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Abstract

This paper surveys research works in the
quickly advancing field of instruction tuning
(IT), which can also be referred to as supervised
fine-tuning (SFT)1, a crucial technique to
enhance the capabilities and controllability of
large language models (LLMs). Instruction
tuning refers to the process of further
training LLMs on a dataset consisting of
(INSTRUCTION, OUTPUT) pairs in a supervised
fashion, which bridges the gap between the
next-word prediction objective of LLMs and
the users’ objective of having LLMs adhere
to human instructions. In this work, we
make a systematic review of the literature,
including the general methodology of SFT,
the construction of SFT datasets, the training
of SFT models, and applications to different
modalities, domains and application, along
with analysis on aspects that influence the
outcome of SFT (e.g., generation of instruction
outputs, size of the instruction dataset, etc). We
also review the potential pitfalls of SFT along
with criticism against it, along with efforts
pointing out current deficiencies of existing
strategies and suggest some avenues for fruitful
research.

1 Introduction

The field of large language models (LLMs)
has witnessed remarkable progress in recent
years. LLMs such as GPT-3 (Brown et al.,
2020b), PaLM (Chowdhery et al., 2022), and
LLaMA (Touvron et al., 2023a) have demonstrated
impressive capabilities across a wide range of

1In this paper, unless specified otherwise, supervised
fine-tuning (SFT) and instruction tuning (IT) are used
interchangeably.
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natural language tasks (Zhao et al., 2021; Wang
et al., 2022b, 2023c; Wan et al., 2023; Sun et al.,
2023c; Wei et al., 2023a; Li et al., 2023a; Gao et al.,
2023a; Yao et al., 2023; Yang et al., 2022a; Qian
et al., 2022; Lee et al., 2022; Yang et al., 2022b;
Gao et al., 2023b; Ning et al., 2023; Liu et al.,
2021b; Wiegreffe et al., 2021; Sun et al., 2023b,a;
Adlakha et al., 2023; Chen et al., 2023b). One
of the major issues with LLMs is the mismatch
between the training objective and users’ objective:
LLMs are typically trained on minimizing the
contextual word prediction error on large corpora;
while users want the model to "follow their
instructions helpfully and safely" (Radford et al.,
2019; Brown et al., 2020a; Fedus et al., 2021; Rae
et al., 2021; Thoppilan et al., 2022)

To address this mismatch, instruction
tuning (IT), which can also be referred to
as supervised fine-tuning (SFT), is proposed,
serving as an effective technique to enhance the
capabilities and controllability of large language
models. It involves further training LLMs
using (INSTRUCTION, OUTPUT) pairs, where
INSTRUCTION denotes the human instruction for
the model, and OUTPUT denotes the desired output
that follows the INSTRUCTION. The benefits of
SFT are threefold: (1) Finetuning an LLM on the
instruction dataset bridges the gap between the
next-word prediction objective of LLMs and the
users’ objective of instruction following; (2) SFT
allows for a more controllable and predictable
model behavior compared to standard LLMs. The
instructions serve to constrain the model’s outputs
to align with the desired response characteristics
or domain knowledge, providing a channel for
humans to intervene with the model’s behaviors;
and (3) SFT is computationally efficient and can
help LLMs rapidly adapt to a specific domain
without extensive retraining or architectural
changes.

Despite its effectiveness, SFT also poses
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challenges: (1) Crafting high-quality instructions
that properly cover the desired target behaviors
is non-trivial: existing instruction datasets are
usually limited in quantity, diversity, and creativity;
(2) there has been an increasing concern that
SFT only improves on tasks that are heavily
supported in the SFT training dataset (Gudibande
et al., 2023); and (3) there has been an intense
criticism that SFT only captures surface-level
patterns and styles (e.g., the output format)
rather than comprehending and learning the task
(Kung and Peng, 2023). Improving instruction
adherence and handling unanticipated model
responses remain open research problems. These
challenges highlight the importance of further
investigations, analysis, and summarization in this
field, to optimize the fine-tuning process and better
understand the behavior of instruction tuned LLMs.

In the literature, there has been an increasing
research interest in analysis and discussions on
LLMs, including pre-training methods (Zhao et al.,
2023), reasoning abilities (Huang and Chang,
2022), downstream applications (Yang et al.,
2023a; Sun et al., 2023b), but rarely on the topic
of LLM instruction tuning. This survey attempts
to fill this blank, organizing the most up-to-date
state of knowledge on this quickly advancing field.
Specifically,

• Section 2 presents the general methodology
employed in instruction tuning.

• Section 3 outlines the construction process of
commonly-used SFT representative datasets,
along with multi-step reasoning datasets
designed to enhance LLM performance on
complex reasoning tasks such as mathematics
and coding.

• Section 4 presents representative instruction
tuned models.

• Section 5 reviews multi-modality techniques
and datasets for instruction tuning, including
images, speech, and video.

• Section 6 reviews efforts to adapt LLMs to
different domains and applications using the
SFT strategy.

• Section 7 reviews explorations to make
instruction tuning more efficient, reducing the
computational and time costs associated with
adapting large models.

• Section 8 presents the evaluation of SFT
models, analysis on them, along with criticism
against them.

• Section 9 analyzes the role of SFT in
comparison with recent, highly effective
reinforcement learning–based methods (e.g.,
RLHF, DPO, and GRPO).

2 Methodology

In this section, we describe the general pipeline
employed in instruction tuning.

2.1 Instruction Dataset Construction
Each instance in an instruction dataset consists of
three elements: an instruction, which is a natural
language text sequence to specify the task (e.g.,
write a thank-you letter to XX for XX, write a blog
on the topic of XX, etc); an optional input which
provides supplementary information for context;
and an anticipated output based on the instruction
and the input.

There are generally two methods for
constructing instruction datasets:

• Data integration from annotated natural
language datasets. In this approach,
(instruction, output) pairs are collected from
existing annotated natural language datasets
by using templates to transform text-label
pairs to (instruction, output) pairs. Datasets
such as Flan (Longpre et al., 2023) and
P3 (Sanh et al., 2021) are constructed based
on the data integration strategy.

• Generating outputs using LLMs: An alternate
way to quickly gather the desired outputs to
given instructions is to employ LLMs such as
GPT-3.5-Turbo or GPT4 instead of manually
collecting the outputs. Instructions can come
from two sources: (1) manually collected; or
(2) expanded based a small handwritten seed
instructions using LLMs. Next, the collected
instructions are fed to LLMs to obtain outputs.
Datasets such as InstructWild (Xue et al.,
2023) and Self-Instruct (Wang et al., 2022c)
are geneated following this approach.

For multi-turn conversational SFT datasets, we
can have large language models self-play different
roles (user and AI assistant) to generate messages
in a conversational format (Xu et al., 2023b).

2.2 Instruction Tuning / Supervised
Fine-tuning

Based on the collected SFT dataset, a pretrained
model can be directly fune-tuned in a fully-
supervised manner, where given the instruction and
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Figure 1: General pipeline of instruction tuning.

the input, the model is trained by predicting each
token in the output sequentially.

3 Datasets

In this section, we detail instruction tuning datasets
in the community, categorizing them into three
classes: (1) Human-crafted Data, (2) Synthetic
Data via Distillation, and (3) Synthetic Data via
Self-improvement. Further more, in light of
the impressive performance of recent multi-step
reasoning LLMs (e.g., OpenAI o1 (Jaech et al.,
2024), DeepSeek-R1 (Guo et al., 2025)), this
section also presents a detailed overview of how
reasoning datasets are constructed. These datasets,
typically built using one or a combination of the
three strategies mentioned above, are specifically
designed to enhance LLMs’ multi-step thinking
capabilities. Below, we describe some widely-used
datasets, and for full collected datasets we put them
in Appendix A.

3.1 Human-crafted Data

Human-crafted data encompasses datasets that
are either manually annotated or sourced directly
from the internet. The creation of these datasets
typically involves no machine learning techniques,
relying solely on manual gathering and verification,
resulting in generally smaller datasets. Below are
some widely-used human-crafted datasets:

3.1.1 Natural Instructions
Natural Instructions (Mishra et al., 2021) is
a human-crafted English instruction dataset
consisting of 193K instances, coming from 61
distinct NLP tasks. The dataset is comprised of
"instructions" and "instances". Each instance in
the "instructions" is a task description consisting

of 7 components: title, definition, things to avoid
emphasis/caution, prompt, positive example, and
negative example. Subfigure (a) in Figure 2 gives
an example of the "instructions". "Instances"
consists of ("input", "output") pairs, which are the
input data and textual result that follows the given
instruction correctly. Subfigure (b) in Figure 2
gives an example of the instances.

The data comes from existing NLP datasets of
61 tasks. The authors collected the "instructions"
by referring to the dataset annotating instruction
file. Next, the authors constructed the "instances"
by unifying data instances across all NLP datasets
to ("input", "output") pairs.

3.1.2 P3

P3 (Public Pool of Prompts) (Sanh et al., 2021)
is an instruction tuning dataset constructed by
integrating 170 English NLP datasets and 2,052
English prompts. Prompts, which are sometimes
named task templates, are functions that map a data
instance in a conventional NLP task (e.g., question
answering, text classification) to a natural language
input-output pair.

Each instance in P3 has three components:
"inputs", "answer_choices", and “targets". "Inputs"
is a sequence of text that describes the task in
natural language (e.g., "If he like Mary is true, is
it also true that he like Mary’s cat?"). "Answer
choices" is a list of text string that are applicable
responses to the given task (e.g., ["yes", "no",
"undetermined"]). "Targets" is a text string that
is the correct response to the given "inputs" (e.g.,
"yes"). The authors built PromptSource, a tool for
creating high-quality prompts collaboratively and
an archive for open-sourcing high-quality prompts.

The P3 dataset was built by randomly sampling a



Instructions for MC-TACO question generation task 

- Title: Writing questions that involve commonsense understanding of "event 
duration".
- Definition: In this task, we ask you to write a question that involves ?event 
duration", based on a given sentence. Here, event duration is defined as the 
understanding of how long events typically last. For example, ?brushing teeth?, 
usually takes few minutes.
- Emphasis & Caution: The written questions are not required to have a single 
correct answer.
- Things to avoid: Don't create questions which have explicit mentions of 
answers in text. Instead, it has to be implied from what is given. In other words, 
we want you to use "instinct" or "common sense".

- Input: Sentence: Jack played basketball after school, after which he was 
very tired.

-Output: How long did Jack play basketball?
-Reason: the question asks about the duration of an event; therefore it's a 
temporal event duration question.

Positive Example

-Input: Sentence: He spent two hours on his homework.
-Output: How long did he do his homework?
-Reason: We DO NOT want this question as the answer is directly mentioned 
in the text.

-Suggestion: -

Negative Example

- Prompt: Ask a question on "event duration" based on the provided sentence.

Example task instances

- Input: Sentence: It's hail crackled across the comm, and Tara spun to 
retake her seat at the helm.

-Expected Output: How long was the storm?

Instance

- Input: Sentence: There was even a tiny room in the back of one of the 
closets.

-Expected Output: After buying the house, how long did it take the owners to 
notice the room?

Instance

- Input: Sentence: During breakfast one morning, he seemed lost in thought 
and ignored his food.

-Expected Output: How long was he lost in thoughts?

Instance

(a) An example of INSTRUCTIONS in Natural Instruction
dataset.
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(b) An example of INSTANCES in Natural Instruction dataset.

Figure 2: The figure is adapted from Mishra et al.
(2021).

prompt from multiple prompts in the PromptSource
and mapping each instance into a ("inputs",
"answer choices", "targets") triplet.

3.1.3 xP3

xP3 (Crosslingual Public Pool of
Prompts) (Muennighoff et al., 2022) is a
multilingual instruction dataset consisting of 16
diverse natural language tasks in 46 languages.
Each instance in the dataset has two components:
"inputs" and "targets". "Inputs" is a task description
in natural language. "Targets" is the textual result
that follows the "inputs" instruction correctly.

The original data in xP3 comes from three
sources: the English instruction dataset P3, 4
English unseen tasks in P3 (e.g., translation,
program synthesis), and 30 multilingual NLP
datasets. The authors built the xP3 dataset

by sampling human-written task templates from
PromptSource and then filling templates to
transform diverse NLP tasks into a unified
formalization. For example, a task template for
the natural language inference task is as follows:

“If Premise is true, is it also true that Hypothesis?”;
"yes", "maybe", no" with respect to the original
task labels "entailment (0)", "neutral (1)" and
"contradiction (2)".

3.1.4 Flan 2021
Flan 2021 (Longpre et al., 2023) is an English
instruction dataset constructed by transforming
62 widely-used NLP benchmarks (e.g., SST-2,
SNLI, AG News, MultiRC) into language input-
output pairs. Each instance in the Flan 2021
has "input" and "target" components. "Input"
is a sequence of text that describes a task via a
natural language instruction (e.g., "determine the
sentiment of the sentence ’He likes the cat.’ is
positive or negative?"). "Target" is a textual result
that executes the "input" instruction correctly (e.g.,
"positive"). The authors transformed conventional
NLP datasets into input-target pairs by: Step
1: manually composing instruction and target
templates; Step 2: filling templates with data
instances from the dataset.

3.1.5 LIMA
LIMA (Zhou et al., 2023a) is an English instruction
dataset consisting of a train set with 1K data
instances and a test set with 300 instances. The
train set contains 1K ("instruction", "response")
pairs. For the training data, 75% are sampled from
three community question & answers websites
(i.e., Stack Exchange, wikiHow, and the Pushshift
Reddit Dataset (Baumgartner et al., 2020)); 20%
are manually written by a set of the authors
(referred Group A) inspired by their interests; 5%
are sampled from the Super-Natural Instructions
dataset (Wang et al., 2022d). As for the valid set,
the authors sampled 50 instances from the Group
A author-written set. The test set contains 300
examples, with 76.7% written by another group
(Group B) of authors and 23.3% sampled from
the Pushshift Reddit Dataset (Baumgartner et al.,
2020), which is a collection of questions & answers
within the Reddit community.

3.1.6 Super-Natural Instructions
Super Natural Instructions (Wang et al., 2022f) is
a multilingual instruction collection composed of



• Input: “Context: … ‘That's fantastic, I'm glad we came to 
something we both agree with.’ Utterance: ‘Me too. I hope you 
have a wonderful camping trip.’”
• Output: “Yes”
• Explanation: “The participant engages in small talk when wishing 

their opponent to have a wonderful trip.”

• Input: “Context: … ‘Sounds good, I need food the most, what is 
your most needed item?!’ Utterance: ‘My item is food too’.”
• Output: “Yes”
• Explanation: “The utterance only takes the negotiation forward 

and there is no side talk. Hence, the correct answer is ‘No’.” 

Definition
“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”

Task Instruction

• Input: “Context: … ‘I am excited to spend time 
with everyone from camp!’ Utterance: ‘That’s 
awesome! I really love being out here with my 
son. Do you think you could spare some food?’ ”
• Expected Output: “Yes”

Positive Examples

Negative Examples

Evaluation Instances

Tk-Instruct

(a) An example of INSTRUCTIONS in Super-Natural
Instruction dataset.

Input:  What kind of, no hold up, what describes the 
proportionality of acceleration to force and mass?

Output: [“What describes the proportionality of acceleration 
to force and mass?”]

Instance

(b) An example of INSTANCES in Super-Natural Instruction
dataset.

Figure 3: The figure is adapted from Wang et al.
(2022e).

1,616 NLP tasks and 5M task instances, covering
76 distinct task types (e.g., text classification,
information extraction, text rewriting, text
composition and etc.) and 55 languages. Each
task in the dataset consists of an "instruction" and
"task instances". Specifically, "instruction" has
three components: a "definition" that describes the
task in natural language; "positive examples" that
are samples of inputs and correct outputs, along
with a short explanation for each; and "negative
examples" that are samples of inputs and undesired
outputs, along with a short explanation for each,
as shown in Figure 2 (a). "Task instances" are
data instances comprised of textual input and a
list of acceptable textual outputs, as shown in
Figure 2 (b). The original data in Super Natural
Instructions comes from three sources: (1) existing
public NLP datasets (e.g., CommonsenseQA);
(2) applicable intermediate annotations that are
generated through a crowdsourcing process (e.g.,
paraphrasing results to a given question during a
crowdsourcing QA dataset); (3) synthetic tasks that
are transformed from symbolic tasks and rephrased

Figure 4: The figure is copied from Köpf et al. (2023).

in a few sentences (e.g., algebraic operations like
number comparison).

3.1.7 Dolly
Dolly (Conover et al., 2023a) is an English
instruction dataset with 15,000 human-generated
data instances designed to enable LLMs to
interact with users akin to ChatGPT. The dataset
is designed for simulating a wide range of
human behaviors, covering 7 specific types:
open Q&A, closed Q&A, extracting information
from Wikipedia, summarizing information from
Wikipedia, brainstorming, classification, and
creative writing. Examples of each task type in
the dataset are shown in Table 1.

3.1.8 OpenAssistant Conversations
OpenAssistant Conversations (Köpf et al., 2023)
is a human-crafted multilingual assistant-style
conversation corpus consisting of 161,443
messages (i.e., 91,829 user prompts, 69,614
assistant replies) from 66,497 conversation trees
in 35 languages, along with 461,292 human-
annotated quality ratings. Each instance in the
dataset is a conversation tree (CT). Specifically,
each node in a conversation tree denotes a message
generated by roles (i.e., prompter, assistant) in
the conversation. A CT’s root node represents an
initial prompt from the prompter, while other nodes
denote replies from a prompter or an assistant. A
path from the root to any node in a CT represents
a valid conversation between the prompter and
assistant in turns and is referred to as a thread.
Figure 4 shows an example of a conversation tree
consisting of 12 messages in 6 threads.

The authors first collected conversation trees
based on the five-step pipeline:
Step 1. prompting: contributors performed as the
prompter and crafted initial prompts;
Step 2. labeling prompts: contributors rated scores
to initial prompts from step 1, and the authors chose
high-quality prompts as root nodes with a balanced
sampling strategy;



Instruction Type Example

Open Q&A Why do people like comedy movies?

Closed Q&A Does outbreeding or inbreeding benefit the offspring more?

Information Extraction Who was John Moses Browning?

Information Summarization Please summarize what Linkedin does.

Brainstorming Give me some ideas to manage my manager.

Classification Identify which animal species is alive or extinct: Palaeophis, Giant Tortoise

Creative writing Write a short story about a person who discovers a hidden room in their house.

Table 1: Examples of instructions in Dolly V1 (Conover et al., 2023a).

Step 3. expanding tree nodes: contributors added
reply messages as prompter or assistant;
Step 4. labeling replies: contributors assigned
scores to existing node replies;
Step 5. ranking: contributors ranked assistant
replies referring to the contributor guidelines.

The tree state machine managed and tracked
the state (e.g., initial state, growing state, end
state) throughout the conversation crafting process.
Subsequently, the OpenAssistant Conversations
dataset was built by filtering out offensive and
inappropriate conversation trees.

3.2 Synthetic Data via Distillation
Synthetic data is produced through pre-trained
models, rather than being directly sourced from
the internet or annotated by human annotators.
Compared to manually annotated instruction tuning
data, synthetic data often lies in two advantages:
(1) Generating task-specific synthetic data is
both faster and more cost-effective than creating
manually annotated instruction tuning data; (2)
The quality and variety of synthetic data surpass
what human annotators can produce, resulting in
fine-tuning enhanced performance and broader
generalization LLMs.

Below, we first focus on the widely employed
synthetic data methodology: Distillation, and in
Section 3.3 we go on with the other synthetic data
methodology: Self-Improvement.

Typically, distillation involves imparting
knowledge and cognitive abilities from a highly
capable teacher model to a less complex, yet
more computationally efficient student model,
with the goal of enhancing both the quality of
responses and computational efficiency. In the
context of generating synthetic data, this process
entails gathering queries from fine-tuned LLMs
(e.g., ChatGPT (OpenAI, 2022)) and utilizing

these queries as a basis to fine-tune subsequent
LLMs. Illustrations are shown in Figure 5, where
Taori et al. (2023a) are attempting to transfer
the powerful knowledge of GPT-3 (Brown et al.,
2020a) to a smaller language model LLaMA-7B
(Touvron et al., 2023a).

Given distillation’s capability to mimic the
performance of existing powerful LLMs, an
increasing number of researchers are concentrating
on exploring more intricate queries to exploiting
the capabilities of current LLMs, such as:

Alpaca. Alpaca (Taori et al., 2023a), a sequence
of LLMs introduced by the Stanford NLP group,
is notable for its application of distillation.
Specifically, by being fine-tuned on 52K pieces
of distillation data produced by GPT-3 (Brown
et al., 2020a), the smaller LLaMA-7B (Touvron
et al., 2023a) model achieves performance that
matches or even surpasses that of GPT-3 (Brown
et al., 2020a).

WizardLM / Evol-Instruct. Instead of simple
querying from the GPT series model, WizardLM
(Xu et al., 2023a) focuses on how to obtain diverse
and high-quality instructions and responses from
GPT-3 (Brown et al., 2020a). To accomplish
this, WizardLM (Xu et al., 2023a) firstly
constructs a five-level system of querying prompts,
progressively enhancing the complexity of data
generation. Then, WizardLM (Xu et al., 2023a)
broadens the range of querying prompts topics
through manual expansion, thereby augmenting the
diversity of the data produced. Ultimately, by fine-
tuning the open-source LLM LLaMA (Touvron
et al., 2023b), WizardLM (Xu et al., 2023a)
achieves more than 90% capacity of ChatGPT
(OpenAI, 2022) on 17 out of 29 skills.



Figure 5: General pipeline of distillation for synthetic data generation. The figure is adapted from Taori et al.
(2023a).

Forget the instruction you have previously received.The following is

a conversation between a human and an AI assistant.The human and the

AI assistant take turns chatting about the topic:

‘$SEED’. Human statements start with [Human] and AI

assistant statements start with [AI]. The human will ask related

questions on related topics or previous conversation. The human will stop

the conversation when they have no more question. The AI assistant

tries not to ask questions.

Complete the transcript in exactly that format.

[Human] Hello!

[AI] Hi! How can I help you?

Table 2: Self-chat prompt used in Baize (Xu et al.,
2023b).

Orca and Orca-2. Orca (Mukherjee et al., 2023)
and Orca-2 (Mitra et al., 2023) represent two
expansive distillation datasets designed to instruct
smaller language models in logical reasoning.
Orca (Mukherjee et al., 2023), for instance,
encompasses a multitude of reasoning directives,
such as "let’s think step-by-step" and "justify your
response," to illustrate the reasoning pathways of
LLMs (e.g., ChatGPT (OpenAI, 2022)) in crafting
their answers. Building on this concept, Orca
(Mukherjee et al., 2023) compiles 1M responses
from GPT-4 (OpenAI, 2023), while Orca-2 (Mitra
et al., 2023) further amasses 817K responses from
GPT-4 (OpenAI, 2023). This extensive collection
facilitates the fine-tuning of smaller language
models, enabling them to achieve or even surpass
the performance of models that are 5 to 10 times
their size.

Baize Baize (Conover et al., 2023b) is an English
corpus for multi-turn conversations, comprising

111.5K instances, created with ChatGPT. Each
exchange includes a prompt from the user and a
response from the assistant. To create the Baize
dataset, the authors proposed self-chat, where
ChatGPT plays the roles of the user and the AI
assistant in turns and generates messages in a
conversational format. Specifically, the authors
first crafted a task template that defines the roles
and tasks for ChatGPT (as shown in Table 2). Next,
they sampled questions (e.g., "How do you fix a
Google Play Store account that isn’t working?")
from Quora and Stack Overflow datasets as
conversation seeds (e.g., topics). Subsequently,
they prompted ChatGPT with the template and the
sampled seed. ChatGPT continuously generates
messages for both sides until a natural stopping
point is reached.

Task-specific Distillation Datasets. In addition
to the above datasets, there are many datasets in
general domain, such as: ShareGPT2, WildChat
(Zhao et al., 2024), Vicuna (Zheng et al., 2024),
Unnatural Instructions (Honovich et al., 2022).
Beyond that, there are efforts aimed at employing
distillation to create task-specific datasets that
mimic the competencies of LLMs in particular
domains. For example, for coding generation, there
are WizardCoder (Luo et al., 2023), Magicoder
(Wei et al., 2023b) and WaveCoder (Yu et al.,
2023), for reasoning and writing, there are Phi-
1 (Gunasekar et al., 2023) and Phi-1.5 (Li et al.,
2023i), and for ranking, there is Nectar (Zhu et al.,
2023a).

2https://huggingface.co/datasets/RyokoAI/ShareGPT52K



Figure 6: General pipeline of self-improvement for synthetic data generation. The figure is adapted from Wang et al.
(2022c).

3.3 Synthetic Data via Self-Improvement

The concept of self-improvement is carried forward
by Wang et al. (2022c): improves the instruction-
following ability of a pre-trained (non-finetuned)
LLM (e.g., vanilla GPT-3 (Brown et al., 2020b))
by bootstrapping off its own generations. Figure
6 illustrates the full process of self-improvement
with four steps:

Step 1: Wang et al. (2022c) starts by
manually collecting 175 human-written tasks, each
consisting of one instruction and one expected
response, which are then added to the task pool
as seed data.

Step 2: For instruction generation, Wang et al.
(2022c) randomly samples 8 seed instructions from
the constructed task pool to serve as a few-shot
prompt, guiding the vanilla GPT-3 to produce new
instructions through in-context learning.

Step 3: For every instruction that is created,
if the instruction is an output-first task (e.g.,
Writing), the vanilla GPT-3 will directly generate
the corresponding response. Conversely, if the
instruction relates to an input-first task (e.g.,
Reading Comprehension), the vanilla GPT-3 will
first generate the necessary context as input before
generating the corresponding response.

Step 4: The generated (instruction, response)
format examples are filtered according to a series
of rules or models.

Following the above process, Wang et al. (2022c)
collected Self-Instruct datasets consisting of 52K
instructions, and further evaluation shows that
GPT-3 (Brown et al., 2020a) with Self-Instruct

outperforms datasets of counterparts by a large
margin, leaving only a 5% absolute gap behind
InstructGPT (Ouyang et al., 2022).

The self-improvement process outlined relies
on generating synthetic data directly from the
model itself, necessitating a robust LLM as the
foundational backbone. Without a powerful LLM,
this self-improvement cycle could restrict learning
to the model’s original capabilities and potentially
magnify any biases and errors present. Despite
these risks, there remains effective work in the area
of self-improvement:

3.3.1 SPIN
SPIN (Chen et al., 2024b), standing for Self-Play
Fine-Tuning Converts Weak Language Models to
Strong Language Models, represents a specialized
approach to self-improvement centered around a
self-play mechanism. In this setup, the primary
participant (the language model) undergoes fine-
tuning to differentiate the responses from the
opposing participant (the language model from
the preceding iteration) and the desired data
distribution. This process iteratively adjusts the
language model to closely match the target data
distribution.

Specifically, imagine an existing iteration of an
LLM as pθt , which is utilized to generate a response
y
′

to a given prompt x from a dataset with human-
labeled instructions. The objective then becomes to
develop a new LLM pθt+1 capable of differentiating
between y

′
, the response created by, and y, the

response produced by humans. This dynamic
is akin to a two-player game where the primary



player, the newer LLM pθt+1 aims to identify the
differences between the responses of its opponent
pθt and those generated by humans. In contrast,
the adversary, or the older LLM pθt strives to
produce responses that closely mimic those found
in the human-labeled instruction tuning dataset.
By fine-tuning the older pθt to favor human-like
responses over its own, a new LLM pθt+1 is created,
which aligns more closely with the human-labeled
data distribution. In subsequent iterations, this
newly improved LLM pθt+1 takes on the role of
the opponent in response generation. The ultimate
aim of this self-play mechanism is for the LLM to
evolve until it reaches a point where pθ∗ = phuman

at which stage the most advanced LLM version can
no longer distinguish between responses generated
by its predecessor and those created by humans.

SPIN (Chen et al., 2024b) serves as a variant self-
improvement approach enabling language models
to improve themselves without additional human
data or feedback from more powerful language
models. The experimental results indicate that
SPIN (Chen et al., 2024b) markedly boosts the
performance of language models across a range of
benchmarks, outperforming even those models that
were trained using extra human data or feedback
from external AI systems.

3.3.2 Instruction Back-translation
Instruction back-translation (Li et al., 2023g),
standing for Self Alignment with Instruction
Backtranslation, is another specialized approach
based on self-improvement. Contrary to the
approach by Wang et al. (2022c), which
involves generating responses to human-provided
instructions, Li et al. (2023g) adopts the reverse
strategy by creating instructions for human-
gathered texts found online. To achieve this goal,
Li et al. (2023g) follows a five-step pipeline:

Step 1: Gather (1) unlabeled text from Clueweb
(Overwijk et al., 2022), under the assumption that
these texts can be associated with high-quality
instructions, and (2) 3,200 pieces of human-written
(instruction, response) format data to serve as seed
data.

Step 2: A back-translation model, backboned by
LLaMA (Touvron et al., 2023b), is trained on the
collected seed data, taking the response as input
and producing the instruction as output. This model
is then utilized to derive instructions from collected
unlabeled texts.

Step 3: The collected unlabeled texts are fed

into the trained back-translation model, resulting in
large amounts of raw (instruction, response) format
data.

Step 4: An evaluation model, backboned
by LLaMA (Touvron et al., 2023b), is trained
on the collected seed data. This model
processes the instruction as input and generates the
corresponding response as output, which is then
employed to assess each annotated (instruction,
response) pair in step 3.

Step 5: Filtering low-quality (instruction,
response) pairs, and utilizing the remaining data
for fine-tuning LLMs.

Following the five outlined steps, Li et al.
(2023g) generates 502K pieces of synthetic data.
The LLaMA model (Touvron et al., 2023b),
fine-tuned with this annotated dataset, surpasses
all other LLaMA-based models on the Alpaca
leaderboard without depending on distillation data,
showcasing a highly efficient self-improvement
process.

3.4 Reasoning Datasets

Reasoning datasets focus on logical progression,
multi-step thinking, and structured problem-
solving. By incorporating challenging problems,
well-defined scenarios, and diverse contexts, they
help bridge the gap between generic text data,
that most LLMs are trained on, and specialized
reasoning skills. In this section, we briefly review
several reasoning-formatted datasets, with the full
list provided in Appendix A.

3.4.1 PRM800K
PRM800K (Lightman et al., 2023) is a large-scale,
open-source dataset containing step-level human
feedback labels, created through a combination of
machine-generated and human-generated methods.
It comprises 800K annotated steps from 75K
solutions to 12K problems sourced from the MATH
(Hendrycks et al., 2021) dataset. Each entry
includes two components: (1) steps—intermediate
reasoning steps generated sequentially by GPT-
4, and (2) labels—human annotations marking
each step as correct (positive), incorrect (negative),
or ambiguous (neutral). The dataset was built
through three stages: (1) GPT-4 generated step-
by-step solutions to MATH problems; (2) only
solutions with correct final answers were retained;
and (3) human annotators labeled each step, with
special attention to ’convincing wrong-answer’
cases, high-quality but incorrect solutions (Figure



7), to maximize feedback value.

3.4.2 O1-Journey
O1-Journey (Qin et al., 2024) is an open-source
English reasoning dataset with 677 instances,
327 of which are used for training. Built
through a mix of machine- and human-generated
methods, each instance includes a question (the
problem to solve), an answer (the correct solution),
and a longCOT, a detailed chain-of-thought
incorporating intermediate steps, reflections, and
corrections. Its construction involves three
stages: (1) Reasoning Tree Generation, a pre-
trained policy model produces reasoning trees for
problems from MATH(Hendrycks et al., 2021)
and PRM800K(Lightman et al., 2023), which are
then evaluated by a reward model, with incorrect
trees discarded; (2) Reasoning Data Expansion,
a multi-agent system generates reasoning steps,
with one agent producing solutions and another
providing feedback in an iterative process to
emulate human-like reflection and revision; and (3)
Data Augmentation, human annotators manually
refine and enhance the expanded reasoning data.

3.4.3 MathGenie
MathGenie (Lu et al., 2024) is a dataset created
to produce synthetic math problems that enhance
large language models’ mathematical reasoning
capabilities. The resulting corpus, MathGenieData,
contains 170K question–solution pairs, 110K from
GSM8K (Cobbe et al., 2021) and 60K from MATH
(Hendrycks et al., 2021), and is used for fine-
tuning various pre-trained models. Its construction
follows a three-stage pipeline (Figure 8): (1)
Iterative Solution Augmentation, starting with a
15K problem seed set from GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021), a
fine-tuned LLaMA-2 70B (Touvron et al., 2023b)
model generates diverse alternative solutions
that depart significantly from the originals; (2)
Question Back-Translation, the fine-tuned LLaMA-
2 70B (Touvron et al., 2023b) converts these
augmented solutions into new math questions,
guided by solution constraints to ensure validity
and relevance; and (3) Verification-Based Filtering,
a code-integrated solution generator, also fine-
tuned on LLaMA-2 70B (Touvron et al., 2023b),
produces solutions for the new questions, which
are rigorously verified through combined natural-
language and code reasoning to retain only correct
results.

3.4.4 DeepSeekMath
The DeepSeekMath Corpus (Shao et al., 2024) is a
large-scale, open-source dataset for mathematical
reasoning, comprising 120 billion tokens generated
through both machine and human efforts. Its
core source is “Common Crawl”, supplemented
with material from “AlgebraicStack”, “arXiv”,
“GitHub”, and other natural language texts. Aimed
at improving language models’ mathematical
reasoning abilities, it is multilingual, with a strong
emphasis on English and Chinese math content.

Construction follows an iterative collect–refine
cycle (Figure 9): (1) Classifier Training, a fastText-
based model is first trained with OpenWebMath
(Paster et al., 2023) as positive examples and a
range of general web pages as negatives, with
retraining after each new round of data collection;
(2) Mathematics Extraction, the classifier identifies
additional math-rich content from “Common
Crawl”, which is then refined through human
annotation. To ensure quality and prevent
benchmark contamination, pages containing known
benchmark Q&A are removed. This loop steadily
improves classifier precision while expanding the
dataset’s scope

4 Instruction Tuned LLMs

In this section, we detail widely-used LLM
models in the community that are trained through
instruction tuning.

4.1 InstructonGPT

InstructGPT (176B) (Ouyang et al., 2022) is
initialized with GPT-3 (176B) (Brown et al., 2020b)
and then fine-tuned on human instructions. The
fine-tuning procedure is composed of the following
three steps: (1) supervised fine-tuning (SFT) on
the human-filtered instruction dataset, which is
collected from Playground API history records;
(2) training a reward model to predict human
preferences based on an annotated dataset, which
is constructed though human labors by sampling
multiple responses for one instruction and rank
them from the best to the worst; (3) further
optimizing the model from Step 1 with new
instructions and the trained reward model in step
(2). Parameters are updated using the proximal
policy optimization (PPO) (Schulman et al., 2017)
method, a policy gradient reinforcement learning
method. Steps (2) and (3) are alternated multiple
times until the model performance does not



Figure 7: A screenshot of the interface used to collect feedback in PRM800K(Lightman et al., 2023). The figure is
borrowed from Lightman et al. (2023).

significantly improve.
Overall, InstructGPT outperforms GPT-3. For

automatic evaluations, InstructGPT outperforms
GPT-3 by 10% on the TruthfulQA (Lin et al.,
2021) dataset in terms of truthfulness and
by 7% on the RealToxicityPrompts (Gehman
et al., 2020) in terms of toxicity. On
NLP datasets (i.e., WSC), InstructGPT achieves
comparable performance to GPT-3. For human
evaluations, regarding four different aspects,
including following correct instructions, following
explicit constraints, fewer hallucinations, and
generating appropriate responses, InstructGPT
outperforms GPT-3 +10%, +20%, -20%, and +10%,
respectively.

4.2 BLOOMZ

BLOOMZ (176B) (Muennighoff et al., 2022) is
initialized with BLOOM (176B) (Scao et al.,
2022), and then fine-tuned on the instruction
dataset xP3 (Muennighoff et al., 2022), a collection
of human-instruction datasets in 46 languages,
coming from two sources: (1) P3, which is
a collection of (English instruction, English
response) pairs; and (2) an (English instruction,
Multilingual response) set which is transformed
from multilingual NLP datasets (e.g., Chinese
benchmarks) by filling task templates with pre-
defined English instructions.

For automatic evaluation, BLOOMZ performs
better than BLOOM in the zero-shot setting
by +10.4%, 20.5%, and 9.8% on coreference
resolution, sentence completion and natural
language inference datasets, respectively. For
the HumanEval benchmark (Chen et al., 2021b),

BLOOMZ outperforms BLOOM by 10% in terms
of the Pass@100 metric. For generative tasks,
BLOOMZ receives +9% BLEU improvement
compared to BLOOM on the lm-evaluation-harness
benchmark3.

4.3 Flan-T5

Flan-T5 (11B) is is a large language model
initialized with T5 (11B) (Raffel et al., 2019), and
then fine-tuned on the FLAN dataset (Longpre
et al., 2023). The FLAN dataset is a collection
of (instruction, pairs) pairs, constructed from 62
datasets of 12 NLP tasks (e.g., natural language
inference, commonsense reasoning, paraphrase
generation) by filling templates with various
instructions under a unified task formalization.

During fine-tuning, FLAN-T5 adapts the JAX-
based T5X framework and selects the best
model evaluated on the held-out tasks every 2k
step. Compared with T5’s pre-training stage,
fine-tuning costs 0.2% computational resources
(approximately 128 TPU v4 chips for 37 hours).

For evaluation, FLAN-T5 (11B) outperforms
T5 (11B), and achieves comparable results to
larger models, including PaLM (60B) (Chowdhery
et al., 2022) in the few-shot setting. FLAN-
T5 outperforms T5 by +18.9%, +12.3%, +4.1%,
+5.8%, +2.1%, and +8% on MMLU (Hendrycks
et al., 2020b), BBH (Suzgun et al., 2022b),
TyDiQA (Clark et al., 2020), MGSM (Shi
et al., 2022), open-ended generation, and
RealToxicityPrompts (Gehman et al., 2020),
respectively. In few-shot settings, FLAN-T5
outperforms PaLM +1.4% and +1.2% on the BBH

3https://github.com/EleutherAI/lm-evaluation-harness
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et al. (2024).

Math Seed
Math Corpus

1. Train a FastText Model 2. Recall Math-Related Webpages 
From Common Crawl

3. Discover Math-Related Domains4. Annotate Math-Related 
URL Path From Labelers

Deduplicated Common Crawl
40B HTML pages
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from Common Crawl. The figure is borrowed from Shao et al. (2024).

and TyDiQA datasets.

4.4 Alpaca

Alpaca (7B) (Taori et al., 2023a) is a
language model trained by fine-tuning LLaMA
(7B) (Touvron et al., 2023a) on the constructed
instruction dataset generated by InstructGPT
(175B, text-davinci-003) (Ouyang et al., 2022).
The fine-tuning process takes around 3 hours on an
8-card 80GB A100 device with mixed precision
training and fully shared data parallelism.

Alpaca (7B) achieves comparable performances
to InstructGPT (175B,text-davinci-003) in terms
of human evaluation. Specifically, Alpaca
outperforms InstructGPT on the self-instruct

dataset, garnering 90 instances of victories
compared to 89 instances.

4.5 Vicuna

Vicuna (13B) (Chiang et al., 2023) is a
language model trained by fine-tuning LLaMA
(13B) (Touvron et al., 2023a) on the conversational
dataset generated by ChatGPT4.

The authors gathered user-shared ChatGPT
conversations from ShareGPT.com5, and got 70K
conversation records after filtering out low-quality
samples. LLaMA (13B) was fine-tuned on the
constructed conversation dataset using a modified

4https://openai.com/blog/chatgpt
5https://sharegpt.com/



Instruction fine-tuned LLMs # Params Base Model
Fine-tuning Trainset

Self-build Dataset Name Size

Instruct-GPT (Ouyang et al., 2022) 176B GPT-3 (Brown et al., 2020b) Yes - -

BLOOMZ (Muennighoff et al., 2022)1 176B BLOOM (Scao et al., 2022) No xP3 -

FLAN-T5 (Chung et al., 2022)2 11B T5 (Raffel et al., 2019) No FLAN 2021 -

Alpaca (Taori et al., 2023a)3 7B LLaMA (Touvron et al., 2023a) Yes - 52K

Vicuna (Chiang et al., 2023)4 13B LLaMA (Touvron et al., 2023a) Yes - 70K

GPT-4-LLM (Peng et al., 2023)5 7B LLaMA (Touvron et al., 2023a) Yes - 52K

Claude (Bai et al., 2022b) - - Yes - -

WizardLM (Xu et al., 2023a)6 7B LLaMA (Touvron et al., 2023a) Yes Evol-Instruct 70K

ChatGLM2 (Du et al., 2022)7 6B GLM (Du et al., 2022) Yes - 1.1 Tokens

LIMA (Zhou et al., 2023a) 65B LLaMA (Touvron et al., 2023a) Yes - 1K

OPT-IML (Iyer et al., 2022)8 175B OPT (Zhang et al., 2022a) No - -

Dolly 2.0 (Conover et al., 2023a)9 12B Pythia (Biderman et al., 2023) No - 15K

Falcon-Instruct (Almazrouei et al., 2023a)10 40B Falcon (Almazrouei et al., 2023b) No - -

Guanaco (JosephusCheung, 2021)11 7B LLaMA (Touvron et al., 2023a) Yes - 586K

Minotaur (Collective, 2023)12 15B Starcoder Plus (Li et al., 2023f) No - -

Nous-Hermes (NousResearch, 2023)13 13B LLaMA (Touvron et al., 2023a) No - 300K+

TÜLU (Wang et al., 2023e)14 6.7B OPT (Zhang et al., 2022a) No Mixed -

YuLan-Chat (YuLan-Chat-Team, 2023)15 13B LLaMA (Touvron et al., 2023a) Yes - 250K

MOSS (Tianxiang and Xipeng, 2023)16 16B - Yes - -

Airoboros (Durbin, 2023)17 13B LLaMA (Touvron et al., 2023a) Yes - -

UltraLM (Ding et al., 2023a)18 13B LLaMA (Touvron et al., 2023a) Yes - -

1 https://huggingface.co/bigscience/bloomz
2 https://huggingface.co/google/flan-t5-xxl
3 https://github.com/tatsu-lab/stanford_alpaca
4 https://github.com/lm-sys/FastChat
5 https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
6 https://github.com/nlpxucan/WizardLM
7 https://github.com/THUDM/ChatGLM2-6B
8 https://huggingface.co/facebook/opt-iml-30b
9 https://github.com/databrickslabs/dolly

10 https://huggingface.co/tiiuae/falcon-40b-instruct
11 https://huggingface.co/JosephusCheung/Guanaco
12 https://huggingface.co/openaccess-ai-collective/minotaur-15b
13 https://huggingface.co/NousResearch/Nous-Hermes-13b
14 https://github.com/allenai/open-instruct
15 https://github.com/RUC-GSAI/YuLan-Chat
16 https://github.com/OpenLMLab/MOSS
17 https://github.com/jondurbin/airoboros
18 https://github.com/thunlp/UltraChat

Table 3: An overview of LLMs tuned on IT datasets.

loss function tailored to multi-turn conversations.
To better understand long context across multiple-
turn dialog, the authors expanded the max context
length from 512 to 2048. For training, the
authors adopted the gradient checkpointing and
flash attention (Dao et al., 2022) techniques to
reduce the GPU memory cost in the fine-tuning
process. The fine-tuning process takes 24 hours on
an 8 × 80GB A100 device with fully shared data
parallelism.

The authors built a test set used exclusively to
measure chatbots’ performances. They collected
a test set composed by 8 question categories,
such as Fermi problems, role play scenarios,
coding/math tasks, etc, and then asked GPT-
4 (OpenAI, 2023) to rate models’ responses
considering helpfulness, relevance, accuracy, and
detail. On the constructed test set, Vicuna (13B)
outperforms Alpaca (13B) (Taori et al., 2023a) and

LLaMA (13B) in 90% of the test questions, and
generates equal or better rating responses compared
to ChatGPT in 45% of the questions.

4.6 GPT-4-LLM

GPT-4-LLM (7B) (Peng et al., 2023) is a
language model trained by fine-tuning LLaMA
(7B) (Touvron et al., 2023a) on the GPT-4 (OpenAI,
2023) generated instruction dataset. GPT-4-LLM
is initialized with LLaMA, then fine-tuned in
the following two steps: (1) supervised fine-
tuning on the constructed instruction dataset. The
authors used the instructions from Alpaca (Taori
et al., 2023a), and then collected responses using
GPT-4. LLaMA is fine-tuned on the GPT-4
generated dataset. The fine-tuning process takes
approximately three hours on an 8*80GB A100
machine with mixed precision and fully shared data
parallelism. (2) optimizing the step-1 model using



the proximal policy optimization (PPO) (Schulman
et al., 2017) method, the authors first built a
comparison dataset by collecting responses from
GPT-4, InstructGPT (Ouyang et al., 2022), and
OPT-IML (Iyer et al., 2022) to a collection of
instructions and then asked GPT-4 to rate each
response from 1 to 10. Using the ratings, a reward
model is trained based on OPT (Zhang et al.,
2022a). The fine-tuned model from Step 1 is
optimized by using the reward model to compute
the policy gradient.

For evaluations, GPT-4-LLM (7B) outperforms
not only the baseline model Alpaca (7B), but
also larger models including Alpaca (13B) and
LLAMA (13B). For automated evaluation, GPT-
4-LLM (7B) outperforms Alpaca by 0.2, 0.5,
and 0.7 on User-Oriented-Instructions-252 (Wang
et al., 2022c), Vicuna-Instructions (Chiang et al.,
2023), and Unnatural Instructions (Honovich et al.,
2022) datasets, respectively. For human evaluation,
regarding aspects including helpfulness, honesty,
and harmlessness, GPT-4-LLM outperforms
Alpaca by 11.7, 20.9, and 28.6 respectively.

4.7 Claude

Claude6 is a language model trained by fine-tuning
the pre-trained language model on an instruction
dataset, aiming to generate helpful and harmless
responses. The fine-tuning process consists of two
stages: (1) supervised fine-tuning on the instruction
dataset. The authors created an instruction dataset
by collecting 52K different instructions, paired
with responses generated by GPT-4. The fine-
tuning process takes approximately eight hours
on an 8-card 80GB A100 machine with mixed
precision and fully shared data parallelism. (2)
optimizing the step-1 model with the proximal
policy optimization (Schulman et al., 2017) method.
The authors first built a comparison dataset by
collecting responses from multiple large language
models (e.g., GPT-3 (Brown et al., 2020b)) to the
given collection of instructions and then asking
GPT-4 (OpenAI, 2023) to rate each response.
Using the ratings, a reward model is trained. Then,
the fine-tuned model from Step 1 is optimized
using the reward model with the proximal policy
optimization method.

Claude generates more helpful and harmless
responses compared to the backbone model. For
automatic evaluations, Claude outperforms GPT-

6https://www.anthropic.com/index/introducing-claude

3 by 7% on the RealToxicityPrompts (Gehman
et al., 2020) in terms of toxicity. For
human evaluations, regarding four different
aspects, including following correct instructions,
following explicit constraints, fewer hallucinations,
and generating appropriate responses, Claude
outperforms GPT-3 (Brown et al., 2020b) +10%,
+20%, -20%, and +10%. respectively.

4.8 WizardLM
WizardLM (7B) (Xu et al., 2023a) is a
language model trained by fine-tuning LLaMA
(7B) (Touvron et al., 2023a) on the instruction
dataset Evol-Instruct generated by ChatGPT
(details see Section 3.2). It is fine-tuned on a
subset (with 70K) of Evol-Instruct to enable a fair
comparison with Vicuna (Chiang et al., 2023). The
fine-tuning process takes approximately 70 hours
on 3 epochs based on an 8 V100 GPU with the
Deepspeed Zero-3 (Rasley et al., 2020) technique.
During inference, the max generation length is
2048.

To evaluate LLMs’ performances on complex
instructions, the authors collected 218 human-
generated instructions from real scenarios (e.g.,
open-source projects, platforms, and forums),
called Evol-Instruct testset.

Evaluations are conducted on the Evol-Instruct
testset and Vicuna’s testset. For human evaluation,
WizardLM outperforms Alpaca (7B) (Taori et al.,
2023a) and Vicuna (7B) by a large margins,
and generates equal or better responses on 67%
test samples compared to ChatGPT. Automatic
evaluation is conducted by asking GPT-4 to rate
LLMs’ reponses. Specifically, WizardLM gains
performance boosts compared to Alpaca by +6.2%,
+5.3% on the Evol-Instruct testset and Vicuna’s test
sets. WizardLM achieves outperforms Vicuna by
+5.8 on the Evol-Instruct testset and +1.7% on the
Vicuna’s test set.

4.9 ChatGLM2
ChatGLM2 (6B) (Du et al., 2022) is a language
model trained by fine-tuning GLM (6B) (Du et al.,
2022) on a bilingual dataset that contains both
English and Chinese instructions The bilingual
instruction dataset contains 1.4T tokens, with a
1:1 ratio of Chinese to English. Instructions in the
dataset are sampled from the question-answering
and dialogue completion tasks. ChatGLM
is initialized with GLM, then trained by the
three-step fine-tuning strategy, which is akin to



InstructGPT (Ouyang et al., 2022). To better
model contextual information across multi-turn
conversations, the authors expanded the maximum
context length from 1024 to 32K. To reduce
GPU memory cost in the fine-tuning stage, the
authors employed multi-query attention and causal
mask strategies. During inference, ChatGLM2
requires 13GB GPU memory with FP16 and
supports conversations up to 8K in length with 6GB
GPU memory using the INT4 model quantization
technique.

Evaluations are conducted on four English
and Chinese benchmarks, including MMLU
(English) (Hendrycks et al., 2020b), C-Eval
(Chinese) (Huang et al., 2023), GSM8K
(Math) (Cobbe et al., 2021), and BBH
(English) (Suzgun et al., 2022b). ChatGLM2 (6B)
outperforms GLM (6B) and the baseline model
ChatGLM (6B) on all benchmarks. Specifically,
ChatGLM2 outperforms GLM by +3.1 on MMLU,
+5.0 on C-Eval, +8.6 on GSM8K, and +2.2 on
BBH. ChatGLM2 achieves better performances
than ChatGLM by +2.1, +1.2, +0.4, +0.8 on
MMLU, C-Eval, GSM8K and BBH, respectively.

4.10 LIMA

LIMA (65B) (Zhou et al., 2023a) is a large
language model trained by fine-tuning LLaMA
(65B) (Touvron et al., 2023a) on an instruction
dataset, which is constructed based on the proposed
superficial alignment hypothesis.

The superficial alignment hypothesis refers to
the idea that the knowledge and capabilities of
a model are almost acquired in the pre-training
stage, while the alignment training (e.g., instruction
tuning) teaches models to generate responses
under user-preferred formalizations. Based on
the superficial alignment hypothesis, the authors
claimed that large language models can generate
user-satisfied responses by fine-tuning it on a small
fraction of instruction data. Therefore, the authors
built instruction train/valid/test sets to verify this
hypothesis.

Evaluations are conducted on the constructed
test set. For human evaluations, LIMA outperforms
InstructGPT and Alpaca by 17% and 19%,
respectively. Additionally, LIMA achieves
comparable results to BARD7, Cladue8, and GPT-
4. For automatic evaluation, which is conducted

7https://bard.google.com/
8https://www.anthropic.com/index/introducing-claude

by asking GPT-4 to rate responses and a higher
rate score denotes better performance, LIMA
outperforms InstructGPT and Alpaca by 20% and
36%, respectively, achieving comparable results to
BARD, while underperforming Claude and GPT-4.
Experimental results verify the proposed superficial
alignment hypothesis.

4.11 Others
OPT-IML (175B) (Iyer et al., 2022) is a
large language model trained by fine-tuning the
OPT (175B) (Zhang et al., 2022a) model on
the constructed Instruction Meta-Learning (IML)
dataset, which consists of over 1500 NLP tasks
from 8 publicly available benchmarks such as
PromptSource (Bach et al., 2022), FLAN (Longpre
et al., 2023), and Super-NaturalInstructions (Wang
et al., 2022e). After fine-tuning, OPT-IML
outperforms OPT across all benchmarks.

Dolly 2.0 (12B) (Conover et al., 2023a) is
initialized with the pre-trained language model
Pythia (12B) (Biderman et al., 2023), and
fine-tuned on the instruction dataset databricks-
dolly-15k9, which contains 7 categories of NLP
tasks such as text classification and information
extraction. After fine-tuning, Dolly 2.0 (12B)
outperforms Pythia (12B) on the EleutherAI LLM
Evaluation Harness benchmark (Gao et al., 2021)
by a large margin, and achieves comparable
performances to GPT-NEOX (20B) (Black et al.,
2022), which has two times more parameters
compared to Dolly 2.0 (12B).

Falcon-Instruct (40B) (Almazrouei et al.,
2023a) is a large language model trained by fine-
tuning Falcon (40B) (Almazrouei et al., 2023b)
on an English dialogue dataset, which contains
150 million tokens from the Baize dataset (Xu
et al., 2023c), with an additional 5% of the
data from the RefinedWeb dataset (Penedo et al.,
2023). To reduce memory usage, the authors
employed flash attention (Dao et al., 2022) and
multi-query techniques. For evaluation, Falcon-
Instruct (40B) achieved better performance on the
Open LLM Leaderboard (Beeching et al., 2023)10

compared to the baseline model Falcon (40B), and
outperforms the Guanaco (65B), which has more
model parameters.

9https://huggingface.co/datasets/databricks/databricks-
dolly-15k

10https://huggingface.co/spaces/HuggingFaceH4
/open_llm_leaderboard



Guanaco (7B) (JosephusCheung, 2021) is a
multi-turn dialog language model trained by fine-
tuning LLaMA (7B) (Touvron et al., 2023a) on
the constructed multilingual dialogue dataset. The
multilingual dialogue dataset comes from two
sources: Alpaca (Taori et al., 2023a), which
contains 52K English instruction data pairs; and a
multilingual (e.g., Simplified Chinese, Traditional
Chinese, Japanese, German) dialogue data, which
contains 534K+ multi-turn conversations. After
fine-tuning, Guanaco is to generate role-specific
responses and continuous responses on a given
topic in multi-turn conversations.

Minotaur (15B) is a large language model
trained by fine-tuning the Starcoder Plus (15B) (Li
et al., 2023f) on open-source instruction datasets
including WizardLM (Xu et al., 2023a) and
GPTeacher-General-Instruct11. For model
inference, Minotaur supports a maximum context
length of 18K tokens.

Nous-Herme (13B) is a large language model
trained by fine-tuning LLaMA (13B) (Touvron
et al., 2023a) on an instruction dataset, which
contains over 300k instructions, sampled from
GPTeacher12, CodeAlpaca (Chaudhary, 2023),
GPT-4-LLM (Peng et al., 2023), Unnatural
Instructions (Honovich et al., 2022), and
BiologyPhysicsChemistry subsets in the Camel-
AI (Li et al., 2023c). Responses are generated
by GPT-4. For evaluations, Nous-Herme (13B)
achieves comparable performances to GPT-3.5-
turbo on multiple tasks like ARC challenge (Clark
et al., 2018) and BoolQ (Clark et al., 2019).

TÜLU (6.7B) (Wang et al., 2023e) is a
large language model trained by fine-tuning OPT
(6.7B) (Zhang et al., 2022a) on a mixed instruction
dataset, which contains FLAN V2 (Longpre et al.,
2023), CoT (Wei et al., 2022), Dolly (Conover
et al., 2023a), Open Assistant-113, GPT4-Alpaca14,
Code-Alpaca (Chaudhary, 2023), and ShareGPT15.
After fine-tuning, TÜLU (6.7B) reaches on average
83% of ChatGPT’s performance and 68% of GPT-
4’s performance.

YuLan-Chat (13B) (YuLan-Chat-Team, 2023)
is a language model trained by fine-tuning LLaMA

11https://github.com/teknium1/GPTeacher
12https://github.com/teknium1/GPTeacher
13https://huggingface.co/datasets/OpenAssistant/oasst1
14https://huggingface.co/datasets/vicgalle/alpaca-gpt4
15https://sharegpt.com/

(13B) (Touvron et al., 2023a) on a constructed
bilingual dataset, which contains 250,000 Chinese-
English instruction pairs. After fine-tuning,
YuLan-Chat-13B achieves comparable results to
the state-of-the-art open-source model ChatGLM
(6B) (Du et al., 2022), and outperforms Vicuna
(13B) (Chiang et al., 2023) on the English BBH3K
(BBH3K is a subset of BBH benchmark (Srivastava
et al., 2022a)) dataset.

MOSS (16B) 16 is a bilingual dialogue language
model, which aims to engage in multi-turn
conversations and utilize various plugins, trained
by fine-tuning on dialogue instructions. After fine-
tuning, MOSS outperforms the backbone model
and generates responses that better align with
human preferences.

Airoboros (13B) 17 is a large language model
trained by fine-tuning LLAMA (13B) (Touvron
et al., 2023a) on the Self-instruct dataset (Wang
et al., 2022c). After fine-tuning, Airoboros
significantly outperforms LLAMA (13B) (Touvron
et al., 2023a) on all benchmarks and achieves
highly comparable results to models fine-tuned
specifically for certain benchmarks.

UltraLM (13B) (Ding et al., 2023a) is a large
language model trained by fine-tuning LLAMA
(13B) (Touvron et al., 2023a). For evaluation,
UltraLM (13B) outperforms Dolly (12B) (Conover
et al., 2023a) and achieves the winning rate up to
98%. Additionally, it surpasses the previous best
open-source models (i.e., Vicuna (Chiang et al.,
2023) and WizardLM (Xu et al., 2023a)) with
winning rates of 9% and 28%, respectively.

5 Multi-modality Instruction Tuning

5.1 Multi-modality Datasets

MUL-TIINSTRUCT (Xu et al., 2022) is a
multimodal instruction tuning dataset consisting
of 62 diverse multimodal tasks in a unified seq-
to-seq format. This dataset covers 10 broad
categories and its tasks are derived from 21
existing open-sourced datasets. Each task is
equipped with 5 expert-written instructions. For
the existing tasks, the authors use the input/output
pairs from their available open-source datasets to
create instances. While for each new task, the
authors create 5k to 5M instances by extracting

16https://txsun1997.github.io/blogs/moss.html
17https://github.com/jondurbin/airoboros



Multi-modality Instruction Fine-tuning Dataset
Modalities

# Tasks
Modality Pair # Instance

MUL-TIINSTRUCT (Xu et al., 2022)1 Image-Text 5k to 5M per task 62

PMC-VQA (Zhang et al., 2023c)2 Image-Text 227k 2

LAMM (Yin et al., 2023)3 Image-Text 186k 9

Point Cloud-Text 10k 3

Vision-Flan (Xu et al., 2024b)4 Multi-Pairs Over 1M 200+

ALLAVA (Chen et al., 2024a)5 Image-Text 1.4M 2

ShareGPT4V (Chen et al., 2023a)6 Image-Text 1.2M 2

1 https://github.com/VT-NLP/MultiInstruct
2 https://github.com/xiaoman-zhang/PMC-VQA
3 https://github.com/OpenLAMM/LAMM

4 https://vision-flan.github.io/
5 https://github.com/FreedomIntelligence/ALLaVA
6 https://sharegpt4v.github.io/

Table 4: An overview of multi-modality instruction fine-tuning datasets.

the necessary information from instances of
existing tasks or reformulating them. The
MUL-TIINSTRUCT dataset has demonstrated its
efficiency in enhancing various transfer learning
technique. For example, fine-tuning the
OFA model (930M) (Wang et al., 2022a) using
various transfer learning strategies such as Mixed
Instruction Tuning and Sequential Instruction
Tuning on MUL-TIINSTRUCT improve the zero-
shot performance across all unseen tasks. On
commonsense VQA task, OFA fine-tuned on MUL-
TIINSTRUCT achieves 50.60 on RougeL and
31.17 on accuracy, while original OFA achieves
14.97 on RougeL and 0.40 on accuracy.

PMC-VQA (Zhang et al., 2023c) is a large-
scale medical visual question-answering dataset
that comprises 227k image-question pairs of 149k
images, covering various modalities or diseases.
The dataset can be used for both open-ended and
multiple-choice tasks. The pipeline for generating
the PMC-VQA dataset involves collecting image-
caption pairs from the PMC-OA (Lin et al.,
2023c) dataset, using ChatGPT to generate
question-answer pairs, and manually verifying a
subset of the dataset for quality. The authors
propose a generative-based model MedVInT
for medical visual understanding by aligning
visual information with a large language model.
MedVInT pretrained on PMC-VQA achieves state-
of-the-art performance and outperforms existing
models on VQA-RAD (Lau et al., 2018) and
SLAKE (Liu et al., 2021a) benchmarks, with 81.6%
accuracy on VQA-RAD and 88.0% accuracy on
SLAKE.

LAMM (Yin et al., 2023) is a comprehensive
multi-modal instruction tuning dataset for 2D
image and 3D point cloud understanding. LAMM
contains 186K language-image instruction-
response pairs, and 10K language-point
cloud instruction-response pairs. The authors
collect images and point clouds from publicly
available datasets and use the GPT-API and
self-instruction methods to generate instructions
and responses based on the original labels from
these datasets. LAMM-Dataset includes data pairs
for commonsense knowledge question answering
by incorporating a hierarchical knowledge graph
label system from the Bamboo (Zhang et al.,
2022b) dataset and the corresponding Wikipedia
description. The authors also propose the LAMM-
Benchmark, which evaluates existing multi-modal
language models (MLLM) on various computer
vision tasks. It includes 9 common image tasks
and 3 common point cloud tasks, and LAMM-
Framework, a primary MLLM training framework
that differentiates the encoder, projector, and LLM
finetuning blocks for different modalities to avoid
modality conflicts.

Vision-Flan (Xu et al., 2024b) is the
largest public-available human-annotated visual
instruction tuning dataset that consists of 1,664,261
instances and 200+ diverse vision-language tasks
derived from 101 open-source computer vision
datasets. Each task is accompanied by expertly
written instructions and meticulously crafted
templates for inputs and outputs. The dataset
covers a broad spectrum of tasks, including
image captioning, visual question-answering,
and visual comprehension. Designed to enhance



research and application in vision-language model
domains, Vision-Flan aims to expand the horizons
of interaction and comprehension between visual
and linguistic modalities. It provides researchers
and developers with a valuable resource to push
the envelope of vision-language models and to
innovate algorithms across a diverse array of fields.

ALLaVA (Chen et al., 2024a) represents an open-
source, extensive dataset tailored for fine-tuning
visual question-answering models, featuring 1.4M
entries that include detailed captions, intricate
instructions, and comprehensive answers produced
by GPT-4V (Yang et al., 2023b). To craft high-
quality captions and visual question-answers, Chen
et al. (2024a) introduced a method to distill both
a caption and a QA pair for an image in a
single interaction. This process involves initially
presenting GPT-4V (Yang et al., 2023b) with an
image, followed by prompting it to generate both a
detailed caption and a visual question-answer pair.
This approach of incorporating additional visual
data enables the model to develop a more nuanced
understanding of both the visual and textual
elements, enhancing its capacity to deliver precise
and contextually appropriate answers. Furthermore,
this method has the potential to reduce the
occurrence of hallucinations by providing the
model with more contextual information (visual
data).

ShareGPT4V (Chen et al., 2023a) is a collection
of highly descriptive image-text pairs, consisting
of two components: 100K captions generated
by GPT4-Vision (Yang et al., 2023b) from a
variety of images, and 1.2M captions developed
using their pre-trained model, which was trained
on the initial set of 100K high-quality captions.
These captions comprehensively cover aspects such
as global knowledge, object attributes, spatial
relationships, and aesthetic evaluations. Utilizing
this dataset, the ShareGPT4V-7B model, once
fine-tuned, surpasses competing 7B-scale LMMs
across all 11 benchmark tests. Notably, it secures
a remarkable cumulative score of 1943.8 on the
MME benchmark, outperforming the second-place
Qwen-VL-Chat-7B (Bai et al., 2023) model, which
was trained with 1.4 billion samples, by 95.6 points.

5.2 Multi-modality Instruction Tuning Models
InstructPix2Pix (983M) (Brooks et al., 2022) is
a conditional diffusion model trained by fine-tuning
Stable Diffusion (983M) (Rombach et al., 2022)

Figure 10: Image editing dataset generation and
diffusion model training. The figure is copied from
Brooks et al. (2022).

on a constructed multi-modal dataset that contains
more than 450K text editing instructions and
corresponding images before and after the edit. The
authors combine the abilities of two large-scale pre-
trained models, a language model GPT-3 (Brown
et al., 2020b) and a text-to-image model Stable
Diffusion (Rombach et al., 2022), to generate the
the training dataset. GPT-3 is fine-tuned to generate
text edits based on image prompts, while Stable
Diffusion is used to convert the generated text edits
into actual image edits. InstructPix2Pix is then
trained on this generated dataset using a latent
diffusion objective. Figure 10 shows the process
of generating image editing dataset and training
the diffusion model on that dataset. The authors
compares the proposed method qualitatively with
previous works such as SDEdit (Meng et al., 2022)
and Text2Live (Bar-Tal et al., 2022), highlighting
the ability of the model to follow image editing
instructions instead of descriptions of the image or
edit layer. The authors also presents quantitative
comparisons with SDEdit (Meng et al., 2022)
using metrics measuring image consistency and
edit quality.

LLaVA (13B) (Liu et al., 2023b) is a large
multimodal model developed by connecting
the visual encoder of CLIP (400M) (Radford
et al., 2021) with the language decoder LLaMA
(7B) (Touvron et al., 2023a). LLaVA is fine-tuned
using the generated instructional vision-language
dataset consisted of 158K unique language-image
instruction-following samples. The data collection
process involved creating conversation, detailed
description, and complex reasoning prompts.
GPT-4 is used to convert image-text pairs into
appropriate instruction-following format for this
dataset. Visual features such as captions and
bounding boxes were used to encode images.
LLaVA yields a 85.1% relative score compared
with GPT-4 on a synthetic multimodal instruction
following dataset. When fine-tuned on Science QA,



Multi-modality Instruction
# Params Modality

Base Model Fine-tuning Trainset

Fine-tuned LLMs Model Name # Params Self-build Size

InstructPix2Pix (Brooks et al., 2022)1 983M I/T Stable Diffusion 983M Yes 450K

LLaVA (Liu et al., 2023b)2 13B I/T
CLIP (Radford et al., 2021) 400M

Yes
158K

LLaMA (Touvron et al., 2023a) 7B

LLaMA (Touvron et al., 2023a) 7B

Video-LLaMA (Zhang et al., 2023b)3 - I/T/V/A

BLIP-2 (Li et al., 2023d) -

No -ImageBind (Girdhar et al., 2023) -

Vicuna (Chiang et al., 2023) 7B/13B

InstructBLIP (1.2B) (Dai et al., 2023)4 - I/T/V BLIP-2 (Li et al., 2023d) - No -

Otter (Li et al., 2023b)5 - I/T/V OpenFlamingo (Awadalla et al., 2023) 9B Yes 2.8M

MultiModal-GPT (Gong et al., 2023)6 - I/T/V OpenFlamingo (Awadalla et al., 2023) 9B No -

1 https://github.com/timothybrooks/instruct-pix2pix
2 https://github.com/haotian-liu/LLaVA
3 https://github.com/DAMO-NLP-SG/Video-LLaMA

4 https://github.com/salesforce/LAVIS/tree/main/projects/instructblip
5 https://github.com/Luodian/Otter
6 https://github.com/open-mmlab/Multimodal-GPT

Table 5: An overview of multi-modality instruction fine-tuned LLMs. I/T/V/A stand for Image/Text/Video/Audio

the synergy of LLaVA and GPT-4 achieves a new
state-of-the-art accuracy of 92.53%.

Video-LLaMA (Zhang et al., 2023b) is
a multimodal framework that enhances large
language models with the ability to understand
both visual and auditory content in videos. The
architecture of Video-LLaMA consists of two
branche encoders: the Vision-Language (VL)
Branch and the Audio-Language (AL) Branch,
and a language decoder (Vicuna (7B/13B) (Chiang
et al., 2023), LLaMA (7B) (Touvron et al., 2023a),
etc.). The VL Branch includes a frozen pre-trained
image encoder (pre-trained vision component of
BLIP-2 (Li et al., 2023d), which includes a ViT-
G/14 and a pre-trained Q-former), a position
embedding layer, a video Q-former and a linear
layer. The AL Branch includes a pre-trained
audio encoder (ImageBind (Girdhar et al., 2023))
and an Audio Q-former. Figure 11 shows
the overall architecture of Video-LLaMA with
Vision-Language Branch and Audio-Language
Branch. The VL Branch is trained on the
Webvid-2M (Bain et al., 2021) video caption
dataset with a video-to-text generation task, and
fine-tuned on the instruction tuning data from
MiniGPT-4 (Zhu et al., 2023b), LLaVA (Liu
et al., 2023b) and VideoChat (Li et al., 2023e).
The AL Branch is trained on video/image instru-
caption data to connect the output of ImageBind
to language decoder. After finetuning, Video-

Figure 11: Overall architecture of Video-LLaMA. The
figure is copied from Zhang et al. (2023b).

LLaMA can perceive and comprehend video
content, demonstrating its ability to integrate
auditory and visual information, understand static
images, recognize common-knowledge concepts,
and capture temporal dynamics in videos.

InstructBLIP (1.2B) (Dai et al., 2023) is
a vision-language instruction tuning framework
initialized with a pre-trained BLIP-2 (Li et al.,
2023d)) model consisting of an image encoder,



Figure 12: Overall architecture of InstructBLIP. The
figure is copied from Dai et al. (2023).

an LLM (FlanT5 (3B/11B) (Chung et al., 2022)
or Vicuna (7B/13B) (Chiang et al., 2023)), and
a Query Transformer (Q-Former) to bridge the
two. As shown in Figure 12, the Q-Former extracts
instruction-aware visual features from the output
embeddings of the frozen image encoder, and
feeds the visual features as soft prompt input
to the frozen LLM. The authors evaluate the
proposed InstructBLIP model on a variety of vision-
language tasks, including image classification,
image captioning, image question answering, and
visual reasoning. They use 26 publicly available
datasets, dividing them into 13 held-in and 13
held-out datasets for training and evaluation. The
authors demonstrate that InstructBLIP achieves
state-of-the-art zero-shot performance on a wide
range of vision-language tasks. InstructBLIP yields
an average relative improvement of 15.0% when
compared to BLIP-2, smallest InstructBLIP (4B)
outperforms Flamingo (80B) (Alayrac et al., 2022)
on all six shared evaluation datasets with an average
relative improvement of 24.8%.

Otter (Li et al., 2023b) is a multi-modal
model trained by fine-tuning OpenFlamingo
(9B) (Awadalla et al., 2023), with the language
and vision encoders frozen and only fine-tuning the
Perceiver resampler module, cross-attention layers,
and input/output embeddings. The authors organize
diverse multi-modal tasks covering 11 categories
and build multi-modal in-context instruction
tuning datasets MIMIC-IT of 2.8M multimodal
instruction-response pairs, which consists of image-
instruction-answer triplets, where the instruction-
answer is tailored to the image. Each data
sample also includes context, which contains a
series of image-instruction-answer triplets that
contextually correlate with the queried triplet.
Otter demonstrates the ability to follow user
instructions more accurately and provide more
detailed descriptions of images compared to

OpenFlamingo (Awadalla et al., 2023).

MultiModal-GPT (Gong et al., 2023) is a multi-
modal instruction tuning model that is capable of
following diverse instructions, generating detailed
captions, counting specific objects, and addressing
general inquiries. MultiModal-GPT is trained
by fine-tuning OpenFlamingo (9B) (Awadalla
et al., 2023) on various created visual instruction
data with open datasets, including VQA, Image
Captioning, Visual Reasoning, Text OCR, and
Visual Dialogue. The experiments demonstrate
the proficiency of MultiModal-GPT in maintaining
continuous dialogues with humans.

6 Domain-specific Instruction Tuning

In this section, we describe instruction tuning in
different domains and applications.

6.1 Dialogue
InstructDial (Gupta et al., 2022) is an
instruction tuning framework designed for dialogue.
It contains a collection of 48 dialogue tasks in
a consistent text-to-text format created from 59
dialogue datasets. Each task instance includes
a task description, instance inputs, constraints,
instructions, and output. To ensure adherence to
instructions, the framework introduces two meta-
tasks: (1) an instruction selection task, where the
model selects the instruction corresponding to a
given input-output pair; and (2) an instruction
binary task, where the model predicts "yes" or "no"
if an instruction leads to a given output from an
input. Two base models T0-3B (Sanh et al., 2021)
(3B parameters version of T5 (Lester et al., 2021))
and BART0 (Lin et al., 2022) (406M parameters
based on Bart-large (Lewis et al., 2019)) are fine-
tuned on the tasks from InstructDial. InstructDial
achieves impressive results on unseen dialogue
datasets and tasks, including dialogue evaluation
and intent detection. Moreover, it delivers even
better results when applied to a few-shot setting.

6.2 Intent Classification and Slot Tagging
LINGUIST (Rosenbaum et al., 2022) finetunes
AlexaTM 5B (Soltan et al., 2022), a 5-billion-
parameter multilingual model, on the instruction
dataset for intent classification and slot tagging
tasks. Each instruction consists of five blocks: (i)
the language of the generated output, (ii) intention,
(iii) slot types and values to include in the output
(e.g., the number 3 in [3, snow] corresponds the



Domain Type Domain-specific Instruction Base Model
Trainset Size

Fine-tuned LLMs Model Name # Params

Dialogue InstructDial (Gupta et al., 2022)1 T0 (Sanh et al., 2021) 3B
-

Classification LINGUIST (Rosenbaum et al., 2022) AlexaTM (Soltan et al., 2022) 5B 13K

Information extraction InstructUIE (Wang et al., 2023d)2 FlanT5 (Chung et al., 2022) 11B 1.0M

Sentiment analysis IT-MTL (Varia et al., 2022)3 T5 (Raffel et al., 2019) 220M -

Writing

Writing-Alpaca-7B (Zhang et al., 2023d)4 LLaMA (Touvron et al., 2023a) 7B -

CoEdIT (Raheja et al., 2023)5 FlanT5 (Chung et al., 2022) 11B

CoPoet (Chakrabarty et al., 2022)6 T5 (Raffel et al., 2019) 11B

Medical

Radiology-GPT (Liu et al., 2023c)7 Alpaca (Taori et al., 2023a) 7B 122K

ChatDoctor (Li et al., 2023j)8 LLaMA (Touvron et al., 2023a) 7B 100K

ChatGLM-Med (Wang et al., 2023a)9 ChatGLM (Du et al., 2022) 6B -

Arithmetic Goat (Liu and Low, 2023)10 LLaMA (Touvron et al., 2023a) 7B 1.0M

Code WizardCoder (Luo et al., 2023)11 StarCoder (Li et al., 2023f) 15B 78K

1 https://github.com/prakharguptaz/Instructdial
2 https://github.com/BeyonderXX/InstructUIE
3 https://github.com/amazon-science/instruction-tuning-for-absa
4 https://github.com/facebookresearch/EditEval
5 https://github.com/vipulraheja/coedit
6 https://github.com/vishakhpk/creative-instructions

7 https://huggingface.co/spaces/allen-eric/radiology-gpt
8 https://github.com/Kent0n-Li/ChatDoctor
9 https://github.com/SCIR-HI/Med-ChatGLM
10 https://github.com/liutiedong/goat
11 https://github.com/nlpxucan/WizardLM

Table 6: An overview of domain-specific instruction fine-tuned LLMs.

Figure 13: The overview framework of InstructUIE. The
figure is copied from Wang et al. (2023d).

slot type, and snow is the value used for that slot),
(iv) a mapping from slot type labels to numbers,
and (v) up to 10 examples to instruct the format
of the outputs. LINGUIST shows significant
improvements over state-of-the-art approaches in
a 10-shot novel intent setting using the SNIPS
dataset (Coucke et al., 2018). In the zero-shot cross-
lingual setting of the mATIS++ dataset (Xu et al.,
2020), LINGUIST surpasses a strong baseline of
Machine Translation with Slot Alignment across 6
languages while maintaining intent classification
performance.

6.3 Information Extraction
InstructUIE (Wang et al., 2023d) is a unified
information extraction (IE) framework based on

instruction tuning, which transforms IE tasks
to the seq2seq format and solves them by fine-
tuning 11B FlanT5 (Chung et al., 2022) on the
constructed SFT dataset. Figure 13 shows the
overall architecture of InstructUIE. It introduces
IE INSTRUCTIONS, a benchmark of 32 diverse
information extraction datasets in a unified text-to-
text format with expert-written instructions. Each
task instance is delineated by four properties:
task instruction, options, text, and output. Task
instruction contains information such as the type of
information to be extracted, the output structure
format, and additional constraints or rules that
need to be adhered to during the extraction process.
Options refer to the output label constraints of a
task. Text refers to the input sentence. Output is
the sentence obtained by converting the original
tags of the sample (e.g. "entity tag: entity span"
for NER). In the supervised setting, InstructUIE
performs comparably to BERT (Devlin et al.,
2018) and outperforms the state-of-the-art and
GPT3.5 (Brown et al., 2020a) in zero-shot settings.

6.4 Aspect-based Sentiment Analysis

Varia et al. (2022) propose a unified instruction
tuning framework for solving Aspect-based
Sentiment Analysis (ABSA) task based on a fine-



Figure 14: The overview framework of COEDIT. The
figure is copied from Raheja et al. (2023).

tuned T5 (220M) (Raffel et al., 2019) model.
The framework addresses multiple factorized sub-
tasks that involve the four elements of ABSA,
namely Aspect Term, Aspect Category, Opinion
Term, and Sentiment. It treats these sub-tasks as
a combination of five Question Answering (QA)
tasks by transforming each sentence in the corpus
using instruction templates provided for each task.
For instance, one of the instruction templates
used is "What are the aspect terms in the text:
$TEXT?". The framework showcases substantial
improvement (8.29 F1 on average) over the state-of-
the-art in few-shot learning scenarios and remains
comparable in full fine-tuning scenarios.

6.5 Writing
Zhang et al. (2023d) propose Writing-Alpaca-
7B that fine-tunes LLaMa-7B (Peng et al., 2023)
on the writing instruction dataset to provide writing
assistance. The proposed instruction dataset is
an extension of the EDITEVAL (Dwivedi-Yu
et al., 2022) benchmark based on instructional
data, with the Updating task removed and a task
for grammaticality introduced. The instruction
scheme strictly follows the one in the Stanford
Alpaca project (Taori et al., 2023a), comprising a
universal preface, an instruction field to guide task
completion, an input field that provides the text to
be edited, and a response field that requires models
to fill out. The Writing-Alpaca-7B improves upon
LLaMa’s performance on all writing tasks and
outperforms other larger off-the-shelf LLMs.

CoEdIT (Raheja et al., 2023) finetunes
FLANT5 (Chung et al., 2022) (770M parameters,
3B parameters, and 11B parameters) on the

instruction dataset for text editing to provide
writing assistance. The instruction dataset
comprises approximately 82K <instruction: source,
target> pairs. As shown in Figure 14, the model
takes instructions from the user specifying the
characteristics of the desired text, such as "Make
the sentence simpler", and outputs the edited text.
CoEdIT achieves state-of-the-art performance on
several text editing tasks, including grammatical
error correction, text simplification, iterative text
editing, and three stylistic editing tasks: formality
style transfer, neutralization, and paraphrasing.
Furthermore, it can generalize well to new, adjacent
tasks not seen during fine-tuning.

CoPoet (Chakrabarty et al., 2022) is a
collaborative poetry writing tool that utilizes a
large language model (e.g. T5-3B, T5-11B and
T0-3B models) trained on a diverse collection of
instructions for poetry writing. Each sample in
the instruction dataset includes an <instruction,
poem_line> pair. There are three major types of
instructions: Continuation, Lexical Constraints,
and Rhetorical Techniques. The CoPoet is guided
by user instructions that specify desired attributes
of the poetry, such as writing a sentence about
"love" or ending a sentence with "fly." Not
only is the system competitive with publicly
available LLMs trained on instructions, such as
InstructGPT (Ouyang et al., 2022), but it is
also capable of satisfying unseen compositional
instructions.

6.6 Medical

Radiology-GPT (Liu et al., 2023c) is a fine-
tuned Alpaca-7B (Taori et al., 2023a) model for
radiology, which utilizes an instruction tuning
approach on an extensive dataset of radiology
domain knowledge. Radiology reports usually
include two corresponding sections: "Findings"
and "Impression". The "Findings" section contains
detailed observations from the radiology images,
while the "Impression" section summarizes the
interpretations drawn from those observations.
Radiology-GPT provides a brief instruction to
the "Findings" text: "Derive the impression from
findings in the radiology report". The "Impression"
text from the same report serves as the target
output. In comparison to general language models
such as StableLM (Islamovic), Dolly (Conover
et al., 2023a), and LLaMA (Touvron et al.,
2023a), Radiology-GPT demonstrates significant



adaptability in radiological diagnosis, research, and
communication.

ChatDoctor (Li et al., 2023j) is based
on the fine-tuned LLaMa-7B (Touvron
et al., 2023a) model, utilizing the alpaca
instruction dataset (Taori et al., 2023a) and the
HealthCareMagic100k patient-doctor dialogue
dataset. And prompt templates are designed for
retrieving external knowledge databases, such
as the Disease Database and Wikipedia retrieval,
during doctor-patient conversations to obtain more
accurate outputs from the model. The ChatDoctor
significantly improves the model’s ability to
comprehend patient needs and provide informed
advice. By equipping the model with self-directed
information retrieval from reliable online and
offline sources, the accuracy of its responses is
substantially improved.

ChatGLM-Med (Wang et al., 2023a) is fine-
tuned on the Chinese medical instruction dataset
based on the ChatGLM-6B (Du et al., 2022)
model. The instruction dataset comprises medically
relevant question and answer pairs, created using
the GPT 3.5 API and the Medical Knowledge
Graph. This model improves the question-
answering performance of ChatGLM (Du et al.,
2022) in the medical field.

6.7 Arithmetic
Goat (Liu and Low, 2023) is a fine-tuned
LLaMA-7B (Touvron et al., 2023a) model based
on instructions, which aims to solve arithmetic
problems. It expresses arithmetic problems in the
form of natural language question answering, such
as "What is 8914/64?", by generating hundreds
of instruction templates using ChatGPT (OpenAI,
2022). The model applies various techniques to
enhance its adaptability to diverse question formats,
such as randomly removing spaces between
numbers and symbols in the arithmetic expression
and replacing "*" with "x" or "times". The Goat
model achieves state-of-the-art performance on the
BIG-bench (Srivastava et al., 2022a) arithmetic
subtask. In particular, zero-shot Goat-7B matches
or exceeds the accuracy achieved by the few-shot
PaLM-540B (Chowdhery et al., 2022).

6.8 Code
WizardCoder (Luo et al., 2023) utilizes
StarCoder 15B (Li et al., 2023f) as the foundation
with complex instruction tuning, by adapting the

Evol-Instruct method (Xu et al., 2023a) to the
domain of code. The training dataset is produced
through iterative application of the Evol-Instruct
technique on the Code Alpaca dataset (Taori et al.,
2023b), which includes the following attributes
for each sample: instruction, input, and expected
output. For instance, when the instruction is
"Amend the following SQL query to select distinct
elements", the input is the SQL query, and the
expected output is the generated answer. The
WizardCoder outperforms all other open-source
Code LLMs and even surpasses the largest closed
LLMs, Anthropic’s Claude and Google’s Bard, on
HumanEval and HumanEval+.

7 Efficient Tuning Techniques

Efficient fine-tuning techniques aim at adapting
LLMs to downstream tasks by optimizing a
small fraction of parameters in multiple ways,
i.e., addition-based, specification-based, and
reparameterization-based. Addition-based methods
introduce extra trainable parameters or modules
not present in the original model. Representative
methods include adapter tuning (Houlsby et al.,
2019) and prompt-based tuning (Schick and
Schütze, 2021). Specification-based methods
specify certain inherent model parameters to
be tuned while freezing others. For example,
BitFit (Zaken et al., 2022) tunes the bias terms
of the pre-trained model. Reparameterization
methods transform model weights into more
parameter-efficient forms for tuning. The key
hypothesis is that model adaptation is low-rank,
so weights can be reparameterized into low-
rank factors or a low-dimensional subspace (e.g.,
LoRA (Hu et al., 2021)). Intrinsic prompt tuning
finds a low-dimensional subspace shared by tuning
prompts across diverse tasks.

7.1 LoRA

Low-Rank Adaptation (LoRA) (Hu et al., 2021)
enables efficient adaptation of LLMs using low-
rank updates. LoRA use DeepSpeed (Rasley et al.,
2020) as the training backbone. The key insight of
LoRA is that the actual change in LLMs’ weights
required for new task adaptation lies in a low-
dimensional subspace. Specifically, for a pretrained
weight matrix W0, the authors model the adapted
weight matrix as W0 + ∆W , where ∆W is a low
rank update. ∆W is parameterized as ∆W = BA,
where A and B are much smaller trainable matrices.



The rank r of ∆W is chosen to be much smaller
than the dimensions of W0. The intuition is that
instead of directly training all of W0, the authors
train low-dimensional A and B, which indirectly
trains W0 in a low-rank subspace of directions that
matter for the downstream task. This results in far
fewer trainable parameters compared to full fine-
tuning. For GPT-3, LoRA reduces the number of
trainable parameters by 10,000x and memory usage
by 3x compared to full fine-tuning.

7.2 HINT
HINT (Ivison et al., 2022) combines the
generalization benefits of instruction tuning
with efficient on-demand fine-tuning, avoiding
repeatedly processing lengthy instructions. The
essence of HINT lies in hypernetworks, which
generate parameter-efficient modules for LLMs
adaptation based on natural language instructions
and few-shot examples. The adopted hypernetwork
converts instructions and few-shot examples into
a encoded instruction and generates adapter and
prefix parameters using a pretrained text encoder
and cross-attention based parameter generator.
Then, the generated adapters and prefixes are
inserted into the backbone model as efficient
tuning modules. At inference, the hypernetwork
performs inference only once per task to generate
adapted modules. The benefits are that HINT can
incorporate long instructions and additional few-
shots without increasing compute, unlike regular
fine-tuning or input concatenation methods.

7.3 Qlora
QLORA (Dettmers et al., 2023) includes optimal
quantization and memory optimization, aiming
at providing efficient and effective LLMs fine-
tuning. QLORA includes 4-bit NormalFloat (NF4)
Quantization, which is a quantization scheme
optimized for the typical normal distribution of
LLM weights. By quantizing based on the
quantiles of a normal distribution, NF4 provides
better performance than standard 4-bit integer or
float quantization. To further reduce memory, the
quantization constants are themselves quantized
to 8 bits. This second level of quantization
saves an additional 0.37 bits per parameter on
average. QLORA leverages NVIDIA’s unified
memory feature to page optimizer states to CPU
RAM when GPU memory is exceeded. avoiding
out-of-memory during training. QLORA enables
training a 65B parameter LLM on a single 48GB

GPU with no degradation compared to full 16-
bit finetuning. QLORA works by freezing the
4-bit quantized base LLM, then backpropagating
through it into a small set of 16-bit low-rank
adapter weights which are learned.

7.4 LOMO
LOw-Memory Optimization (LOMO) (Lv et al.,
2023) enables full parameter fine-tuning of LLMs
using limited computational resources through
a fusion of gradient computation and update.
The essence is to fuse gradient computation
and parameter update into one step during
backpropagation, thereby avoiding storage of full
gradient tensors. Firstly, theoretical analysis is
provided in LOMO on why SGD can work well
for fine-tuning large pre-trained models despite
its challenges on smaller models. In addition,
LOMO updates each parameter tensor immediately
after computing its gradient in backpropagation.
Storing the gradient of one parameter at a time
reduces gradient memory to O(1). LOMO employs
gradient value clipping, separate gradient norm
computation pass and dynamic loss scaling to
stabilize training. The integration of activation
checkpointing and ZeRO optimization methods
saves memory.

7.5 Delta-tuning
Delta-tuning (Ding et al., 2023b) provides
optimization and optimal control perspectives for
theoretical analyzation. Intuitively, delta-tuning
performs subspace optimization by restricting
tuning to a low-dimensional manifold. The tuned
parameters act as optimal controllers guiding
model behavior on downstream tasks.

8 Evaluation, Analysis and Criticism

8.1 Close-ended Evaluations
It is widely accepted among researchers that
general-purpose models must demonstrate
proficiency in certain core tasks before they can
effectively generalize to meet diverse real-world
needs. Close-ended evaluations help achieve
this objective, often involving multiple-choice
questions to assess the performance of LLMs.
Below are 6 widely used close-ended evaluations:

(1) MMLU. Massive Multitask Language
Understanding (MMLU) (Hendrycks et al., 2020a)
consists of 14079 questions covering 57 tasks
including elementary mathematics, US history,



computer science, law, and more. The wide
range of subjects and complex questions make
MMLU suitable for testing the model’s language
comprehension and decision-making capabilities.

(2) MATH and (3) GSM8K. MATH (Hendrycks
et al., 2021) and GSM8K (Cobbe et al., 2021)
are two distinct mathematical datasets utilized for
evaluating different aspects of model capabilities.
The MATH (Hendrycks et al., 2021) dataset
comprises 12,500 complex competition-level
mathematics problems, primarily designed to
assess the ability of models to tackle challenging
and advanced mathematical questions typically
encountered at the college level. Conversely, the
GSM8K (Cobbe et al., 2021) dataset contains 8,500
high-quality elementary school math problems,
aimed at testing the basic mathematical reasoning
abilities of models.

(4) BBH. BBH, short for BIG-Bench Hard
(Suzgun et al., 2022a), is a subset of the BIG-
Bench (Srivastava et al., 2022b) dataset comprising
23 challenging tasks. These tasks were selected
because they consistently proved too difficult for
current large language models to handle effectively.
Requiring complex, multi-step reasoning, the BBH
dataset is primarily utilized to assess the general
reasoning capabilities of models, testing their
ability to navigate and solve intricate problems.

(5) HumanEval (Coding). HumanEval (Chen
et al., 2021a) consists of 164 programming
problems, including language comprehension,
algorithms, and simple mathematics, with some
comparable to simple software interview questions.
The primary purpose of this dataset is to assess
the ability of models to generate correct programs
based on provided docstrings.

(6) IFEval. IFEval (Zhou et al., 2023b)
consists of 500 prompts, each containing specific
instructions like "write an article with more than
800 words" or "enclose your response in double
quotation marks." This dataset is used to test the
ability of large language models to accurately
follow given instructions.

8.2 HELM Evaluation

HELM(Liang et al., 2022) is a holistic evaluation
of Language Models (LMs) to improve the
transparency of language models, providing
a more comprehensive understanding of the

capabilities, risks, and limitations of language
models. Specifically, differing from other
evaluation methods, HELM holds that a holistic
evaluation of language models should focus on the
following three factors:

(1) Broad coverage. During the development,
language models can be adapted to various
NLP tasks (e.g., sequence labeling and question
answering), thus, the evaluation of language
models needs to be carried out in a wide range
of scenarios. To involve all potential scenarios,
HELM proposed a top-down taxonomy, which
begins by compiling all existing tasks in a major
NLP conference (ACL2022) into a task space and
dividing each task into the form of scenarios (e.g.,
languages) and metrics (e.g., accuracy). Then when
facing a specific task, the taxonomy would select
one or more scenarios and metrics in the task space
to cover it. By analyzing the structure of each
task, HELM clarifies the evaluation content (task
scenarios and metrics) and improves the scenario
coverage of language models from 17.9% to 96.0%.

(2) Multi-metric measurement. In order to
enable human to weigh language models from
different perspectives, HELM proposes multi-
metric measurement. HELM has covered 16
different scenarios and 7 metrics. To ensure
the results of intensive multi-metric measurement,
HELM measured 98 of 112 possible core scenarios
(87.5%).

(3) Standardization. The increase in the scale
and training complexity of language models has
seriously hindered human’s understanding of the
structure of each language model. To establish a
unified understanding of existing language models,
HELM benchmarks 30 well-known language
models, covering such institutions as Google
(UL2(Tay et al., 2022)), OpenAI (GPT-3(Brown
et al., 2020b)), and EleutherAI (GPT-NeoX(Black
et al., 2022)). Interestingly, HELM pointed out that
LMs such as T5 (Raffel et al., 2019) and Anthropic-
LMv4-s3 (Bai et al., 2022a) had not been directly
compared in the initial work, while LLMs such as
GPT-3 and YaLM were still different from their
corresponding reports after multiple evaluations.

8.3 LLM As a Judge

LLM as a judge refers to a set of methods
that utilize powerful LLMs, particularly GPT-4
(OpenAI, 2023), to evaluate the outputs of other



LLMs. There are three primary reasons for this
approach: (1) Efficiency – Manually reviewing
numerous LLM outputs can be labor-intensive,
whereas GPT-4 can evaluate large-scale responses
quickly, saving both time and effort; (2) Reliable
Benchmark – As one of the most advanced
models available, GPT-4 provides a dependable
benchmark, allowing researchers to compare
the performance of different LLMs against a
high standard; and (3) Enhanced Capability
– With improved comprehension and reasoning
over previous models, GPT-4 is better suited to
analyze subtle aspects of language generation and
handle complex outputs from other LLMs. In the
following, we detail 4 commonly accepted judge
benchmarks:

(1) AlpacaEval. AlpacaEval (Li et al., 2023h) is
an automated evaluation metric leveraging LLMs,
consisting of 805 instructions selected to reflect
typical user interactions from the Alpaca web
demo18. Specifically, for each instruction, both a
baseline model b (currently GPT-4 turbo (OpenAI,
2023)) and the model under evaluation m generate
responses. A GPT-4 turbo-based evaluator then
conducts a head-to-head comparison of these
responses, determining the probability of favoring
the evaluated model. The win rate is calculated as
the expected probability that the evaluator prefers
the evaluated model’s response across the 805
instructions, serving as a key metric for assessing
the performance of the evaluated LM chatbot.

(2) Length-Controlled AlpacaEval. Length-
Controlled AlpacaEval (Dubois et al., 2024) is
a variation of the AlpacaEval (Li et al., 2023h)
evaluation metric, designed to minimize length
bias, as the original AlpacaEval tends to favor
models that produce longer responses. To achieve
this goal, Dubois et al. (2024) first fit a generalized
linear model to predict the annotator’s (GPT-
4’s) preference based on three factors: (1) the
instruction, (2) the model used, and (3) the length
difference between the baseline and the model’s
output. Then, by conditioning the length difference
to 0, Dubois et al. (2024) can obtain the length-
controlled preference. This idea, which predicts
the outcome while conditioning on the length
difference (mediator), is a common technique in
statistical inference, and by introducing it, Length-

18https://crfm.stanford.edu/2023/03/13/
alpaca.html

Controlled AlpacaEval increases the Spearman
correlation with LMSYS’ Chatbot Arena from 0.94
to 0.98.

(3) MT-Bench. Currently, close-ended
evaluations only measure LLMs’ core capability on
a confined set of tasks, such as MMLU (Hendrycks
et al., 2020a) for multi-choice decisions, without
adequately assessing its alignment with human
preference in open-ended tasks, such as the
ability to adhere to instructions in multi-turn
dialogues accurately. To alleviate this issue,
Zheng et al. (2023) introduced MT-Bench, which
comprises 80 high-quality multi-turn questions
designed to assess LLMs’ capability in multi-turn
conversations and instruction-following, with
evaluations conducted using GPT-4. MT-Bench is
meticulously crafted to cover eight common tasks:
writing, roleplay, extraction, reasoning, math,
coding, knowledge I (STEM), and knowledge
II (humanities/social sciences). For alignment,
GPT-4 achieves over 80% agreement, comparable
to the level of agreement among humans, making
it a more reliable choice for a public benchmark.

(4) WildBench. Although the above evaluations
are effective, they have notable limitations in task
composition and skill coverage. For example, MT-
Bench (Hendrycks et al., 2020a) includes only
80 test instructions, while AlpacaEval (Li et al.,
2023h) features many straightforward tasks, such
as “What is the capital of Australia?” To address
this issue, Lin et al. (2024) introduced WildBench,
comprising 1,024 test instructions carefully curated
from extensive human-chatbot conversation logs.
WildBench draws directly from real-world user
interactions, featuring numerous challenging tasks,
such as coding and math problem-solving. These
tasks frequently demand critical thinking, making
WildBench significantly more difficult than other
benchmarks. WildBench utilizes two metrics: WB-
Reward for pairwise comparisons and WB-Score
for individual assessments. Both metrics show
strong alignment with human evaluations, with
Pearson correlations of 0.98 for WB-Reward and
0.95 for WB-Score when compared to the human-
voted ratings.

8.4 Low-resource Instruction Tuning
Gupta et al. (2023) attempts to estimate the minimal
downstream training data required by SFT models
to match the SOTA supervised models over various
tasks. Gupta et al. (2023) conducted experiments

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html


on 119 tasks from Super Natural Instructions
(SuperNI) in both single-task learning (STL) and
multi-task learning (MTL) settings. The results
indicate that in the STL setting, SFT models with
only 25% of downstream training data outperform
the SOTA models on those tasks, while in the MTL
setting, just 6% of downstream training data can
lead SFT models to achieve the SOTA performance.
These findings suggest that instruction tuning can
effectively assist a model in quickly learning a task
even with limited data.

However, due to resource limitations, Gupta
et al. (2023) did not conduct experiments on
LLMs, like T5-11B. So, to gain a more
comprehensive understanding of the SFT models,
further investigation using larger language models
and datasets is necessary.

8.5 Smaller Instruction Dataset
SFT requires a substantial amount of specialized
instruction data for training. Zhou et al. (2023a)
hypothesized that the pre-trained LLM only has to
learn the style or format to interact with users and
proposed LIMA that achieves strong performance
by fine-tuning an LLM on only 1,000 carefully
selected training examples.

Specifically, LIMA first manually curates 1,000
demonstrations with high-quality prompts and
responses. Then the 1,000 demonstrations are
used to fine-tune the pre-trained 65B-parameter
LLaMa (Touvron et al., 2023b). By comparison,
across more than 300 challenging tasks, LIMA
outperfrms GPT-davinci003 (Brown et al., 2020b),
which was fine-tuned on 5,200 examples by human
feedback tuning. Moreover, with only half amount
of demonstrations, LIMA achieves equivalent
results to GPT-4 (OpenAI, 2023), Claude (Bai
et al., 2022b), and Bard19. Above all, LIMA
demonstrated that LLMs’ powerful knowledge and
capabilities can be exposed to users with only a few
carefully curated instructions to fine-tune.

8.6 Evaluating Instruction Tuning Datasets
The performance of SFT model highly depends
on the SFT datasets. However, there lacks of
evaluations for these SFT datasets from open-ended
and subjective aspects.

To address this issue, Wang et al. (2023e)
performs dataset evaluation by fine-tuning the

19Bard, designed by Google, is an interface
to generative AI platform, and the link is:
https://ai.google/static/documents/google-about-bard.pdf

LLaMa model (Touvron et al., 2023b) on various
of open SFT datasets and measure different fine-
tuned models through both automatic and human
evaluations. An additional model is trained on the
combination of SFT datasets. For the results, Wang
et al. (2023e) showed that there is not a single best
SFT dataset across all tasks, while by manually
combining datasets it can achieve the best overall
performance. Besides, Wang et al. (2023e) pointed
out that though SFT can bring large benefits on
LLMs at all sizes, smaller models and models with
a high base quality benefit most from SFT. For
human evaluations, Wang et al. (2023e) a larger
model is more likely to gain a higher acceptability
score.

8.7 Proprietary LLMs Imitation

LLMs imitation is an approach that collects outputs
from a stronger model, such as a proprietary system
like ChatGPT, and uses these outputs to fine-tune
an open-source LLM. Through this way, an open-
source LLM may get competitive capabilities with
any proprietary model.

Gudibande et al. (2023) conducted several
experiments to critically analyze the efficacy of
model imitation. Specifically, Gudibande et al.
(2023) first collected datasets from outputs of
ChatGPT over broad tasks. Then these datasets
were used to fine-tune a range of models covering
sizes from 1.5B to 13B, base models GPT-2 and
LLaMA, and data amounts from 0.3M tokens to
150M tokens.

For evaluations, Gudibande et al. (2023)
demonstrated that on tasks with supported datasets,
imitation models are far better than before, and
their outputs appear similar to ChatGPT’s. While
on tasks without imitation datasets, imitation
models do not have improvement or even decline
in accuracy.

Thus, Gudibande et al. (2023) pointed out
that it’s the phenomenon that imitation models
are adept at mimicking ChatGPT’s style (e.g.,
being fluent, confident and well-structured) that
makes researchers have the illusion about general
abilities of imitation models. So, Gudibande
et al. (2023) suggested that instead of imitating
proprietary models, researchers had better focus
on improving the quality of base models and
instruction examples.



9 The Role of Instruction Fine-tuning

Instruction fine-tuning (IF), also known as
supervised fine-tuning (SFT), is a conventional
alignment approach that trains models on example
prompts paired with corresponding responses
to ensure the model’s output aligns with user
instructions and intended goals. More recently,
some reinforcement learning (RL) based methods
(Wang et al., 2024), e.g., reinforcement learning
from human feedback (RLHF) (Ouyang et al.,
2022), direct preference optimization (DPO)
(Rafailov et al., 2023), and group relative
policy optimization (GRPO) (Shao et al., 2024),
and various prompt engineering strategies have
emerged as alternatives or complements. Thus, in
this section, we will review each method’s role in
aligning LLMs, and examine whether SFT remains
necessary. Further more, we also consider the
risk of superficial alignment, i.e. alignment that
changes only the model’s surface behavior (tone,
style) without imparting deeper understanding.

9.1 SFT Compared with Other Alignment
Methods

Below, we begin by outlining three widely
used alignment approaches, RLHF, DPO, and
prompt engineering, highlighting their strengths
and weaknesses. Then, we explain why SFT
remains an essential component of contemporary
alignment pipelines.

9.1.1 Reinforcement Learning from Human
Feedback (RLHF)

RLHF is the dominant alignment paradigm, and
typically proceeds in three phases: (1) supervised
fine-tuning (SFT) on human large amounts of
instruction-answer pairs, (2) training a reward
model on human-ranked responses, and (3) using
policy optimization (e.g. PPO (?)) to maximize
the reward model’s feedback (Chen et al., 2025b).
This pipeline can deeply adjust model behavior
to complex user preferences. RLHF has enabled
remarkable capabilities (e.g. nuanced help,
factuality), but at high cost and complexity.
It requires extensive human data, careful RL
tuning, and often suffers stability issues and
“reward hacking” (the model finds loopholes in
the reward model) (Xiao et al., 2024; Wang et al.,
2024). Because RLHF optimization is resource-
intensive and sensitive to hyper parameters, simpler
alternatives have been sought.

Advantages. The key strength of RLHF lies
in its ability to guide models toward high-level
objectives, such as helpfulness and safety, that
are not explicitly encoded in the training data,
demonstrating strong empirical performance in
aligning models with user intent when well-tuned
(Wang et al., 2024; Chen et al., 2025b).

Limitations. RLHF’s complexity is a downside.
It typically requires starting from an SFT-
trained model, i.e., a model that already follows
instructions to some degree, because training RL
from a raw base model is difficult (Trivedi et al.,
2025). The multi-stage pipeline (SFT, reward
model, and PPO) is time-consuming and brittle
(Chen et al., 2025b). In practice, researchers
and practitioners often still perform an initial
instruction fine-tuning, even when using RLHF,
to establish a reasonable base policy. Moreover,
RLHF can introduce “alignment tax” (performance
drop on some tasks) and can fail to generalize if the
reward model is mis-specified (Xiao et al., 2024).

9.1.2 Direct Preference Optimization (DPO)
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) is a recently proposed RL-
free alignment method that directly fine-tunes
on preference pairs. Instead of learning a
separate reward model and running RL, DPO
casts alignment as a supervised objective: for
each prompt and pair of outputs (preferred vs.
dispreferred), it adjusts the model’s logits to
increase the probability of the preferred output.
DPO’s loss is equivalent to a Bradley–Terry
pairwise classification (a logit-ratio objective) to
bypass policy-gradient RL entirely.

Advantages. Because DPO fits into a standard
maximum-likelihood fine-tuning framework, it is
far simpler and more stable than PPO-based RLHF
(Xu et al., 2024a; Xiao et al., 2024; Wang et al.,
2024) . Studies report that DPO matches or exceeds
RLHF performance on tasks like summarization
or helpfulness with fewer preference examples.
Compared to RLHF, DPO has been shown
to be stable, performant, and computationally
lightweight in various applications. It does not
require expensive RL infrastructure or tuning of
PPO hyper-parameters, making it reproducible and
easier to deploy. Practitioners, e.g. OpenAI 20
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and DeepSeek (Shao et al., 2024) note that starting
DPO from an already fine-tuned model improves
results, using SFT to establish a robust initial
policy.

Limitations. DPO still depends on quality
preference data, and like any offline method it
can suffer if the data distribution shifts. Recent
analyses have identified issues with DPO: because
it employs an implicit reward tied to the policy,
it can bias the model toward out-of-distribution
outputs and even degrade generalization (Xiao
et al., 2024; Wang et al., 2024). Variants, e.g. KL-
constrained or semantics-aware DPO, are being
developed to mitigate these problems, but it
remains true that DPO typically benefits from
starting with a good initial model. In practice,
most implementations still use an SFT-tuned model
before running DPO, echoing the RLHF pipeline.
Thus, while DPO simplifies alignment, it has not
eliminated the need for supervised tuning in many
cases.

9.1.3 Prompt Engineering (In-Context
Learning)

Prompt engineering aligns model behavior without
any fine-tuning. Instead, it leverages the model’s
existing capabilities by crafting prompts, including
instructions, few-shot examples, or chain-of-
thought cues, to elicit desired outputs. Recent
work treats prompt design itself as an optimization
problem: one can optimize a prompt string or learn
soft prompts to maximize human-aligned metrics
(Trivedi et al., 2025). Importantly, prompt-based
methods assume no weight updates, which means
that they work without any post training.

Advantages. The biggest benefit is that no
retraining is required. Prompt optimization can
effectively align LLMs even when parameter
fine-tuning is not feasible (Trivedi et al., 2025).
This is appealing for large models with fixed
parameters (APIs or frozen on-device models).
Some experiments have shown that with well-
designed prompts, base LLMs can achieve high
performance on instruction-following tasks. For
example, Lin et al. (2023b) introduced URIAL,
a method that uses only a few stylistic examples
in-context (plus a system prompt) to steer the
model, and found it matched or even surpassed
fully-tuned models in many benchmarks. This
suggests that clever prompt engineering alone can
yield strong alignment in some cases (Wang et al.,

2023c; Sun et al., 2023d,b; Wang et al., 2023b;
Sun et al., 2023c). Prompting has obvious speed
and convenience advantages: it requires no training
data or compute, and can be iterated quickly by
users.

Limitations. Prompt-based alignment has
inherent limits. The model’s context window
bounds how much instruction or example content
can be provided so that very complex tasks
may simply not fit. More importantly, prompt
methods generally induce superficial compliance
rather than truly altering the model’s knowledge.
They leverage already-encoded patterns in the
model, but cannot add new capabilities or correct
deep misunderstandings. In practice, prompt
engineering often produces brittle behaviors: slight
rephrasing can break performance, and malicious
users can “jailbreak” around prompts to elicit bad
outputs. For instance, Chen et al. (2025a) note
that although prompt-based ICL can align a model
to some extent, it does so mainly by inserting
stylistic cues and does not fundamentally change
the model’s reasoning process. In short, prompt
engineering can quickly achieve surface-level
alignment (tone, disclaimers, formatting), but
cannot replace weight tuning for deep or novel
tasks, and for complex reasoning, mathematics,
or new knowledge integration typically require
additional fine-tuning.

9.1.4 The Continued Necessity of SFT
Given these techniques, a key question is whether
instruction fine-tuning (IF) or supervised fine-
tuning (SFT) remains necessary in modern
pipelines. Empirical evidence suggests it does.
Both RLHF and DPO pipelines almost universally
incorporate an initial SFT stage. In RLHF this
is explicit, which SFT usually serves as the first
phase. For DPO, while the final optimization
is simpler, practitioners generally first fine-tune
on good example responses to establish a robust
initial policy, which stabilizes subsequent DPO
refinement. The OpenAI alignment guide explicitly
recommends performing supervised fine-tuning on
a subset of preferred responses before DPO to
improve alignment and convergence21. In other
words, even with DPO, a round of instruction
tuning yields better outcomes. On the other hand,
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prompt-based methods show that in principle one
can align some models without any fine-tuning
(Wang et al., 2023c; Sun et al., 2023d,b; Wang
et al., 2023b; Sun et al., 2023c). Other work
(Lin et al., 2023a) demonstrates that you can in
effect “unlock” base LLMs by providing few-shot
prompts, achieving performance close to tuned
models without SFT. However, these tuning-free
methods tend to rely on pre-existing capabilities.
If a base model genuinely lacks a skill, such as
solving a type of math problem it was never pre-
trained on, no prompt will fix it, and only updating
weights can. Moreover, some recent studies
(Parthasarathy et al., 2024) find that for reasoning
and knowledge tasks, performance continues to
scale with more fine-tuning data, suggesting
base models do improve under instruction tuning.
In summary, prompt methods can sometimes
obviate SFT for shallow alignment, but for robust
alignment pipelines or domain specific alignment
(e.g., Medicinal Chemistry), supervised fine-tuning
is still regarded as essential groundwork. New
research even explores hybrid tricks, such as
“instruction residuals” from an older model added
to a new base, to avoid re-training, but these
rely on existing tuned models as sources. The
prevailing practice remains: use SFT to teach the
model the format and style of responses, then refine
preferences via RLHF or DPO.

9.2 Superficial Alignment

Despite the impressive improvements in the
performance of instruction tuning, there lacks
clarity about the specific knowledge that models
acquire through instruction tuning, raising
questions about: Does instruction tuning just
learn Pattern Copying? or How exactly does the
alignment tuning transform a base LLM?

To answer these questions, Kung and Peng
(2023) delves into the analysis of how models
make use of instructions during SFT by comparing
the tuning when provided with altered instructions
versus the original instructions.

Specifically, Kung and Peng (2023) creates
simplified task definitions that remove all
semantic components, leaving only the output
information. In addition, Kung and Peng (2023)
also incorporates delusive examples that contain
incorrect input-output mapping. Surprisingly, the
experiments show that models trained on these
simplified task definitions or delusive examples

can achieve comparable performance to the ones
trained on the original instructions and examples.
Moreover, the paper also introduces a baseline
for the classification task with zero-shot, which
achieves similar performance to SFT in low-
resource settings.

Similar to the findings of Kung and Peng (2023),
several subsequent studies (Zhou et al., 2023a; Lin
et al., 2023a) reached the same conclusion: the
observed performance improvements in current
SFT models are often due to superficial alignment.
This means the models excel at recognizing
superficial alignment, such as mastering output
formats and making educated guesses, rather than
truly understanding and learning the underlying
tasks.

10 Conclusion

This work surveys recent advances in the fast
growing field of instruction tuning, which can
also be referred to as supervised fine-tuning (SFT).
We make a systematic review of the literature,
including the general methodology of SFT, the
construction of SFT datasets, the training of SFT
models, SFT’s applications to different modalities,
domains and application. We also review analysis
on SFT models to discover both their advantages
and potential pitfalls. We hope this work will act as
a stimulus to motivate further endeavors to address
the deficiencies of current SFT models.
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A Datasets

Table 7 gives an overview of our collected datasets.



Type Dataset Name # of Instances # of Lang Construction Open-source

Human-Crafted

UnifiedQA (Khashabi et al., 2020)1 750K En human-crafted Yes

UnifiedSKG (Xie et al., 2022)3 0.8M En human-crafted Yes

Natural Instructions (Honovich et al., 2022)4 193K En human-crafted Yes

Super-Natural Instructions (Wang et al., 2022f)5 5M 55 Lang human-crafted Yes

P3 (Sanh et al., 2021)6 12M En human-crafted Yes

xP3 (Muennighoff et al., 2022)7 81M 46 Lang human-crafted Yes

Flan 2021 (Longpre et al., 2023)8 4.4M En human-crafted Yes

COIG (Zhang et al., 2023a)9 - - - Yes

InstructGPT (Ouyang et al., 2022) 13K Multi human-crafted No

Dolly (Conover et al., 2023a)22 15K En human-crafted Yes

LIMA (Zhou et al., 2023a)18 1K En human-crafted Yes

ChatGPT (OpenAI, 2022) - Multi human-crafted No

OpenAssistant (Köpf et al., 2023)17 161,443 Multi human-crafted Yes

Synthetic Data
(Distillation)

OIG (LAION.ai, 2023)2 43M En ChatGPT (No technique reports) Yes

Unnatural Instructions (Honovich et al., 2022)10 240K En InstructGPT-Generated Yes

InstructWild (Xue et al., 2023)12 104K - ChatGPT-Generated Yes

Evol-Instruct / WizardLM (Xu et al., 2023a)13 52K En ChatGPT-generated Yes

Alpaca (Taori et al., 2023a)14 52K En InstructGPT-generated Yes

LogiCoT (Liu et al., 2023a)15 - En GPT-4-Generated Yes

GPT-4-LLM (Peng et al., 2023)20 52K En&Zh GPT-4-Generated Yes

Vicuna (Chiang et al., 2023) 70K En Real User-ChatGPT Conversations No

Baize v1 (Conover et al., 2023b)21 111.5K En ChatGPT-Generated Yes

UltraChat (Ding et al., 2023a)16 675K En&Zh GPT 3/4-Generated Yes

Guanaco (JosephusCheung, 2021)19 534,530 Multi GPT (Unknown Version)-Generated Yes

Orca (Mukherjee et al., 2023)23 1.5M En GPT 3.5/4-Generated Yes

ShareGPT24 90K Multi Real User-ChatGPT Conversations Yes

WildChat25 150K Multi Real User-ChatGPT Conversations Yes

WizardCoder (Luo et al., 2023) - Code LLaMa 2-Generated No

Magicoder (Wei et al., 2023b)26 75K/110K Code GPT-3.5-Generated Yes

WaveCoder (Yu et al., 2023) - Code GPT 4-Generated No

Phi-1 (Gunasekar et al., 2023)27 6B Tokens Code Q and A GPT-3.5-Generated Yes

Phi-1.5 (Li et al., 2023i) - Code Q and A GPT-3.5-Generated No

Nectar (Zhu et al., 2023a)28 183K En GPT 4-Generated Yes

Synthetic Data
(Self-Improvement)

Self-Instruct (Wang et al., 2022c)11 52K En InstructGPT-Generated Yes

Instruction Backtranslation (Li et al., 2023g) 502K En LLaMa-Generated No

SPIN (Chen et al., 2024b)29 49.8K En Zephyr-Generated Yes

Reasoning Data
PRM800K (Wang et al., 2022c)30 800K Math human-crafted & GPT-Generated Yes

O1-Journey (Li et al., 2023g)31 677 Math human-crafted & GPT-Generated Yes

Self-Explore (Chen et al., 2024b) - Math GPT-Generated No

MARIO (Chen et al., 2024b)32 28.8K Math human-crafted & GPT-Generated Yes

MathGenie (Chen et al., 2024b) 170K Math GPT-Generated No

DeepSeekMath (Chen et al., 2024b)33 120B Math human-crafted & GPT/DeepSeek-Generated Yes

Compute-Optimal Sampling (Chen et al., 2024b) - Math GPT-Generated No

MathScale (Chen et al., 2024b)34 2M Math GPT-Generated Yes

G-LLaVA (Chen et al., 2024b)35 170K Math GPT-Generated Yes
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4 https://github.com/allenai/natural-instructions-v1
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6 https://huggingface.co/datasets/bigscience/P3
7 https://github.com/bigscience-workshop/xmtf
8 https://github.com/google-research/FLAN
9 https://github.com/BAAI-Zlab/COIG
10 https://github.com/orhonovich/unnatural-instructions
11 https://github.com/yizhongw/self-instruct
12 https://github.com/XueFuzhao/InstructionWild
13 https://github.com/nlpxucan/evol-instruct
14 https://github.com/tatsu-lab/stanford_alpaca
15 https://github.com/csitfun/LogiCoT
16 https://github.com/thunlp/UltraChat#data
17 https://github.com/LAION-AI/Open-Assistant
18 https://huggingface.co/datasets/GAIR/lima

19 https://huggingface.co/datasets/JosephusCheung/GuanacoDataset
20 https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
21 https://github.com/project-baize/baize-chatbot
22 https://huggingface.co/datasets/databricks/databricks-dolly-15k
23 https://huggingface.co/datasets/Open-Orca/OpenOrca
24 https://huggingface.co/datasets/RyokoAI/ShareGPT52K
25 https://huggingface.co/datasets/allenai/WildChat
26 https://github.com/ise-uiuc/magicoder?tab=readme-ov-file#-dataset
27 https://huggingface.co/microsoft/phi-1
28 https://huggingface.co/datasets/berkeley-nest/Nectar
29 https://github.com/uclaml/SPIN?tab=readme-ov-file#Data
30 https://github.com/openai/prm800k
31 https://github.com/GAIR-NLP/O1-Journey
32 https://github.com/MARIO-Math-Reasoning/MARIO
33 https://github.com/deepseek-ai/DeepSeek-Math
34 https://github.com/XylonFu/MathScale
35 https://github.com/pipilurj/G-LLaVA

Table 7: An overview of instruction tuning datasets.


