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Figure 1. Disco4D is a novel Gaussian Splatting framework for 4D disentangled human generation from a single image. Clothing and
assets are modeled as Gaussians on top of the SMPL-X body, enabling dynamic animation and flexible editing.

Abstract

We present Disco4D, a novel Gaussian Splatting frame-
work for 4D human generation and animation from a single
image. Different from existing methods, Disco4D distinc-
tively disentangles clothings (with Gaussian models) from
the human body (with SMPL-X model), significantly enhanc-
ing the generation details and flexibility. Specifically, 1)
Disco4D learns to efficiently fit the clothing Gaussians over
the SMPL-X Gaussians. 2) Next, Disco4D adopts diffusion
models to enhance the 3D generation process, e.g., mod-
eling occluded parts not visible in the input image. 3) Fi-
nally, Disco4D learns an identity encoding for each clothing
Gaussian to facilitate the separation and extraction of cloth-
ing assets. Furthermore, Disco4D naturally supports 4D
human animation with vivid dynamics. Extensive experi-
ments demonstrate the superiority of Disco4D on 4D human
generation and animation tasks. Our code is available at
https://github.com/disco-4d/Disco4D.

1. Introduction

The development of high-fidelity 3D digital humans is in-
creasingly important across a variety of augmented and vir-
tual reality applications. To streamline the creation of these
digital avatars from easily accessible in-the-wild images,
a multitude of research efforts have been made on recon-
structing 3D clothed human models from a single image
[2, 33, 40–42, 81, 82, 103, 104, 104, 117]. These works
predominantly focus on the simultaneous reconstruction of

the human body and clothing. Unfortunately, these works
have inherent limitations, and integrating them into appli-
cations that require virtual try-on or avatar customization
poses significant challenges. This is primarily because the
models are rendered as single-layer, non-animatable meshes
where distinct attributes (e.g., hair, clothing, accessories) are
merged into one continuous surface, with underlying layers
completely obscured and self-contact areas inseparably con-
nected. Such limitation complicates the re-animation and
dynamic customization tasks. Existing works that perform
layered reconstruction [25, 26] rely on self-rotating video
inputs with extensive frames and viewpoints and involve
substantial processing times.

To address these issues, we propose Disco4D, a novel 4D
clothed human reconstruction method that distinctly sepa-
rates the human body from clothing elements from a single
image. It supports human animation as the 4th dimension,
which cannot be realized by prior static 3D reconstruction
works [2, 33, 42, 81, 82, 103, 104, 117]. To achieve this, it
employs the SMPL-X [71] parametric model to represent the
human body, capitalizing on its efficacy in capturing body
structure and kinematics. Conversely, clothing, along with
dynamic and variable elements such as hair and accessories,
is represented using Gaussian models, which are able to
model the large variability in clothing. By binding Gaus-
sians to a SMPL-X model and fixing it during the training
phase, Disco4D ensures the integrity of the body while fo-
cusing the learning process on the appearance aspects. To
model occluded portions not visible in the input image, diffu-
sion models are used to enhance the 3D generation process.
Moreover, Disco4D includes an identity grouping mecha-

https://github.com/disco-4d/Disco4D


nism for the Gaussians, which is instrumental in maintaining
the separability and individuality of each clothing asset.

The independent reconstruction of clothing and body of-
fers several advantages. (1) Enhanced reconstruction fidelity.
The SMPL-X body serves as a stable anchor for the clothing
to conform to. By isolating the focus to learn clothing Gaus-
sians, we achieve a more refined geometry and intricate de-
tailing in the clothed model. (2) Fine-grained categorization
and extraction of clothing items. Disco4D is able to separate
clothing Gaussians into their respective categories, which is
crucial for the recovery and utilization of individual clothing
assets. (3) Extensive editing capabilities. Disco4D supports
different editing functions, including the removal of spe-
cific items, inpainting (altering color or material), and other
modifications. Such rich editing options allow for precise
adjustments to individual assets without inadvertently affect-
ing adjacent elements. This level of control is particularly
beneficial in applications requiring detailed customization,
such as virtual fashion design and digital content creation.
(4) Improved animation capabilities. The body Gaussians
adhere to the deformations dictated by the SMPL-X model,
while clothing Gaussians conform to the underlying body
movements but also exhibit behaviors true to their material
characteristics. The disentangled deformation allows for
nuanced adjustments to clothing behavior in response to
complex body movements, thereby elevating the quality of
clothed human animation.

2. Related Works
Table 1 summarizes the relevant 3D/4D generation methods.
We describe their details below.

2.1. 3D Generation
Single-image 3D Generation. Single-image reconstruc-
tion leverages advanced methods [45, 67] to generate 3D
assets in the form of 3D point clouds or NeRF [65] from
one image. While earlier efforts using auto-encoders fo-
cused on synthetic objects [12, 14, 21, 88, 93, 105], newer
approaches treat the task as conditional generation, employ-
ing diffusion models [35] for 3D generation from both im-
age and text [19, 35, 60, 64, 74, 76, 79, 90]. One-2-3-45
[59] uses 2D diffusion models [60, 87] to generate multi-
view images for reconstruction, while LRM [36] adopts
transformer-based architecture to scale up the task on large
datasets [19, 112]. Gaussian-based methods [47], particu-
larly DreamGaussian [89] and LGM [91], offer efficient,
high-resolution 3D model generation from text or images.
Recently, video diffusion models have attracted significant
attention due to their remarkable ability to generate intricate
scenes and complex dynamics with great spatio-temporal
consistency [4, 7–9, 31, 56, 116]. They are employed to
generate consistent multi-view images, and then reconstruct
underlying 3D assets with high quality [15].

Table 1. 3D/4D generation methods from a single image.

Method Type Layered Animatable
LGM [91] General ✗ ✗
PiFU [81] Human-centric ✗ ✗
DreamFusion [74] General ✗ ✗
DreamGaussian [89] General ✗ ✗
PiFU [81] Human-centric ✗ ✗
D-IF [107] Human-centric ✗ ✗
HiLo [108] Human-centric ✗ ✗
ECON [104] Human-centric ✗ ✗
SHERF [40] Human-centric ✗ ✓
Disco4D Human-centric ✓ ✓

Single-image human-centric 3D Generation. Signifi-
cant research efforts have been made for 3D human re-
construction, which can be classified into the following
categories. (1) Explicit-shape-based methods rely on Hu-
man Mesh Recovery (HMR) using parametric models like
SMPL [62] and SMPL-X [71] to generate 3D body meshes
[16, 17, 22, 24, 44, 46, 48, 49, 51, 66, 80, 118]. To ac-
count for 3D garments, several approaches incorporate off-
sets [99, 119] or templates, utilize deformable garment tem-
plates [6, 43], or employ non-parametric forms for clothed
figures [27, 104, 115]. Despite their advancements, they
face limitations in handling complex outfit variations and
loose clothing due to inherent topological constraints. (2)
Implicit-function-based methods utilize implicit representa-
tions like occupancy or distance fields for modeling clothed
humans with complex geometries, such as loose garments.
Techniques range from end-to-end regression of free-form
implicit surfaces [2, 81, 82] to use of geometric priors
[33, 42, 103, 104, 117] and implicit shape completion [104].
Notable works such as PIFu [81], ARCH(++) [33, 42],
and PaMIR [117] can extract textured models from im-
ages, but struggle with depth ambiguities and texture in-
consistencies. (3) NeRF-based methods incorporate model-
based priors (i.e., SMPL-X) for accurate human reconstruc-
tion. Efforts like SHERF [40] and ELICIT [41] improve
the reconstruction coherence by addressing 2D observa-
tion incompleteness leveraging appearance priors. Most
of these 3D clothed human reconstruction and animation
works [2, 33, 42, 81, 82, 103, 104, 117] require training on
human-specific datasets, which brings another limitation on
the availability of such datasets.

3D Clothing Modeling. Reconstructing clothing from im-
ages and videos as a separate layer over the human body
poses significant challenges due to the diversity of cloth-
ing topologies. Previous efforts relied on either template
meshes or implicit surface models, and required extensive,
high-quality 3D data from simulations [5, 70, 83, 95] or tai-
lored template meshes [13, 32, 73, 100]. New methods were
developed [34, 43] for multi-clothing models and versatile
template meshes, respectively, facilitating diverse clothing
topology encoding. However, these techniques typically fall
short in capturing the clothing texture and appearance. The
reliance on predefined clothing style templates further con-



strains their ability to handle real-world clothing variations.
Corona et al. [18] addressed these shortcomings by repre-
senting clothing layers with deep unsigned distance functions
and an auto-decoder for style and cut differentiation, though
this often produces overly-smooth reconstructions [18]. On
the other hand, SCARF [25] and DELTA [26] significantly
enhance the visual fidelity by applying NeRF to clothing lay-
ers, but require self-rotating video inputs and considerable
processing times.

2.2. 4D Animation

4D Animation. This task aims at capturing dynamic 3D
scenes over time. Two primary approaches have emerged:
modeling 4D scenes by adding time dimension t or latent
codes to spatial coordinates [28, 57, 98]; combining deforma-
tion fields with static 3D scenes [20, 58, 68, 69, 75, 92, 114].
Recent efforts in explicit or hybrid representations, like pla-
nar decomposition [11, 84, 85], hash representations [94],
and other innovative methods [1, 23, 29], have improved
reconstruction speed and quality. Gaussian Splatting, es-
pecially, stands out for balancing efficiency with quality,
with dynamic 3D Gaussians [63] and 4D Gaussian Splat-
ting [97, 110] techniques introducing time-dependent defor-
mations to enhance reconstructions. Notably, DreamGaus-
sian4D [78] stands out by minimizing the optimization time
while achieving high-quality 4D reconstructions.
Human-centric 4D Animation. Recent works leverage
Gaussian-based methods [38, 50, 54, 55, 61, 77, 113] for 4D
human reconstruction, requiring extensive frame sequences
(50-100 frames) and/or multiple viewpoints. Currently there
has not been any work on 4D layered human generation and
animation from a single image or a video with few images,
which will be achieved in this paper.

3. Methodology

3.1. Preliminaries

3D Gaussian Splatting employs explicit 3D Gaussian points
as its primary rendering entities. A 3D Gaussian point is
defined as a function G(x) = e−

1
2 (x−µ)

TΣ−1(x−µ), where
µ and Σ are the spatial mean and covariance matrix, respec-
tively. Each Gaussian is also associated with its own rotation
r, scaling s, opacity α, a view-dependent color c represented
by spherical harmonic coefficients f .
SMPL-X parameterization [71] is an extension of the
SMPL body model [62] with face and hand, designed to
capture a more accurate representation of intricate body
movements. SMPL-X is defined as a function M(β, θ, ψ) :
R|β|×|θ|×|ψ| → R3N , parametrized by the pose θ ∈ R3J

(where J denotes the number of full body joints), body
shape β ∈ R|β| and facial expression ψ ∈ R|ψ|.

3.2. Overview
Given a single image, Disco4D generates animatable 3D
clothed human avatars in a bottom-up manner, facilitating
natural separability. Our generated 3D clothed avatars, de-
noted as Shuman, are represented as the concatenation of
Sbody and Scloth. Inspired by prior works [89, 91], S capi-
talizes on Gaussian representations:

S = G(µ, r, s, α, c, e), (1)

where µ, r, s, α, c and e denote positions, rotation, scal-
ing, opacity, spherical harmonics coefficients and identity
encoding, respectively. Different from traditional Gaussian
representations, we add identity encoding e to associate each
Gaussian with its clothing category.

Figure 2 depicts our framework. We start by generating
colored SMPL-X Gaussians representing the body beneath
clothing (Sec. 3.3). We obtain a visual hull for canonical-
ization and refine Gaussian predictions to align and envelop
the SMPL-X mesh (Sec. 3.4). Next, we iteratively optimize
canonical clothing Gaussians external to the SMPL-X mesh
(Sec. 3.5). Lastly, we showcase the animation and editing
of generated clothed avatars (Sec. 3.6). Notably, we lever-
age diffusion models to refine textures during 3D generation
(Sec. 3.5) and extrapolate unseen views during 4D animation
(Sec. 3.6).

3.3. SMPL-X Gaussians
Given an image, we first estimate coarse SMPL-X parame-
ters with an off-the-shelf model [10], and then refine coarse
predictions by fitting on 2D keypoints and clothing segmen-
tation masks [72], obtaining pixel-aligned SMPL-X parame-
ters (β, θ, ψ).
Mesh Binding. To convert the SMPL-X [71] mesh
M(β, θ, ψ) into Gaussians Sbody for rendering, flat 3D
Gaussians are bound to each mesh triangle, similar to
SuGaR [30]. Gaussian means µbody are computed using
predefined barycentric coordinates, while Gaussian rotations
rbody derive from surface normals. The initial scaling sbody
ensures dense mesh coverage, with the last axis set to 0.1
for a uniformly thin surface. For color representation be-
neath clothing, opacity αbody is set to 1.0, with spherical
harmonics cbody optimized for each Gaussian. Visible skin
color is supervised, while occluded skin color aligns with
visible regions. A fixed label ebody is assigned for render-
ing, remaining unchanged during training. When optimizing
clothing Gaussians Scloth, SMPL-X Gaussians Sbody param-
eters stay fixed, preserving the body structure while allowing
flexible learning for clothing.

3.4. Initialization of Clothing Gaussians
Cloth styles are diverse, making proper initialization crucial
for effective clothing modeling. In synchronization with
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Figure 2. Framework Overview of Disco4D. (a) 3D Generation utilizes a single image to obtain disentangled body and clothing Gaussians.
Body, face and hand poses are refined to be pixel-aligned. For faster initialization, clothing Gaussians and visual hull are obtained with
Gaussian Reconstruction Models. These clothing Gaussians are embedded to SMPL-X mesh and adopt the local coordinate system of the
triangle. Subsequently, the iterative optimization process (pruning, identity encoding and densifying) separates the body and garments. The
learned identity encodings guide the densification of the clothing Gaussians. (b) 4D Animation is achieved by either direct driving of
SMPL-X poses or leveraging video to learn extra clothing deformation (refer to Figure 3 for more details). Various (c) 3D/4D Editing
operations can be performed with our disentangled representation.

estimating SMPL-X, we first employ the Video Diffusion
Model [7] to estimate multi-view images. Subsequently, we
leverage Gaussian Reconstruction Models [91] to obtain ini-
tial 3D Gaussians and their corresponding visual hull. Yet,
the reconstructed 3D outputs often suffer from geometric
inaccuracies, such as incorrect poses due to pose ambigu-
ity or missing limbs. To address this, we refine the coarse
visual hull to ensure it accurately aligns with and overlays
the SMPL-X mesh and encapsulates a good geometry for
the clothed figure. With SMPL-X aligned visual hull, we de-
rive the refined Gaussians by adopting properties from their
nearest neighbors. The refined visual hull and Gaussians are
then canonicalized for the optimization phase.
Mesh embedding. Each 3D clothing Gaussian is embedded
on a triangle of the canonical mesh, defining its position in
both canonical and posed spaces. The mean vertex position
O serves as the origin of the local coordinate system, with
the Gaussian positioned by an offset vector v = σi+βj+γk,
where σ, β, and γ are the components of the displacement
vector along the tangent i, bitangent j, and normal k. Unlike
SplattingAvatar [86], which displaces Gaussians along the
normal, our approach allows embedding to the most suitable
triangle rather than the nearest one. For example, hair Gaus-
sians are tagged to head faces instead of the nearest face for
reposing [39, 86] (Figure 9 in Appendix). In animation, the
Gaussian rotates with its embedded triangle face (δr), while
scaling (δs) is adjusted dynamically based on changes in
edge lengths. During optimization, Gaussian and embedding
parameters (O, v, δr, and δs) are jointly updated.

3.5. Optimization of Separable Gaussians
With the SMPL-X Gaussian and initialized clothing Gaus-
sian, we aim to optimize canonical clothing Gaussians Scloth

outside the SMPL-X mesh. This involves three steps: 1) we
use Signed Distance Function (SDF) loss and pruning to dis-
courage and remove Gaussians that reside within the body;
2) we introduce identity encoding e to attach a clothing label
for each clothing Gaussian, by lifting multi-view 2D seg-
mentations of the target object onto the 3D Gaussians; and 3)
guided by ebody and ecloth, we selectively densify only the
relevant clothing points while ignoring body points. Once
the disentangled clothing is obtained, we use SDS loss to
in-paint high-resolution texture from the reference image to
individual clothing Gaussians, thereby enriching the details
of unseen regions.
SDF Loss and Pruning. In reality, the clothing is always
external to the body. During refinement, we ensure that the
clothing Gaussians are positioned externally to the SMPL-
X mesh by applying the SDF loss and a pruning strategy.
Specifically, the SDF loss Lsdf penalizes any new densified
Gaussians that intrude into the space of the SMPL-X mesh,
ensuring that the clothing Gaussians consistently remain out-
side the body’s surface. Pruning is applied at fixed intervals
to reinforce this separation, and systematically remove any
Gaussians located within the SDF of the SMPL-X mesh.
Identity encoding. To associate each Gaussian to its cloth-
ing category, we introduce Identity Encoding (e), a learnable
and compact vector of length 15, representing clothing cate-
gories from SegFormer [101] segmentation masks1. During
training, the encodings are rendered into 2D segmentation
masks in a differentiable manner following [111]. For classi-
fication, we apply a softmax to the rendered features Eid and
use cross-entropy loss L2d for (K+1)-category classifica-

1Categories: 0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4:
"Upper-clothes", 5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe",
10: "Right-shoe", 11: "Face", 12: "Skin", 13: "Bag", 14: "Scarf"



tion. An unsupervised 3D regularization loss L3d promotes
spatial consistency among the top k-nearest 3D Gaussians’
Identity Encodings. Consequently, the overall identity loss
is Lid = L2d+L3d. Refer to Appendix 7.2 for more details.
Densification of clothing Gaussians. To learn clothing
more efficiently, we perform sampling for categorical Gaus-
sians that belong to the same clothing category and embed-
ding. We find the k-nearest Gaussian points for the resam-
pled points and inherit their Gaussian properties (scaling,
rotation, opacity, SH properties). By selectively densifying
clothing Gaussians, we only add necessary Gaussians while
ignoring body Gaussians.
Anisotropy. To prevent overly-skinny kernels that point
outward from the object surface under large deforma-
tions, we enforce the anisotropy of Gaussian kernels fol-
lowing [102]. During optimization, we employ Lani =
1
|P |

∑
p∈P max

(
max(sp)
min(sp)

, τ
)
−τ , where sp is the scalings

of 3D Gaussians. This loss constrains the ratio between the
major and minor axis lengths below threshold τ .
Total loss. To inpaint occluded textures, we use the LSDS
loss on the Gaussians in the canonical pose after optimizing
the front view for 500 steps. Combined with the conventional
3D Gaussian Loss Lori on image rendering, the total loss
L for end-to-end optimization of clothing Gaussians via
network CN is:

L = λoriLori + λidLid + λaniLani + λsdfLsdf + λSDSLSDS
(2)

3.6. 4D Human Animation and Editing
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Figure 3. 4D animation is achieved by (a) driving SMPL-X poses
or (b) using video to learn additional clothing deformations. From
the first frame, a static 3D disentangled GS model is generated.
Pose transformations deform body and clothing Gaussians, and a
deformation network is optimized to capture additional clothing
deformations over time.

Disco4D’s disentangled representation naturally supports
animation and editing. The canonical Gaussians Sbody and
Scloth enable separate deformations for clothing and body,
ensuring realistic animation. Besides, individual clothing
categories can be easily edited using image or text prompts.
The learned clothing can be transferred to different body
shapes and poses, for versatile customization.
Animating Gaussians. As shown in Figure 2, Disco4D
enables animation of the canonical human Gaussian via two
methods. Firstly, Gaussians can be directly driven using
3D SMPL-X sequences obtained from a motion database or
estimated from 2D videos. Secondly, Disco4D enhances the
model by learning detailed clothing dynamics from monocu-
lar videos. This disentanglement enables the focused mod-
eling of clothing dynamics without altering the underlying
human representation.

To extend static 3D Gaussians into dynamic 4D Gaus-
sians, a deformation network is trained to predict changes
in position, rotation, and scale of the reposed clothing Gaus-
sians based on a timestamp, as described in DreamGaus-
sian4D [78]. Unlike [78], which learns deformations for
all Gaussians, Disco4D models body Gaussians using the
SMPL-X mesh, while clothing Gaussians employ posed
transformations and learned deformations. The transforma-
tion is defined as S′′ = DN (S′, t) whereDN is the deforma-
tion network, S′ is the spatial descriptions of the reposed 3D
clothing Gaussian, t is the timestamp, and S′′ is the spatial
descriptions of the deformed and reposed 3D clothing Gaus-
sians. Following [78], the deformation model is initialized
to predict zero deformation at the start of training to avoid
divergence between dynamic and static models. The weights
and biases of the final prediction heads are initialized to
zero, and skip connections are introduced to enable gradient
backpropagation.

To optimize the deformation field using the reference
view video, we minimize the reconstruction loss LRef be-
tween the rendered image and video frame at each timestep.
To propagate the motion from the reference view to the en-
tire 3D model, we leverage Zero-1-to-3-XL [19] to predict
the deformation of the unseen part to calculate LSDS . De-
spite per-frame predictions of image diffusion models, the
fixed color and opacity of static 3D Gaussians help preserve
temporal consistency.
Editing Clothing Gaussians. We extract the Gaussians
corresponding to the specific category and edit them. This
allows fine-grained editing and ensures that other Gaussians
are not affected. Instead of fine-tuning all 3D Gaussians, we
freeze the properties for most of the well-trained Gaussians
and only adjust a small part of 3D Gaussians relevant to the
target categories. For 3D object removal, we simply delete
the 3D Gaussians of the editing target. For 3D object col-
orization by in-painting or text guidance, we reinitialise the
color and tune the color (SH) parameters of the correspond-



ing Gaussian group, while fixing the 3D positions and other
properties to preserve the learned 3D geometry.

4. Experiments
Our detailed implementation and experiment setup can be
found in Appendix 7.3.

4.1. 3D Generation
Generation and Disentanglement. Our generation and dis-
entanglement results are presented in Figure 4 and Table 2.
We assessed the disentanglement quality using the Synbody
[109] and CloSe [3] datasets, rendering 30 and 110 clothed
human meshes respectively from four angles and evaluating
CLIP-similarity, PSNR, SSIM, and LPIPS for various poses
and views within the CloSe dataset. Disco4D leverages dif-
fusion models without requiring training on human specific
datasets. Therefore, we compare it with DreamGaussian
[89] and LGM [91] which reconstruct 3D objects from diffu-
sion models. Additionally, we conducted comparisons with
SHERF, a human-centric baseline for evaluating novel poses
and views. Figure 4 shows Disco4D has higher fidelity and
better geometry for body parts such as face and limbs due to
the representation using SMPL-X Gaussians. It outperforms
DreamGaussian and SHERF on SynBody and CloSe bench-
marks. Disco4D performs worse than LGM on novel views,
likely due to its optimization of Gaussians in canonical space
for pose generalization, compromising view-specific detail.
Editing. We can edit specific clothing appearance given
an image or text prompt, repose the person and transfer
person characteristics. The disentanglement allows fine-
grained editing and modification of individual assets without
affecting other assets, and stacking multiple edits (Figure 4).
User study. We conducted a user study to evaluate the gener-
ative quality of our image-to-3D Gaussians reconstruction on
random in-the-wild images from SHHQ, detailed in Table 3.
This study focuses on reference view consistency and overall
generation quality, crucial aspects in image reconstruction
tasks. We rendered 360-degree rotation videos for 25 images
generated by DreamGaussian, LGM, and Disco4D. We in-
vited 43 volunteers to rate 24∼27 mixed samples from these
methods on image consistency and overall model quality,
yielding 1080 valid scores. As shown in Table 3, Disco4D
was preferred, demonstrating better alignment with the origi-
nal image content and superior overall quality.

4.2. 4D Animation
Pose-Driven Animation. Disco4D generates canonical
Gaussians that can be animated with any pose sequence.
Figure 12 in the Appendix demonstrates our animation capa-
bilities and compares them with current SOTA 2D animation
methods. Using identical inputs—a single frame and pose
sequence—our approach more effectively preserves the body
shape and fine details such as facial features and clothing. It

surpasses Animate-Anyone [37] and Magic-Animate [106]
in accurately modeling fine-grained body parts like hands
and faces, and exhibits greater consistency compared to
CHAMP [120]. The disentanglement feature of Disco4D
further allows for direct manipulation of Clothing Gaussians,
as shown in Figure 6.
4D Reconstruction. For the 4D-Dress Dataset [96], we eval-
uated 8 sequences, assessing CLIP similarity scores against
ground-truth meshes and disentangled assets, along with
novel view performance (PSNR, SSIM, LPIPS) from four
viewpoints. Table 4 summarizes our quantitative results,
benchmarking Disco4D against existing video-to-4D gen-
eral GS approaches, such as DreamGaussian4D [78], as
well as human-centric GS methods, including MonoHuman
[113], GART [54], and GaussianAvatar [38]. We evaluate
on monocular videos comprising 14 frames, captured from a
limited front-view perspective, without full-body visibility
across frames.

Disco4D outperforms MonoHuman [113], GART [54],
and GaussianAvatar [38] (Table 4) as these methods recon-
struct using known video information, unable to model un-
seen regions. Consequently, these methods cannot accurately
model back views from front-facing videos, leading to arti-
facts in other perspectives and canonical space (see Figure 5).
In contrast, Disco4D first performs reconstruction and sub-
sequently incorporates details, such as clothing deformation,
from the input frames, enabling consistent reconstruction
even in unseen viewpoints.

While DreamGaussian4D [78] is capable of modeling
back-view information, the details remain coarse. Our results
demonstrate that initializing with our model from the first
frame (DreamGaussian4D Disco4D-init) significantly out-
performs other initialization methods (DreamGaussian4D-
LGM init, DreamGaussian init) in both fidelity and geometry
(Table 4). Nevertheless, without incorporating human pri-
ors, DreamGaussian4D [78] still faces challenges, such as
missing limbs and difficulty modeling fine details like facial
features (see Figure 13 in Appendix).

Reposing our canonical avatar enables us to align the
body and assets accurately with the inferred postures from
the source video, yielding high-quality reconstruction of
faces, hands, and garments. Our reposed method surpasses
DreamGaussian4D in geometry and fidelity by incorporating
human priors. However, reposing alone cannot capture cloth-
ing dynamics. To address this, our disentangled approach
models clothing deformations on the reposed Gaussians,
guided by a diffusion model. As demonstrated in Figure 13
and Table 4, this process enhances the accuracy of clothing
resemblance to the ground truth. The combination of asset
repositioning and learned deformations improves modeling
quality, with repositioning handling pose-driven changes and
learned deformations simulating dynamic asset movements
as observed in the driving video.



Table 2. CLIP-embedding loss for generated humans and segmented assets, and performance (PSNR, SSIM, LPIPS) comparisons for
novel poses and views on the Synbody and CloSe datasets across DreamGaussian, LGM, SHERF, and Disco4D.

Method
SynBody CloSe

CLIP Novel View CLIP Novel View Novel Pose

All ↑ Pants ↑ Shirt ↑ Shoes ↑ PSNR ↑ SSIM ↑ LPIPS ↓ All ↑ Pants ↑ Shirt ↑ Shoes ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DreamGaussian 0.751 0.715 0.710 0.749 13.118 0.883 0.229 0.734 0.693 0.674 0.767 20.08 0.939 0.089 - - -
LGM 0.807 0.724 0.747 0.760 12.884 0.876 0.228 0.829 0.727 0.712 0.778 20.50 0.939 0.077 - - -
SHERF 0.766 0.649 0.636 0.714 15.189 0.852 0.189 0.777 0.785 0.729 0.801 18.96 0.912 0.083 15.54 0.844 0.165
Disco4D 0.851 0.784 0.753 0.801 15.691 0.848 0.185 0.856 0.858 0.810 0.842 20.10 0.918 0.081 17.96 0.851 0.136

Input DreamGaussian LGM SHERF Disco4D Disco4D (Novel Pose) Disco4D (Edited)

Figure 4. Qualitative comparison of image generation across DreamGaussian, LGM, SHERF, and Disco4D.

Figure 5. Qualitative comparison of 4D generation between DreamGaussian4D, MonoHuman, GART, GaussianAvatar, and Disco4D.



Table 3. User study rates quality of generated 3D Gaussians
from 1-5. The higher the better.

Metric Image Consistency ↑ Overall Quality ↑

DreamGaussian 2.017 1.852
LGM 2.338 2.017
Disco4D 3.142 3.037

Table 4. CLIP-embedding loss for generated humans and seg-
mented assets, and performance (PSNR, SSIM, LPIPS) com-
parison on 4D-Dress across various video-to-4D methods.

All ↑ Assets ↑ PSNR ↑ SSIM ↑ LPIPS ↓

DreamGaussian4D 0.784 0.769 20.54 0.93 0.080
MonoHuman 0.762 0.743 20.22 0.92 0.086
GART 0.800 0.772 18.81 0.92 0.086
GaussianAvatar 0.822 0.768 20.01 0.93 0.069
DreamGaussian4D (LGM init) 0.809 0.795 19.16 0.93 0.086
DreamGaussian4D (Disco4D init) 0.870 0.849 21.02 0.93 0.065
Disco4D (reposed) 0.853 0.774 23.94 0.95 0.049
Disco4D (reposed)+learned deformations 0.900 0.865 25.46 0.96 0.035
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Figure 6. First frame Editing and Animation. Betas Editing,
Recoloring (Text/Image-guided), Composition (Removal, Swap).

4D Editing. For a normal pipeline in character animation,
editing the person in the video requires high consistency
throughout all frames. For pose-driven animation methods,
first frame editing and generation is required. Our method
directly edits the Gaussians, which is more straightforward,
fine-grained and consistent. This is seen from Figure 6.

4.3. Ablation Studies
Initialization of Clothing Gaussians. This process is cru-
cial for high fidelity reconstruction. As shown in Figure 8
in the Appendix, we evaluate different strategies, including
random, surface, and hull-based initialization. Hull-based
initialization significantly enhances the model accuracy and
realism over other methods. Initialization directly on the
SMPL-X surface often leads to inaccurate geometries, partic-
ularly with complex or loose garments, creating elongated,
thin Gaussians and visual artifacts. In contrast, hull-based
initialization captures garment details more effectively and
maintains pose consistency, closely aligning with the true
geometry of the clothed body.
Geometry of Clothing Gaussians. Figure 14 in the Ap-
pendix highlights the differences in clothing geometry be-
tween DreamGaussian [89], LGM [91] and Disco4D. In

DreamGaussian, all points are confined within the body ge-
ometry, whereas in LGM, about half of the points extend
beyond the SMPL-X body. Removing internal points leaves
sparse, translucent representations for clothing. This sparsity
suggests reliance on internal points for visual representa-
tion, failing to accurately depict the object’s geometry where
appearance should primarily originate from surface points.
Often, clothing Gaussian points are incorrectly positioned
inside the body’s hull rather than on the surface. To better
represent clothing geometry, Disco4D positions all clothing
Gaussians externally to the SMPL-X body mesh, accurately
reflecting the garment’s actual physical characteristics.
Clothing editing. Figure 14 shows our editing results with
the prompt "Color the top pink". Disco4D allows for precise
editing of the targeted clothing without affecting other areas.

5. Discussion

Despite achieving impressive results, some failure cases still
exist, as shown in Figure 7 in the Appendix. Disco4D relies
on robust and pixel-aligned SMPL-X estimation, which is
still an unsolved problem. It occasionally fails for poor visual
hull initialization. The extraction of mesh assets from cloth-
ing Gaussians using Local Density Query, as per DreamGaus-
sian [89], currently loses fine-grained details. Enhancing the
detail level of geometry derived from clothing Gaussians
could bolster the utility of reconstructed assets in animation
and simulation applications. Furthermore, the initialized vi-
sual hulls obtained from multi-view SMPL-X guided images
are often of suboptimal quality and suffer from poor side
and back views, necessitating refinement. Improving pose
guidance models to achieve more accurate visual hulls could
alleviate the need for extensive refinement. In addition, fu-
ture works could look into modeling multi-layered clothing
and reconstructing the occluded clothing. Disco4D has many
positive applications, but it also has the potential to facilitate
deepfake avatars and raise IP concerns. Regulations should
be built to address these issues alongside its benefits in the
entertainment industry.

6. Conclusion

We propose Disco4D, a novel approach for the generation
of 3D animatable clothed human Gaussians from a single
image, emphasizing high-fidelity detail and separation of
assets. We manage to compositionally generate separate
components, such as haircut, accessories, and decoupled
outfits. Our core insight is the fixing of SMPL-X Gaussians,
fitting segmented Gaussians over SMPL-X Gaussians, and
application of diffusion models to enhance 3D reconstruc-
tion, including modeling occluded parts not visible in the
input image. Its capability to separate assets offers signifi-
cant advantages, including localized, fine-grained editing of
individual assets and enhanced animatability.
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7. Appendix

Due to space constraints in the main paper, we provide addi-
tional information and details in this supplementary material.
These include:
• A more detailed discussion of the preliminaries in Section

7.1.
• Comprehensive training details of the Identity Encoding

Loss in Section 7.2.
• Implementation details outlined in Section 7.3.
• Analysis of failure cases in Section 7.4.
• Ablation of initialization strategies in Section 7.5
• Examples of hair tagging in Section 7.6
• Additional visualizations presented in Section 7.9.
• Detailed information on the demo video [Disco4D-

demo.mp4] in Section 7.10.

7.1. Preliminary

3D Gaussian Splatting utilizes explicit 3D Gaussian points
as the core elements for rendering. Each 3D Gaussian point
is defined by the function:

G(x) = e−
1
2 (x−µ)

TΣ−1(x−µ),

where µ represents the spatial mean, and Σ denotes the co-
variance matrix. Additionally, each Gaussian is assigned an
opacity value α and a view-dependent color c, parameter-
ized by spherical harmonic coefficients f . During rendering,
these 3D Gaussians are projected onto the 2D view plane
via a splatting technique. The 2D projection is computed
using the projection matrix, while the 2D covariance matri-
ces are approximated as: Σ′ = JgWgΣW

T
g J

T
g , where Wg

is the viewing transformation, and Jg is the Jacobian of the
affine approximation for perspective projection. The final
pixel color is obtained through alpha-blending of N layered
2D Gaussians from front to back C =

∑
i∈N Tiαici, with

Ti =
∏i
j=1(1− αj).

The opacity α is determined by multiplying γ with the
contribution of the 2D covariance, derived from Σ′ and the
pixel coordinate in image space. The covariance matrix Σ is
parameterized using a quaternion q and a 3D scaling vector
v to aid in optimization.

SMPL-X parameterization [71] extends the original
SMPL body model [62] by incorporating detailed face and
hand deformations to capture more expressive human move-
ments. SMPL-X expands SMPL joint set by including
additional joints for facial features, toes and fingers, en-
abling a more accurate representation of complex body
movements. SMPL-X is defined by a function M(β, θ, ψ) :
R|β|×|θ|×|ψ| → R3N , where θ ∈ R3K represents the pose
(with K being the number of body joints), β ∈ R|β| repre-
sents body shape, and ψ ∈ R|ψ| captures facial expressions.
Further details can be found in [71].

7.2. Training details of Identity Encoding loss
To optimize the introduced Identity Encoding of each Gaus-
sian, we render these encoded identity vectors into 2D im-
ages in a differentiable manner following [111]. We adapt
the differentiable 3D Gaussian renderer from [47], approach-
ing the rendering process similarly to the color optimization
using spherical harmonic (SH) coefficients, as described in
[47]. In this method, 3D Gaussian splatting utilizes neu-
ral point-based α′-rendering [52, 53], where the influence
weight α′ is calculated in 2D for each Gaussian and pixel.
Following the approach in [47], the influence of all Gaus-
sians on a pixel is computed by sorting them based on depth
and blending the N ordered Gaussians that overlap with that
pixel:

Eid =
∑
i∈N

eiαi

i−1∏
j=1

(1− α′
j) (3)

Here, the rendered 2D mask identity feature Eid is the sum
of the Identity Encoding ei (of length 15) for each Gaussian,
weighted by the Gaussian’s influence factor α′

i on that pixel.
The value of α′

i is determined by evaluating a 2D Gaussian
with covariance Σ2D, which is scaled by a learned per-point
opacity αi:

Σ2D = JWΣ2D3DWTJT (4)

where Σ3D is the 3D covariance matrix, Σ2D represents
the splatted 2D counterpart, J is the Jacobian of the affine
approximation for the 3D-to-2D projection, and W is the
world-to-camera transformation matrix.

To ensure consistency in the Identity Encoding ei dur-
ing training, we apply an unsupervised 3D regularization
loss. This loss encourages the Identity Encodings of the
top k-nearest 3D Gaussians to remain close in feature space,
promoting spatial consistency. Using the softmax function
F , we define the KL divergence loss with m sampled points
as follows:

L3d =
1

m

m∑
j=1

DKL(P ||Q) =
1

mk

m∑
j=1

k∑
i=1

F (ej) log

(
F (ej)

F ′(ej)

)
(5)

Here, P is the sampled Identity Encoding e of a 3D Gaus-
sian, and Q consists of the k-nearest neighbors in 3D space,
represented as e′1, e

′
2, ..., e

′
k. The total identity encoding loss

is then defined as:

Lid = L2d + L3d (6)

7.3. Implementation details
The 3D generation experiments were conducted using a
single 24GB RTX3090 GPU, while the 4D generation ex-
periments utilized a single 48GB RTX6000 GPU. For the
3D generation process, the SMPL-X fitting was performed



with 3000 iterations in 3 minutes, followed by skin color
inpainting on SMPL-X Gaussians for 100 iterations in 30
seconds. Reconstruction and disentanglement optimization
required 3000 iterations, completed in 12 minutes. In video
reconstruction, SMPL-X fitting aligned 14 frames in 6 min-
utes for in-the-wild videos. The 4D-Dress [96] experiments
involved 1000 iterations for clothing deformation over 18
minutes.

7.4. Failure cases

Figure 7. Failure cases of Disco4D. (a) Poor SMPL-X estimation
(b) Poor visual hull initialization (c) Misclassification of clothing
categories.

Disco4D relies on robust and pixel-aligned SMPL-X es-
timation, which is still an unsolved problem, especially for
challenging poses. In Figure 7a, it is difficult to correct the
pose with keypoints and segmentation mask due to depth am-
biguity. Disco4D occasionally fails for poor visual hull ini-
tialization (7b), which is common for difficult poses. Lastly,
poor disentanglement is a common problem due to misclas-
sification of clothing category by the segmentation model.
This is seen in Figure 7c where the arms are wrongly classi-
fied under the "top" category.

7.5. Initialization
We evaluate random, surface, and hull-based initialization
strategies. Surface initialization on SMPL-X often produces
inaccurate geometries for complex or loose garments, lead-
ing to elongated Gaussians and artifacts. Hull-based ini-
tialization better captures garment details, preserves pose
consistency, and aligns closely with the true clothed body
geometry, as seen in Figure 8.

7.6. Hair tagging
In our approach, hair Gaussians are tagged to head faces
rather than the nearest face during reposing. Reposing hair
Gaussians according to the nearest face, as commonly done
in previous works, often results in artifacts such as disjointed
hair (Figure 9). By leveraging the learned identity encoding,
we assign a unified identity to hair Gaussians, enabling them
to be reposed cohesively as a single entity, thereby preserving
the structural integrity of the hair during transformations.

Figure 8. Ablation of initialization. (a) Random Initialization (b)
SMPL-X Initialization (c) Visual Hull Initialization.
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Figure 9. Visualization of hair tagging.

7.7. In-the-wild evaluation

Figure 10. Qualitative evaluation on ITW images.

Figure 11. Qualitative evaluation on avatars clothed in dress.

Our focus on studio and synthetic datasets (e.g., Synbody,
CloSe, and 4DDress) was due to the availability of ground-



truth data from multiple views, enabling rigorous quantita-
tive evaluation. ITW images lack such ground-truth data,
making comparisons challenging. Nevertheless, our solution
applies to ITW images, with some examples shown in Fig.
10. Examples of avatars clothed in dress are added in Fig 11,
driven with poses from subjects in Fig. 10.

7.8. Facial detail
Additional visualizations of well known individuals are pro-
vided in Fig. 10 and Fig. 11.

7.9. Extra visualizations
Figure 12 presents visual comparisons with 2D animation
methods. Figure 13 illustrates ablation results for 4D recon-
struction. Finally, ablation studies on point geometry and
editing are provided in Figure 14.

7.10. Demo video
Extended visualizations and results showcasing 3D gener-
ation and disentanglement, pose-driven animation, video-
to-4D reconstruction, and fine-grained editing of animated
outputs are demonstrated in the accompanying demo video
[Disco4D-demo.mp4]. A sample of the video is shown in
Figure 15.
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Figure 12. Comparison to 2D animation methods. Compared to Magic-Animate and Animate-Anyone, we have better preservation of
body shape and details. Compared to CHAMP, we have better geometry and consistency.
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Figure 13. 4D reconstruction results on 4D-Dress Dataset.
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Figure 14. Ablation of points geometry (left) and editing results (right). Points ("All") are visualised with a Gaussian Scale of 0.1.
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Figure 15. Additional visualizations showcasing generation, disentanglement, animation, and editing. Full demonstrations are
available in the accompanying demo video [Disco4D-demo.mp4]. This figure provides a sample from the demo.
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