
Oedipus: LLM-enchanced Reasoning CAPTCHA Solver
Gelei Deng∗

Nanyang Technological University
Singapore

gdeng003@e.ntu.edu.sg

Haoran Ou∗
Nanyang Technological University

Singapore
haoran.ou@ntu.edu.sg

Yi Liu†
Nanyang Technological University

Singapore
yi009@e.ntu.edu.sg

Jie Zhang
CFAR and IHPC, A*STAR

Singapore
zhang_jie@cfar.a-star.edu.sg

Tianwei Zhang
Nanyang Technological University

Singapore
tianwei.zhang@ntu.edu.sg

Yang Liu
Nanyang Technological University

Singapore
yangliu@ntu.edu.sg

Abstract

CAPTCHAs have become a ubiquitous tool in safeguarding appli-
cations from automated bots. Over time, the arms race between
CAPTCHA development and evasion techniques has led to increas-
ingly sophisticated and diverse designs. The latest iteration, rea-
soning CAPTCHAs, exploits tasks that are intuitively simple for
humans but challenging for conventional AI technologies, thereby
enhancing security measures.

Driven by the evolving AI capabilities, particularly the advance-
ments in Large Language Models (LLMs), we investigate the poten-
tial of multimodal LLMs to solve modern reasoning CAPTCHAs.
Our empirical analysis reveals that, despite their reasoning capa-
bilities, LLMs struggle to solve these CAPTCHAs effectively. In
response, we introduce Oedipus, an innovative end-to-end frame-
work for automated reasoning CAPTCHA solving. Central to this
framework is a novel strategy that dissects the complex and human-
easy-AI-hard tasks into a sequence of simpler and AI-easy steps.
This is achieved through the development of a Domain Specific
Language (DSL) for CAPTCHAs that guides LLMs in generating
actionable sub-steps for each challenge. The DSL is customized
to ensure that each unit operation is a highly solvable subtask by
LLMs as revealed in our empirical study. These sub-steps are then
tackled sequentially using the Chain-of-Thought methodology.

Our evaluation shows that Oedipus effectively resolves the stud-
ied CAPTCHAs, achieving an average success rate of 63.5%. Re-
markably, it also shows adaptability to the most recent CAPTCHA
designs introduced in late 2023, which are not included initial study.
This prompts a discussion on future strategies for designing reason-
ing CAPTCHAs that can effectively counter advanced AI solutions.

CCS Concepts

• Security and privacy→Web application security.

Keywords

Large Language Model, Web Application Security, CAPTCHA
∗Both authors contributed equally to this research.
†Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3744872

ACM Reference Format:

Gelei Deng, HaoranOu, Yi Liu, Jie Zhang, Tianwei Zhang, and Yang Liu. 2025.
Oedipus: LLM-enchanced Reasoning CAPTCHA Solver. In Proceedings of
the 2025 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3719027.3744872

1 Introduction

The pervasive threat posed by automated bots has necessitated ro-
bust countermeasures to safeguard the integrity and functionality
of various applications, leading to the development and wide appli-
cation of CAPTCHAs [1] (Completely Automated Public Turing test
to tell Computers and Humans Apart). Ingeniously tapping into the
distinct cognitive capabilities of humans versus the computational
limitations of machines, CAPTCHAs present tasks that are trivial
for humans but substantially challenging for automated systems.
This delineation exemplifies Moravec’s paradox [2], which suggests
that activities requiring minimal human thought are disproportion-
ately difficult for artificial intelligence to replicate. By designing
CAPTCHAs around this concept—creating tasks that are simple
for humans but difficult for AI—these tests act as a barrier against
automated intrusions.

However, as AI technology evolves, the effectiveness of tradi-
tional CAPTCHAs has diminished. Some early designs such as
ReCAPTCHA [3] focus on straightforward tasks like text recogni-
tion or basic image identification. These tasks leverage the visual
and cognitive abilities that are innate to humans but were initially
difficult for computer algorithms. With the advance of computer
vision [4] and machine learning [5] techniques, these early defenses
become increasingly vulnerable to automated solutions [6, 7].

This rapid development necessitates the creation of more com-
plex verification methods, notably reasoning-based CAPTCHAs [8–
10]. These methods mark a significant departure from earlier ap-
proaches, relying less on object recognition. Instead, they rely on
tasks requiring logical reasoning, problem-solving, and interpre-
tation of complex instructions. These activities demand a level of
cognitive engagement that current AIs struggle to provide, mak-
ing reasoning-based challenges a more robust defense mechanism.
Despite recent AI advancements, these CAPTCHAs continue to
pose a significant obstacle to automated solvers, leading to their
adoption by many popular online platforms such as LinkedIn [11],
TikTok [12], and Twitter [13].

The landscape of AI technology, particularly with the evolution
of Large Language Models (LLMs) [14, 15], has been marked by

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744872
https://doi.org/10.1145/3719027.3744872


CCS ’25, October 13–17, 2025, Taipei, Taiwan Gelei Deng et al.

significant advancements, notably in reasoning capabilities and
multimodal processing. These developments have paved the way
for novel approaches to tackling reasoning CAPTCHAs, tasks tra-
ditionally considered challenging for AI due to their reliance on
human-like cognitive processes. To evaluate the efficacy of these
advanced AI models in the context of reasoning CAPTCHA solving,
this paper embarks on an empirical investigation, which engages
two leading multimodal LLMs, GPT-4V(ision) [16] and Gemini [17],
utilizing zero-shot prompting [18] and the Chain-of-Thoughts (CoT)
strategy [19] as primary methodologies (Section 3). Our objective is
to explore the extent of their capabilities and delineate the bound-
aries within which these models operate when confronted with
various reasoning CAPTCHAs.

The outcomes of our investigation reveal that, despite the un-
precedented capabilities of LLMs, they currently fall short in ef-
fectively solving reasoning CAPTCHAs. Our analysis yields some
key insights: (1) LLMs exhibit a comprehensive understanding of
CAPTCHA tasks, including the challenges posed and objectives to
be achieved. (2) Unexpectedly, LLMs are capable of deconstructing
complex reasoning tasks into simpler, manageable steps and ad-
dressing each through the CoT strategy similar to the human being.
However, the efficacy of this approach is contingent upon the mod-
els’ success in accurately completing every step in the sequence;
failure of any step inevitably results in the failure of the entire
task. (3) The primary reason of models’ failure in CAPTCHA solv-
ing is their limited capabilities of recognizing objects. While they
can recognize and attribute characteristics to singular objects, this
ability significantly diminishes when tasked with simultaneously
discerning attributes of multiple objects, which is often required
in reasoning CAPTCHAs. (4) LLMs face challenges in executing
multiple reasoning steps within a single prompt, with a notable
increase in errors and hallucinations as the number of required rea-
soning steps escalates, leading to unsuccessful attempts. (5) Models
that undergo supervised fine-tuning (SFT) do not show significant
improvement in addressing these challenges. Additionally, there is
minimal transferability observed in this task, indicating that fine-
tuning a model on one type of CAPTCHA does not necessarily
enhance its performance on other types. This lack of transferability
complicates the process of tuning a single model to handle multiple
CAPTCHA challenges effectively.

This empirical study prompts us to explore the possibility of
breaking down an AI-hard reasoning CAPTCHA challenge into a
series of AI-easy tasks that can be more readily solved by LLMs.
To implement this, we propose a strategy that decomposes a given
reasoning CAPTCHA into a sequence of detailed operations, each
aligned with the capabilities of LLMs as identified in our empirical
findings. To this end, we introduce the CAPTCHA Domain Spe-
cific Language (DSL) [20] to regulate this task breakdown process
(Section 4). The operations and syntax of this CAPTCHA DSL are
meticulously designed to ensure that syntax-correct CAPTCHA
DSL scripts contain only operations that are highly solvable by
LLMs.We direct LLMs to generate challenge solutions in CAPTCHA
DSL scripts that adhere to these syntax principles. A local debugger
assists in refining these solutions by identifying and correcting
inaccuracies, thereby enabling a systematic approach to generating
solutions for reasoning CAPTCHA challenges.

Building upon this, we present an end-to-end framework Oedi-
pus1 to automate the solving of reasoning CAPTCHAs (Section
5). The workflow initiates with the creation of a DSL script for a
given CAPTCHA challenge, followed by its translation into natural
language instructions that LLMs can understand and execute. By
providing the natural language instructions together with the origi-
nal challenge, a multimodal LLM is able to solve it step by step. Our
framework offers two profound advantages. First, compared to tra-
ditional deep learning-based CAPTCHA solving strategies [4, 21],
Oedipus does not require any training process or collection of
labeled data, which significantly reduces manual efforts. Second,
Oedipus is adaptable to new CAPTCHA types as long as the unit
operations required for solving them are covered by the DSL.

The efficacy of Oedipus is validated through extensive eval-
uations and analysis. We deploy Oedipus on 4 types of reason-
ing CAPTCHAs designed by 2023 and commercially available on-
line. The experimental results are promising, demonstrating that
Oedipus achieves a success rate of up to 73.8% in solving these
CAPTCHAs on average, with a cost as low as 1.03 USD per 100
CAPTCHA solving. Among these CAPTCHAs, two types have
never been solved by any existing solutions discussed in academia.
Additionally, Oedipus has shown proficiency in resolving two
newly developed CAPTCHAs after 2023 with an average success
rate of 44.1%, whose solutions are not used to guide the development
of the CAPTCHA DSL generator component. This underscores the
versatility of Oedipus: as long as the required operations are within
the scope of DSL, Oedipus can consistently perform effectively in
CAPTCHA solving without further training process. To benefit the
open-source community for future research, we have open-sourced
our complete dataset [22] and share the complete source code upon
request to avoid potential misuse.

In light of our findings, we propose three strategies for designing
CAPTCHAs that could potentially remain unsolvable by LLMs. First,
we suggest CAPTCHAs that demand complex reasoning chains be-
yond LLMs’ current reach, pushing the limits of AI problem-solving.
Second, we recommend employing adversarial examples [23] to
exploit and confuse LLMs’ object recognition abilities. Finally, we
advocate for CAPTCHAs requiring an understanding of concepts
or operations that lie outside the scope of existing LLMs, such
as intricate real-world interactions. Acknowledging the rapid ad-
vancement of LLMs, these strategies aim to maintain CAPTCHAs
as effective security measures by adapting to AI developments.
Ethical Declaration. We emphasize that our research and the
development of Oedipus have not been leveraged for any unethical
activities or financial gain. We are acutely aware of the ethical
implications of our work. In compliance with ethical standards,
we refrain from releasing a fully automated CAPTCHA solving
tool. Instead, we provide access to a partial solution that generates
CAPTCHA resolutions in natural language [22].

2 Background

2.1 CAPTCHAs and CAPTCHA Solver

CAPTCHAs [24, 25] have evolved from simple text puzzles to in-
creasingly complex challenges designed to distinguish humans

1Oedipus was a mythical Greek king who answered the Sphinx’s riddles correctly,
and defeated this monster.



Oedipus: LLM-enchanced Reasoning CAPTCHA Solver CCS ’25, October 13–17, 2025, Taipei, Taiwan

from bots. This continuous evolution responds to advancements
in solver algorithms, transitioning from basic OCR techniques [26]
to advanced machine learning models [27–29]. As CAPTCHAs be-
comemore intricate, solvers adapt accordingly, creating a persistent
arms race in web security. This ongoing cycle highlights the critical
need for innovative approaches to security, suggesting a gradual
shift towards analyzing user behaviors and incorporating AI-driven
methods to maintain the delicate balance between user accessibility
and protection against sophisticated automated threats.

2.2 Reasoning CAPTCHAs

The development of reasoning CAPTCHAs [9] marks a signifi-
cant evolution in the field of web security, shifting the challenge
from simple pattern recognition to cognitive tasks that require
logical reasoning, contextual understanding, and multi-step de-
duction. Unlike conventional CAPTCHAs, reasoning CAPTCHAs
are specifically designed to thwart automated solvers by exploit-
ing capabilities that are currently unique to human cognition. By
exploiting the unique human capability for complex reasoning,
reasoning CAPTCHAs provide a stronger defense against bots,
marking a critical step forward in protecting online interactions.
Because reasoning CAPTCHAs demand complex problem-solving
skills, existing methods and solvers cannot be directly compared
with strategies targeting these cognitive challenges. This separa-
tion has led to reasoning CAPTCHAs being studied as a distinct
subcategory in prior research, necessitating specialized datasets
and evaluation frameworks. Figures 1 to 3 demonstrates several
state-of-the art reasoning CAPTCHAs, which we further illustrate
in Section 3.

2.3 Large Language Models

LLMs [15] have emerged as a groundbreaking advancement in AI,
demonstrating remarkable abilities in understanding and generat-
ing natural language across a broad spectrum of applications. The
evolution into multimodal LLMs, capable of processing and inte-
grating various types of data such as text and images, underscores
their potential to tackle complex, multi-dimensional problems. No-
tably, the reasoning capabilities inherent in LLMs position them
as promising candidates for security tasks, such as penetration
testing [30], protocol fuzzing [31], and blockchain security [32].
This makes LLMs potentially suitable for reasoning CAPTCHAs
solving. Although the application of LLMs in this context has yet
to be thoroughly explored, their sophisticated advancements in
handling complex reasoning tasks suggest a significant potential
in overcoming the challenges presented by reasoning CAPTCHAs,
highlighting a new frontier in the application of AI in web security.

3 Empirical Study

Previous studies [33] have demonstrated the effectiveness of LLMs
in solving traditional verification challenges, such as those offered
by ReCAPTCHA. However, the potential of LLMs in addressing the
more complex reasoning tasks in verification challenges remains
unexplored. To bridge this gap, we embark on an empirical study
aimed at understanding the capabilities of LLMs in solving rea-
soning CATPCHAs. This investigation is structured around three
pivotal research questions:

• RQ1 (Categorization): What are the different types of reasoning
tasks present in reasoning CAPTCHAs?

• RQ2 (Effectiveness): How effective are LLMs in solving rea-
soning CAPTCHAs, and what factors influence their success
rate?

• RQ3 (Enhancements): Can supervised fine-tuning (SFT) im-
prove LLM performance in reasoning CAPTCHA solving?
Below, we detail our strategies to these research questions.

3.1 CAPTCHA Categorization (RQ1)

Dataset Construction. To comprehensively address RQ1, our pri-
mary objective is to categorize existing reasoning CAPTCHAs. For
this purpose, we embark on a large-scale enumeration of CAPTCHAs
available online. Specifically, we review all CAPTCHAs referenced
in recent research works [34–37], with a focus on commercially
available reasoning CAPTCHAs. It is important to note that our
study excludes CAPTCHAs solely discussed in academic research,
such as those in [38], due to the absence of readily available APIs
and their untested effectiveness in real-world scenarios. Conse-
quently, we have compiled a dataset comprising 5 types of reasoning
CAPTCHAs from 3 different vendors, detailed in Table 1.

(a) CAPTCHA 1 by Arkose Labs (b) CAPTCHA 2 by Arkose Labs

Figure 1: Rotation CAPTCHA examples.

(a) CAPTCHA 1 by GeeTest (b) CAPTCHA 2 by GeeTest

Figure 2: Bingo CAPTCHA examples.

CAPTCHACategorization. In alignmentwith precedingworks [34,
36], our categorization of CAPTCHAs is fundamentally based on the
reasoning tasks embedded in their designs. Ultimately, we identify
3 distinct categories of reasoning CAPTCHAs:
(1) RotationCAPTCHAs.Displayed in Figure 1, rotation CAPTCHAs

compel users to adjust an object’s orientation to match that of a
reference object. This type has evolved from the conventional ro-
tation CAPTCHAs (seen in Figure 1(a)) described in [36], which
merely required upward orientation of objects. The newer vari-
ants, as depicted in Figure 1(b), introduce increased complexity



CCS ’25, October 13–17, 2025, Taipei, Taiwan Gelei Deng et al.

(a) CAPTCHA 1 by YiDun (b) CAPTCHA 2 by GeeTest

Figure 3: 3D CAPTCHA examples.

by necessitating users to discern and align with the orientation
of a reference item, such as a finger in the provided example.

(2) Bingo CAPTCHAs. In Figure 2, bingo CAPTCHAs present
the challenge of identifying elements on a board and rearrang-
ing them to form a line of identical items. These CAPTCHAs
vary greatly in terms of element types and manipulation rules,
contingent on the provider. For instance, Figure 2(a) allows ar-
bitrary swapping of any two items, while Figure 2(b) restricts
users to only swap adjacent items.

(3) 3D Logical CAPTCHAs. Illustrated in Figure 3, 3D Logical
CAPTCHAs task users with selecting an object from a 3D space,
based on intricate logical relationships involving attributes like
shape, color, and orientation. For example, Figure 3(a) challenges
users to identify the number 0 that shares the same orientation
as a yellow letter W; whereas Figure 3(b) requires selecting the
larger object positioned to the left of a green object.
The unique set of challenges posed by each CAPTCHA category

necessitates specialized solving strategies. By categorizing these
CAPTCHAs, our goal is to gain a thorough understanding of the
array of reasoning tasks they encompass and critically assess the
proficiency of LLMs in tackling these diverse challenges.

Two noteworthy observations emerge from our study. Firstly,
there is a significant diversity among vendors in the types of rea-
soning tasks developed, with little overlap in design. This finding
is underscored by our discovery that companies have obtained
patents for their unique designs, as verified in [37]. Secondly, tasks
can be broadly classified into two categories based on their de-
sign complexity and the feasibility of exhaustively cataloging their
variations. The first category, “Limited Variability” tasks, such as
rotation tasks, presents a relatively small and finite set of challenge
variations. Theoretically, it is possible to collect all possible varia-
tions of these tasks, and the design of a new task under this type
requires the generation of new elements within the tasks (such as
a new animal type in rotation tasks). Conversely, the “Dynamic
Complexity” tasks, exemplified by Geetest visual reasoning tasks,
generates challenges through the combination of multiple elements
or objects in various configurations. Due to this dynamic complex-
ity, the number of potential task variations is vast and continually
evolving, making it impractical to collect all possible challenges.

3.2 LLMs for Solving CAPTCHAs (RQ2)

We further evaluate if LLMs can be used to solve existing reasoning
CAPTCHA problems, and if not, what are the key challenges that
hinder their application.

3.2.1 Evaluation Strategy. Our evaluation is designed to probe
two critical facets of LLMs performance: (1) their capabilities to
accurately comprehend the given CAPTCHA task and (2) their
proficiency in methodically executing the necessary steps to re-
solve the CAPTCHA challenge. To do this, we employ two dis-
tinct approaches to test these capabilities: zero-shot prompting [18]
and Chain-of-Thoughts (CoT) strategy [19]. These methodologies
have been previously applied to diverse reasoning tasks, including
symbolic [39] and mathematical reasoning [40], offering a proven
framework for assessing LLMs. To rigorously evaluate the effec-
tiveness of LLMs in solving reasoning CAPTCHAs, we select two
state-of-the-art models, GPT-4V [16] and Google Gemini [17].

Our strategy is detailed in Figure 4. Initially, we ❶ prepare each
CAPTCHA by isolating its image section with the question texts,
employing translation to English when necessary. We then evaluate
the LLM’s capabilities in CAPTCHA solving with two strategies. ❷
Zero Shot methodology [18]: Here, the LLM is directly prompted
with the CAPTCHA image and associated question. To facilitate this,
the text portion of the CAPTCHA is integrated into a straightfor-
ward prompt (“Please examine the following CAPTCHA challenge
and provide the step-by-step solution”), designed to elicit a direct
solution from the model. ❸ Chain-of-Thoughts (CoT) methodol-
ogy [39]: we prompt the LLM to navigate the challenge through
a series of iterative and conversational steps. This approach sys-
tematically breaks down the CAPTCHA challenge into smaller
and more manageable components, each addressed in sequence
to construct a comprehensive solution. Detailed guidelines for
this process and specific prompt templates are provided in our
open-source dataset [22]. ❹ For both zero-shot and CoT methods,
we utilize the respective multimodal API endpoints of the models
(gpt-4-vision-preview[41] and gemini-pro-vision[42]), sub-
mitting the CAPTCHA image and question as input. ❺ Upon re-
ceiving responses from the LLM, we conduct a manual review to
determine the correctness of each solution. To enhance experimen-
tal efficiency, we employ a manual correction strategy: we continue
the testing if a substep in CoT is correctly executed; otherwise, we
label the failed trial and provide the correct solution for the LLM
to continue on the next substep. This process is repeated until the
challenge is fully resolved.

This strategy offers two advantages: firstly, it facilitates a direct
comparison between the effectiveness of zero-shot and CoT ap-
proaches in CAPTCHA solving. Secondly, the manual correction
mechanism allows us to precisely evaluate the LLMs’ performance
on each sub-step of the solving process, ensuring that the analysis
is not hindered by failures in preceding steps.

3.2.2 Experiment Setup. Wemeticulously select 10 tasks from each
identified sub-category of CAPTCHA, resulting in a comprehen-
sive test set of 50 CAPTCHAs. This selection is made to ensure
a balanced representation of various CAPTCHA types. To reduce
randomness, we repeat each experiment 10 times, resulting in a
total number of 1000 trials (i.e., 2 models * 5 types * 10 CAPTCHAs *
10 repetitions). The experiments are conducted following the previ-
ously outlined strategies, focusing on several key metrics to assess
the performance of the LLMs:
(1) Task Comprehension Correct Rate: The primary metric

assessed is the ability of LLMs to correctly comprehend the task



Oedipus: LLM-enchanced Reasoning CAPTCHA Solver CCS ’25, October 13–17, 2025, Taipei, Taiwan

Name Vendor Category # of Samples Description

FunCAPTCHA1 Arkose Labs Rotation 10 Rotate the object into the indicated direction
Gobang GeeTest Bingo 10 Line up five identical items in a row
IconCrush GeeTest Bingo 10 Line up three identical items in a row
Space CAPTCHA GeeTest Space 10 Based on the space relation click the indicated object
Space Reasoning YiDun Space Reasoning 10 Based on the logical relation click the indicated object

Table 1: Summary of collected CAPTCHAs. The names of these CAPTCHAs are given by the vendors.

CAPTCHA
Challenge Challenge Question

CAPTCHA Image

1

LLMsZero Shot Prompts +
{challenge question}

Zero-shot Solution
2

Manual
Evaluation

CoT Prompts + 
{Conversation History}

LLMs

Intermediate Steps

CoT Solution
3 4

4

5

Zero-shot Strategy

CoT Strategy

Figure 4: The proposed strategy to test LLMs on CAPTCHA solving.

presented by each CAPTCHA. This is determined by manually
evaluating whether the LLMs exhibit an accurate understanding
and appropriate intent to solve the given CAPTCHA challenge,
based on its image and description.

(2) Success Rate: We closely monitor and measure the success
rate of LLMs in solving the diverse categories of reasoning
CAPTCHAs. We manually review the responses generated by
the LLMs, assessing the correctness of their solutions. It is
important to note that for the zero-shot approach, a solution is
deemed correct only if the LLM response outlines the accurate
procedure for resolving the CAPTCHA. In contrast, for the CoT
approach, a sub-step is considered successful if the solution
proposed by the LLM for that specific sub-step is accurate.

(3) Failure Reason:Whenever an LLM fails to solve a CAPTCHA,
we meticulously analyze the root causes of the failures. This in-
volves analyzing the detailed LLM responses and delving into its
processing and decision-making mechanisms to pinpoint com-
mon issues, e.g., task misinterpretation, inadequate reasoning
capabilities, or errors in logical deduction.

3.3 Findings

The experimental results of our empirical study are detailed in Ta-
ble 2. From these results, several intriguing findings emerge. Firstly,
it is evident that LLMs are capable of understanding the task of
CAPTCHA solving, as they consistently aim to generate plausible
outcomes for solving CAPTCHAs. This is demonstrated by the
high task understanding rate, with 90.1% for GPT-4V and 86.2%
for Gemini. Despite this understanding, both LLMs exhibit notably
poor performance in actually solving reasoning CAPTCHAs. Specif-
ically, their success rates in solving the five types of CAPTCHAs
are exceedingly low, at only 16.0% for GPT-4V and 12.0% for Gemini.
When employing the CoT approach, there is a marginal improve-
ment in performance, reaching 21.0% for GPT-4V and 17.1% for
Gemini, but it still remains evident that the models are unable

to correctly solve reasoning CAPTCHAs autonomously without
human intervention.

Finding 1: Despite the ability to understand the tasks within
reasoning CAPTCHAs, the two state-of-the-art LLMs, GPT-4
and Gemini, are unable to effectively solve these tasks without
human guidance.

We further examine the CoT-solving process for both models
to ascertain the reasons behind their failures. Notably, while the
success rates using the CoT approach are low, both models demon-
strate a significant capability in resolving a substantial portion
of the generated subtasks in the CAPTCHA-solving process. For
instance, GPT-4 generates an average of 4.4 subtasks across five
different types of tasks and successfully solves 2.4 of them. This
represents a substantial 54.5% success rate for individual subtasks,
which is significantly higher than the overall task completion rate
of 21.0%. This indicates that while LLMs can process and reason
through the CAPTCHA-solving steps in a manner akin to humans,
they often falter at specific stages. However, in a sequential solving
process, the failure of a single subtask inevitably leads to the failure
of the overall task.

Finding 2: LLMs could meaningfully decompose a CAPTCHA
challenge into subtasks and solve a large portion of them.
However, due to the inability to resolve some subtasks, they
fail to complete the reasoning process as a whole.

To delve deeper into the nature of both successful and unsuc-
cessful subtasks in the CAPTCHA-solving process, we inspect all
subtasks generated during the experiment and categorize them
based on their characteristics. We then count the number of unique
subtasks generated in this process, and document their rate of be-
ing successfully completed by the LLMs in Table 3. It is noticed
that LLMs try to complete the challenge with multiple types of



CCS ’25, October 13–17, 2025, Taipei, Taiwan Gelei Deng et al.

Approach

Zero Shot CoT

Task Understanding Success Rate Task Understanding Average # of subtasks Average # of
successful subtasks Success Rate

Model GPT-4 Gemini GPT-4 Gemini GPT-4 Gemini GPT-4 Gemini GPT-4 Gemini GPT-4 Gemini
Angular 37.9% 20.7% 0.0% 0.0% 68.1% 53.4% 4.7 5.1 0.0 0.1 0.0% 0.0%
Gobang 93.1% 81.0% 2.6% 0.0% 96.5% 95.7% 5.6 4.3 2.8 1.3 4.5% 3.3%

IconCrush 94.8% 88.8% 4.2% 0.0% 97.4% 96.6% 4.6 4.7 3.7 1.4 7.9% 4.0%
Space 94.6% 94.8% 44.0% 37.2% 98.3% 95.7% 4.1 3.1 3.3 2.2 55.2% 50.5%

Space Reasoning 59.5% 53.4% 34.3% 25.9% 90.3% 89.7% 3.1 3.2 2.2 1.8 37.3% 27.8%
Average 76.0% 67.8% 16.5% 12.0% 90.1% 86.2% 4.4 4.1 2.4 1.4 21.0% 17.1%

Table 2: Experimental results of applying the testing strategy over the selected CAPTCHAs.

Subtask Category Unique Subtasks Success Rate

Understand the task 6 91.8%
Single-criteria object searching 12 80.8%
Multi-criteria object searching 6 25.0%
Orientation identification 2 32.4%
Single-condition Judgement 8 78.2%
Multi-condition Judgement 3 22.4%
Others 4 12.0%

Table 3: Success Rate of Subtasks.

subtasks, such as identifying or localizing an object based on cer-
tain attributes (color, shape, etc.) and identifying its orientation.
While LLMs exhibit the capability to complete these tasks, their
performance is notably better when constrained to a single crite-
rion in different types of tasks. In particular, they can complete
single-criteria object searching with a success rate of 80.8%, while
it is difficult to handle the case with two or more criteria provided
with a success rate of 25.0%. The same conclusion holds for the
case when the LLMs are prompted to judge if a declaration holds
or not (78.2% vs 22.4%.) An illustrative example is that in the 3D
logical CAPTCHA (Figure 3(b)), LLMs can proficiently identify all
cylinders. However, when asked to locate a specific red cylinder,
they may hallucinate and indicate an incorrect location, or even
point to non-cylinder objects.

Finding 3: LLMs demonstrate proficiency in recognizing and
understanding natural objects within CAPTCHAs, but their
performance significantly diminishes with abstract objects
and multi-criteria tasks, revealing a limitation in their cogni-
tive processing capabilities.

Lastly, LLMs exhibit difficulties in processing long instructions
encompassing multiple steps, demonstrating an inability to recall
outcomes of previous sub-steps, even when the complete conver-
sation history is provided at the LLM endpoints. This challenge
could potentially stem from the models’ attention-shifting dynam-
ics [43, 44] as revealed in the previous research, which seemingly
prioritize the most recent conversational inputs over earlier ones.
Additionally, the propensity of LLMs to generate hallucinations in-
creases when they are presented with multiple instructions within
a single prompt, complicating their task-solving effectiveness.

Finding 4: LLMs struggle with complex and multi-step in-
structions, leading to challenges in task continuity and an

increased likelihood of hallucinations when handling multiple
directives simultaneously.

3.4 Fine-tuning LLMs for CAPTCHA Solving

A straightforward strategy to address the limitations of LLMs iden-
tified in RQ2 is to fine-tune the LLMs with solutions specific to
reasoning tasks, potentially enhancing their performance in this
domain. To evaluate the feasibility of this strategy, we conduct a
preliminary study using the Gemini, which supports image-based
fine-tuning, whereas OpenAI currently only offers fine-tuning for
text-only models (GPT-3.5). Our investigation focuses on three
primary questions: Can fine-tuned LLMs more effectively solve rea-
soning CAPTCHAs? Can fine-tuning on specific categories improve
performance on new, similar tasks? Furthermore, is this approach
practically viable?

For our study, we collect 20 challenges for each of the 5 types of
reasoning CAPTCHA as illustrated in Section 3.1, forming a new
experimental dataset with 100 challenges. The manuscript authors
manually generate text solutions for all challenges, compiling them
into a dataset of 10,400 tokens for supervised fine-tuning (SFT). We
then use them to perform the supervised SFT over Gemini2. To
assess the transferability of fine-tuning, we create six variations of
the training dataset: a complete set and five subsets, each missing
solutions for one type of challenge. We reevaluate the models using
both single-shot prompting and CoT methods on the original test
set evaluated in RQ2. The experimental results are presented in
Table 4.

The results, as demonstrated in Table 4, reveal that the end-to-
end CAPTCHA solving rates for the fully fine-tuned model using
zero-shot and CoT approaches are 15.1% and 18.9%, respectively.
These rates represent increases of only 2.5% and 1.8% compared
to the original model, which are not significant. Moreover, when
analyzing the detailed success rates of models fine-tuned on partial
datasets, we observe significant performance declines when the
models are tested on CAPTCHA categories excluded from their
training data. Specifically, the solving rates for models lacking train-
ing on corresponding challenge types (highlighted with gray cells)
average 13.2% and 17.0% for zero-shot and CoT approaches, respec-
tively, showing negligible improvement over the original model’s
rates of 12.6% and 17.1%. These findings indicate that fine-tuning
does not substantially enhance model transferability in CAPTCHA
solving tasks, representing a significant drawback for large-scale

2We use gemini-1.0-pro-002, the only model version that supports SFT to the date
of this work.



Oedipus: LLM-enchanced Reasoning CAPTCHA Solver CCS ’25, October 13–17, 2025, Taipei, Taiwan

Challenge Angular Gobang IconCrush Space Space Reasoning Avg.

Model Zero Shot CoT Zero Shot CoT Zero Shot CoT Zero Shot CoT Zero Shot CoT Zero Shot CoT
Original 0.0% 0.0% 0.0% 3.3% 0.0% 4.0% 37.2% 50.5% 25.9% 27.8% 12.6% 17.1%
Full SFT 1.5% 1.8% 3.5% 4.0% 2.5% 6.2% 42.0% 54.9% 29.2% 31.1% 15.1% 18.9%

w/o Angular 0.8% 0.2% 1.9% 3.8% 2.4% 4.3% 37.9% 50.9% 26.2% 28.5% 13.9% 17.5%
w/o Gobang 2.4% 1.6% 0.3% 2.2% 1.5% 4.9% 41.8% 50.7% 26.4% 28.0% 14.5% 17.5%

w/o IconCrush 2.1% 1.8% 2.4% 3.5% 0.6% 4.1% 46.9% 54.3% 29.1% 32.4% 16.1% 19.2%
w/o Space 1.4% 0.7% 0.3% 3.2% 2.3% 4.7% 38.2% 50.5% 27.2% 28.0% 13.4% 17.4%

w/o Space Reasoning 0.5% 2.7% 2.2% 3.4% 0.9% 4.5% 39.6% 48.7% 25.9% 28.0% 13.8% 14.8%
Table 4: Experimental results of different fine-tuned models over the selected CAPTCHAs. Cells corresponding to models

trained without specific data types are shaded gray,

implementation, especially given the continual development of new
CAPTCHA types. Considering that fine-tuning requires manual
data labeling, incurs additional training costs, and increases token
expenses (as fine-tuned models incur higher charges), this approach
may not be practically feasible.

Finding 5: SFT does not significantly enhance LLMs’ capabili-
ties in solving reasoning CAPTCHAs. While some capabilities
are demonstrated, there is a lack of transferability. Given the
high costs involved, this strategy is not deemed practical.

3.5 Discussion

The above study demonstrates that while LLMs show promising
capabilities in certain aspects of CAPTCHA solving, they strug-
gle with multi-step instructions and task continuity. While recent
prompting strategies such as program-of-thought [45] and diagram-
of-thoughts [46] offer structured approaches to reasoning, they are
fundamentally insufficient for addressing the specific weaknesses
we have identified in CAPTCHA tasks. Firstly, reasoning steps gen-
erated autonomously by LLMs often fail to align with the nuanced
demands of CAPTCHA challenges, particularly in areas where
models underperform, such as multi-criteria object recognition and
multi-condition decision-making. Secondly, even when explicitly
prompted to decompose tasks into more manageable atomic op-
erations, current prompting techniques do not reliably produce
correct or consistent task breakdowns, leading to persistent reason-
ing failures. Given these constraints, we argue that relying solely
on prompting is inadequate. Instead, we propose a Domain-Specific
Language (DSL) approach, which enforces a structured, controlled
decomposition of complex reasoning CAPTCHAs into atomic steps
that are specifically aligned with LLM strengths—namely, visual
perception and basic logical operations—while systematically avoid-
ing known model weaknesses. In the following sections, we detail
the design and implementation of this DSL framework, which we
posit as a necessary evolution beyond general-purpose prompting
for robust CAPTCHA solving with LLMs.

4 CAPTCHA Domain Specific Language

4.1 Motivation

Our empirical study highlights that LLMs can potentially tackle rea-
soning CAPTCHAs using the CoT strategy, which decomposes the
challenge into smaller subtasks and addresses them in a divide-and-
conquer manner. However, the varying levels of LLM proficiency

across different subtasks introduce instability into the challenge-
solving process. This variability leads us to consider whether it is
feasible to formalize the CAPTCHA solving process into a series of
steps, each individually tailored to be within the LLM’s capabilities.

This consideration has inspired the design of our CAPTCHA
Domain Specific Language (DSL) that formally outlines the op-
erations involved in solving CAPTCHAs, essentially encoding the
CAPTCHA solving process with a series of LLM-easy tasks. Our design
rationale is based on the empirical study showing that LLMs can
only resolve simple tasks but fail on modern reasoning CAPTCHAs.
The proposed DSL only contains atomic, well-defined operations
(search, reason, locate, etc.), each aligned with "LLM-easy" tasks
as identified in the empirical study. Key challenges—such as LLMs
struggling with multi-attribute queries, multi-step reasoning, and
complex object recognition—directly inform the DSL constraints,
ensuring each operation remains within LLM capabilities. For ex-
ample, search is restricted to single-attribute queries to prevent
compounded failures, while locate explicitly maps objects instead
of relying on inference.

The creation of CAPTCHA DSL offers several key advantages.
First, the operations delineated by it align with the competencies of
LLMs, ensuring that each step of the solution is approachable and
solvable, thereby enhancing the overall success rate of solving ac-
tual challenges. Second, DSL, being an abstract representation of the
natural language process of CAPTCHA solving, can be seamlessly
translated back into natural language. This facilitates its integra-
tion into LLMs for reasoning and processing. Third, it also brings
formalization to the solving procedure. Solutions generated in DSL
can be rigorously verified for syntactical correctness, allowing for
straightforward identification and rectification of errors. In practice,
we implement the DSL through JetBrains MPS with the in-built lo-
cal syntax verifier (Projection Editing Model) to enforce correctness
and provide structured error feedback to Oedipus for automated
refinement. This approach enables effective CAPTCHA solving,
even for complex challenges, as long as they can be decomposed
into solvable subtasks.

In the following, we elaborate on the formal definition of CAPTCHA
DSL and showcase its application through illustrative examples.
This demonstration will underscore the practical utility and ef-
fectiveness of CAPTCHA DSL in streamlining and enhancing the
process of solving reasoning CAPTCHAs with LLMs.



CCS ’25, October 13–17, 2025, Taipei, Taiwan Gelei Deng et al.

4.2 High-level Structure

We first delineate the high-level structure and components of the
CAPTCHADSL. As exemplified in Figure 5, a CAPTCHADSL script
comprisesmultiple lines of statements, with each line representing a
specific operation targeting elements within the CAPTCHA solving
context. This structure is reminiscent of the SQL [47] syntax, where
scripts are composed of clauses, the fundamental building blocks
of statements. Each clause in the CAPTCHA DSL is constructed
following specific syntax rules and can include a variable number
of components. Below we detail the components of the CAPTCHA
DSL.
(1) Keywords: The operational keywords function as the core unit

operations in CAPTCHA DSL. There are four keywords de-
fined: search, reason, locate, and operate. They correspond
to the atomic operations that our empirical study (Section 3) has
shown to be effectively executed by LLMs, i.e., searching objects
from the CAPTCHA given requirements, reasoning for a certain
task, locating a particular item on the image, or performing a
given operation.

(2) Objects: This component represents the tangible items in the
CAPTCHA image, such as animals in the rotation CAPTCHA
(Figure 1(b)) and emojis in the Bingo CAPTCHA (Figure 2(b)) Ex-
plicit object representation helps mitigate LLMs’ inconsistency
in object recognition within complex scenes.

(3) Attributes: These are properties of objects encoded in nat-
ural language. In CAPTCHA DSL, attributes are limited to a
subset that is effective for actual CAPTCHA solving, as in-
formed by our empirical study. This includes characteristics
like size, color, type, orientation, among others. This constrained
attribute set addresses LLMs’ tendency to hallucinate or con-
fuse object properties when dealing with multiple attributes
simultaneously.

(4) Predicates: These are conditions that can be evaluated to
three-valued logic (3VL) [48] (true/false/unknown) or Boolean
values. They are used to constrain the effects of expressions.
Predicates function through the standardized set of boolean
operators.

(5) Expressions:We borrow the concept of SQL Expressions [49]
into CAPTCHA DSL. Expressions including ‘=’ in CAPTCHA
DSL consist of components that operate based on specific logic
to yield Boolean or attribute values. These expressions can be
used for updating attributes or, in conjunction with predicates,
evaluating conditions.

(6) Descriptions: A special component in CAPTCHA DSL is the
natural language descriptions that can be provided as variables
to the reason keyword, which can be arbitrarily generated,
updated, and handled by the LLM.

4.3 Syntax Constraints

The above CAPTCHA DSL is regulated through a loosely defined
syntax, which is primarily designed to address the specific failure
modes of LLMs identified in our empirical study. Similar to Python
and other programming languages, it is requested that all the vari-
ables appearing in the statements are properly defined, and their

values are properly updated without use-before-definition. In addi-
tion, we define two additional syntax rules to bound the keywords
to regulate that each line of the statement in the CAPTCHA DSL
script can be translated into a natural language task, and the task
is proved to be highly achievable by LLMs as listed in Table 3. (1)
The operational keyword reason is used by LLMs to perform easy
reasoning tasks given an Description. To ensure that the task is
an ‘easy’ reasoning task, we only allow the reasoning result to be
a 3VL logic, or an orientation attribute of an object. This maps
to the empirical study, where we realize that LLMs are better at
judging if the condition is correct or wrong, but not good at making
complex reasoning. (2) The keyword search should always and
only be bounded by single attributes. This aligns with the fact that
LLMs can well tell the objects from the images when only one fil-
tering criterion is given, yet they cannot perform well when more
than one is provided.

The above DSL syntax constraints enable a local verification
of the unbounded scripts. Given a DSL script, we can parse the
prompts through the above DSL syntax constraints and validate
if the constraints are met, and if the script fulfills the variable
definition logic (such as if the value is not properly defined). This
verification process provides crucial feedback for script refinement,
compensating for LLMs’ inability to self-correct errors in complex
reasoning chains.

4.4 A Running Example

We present a detailed running example to illustrate the efficacy
and modeling capabilities of our CAPTCHA DSL in the context
of a 3D CAPTCHA shown in Figure 3(a). The DSL generated by
GPT-4 is presented in the following Figure 5. This 3D CAPTCHA
challenge requires the solver to identify and reason about the spa-
tial orientation of alphanumeric characters in a three-dimensional
space. Specifically, the task involves finding a number ‘0’ that is
oriented in the same direction as the letter ‘W.’ Our DSL strategy
streamlines this complex problem into a series of logical steps, each
represented by a single line of instruction within our DSL script, as
shown below.

Initially, the script identifies all the objects within the CAPTCHA
environment, creating a foundational dataset from which specific
objects can be filtered and analyzed. The DSL then proceeds to filter
the objects to isolate instances of the number ‘0’ and the letter ‘W’
each through a separate search operation as mandated by the DSL’s
syntax constraints. An incorrect attempt is deliberately included
to showcase the script’s syntax in red color: a line with multiple
WHERE clauses is flagged, reflecting an implementation that does
not conform to the DSL’s syntactic rules. This error can be identified
through the local syntax checker.

Following the DSL’s structured approach, the script deduces the
orientation of the letter ‘W’ through a reasoning operation. With
this information, it then conducts a search for the number ‘0’ that
shares this orientation. Finally, the DSL script concludes by locating
the correct position of ‘0’ that aligns with ’W,’ thus demonstrat-
ing the potential for the DSL to effectively model the solution to
a CAPTCHA challenge. Through this example, we highlight the
precision and clarity of our DSL, alongside its inherent ability to



Oedipus: LLM-enchanced Reasoning CAPTCHA Solver CCS ’25, October 13–17, 2025, Taipei, Taiwan

// Identify all objects present in the CAPTCHA
[objs] = SEARCH object IN CAPTCHA;

// Filter the objects to find the number 0 and letter W
[number_zero] = SEARCH obj IN objs WHERE obj.value == "0";
[letter_W] = SEARCH obj IN objs WHERE  obj.value == "W";

// An incorrect attemp is logged below, with more than one
where clause in one instruction.
// [same_direction_objects] = SEARCH obj IN objs WHERE
obj.orientation == letter_W.orientation AND obj.value ==
"0";

// Determine the orientation of the letter W
[W_orientation] = REASON{letter_W.orientation};

// Find the number 0 that has the same orientation as the
letter W
[same_direction_zero] = SEARCH obj IN [number_zero] WHERE
obj.orientation == [W_orientation];

// Return the position of the correctly oriented number 0
[zero_position] = SEARCH same_direction_zero;    
    

Figure 5: Example DSL script for 3D CAPTCHA challenge.

self-validate and prevent syntactically incorrect implementations
that could otherwise impede the CAPTCHA solving process.

5 Methodology

5.1 Overview

In the pursuit of a solution for solving complex and commercial-
level reasoning CAPTCHAs, we introduce Oedipus3, a compre-
hensive automated framework that harnesses the capabilities of
multi-modal LLMs. Figure 6 provides a schematic overview of Oedi-
pus. The cornerstone of this framework is to leverage the custom-
designed CAPTCHA DSL illustrated in Section 4, to systematically
articulate the CAPTCHA solving process. Within this DSL, each
operation is carefully aligned with the actions that LLMs have
high confidence in effectively executing, a strategy grounded in the
insights gained from our prior empirical study.

Oedipus operates through the following structured procedures.
It contains two main phases: task generation and solution genera-
tion. They can be further detailed into the following steps. ❶ Pre-
Solving Preparation: In the initial phase, a custom LLM undergoes
fine-tuning with DSL examples to master its syntax and structure.
Faced with a new CAPTCHA challenge, this adept LLM generates a
DSL script, meticulously delineating the steps necessary to unravel
the CAPTCHA challenge. ❷ Syntax Verification: The crafted DSL
script is subjected to rigorous verification in a local DSL verifier.
This step is crucial for identifying and flagging any syntactical inac-
curacies. Detected errors trigger a feedback loop to the CAPTCHA
LLM, instigating another round of script generation, informed by
the identified syntax errors. ❸ Solution Translation: Upon achiev-
ing a syntax-error-free DSL script, it proceeds to the instruction
translator. This component transforms the DSL script into a format

3Oedipus is the renowned Greek mythological figure known for solving the riddle
posed by the Sphinx.

comprehensible in natural language, tailor-made for processing
by LLMs. ❹ CAPTCHA Solving: The natural language translation
of the CAPTCHA solution, coupled with the original CAPTCHA
challenge, is then processed by the multimodal CAPTCHA solver
LLM. This final phase yields the ultimate solution to the CAPTCHA.
Oedipus leverages the analytical prowess of LLMs within the struc-
tured confines of the DSL. This harmonization is aimed at dissecting
and resolving the reasoning CAPTCHAs methodically with better
accuracy. In the following of this section, we detail the design of
each module.

5.2 CAPTCHA DSL Script Generation

Our investigation reveals that LLMs possess the capability to com-
prehend CAPTCHA challenges and generate meaningful step-by-
step solutions using the CoT approach. The creation of the CAPTCHA
DSL aims to guide LLMs in generating solutions that adhere to
specific rules and structures, thereby enhancing the likelihood of
successfully completing each step. To facilitate this, we develop a
method for instructing an LLM to automatically generate a CAPTCHA
DSL program tailored to a particular type of CAPTCHA challenge.

This process involves three steps. First, we manually generate
correct DSL scripts for a given CAPTCHA challenge. This step
is straightforward and takes up to 5 minutes for each CAPTCHA
challenge given the authors of this work is familiar with the DSL
language. Second, we utilize the fine-tuning technique to develop
an LLM that specializes in CAPTCHA DSL program generation.
The DSL examples generated in the previous step are employed as
training data to fine-tune the LLM, enhancing its proficiency and ac-
curacy in generating CAPTCHA DSL programs. Third, we employ
few-shot prompting with the LLM, using the sample CAPTCHA
DSL programs as illustrative examples. This process is exempli-
fied in the textbox provided below. In practice, we find that this
generation task can be effectively completed by fine-tuned code-
llama [50] or GPT-3.5 with a minimum number of 20 pieces of
examples, or more powerful models such as GPT-4 without any
fine-tuning process. We provide more concrete examples on how to
instruct the LLM to generate CAPTCHA DSL scripts in our open-
source dataset [22].

Once a DSL script is generated by the LLM, it undergoes a thor-
ough examination in a local DSL Verifier. This verifier plays a crucial
role in ensuring the syntactical correctness of the script. It checks
for compliance with the DSL’s syntax rules and verifies that each
operation within the script is feasible and logical within the con-
text of the specific CAPTCHA challenge. If any syntax errors or
logical inconsistencies are detected, the verifier flags these issues
as illustrated in Section 4, which are then used as feedback to refine
the LLM’s future script generation.

This verification step not only ensures the accuracy and reliabil-
ity of the generated DSL script but also provides valuable insights
for further fine-tuning the LLM to enhance its CAPTCHA solving
capabilities. Through this iterative process of generation, verifi-
cation, and refinement, the LLM becomes increasingly adept at
creating effective and accurate CAPTCHA DSL scripts, thereby
streamlining the CAPTCHA solving process.



CCS ’25, October 13–17, 2025, Taipei, Taiwan Gelei Deng et al.

CAPTCHA
Challenges

LLM DSL Generator

Fine-tuned
Captcha LLM

CAPTCHA
DSL Examples

Finetune

Local DSL
Verifier

Syntax Errors

Captcha Solver

Instruction
Translator

Captcha Solution
Steps in DSL

Captcha Solution
Steps in DSL

CAPTCHA Solution 
in Natural Language

Captcha Solver
LLM

CAPTCHA
Solution

Executor

1

2

3

4

5

Offline Generation Online Solving

Figure 6: Overview of Oedipus.

5.3 Instruction Translation

Following the generation of the CAPTCHA DSL script, the subse-
quent phase entails translating these DSL instructions into natural
language. This translation is pivotal, as it converts the structured
DSL commands into a format that is understandable and action-
able by the CAPTCHA Solving module, which then proceeds to
address the specific CAPTCHA challenge. Given the critical role of
this translation in bridging the gap between the DSL’s structured
syntax and the LLM’s interpretative flexibility, it is paramount to
ensure the accuracy and precision in this translation.

To achieve the highest level of translation fidelity, we employ an
LLM, utilizing two strategies for optimal results. First, we leverage
prompt engineering and meticulously craft prompts that include
the definitions of our DSL syntax as described in Section 4, thereby
orienting the LLM to accurately grasp and interpret the DSL in-
structions. This foundational understanding is crucial for the LLM
to correctly translate the DSL script into natural language instruc-
tions. Second, similar to the multi-shot prompting strategy adopted
in the DSL generation phase to furnish the LLM with examples
demonstrating the translation of instructions into DSL scripts, we
implement a reverse process for this phase. By providing examples
that illustrate how DSL scripts can be effectively mapped back to
natural language instructions, we facilitate a deeper comprehension
by the LLM of the intended semantic and functional translation.
Through practical application, we observe that combining prompt
engineering with this reversed example provision markedly en-
hances the accuracy of the instruction generation process, ensuring
that the CAPTCHA Solving module receives clear, precise, and
actionable directives to solve the challenges at hand.

5.4 CAPTCHA Solving

With the natural language instructions derived from the DSL script,
we proceed to the CAPTCHA solving phase. In this step, we use
these instructions as CoT prompts to guide the CAPTCHA LLM
through the actual CAPTCHA challenge. This process is straightfor-
ward: the instructions, along with the original challenge image, are
fed into the CAPTCHA LLM. The LLM then follows these step-by-
step instructions to systematically tackle and solve the CAPTCHA.

As an additional optional step, the solutions generated by the
LLM can be integrated into an automated executor. This executor

is programmed to interact with the CAPTCHA on the target web-
site, inputting the solution directly and completing the challenge.
Oedipus is designed as an end-to-end framework that automates
CAPTCHA solving, taking a CAPTCHA image as input and gen-
erating a structured solution. While the current setup requires
a screenshot, full automation can be achieved by integrating an
agent framework to detect and submit CAPTCHAs dynamically.
In practice, we implement this automation through a three-step
process: (1) PyAutoGUI scans the CAPTCHA and identifies pixel
locations of elements, (2) we follow the concrete steps generated
by Oedipus and match the operations to the identified locations of
the elements, and (3) the Python script executes these commands
to complete the CAPTCHA. To ensure precise interactions, we de-
fine standardized mouse operations (e.g., click, drag) and uniquely
identifiable CAPTCHA element descriptions that enable the LLM to
generate accurate automation commands. This modular design en-
ables seamless integration into a fully autonomous solving pipeline,
where Oedipus can solve each step autonomously while maintain-
ing the flexibility to adapt to different CAPTCHA interfaces and
requirements.

5.5 Discussion

Our framework is intentionally not calibrated for achieving an ex-
ceptionally high success rate in CAPTCHA solving. This design
philosophy aligns with the CAPTCHA evaluation standard pro-
posed by Microsoft [51], which suggests comparing the economic
cost of automated CAPTCHA solving against the cost of human la-
bor for the same task. While human solvers are expected to achieve
a solving rate of above 90% [51, 52], an automated approach like
ours could be deemed equally effective if it maintains a 50% success
rate, provided its operational cost is less than one-fourth of the
labor cost of hiring a human solver (1 − 0.54 = 93.75%). Given this
cost-benefit analysis, Oedipus is designed to optimize performance
within these economic constraints, eschewing complex and cost-
incurring enhancements in favor of a more streamlined approach.
Consequently, Oedipus does not incorporate an active feedback
mechanism to verify the correctness of its substep solutions dur-
ing the reasoning process. This decision stems from the practical
challenge of confirming whether the LLM has accurately identified
objects without reliable external references for validation. While
iterative identification and majority voting could theoretically im-
prove accuracy, the additional computational and financial costs of



Oedipus: LLM-enchanced Reasoning CAPTCHA Solver CCS ’25, October 13–17, 2025, Taipei, Taiwan

increased API queries make this option untenable. Therefore, our
strategy intentionally forgoes such enhancements to maintain the
economic viability and operational simplicity of Oedipus.

6 Evaluation

We evaluate the performance of Oedipus on real-world reason-
ing CAPTCHA challenges. In particular, we are interested in four
research questions.
• RQ1 (Effectiveness) How effective of Oedipus in addressing
real-world reasoning CAPTCHAs automatically?

• RQ2 (Ablation) How effective is each strategy contributing to
the success of Oedipus?

• RQ3 (Transferability) Can Oedipus resolve new CAPTCHA
tasks that are not included in our empirical study, i.e., its trans-
ferability to new CAPTCHAs?

6.1 Experimental Setup

Evaluation Baselines. We implement Oedipus with 1,554 lines of
Python3 code. In our assessment of Oedipus under varied condi-
tions, we incorporate six multimodal LLMs that are currently acces-
sible: OpenAI GPT-4V and GPT-4o, Google Gemini and Gemini-2.0-
Flash, Claude-3.7, and miniGPT-4 [53]. The inclusion of GPT-4V
and Gemini aligns with our preceding empirical study to ensure
consistency in model evaluation; GPT-4o, Gemini-2.0-Flash, and
Claude-3.7 are the state-of-the-art multi-modal LLM, with higher
response speed and lower cost compared to GPT-4V; miniGPT-4
is chosen for its prominence as the most widely recognized open-
source multimodal LLM to date. For all three models, we adjust
the LLM response temperature to 0, aiming to minimize the output
variability and ensure deterministic responses. To benchmark Oedi-
pus’s performance, we draw a comparison with the only discussed
solution to reasoning CAPTCHAs in academia, VTT [34]. Given
the absence of open-source access to VTT and the discontinuation
of the CAPTCHA challenges it was tested on, we endeavor to re-
construct their approach as accurately as possible to facilitate a fair
comparison.
EvaluationDatasets. In the absence of existing open-source datasets
for reasoning CAPTCHAs, we embark on a systematic collection
process. We target three prominent security companies known for
providing reasoning CAPTCHAs: Arkose Labs [54], Geetest [55],
andNetEase Yidun [56]. By collecting all types of reasoning CAPTCHAs
from them designed by the end of 2022 and available online as paid
commercialized API services, we finally formulate a dataset, which
includes four types of CAPTCHAs covering the three categories
summarized in Section 3: Arkose-Angular, Geetest-Gobang, Geetest-
Space, and Yidun-Space-Reasoning. The complete dataset is also
open-sourced at [22]. We meticulously collect examples through
their paid CAPTCHA API services, ultimately curating a dataset
comprising 100 samples for each type of challenges. Note that
Arkose-FunCAPTCHA samples exhibit repetition, differing only in
their starting positions, due to the limited number of combinations
inherent in Rotation-type CAPTCHAs. Following the collection
phase, we manually solve all the CAPTCHA challenges to ensure
each task is paired with a correct standard answer. Since VTT re-
quires additional data for training, we collect 100 additional samples
with manual labels to reconstruct their models.

Experiment Settings For each CAPTCHA challenge, we run three
versions of Oedipus and VTT and examine the solutions. To reduce
randomness, we repeat each trial for 10 times. Thus, we conduct a
total number of 28,000, i.e., 4 projects * 100 samples * 7 settings *
10 repetitions, of experiments, with a total LLM API cost of 1565.26
USD4.

6.2 (RQ1) CAPTCHA Solving Performance

Our initial exploration into the effectiveness of different models
in the reasoning CAPTCHA solving process reveals insightful out-
comes, as summarized in Table 5. Notably, Oedipus, when aug-
mented with Claude-3.7, outperforms its counterparts across all
four types of reasoning CAPTCHAs, recording an average success
rate of 73.8%. This performance is better than that of Oedipus con-
figured with GPT-4o, GPT-4v, and Gemini-flash-2.0. In comparison,
VTT demonstrates proficiency in the space reasoning challenges,
securing success rates of 55.2% and 44.0%, respectively, which places
it slightly behind the LLM-powered Oedipus versions.

There are two notable observations. First, all strategies perform
poorly on Angular CAPTCHAs. A closer inspection of the LLM
outputs suggests a difficulty in formally recognizing the orientation
of objects, leading to selections that approximate but do not ex-
actly match the correct orientation. Despite this challenge, Oedipus
showcases commendable performance across the board, indicat-
ing that the integration of LLMs with superior reasoning abilities
substantially enhances CAPTCHA solving success rates. Second,
newer models with stronger reasoning capabilities in general tasks
show remarkable improvement over older models. For instance,
Oedipus powered by Claude-3.7 achieves an average improvement
of 10.3% over GPT-4V, with exceptional performance on Gobang
CAPTCHAs (93.4%). These results underscore the pivotal role of ad-
vanced reasoning capabilities in improving automated CAPTCHA
solving outcomes. The substantial performance gains with newer
models highlight that as LLM technology continues to advance,
Oedipus will likely achieve even greater effectiveness without re-
quiring significant architectural modifications.

Model Angular Gobang Space Space Reasoning Average

GPT-4V 37.9% 79.7% 71.3% 65.0% 63.5%
GPT-4o 37.2% 78.8% 70.9% 63.7% 62.7%
Gemini 31.0% 56.3% 59.5% 58.0% 51.2%

miniGPT-4 7.5% 16.9% 18.0% 15.1% 14.4%
VTT ✗ ✗ 55.7% 44.5% 25.1%

Gemini-2.0 35.1% 79.1% 82.7% 62.9% 65.0%
Claude-3.7 42.8 93.4% 80.7% 78.2% 73.8%

Table 5: The success rate of CAPTCHA solving.

We proceed to evaluate the practicality of Oedipus by compar-
ing the average cost required to successfully solve 100 reasoning
CAPTCHAs, accounting for both successful and unsuccessful at-
tempts. This analysis is juxtaposed against the quotations from
two anonymous online CAPTCHA solving services, with specifics
withheld for security and ethical considerations. The cost com-
parison results, detailed in Table 6, reveal that although Oedipus
supported by GPT-4 exhibits a higher success rate, its cost per

4For OpenAI and Google APIs; mini-GPT4 is implemented locally on a PC with
Nvidia RTX 4090.



CCS ’25, October 13–17, 2025, Taipei, Taiwan Gelei Deng et al.

100 CAPTCHA solutions (13.1 USD) significantly surpasses that of
Oedipus powered by Gemini (3.1 USD). This discrepancy is primar-
ily due to the GPT-4 API’s pricing, which is approximately ten times
higher than that of the Gemini Pro API [42]. The rates offered by
the two CAPTCHA solving service providers are marginally lower
than those associated with Oedipus, yet they reside within the
same cost magnitude. Importantly, experiments with newer mod-
els demonstrate significant improvements in cost. Oedipus with
Gemini-2.0-Flash reaches 64.7% success rate with merely 23.6% of
the cost compared to GPT-4o. Notably, it is even lower than com-
mercial CAPTCHA-solving service providers, making it not only
more effective but also more economical. These findings highlight
the rapid advancement in LLM capabilities and cost reduction. As
LLM technology continues to evolve with improved reasoning capa-
bilities and decreased operational costs, we anticipate that Oedipus
will become increasingly cost-competitive while maintaining or
improving its performance advantage.

Cost(USD) Angular Gobang Space Space Reasoning

Oedipus-GPT4V 21.6 12.8 8.7 9.3
Oedipus-GPT4o 11.3 7.0 4.2 4.6
Oedipus-Gemini 5.3 3.2 1.8 2.1

Oedipus-Gemini-2.0 0.4 3.6 0.06 0.07
Oedipus-Claude-3.7 5.2 2.7 1.0 0.7

Provider-A 5.0 2.0 0.5 0.5
Provider-B 3.0 2.0 0.3 0.5

Table 6: Average cost of different tools for successfully solv-

ing 100 CAPTCHAs.

6.3 (RQ2) Ablation Study

We further investigate if the components in Oedipus (i.e., DSL gen-
eration, multi-shot prompting CAPTCHA solving) can successfully
improve the performance of the CAPTCHA solving process.

Our initial investigation focuses on the impact of local DSL gen-
eration feedback on task completion efficacy. For this purpose, we
establish a comparison group in which CAPTCHA DSL scripts gen-
erated during the first attempt are directly utilized for CAPTCHA
solving. This approach includes a manual review to ascertain the
accuracy of the DSL script generation for each task. Results of
this examination are detailed in Table 7. It is observed that the
initial success rate for generating DSL scripts across the four tasks
averages at 59.8%, whereas incorporating feedback significantly
enhances this rate to 93.7%. Thus, integrating feedback into the
CAPTCHA solving process markedly improves the overall success
rate, underscoring the value of iterative refinement in generating
effective DSL scripts for CAPTCHA resolution.

Success Rate Angular Gobang Space 1 Space 2 Average
First Trial 61.8% 63.4% 56.8% 57.2% 59.8%
Solving 16.2% 55.3% 47.9% 38.6% 39.5%

Feedback 91.2% 94.4% 93.2% 95.8% 93.7%
Solving 37.4% 80.2% 70.8% 65.4% 63.5%

Table 7: The success rate of DSL generation.

We then examine whether task breakdown contributes to the
performance of the solving process. As shown in Table 8, In this ta-
ble, gray rows highlight outcomes where LLMs attempt CAPTCHA

(a) Arkose-FunCAPTCHA (b) Geetest-IconCrush

Figure 7: Two new CAPTCHAs developed in 2023.

solutions without segmenting the tasks into smaller, more man-
ageable steps. MiniGPT-4 remains incapable of solving CAPTCHA
problems due to its inherent limitations. In contrast, task breakdown
is evidently of great assistance for GPT-4V, GPT-4o, and Gemini.
This underscores the effectiveness and significance of Oedipus.
In Angular tasks, task breakdown makes it possible for LLMs to
carry on such challenges, which they cannot solve directly, albeit
with a modest success rate. In Gobang and IconCrush tasks, there
is a sudden increase in success rates, elevating them from initially
low levels to relatively high levels. For Space and Space Reasoning
tasks, which LLMs can solve with certain levels of success rates,
improvements are also observed.

GPT-4V GPT-4o Gemini miniGPT-4

Angular 0.0% 0.2% 0.0% 0.0%
37.4% 36.8% 31.4% 0.4%

Gobang 2.6% 3.2% 0.0% 0.0%
80.2% 78.2% 55.7% 1.6%

Space 54.0% 52.1% 49.2% 0.2%
70.9% 71.4.1% 60.1% 1.8%

Space Reasoning 34.3% 31.9% 25.9% 0.2%
65.4% 65.2% 57.7% 1.4%

Table 8: The impact of task breakdown. The gray row denotes

no task breakdown.

6.4 (RQ3) Transferability

To evaluate Oedipus’s ability to adapt to emerging CAPTCHA
challenges, we delve into its performance against newly designed
reasoning CAPTCHAs. Following the methodology outlined in
Section 5, which emphasizes the use of sample DSL scripts and
CAPTCHA solutions for few-shot prompting, we assess Oedipus’s
efficacy in navigating uncharted challenges. Specifically, we fo-
cus on two novel CAPTCHA types introduced in 2023: Arkose-
AngularV2 and Geetest-IconCrush, with visual samples depicted in
Figure 7. Consistent with our established protocol, we prepare a
dataset comprising 50 instances of each CAPTCHA variant, sub-
sequently deploying Oedipus powered by four distinct LLMs to
tackle these challenges.



Oedipus: LLM-enchanced Reasoning CAPTCHA Solver CCS ’25, October 13–17, 2025, Taipei, Taiwan

Angular New IconCrush Average

GPT-4V 35.2% 67.4% 51.3%
GPT-4o 36.8% 70.3% 53.6%
Gemini 31.4% 42.2% 36.8%

miniGPT-4 4.2% 6.0% 5.1%
Gemini-2.0 34.0% 81.0% 57.5%
Claude-3.7 40.5% 87.0% 63.8%

VTT ✗ ✗ ✗

Table 9: Transferability study on new CAPTCHAs.

Model Angular Gobang Space Space Reasoning Average

GPT-4V 238.1 124.7 39.2 39.3 146.5
GPT-4o 318.1 83.5 23.2 24.8 92.4
Gemini 337.2 102.2 37.1 37.7 128.6

Claude-3.7 – 71.9 26.3 22.9 40.4
Gemini-2.0-flash 191.5 33.3 17.3 12.1 63.6

Provider-A 28.0 20.0 8.0 8.0 16.0
Provider-B 15.0 10.0 3.0 3.0 7.8

Table 10: Time consumption of CAPTCHA solving process.

Table 9 reports the success rates of the experiment. Oedipus
powered by GPT-4V and GPT-4o attain average accuracies of 51.3%
and 53.6%, respectively. The Claude-3.7 (63.8%) markedly outper-
forms other solutions, demonstrating appreciable transfer gains
with strong model reasoning capabilities. In contrast, miniGPT-4
(5.1%) and the vision-only VTT (—) fail to generalize effectively.
These results confirm that Oedipus’s pipeline can be extended to
CAPTCHAs outside its training distribution, but that its transfer-
ability hinges on the reasoning prowess of the underlying LLM. In
particular, the step-change from Gemini to Gemini-2.0 and Claude-
3.7 highlights how even modest model upgrades can substantially
boost adaptability to novel CAPTCHA designs.

Despite the challenges encountered with miniGPT-4, the overall
findings validate Oedipus’s transferability capability, illustrating
its potential to remain an effective tool with stronger models being
developed. This adaptability is contingent upon continuous en-
hancements in LLM reasoning capabilities, ensuring that Oedipus
can keep pace with the dynamic nature of the CAPTCHA challenge.

7 Discussion

7.1 Limitation

One limitation of our strategy is the time required to solve CAPTCHAs.
Table 10 presents the average solving time of Oedipus across four
benchmark reasoning CAPTCHA challenges. Notably, Oedipus-
miniGPT4’s solving time is excluded due to its dependency on
GPU capabilities. On average, Oedipus takes about 80 seconds per
task, longer than the sub-20-second duration typical of anonymous
CAPTCHA service providers, according to on our quotations.

This efficiency gap underscores the need for faster inference.
However, we have seen dramatic speedups within a 6-month period
of LLM development: GPT-4V required on average 146.5 seconds,
GPT-4o brought this down to 92.4, and the latest Gemini-2.0-flash
further reduced it to 63.6.Within half a year of iterative model devel-
opment, we observed a nearly 30-second decrease in average solve
time. These results give us confidence that ongoing advances—both
algorithmic and in hardware acceleration—will continue to drive
down latency. We anticipate that, with continued optimization,

Oedipus will soon match or exceed the performance of commercial
CAPTCHA solvers, delivering both state-of-the-art accuracy and
real-time responsiveness.

7.2 Model Refusal Issues

During our experiments, we encountered occasional cases where
models failed to solve CAPTCHAs due to alignment constraints.
Our analysis shows varying refusal rates across different models
and CAPTCHA types. Gemini-Pro, Gemini-Flash-2.0, and MiniGPT-
4 did not show any refusals across all evaluated samples. GPT-4v
and GPT-4o occasionally refused Angular CAPTCHAs (less than
10% of samples), without refusals for other categories. Claude-3.7
showed higher refusal rates, particularly for Angular CAPTCHAs,
and occasionally rejected other CAPTCHA types. These refusals
typically occur when the model recognizes CAPTCHA-solving as
potentially violating safety regulations. Interestingly, this issue can
often be circumvented by reattempting the query. We also note
that LLM service providers have gradually loosened restrictions
on CAPTCHA solving. While OpenAI previously prohibited using
LLMs for CAPTCHA solving, their current usage policies [57] have
removed this restriction. Similar trends are observed with Gem-
ini [58] and Claude [59], which have no explicit prohibitions on
CAPTCHA-solving tasks. This evolving landscape of model poli-
cies suggests that refusal issues may become less significant as
LLMs continue to mature and their governance frameworks adapt
to legitimate CAPTCHA-solving use cases.

7.3 New CAPTCHA Design as a Defense

The rise of LLMs has weakened traditional CAPTCHAs, including
those based on commonsense reasoning [34], which were once
seen as robust defenses [60]. In response to these developments,
our proposal for enhancing CAPTCHA security involves the con-
ceptualization of new reasoning CAPTCHA challenges from three
innovative perspectives, aimed at exploiting the current limitations
of LLMs.
Complex Reasoning Chains: The first approach involves craft-
ing CAPTCHAs that necessitate extended reasoning chains far
beyond the current processing capabilities of LLMs. For example,
a CAPTCHA could present a narrative puzzle that requires under-
standing a multi-step logical sequence or piecing together informa-
tion from various parts of a text to arrive at a conclusion. We have
primarily tested that by updating the Bingo challenge in Section 2
to move two pieces, which is unsolvable for current LLMs. This
type of CAPTCHA can push the boundaries of LLMs’ reasoning
depth, requiring not just understanding individual components but
synthesizing complex relationships over several logical steps.
Deceptive Object Recognition: The second strategy exploits the
object recognition capabilities of LLMs by introducing adversar-
ial examples [23] into CAPTCHA designs. For instance, visually
distorted objects that appear normal to human observers but are
deliberately crafted to mislead LLMs’ pattern recognition can be
used. This leverages the susceptibility of neural networks to misin-
terpretation when faced with carefully manipulated input data.
Unit Operations Beyond LLM Capabilities: The third approach
seeks to develop CAPTCHAs comprising unit operations that are
inherently beyond the capabilities of existing LLMs. For instance,



CCS ’25, October 13–17, 2025, Taipei, Taiwan Gelei Deng et al.

they can be designed to request intuitive understanding of physical
interactions in the real world, such as predicting the outcome of a
physical event depicted in a video clip, challenging LLMs’ ability
to infer physical laws and dynamics from visual data alone.

Incorporating these strategies into the design of CAPTCHAs
aims to elevate their security efficacy against automated solvers.
However, as LLMs continue to advance, even these challenges may
eventually be overcome, reflecting the ongoing cycle of innovation
and adaptation in CAPTCHA design and AI development. This
eventuality underscores the cat-and-mouse nature of CAPTCHA
development and AI evolution—a continuous cycle of action and
reaction, where each advancement in CAPTCHA design prompts a
corresponding leap in AI problem-solving abilities.

8 Conclusion

In this work, we study the hard AI problems underlying current
reasoning CAPTCHAs, and explore an automated methodology
to solve these challenges through LLMs. With a custom designed
CAPTCHA DSL, we design an end-to-end framework Oedipus that
automatically solves reasoning CAPTCHAs. Our solution achieves
an average success rate of 63.5%, with a cost comparable to com-
mercialized CAPTCHA solving services. To propose a defense, we
further propose three strategies of designing more secure reasoning
CAPTCHAs in the future.

Acknowledgments

This research is supported by the National Research Foundation,
Singapore and Infocomm Media Development Authority under its
Trust Tech Funding Initiative. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of National Research
Foundation, Singapore and Infocomm Media Development Author-
ity.

References

[1] CAPTCHA, https://en.wikipedia.org/wiki/CAPTCHA.
[2] Moravec’s_paradox, https://en.wikipedia.org/wiki/Moravec%27s_paradox.
[3] ReCAPTCHA, https://www.google.com/recaptcha/about/.
[4] G. Ye, Z. Tang, D. Fang, Z. Zhu, Y. Feng, P. Xu, X. Chen, and Z. Wang, “Yet

another text captcha solver: A generative adversarial network based approach,” in
Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security, 2018, pp. 332–348.

[5] E. Bursztein, J. Aigrain, A. Moscicki, and J. C. Mitchell, “The end is nigh: Generic
solving of text-based {CAPTCHAs},” in 8th USENIX Workshop on Offensive Tech-
nologies (WOOT 14), 2014.

[6] R. Jin, L. Huang, J. Duan, W. Zhao, Y. Liao, and P. Zhou, “How secure is your web-
site? a comprehensive investigation on captcha providers and solving services,”
2023.

[7] M. I. Hossen, Y. Tu, M. F. Rabby, M. N. Islam, H. Cao, and X. Hei, “An object
detection based solver for google’s image recaptcha v2,” 2021.

[8] H. Wang, F. Zheng, Z. Chen, Y. Lu, J. Gao, and R. Wei, “A captcha design based
on visual reasoning,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp. 1967–1971.

[9] Y. Gao, H. Gao, S. Luo, Y. Zi, S. Zhang, W. Mao, P. Wang, Y. Shen, and J. Yan,
“Research on the security of visual reasoning {CAPTCHA},” in 30th USENIX
security symposium (USENIX security 21), 2021, pp. 3291–3308.

[10] P. Wang, H. Gao, C. Xiao, X. Guo, Y. Gao, and Y. Zi, “Extended research on the
security of visual reasoning captcha,” IEEE Transactions on Dependable and Secure
Computing, 2023.

[11] LinkedIn, https://www.linkedin.com/.
[12] TikTok, https://www.tiktok.com/.
[13] Twitter, https://www.twitter.com/.

[14] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang,
Z. Dong et al., “A survey of large languagemodels,” arXiv preprint arXiv:2303.18223,
2023.

[15] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang,
Y. Wang et al., “A survey on evaluation of large language models,” ACM Transac-
tions on Intelligent Systems and Technology, 2023.

[16] GPT-4V, https://openai.com/research/gpt-4v-system-card.
[17] Gemini, https://deepmind.google/technologies/gemini/#introduction.
[18] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt,

and predict: A systematic survey of prompting methods in natural language
processing,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[19] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou
et al., “Chain-of-thought prompting elicits reasoning in large language models,”
Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837,
2022.

[20] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-
specific languages,” ACM computing surveys (CSUR), vol. 37, no. 4, pp. 316–344,
2005.

[21] Z. Noury and M. Rezaei, “Deep-captcha: a deep learning based captcha solver for
vulnerability assessment,” arXiv preprint arXiv:2006.08296, 2020.

[22] G. Deng, H. Ou, Y. Liu, J. Zhang, T. Zhang, and Y. Liu, “Oedipus captcha
benchmark,” May 2025. [Online]. Available: https://doi.org/10.5281/zenodo.
15339891

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[24] R. Gossweiler, M. Kamvar, and S. Baluja, “What’s up captcha? a captcha based on
image orientation,” in Proceedings of the 18th international conference on World
wide web, 2009, pp. 841–850.

[25] V. P. Singh and P. Pal, “Survey of different types of captcha,” International Journal
of Computer Science and Information Technologies, vol. 5, no. 2, pp. 2242–2245,
2014.

[26] G. Ye, Z. Tang, D. Fang, Z. Zhu, Y. Feng, P. Xu, X. Chen, and Z. Wang, “Yet
another text captcha solver: A generative adversarial network based approach,” in
Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security, 2018, pp. 332–348.

[27] Z. Noury and M. Rezaei, “Deep-captcha: a deep learning based captcha solver for
vulnerability assessment,” arXiv preprint arXiv:2006.08296, 2020.

[28] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and S. Sav-
age, “Re:{CAPTCHAs—Understanding}{CAPTCHA-Solving} services in an eco-
nomic context,” in 19th USENIX Security Symposium (USENIX Security 10), 2010.

[29] M. Korakakis, E. Magkos, and P. Mylonas, “Automated captcha solving: An
empirical comparison of selected techniques,” in 2014 9th International Workshop
on Semantic and Social Media Adaptation and Personalization. IEEE, 2014, pp.
44–47.

[30] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang, Y. Liu, M. Pinzger,
and S. Rass, “Pentestgpt: An llm-empowered automatic penetration testing tool,”
2023.

[31] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large language model
guided protocol fuzzing,” in Proceedings of the 31st Annual Network and Distributed
System Security Symposium (NDSS), 2024.

[32] Z. He, Z. Li, S. Yang, A. Qiao, X. Zhang, X. Luo, and T. Chen, “Large language
models for blockchain security: A systematic literature review,” 2024.

[33] H. Wang, X. Luo, W. Wang, and X. Yan, “Bot or human? detecting chatgpt
imposters with a single question,” arXiv preprint arXiv:2305.06424, 2023.

[34] Y. Gao, H. Gao, S. luo, Y. Zi, S. Zhang, W. Mao, P. Wang, Y. Shen, and
J. Yan, “Research on the security of visual reasoning CAPTCHA,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 3291–3308. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/gao

[35] N. T. Dinh and V. T. Hoang, “Recent advances of captcha security analysis: a
short literature review,” Procedia Computer Science, vol. 218, pp. 2550–2562, 2023.

[36] A. Searles, Y. Nakatsuka, E. Ozturk, A. Paverd, G. Tsudik, and A. Enkoji, “An
empirical study & evaluation of modern CAPTCHAs,” in 32nd USENIX Security
Symposium (USENIX Security 23). Anaheim, CA: USENIX Association, Aug.
2023, pp. 3081–3097. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/searles

[37] M. Kumar, M. Jindal, and M. Kumar, “A systematic survey on captcha recognition:
types, creation and breaking techniques,” Archives of Computational Methods in
Engineering, vol. 29, no. 2, pp. 1107–1136, 2022.

[38] A. Searles, Y. Nakatsuka, E. Ozturk, A. Paverd, G. Tsudik, and A. Enkoji, “An
empirical study & evaluation of modern CAPTCHAs,” in 32nd USENIX Security
Symposium (USENIX Security 23). Anaheim, CA: USENIX Association, Aug.
2023, pp. 3081–3097. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/searles

[39] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and
D. Zhou, “Chain-of-thought prompting elicits reasoning in large languagemodels,”
2023.

https://en.wikipedia.org/wiki/CAPTCHA
 https://en.wikipedia.org/wiki/Moravec%27s_paradox
https://www.google.com/recaptcha/about/
https://www.linkedin.com/
https://www.tiktok.com/
https://www.twitter.com/
https://openai.com/research/gpt-4v-system-card
https://deepmind.google/technologies/gemini/##introduction
https://doi.org/10.5281/zenodo.15339891
https://doi.org/10.5281/zenodo.15339891
https://www.usenix.org/conference/usenixsecurity21/presentation/gao
https://www.usenix.org/conference/usenixsecurity21/presentation/gao
https://www.usenix.org/conference/usenixsecurity23/presentation/searles
https://www.usenix.org/conference/usenixsecurity23/presentation/searles
https://www.usenix.org/conference/usenixsecurity23/presentation/searles
https://www.usenix.org/conference/usenixsecurity23/presentation/searles


Oedipus: LLM-enchanced Reasoning CAPTCHA Solver CCS ’25, October 13–17, 2025, Taipei, Taiwan

[40] W. Chen, M. Yin, M. Ku, P. Lu, Y. Wan, X. Ma, J. Xu, X. Wang, and T. Xia,
“Theoremqa: A theorem-driven question answering dataset,” 2023.

[41] gpt-4-vision preview, https://platform.openai.com/docs/guides/vision.
[42] gemini-pro vision, https://labelbox.com/product/model/foundry-models/google-

gemini-pro-vision/.
[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” 2023.
[44] L. Yang, H. Chen, Z. Li, X. Ding, and X. Wu, “Chatgpt is not enough: Enhancing

large language models with knowledge graphs for fact-aware language modeling,”
2023.

[45] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan,
“Tree of thoughts: Deliberate problem solving with large language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2305.10601

[46] Y. Zhang, Y. Yuan, and A. C.-C. Yao, “On the diagram of thought,” 2025. [Online].
Available: https://arxiv.org/abs/2409.10038

[47] SQL, https://en.wikipedia.org/wiki/SQL.
[48] Three-valued_logic, https://en.wikipedia.org/wiki/Three-valued_logic.
[49] C. J. Date, A Guide to the SQL Standard. Addison-Wesley Longman Publishing

Co., Inc., 1989.
[50] F. tuned code llama, https://github.com/ragntune/code-llama-finetune/blob/

main/fine-tune-code-llama.ipynb.

[51] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, “Designing human
friendly human interaction proofs (hips,” 04 2005, pp. 711–720.

[52] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using hard ai
problems for security,” inAdvances in Cryptology—EUROCRYPT 2003: International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4–8, 2003 Proceedings 22. Springer, 2003, pp. 294–311.

[53] miniGPT 4, https://minigpt-4.github.io/.
[54] Arkose_Labs, https://www.arkoselabs.com/.
[55] Geetest, https://www.geetest.com/en/.
[56] NetEase_Yidun, https://dun.163.com/locale/en.
[57] [Online]. Available: https://openai.com/policies/usage-policies
[58] “Gemini app safety and policy guidelinese,” https://gemini.google/policy-

guidelines/, [Accessed 27-04-2025].
[59] “Updating our Usage Policy — anthropic.com,” https://www.anthropic.com/news/

updating-our-usage-policy, [Accessed 27-04-2025].
[60] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as commonsense

knowledge for large-scale task planning,” in RSS 2023 Workshop on Learning for
Task and Motion Planning, 2023. [Online]. Available: https://openreview.net/
forum?id=tED747HURfX

https://platform.openai.com/docs/guides/vision
https://labelbox.com/product/model/foundry-models/google-gemini-pro-vision/
https://labelbox.com/product/model/foundry-models/google-gemini-pro-vision/
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2409.10038
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/ragntune/code-llama-finetune/blob/main/fine-tune-code-llama.ipynb
https://github.com/ragntune/code-llama-finetune/blob/main/fine-tune-code-llama.ipynb
https://minigpt-4.github.io/
https://www.arkoselabs.com/
https://www.geetest.com/en/
https://dun.163.com/locale/en
https://openai.com/policies/usage-policies
https://gemini.google/policy-guidelines/
https://gemini.google/policy-guidelines/
https://www.anthropic.com/news/updating-our-usage-policy
https://www.anthropic.com/news/updating-our-usage-policy
https://openreview.net/forum?id=tED747HURfX
https://openreview.net/forum?id=tED747HURfX

	Abstract
	1 Introduction
	2 Background
	2.1 CAPTCHAs and CAPTCHA Solver
	2.2 Reasoning CAPTCHAs
	2.3 Large Language Models

	3 Empirical Study
	3.1 CAPTCHA Categorization (RQ1)
	3.2 LLMs for Solving CAPTCHAs (RQ2)
	3.3 Findings
	3.4 Fine-tuning LLMs for CAPTCHA Solving
	3.5 Discussion

	4 CAPTCHA Domain Specific Language
	4.1 Motivation
	4.2 High-level Structure
	4.3 Syntax Constraints
	4.4 A Running Example

	5 Methodology
	5.1 Overview
	5.2 CAPTCHA DSL Script Generation
	5.3 Instruction Translation
	5.4 CAPTCHA Solving
	5.5 Discussion

	6 Evaluation
	6.1 Experimental Setup
	6.2 (RQ1) CAPTCHA Solving Performance
	6.3 (RQ2) Ablation Study
	6.4 (RQ3) Transferability

	7 Discussion
	7.1 Limitation
	7.2 Model Refusal Issues
	7.3 New CAPTCHA Design as a Defense

	8 Conclusion
	Acknowledgments
	References

