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Abstract— This work addresses the challenge of personalizing
trajectories generated in automated decision-making systems
by introducing a resource-efficient approach that enables rapid
adaptation to individual users’ preferences. Our method lever-
ages a pretrained conditional diffusion model with Preference
Latent Embeddings (PLE), trained on a large, reward-free
offline dataset. The PLE serves as a compact representation for
capturing specific user preferences. By adapting the pretrained
model using our proposed preference inversion method, which
directly optimizes the learnable PLE, we achieve superior align-
ment with human preferences compared to existing solutions
like Reinforcement Learning from Human Feedback (RLHF)
and Low-Rank Adaptation (LoRA). To better reflect practical
applications, we create a benchmark experiment using real
human preferences on diverse, high-reward trajectories.

I. INTRODUCTION

In today’s increasingly automated world, personalization
is crucial for decision-making systems to effectively cater to
individual’s needs, preferences, and circumstances. Tailoring
experiences enhances the system effectiveness and user satis-
faction across diverse applications, such as customizing self-
driving vehicles [1], [2], transforming robotic assistants into
adaptive companions [3]–[7], and optimizing prosthetics for
wearers’ unique requirements [8]–[10]. However, accurately
capturing and aligning the abstract and dynamic human
preferences with automated systems remains a complex
challenge [11]–[13].

This work tackles this personalization challenge in tra-
jectories generated by automated decision-making systems,
aiming to create adaptable and reusable models that cater
to individual user’s needs [14]–[17]. While large-scale pre-
trained models offer broad capabilities [18]–[21], they lack
the individual customization, and training personalized mod-
els for every user is infeasible. In contrast, it is more
promising to first pretrain a model on large-scale offline
data, and then align it with human preferences using smaller,
user-specific preference datasets, as shown in Figure 1. The
adoption of pretrained models from offline data avoids costly
or risky direct interaction, enabling broader applications in
challenging environments [22]–[24]. The process for adapt-
ing human preferences must be computationally efficient,
enabling updates for many users and deployment on edge
devices, through minimal data requirements. Therefore, we
adopt this pretrain-align framework to achieve personalized
decision making.

Fig. 1: Overview of personalizing decision-making mod-
els. We leverage large-scale offline data for pretraining,
followed by rapid and efficient personalization using small-
scale preference data.

However, there are still a couple of difficulties to re-
alize this system. (1) For pretraining the decision-making
models, some approaches [25], [26] perform the training
without rewards, but require the online interaction with
the environment, which is not applicable in our offline
setting. Other approaches with offline reinforcement learning
(RL) [27]–[30] relies on rewards, which are often unavailable
or difficult to quantify for human preferences. It is important
but challenging to address both requirements simultaneously.
(2) For adapting models to human preferences, RLHF [12]
has emerged as a key technique for integrating human
preferences into decision-making systems [31]–[34]. It works
by first learning reward models to capture individual pref-
erences and then refining policies based on those learned
reward models. Direct policy optimization (DPO) offers an
alternative approach by directly aligning policies with human
preferences, bypassing the need for a separate reward model
[35]. However, both RLHF and DPO face computational
challenges due to the large number of parameters involved
during alignment, making them less resource-efficient. Fur-
thermore, both methods require careful tuning to prevent the
adapted model from deviating too far from the base model.

We propose a pretrain-align framework to enable efficient
and rapid personalized decision-making. Our solution is built
atop of diffusion-based planners [36], which leverage the
expressive power of diffusion models [37] to learn flexible
and tractable models for trajectory generation. We introduce
preference latent embeddings (PLE), low-dimensional vec-
tors that effectively encode human preferences, for rapidly
adapting pretrained models to individual user preferences.



Our method involves three stages: (1) Pretraining a diffusion
model without reward supervision using a large state-action-
only sequence dataset, (2) adapting the model to specific
preferences using a small set of human labels, and (3)
generating trajectories aligned with the learned preferences.
Results demonstrate that our method adapts more accurately
to human preferences with less data, both in offline datasets
and in our custom dataset with real human labels. Our key
contributions can be summarized as follows:
• Introducing a reward-free pretraining approach that jointly

learns meaningful representations for PLE.
• Proposing an adaptation method for rapid preference align-

ment through preference inversion.
• Creating a benchmark experiment using real human pref-

erences on diverse, high-reward trajectories.
• Conducting detailed evaluations and ablation studies using

both our human-annotated dataset and an existing dataset.

II. BACKGROUND AND RELATED WORK

Diffusion Probabilistic Models (DPMs). These powerful
and versatile generative models offer a high degree of flexi-
bility and tractability in modeling complex data distributions
[37], [38]. The core principle behind DPMs is to learn
to reverse a diffusion process by progressively denoising
data points that have been transformed into random noise
through a forward Markov chain. Given a data point sam-
pled from a real data distribution, x0 ∼ q(x), this chain is
defined by q(xk|xk−1) = N (xk|

√
αkxk−1,(1−αk)I), where

N (µ,Σ) represents a Gaussian distribution with mean µ

and covariance Σ, and αk determines the noise schedule with
discrete noise time-step k. From these noise-augmented data
points, a variational reverse Markov chain, parameterized
by pθ (xk−1|xk) = N (xk−1|µθ (xk,k),Σθ (xk,k)), is used to
reconstruct the original data point x0. [37] introduced an
optimized surrogate loss function to simply this process:

L (θ) = Ek∼[1,K],x0∼q,ε∼N (0,I)

[
∥ε − εθ (xk,k)∥2

]
, (1)

where ε is the sampled noise and εθ is the noise predicting
model. By optimizing this loss, new data points can be gen-
erated through a sampling process via the forward Markov
chain with µθ (xk,k) = 1√

αk

(
xk − 1−αk√

1−ᾱk
εθ (xk,k)

)
.

DPMs can be extended to conditional generation using the
classifier-free guidance [39], which enables the conditional
model, pθ (xk−1|xk,c), to generate samples conditioned on
a context input c. During sampling, the predicted noise
is adapted to a weighted combination of conditional and
non-conditional sampling: ε̂θ (xk,c,k) = (1+v)εθ (xk,c,k)−
vεθ (xk,∅,k) , where ∅ is the null context and v controls
the balance between sample quality and diversity. Alterna-
tively, in classifier-guided diffusion [40], a separate classifier
hφ (c|xk,k) is trained, and the gradient ∇x loghφ (c|xk) is used
for the classifier-guided sampling as follows: ε̄θ (xk,k) =
εθ (xk,k)−

√
1− ᾱk v∇xk loghφ (c|xk).

Diffusion Planning. Offline RL is a setting where an agent
aims to learns an optimal policy from a fixed, previously

collected dataset without further interaction with the environ-
ment [27], [41]. This problem can be framed as a sequence
modeling task [42], [43]. Recently, diffusion-based planners
[36], [44] have utilized DPMs to generate trajectories which
can address the challenges of Offline RL, as discussed in
[27]. One typical example of diffusion planning is Diffuser
[36], which utilizes expressive DPMs to model trajectories
in the following form:

τ =

[
s0 s1 . . . sH
a0 a1 . . . aH

]
, (2)

where H is the planning horizon. The model is optimized
based on Equation 1, with εθ (τk,k) being modeled by U-
Nets [45], chosen for their non-autoregressive, temporally
local, and equivariant characteristics. A separate model Jφ

is trained to predict the cumulative rewards, and the gra-
dients of Jφ are used to guide the trajectory following
the classifier-guided sampling procedure. Another example
is Decision Diffuser [44], which adopts a classifier-free
approach [39] and utilizes reward information as context
to generate high-return trajectories. In this work, We adopt
the classifier-free approach for its flexibility in incorporating
contextual information, a key requirement of our method.
Inversion for Image Manipulation. In the domain of
generative adversarial networks (GANs) [46], manipulating
images often involves finding the corresponding latent rep-
resentation of a given image, a process known as inversion
[47], [48]. This can be achieved through optimization-based
techniques [49]–[51], which directly optimize a latent vector
to recreate the target image when passed through the GAN,
or through the use of encoders [52]–[54]. Similarly, in the
domain of DPMs, inversion enables image manipulations
such as cross-image interpolations and semantic editing in
DALL-E 2 [55]. Lastly, textual inversion [56] represents
visual concepts as novel tokens in a frozen text-to-image
model, enabling personalized embeddings.
Preference Learning. It has proven to be effective to
leverage relative human judgments through pairwise pref-
erence labels for optimizing human preferences without
direct access to the reward function. This approach shows
significant success in various natural language processing
tasks, such as translation [57], summarization [58], [59],
story-telling [59], and instruction-following [60], [61]. It
typically learns a reward function using a preference model
like the Bradley-Terry model [62], and subsequently trains
the model using RL algorithms [63], [64] to maximize the
learned reward. Direct policy optimization (DPO) has been
proposed as an alternative to directly align the policy with
human preferences and learn from collected data without a
separate reward model [35]. DPO variants [65]–[68] have
shown great alignment with human preferences that matches
or surpasses reward-based methods. In the domain of RL,
learning policies from preferences has been studied, as
designing a suitable reward function can be challenging.
Various approaches have been proposed [12], [25], [31]–[34]
that learn a reward function from trajectory segment pairs.



Fig. 2: Overview of the proposed method. (Left) Pretraining: A placeholder for preference latent embedding (PLE), z, is
co-trained with the diffusion model, without reward supervision. (Middle) Adaptation: With diffusion model weights frozen,
PLEs are aligned to user labelled query pairs via preference inversion. (Right) Generation: Conditional sampling with learned
PLEs generate trajectories that match the users’ preference.

III. METHODOLOGY

To enable rapid adaptation of our pretrained model to
individual user preferences, we introduce the concept of
preference latent embeddings (PLE), denoted by z. PLEs
are low-dimensional vectors that encode human preferences
efficiently. Our method comprises three distinct stages, as
illustrated in Figure 2: pretraining, adaptation, and gen-
eration. During pretraining, we train the diffusion model
without reward supervision, initializing a placeholder for
the PLE to establish a general-purpose generative model.
In adaptation, a small set of human preference labels fine-
tunes the model, identifying the PLE that aligns with user
preferences in a low-dimensional representation. Finally, in
generation, the learned PLE guides trajectory generation
to match encoded human preferences. We now detail each
stage.

A. Pretraining with Masked Trajectories

The pretraining stage of our method addresses two con-
current goals: training a general-purpose generative model
that comprehensively understands the task domain without
reward supervision, and initializing a meaningful represen-
tation for the PLE placeholder. To achieve the first goal, we
employ the decision diffuser [44], which excels in training
on offline trajectory datasets without explicit reward require-
ments. Its ability to incorporate additional context is crucial
for our second goal.

For the second goal, we posit that each preference corre-
lates with a set of similar trajectories. Consequently, we aim
to map similar trajectories to similar embeddings to give
structure for the PLE placeholder. We propose a learnable
mapping function: f : RL×(S+A) → Rde ,z := f (τfull), where
τfull represents the full trajectory from which a sub-trajectory
τ is sampled. L denotes the full trajectory length, S and A are
the dimensions of the state and action spaces respectively,
and de is the PLE dimension, a tunable hyperparameter.
The mapping f consists of a sequence of operations as
visualized in Figure 2 (left). Initially, we apply a fixed

mask to τfull to prevent information leakage about τ . This
is followed by a transformation of state-action features into
the latent space using a learnable feed-forward layer. We then
apply mean pooling to mitigate time leakage and accom-
modate variable horizon lengths. Normalization is achieved
via sigmoid activation, a choice motivated by the adaptation
process described in the subsequent section. Finally, we
compose these differentiable components to obtain the PLE
placeholder, z. The resulting z is then fed into the decision
diffuser as context, training end-to-end to achieve both goals
simultaneously with the following objective:

Lpretrain(θ) = Ek∼[1,K],x0∼q,ε∼N (0,I)

[
∥ε − εθ (τk, f (τfull),k)∥2

]
.

The proposed objective serves two crucial purposes in our
approach: constructing a representation for the PLE place-
holder that groups similar trajectories, and pretraining the
model to generate trajectories adhering to the offline dataset’s
distribution. However, the model remains unaligned with
specific user preferences at this stage.

B. Adaptation via Preference Inversion

During adaptation, our goal is to quickly identify the PLE
that aligns with the user’s preferences. To achieve this, we
utilize a small set of human preference labels to partially
fine-tune the pretrained model, rather than performing full
fine-tuning. This approach is made possible by the place-
holder PLE trained during the pretraining step. We begin
the adaptation with a randomly initialized, learnable PLE, z.
The sigmoid activation applied during the pretraining stage
enables us to choose a prior bounded between 0 and 1 for
this initialization. To align z, we freeze all weights of the
diffuser model and backpropagate the loss gradients towards
z. We refer to this PLE alignment process as preference
inversion, drawing an analogy to the inversion methods for
image manipulation described in Section II.

To design a loss function that leverages pairwise pref-
erence labels, we sub-categorize the PLE into two types:
winner PLE zw, and loser PLE zl . This enables us to



optimize and obtain learned preferences z∗w and z∗l based on
the reconstruction loss of the respective winner and loser
trajectories, xw and xl as follows:

Linversion(zw,zl) = Ek∼[1,K],x0∼q,ε∼N (0,I)

[
∥ε − εθ (τ

w
k ,zw,k)∥2

+
∥∥∥ε − εθ

(
τ

l
k,zl ,k

)∥∥∥2
]
.

where θ is fixed. A key advantage of having a frozen
pretrained model is that it does not require the additional
constraints to remain aligned to the base model, as is the
case with RLHF or DPO. During training, it is possible to
simultaneously optimize zw and zl within a single batch, since
their gradients do not interfere with each other.

C. Generating Preferred Trajectories

To sample a trajectory aligned with human preferences, we
utilize a linear combination of the winner and loser PLEs,
similar to the approach used in [39] to predict noise:

ε̂θ (xt ,z∗w,z
∗
l ,k) = (1+ v)ε̇θ (xt ,z∗w,z

∗
l ,k)− vεθ (xt ,∅,k) ,

where ε̇θ (xt ,z∗w,z
∗
l ,k) = (1+u)εθ (xt ,z∗w,k)−uεθ (xt ,z∗l ,k) .

Here, v and u are hyper-parameters. v controls the strength of
the guidance, while u controls the influence of the loser in-
formation. To gain an intuition, we rewrite ε̇θ

(
xt ,z∗w,z

∗
l ,k

)
=

εθ (xt ,z∗w,k) + u(εθ (xt ,z∗w,k) − εθ

(
xt ,z∗l ,k

)
), which shows

that we are pushing the score estimations away from the
loser, originating at the winner. This allows us to efficiently
leverage the pretrained model while quickly adapting to in-
dividual user preferences using a small amount of preference
data. By learning only the low-dimensional PLE while keep-
ing our pretrained model fixed, we reduce computational cost
and enhance the stability of the adaptation process compared
to fine-tuning the entire model. The overall proposed method
is illustrated in the Figure 2.

IV. EXPERIMENTS

We comprehensively evaluate the effectiveness of our
method in integrating user preferences, examining pretrain-
ing performance, the impact of preference queries and z∗l ,
and adaptation stability. Additionally, we assess its ability to
capture human preferences from diverse, high-reward queries
using a custom dataset. For a strong benchmark, we compare
against diverse baselines.
• Diffuser: A pretrained diffusion-based planner [69] repre-

senting the distribution of training dataata but not adapted
to user labels.

• Guided Sampling: Following RLHF, we train a reward
model using the Bradley-Terry model [62], but employ
classifier-guidance sampling [40].

• Finetuning (Full): This baseline directly fine-tunes the
pretrained Diffuser model using DPO [35] with β = 5000.

• Finetuning (LoRA): This baseline provides a more direct
comparison with our proposed method, where partial fine-
tuning is performed. To achieve this, we utilize LoRA [70]
with a rank of r = 8.

• Preference Transformers: Transformer-based architec-
ture for modeling preferences over trajectories [34].

• Preference Inversion (Proposed): Our method partially
fine-tunes the pretrained model to retrieve the user pref-
erence context. The pretraining stage utilizes a diffuser
conditioned on masked trajectories.
All hyperparameters related to the diffusion model follow

those in [69].
Experimental Setup. To examine the effectiveness of var-
ious personalization methods in automated decision-making
systems, we tested our approach on a preference learning
benchmark [34] that utilizes challenging control tasks from
the d4rl dataset [41] in an offline setting. Specifically, we
used the Hopper, HalfCheetah, and Walker2D tasks from the
d4rl dataset, focusing on the medium-expert and medium-
replay settings. For the preference labels, we follow [34],
where query pairs (pairs of trajectory segments) are randomly
sampled from the D4RL offline dataset. Within each pair, the
trajectory segment with the higher return is designated as
the winner, with the other segment consequently labeled as
the loser. To ensure proper convergence of our large dataset,
all baselines underwent 1 million updates for pretraining.
During the alignment stage, we fixed Nadapt = 5000 updates
for our main experiments and also conducted ablation studies
on Nadapt. Pretraining utilizes the full dataset for its respec-
tive tasks. During evaluation, we sample each method for
100 episodes across 5 different random seeds within their
designated environments.

A. Latent Space Analysis

To understand the impact of our proposed mapping in the
pretraining for the PLE placeholder, we conducted a visual-
ization of the latent space representation. Using their respec-
tive pretrained models, we sampled 1000 random trajectories
from each dataset and obtained the PLE, z. These embed-
dings were then projected onto a two-dimensional space
using t-SNE (with perplexity set to 30) as seen in Figure
3, with color intensity representing the normalized score of
the corresponding masked trajectory. The normalized score
is defined as normalized score = 100× score−random score

expert score−random score
as in [41]. Examining the latent space of the medium-
expert dataset, we observed distinct clusters representing low,
medium, and high returns, respectively. These clusters were
well separated and mostly linearly separable. In contrast, the
medium-replay dataset, which consists of the entire replay
buffer with a continual range of returns, exhibited a different
pattern. The latent space reflected this continuous return
distribution, showing not distinct clusters but rather a smooth
transition of the latent embeddings based on their return
values.

Overall, our proposed pretraining enables the PLE place-
holder to be structured in an organized and meaningful
manner, demonstrating that our proposed mapping, f , is able
to organize similar trajectories close together. This organized
latent space could accelerate the preference inversion process
by first navigating the loss landscape to a local region of



similar trajectories, and then refining the search for a more
precise alignment with the true reward (human preference).

Fig. 3: Latent space analysis: We visualize t-SNE plots
of PLEs post-pretraining, where each point represents a
trajectory, and color intensity reflects its normalized score.
The smooth gradient in return distribution indicates that our
pretraining effectively structures the PLE space.

B. Main Results

We compare our method against the baselines and assess
the impact of the number of query pairs, Nquery. We evaluate
each model with Nquery values of 10, 25, 50, and 100,
analyzing their ability to align with user preferences using a
small set of human-annotated queries and a limited number
of updates (Nadapt = 5000). For the main experiment, we set
de = 16 and u = 0.02.

Our experimental results (Figure 4) show that our method
consistently outperforms baselines, with a growing advan-
tage as queries decrease. This is particularly evident in
hopper-medium-replay and walker2d-medium-replay tasks.
No baseline consistently outperforms others: LoRA fine-
tuning closely matches full fine-tuning, with slight gains at
lower queries (N=10, 25) and mixed results for N=50, 100,
while Preference Transformers perform worst, likely due to
training from scratch without pretrained models. Baselines
(except Preference Transformers) surpass the pretrained Dif-
fuser when Nquery > 50 but often fail with fewer queries,
leading to negative adaptation. In contrast, our method con-
sistently outperforms Diffuser, maintaining high performance
even at Nquery = 10. Performance correlates positively with
Nquery, with 50 queries generally sufficient across tasks,

Fig. 4: Main results evaluated over different numbers of
queries across six control tasks report the normalized
score.

except for hopper-medium-expert, which requires 100. These
results validate our resource-efficient approach, reducing
labeled data needs with minimal updates.

C. Ablation Studies

We perform a series of ablation experiments to gain deeper
insights into the relative importance of different design
choices and determine the sensitivity of our approach to
variations in model components and hyperparameters.
Number of adaptation steps. Figure 5a shows that all
methods peak around Nadapt = 5000. Preference inversion and
guided sampling remain stable after minor drops at 15000
and 20000 updates, respectively. However, the performance
of finetuning consistently declines after peaking, with rapid
deterioration after Nadapt = 30000, suggesting excessive de-
viation from the base model. The stability of our method is
advantageous for practical applications, where the optimal
stopping point is often unknown in advance.
Loser PLE. Figure 5b shows that incorporating the loser
PLE, z∗l with u > 0, consistently improves the sampling
performance compared to using only the winner PLE with
u = 0. The improvements peak at u = 0.02, resulting in
1 ∼ 3% gains across various Nquery values, and gradually



(a) Adaptation stability across
Nadapt.

(b) The impact of utilizing
loser PLE, z∗l for sampling

(c) Choice of different pri-
ors for initialization, choice of
PLE dimension

Fig. 5: A series of ablation experiments. The average normalized score is reported
across all tasks and Nquery, except for the loser PLE analysis, where averaging is
performed across tasks only.

Fig. 6: Survey Results on Real
Human Preference. Users select
their preferred trajectories from
samples generated by top 2 base-
lines and our proposed method.

(a) User A: ‘Back leg swing up high and
body learning forward’

(b) User B: ‘Body upright, front knee
bent, rear leg 45degrees’

(c) User C: ‘Gentle hopping with moder-
ately fast strides’

Fig. 7: Trajectories generated using our proposed method, an aligned model conditioned on user’s respective PLE.
The generated samples closely match each user’s description of their preference.

diminish as u decreases further. Utilizing z∗l provides a small
boost when Nquery is high, but notably enhances the sampling
when Nquery is low.
Choice of prior and PLE dimension. Given that our PLE
z is constrained to the range [0, 1], we test three different
priors for initialising z within this interval: Uniform[0,1],
Gaussian(0.5,0.5/3), and Fixed 0.5. Figure 5c demonstrates
that all three settings perform comparably well, with the
uniform prior slightly outperforming the others. Similarly,
varying the PLE dimension de across 2, 4, 8, 16, and
32 consistently yields good results, demonstrating relative
insensitivity to this hyper-parameter, with a slight advantage
observed at de = 16.

D. Real Human Preference on Quality Diversity Dataset

Previous experiments, following the design of [34], focus
on recovering a hidden task reward. While useful for vali-
dating human preferences, it prioritizes high-reward over
diversity and may not fully capture practical scenarios. In
contrast, practical decision-making often involves selection
from a diverse set of high-reward trajectories. To better
reflect this, we design a new experiment based on Quality
Diversity (QD) [71]–[73], which in policy learning refers to
an algorithm’s ability to discover diverse, high-performing
policies with distinct behaviors. To implement this, we train
a set of QD policies based on [73], generating a diverse
dataset of 750 high-reward Walker2D episodes for model
pretraining without preference alignment. Additionally, we
use QD policies to create query pairs and gather preference
labels from three users. They are instructed to maintain a
consistent selection strategy and provide written descriptions
of their decision criteria. We then adapt the pretrained policy

to each user’s preference labels, consisting of 100 query pairs
each.

For evaluation, we generate 100 trajectories per baseline
and ask users to choose the closest match to their preference
criteria. The survey results, shown in Figure 6, indicate
that our proposed method receives the vast majority of
votes, demonstrating its effectiveness in capturing human
preferences. Figure 7 qualitatively displays the sampled tra-
jectories from the aligned model, generated using preference
inversion, which closely match the users’ descriptions. This
real human preference dataset provides a good initial indi-
cation of our method’s practical real-world applicability. To
establish more robust findings, we plan to survey additional
users in our future work.

V. CONCLUSION

This work presents a novel approach that enables a policy
to quickly adapt to a small human preference dataset. It
consists of pretraining followed by adaptation on latent
embeddings via preference inversion for rapid alignment.
Evaluation results demonstrate that our method adapts more
accurately to human preferences with minimal preference
labels, outperforming baselines in both offline datasets and
our custom dataset with real human labels. This promising
method shows potential for further applications across di-
verse settings.
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