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Abstract—JPEG is the most widely-used image compression method on
low-cost cameras which cannot support learning-based compressors. One
promising approach to enhance JPEG aims to drop DC coefficients at
the cameras’ ends (without extra computation) and reconstruct those DC
coefficients after receiving them. They all face the challenge that their DC
reconstruction relies on a statistical property, which will cause deviation-
introduced errors and propagate. In this paper, we propose DCDiff, a
novel end-to-end DC estimation method to tackle the above challenge.
Instead of using statistical methods to recover DC coefficients and then fix
errors, we directly leverage a generative model to estimate DC coefficients
in an end-to-end manner. In the meantime, we generate masks to correct
certain image locations that do not satisfy the statistical distribution to
suppress error propagation. Extensive experiments show that DCDiff
not only outperforms all baselines on compression performance but also
introduces a tiny impact on downstream tasks and is fully compatible
with 2 typical low-cost processors with JPEG support.

Index Terms—JPEG, Image compression, Diffusion model

I. INTRODUCTION

The deployment of numerous low-cost front-end cameras enables
the development of smart Internet of Things (IoT) systems such as
security surveillance [1], smart cities [2], and intelligent transporta-
tion [3]. Due to the limited computing and power capacity, front-
end cameras capture large volumes of images but transmit them to
cloud servers for further processing [4], which generates an increasing
need for efficient image compression on front-end sensors. Many
image compression approaches are proposed such as transformation-
based ones (e.g. JPEG2000 [5], WebP [6], etc.) and learning-based
ones (e.g. compressive sensing [7], neural image codec [8], etc.).
However, many actual cameras tend to use JPEG [9] still due to
JPEG’s real-time capability, low computational requirements, and
high compatibility. For example, ESP32-CAM, a widely-used low-
power camera [10]–[12], has a max power of 1.55 Watt and can only
support JPEG [13] instead of learning-based encoders.

JPEG is a tunable method to compress images block by block (e.g.
8 × 8 block) that allows users to choose a lower quality factor (i.e.
Q table [14]) to enhance compression ratio on high-frequency (AC)
coefficients [15]. However, using a lower-quality factor decreases
image quality at decompression. As shown in Fig. 1, another idea [16]
to enhance JPEG compression is to preserve AC coefficients but drop
the direct current (DC) coefficients at the sender’s end and recover
them at the receiver’s end. This is based on 3 reasons (details in
Section II-B). First, DC coefficients are the average pixel values of
each image block, which means after discarding DC, the difference
between each pixel value within a block remains unchanged. Second,
DC coefficients usually have large values, which need more bits
to present when coding. Third, dropping DC coefficients does not
require any modifications to the JPEG implementation, making it
compatible with any low-cost cameras.
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Fig. 1: Pipeline for DC recovery enhanced JPEG compression:
existing methods (statistical-based DC recovery with errors need
fixing) and our novel approach (i.e. a learned end-to-end method).

Various works [16]–[21] propose different approaches to tackle the
challenge: how to recover the DC coefficients more accurately from
rest AC coefficients. The fundamental idea is based on a statistical
property: the differences between neighboring pixel values in natural
images generally follow a Laplacian distribution [22]. Thus, based
on this property, they recover one unknown DC coefficient from
the known neighbor block to iteratively recover all DC coefficients.
However, certain locations in natural images (e.g. less than 1% as
pointed in [18]) deviate from this distribution, which causes an error
when recovering the DC coefficient and will further propagate this
error to limit the reconstructed image quality. Even though [19],
[20] use deep neural networks (DNNs) to revise the errors after
this iterative-based DC recovery, these two-step methods are still
suboptimal since deviation-introduced errors are hard to fix.

In this paper, to avoid deviation-introduced errors, we propose
DCDiff to enhance JPEG via a learned end-to-end DC estimation.
Our basic idea is to avoid statistical recovery but directly leverage a
pre-trained generative model (i.e., Stable Diffusion [23]) to utilize
its knowledgeable priors for images to generate DC coefficients
based on remaining AC coefficients. This is an end-to-end prediction
process that can be optimized using learning methods with more
data. Different from existing methods, DCDiff is not an iterative
computation method block by block, so a deviation of image pixel
values does not affect the whole image. However, as the generative
model is not specifically designed for DC estimation, it faces chal-
lenges in predicting the content consistent average pixel value for
each image block. To fill this gap, we propose a novel loss function
to constrain the predicted image and the four corner blocks where
the DC coefficients are retained to satisfy the Laplacian distribution
while generating a mask to filter the image regions that deviate from
the statistical property. What’s more, to guide the diffusion model in



generating the DC coefficients, we propose a frequency modulation
sampling strategy to enhance low-frequency generation.

We compare DCDiff with 3 state-of-the-art (SOTA) baselines
across 6 datasets considering 4 metrics. Extensive experiments prove
that DCDiff significantly outperforms baselines across different
metrics on all datasets such as improving the reconstructed image
quality with 3 ∼ 6.7 dB more PSNR. DCDiff also has minimal
impact on typical downstream tasks such as image classification and
can be fully compatible with 2 typical low-cost devices.

II. PRELIMINARIES

A. JPEG compression in IoT system

Due to the broad compatibility and low computational require-
ments, JPEG is irreplaceable in IoT scenarios, such as safety and
security monitoring [24]–[26]. For example, [25] use JPEG for image
compression in resilient smart cities, monitoring in real time, and
transmitting images to the cloud for processing. Figure 1 shows
the workflow of JPEG in IoT systems. The sender’s end is often
equipped with IoT devices with limited memory and computing
capacity, such as surveillance, which can only perform simple math-
ematical transformations on captured images. The process of JPEG
compression includes Discrete Cosine Transform (DCT), quantization
according to a quantization table, which determines the quality of
compressed image, and entropy coding, typically Huffman coding.
The compressed JPEG files are transmitted to the receiver’s end,
which are often cloud servers with powerful computing resources,
for different applications.

Enhanced JPEG compression methods are proposed to save trans-
mission bandwidth. [27] build a JPEG encoder for high visual quality
of compressed image with high compression ratio, but introduces
significant computation and memory overhead, which is infeasible
for resource-constrained devices. [16]–[21] follows the pipeline that
drops the DC coefficients at the sender’s end to save the transmission
bandwidth (see Fig. 2, DC coefficients are generally larger) without
any overhead and recover the image at the receiver’s end. In this
paper, we follow this setting of saving transmission bandwidth by
dropping DC coefficients and focus on the post-processing stage at
the receiver’s end to recover higher-quality images.

B. DC coefficient estimation

DC estimation was first proposed in [22], which demonstrated that
it is possible to recover DC coefficient from AC coefficient with
reasonable image quality in JPEG encryption systems to provide
higher protection for DC coefficient. This method is based on the
Laplacian property that the difference between two neighboring pixels
follows a Laplacian distribution with zero mean and small variance,
as shown in Figure 4. The blue line “w/o mask” means the difference
between adjacent pixels across the entire image. Denote B(i, j) as
the 8× 8 blocks at the i− th row and j − th column of the image.
DC value is the average of B(i, j), which is the same for all pixels
in B(i, j). Assuming the AC value of B(i, j) and the neighbor block
B(i, j − 1) is known and DC value of B(i, j − 1), dci,j−1, is
also known. Based on the Laplacian property, it is highly likely that
the pixel values between two adjacent blocks are very similar. [22]
minimizes the differences of pixels between two adjacent blocks from
three directions to identified DC values.

Recently, some other works have applied DC estimation methods
to enhance JPEG compression and further improve DC estimation
accuracy. [18] improved the DC estimation from minimizing the value
between adjacent pixels to minimizing the distribution trends of the
last two columns and the first column of B(i, j) and B(i, j + 1).

Fig. 2: An example of AC and DC coefficients distribution and
corresponding Huffman coding.

With the development of the neural network, [19] proposed a residual
network to improve the image quality after calculating the DC coeffi-
cient using the methods proposed in [18]. Observing that the optimal
prediction direction of each boundary pixel pair is inconsistent, [20]
proposed a novel prediction pattern, which chooses pixel pairs from
different directions, to improve the DC estimation.

Although the above methods use different pixel pair patterns
to suppress the error propagation caused by the region deviated
from Laplacian distribution, there are still some pixels that exhibit
a significant difference compared to adjacent pixels in any three
directions. Furthermore, the iterative process between blocks will
amplify this error. To solve the above problems, we first analyze the
characteristics of the region deviated from the Laplacian distribution.
In addition, instead of using a block-by-block iterative approach, we
directly predict the value of each pixel using a neural network, which
can avoid the error propagation between adjacent pixels.

III. METHOD

A. Overview

In this section, we describe in detail our end-to-end post-processing
method based on generative models. Figure 3 shows our major
component. Compared with previous methods [19], DCDiff no
longer relies on mathematical methods to iterate between DCT blocks
to calculate the DC coefficients, but directly predicts the entire
image using the diffusion model (section III-B). To constrain the
reconstructed image to have content consistency with the origin
image, DCDiff is trained using a masked Laplacian distribution
loss to ensure the reconstructed images satisfy the Laplacian property
while filtering the regions that may cause error (section III-C). Finally,
to enhance the DC coefficients generated by the diffusion model,
DCDiff uses a frequency modulation sampling strategy during the
inference process, and a frequency modulation parameter predictor is
applied to predict different scale factors adapting to different input
images (section III-D).

B. DC coefficient feature extraction and generation

We denote the origin image as x0, the reconstructed image as x̂,
and x̃ presents the image without DC coefficients after the receiver
performs IDCT.
DC coefficients feature extraction. As illustrated in section I, DC
coefficients represent the average of each image block, which means
the DC coefficients have a much smaller feature space than the origin
image. First, we introduce an image encoder (DC encoder) and an
image decoder, denoted as EDC and D, to compress the image into
a smaller latent space, which can present the DC component feature
space, and the extracted feature denoted as z0. To ensure that EDC

pays more attention to extracting the DC component of the image,
we introduce another image encoder (AC encoder, EAC ), taking x̃
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Fig. 3: Main components of DCDiff. (a) The insight to generate a spatial mask to apply Laplacian property (section III-C). (b) The pipeline
of DCDiff to recover the JPEG images at the receiver’s end (section III-B). (c) During inference, frequency modulation sampling is used
to enhance the low-frequency generation (section III-D).

as input. EAC can only extract the feature of AC coefficients, as the
DC coefficients in x̃ have been set to zero at the sender’s end. The
image decoder D receives two parts of information, one of which
is the AC features from the AC encoder, and the other is z0 from
the DC encoder. To better reconstruct the image, D needs both AC
features and DC features, which forces the DC encoder to extract the
features of DC coefficients from the origin image.
Diffusion generation. The diffusion model [28] is a generative model
that can generate images from noise through multi-step denoising.
It includes two processes of diffusion and denoising. During the
diffusion process, the diffusion model gradually adds Gaussian noise
to the image through a T-step Markov process until the image
becomes complete Gaussian noise, following a variance schedule
denoted by hyperparameter βt (Eq. 1).

q (zt|zt−1) = N
(
zt;

√
1− βtzt−1, βtI

)
(1)

The denoising process is the reverse of the diffusion process. Given
zt, a noise prediction network ϵθ is used to predict noise added to
the image at t-th step to recover zt−1 (Eq. 2).

zt =
√

1− βtzt−1 + βtϵt, (2)

where ϵt is the noise predicted by the noise prediction network.
In this article, we aim to leverage the powerful generation ability

and knowledgeable priors for images of the diffusion model to
generate the DC coefficients of the images. Figure 3 (b) shows the
framework of DCDiff. We use a noise prediction network to predict
the DC features z0 from Gaussian noise. Although the diffusion
model demonstrates superior performance in generation tasks, it
lacks the ability to preserve the structure information of the input
images. Inspired by [29], we use a control module to extract the
structure information from x̃ and inject it into the convolution block
of diffusion model to improve structure consistency.

C. Masked Laplacian distribution loss

While the diffusion model with the control module demonstrates
superior performance in image generation with given structure infor-
mation, it lacks the ability to preserve the content consistency. For
example, with no constraints, the generated image x̂ may show a car
that is yellow or blue—both appearing harmonious to the human but
differing from x0, mainly due to no explicit color information in x̃.
To solve this problem, we propose the Laplacian distribution loss to
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Fig. 4: (a) An example of pixel pairs have an abrupt change
and significant differences across all three prediction directions. (b)
comparison of the distribution of the difference between adjacent
pixels with the high-frequency mask.

constrain the reconstructed image to have content consistency with
four corner blocks, whose DC coefficients are retained.

We first analyze the characteristics of pixel pairs that deviate
from the Laplacian distribution. For example, as shown in Figure 4
(a), there are significant differences in pixel pairs across all three
prediction directions. As a result, selecting any direction as the
prediction direction will lead to substantial errors. We find that
these pixel pairs are usually located in image regions with complex
textures and sharp edges, where the pixel values exhibit significant
fluctuations. The abrupt changes in pixel values in the spatial domain
correspond to the increase in high-frequency components in the
frequency domain. As illustrated in Figure 4 (b), we generate a
mask to set all high-frequency components in the image to zero
and recalculate the pixel value distribution of the low-frequency
components in the image. Without the high-frequency components,
the difference between two neighboring pixels follows the distribution
with a much smaller variance. And the probability of pixel pairs
with similar values is much higher than without the mask. Therefore,
it is more appropriate to apply the Laplacian property to the low-
frequency part of the image to calculate accurate pixel values.

Directly applying a low-pass filter in the frequency domain to
filter out high frequencies may lead to changes in pixel values in
the spatial domain, thereby affecting the accuracy of the prediction
results. So we try to generate a spatial mask. When DC coefficients
are zero, after IDCT, the pixel values of x̃ are the weighted sum
of AC coefficients. As illustrated in Figure 3 (a), we show the AC
coefficients of different parts of the images, the low-frequency part



corresponding to the small pixel values part and the high-frequency
part corresponding to the large pixel values part. Thus, the larger the
value of x̃, the more high-frequency components correspond at this
position. So we follow Equation 3 to generate the mask.

M(i, j) =

{
0, x̃(i, j) > T
1, x̃(i, j) ⩽ T

(3)

where T is the threshold used to control the number of high-
frequency components to be masked, and we discuss in detail the
effect of different T on the results in section IV-C.

After obtaining the mask, we calculate the Laplacian constraint
between pixels in the low-frequency region and define the masked
Laplacian distribution (MLD) loss as Equation 4.

Lm =
∑
i,j

Mi,j ⊙ ((∆hx̂i,j −∆hx̂i,j−1)
2
+ (∆wx̂i,j −∆wx̂i−1,j)

2
) (4)

where ∆hx̂i,j denotes x̂i,j−1 − x̂i,j .

D. Frequency modulation sampling strategy

As a generative model, the diffusion model tends to produce high-
frequency detail information in images. However, in this paper, we
aim to use the diffusion model to generate the DC coefficients,
which represent the low-frequency features of the images. Inspired
by [30], which investigates that the noise prediction network’s skip
connections mainly introduce high-frequency features, we try to
modulate the frequency to enhance the low-frequency generation. [30]
proposes to re-weight the backbone features and skip features during
the denoising process using two manual scale factors. However, for
image restoration, since the frequency information varies for each
image, manually adjusting these two scale factors as hyperparameters
is not suitable for every image.

To accommodate the frequency variations of different images, as
shown in Figure 3 (c), we use a frequency modulation parameter
predictor (FMPP), which relies on the ResNet architecture, to predict
the scale parameters s and b. The predictor taking x̃ as input, esti-
mates the scale factors to control the intensity of the enhancement of
low-frequency information based on the high-frequency information
contained in x̃. To control the magnitude of the enhancement, a
sigmoid function is used in the final layer to regulate the range of the
scale factor. Based on the experimental results in [30], we constrain
the scale factor between 0 and 2. During the denoising process, FMPP
initially takes x̃ as input to predict the scale factors and then DDIM
is applied to denoise from noise, generating the DC coefficients of
the images.

E. Training details

The training is divided into two stages. In the first stage, we train
EDC , EAC and D together using the loss function as Equation 5.

Lfir = Lrec + Lper + Ldis, (5)

where Lrec is the L1 loss between the reconstructed image x̂ and
the origin image x0, Lper is the perceptual loss and Ldis is the
discriminator loss. In the second stage, we freeze the parameters of
EDC , EAC and D, and train the noise prediction network with the
goal of making the DC features z0′ generated by the diffusion model
as close as possible as z0. Further, to ensure the generated image
satisfies the Laplacian constraint, during each training step, we use
the predicted noise ϵt to project from zt to z0′ following the Markov
process: z0′ = zt−

√
1−ᾱtϵt√
ᾱt

, where ᾱt =
∏t

i=1

√
1− βi. Then use

the D to project z0′ to the pixel space and calculate the masked

Laplacian distribution loss. The loss function used for training the
noise prediction network is as Equation 6.

Lsec = Lldm + σLm, (6)

where Lldm is the MSE loss to minimize the noise distance between
the target and learning noise in latent space, and σ is the weighting
parameter. For FMPP, we freeze all other parameters and optimize
FMPP using MSE loss, minimizing the distance between x0 and x̂
sampled under the scale factors predicted by FMPP.

IV. EXPERIMENT

A. Experiment setup

Dataset. For training data, we randomly select 300K images from
OpenImages [31] and randomly crop the image to a resolution of
256 × 256 pixels. For testing data, we use 5 general CV datasets and
one dedicated remote sensing dataset [32].
Metrics. We follow [33] to use 4 metrics for quantitative measures.
We use the Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) to validate the pixel fidelity and
the structure similarity. What’s more, we use another two perceptual
metrics, Multi-Scale Structural Similarity Index Measure (MS-SSIM)
and Learned Perceptual Image Patch Similarity (LPIPS) to evaluate
the quality of reconstructed images for human perception.
Implementation details. For the first training stage, we train the DC
encoder EDC , the AC encoder EAC and the decoder D together using
the loss function in Equation 5 for 5 epochs with a batchsize of 16
and a learning rate of 1e−4. For the second training stage, we use the
pre-trained stable diffusion [23] model as noise prediction network
and finetune it using Lldm for 5 epochs with a learning rate of 1e−4
to learn how to retain structural information in x̃ first. And then we
add Lm to loss function, and finetune the model for 10 epochs with
a learning rate of 1e− 5 and σ = 2e− 4 to ensure generated images
satisfy Laplacian constraint. All training experiments are performed
on a server with 8× Nvidia H800 GPUs using the Adam optimizer.
During inference, we utilize the DDIM sampling [34] with 50 steps.
For baseline comparison, we consider three baselines for DC esti-
mation, including methods based on mathematical calculations [18],
[20] and based on neural networks [19].

B. Evaluation results

Qualitative comparisons. Table I shows the comparison results
with baselines on six datasets. We compress the RGB images in
each dataset with the standard Q50 quantization table following the
previous works. Compared to compressing grayscale images, during
JPEG compression, the discarded DC coefficients of the U and V
channels retrain the chrominance information of the image. The
error propagation caused by incorrect DC coefficients for U and V
channels may greatly affect the color of the final reconstructed image,
resulting in lower PSNR and SSIM for SmartCom 2019 [18] and ICIP
2022 [20]. Note that due to AC coefficients retaining high-frequency
details from the origin image, the detailed information of the image
is not lost during the discarding of DC coefficients, resulting in a
relatively low LPIPS. Therefore, compared to directly using a low-
quality Q quantization table to reduce the amount of transmission
data, discarding the DC coefficients can better preserve image detail
without affecting human perception. IEEE TII 2021 [19] tries to
use a residual neural network to correct error propagation. However,
optimizing solely for mean square error (MSE) can lead to excessive
image smoothing, corrupting the detail of high-frequency information
in the image, resulting in visual artifacts. As shown in Table I, the
LPIPS of IEEE TII 2021 is much higher than others. In contrast,



TABLE I: Quantitative results of comparison DCDiff with 3 baselines on 6 datasets. Throughout this paper, ↑ (↓) means higher (lower) is
better. Best performances are highlighted in bold.

Methods Set5 Set14 Kodak

PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓
SmartCom 2019 [18] 21.70 0.8557 0.9501 0.0396 21.34 0.8804 0.9224 0.0508 22.09 0.9132 0.8861 0.0533
IEEE TII 2021 [19] 22.99 0.8819 0.9511 0.0408 21.40 0.8967 0.9203 0.0582 21.87 0.9101 0.8809 0.0624
ICIP 2022 [20] 23.36 0.8764 0.9585 0.0354 22.04 0.8954 0.939 0.0436 23.47 0.9296 0.9134 0.0437
DCDiff 28.46 0.9494 0.9652 0.0254 25.84 0.9498 0.9490 0.0280 26.96 0.9544 0.9358 0.0309

Method BSDS200 Urban100 Inria

PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓
SmartCom 2019 [18] 21.68 0.8981 0.9049 0.0502 19.34 0.8681 0.8759 0.0517 21.15 0.9207 0.9066 0.0497
IEEE TII 2021 [19] 21.85 0.9030 0.9019 0.0579 19.62 0.8782 0.8737 0.0585 20.96 0.9116 0.9001 0.0623
ICIP 2022 [20] 22.76 0.9128 0.9264 0.0429 20.67 0.8902 0.9050 0.0416 22.53 0.9381 0.9290 0.0421
DCDiff 25.76 0.9481 0.9436 0.0314 26.01 0.9553 0.9532 0.0187 27.94 0.9556 0.9457 0.0308

Original DCDiff
[PSNR:27.74 / LPIPS:.0236]

ICIP 2022
[PSNR:19.67 / LPIPS:.0511]

IEEE TII 2021
[PSNR:17.87 / LPIPS:.0666]

SmartCom 2019
[PSNR:16.66 / LPIPS:.0622]

Original DCDiff
[PSNR:24.74 / LPIPS:.0294]

ICIP 2022
[PSNR:20.11 / LPIPS:.0575]

IEEE TII 2021
[PSNR:17.97 / LPIPS:.0999]

SmartCom 2019
[PSNR:17.52 / LPIPS:.0771]

Fig. 5: The reconstructed image after post-processing.
DCDiff is not a block-based iterative method, which avoids error
propagation. Additionally, it constrains the generated images using
a mask Laplacian distribution loss, preventing excessive smoothing.
The results demonstrate that DCDiff can achieve SOTA performance
across all metrics on all datasets, increasing PSNR by 3 ∼ 6.7dB.
Visual results. Figure 5 shows the reconstructed images after post
processing of DCDiff. We selected a street-view image and an
aerial image for visualization comparison. As analyzed above, error
propagation in U and V channels may lead to unnatural colors, such
as the purple windows in the first row of Figure 5. Furthermore, the
baseline’s optimization objective is to enforce Laplacian constraints
as closely as possible between any two adjacent blocks, which leads
to color bleeding in areas with abrupt pixel value changes. For
example, at the intersection in the image of the second row, the
vertical road is dyed black. Since we use a mask to filter out high-
frequency parts of the image and do not rely on block-based iteration,
there is no color bleeding or unnatural colors due to error propagation,
achieving SOTA reconstruction results.
Compression Ratio. At the sender’s end, we follow the setting
in [19] to set all DC coefficients to zero except 4 corner blocks,
and calculate the compression ratio compared with standard JPEG
using standard JPEG coding. As shown in Table II, we first use the
same Q-table (i.e. Q50 quantization table) for standard JPEG and
DCDiff. On all datasets, just by dropping DC coefficients, DCDiff
can compress 25% more than JPEG on average. Besides, we also
compare DCDiff with more compression of standard JPEG when

Raspberry Pi 4 
Model B ARM Cortex™-A53

Fig. 6: Two low-cost testbeds for evaluating DCDiff.
using a more aggressive Q-table. We tune the Q-table of JPEG until
the reconstructed images achieve a similar image quality (i.e. LPIPS)
after DCDiff post-processing. While maintaining the same image
quality reconstructed at the receiver’s end, DCDiff can still compress
10-14% more than tuning Q-table in default JPEG.

C. Ablation study

W/o MLD loss. The masked Laplacian distribution loss can better
guide the image reconstruction based on DC coefficients of four
corner blocks and AC coefficients. We remove the MLD loss and train
the noise prediction network until converges. As shown in Table III,
the results show that without MLD loss, the model cannot capture the
relation between four corner blocks and the other part of the images,
leading to noticeable color distortion in reconstructed images.
W/o FMPP. To show that the frequency modulation can enhance
the low-frequency information, we remove the frequency modulation



TABLE II: Compression ratios of JPEG with zero DC coefficients
except for 4 corner blocks.

Dataset Set5 Set14 Kodak BSDS200 Urban100 Inria

Compression ratio of JPEG (the same Q-table, Q50)

min 68.66% 68.37% 63.53% 59.96% 63.89% 43.71%
max 81.11% 90.19% 83.39% 86.26% 93.96% 86.34%
avg 74.73% 78.64% 73.41% 75.99% 81.38% 78.89%

Compression ratio of JPEG under similar LPIPS

min 77.84% 77.65% 75.16% 66.38% 68.62% 46.62%
max 96.00% 97.70% 98.76% 98.30% 98.14% 95.24%
avg 86.98% 89.16% 89.10% 86.45% 88.50% 86.46%

TABLE III: Ablation study of DCDiff’s variants. “w/o MLD” indi-
cates removing masked Laplacian distribution loss at the 2nd stage
training. “w/o FMPP” denotes that during sampling the predictor is
removed. Different thresholds are evaluated when generating masks.

Dataset Methods PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓

Kodak

w/o MLD 24.80 0.9425 0.9238 0.0380
w/o FMPP 26.57 0.9544 0.9341 0.0321

T = 0 26.04 0.9530 0.9325 0.0324
T = 5 26.11 0.9539 0.9341 0.0322
T = 10 26.96 0.9544 0.9358 0.0309
T = 15 26.17 0.9487 0.9307 0.0347

Inria

w/o MLD 26.35 0.9511 0.9409 0.0356
w/o FMPP 27.46 0.9553 0.9445 0.0319

T = 0 27.29 0.9553 0.9449 0.0322
T = 5 27.59 0.9555 0.9456 0.0316
T = 10 27.94 0.9556 0.9457 0.0308
T = 15 27.17 0.9497 0.9412 0.0349

parameter predictor during sampling. The scale factors s and b are
equal to 1, which is the same as regular DDIM sampling. The results
in Table III show that frequency modulation can help to enhance the
backbone features and improve the quality of reconstructed images.
Influence of mask threshold. We further investigate the impact of the
threshold used to generate the mask M on the reconstructed image
quality as shown in Table III. A smaller threshold results in most of
the image content being masked, leaving only a small portion of the
image associated with the information from the four corner blocks,
which causes the model to rely on diffusion to generate most of the
unconstrained content. A larger threshold causes some high-frequency
information in the image, such as object edges, to be included to
calculate the loss, which results in blurred edges around objects in
the image, creating visual artifacts. Based on the results in Table III,
we select T = 10 as the threshold to generate the mask, which
can capture most of the image information while filtering out high-
frequency content such as object edges.

D. Use case analysis in IoT systems

We deploy DCDiff on 2 widely-used low-power processors: ARM
Cortex™-A531 and Raspberry Pi 4 Model B2 (as shown in Fig. 6)
for evaluation. On these 2 processors, we compress and transmit
captured images using standard JPEG and DCDiff and calculate the
throughput. The results in Table IV show that compared to standard
JPEG, DCDiff does not add extra computational overhead, which
proves that DCDiff can be easily adapted to low-cost front-end
cameras with JPEG support.

E. Influence on downstream tasks

Images reconstructed at the receivers’ ends are usually used for fur-
ther processing. To confirm that DCDiff has a tiny influence on the

1https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a53
2https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

TABLE IV: Deploying DCDiff on 2 low-power front devices.

Methods Compression throughput (Gbps)

Raspberry Pi 4 ARM Cortex™-A53

JPEG Encoder 1.85 0.92
DCDiff Encoder 1.95 0.92

TABLE V: Post-processing influence on a remote-sensing image
classification tasks. ↓ denotes the accuracy reduction.

Methods Original SmartCom
2019 [18]

IEEE TII
2021 [19]

ICIP
2022 [20] DCDiff

ACC (%) 97.54 ↓ 1.96% ↓ 4.42 ↓ 1.47 ↓ 0.49

downstream tasks, we choose a remote-sensing image classification
task [35] as an example. For all baselines, we use the same setting to
drop DC coefficients at the sender’s end and input the reconstructed
images after post-processing to the image classification model at
the receiver’s end. As shown in Table V, DCDiff outperforms all
baselines with a tiny impact on model accuracy (drop 0.49%).

V. DISCUSSION AND FUTURE WORK

JPEG v.s. Learned image compression. Transformation-based
image compression method mainly applies a spatial-to-frequency
transformation (e.g. DCT, DWT) to get the frequency coefficients and
then uses a tunable quantization step to compress them. Today, they
are outperformed by novel learned compression methods [8], [36]–
[38] in various scenarios. Those learned compression methods gener-
ally replace the transformation-based compressor with a DNN-based
encoder to extract image features and use a decoder to reconstruct
images. Since DNNs can be trained to fit data in a similar distribution,
learned image compression methods can outperform static ones (e.g.
JPEG/JPEG2000) with sufficient data to train powerful encoders [39],
[40]. However, there are still a large number of cameras that do
not have enough resources to support a DNN-based encoder. On the
contrary, JPEG, as the most widely-used image compression method,
is well implemented on all existing cameras such that enhanced
JPEG methods like DCDiff can also be easily adopted in real-world
scenarios to improve image compression.
More improvements in future. First, in this paper, we use the default
coding technique of JPEG for evaluating DCDiff. We are aware
that, as a step after transformation and quantization, better coding
techniques [41], [42] may get better results. Thus, it is important
to emphasize that DCDiff studies how to reduce the number of
DCT coefficients which is orthogonal to coding techniques. Second,
DCDiff uses the diffusion model to reconstruct the images but it
can be replaced as any other generative models as long as they can
be trained to get rid of deviation-induced errors.

VI. CONCLUSION

We present DCDiff, an end-to-end DC estimation method for
enhanced JPEG compression based on generative models. We propose
the MLD loss to suppress error propagation while improving the con-
tent consistency of reconstructed images and a frequency modulation
sampling strategy to enhance DC coefficient generation. Extensive
results indicate that DCDiff can achieve SOTA performance to re-
cover high-quality images and is compatible with various IoT devices
to save transmission bandwidth while maintaining high throughput.
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