
Detecting Perception-based Attacks using Visual Odometry:
Inconsistency Modeling and Checking on Robotic States

Yuan Xu1, Gelei Deng2, and Tianwei Zhang3

Abstract— Perception systems in robotic vehicles are crucial
for safe and efficient operation, providing key state estimates
necessary for planning and control. However, these systems
are increasingly vulnerable to perception-based attacks, such
as odometry spoofing, position spoofing, obstacle hiding, and
object misclassification, which can lead to catastrophic failures.
In this paper, we propose a novel approach to detect perception-
based attacks by modeling inconsistencies between the physical
and estimated states of the robot. Our approach offers a unified
methodology for detecting different types of attacks with high
accuracy and minimal computational overhead. We validate our
method through extensive simulations and real-world scenarios,
achieving a 99.5% success rate in detecting attacks, while
maintaining a low latency (within 100ms).

I. INTRODUCTION
Perception is a fundamental component in robots, as it

provides the essential state estimates upon which planning
and control decisions are made. Despite its importance,
perception in robotic systems remains highly susceptible to
various forms of attacks. Researchers have demonstrated that
nearly all sensors used in perception can be deceived under
certain conditions [1]. For instance, IMUs can be misled
by acoustic resonance attacks, causing them to register
completely incorrect angular velocities [2]–[4]. Similarly,
perception functions based on deep learning are vulnerable
to adversarial attacks, which can cause the system to fail
in detecting an existing obstacle [5]–[8]. These erroneous
state estimates could be propagated through the planning and
control modules, potentially leading to catastrophic safety
failures. Thus, ensuring the security of the perception module
has become an urgent and critical task.

While these attacks can successfully deceive the percep-
tion module, they struggle to maintain consistency between
the real-world physical state and estimated state within the
robot. As illustrated in Figure 1, the physical space represents
continuous states in the real world, while the estimated space
reflects discrete states estimated by the perception module.
Under normal scenarios, the perception module accurately
estimates the robot’s state x from the physical state p,
ensuring consistency between the two (as indicated by the
matching colors). However, under an attack scenario, the

*This work is supported by the National Research Foundation, Singapore
and DSO National Laboratories under its AI Singapore Programme (AISG
Award No: AISG2-GC-2023-008)

1Yuan Xu is with College of Computing and Data Science, Nanyang
Technological University, Singapore xu.yaun@ntu.edu.sg

2Gelei Deng is with College of Computing and Data Science, Nanyang
Technological University, Singapore gdeng003@e.ntu.edu.sg

3Tianwei Zhang is with the College of Computing and
Data Science, Nanyang Technological University, Singapore
tianwei.zhang@ntu.edu.sg

Physical
State 𝑝!

Physical
State 𝑝!"#

Robot
State 𝑥!

Physical Estimate

(a) Normal Scenario (b) Attack Scenario

Physical Our Work

consistency inconsistency

VO

Prediction
𝑧̂!"#

Physical
State 𝑝!

Physical
State 𝑝!"# Prediction

𝑧̂′!"#

Observation
𝑧!"#

Observation
𝑧!

Robot
State 𝑥!"#

Estimate

Robot
State 𝑥!

Robot
State 𝑥′!"#

Tim
e

Observation
𝑧!

Observation
𝑧!"#

Fig. 1. Consistencies between physical and estimate spaces.

physical state p might be falsely estimated as a completely
different robot state x′. Then, the consistency between the
physical and estimated states is disrupted (indicated by the
different colors). Despite this inconsistency, the robotic sys-
tem may fail to detect the attack because both the transition
of the robot state from xt to xt+1, and from xt to x′t+1
are within the discrete state space, and appear valid to the
system. This raises a critical challenge: how can we quantify
the inconsistency between the physical and robotic states to
detect perception-level attacks?

We propose a novel methodology to detect perception-
level attacks against robotic systems by quantifying the
inconsistencies between the physical environment and robot’s
estimated states. Our solution is inspired by PhyScout [9],
a framework for identifying sensor spoofing attacks against
autonomous driving. Building upon it, we provide a theoret-
ical foundation that models these inconsistencies, enabling
our methodology to extend from autonomous driving to
a wider range of robotic systems. Our approach is based
on principles from Visual Odometry (VO), a widely used
ego-motion estimation technique in robotics that extracts
features and matches them between adjacent image frames
to obtain observations z and corresponding predicted values
ẑ. The observation z reflects the current physical state p of
the real world, while the predicted value ẑt+1 is derived
from the robot state estimation transformation (from xt to
xt+1) through reprojection. The mean error between these
matching pairs can indicate the consistency between the
physical state and the robot’s estimated state.

By quantifying these inconsistencies, we develop a robust
methodology capable of detecting perception-level attacks
in real time, thereby enhancing the security and reliability
of robotic systems. It covers different threats in a unified
manner, including odometry spoofing, position spoofing,
obstacle hiding and object misclassification attacks. We
conduct extensive experiments on datasets and simulators
across different robot types. The results demonstrate that our
inconsistency detection method effectively identifies all types

of attacks with a success rate of up to 99.5%.

II. BACKGROUND AND RELATED WORK

A. Perception-level Attack

In this paper, we focus on four mainstream perception-
level attack goals.
Odometry Spoofing. The objective of odometry spoofing is
to manipulate the angular velocity data, causing the robot
to lose balance and potentially overturn. Robots rely on
dynamic adjustments to maintain stability based on IMU
sensor data. Adversaries can exploit this by injecting false
IMU data through spoofing, destabilizing the robot. For
instance, an attacker can trigger a crash by manipulating IMU
data, leading the robot to incorrectly adjust its position [3],
[4], [10], [11].
Position Spoofing. Position spoofing involves deceiving the
robot’s GPS to induce incorrect positioning and trigger
unintended actions. By generating false GPS signals, the
attacker misleads the robot’s navigation system. A notable
example is a drone being forced to land in a restricted no-fly
zone due to GPS spoofing [12]–[14].
Obstacle Hiding. This attack tricks the robot into failing to
detect an existing obstacle. Adversaries may use small adver-
sarial patches or spoofed laser points to deceive perception
systems relying on LiDAR or cameras. For example, drones
positioned at strategic points can generate false laser data to
interfere with the robot’s perception, causing it to overlook
obstacles [5], [8], [15]–[22].
Object Misclassification. The goal of object misclassifi-
cation is to cause a robot to misidentify traffic signs or
signals, leading to dangerous decisions. By projecting phan-
tom images or attaching small stickers to signs, attackers
can fool deep learning models into misclassifying objects.
For example, research has demonstrated how stop signs can
be misclassified as other objects, resulting in unsafe robot
behavior [5], [21], [23]–[31].

B. Attack Detection Methods

Certified Defenses [32]–[38]: These approaches typically
rely on prediction consistency within a strict perturbation
scale to detect spoofing activities. The common strategy is to
either smooth classification boundaries or relax the model’s
intermediate states to reduce sensitivity to minor input vari-
ations. During model prediction, multiple input replicas are
often needed, posing concerns about their feasibility in real-
time applications. Furthermore, adaptive attacks can still
exploit certain gaps, as the defense does not guarantee a
100% success rate within its perturbation bounds.
Vision/Lidar consistency methods [8-14]: SCEME [39]
and SCENE [40] utilize transformer models to verify the
contextual consistency between objects. For instance, a scene
containing both a toothbrush and a bus would be identified
as inconsistent. However, these models also have several
issues. For example, by misclassifying a traffic light into
a traffic sign, they cannot identify such attack [40]. KEMLP
[41] focuses on semantic consistency, employing a CNN to
deduce object-specific rules, like recognizing a stop sign’s

octagonal shape. AdvIT [42] generates pseudo frames from
historical data to assess temporal consistency between the
pseudo and target frames. PercepGuard [43] merges the
principles of KEMLP and AdvIT, using an RNN to check
spatio-temporal consistency from both current and historical
frames. LOP [44] and Zhang et al [45] are most aligned
with ours. They use depth data from camera or lidar to
produce a depth map for spatial inconsistency detection using
CNN/GNN models. Despite their innovation, these defenses
predominantly rely on DNN models, which pose two primary
issues: heavy reliance on GPU resources and vulnerabilities
to adaptive attacks [46]–[48].

In contrast, our approach introduces a novel detection
methods using inconsistency modeling. This not only of-
fers a holistic defense against spoofing attacks with a
unified methodology but also significantly increase the at-
tack difficulty, which now need to manipulate the majority
of distributed keypoints. Meanwhile, such the non-DNN-
model-based methodology can achieve low detection latency
((<100ms)) with low performance overhead (CPU friendly).

C. Visual Odometry

Visual Odometry (VO) has been a cornerstone technique
in robotics for estimating ego-motion by analyzing sequential
images captured by a robot’s camera. The fundamental idea
behind VO is to track the movement of features in the
environment across successive frames, which allows the esti-
mation of the robot’s trajectory relative to its initial position.
Early works in VO, such as those by Nistér et al. [49] and
Scaramuzza et al. [50], laid the foundation by focusing on
geometric methods to solve the motion estimation problem
using point correspondences between images.

Over time, VO has evolved significantly, incorporating ad-
vancements in feature extraction, matching, and optimization
techniques. For instance, modern VO systems like ORB-
SLAM [51] utilize robust feature descriptors and sophisti-
cated optimization frameworks to achieve high accuracy and
robustness in diverse environments. Furthermore, research
has expanded VO’s applications beyond pure ego-motion
estimation, integrating it with simultaneous localization and
mapping (SLAM) to build dense maps of the environment
while tracking motion [52]. Unlike traditional VO researches,
our work proposes extending VO’s framework to detect in-
consistencies introduced by perception-level attacks, thereby
enhancing the resilience of robots against such threats.

III. INCONSISTENCY MODELING

In this section, we present a model for detecting
perception-level attacks by quantifying inconsistencies be-
tween the physical and robotic states. Given the diverse
targets of various perception-level attacks, we divide our
modeling approach into two categories: global inconsistency
modeling and local inconsistency modeling. As illustrated
in Figure 2, global inconsistency is modeled based on each
keyframe received by the camera, where all the feature points
(green dots) within that keyframe are considered for analysis.

Time

Physical Prediction

Global Inconsistency
……

Local Inconsistency
……Granularity: frame

Granularity: keyframe

Scope: within Bbox

Scope: all frame

Fig. 2. Global and local consistency modeling.

On the other hand, local inconsistency is modeled on a per-
frame basis, where the model processes only the feature
points (blue dots) within the detected bounding boxes (blue
rectangles) of each frame.

A. Inconsistency Analysis

Inconsistency arises from the mismatch between the ob-
servation zt at the current time step and the predicted value ẑt
based on an incorrect state transition (xt−1→ xt), as discussed
in Section I, . Thus, we can analyze this inconsistency using
the following equation:

et = Θ(ẑt ,zt)

w.r.t.

{
ẑt = Φ(xt−1,xt ,zt−1)

zt = ρ(pt)

(1)

Here, et represents the error used to quantify the incon-
sistency. The associated functions, Θ,Φ,ρ , denote the incon-
sistency estimation, feature prediction, and feature extraction
processes, respectively. In the following subsections, we will
detail how these functions are modeled in both global and
local inconsistency scenarios.

B. Global Inconsistency Modeling and Implementation

We begin by formulating the concept of global inconsis-
tency. Following the principles of visual odometry (VO) and
the SLAM framework, our model incorporates the following
key components:
Feature Extraction (Θ). The goal of this process is to
identify 2D features corresponding to the 3D physical world,
mathematically expressed as: Rn∗3→ Rn∗2. Features consist
of a set of stable 2D keypoints, typically located in image
regions such as corners, edges, and blocks. Let Ft represent
the frame captured by the camera at time t (where t ∈ [0,T]),
and let kt denote the set of 2D keypoints extracted from this
frame. The feature extraction process can thus be described
by the following equations:

kt = Θ(Ft), t ∈ [0,T]
k = (k1,k2, . . . ,kn),ki = (kx

i ,k
y
i),

(2)

There are several methods to implement the function Θ for
feature extraction from images. One of the most commonly
used algorithms is the Features from Accelerated Segment
Test (FAST) algorithm [53]. In FAST, a pixel p is selected
as the center, and 16 surrounding pixels on a circular pattern,

with a radius of 3 pixels, are analyzed. If the intensity
difference between p and any of these surrounding pixels
exceeds a predefined threshold (e.g., 20%) for N consecutive
pixels, the pixel p is identified as a keypoint and is selected
as a feature.
Feature Prediction (Φ). This process aims to predict the
current state value ẑt based on the past observation z0...t−1
and the pose transition from xt−1 to xt . Since the extracted
2D feature points k do not contain depth information, the
first step is to reproject these 2D points into 3D map points
M, based on both the current and previous observations.

Inspired by local mapping module in ORB-SLAM, we
use a short temporal window to triangulate the 2D keypoints
from multiple past consecutive keyframes and compute their
3D coordinates. Unlike the global map maintained in ORB-
SLAM, our approach focuses on constructing and updating
a localized map over a limited time period, reducing the
computational overhead while still capturing relevant spatial
information. The reprojection function Γ is used to transform
the 2D keypoints and camera poses into 3D map points. This
process is formalized as:

Mt = Γ(x0...t−1,k0...t−1,kt), t ∈ [0,T]
M = (M1,M2, . . . ,Mn),Mi = (Mx

i ,M
y
i ,M

z
i)

(3)

Here, Mt represents the set of 3D map points computed at
time t by reprojection. The function Γ takes as input the
camera poses x0...t−1 and 2D keypoints k0...t−1 from previous
keyframes, as well as the current set of keypoints kt , to
generate the 3D coordinates of the map points.

The 3D coordinates of these map points are then trans-
formed to the next time step using the following equation:

[Mt+1,1]′ = Tt · [Mt ,1]′

w.r.t. T =

[
R r
0′ 1

]
(4)

Here, Tt is a 4× 4 transformation matrix that represents
the transformation from Mt to Mt+1. Specifically, the trans-
formation matrix Tt consists of a 3×3 rotation matrix R and
a 3× 1 translation matrix r. The transformation matrix Tt
can be approximated using a constant velocity motion model
based on Tt−1, which can be obtained from the robot’s current
odometry system.

Once the 3D map points Mt+1 have been computed, the
corresponding 2D coordinates in the current camera frame
can be estimated using the following projection equation:

ẑt+1 = (mx
i ,m

y
i ,1)

′ = IC · (
Mx

i
Mz

i
,

My
i

Mz
i
,1)′

w.r.t. IC =

 fx 0 cx
0′ fy cy
0′ 0 1

 , m = (m1,m2, . . . ,mn)

mi = (mx
i ,m

y
i),

(5)

In this equation, (mx
i ,m

y
i) are the 2D coordinates of the

projected map point ẑt+1 in the current frame, and IC is the
camera intrinsic matrix. The matrix contains the focal lengths
fx and fy along the x- and y-axes, respectively, as well as the
optical center offsets cx and cy. The 3D map points Mi are
projected into the image plane to obtain their 2D coordinates.

Inconsistency Estimation (ρ). This process quantifies the
inconsistency between the observed extracted 2D feature
points z and predicted 2D map points ẑ. At time t+1, let the
Feature Extraction process Θ extract m feature points from
the current frame, denoted as zt+1. Simultaneously, through
the Feature Prediction process Φ, we obtain n projected 2D
map points ẑt+1. Since the number of predicted map points
n is typically greater than the number of observed feature
points m, we need to match each projected map point ẑi
to the nearest observed feature point zi. This matching is
performed by the following function Ψ. Once the matching
pairs are established, we calculate the average inconsistency
between them.

(z1,z2, . . . ,zn)t+1 = Ψ((ẑ1, ẑ2, . . . , ẑn)t+1,(z1,z2, . . . ,zm)t+1)

eG
t+1 = Θ((ẑ1,z1),(ẑ2,z2), . . . ,(ẑn,zn))t+1

(6)
In this context, the function Ψ matches each predicted 2D
map point ẑi with its closest corresponding feature point zi
with similar multi-scale pyramids level in the observation,
based on their proximity. The matching process ensures that
the numbers of ẑt+1 and zt+1 are same. The function Θ,
inspired by ORB-SLAM, utilizes a nonlinear optimization
approach to further refine the robot’s pose by minimizing
the overall reprojection error. Specifically, for each pair of
matched points (ẑi,zi), Θ applies the Levenberg-Marquardt
optimization algorithm, using a least squares method to
adjust the robot’s pose and minimize the reprojection error
between the predicted and observed 2D points. This opti-
mization ultimately yields an adjusted pose with minimized
average error across all point pairs. To implement Θ, we use
the graph-based nonlinear optimizer g2o [54], which applies
the Levenberg-Marquardt algorithm for optimization. This
tool allows us to iteratively adjust the robot’s pose until the
reprojection error is minimized, thereby providing an optimal
estimation of the robot’s state at time t +1.
Global Inconsistency Checking. The primary objective of
global inconsistency modeling is to detect odometry spoofing
and position spoofing attacks. Specifically, odometry spoof-
ing attack can cause the robot to miscalculate its odometry,
leading to errors in the transformation matrix T ‘t in (4).
These errors propagate through the system, resulting in
inaccuracies in the predicted 3D map points M′t+1 and their
projected 2D coordinates ẑ′t+1 in (5). When we optimize a
set of incorrect matching pairs (ẑ′i,zi), it typically results
in an abnormally high mean error eG

t+1. Thus, we define a
threshold T1, where eG

t+1 exceeding this value indicates the
presence of an attack.

On the other hand, position spoofing attack primarily af-
fects the robot’s position estimation, causing large deviations
in its estimated position. However, it has no direct impact
on the odometry information, meaning that the error eG

t+1
derived from the matching process should remain within
the normal range. Thus, the robot’s mean error in global
consistency checks may appear normal even during a po-
sition spoofing attack. To detect such attacks, we instead
monitor the abnormality in the squared mean differences in

the robot’s 3D positional coordinates over consecutive time
steps. Large deviations in the position, while maintaining
normal odometry error, could indicate position spoofing.
Thus, we use two conditions: eG

t+1 must remain below
threshold T2, while the positional deviation Pt+1 must exceed
threshold T3.

Odometry Spoofing: eG
t+1 > T1

Position Spoofing: eG
t+1 < T2 and Pt+1 < T3

C. Local Inconsistency Modeling

Local inconsistency modeling primarily addresses state
estimation errors caused by object detection modules. These
errors may result from attacks such as obstacle appearance,
obstacle hiding, or object misclassification. Such attacks
affect the robot’s perception at the local level, often leading
to incorrect decisions related to navigation and obstacle
avoidance.
Feature Extraction (Θ). The local feature extraction process
builds upon (2) by introducing bounding box constraints.
Specifically, we focus on the feature points that fall within
the detected bounding boxes for objects in the scene. Let
kL

t represent the set of local feature points at time t, which
includes all feature points within the bounding box of a
detected object. This can be expressed as:

kL
t = {ki |ki ∈ k and (kx

i ,k
y
i) ∈ BoundingBox} (7)

Here, kL
t represents the subset of feature points k that lie

within the bounding box of a detected object. The bounding
box serves as a spatial constraint that defines the region of
interest for local feature extraction. These local features are
critical for detecting inconsistencies at the object level, where
perception-level attacks are likely to manifest.
Feature Prediction (Φ). The local feature prediction process
is similar to the global feature prediction process, but there
are two key differences. First, the reprojection function Γ in
(2) is not based on past consecutive keyframes, but rather
on frames. This adjustment is necessary because the number
of local feature points kL

t is significantly smaller than the
number of global feature points kt . Thus, the reprojected 3D
map point ML

t using keyframes are limited, increasing the
likelihood of errors. To mitigate this issue, we reproject the
local feature points kL

t from two consecutive frames into 3D
map points ML

t .
Second, the transformation matrix T L

t in (4) for local map
points must account for the relative motion between the de-
tected object and the robot itself. This is in contrast to global
modeling, where the robot’s motion alone is considered. The
relative position changes between the moving object and
the robot can be captured by the robot’s perception module,
which integrates data from sensors such as LiDAR, cameras,
or radar.
Inconsistency Estimation (ρ). The local inconsistency es-
timation process follows the same approach as the global
inconsistency estimation process. We use (6) to obtain a set
of matching pairs (ẑL

i ,z
L
i) within the bounding box. These

matching pairs represent the predicted 2D points ẑL
i from the

Carla Apollo

Detector

Malicious DataTarget ChannelAttack Goal

(1, y, z, qx, qy, qz, qw)/localization/poseOdometry Spoofing

(x, y+0.2, z, qx, qy, qz, qw)/localization/posePosition Spoofing

Yolo4BBoxes(999, 999, z,)/apollo/perception/obstaclesObstacle Hiding

Yolo4BBoxes(object class: bird, ...)/apollo/perception/obstaclesObject Misclassification

Fig. 3. Experiment setup of simulation.

reprojected 3D map points ẑL
t+1 and the observed 2D points

zL
i extracted from the current frame. After establishing the

matching pairs, we compute the corresponding local mean
error eL

t+1, which quantifies the local inconsistency at time
t +1.
Local Inconsistency Checking. The primary goal of local
inconsistency modeling is to detect obstacle hiding and
object misclassification attacks. These attacks specifically
affect the robot’s perception of objects within its environ-
ment, leading to potential hazards in decision-making and
navigation. Specifically, In an obstacle hiding attack, an
obstacle may suddenly disappear from the robot’s perception
due to an erroneous state estimate. When this occurs, the
corresponding bounding box is no longer detected in the
camera feed. To address this, we use the local transformation
matrix T L

t to predict the expected position of the bounding
box for the next time step. We then compute the local mean
error eL

t+1 for the predicted bounding box position. If the
error eL

t+1 below a certain threshold T4, it indicates that the
object should still be present in the scene, but its detection
has failed. This discrepancy allows us to detect that an
obstacle hiding attack has occurred.

On the other hand, in an object misclassification attack,
the semantic label of an object is incorrectly changed, such
as mistaking a pedestrian for a signpost. In such cases,
the object’s visual appearance may remain consistent across
consecutive frames, and the local mean error eL

t+1 might
not increase significantly. However, if we observe that the
semantic label of the object has changed while the local mean
error eL

t+1 remains below the threshold T4, we can detect
that an object misclassification attack has occurred. This
combination of low local error and semantic inconsistency
indicates a misclassification.

Obstacle Hiding: eL
t+1 < T4 and Obstacle Disappears

Object Misclassification: eL
t+1 < T4 and Object Changes

All these threshold T1, T2, T3 and T4 are determined empiri-
cally based on system performance and the robot’s mechan-
ical parameters. IHowever, based on extensive experiments
conducted on different platforms, we have verified that var-
ious metrics exhibit significant differences between normal
and attack scenarios, making it easy to identify attacks using
predefined threshold values. In this paper, we choose 40, 20,
20, and 20 as the default values for these thresholds.

RealSe
nse 11

Fig. 4. Experiment setup of real-world scenarios.

IV. EVALUATION

A. Experiment Setup

We employ our methodology as an evaluation tool, inte-
grating it with the simulation and real-world scenarios.
Simulation. As depicted in Figure 3, we use Apollo 7.0
and the Carla simulator, each running in separate Docker
environments. Apollo collects environmental and robot data
from Carla to plan routes and calculate velocities, while
Carla handles the actual robot movement. Our attack detector
operates in the same Docker container as Apollo, receiving
sensor data such as images and pose information through a
bridge using the Apollo Cyber module, which converts and
transfers data between components. All simulations are run
on a high-performance server with an Intel i9-10900 CPU,
32GB of RAM, and an NVIDIA GeForce RTX 2080Ti GPU.

In our attack model, we assume the attacker has the
ability to manipulate the robot’s internal state directly. This
is achieved by identifying and hijacking target channels in
Apollo, redirecting data to malicious nodes. The red dotted
box in Figure 3 illustrates how the attacker remaps sensor
data channels, injecting malicious data into the system. This
approach allows us to simulate robust and stealthy sensor
spoofing attacks that are difficult to detect, providing a
thorough test of our detection system’s robustness. Addi-
tionally, this method gives us flexibility to simulate various
attack scenarios at different times and locations, allowing for
comprehensive evaluation under diverse conditions.
Real-World Scenarios. As illustrated in Figure 4, we utilize
a physical unmanned ground vehicle (UGV) equipped with
an Intel RealSense D435i front-facing camera, capturing
1080p images at 30fps, and a Bosch BMI055 6-axis IMU
integrated into the onboard system. In our real-world ex-
periments, we simulate both obstacle hiding and object
misclassification attacks using adversarial patches applied
to stop signs. For the obstacle hiding attack, the patch was
placed on an indoor door, and the UGV was driven towards
it to evaluate how well the system detected and reacted to the
hidden obstacle. The object misclassification attack involved
attaching the adversarial patch directly to a stop sign, causing
the system to misidentify the object.

B. Evaluation on Simulation

Odometry Spoofing: In this attack, we incrementally added
an offset (+0.2) to the robot’s y–coordinate starting from
the 100th frame, while leaving the x and z coordinates
unchanged. As shown in Figure 5(a), this caused the AV
to miscalculate its position and veer to the right to correct
its lane, eventually colliding with a roadside obstacle. The

20 40 60 80 100 120 140 160 180 200
0
2
4
6
8

10

40
60
80

100 position-x deviation error

Frame

Frame 100
Attack Launch

Frame 110
Attack End

Deviation
Threshold: 20

20 40 60 80 100 120 140 160 180 200
-5

0

5

10

50

100

150 position-y error

Frame

Frame 100
Attack Launch

Frame 110
Attack End

Error
Threshold: 40

20 40 60 80 100
0.00
0.02
0.04
0.06
0.08
0.10
0.9
1.0
1.1

9
10
11 Obstacle Detected error

Frame

Frame 50
Attack Launch

Error
Threshold: 10

20 40 60 80 100
0.00
0.02
0.04
0.06
0.08
0.10

9

10

11 error

Frame

Frame 50
Attack Launch

Error
Threshold: 10

Correct Classification
*** CAR ***

Mis-Classification
*** BIRD ***

(a) Odometry Spoofing (b) Position Spoofing (c) Obstacle Hiding (d) Object Misclassification
Fig. 5. Experiment result of four attack goals in simulation.

TABLE I
SUCCESS RATE AND LATENCY COMPARISON.

Success Rate Latency (ms)Method Without Foggy Foggy PS OS OH OM
DetectorGuard [38] 74% (OH) 0% 7 7 119 7

PerceptGuard [43] 99% (OM) 0% 7 7 7 435
Our Detector 99.5% (Total) 0% 82 75 64 66

y-coordinate was restored at the 110th frame. The corre-
sponding optimization error surged to 132, far exceeding the
threshold of 40, making the attack easily detectable.
Position Spoofing: For the position spoofing attack, the
robot’s x-coordinate was altered from its original value to
1 over ten frames, starting from frame 100. The y and z-
coordinates remained unchanged. This manipulation resulted
in a significant pose deviation, as shown by the red triangles
in Figure 5(b), exceeding the threshold of 20. Despite the
attack, the optimization error remained normal, as the spatial
continuity of the environment was maintained.
Obstacle Hiding: We launched an obstacle hiding attack
by injecting malicious data that shifted the position of a
target robot, effectively making the bounding box disappear.
Figure 5(c) demonstrates how the predicted box is used to
extract keypoints for attack detection. The robot fails to
detect the obstacle and continues moving, resulting in a
collision. The error value remained below the threshold of
10, which allowed us to detect the attack in real-time.
Target Semantic Confusion: In this attack, the classification
of a vehicle in front of the robot was maliciously changed
from a car to a bird. As shown in Figure 5(d), the misclas-
sification led the robot to ignore the forward vehicle and
continue moving, eventually causing a collision. Despite the
object’s misclassification, the error between the projected 3D
map points and extracted 2D keypoints remained low, as the
object’s spatial consistency was maintained. This behavior
can be used to detect object misclassification attacks.
False Positives Analysis We evaluated the false positives of
our detector under different environmental conditions (sunny,
rainy night, light, and heavy fog) using the Carla platform.
For each spoofing attack and scenario, we conducted ten
simulations with varied starting positions and obstacles. We
recorded the attack detection success rate and the delay
between the attack initiation and successful detection. Our
detector was compared against two state-of-the-art defense
frameworks: DetectorGuard [38] and PercepGuard [43],
which use certified defense and vision-based consistency
checking, respectively.

Table I presents the results. Our detector outperformed
the others in several key areas: (i) It achieved a 99.5%

20 40 60 80 100
0.00
0.02
0.04
0.06
0.08
0.10

9

10

11 error

Frame

Frame 50
Attack Launch

Error
Threshold: 10

Correct Classification
*** Stop Sign ***

Mis-Classification
*** Sports Ball ***

20 40 60 80 100
0.00
0.02
0.04
0.06
0.08
0.10
0.9
1.0
1.1

9
10
11 error

Frame

Frame 50
Attack Launch

Error
Threshold: 10

Obstacle Detected

(a) Obstacle Hiding (b) Object Misclassification

Fig. 6. Experiment result of patched-based attack goals in real world.

success rate for detecting all spoofing attacks, while the
other methods showed lower success rates, particularly in
foggy scenarios. False positives were observed in highway
settings due to the reduced number of stable map points
when the vehicle’s speed increased, causing mismatches and
triggering false alarms in global shifting attacks. However,
all defense frameworks, including ours, failed under foggy
conditions, primarily due to the limitations of YOLOv4 and
the impaired performance of ORB-based feature extraction
in such environments. This led to flickering bounding boxes
and false detections. We believe future improvements in
object detection algorithms and the integration of multi-
modal techniques [55]–[57] will enhance robustness and
reduce false positives. (ii) Our detector, with minimal compu-
tational overhead, can detect attacks within 100ms, providing
a critical safety margin for the victim vehicle.

C. Case Study on Physical Scenarios

Figure 6 illustrates the variation of errors in our detector
under different attack scenarios, along with the correspond-
ing detection results. We can observe that even in different
attack scenarios conducted in real-world environments, our
proposed error metric demonstrates strong robustness. The
triggers in the real-world setting did not significantly im-
pact the detection outcomes of our detector. The rationale
behind this observation is the invariance of spatio-temporal
consistency in the trigger-based scenario. Since the trigger is
deployed in the physical environment, it can be considered
as a single entity with the environment.

V. CONCLUSION

In this paper, we introduced a novel detection mechanism
for perception-based attacks using inconsistency modeling
with the visual odometry. By quantifying both global and
local inconsistencies, our method successfully detects various
attacks, including odometry and position spoofing, obstacle
hiding, and object misclassification. Extensive evaluations
conducted in both simulated and real-world environments
demonstrated the effectiveness of our approach, achieving
a high detection success rate and low latency.

REFERENCES

[1] Y. Xu, X. Han, G. Deng, G. Li, Y. Liu, J. Li, and T. Zhang, “Sok:
Rethinking sensor spoofing attacks against robotic vehicles from a
systematic view,” in EuroSP, 2023.

[2] Y. Son, H. Shin, D. Kim, Y.-S. Park, J. Noh, K. Choi, J. Choi, and
Y. Kim, “Rocking drones with intentional sound noise on gyroscopic
sensors,” in USENIX Security Symposium, 2015.

[3] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut:
Waging doubt on the integrity of mems accelerometers with acoustic
injection attacks,” in EuroSP, 2017.

[4] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabricating
implicit control over actuation systems by spoofing inertial sensors,”
in USENIX Security Symposium, 2018.

[5] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen, “Seeing
isn’t believing: Towards more robust adversarial attack against real
world object detectors,” in CCS, 2019.

[6] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei,
“Fooling detection alone is not enough: Adversarial attack against
multiple object tracking,” in International Conference on Learning
Representations, 2020.

[7] P. Jing, Q. Tang, Y. Du, L. Xue, X. Luo, T. Wang, S. Nie, and S. Wu,
“Too good to be safe: Tricking lane detection in autonomous driving
with crafted perturbations,” in USENIX Security Symposium, 2021.

[8] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen,
M. Liu, and B. Li, “Invisible for both camera and lidar: Security
of multi-sensor fusion based perception in autonomous driving under
physical-world attacks,” in IEEE S&P, 2021.

[9] Y. Xu, G. Deng, X. Han, G. Li, H. Qiu, and T. Zhang, “Physcout:
Detecting sensor spoofing attacks via spatio-temporal consistency,” in
CCS, 2024.

[10] Z. Wang, K. Wang, B. yang, S. Li, and A. Pan, “Sonic gun to smart
devices,” in Black Hat USA, 2017.

[11] S. Nashimoto, D. Suzuki, T. Sugawara, and K. Sakiyama, “Sensor
con-fusion: Defeating kalman filter in signal injection attack,” in ACM
AsiaCCS, 2018.

[12] V. Dey, V. Pudi, A. Chattopadhyay, and Y. Elovici, “Security vul-
nerabilities of unmanned aerial vehicles and countermeasures: An
experimental study,” in International Conference on VLSI Design,
2018.

[13] D. He, H. Liu, S. Chan, and M. Guizani, “How to govern the non-
cooperative amateur drones?” IEEE Network, 2019.

[14] D. He, Y. Qiao, S. Chen, X. Du, W. Chen, S. Zhu, and M. Guizan, “A
friendly and low-cost technique for capturing non-cooperative civilian
unmanned aerial vehicles,” IEEE Network, 2019.

[15] Z. Jin, X. Ji, Y. Cheng, B. Yang, C. Yan, and W. Xu, “Pla-lidar: Physi-
cal laser attacks against lidar-based 3d object detection in autonomous
vehicle,” in IEEE Symposium on Security and Privacy, 2023.

[16] Y. Zhu, C. Miao, T. Zheng, F. Hajiaghajani, L. Su, and C. Qiao,
“Can we use arbitrary objects to attack lidar perception in autonomous
driving?” in ACM CCS, 2021.

[17] Z. Cheng, J. Liang, H. Choi, G. Tao, Z. Cao, D. Liu, and X. Zhang,
“Physical attack on monocular depth estimation with optimal adver-
sarial patche,” in ECCV, 2022.

[18] L. Huang, C. Gao, Y. Zhou, C. Xie, A. L. Yuille, C. Zou, and N. Liu,
“Universal physical camouflage attacks on object detectors,” in CVPR,
2020.

[19] Z. Wu, S.-N. Lim, L. S. Davis, and T. Goldstein, “Making an
invisibility cloak: Real world adversarial attacks on object detectors,”
in European Conference on Computer Vision, 2020.

[20] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen,
Y. Wang, and X. Lin, “Adversarial t-shirt! evading person detectors
in a physical world,” in ECCV, 2020.

[21] Y. Man and M. Li, “Ghostimage: Remote perception attacks against
camera-based image classification systems,” in International Sympo-
sium on Recent Advances in Intrusion Detection, 2020.

[22] G. Lovisotto, H. Turner, I. Sluganovic, M. Strohmeier, and I. Marti-
novic, “Slap: Improving physical adversarial examples with short-lived
adversarial perturbations,” in USENIX Security Symposium, 2021.

[23] K. Eykholt, I. Evtimov, E. Fernandes, A. R. Bo Li, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification,” in CVPR, 2018.

[24] D. Song, K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
F. Tramèr, A. Prakash, and T. Kohno, “Physical adversarial examples
for object detectors,” in Workshop on Offensive Technologies, 2018.

[25] Z. Kong, J. Guo, A. Li, and C. Liu, “Physgan: Generating physical-
world-resilient adversarial examples for autonomous driving,” in
CVPR, 2020.

[26] J. Wang, A. Liu, Z. Yin, S. Liu, S. Tang, and X. Liu, “Dual atten-
tion suppression attack: Generate adversarial camouflage in physical
world,” in CVPR, 2021.

[27] C. Yan, Z. Xu, Z. Yin, X. Ji, and W. Xu, “Rolling colors: Adversarial
laser exploits against traffic light recognition,” CoRR, 2022.

[28] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and
Y. Elovici, “Phantom of the adas: Securing advanced driver-assistance
systems from split-second phantom attacks,” in ACM CCS, 2020.

[29] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky, O. Drokin, and
Y. Elovici, “Phantom of the adas: Phantom attacks on driver-assistance
systems,” IACR Cryptology ePrint Archive, 2020.

[30] R. Duan, X. Mao, A. K. Qin, Y. Chen, S. Ye, Y. He, and Y. Yang,
“Adversarial laser beam: Effective physical-world attack to dnns in a
blink,” in CVPR, 2021.

[31] W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu, “I can see the
light: Attacks on autonomous vehicles using invisible lights,” in ACM
CCS, 2021.

[32] W.-Y. Lin, F. Sheikholeslami, J. Shi, L. Rice, and J. Z. Kolter,
“Certified robustness against physically-realizable patch attack via
randomized cropping,” ICLR Open Review, 2021.

[33] P. yeh Chiang, R. Ni, A. Abdelkader, C. Zhu, C. Studer, and T. Gold-
stein, “Certified defenses for adversarial patches,” in ICLR, 2020.

[34] A. Levine and S. Feizi, “(de)randomized smoothing for certifiable
defense against patch attacks,” in NeurIPS 2020.

[35] C. Xiang, A. N. Bhagoji, V. Sehwag, and P. Mittal, “Patchguard: A
provably robust defense against adversarial patches via small receptive
fields and masking,” in USENIX Security Symposium, 2021.

[36] C. Xiang and P. Mittal, “Patchguard++: Efficient provable attack
detection against adversarial patches,” in CoRR abs/2104.12609, 2021.

[37] J. H. Metzen and M. Yatsura, “Efficient certified defenses against patch
attacks on image classifiers,” in ICLR, 2021.

[38] C. Xiang and P. Mittal, “Detectorguard: Provably securing object
detectors against localized patch hiding attacks,” in ACM CCS, 2021.

[39] S. Li, S. Zhu, S. Paul, A. K. Roy-Chowdhury, C. Song, S. V.
Krishnamurthy, A. Swami, and K. S. Chan, “Connecting the dots:
Detecting adversarial perturbations using context inconsistency,” in
ECCV, 2020.

[40] M. Yin, S. Li, Z. Cai, M. S. A. Chengyu Song, A. K. Roy-Chowdhury,
and S. V. Krishnamurthy, “Exploiting multi-object relationships for
detecting adversarial attacks in complex scenes,” in IEEE ICCV, 2021.

[41] N. M. Gürel, X. Qi, L. Rimanic, C. Zhang, and B. Li, “Knowledge en-
hanced machine learning pipeline against diverse adversarial attacks,”
in ICML, 2021.

[42] C. Xiao, R. Deng, B. Li, T. Lee, B. Edwards, J. Yi, D. Song, M. Liu,
and I. M. Molloy, “Advit: Adversarial frames identifier based on
temporal consistency in videos,” in IEEE ICCV, 2019.

[43] Y. Man, R. Muller, M. Li, Z. B. Celik, and R. Gerdes, “That person
moves like a car: Misclassification attack detection for autonomous
systems using spatiotemporal consistency,” in USENIX Security Sym-
posium, 2023.

[44] Q. Xiao, X. Pan, Y. Lu, M. Zhang, J. Dai, , M. Yang, and F. University,
“Exorcising wraith: Protecting lidar-based object detector in automated
driving system from appearing attacks,” in USENIX Security Sympo-
sium, 2023.

[45] J. Zhang, Y. Zhang, K. Lu, J. Wang, K. Wu, X. Jia, and B. Liu,
“Detecting and identifying optical signal attacks on autonomous
driving systems,” IEEE Internet Things, 2021.

[46] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in EuroSP, 2016.

[47] N. Carlini and D. A. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection method,” in AISec@CCS, 2017.

[48] ——, “Towards evaluating the robustness of neural networks,” in IEEE
Symposium on Security and Privacy, 2017.

[49] D. Nistér, O. Naroditsky, and J. R. Bergen, “Visual odometry,” in
CVPR, 2004.

[50] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robotics & Automation Magazine, 2011.

[51] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A
versatile and accurate monocular slam system,” IEEE Trans. Robotics,
2015.

[52] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” in ECCV, 2014.

[53] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in European Conference on Computer Vision, 2006.

[54] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in IEEE ICRA,
2011.

[55] Y. Zhang, J. Chen, and D. Huang, “Cat-det: Contrastively augmented
transformer for multi-modal 3d object detection,” in CVPR, 2022.

[56] Q. Cai, Y. Pan, T. Yao, C.-W. Ngo, and T. Mei, “Objectfusion: Multi-
modal 3d object detection with object-centric fusion,” in ICCV, 2023.

[57] L. Wang, X. Zhang, Z. Song, J. Bi, G. Zhang, H. Wei, L. Tang,
L. Yang, J. Li, C. Jia, and L. Zhao, “Multi-modal 3d object detection
in autonomous driving: A survey and taxonomy,” IEEE Transactions
on Intelligent Vehicles, 2023.

