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Abstract— Quadrupeds have gained rapid advancement in
their capability of traversing across complex terrains. The adop-
tion of deep Reinforcement Learning (RL), transformers and
various knowledge transfer techniques can greatly reduce the
sim-to-real gap. However, the classical teacher-student frame-
work commonly used in existing locomotion policies requires
a pre-trained teacher and leverages the privilege information
to guide the student policy. With the implementation of large-
scale models in robotics controllers, especially transformers-
based ones, this knowledge distillation technique starts to show
its weakness in efficiency, due to the requirement of multiple
supervised stages. In this paper, we propose Unified Locomotion
Transformer (ULT), a new transformer-based framework to
unify the processes of knowledge transfer and policy optimiza-
tion in a single network while still taking advantage of privilege
information. The policies are optimized with reinforcement
learning, next state-action prediction, and action imitation, all
in just one training stage, to achieve zero-shot deployment.
Evaluation results demonstrate that with ULT, optimal teacher
and student policies can be obtained at the same time, greatly
easing the difficulty in knowledge transfer, even with complex
transformer-based models.

I. INTRODUCTION

Driven by the advancement of deep reinforcement learning
(RL), quadruped robots have drawn great attention, due to
their capability of traversing across complex terrains [1]–[4].
Traditional robotics controllers rely on dedicated models and
heuristics, which require extensive prior knowledge and can
struggle to adapt to dynamic environments and unpredictable
situations. Recently, a new paradigm is introduced to push
quadrupeds’ limit to handle complex tasks in challenging en-
vironments [3]–[8]: a controller is learned from simulations
that contain various environmental and physical factors, and
then transferred to the physical robot through RL and various
knowledge transfer techniques [3], [4], [9]–[11] to overcome
the sim-to-real gap using privilege information.

One of the commonly used knowledge distillation methods
is the teacher-student framework [3]. A teacher policy is
first trained through RL, and privilege information about the
environment is provided for learning the optimal locomotion
strategies efficiently. As additional information, including
ground-truth dynamics and terrain profiles, is often inac-
cessible in the real world, a student policy is subsequently
trained to make the model deployable. This is typically
achieved through supervised knowledge distillation, either

1 NVIDIA AI Technology Centre (NVAITC); e-mail:
{dikail,jianxiongy,ssee}@nvidia.com

2 College of Computing and Data Science, Nanyang Technolog-
ical University, Singapore; e-mail: dikai001@e.ntu.edu.sg,
tianwei.zhang@ntu.edu.sg

3 also with Nanyang Technological University and Coventry University

offline [3] or online [4] fashion by creating a data set with
new trajectories and associated teacher action labels through
algorithms such as the Data Aggregator (DAgger) [12].

Sequential training with policy imitation for locomotion
control is generally not data-efficient [13]. The performance
of the student is limited by the teacher policy and the
robustness depends on the diversity of the data set. Gen-
erally, they will deteriorate if the situation deviates from
the trajectories in real-world deployment. To address this,
DreamWaQ [14] was introduced with the asymmetric actor-
critic architecture [15] and context estimation, including next
observation, base velocity and latent space. By concurrently
training with proprioceptive observation for exploration and
privileged information as the critic, it allows the agent to
explore with indirect guidance.

Recently, self-attention-based transformers [16] have been
widely introduced into robotics in both lower control (e.g.,
legged locomotion directly [10], [11], [17], [18] or with
a command interface [19]) and high-level decision making
with multimodal processes [20]–[23] with their capability
to handle variable context lengths, sensor combinations [18]
and even robot embodiments [24]. In direct locomotion
controllers, transformers have demonstrated superior capa-
bility in temporal information capture compared to recur-
ring neural networks (RNN) and temporal convolutional
networks (TCN). However, training transformers is data-
hungry in general. For example, when combing the vanilla
transformer with legged locomotion, Lai et al. [10] generated
an additional 40M timesteps for 400K updates using a two-
stage supervised training approach. Similarly, Radosavovic et
al. [11] doubled the number of timesteps for joint supervised
transfer compared to the teacher policy training stage. These
approaches are not only time-consuming, but also necessitat-
ing additional setup to handle multiple models and the large
volumes of generated data.

Motivated by the above limitation, the objective of this
paper is to simplify the knowledge distillation process with
a unified architecture to keep teacher and student policies in
a single network for simultaneous optimization. Our inspira-
tion comes from the exceptional capabilities of transformers
in multimodal modeling of temporal and sensory information
and context understanding [17], which can well support pol-
icy optimization [14]. Thus, we can introduce the privilege
information into the observation as another modality to form
a unified framework for single-phase optimization of teacher
and student policies, achieving zero-shot sim-real transfer.

To this end, we propose Unified Locomotion Transformer
(ULT), a new unified framework for end-to-end quadruped



locomotion. It is based on the standard transformer architec-
ture with casual masking to pack teacher and student policies
in a single network. These policies are optimized jointly
with reinforcement learning, next state-action prediction, and
action imitation, all in just one training phase, to overcome
the sim-to-real gap and achieve zero-shot deployment. In this
way, we eliminate the need for dedicated design and training
of a teacher network, while the privilege information can still
efficiently guide the student policy during the exploration
to generate more diverse trajectories to improve the overall
generalization and robustness.

We extensively evaluate our framework in simulation and
compare it with state-of-the-art knowledge transfer baselines.
We also deploy it directly in the real world for practicality
validation. Evaluation results demonstrate that ULT exhibits
better performance with less trajectory information needed,
indicating its higher efficiency with the help from next state-
action predication, action imitation and mixed exploration.
With unified training in one single phase for simultaneous
teacher and student policy optimization, we ease the pipeline
of knowledge distillation for zero-shot sim-to-real transfer.

II. RELATED WORK

A. Knowledge Transfer in RL-based Legged Locomotion

With the increased attention in Reinforcement Learning
(RL) and the advance of robotics simulation, the RL-based
simulation-first controller has been dominating legged lo-
comotion [1]–[4], [10], eliminating the need for extensive
prior knowledge and reducing the cost of training by massive
parallelism [25]. To transfer the policy from simulation to the
physical world, Yu et al. [9] used online system identification
to infer physics parameters in the real world. To further
advance the locomotion policy for optimized control and
close the sim-to-real gap, Lee et al. [3] introduced a teacher-
student framework for action cloning, which uses historical
proprioceptive data to infer teacher behaviors leveraging
the privilege information. This framework has been widely
adopted in subsequent works. To improve the trajectory
generation during transfer, Kumar et al. [4] used a randomly
initialized student policy for online adaptation with better
exploration to improve the robustness. The introduction of
Transformer-based controllers in legged locomotion makes
the optimization more challenging. Lai et al. [10] introduced
a two-stage transfer to ensure that the student policy can
gather useful trajectories during online correlation for fast
convergence. Radosavovic et al. [11] combined RL explo-
ration and teacher supervision to jointly optimize the student.

B. Transformer in Legged Locomotion

Transformer-based models have recently made signifi-
cant inroads into robotics with their exceptional capabil-
ities for in-context understanding and human-robot inter-
action. They are equipped with Large Vision Language
Models (VLM) [21] and Vision Language Action Models
(VLA) [22], [23], [26], to handle the multimodal input from
humans and physical world.

Constrained by the computational capability and power
consumption of real-time inference on the edge devices,
the transformer used for legged locomotion is often much
smaller and sometimes a high-level command is adopted as
the control interface. Yang et al. [27] developed a transformer
model for vision-based locomotion, which outputs desired
velocity commands for a dedicated low-level controller to
conduct motor output. Similarly, Tang et al. [19] used the gait
pattern as the command interface for quadruped locomotion.
With knowledge transfer techniques, Lai et al. [10] and
Radosavovic et al. [11] utilized historical observation-action
information for direct motor command in quadruped and
bipedal locomotion, respectively. Radosavovic et al. [17]
further expanded the framework with next token prediction
to utilize different data source including captured real-world
locomotion trajectories.

To improve the generalization of transformer-based lo-
comotion controllers, different masking strategies are used
in recent works to partially remove information during
training and testing so the controller can learn to focus on
the most important information. Sferrazza et al. [24] used
body-induced bias based on the embodiment graph for an
embodiment-aware transformer. Liu et al. [18] introduced
masking directly at the sensor level for generalization with
different sensor combinations as input. Transformer-based
controllers can also achieve cross-embodiment policy to
conduct different types of tasks on various robots with one
single network [28], [29]

III. SIMULATION ENVIRONMENT

In this paper, we implement the simulation environment in
Isaac Gym [30] and IsaacGymEnvs [30] to train locomotion
agents in large scale parallelism. All baselines and variants
of our method are trained with the exact same simulation
setups to ensure fair comparison.

A. Terrain and Curriculum

To ensure that the policy is robust against different indoor
and outdoor environments, we adopt the terrain curriculum
from [25] with smooth slope, rough slope, stairs up, stairs
down and discrete obstacle terrains. Each type of terrain
has 10 levels with incremental difficulty and an overall pro-
portion of [0.1, 0.1, 0.35, 0.25, 0.2], respectively. The linear
velocity return is tracked across each trajectory’s life cycle.
The level is considered solved when an agent reaches 80%
of the maximum achievable tracking reward and progresses
to the next level. If any agent fails to reach 25% of the
maximum reward, it will regress to a lower level.

B. Domain Randomization

Following [14], [25], we apply Domain Randomization
(DR) on key dynamics parameters to enhance the robustness
of the policy. To simulate the actual user commands, we
sample the linear commands in longitudinal and lateral
direction separately with a uniform distribution in [−0.5, 0.5]
m/s. For the angular command, we first sample the desired
heading of the robot and cap the resulted angular velocity



TABLE I
SIMULATION PARAMETERS OF DOMAIN RANDOMIZATION.

Parameters Range Unit
Linear Command [-0.5, 0.5] m/s
Angular Heading [-3.14, 3.14] rad

Kp Scale [0.9, 1.1] -
Kd Scale [0.9, 1.1] -

Friction Scale [0.7, 1.3] -
Motor Strength Scale [0.9. 1.1] -

Payload [0, 5] kg
Payload CoM Offset [-0.1, 0.1] m

External Push [-1, 1] m/s
Gravity [9,41, 10.21] m/s2

System Delay [0, 0.015] s

command at 0.5 rad/s. The commands are resampled every
10 seconds. Table I lists the key parameters of DR used in
the simulation environment.

C. Observations and Actions

Privilege Information. To achieve an optimal locomotion
policy with the hidden information about the environment,
related privilege data is extracted from simulation to form
the privilege observation et for the teacher policy to utilize.
The privilege information contains randomized dynamics
parameters dt sampled from Sec. III-B, ground truth robot
states st including base velocity, orientation, and precise
surrounding height map mt. Although such information is
often inaccessible in the real world, it helps the teacher policy
reconstruct states and improve learning efficiency [3], [4].
Proprioceptive Observation. In order to conduct knowledge
transfer for a deployable agent, the student policy only
relies on onboard sensors to provide observations. Typically,
quadrupedal robots are equipped with multiple sensors, in-
cluding joint encoders, IMU, and foot contact sensors, which
can provide information on joint position q ∈ R12, joint
velocity q̇ ∈ R12, angular velocity ω ∈ R3, gravity vector
g ∈ R3 and binary foot contact c ∈ R4. In order to follow the
user command, the agent also needs access to the randomly
sampled cmd = [vx, vy, ωz] ∈ R3 to form the observation
of each step ot = [q, q̇, ω, g, c, cmd] ∈ R37. To provide
the state transition and temporal information, the actions
of the previous step at−1 ∈ R12 are added with a list of
historical information T = [a0, o1, a1, o2, · · · , at−1, ot]. We
use a rolling window of t = 15, resulting in a full observation
in the space of R49×15.
Actions. As typical RL locomotion policies perform infer-
ence at the frequency of 50-100 Hz, both the teacher and
student policies output the desired joint position q = at,
which is passed to a PD controller running at a much higher
frequency for a smooth torque output:

τ = Kp(q̂ − q) +Kd(ˆ̇q − q̇) (1)

with base stiffness Kp and damping Kd set to 30 and 0.7,
respectively, and additional DR is added on. The target joint
velocity ˆ̇q is set to 0.

TABLE II
REWARD TERMS FOR REINFORCEMENT LEARNING

Reward Definition Scale
Linear Velocity Tracking exp (−5∥vcmd

xy − vxy∥2) 1.0
Angular Velocity Tracking exp (−5(ωcmd

z − ωz)2) 0.5
Body Z Velocity ∥vz∥2 -2.0
Body Rotation ∥ωz∥2 -0.05

Joint Acceleration ∥θ̈∥2 -2.5e-7
Output Work

∫
∥τ · θ̇∥ -2.e-5

Action Rate (at − at−1)2 -0.05
Feet Slip ∥gt · vfeetxy ∥ -0.1
Collision 1collision -1

D. Reward Function

We follow the classic reward function design for omni-
direction locomotion [4], [14], [25] to encourage the agent
to follow the commanded velocity and primarily penalize
the linear and angular movement along other axes, large joint
acceleration and excessive power consumption. The complete
reward structure is detailed in Table II.

IV. METHODOLOGY

We present ULT, a transformer-based framework to unify
the process of knowledge transfer and policy optimization
in a single network leveraging the privilege information.
Compared to the classic teacher-student transfer solution
that requires a pre-trained teacher policy [3], [4], [10], ULT
optimizes both policies jointly in a single phase to simplify
the sim-to-real pipeline and reduce the total number of
generated trajectories. Figure 1 shows an overview of ULT.

RL-based quadrupedal locomotion is often formulated as
a Partially Observable Markov Decision Process (POMDP),
defined by a tuple M = (S,A, T,R,Ω,O, γ), where
S,A,R,Ω are the state, action, reward and observation
spaces, respectively. The ground truth states st ∈ S give the
most important information about the environment and can
be accessed by the teacher policy in the simulation to search
for an optimal control policy π∗(at+1|st) by maximizing the
sum of discounted future rewards:

π∗(s, a) := argmax
π

Est+1∼T (·|st,at)

[ ∞∑
t=0

γtr(st, at)

]
(2)

However, such information is often inaccessible in the real
world, and the student policy can only rely on noisy propri-
oceptive observation ot ∈ Ω during deployment. Essentially,
knowledge transfer aims to find the observation probabilities
O : S → Ω such that the student policy can estimate its
current status for decision making, either with latent space
estimation [4] or direct action imitation [3], [10], [11].

Although many existing quadruped locomotion solutions
have used the historical information T to capture the tem-
poral information [3], [4], [10], they only treat it as a
whole when predicting the next action at+1 = π(T ) while
missing the transition information T (st+1|st, at) hidden in
the sequence itself. With the transformer architecture and
its next token prediction capability [17], we can extract
and utilize information about the state-action transition from
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Fig. 1. Illustration of the Unified Locomotion Transformer (ULT) framework. ULT is a vanilla transformer-based architecture to unify the optimization of
locomotion policy and knowledge transfer. With state-action trajectories and privilege information in a single framework, both teacher and student actions
can be generated simultaneously. The optimization is conducted jointly through PPO by combining the RL loss and transformer loss, which contains the
next state-action prediction for future trajectories, and action imitation between student and teacher policies. During training in simulation, an action mixer
is used to ensure both policies are played to enhance exploration. During the physical deployment, only proprioceptive observation is used for student
actions to achieve zero-shot sim-to-real transfer.

the history T . By pairing it with policy imitation from
the privilege information and mixed exploration, we can
greatly improve the sample efficiency to discovery the state
transition and observation probabilities, thus achieving the
optimal teacher and student policies simultaneously in just
one training phase.

A. Model Architecture

The foundational part of ULT is a vanilla transformer [16].
It contains multiple stacked multihead attention blocks with
causal masking, so the tokens can only attend to themselves
and the past tokens while the proprioceptive tokens will not
access the information from the privilege tokens.

Similarly to [17], we first tokenize the input trajectory
T with a concatenated states action pair by a shared linear
projection layer W ∈ Rd×(m+n), where m = 37 and n = 12
are the dimensions of observation o and a at each step t. We
choose d = 128 as the size of the token embedding:

zt = concat(ot, at−1) (3)
ht = Wzt (4)

For privilege information et = [dt, st,mt], we use an
environmental factor encoder µ with a three-layer MLP
similar to [4] to project it into the same embedding space:

he = µ(e) (5)

The transformer module takes the entire sequence of
H = [h0, h1, · · · , ht, he] with privilege information at the

end to ensure that the information will not be leaked to the
proprioceptive observation. The sequence is then processed
through all the attention layers:

Ĥ = ULT(H)

= [ĥ0, ĥ1, · · · , ĥt, ĥe]
(6)

Next State-Action Prediction. To perform an aligned pre-
diction, we extract the first (t − 1) tokens from the output
Ĥ0:(t−1) = [ĥ0, ĥ1, · · · , ĥt−1], and decode them through
another shared linear project Ŵ ∈ R(m+n)×d to predict the
future state action trajectory for each step:

ẑt+1 = Ŵ ĥt (7)

T̂ = [ẑ1, ẑ2, · · · , ẑt] (8)

We can compare the next state-action pairs between the pre-
dicted trajectory T̂ and actual trajectory T = [z1, z2, · · · , zt]:

Ln =
1

t

t∑
1

∥zt − ẑt∥2 (9)

By optimizing Ln, the transformer can always learn the
transition relation of the robot state and action, regardless of
the actions taken or the quality of the trajectories.
Action Output. ULT can simultaneously output actions from
the teacher and student. For the student, with the next state-
action prediction, we already implement a decoder layer
to extract the predicted next state-action trajectory and it
can already output the next action at each time step. Thus,



TABLE III
HYPERPARAMETERS FOR PPO

Parameters Value
Number of GPUs 2
Actors per GPU 4096
Episode Length 20s
Horizon Length 24
Mini Epochs 5
Minibatch Size 16384
Learning Rate 3e-3
Scheduler cosine
Optimizer AdamW
Clip range 0.2
Entropy coefficient 0.005
Reward Discount 0.99
GAE Discount 0.95
Desired KL-divergence 0.008
Weight Decay 0.01

we directly reuse the information in Eq. 7 to form the last
concatenated state-action input token:

ât = (ẑt+1)m:(m+n) (10)

For the teacher, with the process through all the attention
layers, the resulted ĥe (Eq. 6) have already gathered all the
information from the state-action trajectory due to casual
masking. In order to generate actions from ĥe, we implement
a policy π with an MLP network similar to [4]:

āt = π(ĥe) (11)

Thus, we can combine the imitation loss of the action and
the next state-action prediction to get the overall performance
with a weighting factor β:

La = ∥āt − ât∥2 (12)
LULT = Ln + βLa (13)

B. Action Mixer and Unified Training
In order to achieve optimized performance of āt and ât

simultaneously without a pre-trained policy, online trajec-
tories generated by both actions are needed. In a massive
parallelism training environment with X agents, an agent
mask M is created with a threshold α as the mix ratio such
that:

ai =

{
āi, if Mi < α

âi, otherwise
where Mi ∼ U(0, 1), i = 1, · · · , X

(14)

Thus, a higher mix ratio α means more involvement of the
teacher. The agent mask M is frequently resampled to ensure
exploration for both policies. With the trajectories generated
by the resulted a, we use PPO [31] to jointly optimize the
policy and action imitation by appending the PPO RL loss
and transformer loss with the hyperparameters in Table III:

L = LRL + λLULT (15)

Optimization of L can simultaneously leverage the state
transition, action imitation, and guidance from the teacher
policy based on the privilege information to achieve a unified
training in a single phase.

C. Direct Sim-to-Real Deployment

The transformer architecture gives flexibility in variable
input length. During training, causal masking ensures that
future information will not be seen by previous tokens and
the privilege information will never be leaked to propriocep-
tive observation. Thus, when deployed in the real world, we
can directly remove the last privileged environmental token
he safely from the input sequence to generate the student
action âi directly with only the historical information T .

V. EXPERIMENTS AND RESULTS

We evaluate the effectiveness of ULT in simulated environ-
ments, mainly focusing on three metrics: the average linear
and angular velocity tracking return per step for task-related
performance and the final total episode reward return for
the overall locomotion quality. All the reported results are
averaged over 5000 trajectories collected across all terrain
types and levels and normalized over the performance of
a pretrained privilege Oracle policy adopted from [4] on
respective terrain, which is also used as the common teacher
for all baselines for a fair comparison.

A. Action Mixer Ratio

The first question we want to answer is: what is the opti-
mal value for the Action Mixer introduced in Sec. IV-B? This
mix ratio directly decides the proportion of the trajectories
of the teacher and the student during the exploration and
eventually affects the final performance due to the difference
in their information density and the combined optimization
objective with the next prediction and imitation of actin. To
answer it, we train multiple ULT models with different values
of α and keep all other configurations untouched. Fig. 2
shows the key metrics for different terrains during testing.

We observe that the teacher policy suffers when the mix ra-
tio is too low, as it cannot gather enough trajectories to reach
an optimal policy, even with the help from all the privilege
information. When the mix ratio is too high, the performance
of the student starts to drop, as the training process is overly
dependent on the guidance from the teacher policy and does
not have enough exploration experience to handle out-of-the-
distribution situations in complex environments.

In most cases, the knowledge is transferred efficiently,
and the student policy can achieve similar performance as
its respective teacher. One special case is α = 1, where
only the teacher trajectory is generated and used during
training while the student is trained in a purely supervised
manner. Although it produces one of the best performing
teacher policies, the student acts poorly due to the lack of
exploration, resulting in low survival rate. Another special
case of α = 0 will be discussed in Sec. V-C as it has a fun-
damental difference due to the lack of teacher participation
and optimization.

For the rest of this paper, we will use the policies trained
with a ratio of α = 0.6 unless specified otherwise.
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Fig. 2. Performance of ULT with different values of Action Mixer ratio α on five terrains and the overall performance across all trails.
TABLE IV

NORMALIZED PERFORMANCE IN KEY METRICS WITH DIFFERENT BASELINES ON FIVE TERRAIN TYPES AND AVERAGE ACROSS ALL TRAILS.

Terrain Metric ULT (Ours) Supervised Transfer Joint
Transfer CENet PPOTeacher Student Offline-Only Online-Only Two-Stages

Smooth Slope
Avg. Linear Tracking 0.994 0.990 0.691 0.994 1.003 0.907 1.005 0.956

Avg. Angular Tracking 0.995 0.995 0.851 1.006 1.002 0.958 1.020 0.977
Total Episode Return 0.980 0.978 0.412 0.999 0.993 0.880 1.001 0.916

Rough Slope
Avg. Linear Tracking 0.959 0.941 0.660 0.985 0.990 0.882 0.950 0.926

Avg. Angular Tracking 0.993 0.992 0.844 1.007 0.997 0.957 1.015 0.987
Total Episode Return 0.962 0.957 0.432 0.977 0.967 0.876 0.965 0.911

Stairs Up
Avg. Linear Tracking 0.967 0.965 0.837 0.962 0.995 0.943 0.966 0.933

Avg. Angular Tracking 0.987 0.985 0.844 1.000 0.973 0.965 0.982 0.982
Total Episode Return 1.088 1.086 0.138 0.829 0.824 0.890 1.074 0.933

Stairs Down
Avg. Linear Tracking 0.939 0.906 0.705 0.948 0.953 0.884 0.872 0.890

Avg. Angular Tracking 0.993 0.986 0.837 0.993 0.979 0.956 0.961 0.967
Total Episode Return 0.973 0.957 0.125 0.836 0.879 0.923 0.929 0.877

Discrete
Avg. Linear Tracking 0.964 0.964 0.613 1.000 0.996 0.848 0.915 0.857

Avg. Angular Tracking 0.992 0.997 0.805 1.012 1.003 0.944 0.983 0.957
Total Episode Return 1.039 1.043 0.107 1.009 0.990 0.889 0.926 0.905

Average
Avg. Linear Tracking 0.965 0.953 0.698 0.978 0.987 0.892 0.942 0.912

Avg. Angular Tracking 0.992 0.991 0.836 1.004 0.991 0.956 0.992 0.974
Total Episode Return 1.006 1.001 0.249 0.932 0.933 0.892 0.978 0.908

B. Comparison with Baselines

We compare ULT with several knowledge transfer solu-
tions and their variants with a base teacher network similar
to [10]:

• Supervised Transfer. Based on [3], [4], [10], we im-
plemented different variants of supervised knowledge
transfer with direct action imitation. Offline-Only: sin-
gle stage with Oracle pre-trained policy used for tra-
jectory generation [3]; Online-Only: single stage with
the student generating online trajectories with [4]; Two-
Stages: combining two stages with offline pre-training
first, followed by online correction [10].

• Joint Transfer. Following [11], combining the RL
exploration of the student with online supervised trans-
fer with the joint ratio of policy imitation gradually
annealed to zero by the mid-point of training.

• CENet. Implementation of an auto-encoder model from
DreamWaQ [14] with VAE loss for the next observation,
base velocity and latent space estimation with asymmet-
ric actor-critic architecture.

• PPO. We use vanilla PPO [31] to train ULT solely

on proprioceptive observation and RL loss, which is
equivalent to an action mixer ratio of α = 0, and
with the teacher head and other loss modules disabled,
resulting in a student-only training.

The comparison results are summarized in Table IV.
Although ULT only uses the same number of trajectories
as Oracle training, both the teacher and student policies
achieve the similar performance level of Oracle performance
and outperform other baseline models, which require many
more trajectories to be generated for most cases. This shows
the high efficiency of our proposed framework. With the
increased difficulty of using omnidirectional control on all
types of terrain, single-stage offline supervised transfer can-
not efficiently capture the dynamics of the environment with
just good trajectories, and the rough terrains make it hard for
the student to survive. Although online supervised transfer
and two-stage transfer significantly improve performance,
ULT still outperforms supervised transfer with fewer trajec-
tories used. Joint transfer require manual tuning of the joint
ratio and struggles to handle the increased environmental
challenges with similar performance to vanilla PPO with
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Fig. 3. Normalized metrics for ULT and its ablated variants. The return is
averaged across trails on all five terrains.

direct student-only training.
Learning with VAE loss shows strong performance, with

only slight disadvantages compared to ULT, making it one of
the best performing baselines. These results strongly support
the shared idea of DreamWaQ and ULT, that understanding
the state-action transition can significantly enhance policy
optimization and overall performance.

These results demonstrate that with our ULT framework,
optimal teacher and student policies can be achieved at the
same time with a more compact unified network, without the
need for multiple stages of knowledge transfer with complex
network and loss function design. This greatly eases the
training setup and the difficulty of knowledge transfer for
quadruped locomotion for sim-to-real deployment.

C. Ablation Studies

To better evaluate the main components of ULT, we
create different variants by removing the next state-action
predictions, imitation of actions, and both from the unified
optimization pipeline. The results are shown in Fig. 3. With
unified training, our core transformer benefits from both
the next state-action prediction module and action imitation
module, to increase its capability of understanding state-
action transition with high-quality action guided by privilege
information.

In addition, we explore the special case of the mix ratio
α = 0, which is equipment to remove the action mixer
module. As the teacher head will not be optimized, there
is also no need to imitate the action. It is clear that missing
the privilege information makes it difficult to optimize the
next state-action prediction resulted in a performance similar
to vanilla PPO. ULT needs all modules to work together in
order to achieve the sample and learning efficiency.

D. ULT with Supervised Transfer

Training with proper mixed actions ensures that we can
achieve optimal teacher and student policy at the same time,
but a teacher-only policy still has slightly better performance.

TABLE V
PERFORMANCE OF α = 1 STUDENT BEFORE AND AFTER SUPERVISED

KNOWLEDGE TRANSFER.

Avg. Linear
Tracking

Avg. Angular
Tracking

Episode
Return

Original 0.717 0.898 0.233
After Online Transfer 0.760 0.893 0.865

Can ULT act as the teacher first and then as the classic
supervised knowledge transfer in a single network? Tab. V
shows the average performance of the original student agent
and after an online supervised transfer phase. Although we
can recover some of the performance with additional transfer
stage, it is still not comparable to ULT as we can hardly
update the transformer while fixing the output of the teacher
head, demonstrating the importance and efficiency from the
action mixer while training the framework as a whole.

E. Physical Deployment

Following Sector IV-C, we directly extract the ULT frame-
work and use onboard sensor observations to achieve zero-
shot sim-to-real transfer. The policy is exported as JIT
for portability and edge inference on a Unitree A1 robot
equipped with a Jetson AGX Orin Developer Kit. The policy
can run at up to 300Hz and we set the control frequency
to 50Hz, Kp = 30 and Kd = 0.7 while communicating
with A1’s onboard low-level controller. Fig. 4 shows some
snapshots from the deployment test. Please refer to the
supplementary video for more information.

VI. CONCLUSION

We introduce ULT, a unified framework based on trans-
formers for simultaneous optimization of teacher and student
policies for quadruped locomotion. With next state-action
prediction and action imitation, ULT can efficiently extract
valuable transition information and provide guidance with
privileged information for mixed exploration to improve the
training process. This greatly reduces the complexity and
trajectory data needed for sim-to-real transfer, enabling the
direct deployment of the agent on physical systems.

Although we have simplified the training process as one
single phase without training a dedicated teacher policy, we
still need to retrain the model when new task requirement is
raised. It is appealing to explore the continual learning and
generalization capability through the power of large language
models (LLMs) in handling wide variety of information with
multimodality and transfer to different tasks and embodi-
ments as future work.
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