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Abstract
Semi-supervised Federated Learning (SSFL) al-
lows clients to collaboratively train a global
model in the absence of their local data labels.
The key step of SSFL is the re-labeling where
each client adopts two types of available mod-
els, namely global and local models, to re-label
the local data. While various technologies such
as using the global model or the average of
two models have been proposed to conduct the
re-labeling step, little literature delves deeply
into the performance dominance and limitations
of the two models. This paper first theoreti-
cally and empirically demonstrate that the local
model achieves higher re-labeling accuracy over
local data while the global model can progres-
sively improve the re-labeling performance by
introducing the extra knowledge of other clients.
Based on these, we propose BSemiFL which
re-labels the local data via the collaboration be-
tween the local and global model in a Bayesian
approach. Specifically, to re-label any given local
sample, BSemiFL first uses Bayesian inference
to assess the closeness of the local/global model
to the sample. Then, it applies a weighted com-
bination of their pseudo labels, using the close-
ness as the weights. Theoretical analysis shows
that the labeling error of our method is smaller
than that of simply using the global model, the lo-
cal model, or their simple average. Experiments
show that BSemiFL improves the performance
by up to 9.8% as compared to existing methods.
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1. Introduction
Federated learning (FL) enables the collaboration of mul-
tiple clients to train a global model without sharing their
private dataset (Hu et al., 2024a; Huang et al., 2024a; Qi
& et al., 2025; Liu et al., 2024), gaining much attention
recently and being applied to a wide range of applications
such as traffic prediction(Zhang et al., 2024a), recommen-
dation (Yang et al., 2024), and IoT (Liu et al., 2021a). How-
ever, typical FL (McMahan et al., 2017) presumes that each
client possesses labels for their data, a requirement which
may not align with practical realities in numerous applica-
tions, especially when most clients may not be experts in
the task of interest or may not be well motivated to label
their data. To tackle this challenge, Semi-supervised FL
(SSFL) (Diao et al., 2022; Jeong et al., 2021; Zhuang et al.,
2021) comes to the rescue, by allowing clients to have ac-
cess to purely unlabeled data while maintaining a small
amount of labeled data in the server.

SSFL typically runs the re-labeling and local training steps
in each client and then conducts the aggregation step in the
server, as shown in Figure 1. Although the process is easy
to implement, the re-labeling error of the local data is in-
evitable, thus degrading the performance. To improve the
SSFL performance, many approaches have been proposed
from the re-labeling step (Diao et al., 2022), local training
step (Malaviya et al., 2023; Lee et al., 2024), and aggrega-
tion step (Wang et al., 2023b) separately. In this paper, we
mainly focus on the re-labeling step by considering that it
can directly reduce the error of pseudo labels.

The representative re-labeling technique (Diao et al., 2022)
is to adopt the global model to re-label the local data. While
easy to implement, the upper bound of its performance
is inevitably limited by adaptation error of global model,
which arises from the substantial gap between the global
and the local data distribution (Hu et al., 2024b; Huang
et al., 2024b; Qi et al., 2023; Wang et al., 2023a; Tang et al.,
2022). To reduce the adaptation error, a natural solution is
to adopt the local model re-label the local data, where the
local model is trained with the local data and adapts better
than the global model. Yet, we find that merely utilizing
the local model leads to a less optimal global model than
using the global model. We identify that the underlying
principle behind this is that the data knowledge embodied
by the local model is inherently solidified to its own small
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Figure 1. The framework of SSFL.

local dataset, which cannot be optimized by referring extra
knowledge from other clients.

Considering the above limitations, we propose BSemiFL
which uses a Bayesian-based approach to jointly utilize the
ensemble of the global and local model to label the lo-
cal data to harness both their benefits. Instead of adopt-
ing a naively averaging ensemble where the correctness of
pseudo labels heavily depends on the prediction of both
models, BSemiFL performs the ensemble in a weighted
manner where the weights are adaptively calculated for
each sample using a Bayesian approach. More specifically,
BSemiFL adopts the Bayesian approach to infer the close-
ness of the local sample to the training data distribution of
the local or global model and sets the weights based on the
closeness. The principle behind this is that the model tends
to correctly predict the label of a sample when the given
sample is closer to its training data. Therefore, BSemiFL
can assign a higher weight to the global/local model when
the given sample is closer to the global/local training data,
thus being able to reduce the impact of wrong pseudo la-
bels. Extensive experiments show that the BSemiFL sig-
nificantly improves the model accuracy as compared to
state-of-the-art algorithms. Our contributions are:

• As far as we know, this is the first work that theoretically
reveals why merely adopting the global or local model is
not optimal for labeling local data, which are also vali-
dated by our empirical evaluations. Specifically, the main
causes are that the distribution gap between the global
data and local data limits the performance of the global
model over the local data and the error of the local model
can not be corrected by is local data.

• We propose a novel method called BSemiFL which
jointly leverages the global and local model to label the
local data via a Bayesian approach. In particular, we
employ a Bayesian-based approach to adaptively discern

the closeness of the global and local model to each local
sample, and then we apply a weighted ensemble of the
global and local model for labeling the local data where
the weights are the obtained confidence.

• We establish the theories for re-labeling performance of
the proposed method. Our results show that BSemiFL
theoretically reduces the labeling error as compared to
the maximum error of merely adopting either the global
or local model. Besides, we also theoretically show
that our Bayesian-based weighted ensemble achieves a
smaller loss than naively averaging.

• We conduct extensive experiments across a diverse array
of datasets and experimental configurations. The out-
come robustly substantiates the superiority of our pro-
posed method, demonstrating an improvement in model
accuracy that reaches up to 9.8% compared with the cur-
rent state-of-the-art methodologies.

2. Related Work
2.1. Semi-supervised Federated Learning

Existing SSFL frameworks can be categorized into two
types according to the location of the labeled data, i.e., “la-
bels at client” (Zhang et al., 2024b; Bai et al., 2024; Zhu
et al., 2024) and “labels at server”. SSFL of “labels at
client” considers labeled data are available at local clients
(Kim et al., 2023; Itahara et al., 2023; Xu et al., 2024;
Zhang et al., 2023a;b; Cho et al., 2023). The first work of
this type FedMatch (Jeong et al., 2021) assumes that each
client contains both labeled and unlabeled data and em-
ploys a consistency method from semi-supervised learning,
enhancing cross-model intra-client consistency by select-
ing proxy helpers among the clients. FedAC (Jiang et al.,
2024) identifies that using the models of similar and dissim-
ilar clients to label the unlabeled data has different advan-
tages, thus proposing alternatively leveraging the models
of similar and dissimilar clients to label the unlabeled data,
which demonstrates great effectiveness. Considering the
discrepancy of clients that some clients may not be able to
label the data while other clients are available, some works
(Lin et al., 2021; Liang et al., 2022; Liu et al., 2021b) also
focus on the setting where clients are fully labeled while
some clients only contain unlabeled samples.

In this paper, we focus on the second type of SSFL, i.e.,
“labels at server”, by considering that it is generally prac-
tical in real-world FL scenarios, e.g., in the healthcare
field where the labels are mostly assigned by experts and
users usually are not able to label their health monitoring
data (Lee et al., 2024; Malaviya et al., 2023; Yang Xu,
2023; Yang et al., 2023). SSFL of “labels at server” as-
sumes that clients have purely unlabeled data with a limited
amount of labels residing at the central server ((Lin et al.,
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2021; He et al., 2021; Zhang et al., 2021)); The represen-
tative work SemiFL (Diao et al., 2022) innovates with an
alternative training regimen that re-trains the global model
in the server and labels the local data with the global model.
Being different from SemiFL, we leverage an Bayesian-
based collaboration between the global model and the lo-
cal model to re-label local data. A subsequent work (FL)2

(Lee et al., 2024) utilizes the idea of contrastive learning
to improve the local training process. Considering that
the client may be resource-constrained, pFedKnow (Wang
et al., 2023b) proposes compressing the local models to re-
duce the computation and communication cost of SSFL.
Different from these works, this paper focuses on the re-
labeling step, which is orthogonal to them.

2.2. Unsupervised Federated Learning

Unsupervised federated learning (UFL) does not assume
the existence of labeled data in either the server or clients
during the training process. Since contrastive learning is
the main technology for learning in unlabeled data (Li
et al., 2021; Zheng et al., 2022), many works (Zhuang
et al., 2021; 2022) propose applying the contrastive learn-
ing methods over the scenario of UFL. For example,
FedU (Zhuang et al., 2021) allows each client to adopt a
conservative learning loss during the local training process.
Orchestra (Lubana et al., 2022) addresses the challenge
of NonIID data by adopting a client clustering approach,
thereby mitigating the adverse effects caused by data het-
erogeneity among clients. These works typically focus on
Step 2 as illustrated in Figure 1, which is orthogonal to this
work that seeks to improve Step 1.

3. Problem Formulation and Preliminaries
Problem Formulation. Semi-supervised federated learn-
ing is to collectively train a global model w that adapts
to the global data distributed in M clients. In SSFL, the
server has access to a labeled dataset S = {(xi, yi)}Ns

i=1

with Ns samples. Each client m has access to a distinct
unlabeled dataset Um = {xm

i }Nm
i=1 with Nm samples where

the true label ymi does not exist. We consider a K-class
classification task in the SSFL and denote f(x,w) by the
K-dimensional soft prediction output by the model w us-
ing the softmax function.

Basic workflow of SSFL. For simplicity and clarity, we
here specify the basic four steps of SSFL, as illustrated in
Figure 1. In each round t, after receiving the global model
wt from the server, corresponding to 1⃝ in Figure 1, each
selected client m starts to generate pseudo labels ŷmi for
each local sample xi by using the model w̃m

t :

ŷmi = f(xm
i , w̃m

t ), (1)

where the adopted re-labeling model can either be the

global model wt, local model wm
t , or be their combina-

tions. To construct a high-confidence dataset Sm, each
client uses a threshold to filter out labels with low confi-
dence values like FixMatch (Sohn et al., 2020):

Sm = {(xm
i , I(ŷmi )) with max(ŷmi ) ≥ τ}, (2)

where I(·) is to transform the vector ŷmi into the one-hot
label vector with only remaining the maximum probabil-
ity. 0 < τ < 1 is a threshold pre-selected by all clients.
max(ŷmi ) denotes the maximum confidence among all K
classes. With the constructed labeled dataset, as illustrated
in 2⃝ of Figure 1, client m trains its local model for E local
epochs to obtain the local model:

Lm = l(f(xm
i ,wt), I(ŷmi )), wm

t = wm
t − η∇wm

t
Lm.

(3)

After that, as presented by 3⃝ in Figure 1, each client m
uploads its local model wm

t to the server and server aggre-
gates them to obtain the t+ 1-th round global model

wt+1 =

Mt∑
m=1

Sm

St
wm

t , (4)

where St =
∑Mt

m=1 Sm and Sm denotes the size of Sm.
Finnally, corresponding to 4⃝ in Figure 1, the server fine-
tunes the global model wt+1 with the loss Ls for E epochs:

Ls= l(f(xi,wt+1), yi),wt+1=wt+1−η∇wt+1Ls, (5)

where l represents the loss function (e.g., Cross Entropy
loss) and η denotes the learning rate.

4. Motivation
This section specifies the limitations and benefits of the
global model and local model for re-labeling the local data.
For simplicity, we below denote the SSFL method of re-
labeling with only the global model by ’global-only’ and
with only the local model by ’local-only’. In the follow-
ing, we conduct motivation experiments by using the Wide
ResNet28× 2 model and CIFAR-10 dataset.

4.1. Limitations and benefits of the global model

Limitations of the global model. Specifically, the global
model inherently has generalization errors on local data,
which stem from the differences between the global data
distribution and the local data distribution due to statisti-
cal heterogeneity. To validate this, we run the global-only
method over CIFAR-10 dataset to compare the average ac-
curacy of the global model over the local data of all clients
to that of the local models over their corresponding local
data, where the results are shown in Figure 2a. Noting that
the test data for the global model is the global data, while
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Figure 2. Motivation experiments. (a) The average accuracy of testing the global and local model on local data of all clients separately
when using the global-only method. (b) Comparison between the local-only and global-only methods. The accuracy is to test the global
model on the global test data. (c) The accuracy of the local model on its corresponding local data when using the local-only method.

the test data for the local model is the local data correspond-
ing to its respective client. As can be seen, the accuracy of
the global model over local data is much lower than the
local model. Theoretically, we show that a substantial per-
formance gap exists when only using the global model to
label local data.

Theorem 4.1. Denote the data distribution of each client
m by pm, the empirical distribution of the global dataset
by p̂, and the real distribution of the global data by p. By
using dF∆F (·, ·) to measure the distance between two dis-
tributions, given constants 0 < δ ≤ 1 and σ > 0, with
the probability at least 1 − δ, the expected labeling error
Lpm

(fp̂) of the global hypothesis fp̂ over the local data
distribution pm is bound by:

Lpm
(fp̂) ≤ Lp̂(fp̂)+

√
log 2

δ

2S
+
1

2
dF∆F (pm, p)+λg, (6)

where S =
∑M

m=1 Sm + Ns denotes the total data size
of the global dataset, and λg = Lp(f∗) + Lpm

(f∗) with
f∗ = argminf∈FLp(f) + Lpm

(f).

The proof is deferred to Appendix A. Theorem 4.1 indi-
cates that the labeling performance of the global model
is substantially limited by the gap dF∆F (pm, p) + λg be-
tween the global distribution p and local distribution pm.
As a consequence, merely adopting the global model can-
not fully unleash the performance potential of SSFL.

Benefits of the global model. The global model is trained
by aggregating local models from all clients, where the
generalization error of re-labeling local data can be pro-
gressively reduced with the training process by bringing
extra knowledge. As can be seen from Figure 2a, the re-
labeling accuracy of the global model gradually approaches
the local model. Further, we compare the test accuracy
between the local-only and global-only method over the

global dataset over CIFAR10. As shown in Figure 2b,
the test accuracy of the global-only method is nearly 15%
higher than the local-only method, where the global model
is tested using two different annotation methods, and the
test data used is the global data.

4.2. Limitations and benefits of the local model

The limitation of the local model. Specifically, re-
labeling with the local model suffers from the local knowl-
edge solidification, where in each round, the client trains
the local model based only on the pseudo-labeled data from
the previous round, leading to the updated model merely
inheriting and retaining the previous model’s knowledge
without correcting erroneous labels. To validate this, we
record the accuracy of the local model of each client on its
local data across rounds. We test the local model using its
corresponding local data. As shown in Figure 2c, we ran-
domly present the results of 9 clients for clarity of presen-
tation. As can be seen, there is no change in the accuracy
after the initial stage, indicating that the knowledge of the
local model has been fixed and its error cannot be gradu-
ally corrected by itself. Besides, training the local model
in the local-only method relies on the limited local data in
terms of size, causing a high generalization error. These
also verify that why the test accuracy of the global model
obtained by the local-only method is nearly 15% less than
the global-only method in Figure 2b. A theoretical verifi-
cation is present below.

Theorem 4.2. Let the data distribution of client m be pm
and its empirical distribution be p̂m. Given constants 0<
δ ≤ 1 and σ > 0, with the probability at least 1− δ, the
expected labeling error Lpm

(fp̂m
) of the local hypothesis

fp̂m
over the local data distribution pm is bound by:

Lpm(fp̂m) ≤ Lp̂m(fp̂m) +

√
log 2

δ

2Sm
, (7)
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where Sm denotes the data size of the labeled local dataset.

Theorem 4.2 can be directly derived from Hoeffding in-
equality and we ignore its proofs. Comparing Theorem 4.2
to Theorem 4.1, we can find that the generalization error√

log 2
δ

2Sm
of local-only metho is larger than

√
log 2

δ

2S of the
global-only method due to the limited size of the local data.

Benefits of the local model. The local model adapts bet-
ter to the distribution of the local data than the global
model due to the eliminated distribution gap of training
data. This can be observed by comparing Theorem 4.2 to
Theorem 4.1, where the error items 1

2dF∆F (pm, p) + λg

in Theorem 4.1 does not exists in Theorem 4.2. Figure 2a
also presents that the accuracy of the local model on its lo-
cal data converges faster and higher than the global model.
Therefore, how to harness both the benefits of the small dis-
tribution gap of the local-only method and the small gener-
alization error of the global method is the key.

5. Methodology
In this section, we specify the proposed method which
jointly leverages the global and local model to label the lo-
cal data. The framework of our method is illustrated in Fig-
ure 1 and Figure 3. Our method only refines the re-labeling
process, corresponding to 1⃝ in Figure 1, which is orthogo-
nal to most recent advancements. For clarity of expression,
we here mainly specify the labeling process in this sec-
tion. Overall, the labeling process of BSemiFL consists of
two stages, i.e., calculating the closeness of the global/local
model on each local sample and then using the confidence
values to apply a weighted ensemble of the pseudo labels
generated by the two models. The algorithm workflow can
be found in Appendix B.

5.1. Bayesian-based Closeness

Based on the domain adaptation theory in (Ben-David
et al., 2010), a model tends to achieve low generalization
error when the test data are sampled from the space close
to its training domain. Therefore, we adopt the closeness
of the sample to its training data to measure the correct-
ness. Specifically, we utilize the sampling probability p̂(x)
to represent the closeness of the given sample x to the
global distribution p̂. Obviously, a larger p̂(x) indicates
that there are more similar samples around the area of the
sample x, demonstrating that x is closer to the global data.
To estimate the probability p̂(x), we leverage the Varia-
tional Bayesian Inference to build a negated evidence lower
bound (ELBO). Without causing confusion, we leverage
fp̂(k|x) as the posterior probability of classifying the sam-
ple x into the class k. Further, we denote p(x|k) by the
probability of generating the sample x conditioned on la-

bel k. Then, the ELBO is defined as:

Ns∑
i=1

log p̂(xi)−
Ns∑
i=1

K∑
k=1

fp̂(k|xi) log
p̂(xi|k)p̂i(k)
fp̂(k|xi)

. (8)

By fixing the posterior probability fp̂(k|xi), and consider-
ing facts

p̂(xi) =

K∑
k=1

p̂(xi, k),

Ns∑
i=1

p̂(xi|k) = 1, (9)

minimizing (8) obtains the optimum of p̂(xi|k) which sat-
isfies:

p̂(xi|k) =
fp̂(k|xi)∑Ns

xi=1 fp̂(k|xi)
. (10)

We parameterize fp̂(k|xi) by the global model wt which
is fine-tuned on the global dataset S with empirical distri-
bution p̂, i.e., fp̂(k|xi,wt). Then, when considering any
specific local sample xm

i in the client m, the corresponding
closeness of the global model wt conditioned on the class
k is approximately

Qk
s =

Ns∑
i=1

fp̂(k|xi,wt), p̂(xm
i |k) = fp̂(k|xm

i ,wt)

fp̂(k|xm
i ,wt) +Qk

s

.

(11)

Further, considering the empirical distribution of the la-
beled dataset S in the server as p̂s and approximating the
class prior probability of the server dataset to the global
dataset, i.e., p̂(k) ≈ p̂s(k), we have

p̂(xm
i ) =

K∑
k=1

p̂(xm
i |k)p̂s(k). (12)

To this end, we can obtain the closeness p̂(xm
i ) of the

global model wt on any local sample xi. Similarly, we can
also obtain the closeness p̂m(xi) of the local model wm

t on
any local sample xi as

p̂m(xm
i ) =

K∑
k=1

p̂m(xm
i |k)p̂m(k)

=

K∑
k=1

fp̂m
(k|xm

i ,wm
t )

fp̂m(k|xm
i ,wm

t ) +Qk
m

p̂m(k),

where Qk
m =

Sm∑
i=1

fp̂m(k|xi,w
m
t ). (13)

5.2. Weighted Ensemble of Global and Local Model

After obtaining the closeness p̂(xm
i ) of the global model

and p̂m(xm
i ) of the local model on the local sample xm

i ,
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Figure 3. Framework of BSemiFL with Bayesian-based Ensemble.

the client employs a weighted ensemble of them to generate
pseudo labels. Specifically, each client m first normalizes
the weights:

αm
i =

p̂(xm
i )

p̂(xm
i ) + p̂m(xm

i )
, 1− αm

i =
p̂m(xm

i )

p̂(xm
i ) + p̂m(xm

i )
.

(14)

and then executes:

ŷmi = αm
i fp̂(x

m
i ,wt) + (1− αm

i )fp̂m
(xm

i ,wm
t ). (15)

After that, each client m constructs the high-confidence
dataset Sm and performs local training by conducting
(2),(3), and (4).

Privacy Discussion. Although our method requires more
interaction terms, it does not actually increase the risk
of privacy leakage. Compared to traditional FL meth-
ods, our method only needs to additionally transmit the K-
dimensional probability distribution vector Q of the server-
side public dataset categories on the global model. In the
SSFL scenario, the data on the server side is generally non-
private. Therefore, in practice, our method does not result
in additional client privacy leakage compared to traditional
FL methods.

6. Theoretical Analysis
We below theoretically present the benefits of the
Bayesian-based ensemble. We initiate by juxtaposing the
performance of our method against the global-only or
local-only methods. Then, we show how the weighted en-
semble surpasses the straightforward averaging method.

Theorem 6.1. Denote the hypothesis trained on the empir-
ical distribution of the local dataset p̂m by fp̂m

and the hy-
pothesis trained on the empirical distribution of the global
dataset p̂ by fp̂. For any local data sample x ∼ pm, consid-
ering the Cross-Entropy loss function is adopted, then the
loss of the ensemble between the global and local model is

less than the maximum individual loss of either the global
or local model, i.e.,

L(αfp̂ + (1− α)fp̂m) ≤ max
(
L(fp̂), L(fp̂m)

)
. (16)

Proof is in Appendix A. Theorem 6.1 indicates that jointly
leveraging the global and local model will inherit the bene-
fits of the better one and thus prevent its performance from
becoming the same as the worse one. On the other side,
such an approach may restrict itself from outperforming the
best model, of which the loss on each sample may be larger
than the better one between the global model and the local
model. In other words, the prediction probability (confi-
dence value) of the ensemble model on the ground-truth
label is smaller than an individual model. However, it is
worthwhile to note that a smaller class prediction proba-
bility does not mean worse labeling performance. In fact,
we can accordingly adopt a small threshold (i.e., smaller
τ as specified in equation (2)) when choosing good labels.
This has also been verified by our evaluations as shown in
Figure 5c, where our optimal threshold is 0.8 while the op-
timal threshold of the global-only method is 0.95 as stated
in (Diao et al., 2022). Now, we show that the performance
of the weighted ensemble is better than the naive average.

Theorem 6.2. Consider the same notations of distribution
and hypothesis defined in previous theorems. For each lo-
cal sample x ∼ pm with the ground-truth label y = k,
considering the Cross-Entropy loss function is adopted,
then under the condition that fp̂(k|x) > fp̂m(k|x) when
p̂(x) > p̂m(x) and vice versa, the loss of Bayesian-based
model ensemble is smaller than the direct averaging:

L(αfp̂ + (1− α)fp̂m) ≤ L(
fp̂ + fp̂m

2
). (17)

Proof can be found in Appendix A. Theorem 6.2 demon-
strates the effectiveness of the proposed Bayesian-based
approach. Although this theorem holds under some spe-
cific conditions, we also note that this condition commonly
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Table 1. The comparison of final test accuracy on the two datasets. The best results are bolded.
Method SVHN(%) CIFAR-10(%) CIFAR-100(%)

Shards (M ,S) (100, 2) (100, 4) (100, 8) (100, 2) (100, 4) (100, 8) (100, 2) (100, 4) (100, 8)

SemiFL 88.36±1.11 93.33 ±0.48 92.88 ±2.33 66.34±3.21 76.68±3.20 81.80±2.79 37.73±0.86 42.68±2.12 47.87±1.66
FedMatch 73.50±3.11 73.57±1.34 73.66±1.15 45.43±2.48 45.04±0.47 45.03±1.57 16.89±2.97 17.05±2.94 17.05±3.45
FedU 83.78±1.87 86.50±1.85 86.60±1.74 61.51±1.03 61.62±3.12 65.74±1.66 30.83±2.78 32.23±1.77 33.57±2.09
FedEMA 84.40±0.46 86.62±0.89 85.77±1.68 65.08±2.55 68.23±1.81 66.80±0.43 29.48±2.43 32.86±2.65 33.62±3.08
Orchestra 86.57±1.78 86.99±1.70 87.59±3.20 68.57±2.55 69.09±1.98 69.03±2.35 39.93±2.17 38.95±1.02 38.01±2.60
(FL)2 84.17±1.52 82.78±1.33 87.59±1.35 60.63±2.06 62.61±1.91 61.82±1.73 27.73±3.04 28.47±3.01 29.11±2.93
FedFAME 86.84±0.93 86.39±1.22 87.35±1.71 63.41±1.73 61.86±0.92 62.43±0.53 25.91±1.95 26.05±2.07 25.50±1.09
pFedKnow 56.88±2.73 59.80±2.06 59.58±1.33 59.93±1.75 60.03±1.52 60.57±1.36 19.55±0.75 19.77±1.03 18.80±1.60
Ours 94.52±0.71 96.32±0.93 96.53±0.73 78.31±1.32 82.36±0.91 84.40±0.72 39.09±3.12 43.56±2.24 49.75±2.31

holds according to Bayes’ theorem. Specifically, Bayes’
Theorem states that the posterior probability P (y|x) is
proportional to the generation probability P (x|y), i.e.,
P (y|x) ∝ P (x|y)P (y). As a consequence, by considering
f(y|x) and p(x) as the posterior probability and generation
probability respectively, the condition of Theorem 6.2 is
reasonable. In fact, our evaluation also verifies our theoret-
ical analysis that our Bayesian-based approach outperforms
simply averaging, as shown in Figure 5a.

7. Experiments
7.1. Setup

Datasets and Models. We consider three popular datasets
in experiments, i.e., SVHN (Netzer et al., 2011), CIFAR-
10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky
et al., 2009). which contains 10, 10, 100 classes respec-
tively. We use Wide ResNet28x2 (Zagoruyko & Ko-
modakis, 2016) as our backbone model for CIFAR10
and SVHN datasets and Wide ResNet28x8 for CIFAR100
datasets throughout our experiments, by following the set-
tings of existing SSFL works (Diao et al., 2022). The num-
bers of labeled data at the server for CIFAR10, SVHN, and
CIFAR100 datasets are 500,500,2500 respectively.

Data Partition. We adopt two Non-IID data partition
methods: Shards (McMahan et al., 2017) and Dirichlet (Lin
et al., 2020). In the Shards setting, the sorted samples are
shuffled into M ∗ S shards, and assigned to M clients ran-
domly. Dirichlet distribution uses α to characterize the de-
gree of heterogeneity. We set α of Dirichlet: {0.1, 1, 10}
and shards for each client: {2, 4, 8}.

Baselines. We compare our method against both SSFL and
unsupervised FL methods. UFL includes FedU (Zhuang
et al., 2021), FedEMA (Zhuang et al., 2022) and Orches-
tra (Lubana et al., 2022) while SSFL approaches contain
FedMatch (Jeong et al., 2021), (FL)2 (Lee et al., 2024),
pFedKnow (Wang et al., 2023b), FedFAME (Malaviya
et al., 2023), and SemiFL (Diao et al., 2022). We exclude
the local-only method due to its deficiency.

Implementation. We implement the whole experiment
in a simulation environment based on PyTorch 2.0 and 4
NVIDIA GeForce RTX 3090 GPUs. We use 100 clients in
total and randomly choose 10% each round for local train-
ing. We set the local epoch to 5, batch size to 10, and learn-
ing rate to 3.0e − 2. We employ SGD optimizer with the
momentum of 0.9 and weight decay of 5e− 4 for all meth-
ods and datasets. The number of global communication
rounds is 800. Each experiment is run 3 times and we take
each run’s final 10 rounds’ accuracy to calculate the av-
erage value and standard variance. We set the threshold of
our method to be 0.7. For SemiFL and FedMatch, we adopt
the same thresholds as leveraged in their original paper, i.e.,
0.95 for both SemiFl and for FedMatch.

7.2. Comparison with Baselines

Shards-based NonIID. Table 1 compares results with
baselines in Shards-based Non-IID scenarios. Our pro-
posed BSemiFL consistently achieves best performance
in nearly all settings. For CIFAR-10 with 2 shards,
BSemiFL achieves 78.31% accuracy, outperforming Or-
chestra’s 68.57% by 9.8%, highlighting its effectiveness
with highly non-IID data. However, on CIFAR-100 with
2 shards, Orchestra outperforms BSemiFL. Regarding the
slightly lower average value compared to Orchestra, we be-
lieve this is because Orchestra is a federated self-supervised
learning method. In this specific scenario, its better perfor-
mance is mainly due to the fact that the client data distri-
bution is highly concentrated in a few categories. This lo-
cal consistency makes it easier for local clustering to cap-
ture clear category patterns. Since they focus on Step 2 of
SSFL, Our method can be jointly used with them.

Dirichlet-based NonIID. Figure 4 compares our method
with baselines in Dirichlet NonIID settings. Our method
outperforms most baselines, achieving 76.71% accuracy
vs. SemiFL’s 69.03% ( 7% lower). However, on CIFAR-
10 with α = 10, SemiFL slightly outperforms our method
(88.19% vs. 87.27%). This is because SemiFL uses the
global model to label local unlabeled data, performing bet-
ter when the global model is well-trained (low NonIID).
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Figure 4. The comparison of final test accuracy on the NonIID setting of Dirichlet.
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Figure 5. Results of ablation experiments.

However, SemiFL struggles with high NonIID, while our
method remains robust.

7.3. Sensitivity Analysis and Ablation Study

Impact of Ensemble Strategy. Figure 5 shows abla-
tion experiments on CIFAR-10 using shards(S=2) Non-IID.
Figure 5a compares ensemble strategies: simple averaging,
majority voting, random, and our Bayesian method. Simple
average refers to assigning equal weights (0.5) to the results
produced by the global model and the local model, and then
computing a weighted sum. ’Random’ refers to randomly
assigning two weights to the results produced by the two
models and then computing a weighted sum. ’Majority
Vote’ means that for a given unlabeled data point, we only

assign a pseudo-label if both the global model and the local
model produce the same pseudo-label for that data point.
Our Bayesian method achieves the best performance, in-
dicating the importance of adaptively setting weights for
local and global models.

Impact of Warmup. Figure 5b shows results for various
warm-up rounds: 10, 20, and 100. Global accuracy differs
minimally among methods. Accuracy is nearly identical at
78% for 10 and 20 rounds, but increases to about 79.5%
at 100 rounds. This suggests a longer warm-up period can
modestly enhance performance and overall accuracy.

Impact of Threshold. Figure 5c shows the impact of dif-
ferent threshold settings (0.7, 0.8, and 0.9) in BSemiFL for
generating pseudo labels, with other parameters at default
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Figure 6. Value investigation of weight α among different clients.

values (e.g., 20 warm-up rounds). Results indicate minimal
differences in final convergence accuracy, all around 78%.
This robustness to threshold variations ensures consistent
performance and reduces manual hyperparameter tuning
costs, enhancing practicality for real-world use.

Impact of Labeled Dataset Size. Figure 5d shows the im-
pact of labeled data size (250, 500, 1000 samples) on test
accuracy. Accuracy rises significantly with more labeled
data, but gains diminish as the dataset grows. Increasing
from 250 to 500 samples boosts accuracy from 68% to
78% (a 10% gain), while increasing from 500 to 1000 sam-
ples only improves accuracy from 78% to 81% (a 3%
gain). This indicates diminishing returns, guiding efficient
resource allocation for labeling efforts.

Robustness to Data Heterogeneity. Comparing results of
different degrees of statistical heterogeneity exhibited in
Table 1 and Figure 4, we can find that BSemiFL presents
greater advantages over baselines when the data is more
heterogeneous. For example, our method outperforms
SemiFL by 6% when the shard S = 2 while achieving
an improvement by 4% when the shard S = 8 for SVHN
dataset. Besides, it can also be observed that our method
achieves similar performance under different NonIID set-
tings. For example, the performance of our method ranges
from 95.52% to 96.47% when α ranges from 0.1 to 10.
As a comparison, the performance of SemiFL ranges from
91.56% to 96.29%. The results indicate that our method is
more robust to the degree of NonIID.

Investigation of Weight α. To investigate the values of
weight α during training process, we add the following ex-
periment. When each client is selected for training, we
record the average value of α for all data points in its lo-
cal dataset. We here present the corresponding values for
five randomly selected clients, as shown in Figure 6. As
can be seen, in the initial rounds, the local model achieves
higher accuracy on the local data compared to the global
model, resulting in a relatively smaller weight α for the
global model. In later rounds, the values of α gradually sta-
bilize around 0.5, which aligns with the gradual improve-
ment in the accuracy of the global model.

8. Conclusion
Re-labeling local data is crucial in Semi-supervised Fed-
erated Learning. This paper theoretically and empirically
identifies that using only the global or local model lim-
its performance due to distribution gaps and local errors.
Considering these limits, this paper proposes BSemiFL,
a method that collaboratively re-labels local data using a
weighted ensemble of both models, with weights deter-
mined by a Bayesian approach. Our analysis shows that
the re-labeling loss of BSemiFL is theoretically smaller
than the maximum individual loss of either the global or
the local model. Besides, the labeling loss of the Bayesian-
based ensemble of the global and local models is also the-
oretically smaller than simply averaging them. Empirically
demonstrate that BSemiFL improves the performance by
up to 9.8% as compared to state-of-the-art methods.
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A. Proofs
Preliminary of Theories. Our following analysis relies on the following theorem which bounds the transferring error by
adapting the model of one domain to another domain.

Proposition A.1. (Theorem 1 in (Ben-David et al., 2010)). Considering the distributions ps and pt, for every hypothesis
f ∈ F and any constant δ ∈ (0, 1), with probability at least 1− δ, there exists

Lpt(f) ≤ Lps(f) +
1

2
dF∆F (ps, pt) + λ, (18)

where dF∆F (ps, pt) measures the distance between the distribution ps and pt. Lps(f) denotes the expected labeling error
of the hypothesis f over the data distribution ps, i.e., Lps(f) = Ex∼ps l(f, x), and Lpt(f) has a similar meaning to Lps(f).
λ = Lps

(f∗) + Lpt
(f∗) with f∗ = argminf∈FLps

(f) + Lpt
(f).

Theorem A.2. Denote the data distribution of each client m by pm, the empirical distribution of the global dataset by p̂,
and the real distribution of the global data by p. Given constants 0 < δ ≤ 1 and σ > 0, with the probability at least 1− δ,
the expected labeling error Lpm(fp̂) of the global hypothesis fp̂ over the local data distribution pm is bound by:

Lpm
(fp̂) ≤ Lp̂(fp̂) +

√
log 2

δ

2S
+

1

2
dF∆F (pm, p) + λg, (19)

where S =
∑M

m=1 Sm + Ns denotes the total data size of the global dataset, and λg = Lp(f∗) + Lpm
(f∗) with

f∗ = argminf∈FLp(f) + Lpm
(f).

Proof. For convenience of expression, we denote the hypothesis f(x,w) by f and denote argminf∈F Lp̂(f) by fp̂. Ac-
cording to the Hoeffding inequality, with probability at least 1− δ, there exists

Lp(fp̂) ≤ Lp̂(fp̂) +

√
log 2

δ

2S
. (20)

Then, by denoting the distribution of the local data in client m as pm, based on the Proposition 1, we have

Lpm
(fp̂) ≤ Lp(fp̂) +

1

2
dF∆F (pm, p) + λg, (21)

Jointly considering (20) and (22) together, we have

Lpm(fp̂) ≤ Lp̂(fp̂) +

√
log 2

δ

2S
+

1

2
dF∆F (pm, p) + λg, (22)

which completes the proof.

Theorem A.3. Denote the hypothesis trained on the empirical distribution of the local dataset p̂m by fp̂m and the hypoth-
esis trained on the empirical distribution of the global dataset p̂ by fp̂. For any local data sample x ∼ pm, considering the
Cross-Entropy loss function is adopted, then the loss of the ensemble between the global and local model is less than the
maximum individual loss of either the global or local model, i.e.,

L(αfp̂ + (1− α)fp̂m
) ≤ max

(
L(fp̂), L(fp̂m

)
)
. (23)

Proof. Considering the convexity of the Cross-Entropy loss function in terms of the prediction, for any x ∼ pm, we have

L(αfp̂ + (1− α)fp̂m) ≤ αL(fp̂) + (1− α)L(fp̂m)

≤ max
(
L(fp̂), L(fp̂m)

)
. (24)
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Theorem A.4. Consider the same notations of distribution and hypothesis defined in previous theorems. For each local
sample x ∼ pm with the ground-truth label y = k, considering the Cross-Entropy loss function is adopted, then under
the condition that fp̂(k|x) > fp̂m(k|x) when p̂(x) > p̂m(x) and vice versa, the loss of Bayesian-based model ensemble is
smaller than the direct averaging:

L(αfp̂ + (1− α)fp̂m
) ≤ L(

fp̂ + fp̂m

2
). (25)

Proof. According to the definition of the Cross-Entropy loss, we have

L(αfp̂ + (1− α)fp̂m
)

= − log(α(x)fp̂(k|x) + (1− α(x))fp̂m
(k|x))

= − log
( p̂(x)

p̂(x) + p̂m(x)
fp̂(k|x) +

p̂m(x)

p̂(x) + p̂m(x)
fp̂m(k|x)

)
= − log

(
fp̂(k|x) + fp̂m

(k|x)
2

+
(p̂(x)− p̂m(x))

2(p̂(x) + p̂m(x))

(
fp̂(k|x)−fp̂m

(k|x)
))

≤ − log
(fp̂(k|x) + fp̂m

(k|x)
2

)
= L(

fp̂ + fp̂m

2
), (26)

where the last inequality is derived based on the condition that (p̂(x)− p̂m(x))(fp̂(k|x)− fp̂m
(k|x)) is always positive.

B. Algorithm Workflow
The workflow is presented in Algorithm 1. In lines 4-5, the server first trains the global model on the labeled dataset and
then calculates the sum of sampling probability. Next, in lines 6-8, the server distributes the global model and probability
sum to all selected clients. Each client mainly conducts two main steps as follows.

• Labeling local data (lines 14-21):

1. Each client m calculates the closeness of the global model in lines 16-17;

2. Each client m calculates the closeness of the local model in lines 18-19;

3. Each client m applies an ensemble of the global and local model to construct the labeled dataset in lines 20-22.

• Local training (lines 24-25):

1. Each client m performs local training with labeled dataset for E local epochs;

2. Each client m pushes the local model to the server.

Finally, in lines 9-11, the server aggregates the local models of all participated clients into the global model.
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Algorithm 1 Algorithm workflow of BSemiFL
Input : T : round; M : client number; η: learning rate;

1 Initialize the parameter w0;
In server:
for t = 1 to T do

2 Fine-tune the global model wt on the dataset S;
Calculate the sum of sampling probability of the server dataset S for all K classes: Qk

s =
∑Ns

i=1 fp̂(k|xi,wt);
Randomly select Mt clients;
for each selected client m in parallel do

3 Send the global model wt and probability vector Qs;
Receive the local model wm

t ;

4 end
5 Aggregate local models: wt+1 =

∑Mt

m=1
Sm

St w
m
t ;

6 end
7 In client m:

for each sample xm
i ∈ Um do

8 Calculate the output of the global model fp̂(xm
i ,wt) and of the local model fp̂m

(xm
i ,wt̃m);

Calculate the conditional probability of the global model: p̂(xm
i |k) = fp̂(k|xm

i ,wt)
fp̂(k|xm

i ,wt)+Qk
s

for all classes k = 1, . . . ,K;

Calculate the closeness of the global model: p̂(xm
i ) =

∑K
k=1 p̂(x

m
i |k)p̂s(k);

Calculate the conditional probability of the local model: p̂m(xm
i |k) = fp̂m (k|xm

i ,wm
t )∑Sm

i=1 fp̂m (k|xi,wm
t )

for all K classes;

Calculate the closeness of the local model: p̂m(xm
i ) =

∑K
k=1 p̂m(xm

i |k)p̂m(k);
Normalizes the weights: αm

i =
p̂(xm

i )
p̂(xm

i )+p̂m(xm
i ) , 1− αm

i =
p̂m(xm

i )
p̂(xm

i )+p̂m(xm
i ) ;

Apply an ensemble of the global and local model: ŷmi = αm
i fp̂(x

m
i ,wt) + (1− αm

i )fp̂m(xm
i ,wm

t );
Constructs the dataset Sm by conducting (2);

9 end
10 Update local model wm

t for E local epochs on the labeled dataset Sm: wm
t = wm

t − η∇wm
t
Lm;

Send the model wm
t to the server;
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