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Abstract

By using a control variate to calibrate the local gradient
of each client, Scaffold has been widely known as a pow-
erful solution to mitigate the impact of data heterogeneity
in Federated Learning. Although Scaffold achieves signif-
icant performance improvements, we show that this supe-
riority is at the cost of increased security vulnerabilities.
Specifically, this paper presents BadSFL, the first back-
door attack targeting Scaffold, which turns benign clients
into accomplices to amplify the attack effect. The core idea
of BadSFL is to uniquely tamper with the control vari-
ate to subtly steer benign clients’ local gradient updates
towards the attacker’s poisoned direction, effectively turn-
ing them into unwitting accomplices, significantly enhanc-
ing the backdoor persistence. Additionally, BadSFL lever-
ages a GAN-enhanced poisoning strategy to enrich the at-
tacker’s dataset, maintaining high accuracy on both benign
and backdoored samples while remaining stealthy. Exten-
sive experiments demonstrate that BadSFL achieves supe-
rior attack durability, maintaining effectiveness for over 60
global rounds—Ilasting up to three times longer than exist-
ing baselines even after ceasing malicious model injections.

1. Introduction

Federated Learning (FL) enables distributed model training
while preserving client data privacy. However, the effec-
tiveness of FL models heavily depends on the distribution of
training data across clients. Two scenarios typically arise:
1) IID data, where training data is uniformly distributed
across clients, and 2) non-IID data, a more realistic setting
where data characteristics vary significantly across clients.
For IID scenarios, FedAvg [27] stands out as the leading FL

method, setting the standard for server-side model updates
by aggregating model parameters from clients. However, its
performance deteriorates in non-IID scenarios, where data
heterogeneity causes update drifts from individual clients,
ultimately degrading convergence [22].

To address this challenge, Scaffold [12] was introduced
as a robust FL method designed to mitigate client update
drift through a correction mechanism based on control vari-
ates, thereby enhancing model convergence in non-IID set-
tings. The control variate is essentially an estimate of the
difference between a client’s local gradient and the global
gradient, which helps align the local updates with the global
objective. Scaffold reduces variance in the updates caused
by data heterogeneity, making it particularly effective for
scenarios where clients have diverse data distributions.

However, Scaffold Federated Learning (SFL) not only
changes the way FL models converge but also affects their
robustness against adversarial manipulations. In particular,
malicious clients in FL can exploit model update mecha-
nisms to introduce backdoor behaviors, embedding hidden
misbehavior into the global model [6]. While backdoor at-
tacks have been extensively studied in FL [3, 7, 34, 36, 40],
most existing works focus on IID scenarios where attack-
ers have full knowledge of the dataset distribution and can
easily craft poisoned updates. In contrast, non-IID data dis-
tributions introduce additional constraints, making it harder
for attackers to align poisoned models with the global model
without significantly degrading overall performance. Al-
though recent studies have explored backdoor attacks in
non-1ID FL [2, 10, 29, 42], they have largely overlooked
the unique security implications introduced by SFL. The
question this paper aims to address is: if the new mecha-
nisms of SFL (i.e., control variate for update drift correc-
tion) can bring new security threats, and unintentionally fa-
cilitate backdoor attacks in non-IID settings?
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Figure 1. Model averaging under IID and non-IID scenarios.

Our answer to the above question is affirmative. Our new
insight is that Scaffold’s reliance on control variates in-
troduces a novel attack surface: its correction mechanism,
designed to stabilize training by aligning local updates with
the global objective, can inadvertently amplify the impact
of malicious updates. More critically, this mechanism al-
lows an attacker to influence the control variate itself, effec-
tively co-opting benign clients to “assist in the mischief™.
Since all clients use the control variate to adjust their lo-
cal gradients during updates, a tampered variate can subtly
steer these honest clients’ gradients toward the attacker’s
poisoned direction. This amplifies the backdoor’s reach,
making Scaffold more susceptible to sophisticated attacks
than standard FL methods like FedAvg, which lack such a
correction mechanism.

To exploit the above insight, we propose BadSFL,
a novel backdoor attack specifically targeting Scaffold
Federated Learning, to successfully implant a backdoor
function into a global model without catastrophically cor-
rupting model performance on benign sample inference.
Unlike prior attacks, BadSFL leverages Scaffold’s correc-
tion dynamics to enhance both the stealth and durability of
the backdoor, revealing a critical vulnerability in SFL meth-
ods. BadSFL operates as follows: Firstly, as the attacker
only has partial knowledge of the dataset distribution in the
FL system, he leverages a GAN to generate fake samples
that belong to other clients to supplement the dataset, simu-
lating a full knowledge of the dataset distribution. With the
supplemented dataset for backdoor training, he gets a back-
door model achieving high accuracy in both backdoor tasks
and benign tasks. Secondly, the attacker uses a distinctive
feature of a category as the backdoor trigger to maintain the
attack stealthiness. Thirdly, the attacker exploits the global
control variate, as a reference to predict the global model’s
convergence direction. This optimization significantly en-
hances the durability of the embedded backdoor function
within the global model.

We evaluate BadSFL on the MNIST, CIFAR-10, and
CIFAR-100 datasets, demonstrating its high accuracy on
both backdoor and primary tasks. Moreover, the embed-
ded backdoor function persists in the global model for over
60 rounds and lasts 3 times longer than baseline attacks af-
ter the attacker stops injecting malicious updates. Finally,
we show that BadSFL remains highly effective when using

four defense methods simultaneously.
The main contributions are as follows:

* We propose BadSFL, the first backdoor attack against
SFL on non-IID scenarios.

* We enhance the backdoor durability, ensuring it persists
for over 60 rounds and lasts 3x longer than baselines.

* We conduct extensive experiments on three benchmark
datasets, demonstrating high effectiveness of our attack.

2. Background and Related Work
2.1. Non-IID Scenarios in FL

In FL, non-1ID refers to significant differences in data dis-
tributions among clients [11, 20, 28]. This discrepancy be-
tween local data distributions in non-IID scenarios can lead
to inconsistencies between the local optima and the global
optima. This inconsistency results in a drift in local model
updates, where local models move towards their own local
optima which can be far from the global optima [12]. Con-
sequently, averaging these local models may yield a global
model far from the true global optima [12, 16, 21, 37, 38],
especially with numerous local epochs. As shown in Fig-
ure 1, while the global optima aligns with the local optima
in IID scenarios, non-I1ID can cause the global optima to
be distant from individual local optima, which is known as
the client-drift phenomenon, leading to slow and unstable
convergence in the FL training process.

Scaffold. Several FL algorithms have been proposed to ad-
dress the above challenges, with Scaffold [12] being the
most practical solution. It tackles the client-drift problem
through the control variates (variance reduction techniques)
for both the server and the clients. These control variates
estimate the update direction of the global model and local
client models and serve to correct local updates based on
the drift, thereby mitigating the divergence between local
and global optima (Alg. 1). In this paper, we mainly focus
on designing backdoor attacks targeting SFL.

2.2. Backdoor Attacks against FL.

Backdoor attacks pose a significant threat to deep learn-
ing models, where malicious clients embed hidden trig-
gers within models that cause misclassification during infer-
ence while maintaining normal performance on clean data
[23]. In FL, adversaries can deploy backdoor attacks by ex-
ploiting compromised clients to manipulate local updates,
thereby generating poisoned models that corrupt the global
model upon aggregation [3, 19, 34, 36, 40, 45].

Backdoor attacks typically involve a combination of
model replacement and data poisoning. In model replace-
ment, the adversary substitutes legitimate models with ma-
nipulated ones [3], while data poisoning involves injecting
poisoned data containing the backdoor trigger into the train-
ing datasets of compromised clients. To inject these trig-



Algorithm 1 Scaffold Algorithm in Federated Learning

Server Input: local datasets D?, number of total client
N, number of sampled client S, number of communication
rounds R, number of local epochs F, number of local up-
date steps K
Client Input: local control variates c;, local step-size ;
Server Updates:
¢t +0;
for eachroundr=1, ..., R do:
randomly selected clients S* C {1,..., N}
for i ¢ S in parallel do:
send w', ¢t — i
Aw?, Act + Local Update(i, w', ¢*)
end for
wt —wt =Y, g Aw!
et BIAe
end on client
Local Updates:
Local client ¢ get w?, ¢! from server
fork=1,....K do:
training model with D; get gradient g; (w;)
update local model:
W; < Wi — N * (gl(wl) — ¢ + C)

end for
update local control variates:
cf“ — (i) gi(w;),or (ii) ci—c+ Kim * (wt —
Aw! +— w; —wt
Ack it — ¢

return (Aw!, Act

gers, the adversary can manipulate the dataset by flipping
data labels or adding a unique pixel pattern to the training
samples [ 1, 3, 36]. Afterward, he strategically adjusts train-
ing parameters and scales updates to optimize the impact of
the attack while evading detection by the anomaly detector
deployed at the central aggregation server [5, 30].

In this paper, we focus on data poisoning-based back-
door attacks. While most existing backdoor attacks tar-
get FL under IID scenarios [9, 25, 31, 40, 43], real-world
FL deployments often involve non-IID distributions, pos-
ing additional challenges for effective backdoor injection.
To the best of our knowledge, no prior research has specif-
ically explored backdoor attacks against FL. with the Scaf-
fold aggregation algorithm. We bridge this gap by investi-
gating a novel backdoor attack targeting SFL, leveraging its
unique control variate mechanism to enhance the effective-
ness, stealthiness, and persistence of the attack.

2.3. Threat Model

Attack scenarios. We consider an attacker who aims to
inject backdoors into SFL, make the final model predict
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Figure 2. Left: Primary task accuracy crushed by simple attack;
Right: Backdoor accuracy dropped after stop attacking.

the desired wrong output over a triggered input. The at-
tacker has partial knowledge of the full dataset in the train-
ing stage. Specifically, the attacker trains a local model with
a backdoor trigger function and submits poisoned local up-
dates along with the control variate to the server for Scaf-
fold aggregation. During inference, the attacker manipu-
lates predictions to produce the attacker’s desired outputs
when inputs meet the trigger conditions.

Attack goal. The attack goal can be summarized as follows:

o Effectiveness: The attacker must ensure that the backdoor
function does not compromise the global model’s perfor-
mance on primary tasks, maintaining high accuracy for
both backdoor and benign predictions.

e Robustness: the backdoor should be robust against po-
tential defenses.

e Durability: The backdoor should remain effective in the
global model for as long as possible, even after the at-
tacker stops participation in the training process, thereby
maximizing the longevity of the attack.

Attacker’s capability. We assume the attacker can compro-
mise at least one client during the training process, thereby
allowing him to operate covertly within the system. Addi-
tionally, participation in FL provides the attacker with full
knowledge of the model structure, facilitated by the consen-
sus among all clients on a common learning objective. This
enables the insertion of backdoor triggers, the modification
of sample labels, and the manipulation of local training up-
dates. It is essential to note that the attacker cannot control
the server or directly manipulate the aggregation procedure
or the global model. They also lack access to data and mod-
els from non-compromised clients.

3. Challenges with Backdoor Attacks in SFL

Performing a backdoor attack in SFL presents the following
challenges. @) Limited knowledge. In non-IID scenarios, a
primary challenge arises from the attacker’s lack of knowl-
edge of the dataset distribution across clients. Unlike IID
scenarios, where a centralized understanding of the dataset
facilitates manipulation, non-IID scenarios involve decen-
tralized and diverse data distributions. This results in three
issues: (1) Direct backdoor strategies can cause significant
performance degradation on benign samples, leading to the
rejection of the global model; (2) The variability in data dis-
tributions increases the difference between local and global



models, making malicious models more detectable; (3) Av-
eraging poisoned models with the global model degrades
its performance on the primary task, as shown in Figure 2,
where accuracy drops significantly when a poisoned model
is aggregated. @ Control variate. In SFL, control variate
(denoted as c;) is used to correct the client drift and align
local models with the global model. If attackers strictly
follow protocols and use the ¢;) to correct their malicious
models during the triggering planting process, the effective-
ness of the attack can be reduced. Conversely, if an attacker
chooses to manipulate the ¢; inappropriately, introducing a
malicious c to the server, it could lead to a potential corrup-
tion of the global model. @) Backdoor catastrophic for-
getting. Catastrophic forgetting [13] occurs when neural
networks forget previously learned tasks upon learning new
ones. This can cause backdoors to lose effectiveness over
time [36]. If attackers stop uploading malicious updates,
the backdoor function may eventually be erased by benign
updates. As shown in Figure 2, the accuracy of backdoor
tasks declines sharply over time, with the backdoor func-
tion vanishing around round 65. Although various methods
[2,7,39,45] have been proposed to address this issue, none
have proven effective in SFL.

Algorithm 2 BadSFL

Required: local datasets D, global model w,, global con-
trol variate ¢, number of local epochs F, local learning rate
11, Generator G, Discriminator D
Update local model with w,, < wy
Initialize Discriminator D < wy
do:
Run G for generating fake samples
Evaluate fake sample on D
Update G using D
until G converges to generate target samples
G generates samples into dataset Dy
D.+ D;y+ D"
Select backdoor samples from D, and assign them wrong
label as Dy,
Dp — DC + Db
for each epoche =1, ..., E do:
wp = argmin,, [L(Dp, wp) + L(Dyp, Pj(wp, ))].
end for

1
T OKxny * (U}g 7wp) - C
return (Aw,, Acp)

4. BadSFL

Overview. To overcome the challenges, we propose
BadSF1, as detailed in Algorithm 2. BadSFL mainly con-
sists of 4 steps: Step 1: Initialization. The attacker initiates

the attack by downloading the global model w, and control-
ling the variate c from the server. Subsequently, the attacker
updates the local model w,, and discriminator D using the
downloaded global model wy. Step 2: GAN-based Train-
ing for Data Supplementation. The attacker performs GAN
training on generator G and discriminator D. The train-
ing terminates upon the convergence of the generator, sig-
nifying its ability to generate realistic fake samples in class
C that do not belong to D? but rather originate from other
clients’ datasets. Then the generator G is utilized to gener-
ate a number of samples in class ¢ forming in dataset Dy.
This dataset Dy is then merged with the attacker’s origi-
nal dataset D’ to create a new dataset D.. Step 3: Back-
door Sample Selection and Trigger Injection. With dataset
D,, the attacker selects specific samples with a characteris-
tic feature to serve as backdoor samples. These samples are
then relabeled to a target class x as the backdoor target class
that is different from their original labels. The attacker or-
ganizes these manipulated samples into a separate dataset
Dy and merges it with D, to finalize the dataset D, for
backdoor training. Step 4: Backdoor Model Training and
Optimization. The attacker proceed to train the local model
w,, based on the dataset D). During the training process,
the attacker follows the equation 3 to optimize the back-
door objective. Upon convergence, the backdoor model up-
date Aw, and the corresponding control variate Ac, are
obtained and can be uploaded to the server.

4.1. GAN-based Dataset Supplementation

In non-IID data scenarios, directly injecting backdoor sam-
ples into dataset D? for training often leads to a more biased
model, deviating significantly from global optima [15, 33].
To mitigate this, inspired by Zhang et al. [44], the attacker
can employ GAN to generate synthetic samples that resem-
ble the data held by other clients. This involves training a
generator G with local non-1ID data to bridge the gap be-
tween datasets. The GAN architecture basically consists of
a generator GG and a discriminator D. In our case, the gen-
erator G comprises a series of ‘deconvolution’ layers that
progressively transform random noise into a sample, while
the discriminator D closely resembles the global model, ex-
cept for its output layer, which distinguishes between fake
and real samples. The attacker iteratively trains the genera-
tor G locally with the constraint of discriminator D until it
converges to generate realistic fake samples that do not be-
long to the attacker. Concurrently, as the SFL procedure
progresses, the global model tends to converge. During
each server-client communication round, the attacker up-
dates the discriminator D using the latest global model w,
downloaded from the server and performs new-round opti-
mization training on the generator (G, guiding it to gener-
ate more authentic fake samples that closely resemble data
from other clients. These high-quality synthetic samples are
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then integrated into the attacker’s original non-IID dataset,
effectively supplementing it with additional data classes.
The attacker synchronously updates the discriminator D
during each local training round using the new global model
wgy downloaded from the server, followed by GAN training
to optimize the generator G for improved performance. The
output of this process is then merged into the attacker’s non-
IID dataset for further backdoor training. As the generated
samples closely resemble those from other client datasets,
the attacker local optima trained by the attacker can con-
verge closer to the global optima than other clients. Figure 3
demonstrates the difference between the aggregated global
optima with and without data supplementation techniques.

4.2, Trigger Selection and Injection

With the prepared dataset D,,, containing both original and
synthetic data, the attacker proceeds to inject a backdoor
into the model. BadSFL leverages three techniques to in-
ject backdoors: (1) Label-flipping [17], in which the ground
truth labels of a whole class a in D,, are directly altered to
another label b. For instance, all the ‘dog’ labels are al-
tered to ‘cat’ in CIFAR-10. (2) Pattern trigger [35], which
involves poisoning samples with a specific trigger pattern,
i.e., a small mosaic cube added in the images to activate
the backdoor behavior. The attacker injects these poisoned
images into the D,, along with a target label, establishing a
correlation between the trigger pattern and the desired mis-
classification. (3) A stealthier backdoor method, known as
feature-based backdoor [26], involves selecting a distinc-
tive feature within an image class as the backdoor trigger.
This approach eliminates the need to directly manipulate the
images, thereby increasing the difficulty of detection. For
instance, all the green cars in the ‘car’ class in CIFAR-10
are designed as the backdoor trigger. During the inference
stage, the compromised model outputs the attacker’s target
label only when the input is an image containing a green car.
The selection of a unique feature within a class makes this
trigger difficult to detect as it appears as a natural variation
within the data.

4.3. Backdoor Training with Control Variate

As discussed in section 3, the global control variate c is uti-
lized in SFL to correct the client drift. Specifically, the cor-
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Figure 4. Scaffold correction term on a single client.
rection value ¢ — ¢; adjusts the local model point towards

the global model, as shown in algorithm 1. During the lo-
cal model training process, this correction term effectively
‘drag’ the drifting local model closer to the global model,
facilitating convergence towards the global optima, as de-
picted in Figure 4. In the server aggregation round, the
global control variate ¢ is computed by averaging the drift
values of all local models, which represents the convergence
direction of the global model.

From the attacker’s perspective, allowing the control
variate to correct the poisoned model according to SFL rules
can reduce the effectiveness of the backdoor attack, as dis-
cussed in Section 3. However, the attacker still needs to
submit a control variate ¢, to report the drift of the back-
door model. The key idea is to train a backdoor model that
is closer to the global model compared to other local mod-
els trained on non-IID data. Since the global control variate
c is known to participating clients, it can be used as a refer-
ence for the global model’s convergence direction, helping
to align the poisoned model more closely with the global
optimum. This constraint, derived from ¢, functions simi-
larly to using the future global model for optimization, as
suggested by Wen et al.[39]. This constraint can be inte-
grated into the loss function to enhance the backdoor’s ef-
fectiveness and persistence in the global model.

Initially, the attacker performs backdoor training and op-
timizes their backdoor objective as in the Equation | [4]:

*

Wp

argmin L(Dp, wp). (1

Wp
where L is the loss function of the backdoor task, w,, is the
attacker model weights.

In our BadSFL attack, we modify the standard backdoor
objective function by adding a term to ensure that the back-
door updates sent to the server persist in the backdoor func-
tion in the global model for more future training rounds.
We can simulate an aggregation round and apply the control
variate c to obtain a predicted global model for one future
round. Here is the modified objective function (Equation 2):

wp + wg * (n— 1)
n
To summarize, we formalize our attack objective as below:

P (wp, ¢) = —mxcxj  (2)

wy = argmin|L(Dy, wp) + L(Dp, Pj(wp,c))]. ()

P
Wp



Table 1. Dataset, model structure, and hyperparameter description.

Dataset Instances | Features Model Benign [, E | Poison [, o8 POIS;,IE ratio FB Batch Size
CIFAR-10 60000 1024 ResNet-18 0.001 10 0.05 0.1 0.0125 0.01 128
CIFAR-100 60000 1024 ResNet-50 0.0001 100 | 0.0001 0.1 0.0125 0.01 128

MNIST 70000 784 ConvNet 0.01 2 0.001 0.1 0.0125 - 128

where j represents the number of future rounds that w,, an-
ticipates. By optimizing the backdoor model to be closer to
the global model, the attacker simultaneously optimizes the
control variate ¢, to align it with the expected drift value.
This ensures that the attacker’s actions conform to the SFLL
protocol (Algorithm 1).

5. Evaluation

(a) Generated samples by GAN (b) Generated samples by GAN

5.1. Setup (CIFAR-10). (MNIST).
We evaluate BadSFL on a server running Ubuntu 18.04 ) W B
with an NVIDIA GeForce RTX 2080 Ti GPU. f-

Datasets, models, and hyperparameters. We consider the
datasets that are commonly used in previous works [25],
i.e., MNIST [8], CIFAR-10 [14] and CIFAR-100 [14]. De-
tailed configurations are summarized in Table 1.

GAN models. In attacking SFL with CIFAR-10 and
CIFAR-100, the discriminator mimics ResNetl8 and
ResNet50, respectively, differing only in the output layer.
The generator consists of five deconvolutional layers to gen-
erate synthetic images for supplementing D,, in the back-
door attack. For MNIST, the discriminator follows LeNet-
5, while the generator uses three deconvolutional layers to
produce synthetic images resembling those of other clients.
Attack baselines. We compare BadSFL with 4 backdoor
attacks: (1) Black-box Attack [3]. This attack directly poi-
soned the training dataset through techniques such as label-
flipping, pattern trigger, and feature-based trigger. Subse-
quently, it conducts backdoor training to minimize the clas-
sification loss on the dataset D). (2) Neurotoxin [45]. It
incorporates a strategic approach to ensure the durability of
the backdoor function within the global model. Specifically,
it aims to prevent the malicious model updates from point-
ing toward coordinates that are frequently updated by be-
nign clients, thereby mitigating the risk of the backdoor be-
ing erased. We illustrate it in Figure 9 in the Appendix. (3)
Irreversible Backdoor Attack (IBA) [31]. IBA gradually im-
plants a stealthy and durable backdoor into the global model
by optimizing trigger imperceptibility and selectively poi-
soning parameters less likely to be updated. (4) 3DFed [18].
3DFed is a multi-layered backdoor attack framework that
combines constrained loss training, noise masking, and a
decoy model to evade detection in a black-box FL setting.
Attack settings. We run 100 communication rounds in SFL
for CIFAR-10, CIFAR-100, and MNIST. In each round, 20
clients participate, with 50% randomly of them selected for
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—— 3DFED
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(c) PTA on CIFAR-10 and MNIST.
Figure 5. Dataset supplementation on CIFAR-10 and MNIST.

training. To ensure a non-IID data distribution, the train-
ing dataset is split into 200 label-sorted groups, which are
randomly assigned to all the participating clients.

For BadSFL evaluations on CIFAR-10 and CIFAR-100
datasets, the attacker strategically joins the training process
from the 10th round, exiting after the 40th round. Initially,
the attacker conducts GAN training to perform data sup-
plementation, employing 10 local epochs, a fixed learning
rate of 0.001, and Adam Optimizer with parameters (0.5,
0.999). Subsequently, backdoor training and optimization
are carried out with 10 local epochs, a future round j set to
10, a fixed learning rate of 0.05, and an SGD optimizer with
a momentum of 0.9 and a weight decay of 0.005.

To obtain D,,, we employ three types of backdoor trigger
injections and evaluate the performance of BadSFL based
on BTA in each communication round, contrasting it with
baseline attacks: (1) Label Flipping. All ‘dog’ samples in
D, are relabeled as ‘bird’; (2) Pattern Trigger. A small tri-
angle pattern is added to the right bottom of the image, with
all the modified samples labeled as ‘cat’; (3) Feature-based
trigger. Characteristic features (e.g., car stripe, green car,
race car, sunset plane, white horse, red ship, yellow truck)
are chosen as backdoor triggers in Dataset D, with corre-
sponding samples labeled as ‘bird’.

For MNIST, the attacker engages in the training pro-
cess from the 10th round and quits after the 40th round.
Also, GAN training is employed for data supplementation,
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Figure 6. Attack comparisons with baselines.

(b) Race Car

(c) White Horse
Figure 7. Feature-based backdoor attacks on CIFAR-10.

(d) Red Ship

comprising 2 local epochs, a fixed learning rate of 0.001,
and Adam Optimizer with parameters (0.5, 0.999). Subse-
quently, backdoor training and optimization are performed
over 2 local epochs, considering future rounds j as 10, with
a fixed learning rate of 0.1 and SGD optimizer.

To obtain D,, only two types of backdoor trigger
injections are used, as MNIST lacks sufficient features
for feature-based backdoor attacks. The performance of
BadSFL is evaluated based on the BTA in each commu-
nication round, compared to two baselines: (1) Label flip-
ping. All samples labeled as ‘5’ in D, are relabeled as 2’;
(2) Pattern trigger. A small triangle pattern is added to the
right bottom of the image, and the labels of all modified
samples are changed to 2’.

Evaluation metric. We adopt two metrics commonly uti-
lized in FL. (1) Primary Task Accuracy (PTA), which re-
flects the classification accuracy on clean samples. (2)
Backdoor Task Accuracy (BTA), which is the attack suc-
cess rate, measured by the poisoned model’s accuracy on

poisoned samples.

5.2. Results of GAN

Figure 5a and Figure 5Sc illustrate the datasets Dy gener-
ated by the Generator GG for CIFAR-10 and MNIST, respec-
tively. In both cases, Dy encompasses nearly all classes
of each dataset, demonstrating the successful acquisition of
full dataset distribution knowledge within the SFL frame-
work under non-IID scenarios. Utilizing the combined
dataset D, the attacker executes the backdoor attack while
maintaining the model’s accuracy on the primary task. For
CIFAR-10, as shown in Figure 5c, the primary task accu-
racy remains around 55% with data supplementation, com-
pared to a drop below 25% in the baseline attack. Similarly,
for MNIST, Figure 5c reveals that using D, instead of D,
the primary task accuracy stays above 90%, while the base-
line attack results in a decline to under 75%.

5.3. Effectiveness of BadsrFL

From Figures 6a to 6f, we present attack comparisons
with baselines evaluated on the CIFAR-10 and CIFAR-100
datasets. It is evident that BadSFL outperforms the base-
line attacks in terms of both effectiveness and durability. To
be specific, BadSFL achieves above 80% backdoor task ac-
curacy across all types of backdoor attacks within the first
10 rounds, while the attacker remains active in the training
process for backdoor training and malicious updates to the
server. Meanwhile, BadSFL keeps the primary task accu-
racy at 60% (Figure 5c). Furthermore, even after the at-
tacker exits the training process at the 40th round, the be-
nign clients continue submitting normal updates in subse-
quent rounds, which could potentially affect the poisoned
updates from the attacker in previous attacking rounds thus
erasing the backdoor function. Despite this, BadSFL en-
sures a resilient backdoor function with accuracy exceed-
ing 90% over the entire 100 SFL rounds, which is 3 times
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Figure 8. Defense against backdoor attacks.

longer than the lifespan achieved by the two baseline at-
tacks, where backdoor task accuracy drops below 50% after
the 60th round. Horizontally comparing the effects of dif-
ferent types of backdoor trigger injections (Figures 6a, 6b
and 6c¢), it is observed the feature-based trigger performs the
best among them, benefiting from its stealthiness without
directly manipulating the images, thereby making its up-
dates less likely to conflict with those from benign updates.
We also provide more results available in Figure 7.

Figures 6g and 6h showcase the results obtained on the
MNIST dataset. Similarly, BadSFL outperforms the other
baseline attacks, achieving both backdoor task accuracy and
primary task accuracy above 85%. After the malicious up-
date injection stops at round 40, in the Label flipping at-
tack, the backdoor task accuracy in two baseline attacks
catastrophically drops below 40% within 10 rounds whereas
BadSFL maintains a 5 times longer-lasting backdoor func-
tion in the global model in future rounds. In the pattern trig-
ger attack, BadSFL also injects a more effective backdoor
function into the global model with 10% higher accuracy
compared to the baselines.

Defense. We further conduct multiple defense strate-
gies to demonstrate the superiority of BadSFL. Specifi-

@ Top k% heuristic
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£
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Figure 9. Neurotoxin.

cally, we use differential privacy [41], model pruning [24],
FLAME [30] and SparseFed [32] to resist backdoor attacks.
Figure 8 shows that BadSFL can still maintain high effec-
tiveness under multiple defense strategies. Taking the label
flipping on CIFAR-10 as an example, it can be observed that
our method persistently maintains a high attack success rate
even under defense strategies, while other baselines fail.

Analysis on Neurotoxin. Neurotoxin aims to address the
durability issue of backdoor attacks in FL settings, which
ensures that the backdoor persists in the global model even
after the attacker stops uploading poisoned updates. Dur-
ing FL training, Neurotoxin leverages the concept of the L2
norm, a mathematical function that represents the magni-
tude of a vector. Neurotoxin observes that the majority of
the L2 norm of the aggregated benign gradient is contained
in a small number of coordinates, which implies that benign
updates tend to cluster in a narrow range and consequently,
the aggregated gradient direction is likely to point towards
this cluster. Therefore, Neurotoxin identifies and targets the
parameters that get minimal changes in magnitude during
training, as illustrated in Figure 9 in the Appendix. These
relatively stable parameters are less likely to be significantly
affected by benign updates, thereby mitigating the risk of
the backdoor being overwritten by future updates.

However, our results do not confirm Neurotoxin’s ex-
pected effectiveness. Despite using this strategy, backdoor
accuracy declines similarly to the baseline attack after the
attacker exits at round 50. This trend is also observed in
BadSFL experiments, warranting further investigation.

6. Conclusion

This paper introduces BadSFL, a novel backdoor attack
specifically tailored for non-IID federated learning environ-
ments utilizing the Scaffold aggregation algorithm. By em-
ploying a GAN-based data augmentation technique and ex-
ploiting the Scaffold’s control variate, BadSF L achieves su-
perior effectiveness, stealthiness, and durability compared
to existing methods. Our experimental results on multiple
benchmark datasets demonstrate the attack’s effectiveness,
with the backdoor persisting significantly longer than ex-
isting approaches. In the future, we hope researchers can
design more robust defense mechanisms to safeguard feder-
ated learning systems against such attacks.
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