Faults
of SVs . of SVs
Type Benchmark - in FADE -
avg | min | md | max avg | min | md | max
Brlghtn.ess 9.6 6 9.5 12 Overexposure | 28.1 | 22 28 34
Increasing
Camera Darkness 0.4 0 1 1 Lens Brightness 0.5 0 0 1
Change
Image Noise 18.6 | 11 18 29 | Internal Scatter | 33.3 | 29 33 39
Motion&De- | o 5 1 g | 15 | 24 Blur 25 | 21 | 25 | 29
focus Blur
Point Cloud
oMU 411 | 30 [435| 47 |  LineFault | 51 | 47 | 51 | 57
. Gaussian Noise
LiDAR Point Cloud Electromagnetic
. 60.5 | 48 63 69 & 87.4 | 80 | 875 93
Impulse Noise Interference
Signal Loss 50.6 | 40 51 59 Beam Loss 60.8 | 57 60 66
Fog 0.3 0 0 1 Mist 0.2 0 0 1
Camera+ Rain on lens
LiDAR Rain 258 | 15 | 255 | 35 &LIDAR 38.7 | 36 | 385 | 41
Spatial Deflecti d
_opatia 525 | 45 | 52 | 59 | S CTONANT o590 93 | 055 | 99
Misalignment Displacement

We observe FADE demonstrates more effectiveness in safety violation identification than the
baseline benchmark. Specifically, for the common patterns that have significant impacts on Apollo,
FADE can discover a larger number of safety violations than the benchmark. For the common
patterns that rarely lead to safety violations of Apollo, such as darkness (lens brightness change)
and fog (mist), both FADE and the benchmark discover almost the same number of safety violations.
The results demonstrate that the sensor fault injection of FADE is significantly more effective in
discovering safety violations than the benchmark.

4.5 RQ3: Ablation Experiment

Figure 5 shows the comparison results of FADE (blue bars in F.x) and FADE, (orange bars in R.x),
where the sequences of camera and LiDAR faults in the x-axis correspond to the ones in Tables 1
and 2. Overall, compared to FADE,, under the same test scenarios, FADE can discover more safety
violations of Apollo caused by injected sensor faults.

Specifically, for each camera fault, in each run, FADE consistently identifies more types of critical
faults and safety violations of Apollo. For LiDAR faults, FADE, identifies all types of LiDAR faults
that can induce safety violations of Apollo. However, for each fault, the number of Apollo’s safety
violations detected by FADE, is significantly lower than that by FADE. We conclude that FADE exhibits
superior performance in discovering critical camera faults, as well as safety violations under both
camera and LiDAR faults. The results demonstrate that the differential fuzzer of FADE is more
effective and efficient in exploring the space of sensor faults, and more comprehensive in testing
the fault-tolerance of MSF-based ADSs.

4.6 RQ4: Physical Experiment

To ensure adherence to safety concerning of AV integrity, equipment protection, and safety of the
test site and participants, we select the following sensor faults based on the results of RQ1, which
can significantly cause safety violations of Apollo in simulation experiments: camera faults of lens
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Fig. 5. Comparisons of FADE and FADE.

occlusion and external scatter, LIDAR faults of deflection and displacement, camera overexposure
and LiDAR interference due to strong light. For each selected sensor fault, we randomly choose
one of Apollo’s safety violations identified by our approach from each of the 10 runs in RQ1. To
ensure diversity, the selected 10 cases have distinct parameter values in the sensor fault model and
test scenarios, reducing the risk of occasionality in the physical evaluation. This selection process
is repeated five times to account for randomness.

For each selected sensor fault, we validate whether the found safety violations of Apollo caused
by the injected sensor fault will occur in the physical world. The sensor faults are applied to the
actual AV in the following ways, to replicate the simulated counterpart as closely as possible:

e Lens Occlusion: we use paper sheets to cover specific portions of the lens, ensuring that the
occluded area and position match the safety-violation scenarios caused by lens occlusion.

e External Scatters: according to the safety-violation scenarios caused by external scatters,
we disperse colored confetti at predefined densities and locations on the lens of the camera.

e LiDAR Deflection: we manually adjust LIDAR’s orientation angle to introduce specific
deflection in safety-violation scenarios caused by LiDAR deflection.

¢ LiDAR Displacement: we modify LIDAR’s mounting position according to safety-violation
scenarios caused by LiDAR displacement, while ensuring that LiDAR is securely attached to
the ego vehicle.

e Strong Light Interference: we use a high-intensity flashlight to project specific intensity
of illumination from a predefined angle above the vehicle’s front, replicating the impacts of
strong light interference on camera and LiDAR.

The results of physical experiments are shown as Table 7. The AV failure rate (AFR) for sensor

fault sf is represented as AFR;y, calculated as AFR,y = 11\\1%’ where Ngy is the number of safety-

violation scenarios induced by sf successfully reproduced in the physical experiment, and N;y is
the number of selected safety-violation scenarios induced by sf in simulation testing.

In the five runs of physical experiments, LIDAR faults cause higher AFRs than camera faults: the
former leads to an average AFR of more than 80%, and the AFR of the later can also reach over 60%
and the minimum is 50%. The AFR of overexposure and strong light interference ranks the highest.
These physical experiment results demonstrate that the safety violations of the ADS caused by
sensor faults discovered by FADE have strong practical significance. The effects of sensor faults are
reliable and deterministic in real-world environments, mirroring their behaviors in simulations.
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Table 7. The evaluation results of physical experiments

Sensor | Lens Occlu- | External LiDAR LiDAR Strong Light to
Fault sion Scatter Deflection | Displacement | Camera and LiDAR
AV min | 50% | min | 50% | min | 70% | min 70% min 80%
Failure | avg | 60% | avg | 62% | avg | 82% | avg 80% avg 92%
Rate max | 70% | max | 70% | max | 90% | max 90% max 100%

5 Threats to Validity

Selective validation of physical experiments. One primary threat is that not all sensor faults
are injected into the physical AV to validate their impacts on the ADS in the real world. Due to
sensor component costs and the safety of vehicles and pedestrians in physical experiments, we
selectively validate those sensor faults where the sensor components will not be damaged. For the
safety of vehicles and pedestrians involved in physical experiments, we choose cardboard boxes
to replace participants in simulation scenarios. While this threat exists, we conduct an in-depth
analysis of the underlying causes of our findings, which can provide convincing recommendations
for developers, testers, and safety researchers in the field of ADSs.

Parameter ranges of sensor fault models. Another potential threat is that the difficulty of
identifying safety violations caused by the injected sensor faults could depend on the parameter
ranges of the fault model. The GA-based differential fuzzer of FADE inherently explores the param-
eter spaces of each sensor fault model, which can adapt to varying ranges of them. Consequently,
regardless of the size of the parameter ranges, FADE guarantees thorough exploration of sensor
fault models. We plan to conduct a detailed analysis of parameter range variations for sensor fault
models, exploring the robustness of ADS to different parameter ranges of sensor fault models.

6 Conclusion

This paper proposes FADE, the first approach to test the fault tolerance of MSF-based ADSs against
different types of sensor faults. FADE designs sensor fault models for injecting camera and LiDAR
faults into the MSF-based ADS, and implements a GA-guided differential fuzzer to explore the
parameter spaces of sensor fault models. We evaluate FADE on an industrial MSF-based ADS. The
evaluation results demonstrate that FADE can effectively and efficiently discover Apollo’s safety
violations caused by the injected sensor faults. To validate the findings in real-world AVs, we
conduct the physical experiments and the results show the practical significance of our findings.
Future Work. Based on these findings, we can prioritize which sensor faults require further
analysis. We plan to conduct the follow-up research work to FADE from the following aspects.
(1) Currently, our evaluation focuses on the occurrences of the ADS’s safety violations induced
by different sensor faults. The evaluation of the severity of the discovered safety violations is
orthogonal to the objective of this paper. The further analysis includes detailed assessments of
their severity. (2) In further analysis, we will also conduct an empirical study on the robustness of
the overall ADS to sensor fault model parameters.

Data Availability

The source code of FADE is available at https://github.com/ADStesting-test/FADE or https://zenodo.
org/records/15168648. The experiment results are available at https://zenodo.org/uploads/14015455
[22].

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA035. Publication date: July 2025.


https://github.com/ADStesting-test/FADE
https://zenodo.org/records/15168648
https://zenodo.org/records/15168648
https://zenodo.org/uploads/14015455

Testing the Fault-Tolerance of Multi-sensor Fusion Perception in Autonomous Driving Systems ISSTA035:21

Acknowledgments

This work is supported by National Natural Science Foundation of China (62472412, U20A6003),
Major Project of ISCAS (ISCAS-ZD-202302) and Project of ISCAS (ISCAS-JCMS-202402). This work
is also supported by the National Research Foundation, Singapore and DSO National Laborato-
ries under its Al Singapore Programme (AISG Award No: AISG2-GC-2023-008). The authors are
grateful for the financial support provided by the China Scholarship Council Program (Grant No.
202304910493).

References

[1] [n.d.]. Autoware Self-driving Vehicle on a Highway. Retrieved Sepetem 1, 2023 from https://www.youtube.com/watch?
v=npQMzH3jd8

[2] [n.d.]. Baidu Launches Public Robotaxi Trial Operation. Retrieved April 1, 2024 from https://www.globenewswire.com/

news-release/2019/09/26/1921380/0/en/Baidu-Launches-Public-Robotaxi-Trial-Operation.html

[n.d.]. Baidu launches their open platform for autonomous cars—and we got to test it. Retrieved April 1, 2024 from

https://technode.com/2017/07/05/baidu-apollo-1-0-autonomous- cars- we-test-it/

[4] [n.d.]. Navigant Research Names Waymo, Ford Autonomous Vehicles, Cruise, and Baidu the Leading Developers of
Automated Driving Systems. Retrieved April 1, 2024 from https://www.businesswire.com/news/home/20200407005119/
en/Navigant-Research-Names-Waymo-Ford- Autonomous-Vehicles

[5] [n.d.]. WAYMO's virtual world to test self-driving cars: Simulation City. Retrieved July 23, 2024 from https://www.d1lev.
com/news/jishu/150890

[6] 2013. Baidu apollo given another 20 licenses by beijing for autonomous car road tests. Retrieved March 16, 2024 from

https://autonews.gasgoo.com/china_news/70015513.html

2013. An open autonomous driving platform. Retrieved May 16, 2024 from https://github.com/ApolloAuto/apollo

2023. SORA-SVL Simulator. Retrieved July 30, 2024 from https://github.com/YuqiHuai/SORA-SVL

Marie Altenburg. 2013. The Lens: A Practical Guide for the Creative Photographer. PSA Journal 79, 7 (2013), 9-10.

Alireza Asvadi, Cristiano Premebida, Paulo Peixoto, and Urbano Nunes. 2016. 3D Lidar-based static and moving

obstacle detection in driving environments: An approach based on voxels and multi-region ground planes. Robotics

and Autonomous Systems 83 (2016), 299-311.

[11] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey Oliver. 2016. Autonomous vehicles: challenges,
opportunities, and future implications for transportation policies. Journal of modern transportation 24 (2016), 284-303.

[12] Daniel Baumgartner, Peter Roessler, Wilfried Kubinger, Christian Zinner, and Kristian Ambrosch. 2009. Benchmarks
of low-level vision algorithms for DSP, FPGA, and mobile PC processors. Embedded Computer Vision (2009), 101-120.

[13] Sean Campbell, Niall O’Mahony, Lenka Krpalcova, Daniel Riordan, Joseph Walsh, Aidan Murphy, and Conor Ryan.
2018. Sensor technology in autonomous vehicles: A review. In 2018 29th Irish Signals and Systems Conference (ISSC).
IEEE, 1-4.

[14] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo
Li. 2021. Invisible for both camera and lidar: Security of multi-sensor fusion based perception in autonomous driving
under physical-world attacks. In 2021 IEEE symposium on security and privacy (SP). IEEE, 176-194.

[15] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and
Z Morley Mao. 2019. Adversarial sensor attack on lidar-based perception in autonomous driving. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security. 2267-2281.

[16] Andrea Ceccarelli and Francesco Secci. 2022. RGB cameras failures and their effects in autonomous driving applications.
IEEE Transactions on Dependable and Secure Computing 20, 4 (2022), 2731-2745.

[17] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng Chau. 2019. Shapeshifter: Robust physical adversarial
attack on faster r-cnn object detector. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I 18. Springer, 52—68.

[18] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. 2017. Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 1907-1915.

[19] Garrett Christian, Trey Woodlief, and Sebastian Elbaum. 2023. Generating Realistic and Diverse Tests for LIDAR-Based

Perception Systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2604-2616.

Krzysztof Czarnecki. 2018. Operational design domain for automated driving systems. Taxonomy of Basic Terms

Waterloo Intelligent Systems Engineering (WISE) Lab, University of Waterloo, Canada 1 (2018).

[21] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno,
and Dawn Song. 2018. Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1625-1634.

[3

[t

[20

[t

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA035. Publication date: July 2025.


https://www.youtube.com/watch?v=npQMzH3jd8
https://www.youtube.com/watch?v=npQMzH3jd8
https://www.globenewswire.com/news-release/2019/09/26/1921380/0/ en/Baidu-Launches-Public-Robotaxi-Trial-Operation.html
https://www.globenewswire.com/news-release/2019/09/26/1921380/0/ en/Baidu-Launches-Public-Robotaxi-Trial-Operation.html
https://technode.com/2017/07/05/baidu-apollo-1-0-auto nomous-cars-we-test-it/
https://www.businesswire.com/news/home/20200407005119/en/Navigant-Research-Names-Waymo-Ford-Autonomous-Vehicles
https://www.businesswire.com/news/home/20200407005119/en/Navigant-Research-Names-Waymo-Ford-Autonomous-Vehicles
https://www.d1ev.com/news/jishu/150890
https://www.d1ev.com/news/jishu/150890
https://autonews.gasgoo.com/china_news/70015513.html
https://github.com/ApolloAuto/apollo
https://github.com/YuqiHuai/SORA-SVL

ISSTA035:22 Haoxiang Tian et al.

[22] FADE. 2024. Testing the Fault-Tolerance of Multi-Sensor Fusion Perception in Autonomous Driving Systems. doi:10.5281/
zenodo.14015455

[23] DiFeng, Ali Harakeh, Steven L Waslander, and Klaus Dietmayer. 2021. A review and comparative study on probabilistic

object detection in autonomous driving. IEEE Transactions on Intelligent Transportation Systems 23, 8 (2021), 9961-9980.

Shuo Feng, Yiheng Feng, Haowei Sun, Shan Bao, Yi Zhang, and Henry X Liu. 2020. Testing scenario library generation

for connected and automated vehicles, part II: Case studies. IEEE Transactions on Intelligent Transportation Systems

(2020). doi: 10.1109/TITS.2020.2988309.

[25] Shuo Feng, Yiheng Feng, Chunhui Yu, Yi Zhang, and Henry X Liu. 2020. Testing scenario library generation for

connected and automated vehicles, Part I: Methodology. IEEE Transactions on Intelligent Transportation Systems (2020),

1573-1582. doi: 10.1109/TITS.2020.2972211.

Davi Frossard and Raquel Urtasun. 2018. End-to-end learning of multi-sensor 3d tracking by detection. In 2018 [EEE

international conference on robotics and automation (ICRA). IEEE, 635-642.

[27] Xinyu Gao, Zhijie Wang, Yang Feng, Lei Ma, Zhenyu Chen, and Baowen Xu. 2023. Benchmarking Robustness of
Al-Enabled Multi-Sensor Fusion Systems: Challenges and Opportunities. In Proceedings of the 31st ACM joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 871-882.

[28] Xinyu Gao, Zhijie Wang, Yang Feng, Lei Ma, Zhenyu Chen, and Baowen Xu. 2024. MultiTest: Physical-Aware Object

Insertion for Testing Multi-sensor Fusion Perception Systems. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering. 1-13.

Kshitiz Garg and Shree K Nayar. 2006. Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG)

25, 3 (2006), 996-1002.

[30] Pelagia Gawronek, Maria Makuch, Bartosz Mitka, and Tadeusz Gargula. 2019. Measurements of the vertical displace-

ments of a railway bridge using TLS technology in the context of the upgrade of the polish railway transport. Sensors

19, 19 (2019), 4275.

Warren Gilchrist. 1993. Modelling Failure Modes and Effects Analysis. International Journal of Quality & Reliability

Management 10 (1993). https://api.semanticscholar.org/CorpusID:108702726

[32] An Guo, Yang Feng, and Zhenyu Chen. 2022. LiRTest: augmenting LiDAR point clouds for automated testing of
autonomous driving systems. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis. 480-492.

[33] Randy L Haupt. 2000. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes
array factors. In IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the
Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C), Vol. 2. IEEE,
1034-1037. doi: 10.1109/APS.2000.875398.

[34] Jung Im Choi and Qing Tian. 2022. Adversarial attack and defense of yolo detectors in autonomous driving scenarios.

In 2022 IEEE Intelligent Vehicles Symposium (IV). IEEE, 1011-1017.

Christopher Jekeli. 2019. Deflections of the vertical from full-tensor and single-instrument gravity gradiometry. Journal

of Geodesy 93 (2019), 369-382.

[36] Wenbo Jiang, Hongwei Li, Sen Liu, Xizhao Luo, and Rongxing Lu. 2020. Poisoning and evasion attacks against deep
learning algorithms in autonomous vehicles. IEEE transactions on vehicular technology 69, 4 (2020), 4439-4449.

[37] DS Kang, HM Lee, Hyo Seon Park, and I Lee. 2007. Computing method for estimating strain and stress of steel beams
using terrestrial laser scanning and FEM. Key Engineering Materials 347 (2007), 517-522.

[38] Philip Koopman and Michael Wagner. 2017. Autonomous vehicle safety: An interdisciplinary challenge. IEEE Intelligent
Transportation Systems Magazine 9, 1 (2017), 90-96.

[39] K Naveen Kumar, Chalavadi Vishnu, Reshmi Mitra, and C Krishna Mohan. 2020. Black-box adversarial attacks in
autonomous vehicle technology. In 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 1-7.

[40] Bo Li, Tianlei Zhang, and Tian Xia. 2016. Vehicle detection from 3d lidar using fully convolutional network. arXiv
preprint arXiv:1608.07916 (2016).

[41] Yiming Li, Congcong Wen, Felix Juefei-Xu, and Chen Feng. 2021. Fooling lidar perception via adversarial trajectory
perturbation. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7898-7907.

[42] Yujie Li, Xing Xu, Jinhui Xiao, Siyuan Li, and Heng Tao Shen. 2020. Adaptive square attack: Fooling autonomous cars
with adversarial traffic signs. IEEE Internet of Things Journal 8, 8 (2020), 6337-6347.

[43] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. 2018. Deep continuous fusion for multi-sensor 3d object
detection. In Proceedings of the European conference on computer vision (ECCV). 641-656.

[44] Aishan Liu, Xianglong Liu, Jiaxin Fan, Yuqing Ma, Anlan Zhang, Huiyuan Xie, and Dacheng Tao. 2019. Perceptual-
sensitive gan for generating adversarial patches. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
1028-1035.

[45] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
2016. Ssd: Single shot multibox detector. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The

[24

flan)

[26

—

[29

—

[31

—

[35

—

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA035. Publication date: July 2025.


https://doi.org/10.5281/zenodo.14015455
https://doi.org/10.5281/zenodo.14015455
https://api.semanticscholar.org/CorpusID:108702726

Testing the Fault-Tolerance of Multi-sensor Fusion Perception in Autonomous Driving Systems ISSTA035:23

[46

—

[47]

[48
[49

=

[50]

[51
[52

—

[53]
[54]

[55
[56

—

[57]

[58]

[59]
[60]

[61]

[62]
[63

—

[64]
[65]
[66]
[67]

[68]

[69]

[70]

[71]

Netherlands, October 11-14, 2016, Proceedings, Part I 14. Springer, 21-37.

SM Sohel Mahmud, Luis Ferreira, Md Shamsul Hoque, and Ahmad Tavassoli. 2017. Application of Proximal Surrogate
Indicators for Safety Evaluation: A Review of Recent Developments and Research Needs. IATSS Research (2017),
153-163.

Francisco Matos, Jorge Bernardino, Jodo Durées, and Jodo Cunha. 2024. A Survey on Sensor Failures in Autonomous
Vehicles: Challenges and Solutions. Sensors 24, 16 (2024), 5108.

Alex May. 2004. Fotografia digitale. Apogeo Editore.

J Notbohm, A Rosakis, S Kumagai, S Xia, and G Ravichandran. 2013. Three-dimensional Displacement and Shape
Measurement with a Diffraction-assisted Grid Method. Strain 49, 5 (2013), 399-408.

Tri Minh Triet Pham, Bo Yang, and Jinqiu Yang. 2024. Perception-Guided Fuzzing for Simulated Scenario-Based Testing
of Autonomous Driving Systems. CoRR’24 (2024).

Jonathan B Phillips and Henrik Eliasson. 2018. Camera image quality benchmarking. John Wiley & Sons.

Rui Qian, Xin Lai, and Xirong Li. 2022. 3D object detection for autonomous driving: A survey. Pattern Recognition 130
(2022), 108796.

Martin Roser and Andreas Geiger. 2009. Video-based raindrop detection for improved image registration. In 2009 IEEE
12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 570-577.

Francisca Rosique, Pedro J Navarro, Carlos Fernandez, and Antonio Padilla. 2019. A systematic review of perception
system and simulators for autonomous vehicles research. Sensors 19, 3 (2019), 648.

Floyd F Sabins Jr and James M Ellis. 2020. Remote sensing: Principles, interpretation, and applications. Waveland Press.
Chris Schwarz. 2014. On Computing Time-To-Collision for Automation Scenarios. Transportation Research part F:
traffic psychology and behaviour (2014), 283-294. doi: 10.1016/j.trf.2014.06.015.

Francesco Secci and Andrea Ceccarelli. 2020. On failures of RGB cameras and their effects in autonomous driving
applications. In 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). IEEE, 13-24.
Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian Tramer, Atul Prakash,
and Tadayoshi Kohno. 2018. Physical adversarial examples for object detectors. In 12th USENIX workshop on offensive
technologies (WOOT 18).

Diomidis H Stamatis. 2003. Failure mode and effect analysis. Quality Press.

Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. 2020. Towards robust {LiDAR-based} perception in
autonomous driving: General black-box adversarial sensor attack and countermeasures. In 29th USENIX Security
Symposium (USENIX Security 20). 877-894.

Haoxiang Tian, Yan Jiang, Guoquan Wu, Jiren Yan, Jun Wei, Wei Chen, Shuo Li, and Dan Ye. 2022. MOSAT: finding
safety violations of autonomous driving systems using multi-objective genetic algorithm. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
94-106.

Richard Van Der Horst and Jeroen Hogema. 1993. Time-To-Collision and Collision Avoidance Systems. (1993).
Jingkang Wang, Ava Pun, James Tu, Sivabalan Manivasagam, Abbas Sadat, Sergio Casas, Mengye Ren, and Raquel
Urtasun. 2021. Advsim: Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 9909-9918.

Xupeng Wang, Mumuxin Cai, Ferdous Sohel, Nan Sang, and Zhengwei Chang. 2021. Adversarial point cloud perturba-
tions against 3D object detection in autonomous driving systems. Neurocomputing 466 (2021), 27-36.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. 2018. Generating adversarial examples
with adversarial networks. arXiv preprint arXiv:1801.02610 (2018).

Zuobin Xiong, Honghui Xu, Wei Li, and Zhipeng Cai. 2021. Multi-source adversarial sample attack on autonomous
vehicles. IEEE Transactions on Vehicular Technology 70, 3 (2021), 2822-2835.

Bin Yang, Wenjie Luo, and Raquel Urtasun. 2018. Pixor: Real-time 3d object detection from point clouds. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition. 7652-7660.

Kaichen Yang, Tzungyu Tsai, Honggang Yu, Max Panoff, Tsung-Yi Ho, and Yier Jin. 2021. Robust roadside physical
adversarial attack against deep learning in lidar perception modules. In Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security. 349-362.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. 2021. Center-based 3d object detection and tracking. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 11784-11793.

Handi Yu and Xin Li. 2018. Intelligent corner synthesis via cycle-consistent generative adversarial networks for
efficient validation of autonomous driving systems. In 2018 23rd Asia and South Pacific design automation conference
(ASP-DAC). IEEE, 9-15.

Yang Zhang, PD Hassan Foroosh, and Boqing Gong. 2019. Camou: Learning a vehicle camouflage for physical
adversarial attack on object detections in the wild. In ICLR.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA035. Publication date: July 2025.



ISSTA035:24 Haoxiang Tian et al.

[72]

[73]

[74]

Yifan Zhang, Dave Towey, Matthew Pike, Jia Cheng Han, George Zhou, Chenghao Yin, Qian Wang, and Chen Xie. 2023.
Metamorphic Testing Harness for the Baidu Apollo Perception-Camera Module. In 2023 IEEE/ACM 8th International
Workshop on Metamorphic Testing (MET). IEEE, 9-16.

Ziyuan Zhong, Zhisheng Hu, Shengjian Guo, Xinyang Zhang, Zhenyu Zhong, and Baishakhi Ray. 2022. Detecting
multi-sensor fusion errors in advanced driver-assistance systems. In proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 493-505.

Zhi Quan Zhou and Liqun Sun. 2019. Metamorphic testing of driverless cars. Commun. ACM 62, 3 (2019), 61-67.

[75] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-image translation using cycle-

[76]

[77]

consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision. 2223-2232.

Yi Zhu, Chenglin Miao, Foad Hajiaghajani, Mengdi Huai, Lu Su, and Chunming Qiao. 2021. Adversarial attacks against
lidar semantic segmentation in autonomous driving. In Proceedings of the 19th ACM conference on embedded networked
sensor systems. 329-342.

Yi Zhu, Chenglin Miao, Tianhang Zheng, Foad Hajiaghajani, Lu Su, and Chunming Qiao. 2021. Can we use arbitrary
objects to attack lidar perception in autonomous driving?. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 1945-1960.

Received 2024-10-31; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA035. Publication date: July 2025.



	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Perception in Autonomous Vehicles
	2.2 Perception Testing of ADSs

	3 Approach
	3.1 Sensor Fault Modeling
	3.2 Differential Fuzzer-Based Sensor Fault Tolerance Testing

	4 Evaluation
	4.1 Experiment Settings
	4.2 Experiment Design
	4.3 RQ1: Effectiveness Experiment
	4.4 RQ2: Comparison Experiment
	4.5 RQ3: Ablation Experiment
	4.6 RQ4: Physical Experiment

	5 Threats to Validity
	6 Conclusion
	Acknowledgments
	References

