
Controllable Spoofing Attacks on Visual SLAM in Robotic Vehicles

Yuan Xu1, Gelei Deng1, Guanlin Li1, Xingshuo Han2, Shangwei Guo3, Tianwei Zhang1

1Nanyang Technological University. {xu.yuan, gelei.deng, guanlin001, tianwei.zhang}@ntu.edu.sg
2Nanjing University of Aeronautics and Astronautics. xingshuo.han@nuaa.edu.cn

3Chongqing University. swguo@cqu.edu.cn

Abstract—Visual Simultaneous Localization and Mapping (vS-
LAM) systems are fundamental to autonomous platforms such
as self-driving vehicles, drones, and robotics. However, existing
research has predominantly focused on improving the accuracy
and performance of these systems, leaving their physical-
world vulnerabilities underexplored. To bridge this critical
gap, we propose SLAMTricker, a novel and practical attack
framework that systematically exploits vSLAM vulnerabilities
through a two-stage approach: an offline attack scenario search
to identify frames highly susceptible to spoofing and an online
attack vector generation to deploy malicious vectors. Unlike
prior works, SLAMTricker offers high controllability by
leveraging environment-aware attack vectors, making it highly
effective in various scenarios.

We evaluate SLAMTricker on four widely-used public
datasets and three state-of-the-art vSLAM systems, alongside
real-world experiments using a physical robot. Experimental
results show that SLAMTricker significantly outperforms
existing attacks in feasibility, transferability, and success rate,
achieving diverse attack goals such as pose deviation, relo-
calization errors, map point manipulation, and incorrect loop
closures. Video demos can be found in our anonymous website:
https://sites.google.com/view/slamtricker.

1. Introduction

Simultaneous Localization and Mapping (SLAM) has
been a prominent topic with widespread applications in
robotic vehicles (RVs), such as robot vacuums (iRobot
Roomba [1]), automatic guided vehicles (Nvidia Drive [2]),
and unmanned aerial vehicles (DJI Tello [3]). SLAM serves
as a critical technology for enabling accurate localization,
particularly in indoor environments where GPS signals are
unavailable, and it also aids in outdoor navigation by provid-
ing supplementary localization data. Although SLAM can
be implemented by using diverse sensor data, like cameras
[4], [5], LiDAR [6], [7], and radar [8], [9], camera-based ap-
proaches, commonly referred to as Visual SLAM (vSLAM),
stand out due to their affordability, precision, and simplicity
in system design, and emerge as an effective and widely
adopted method in various real-world scenarios [10]–[14].

To accurately estimate position using camera data, a vS-
LAM system typically follows four key steps: (1) extracting
features from each captured frame, (2) identifying stable

matching pairs from extracted features across consecutive
frames, (3) estimating position by optimizing deviations
across all matching pairs, and (4) correcting accumulated
estimation errors using bundle adjustment techniques. Based
on these steps, several robust and widely adopted vSLAM
frameworks have been developed in the robotics domain.
For instance, ORB-SLAM2 [15] introduced the first compre-
hensive vSLAM framework, leveraging these four steps to
compute both the RV’s position and the camera’s trajectory.
Building on this foundation, DynaSLAM [16] extended
ORB-SLAM2, enhancing its robustness in dynamic environ-
ments. More recently, ORB-SLAM3 [17] further advanced
the field by introducing a multi-map data association tech-
nique, significantly improving the accuracy and resilience.

While recent work [46] surveys sensor attack hardness
in general, little attention has been paid to spoofing at-
tacks targeting vSLAM systems. In this paper, we pose
the following question: Given the prevalence of spoofing
attacks on GPS-based localization systems [18]–[22], can
we implement a controllable camera spoofing attack capable
of misleading a vSLAM system into a specified position?
Existing techniques [23]–[26] have shown the feasibility
of attacking vSLAM systems in either autonomous driv-
ing or mobile robots. However, these approaches primarily
aim to introduce errors into the camera’s trajectory and
face several critical limitations: (1) Limited Control over
Outcomes: Current attacks only induce localization errors
without providing precise control over the spoofed locations.
This significantly restricts both the flexibility and impact
of the attack. (2) Incomplete Attack Coverage: Existing
methods fail to comprehensively analyze the attack surface
of vSLAM systems. They focus narrowly on injecting spoof-
ing vectors and targeting a single module, neglecting other
strategies (e.g., covering, shifting) and components (e.g.,
relocalization, loop closure). This leaves key vulnerabilities
unexplored. (3) Lack of Environmental Optimization:
These attacks overlook the varying contributions of different
scenarios to attack success, which greatly impacts effective-
ness. Due to internal systematic mechanisms, e.g., octree-
based feature distribution, bin-based feature matching and
outlier filtering, many adversarial points concentrated within
a patch are often discard, reducing the impact of patches.

To address these limitations, we first perform a compre-
hensive analysis of the position estimation mechanism in vS-
LAM systems. Unlike GPS-based localization, we observed

1

https://sites.google.com/view/slamtricker

𝑃𝑜𝑠𝑒!"# 𝑃𝑜𝑠𝑒!"$ 𝑃𝑜𝑠𝑒!
𝑇!"$ 𝑇! = T!"$

𝑀𝑎𝑝𝑃𝑜𝑖𝑛𝑡𝑠!"$%&

𝑀𝑎𝑝𝑃𝑜𝑖𝑛𝑡𝑠!%&

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠!#& 𝑀𝑎𝑡𝑐ℎ𝑃𝑎𝑖𝑟!#&

mapping

projecting

matching

𝑇!x-axis
x-axisy-a

xis

y-a
xis

z-axis
z-axis

optimizing

Figure 1: The process of pose pre-
diction and optimization.

Local	Bundle	Adjustment

Tracking Local	Mapping Loop	Closing

Feature	
Extrac+on Pose	Op+miza+on Map	Points	

Genera+on Local	Bundle	Adjustment Loop	
Detec+on Global	Bundle	Adjustment

Frames KeyFrame

Previous	
Frame

Current	
Frame

op9mize(pose)

KF

Similar	
KFLKFLKFTime-Adjacent	

KeyFrame
Current	
KeyFrame

op9mize(poses, local map)

LKFLKFSpa+o-Similar	
KeyFrame

Current	
KeyFrame

op9mize(poses,	global	map)

KeyFrame

Pose0

Pose1

Pose2

MP0

MP1

MP2Pose3

Global	Bundle	Adjustment

Pose0

Pose1

Pose2

MP0

MP1

MP2
Pose3

Pose	Op9miza9onPose0

Pose1

Pose2

MP0

MP1

MP2Pose3

op+mize	per	
frame Pose op+mize	per	

keyframe
op+mize	when	loop	
closure	event	trigger

···

Figure 2: Overview of the optimizing pipeline in the vSLAM system. The
variables and fixed states are shown in red and gray, respectively.

that vSLAM systems predict and optimize position estimates
over time through processes like bundle adjustment, which
enhance consistency and accuracy. As a result, a position
misestimation at a specific moment may later be corrected
by the system’s optimization process. However, this iterative
optimization also expands the attack surface, allowing us to
target multiple stages of the optimization pipeline. Further-
more, we observe that the accuracy of vSLAM systems is
highly dependent on the distribution of features within the
surrounding environment. In certain scenarios, even minor
changes in extracted features can directly or indirectly affect
localization and mapping accuracy across different stages of
optimization. Existing research often treats vSLAM systems
as monolithic, overlooking the vulnerabilities unique to each
stage and the influence of feature distributions. Critical
questions, such as “Which features are critical for position
estimation at different stages?”, and “What environmental
characteristics can make attacks more practical to design
and deploy?” remain largely unanswered. For example,
imagine a scenario where a large number of features are ex-
tracted and scattered across different parts of a frame. Since
only changes to a majority of feature points involved in opti-
mization can significantly affect the final pose estimation, a
successful attack in such a scenario might require generating
multiple spoofing vectors and strategically deploying them
across different areas. This approach, however, is impractical
in real world due to physical constraints.

Building on the insights and analysis above, we pro-
pose four new vSLAM spoofing attacks targeting different
stages of the vSLAM pipeline: the pose deviation attack,
relocalization attack, map point manipulation attack, and
illusion creation attack. These attacks are designed not
only to forge a malicious position for the victim RV but
also to compromise the map’s integrity and impose high
time costs for restoring the system to its normal state. To
achieve this, we must address three key challenges: (1)
Spatio-temporal Consistency: Existing vSLAM systems
rely on spatio-temporal consistency (e.g., temporal feature
matching and spatial similarity searching) to estimate and
optimize the RV’s position, thereby enhancing robustness
and accuracy. This makes designing an effective spoofing
attack more complex than simply manipulating features over

a few frames. We must analyze all frames along the victim
RV’s route to craft a comprehensive and effective attack. (2)
Feature Validation Mechanisms: Most vSLAM systems
implement mechanisms to filter out suspicious or erroneous
features, such as bin filtering and least-squares optimiza-
tion. To ensure a successful spoofing attack, we need to
generate features that can bypass these validation mecha-
nisms while remaining feasible for real-world deployment.
(3) Attack Transferability: The real-world environment
introduces uncertainties and dynamic conditions. To ensure
the practicality of our attack, we must address its trans-
ferability. Specifically, our attack should remain effective
across different vSLAM systems, hardware configurations
(e.g., image resolutions, vehicle speeds), and environmental
contexts (e.g., varying routes and the presence of movable
objects).

To address the challenges outlined above, we present
SLAM-Tricker, the first controllable camera spoofing attack
framework for vSLAM. SLAMTricker is capable of auto-
matically generating potential attack vectors and deploying
them within an identified environment. To pinpoint vul-
nerable frames in the target environment, we first extract
vulnerabilities associated with each position optimization
stage. Building on this, we design an innovative attack
scenario search scheme that analyzes all spatio-temporal
frames across the route, identifying key frames for targeted
attacks. For generating spoofing vectors, we formulate the
vSLAM spoofing attack as an optimization problem and
propose a spoofing vector generation scheme. This scheme
computes the physical 3D positions of spoofing vectors,
deploys them, and triggers different attacks at runtime.

To ensure practicality and transferability of our proposed
attack, we identify two key components for modeling vS-
LAM attacks: (1) Perturbation Function: Maps the spoof-
ing vector (e.g., a malicious object or feature point) in the
physical world to the model’s input space. (2) Objective
Function: Quantifies the attack’s goal, guiding the optimiza-
tion process. For the perturbation function, we formalize the
transformations involved in the mapping process, including
spatial mapping, projection, feature searching, and modifica-
tion. Additionally, we incorporate the attacker’s capabilities
and environmental constraints to define the feasible bound-

2

!"#

$%&&'"#(!)(*&+,-&.

/0-&.1(2&3"(!,456

),0-7(!)(*&+,-&.(

/0-&.1(8&($69:,456

?),0-7(!)(*&+,-&.(

/0-&.1(8&($69:,456

!";&0:;,<:-&.

/0-&.1(="0";"9:6">?:9#(@9:A"

!"#$%&'($)(*+",&-$./"01 !2#$3(4&0"4+5",&-$./"01 !0#$6"7$%&+-8$6"-+794",&-$./"01

?

B&97:;(
2:%(*&,.6+

C:A"((((((
2:%(*&,.6+

!:#$;449'+&-$<=(",->$./"01

),0-7(!)(*&+,-&.(

/0-&.1(8&($69:,456

$%&&'"#(!)(*&+,-&.

/0-&.1($6&%
DD

DD

Figure 3: Our proposed four spoofing attacks base on the identified vulnerabilities of each module in vSLAM.

aries for vSLAM spoofing attacks. Our methodology also
enables analysis of scenarios where vSLAM employs non-
linear optimization models across varying spatio-temporal
granularities. This comprehensive approach ensures precise
and practical deployment of spoofing vectors while account-
ing for the complexities of real-world environments.

We evaluate the susceptibility of three prevalent vS-
LAM frameworks (ORB-SLAM2 [15], DynaSLAM [16],
and ORB-SLAM3 [17]) to our four new attacks. Utilizing
KITTI [27], [28], 4Seasons [29], EuRoC [30] and TUM
[31] datasets, we identify vulnerable frames and strategi-
cally implement spoofing vectors. Our results show that
SLAMTricker can modify the RV’s estimated pose or
decrease map points. Additionally, we assess the practicality
and adaptability of these attacks in real-world conditions
with a physical RV. Well-positioned spoofing vectors can
lead to malicious state estimation, causing navigation dis-
ruptions, collision risks, and substantial recovery time. We
further estimate the influence of various image resolutions,
vehicle speeds, environmental dynamic and routes on these
attacks. The results corroborate SLAMTricker’s enduring
robustness in all conditions.

2. Studies on vSLAM Systems

2.1. Position Estimation Overview

Accurate localization and environment perception are es-
sential tasks for robotic vehicles (RVs). As shown in Figure
1, modern vSLAM systems employ a two-stage framework
to continuously correct the estimated position.
Pose Prediction. In the first stage, an approximate pose
is predicted using a constant velocity motion model. This
model assumes the RV maintains a constant velocity, mean-
ing the current pose transformation, Tt, from time t − 1
to t can be approximated as the pose transformation, Tt−1,
from time t − 2 to t − 1. Based on this assumption, the
pose at the current time t is estimated by combining the
pose at time t− 1 with Tt. While this approach provides a
quick approximation, errors from environmental dynamics
or deviations from the assumption often accumulate.
Pose Optimization. The second stage refines the approxi-
mate pose by correcting these errors through: (1) Map Points
Mapping. The 3D map points from time t−1 are transformed
to the current time t using the approximated pose transfor-
mation Tt. (2) Map Points Projecting. The transformed 3D
map points are projected onto the current 2D frame using the
camera’s intrinsic parameters and configurations. (3) Feature
Matching. Extracted 2D features from the current frame
are matched with the projected 2D map points. This step
identifies the best matching pairs based on similarity and

spatial distance. (4) Error Optimizing. The mean error across
all matched feature pairs is minimized by fine-tuning the
pose transformation Tt, producing a more accurate estimate.

2.2. Vulnerability Analysis

Existing vSLAM systems are typically composed of
three core modules: (i) tracking, (ii) local mapping, and
(iii) loop closing. As illustrated in Figure 2, these modules
collectively contribute to pose optimization, albeit at differ-
ent update frequencies and scopes. Below, we describe each
module, analyze their roles in the optimization process, and
identify vulnerabilities exploitable for spoofing attacks.
Module 1: Tracking. The tracking module serves as the
foundation of the vSLAM system by processing each per-
ceived frame to estimate the RV’s pose in real time. As
shown in the left part of Figure 2, it extracts features from
the current frame and matches them with projected 2D map
points to optimize the RV’s pose. This module operates at a
high frequency (i.e., per frame) to ensure responsiveness
to motion. However, the pose optimization in this stage
focuses exclusively on the current pose (highlighted in red),
while map points and poses from other frames (shown in
gray) remain fixed. If insufficient matching pairs are found
during optimization, the system transitions into relocaliza-
tion mode. In this mode, the RV slows down or turns
around to collect additional features, significantly affecting
its functionality.
I Potential Attacks. The tracking module involves two
primary operations related to pose estimation: pose opti-
mization per frame and relocalization when few matching
pairs are available. These operations present two attack
opportunities: (1) Pose Deviation Attack. This attack aims to
introduce cumulative errors into pose estimation by manipu-
lating features over multiple consecutive frames. By shifting
the majority of features in matching pairs to a specific
direction, attackers can cause the pose optimization to output
a spoofed deviation. The effectiveness of this attack depends
on the number of frames processed before the system tran-
sitions to the local mapping module, which could correct
accumulated errors based on newly generated keyframes.
The conversion of a frame to a keyframe is determined by
its difference from the previous keyframe. Scenarios where
the RV remains stationary for extended periods—such as
waiting at a red traffic light—create opportunities for this
attack. For example, according to the National Association
of City Transportation Officials [32], traffic lights typically
remain red for 60 to 90 seconds, translating to 600 ∼ 900
frames in the 10fps KITTI dataset. These prolonged periods
allow attackers to inject substantial errors, which may be
further amplified during braking or startup times.

3

(2) Relocalization Attack. This attack seeks to force the
vSLAM system into relocalization mode by disrupting the
initial pose optimization. By reducing the number of match-
ing pairs or manipulating their characteristics to appear as
outliers, attackers can trigger relocalization, causing the RV
to slow down or stop for reinitialization. This disruption may
result in navigation delays or even rear-end collisions. To
execute this attack, attackers must understand the conditions
under which matching pairs are discarded as outliers. For
instance, features with edges that deviate significantly from
the majority during optimization are flagged as outliers and
excluded from further processing. By obscuring extracted
features or altering them to appear inconsistent, attackers
can decrease the number of valid matching pairs, effectively
destabilizing the system.
Module 2: Local Mapping. The local mapping module pro-
cesses keyframes to refine the local map and maintain con-
sistency. As illustrated in the center of Figure, it performs
two key tasks: creating new map points and optimizing
the poses of nearby keyframes and associated map points.
During the map point generation process, stable features
observed in multiple views are triangulated to compute the
3D coordinates of new map points, thereby enriching the
map structure. Once a new keyframe is added, the system ex-
ecutes local bundle adjustment, which minimizes projection
errors between map points and their observed 2D positions
in keyframes. Unlike the tracking module, this optimization
adjusts not only the pose of the current frame but also the
poses of co-visible keyframes and the map points observed
by those frames. By combining these operations, the local
mapping module ensures local consistency and accuracy.
Operating at an intermediate frequency, it serves as a bridge
between the high-frequency tracking module and the less
frequent global corrections performed by loop closing.
I Potential Attacks. The local mapping module is suscep-
tible to the Map Point Manipulation Attack, which aims to
disrupt pose estimation by altering matched features during
optimization. This attack can either eliminate valid map
points or introduce malicious, unstable features that are
incorrectly converted into map points. To execute this attack,
it is crucial to understand the mechanisms of map point
creation and culling. A map point is considered valid if
it survives three keyframes after its creation; otherwise, it
is culled. The system removes a map point if the ratio of
frames tracking it to the expected number of frames falls
below a threshold or if fewer than two keyframes observe it
after three keyframes. Attackers can exploit these rules by
obscuring stable features across multiple frames, triggering
map point culling to discard otherwise valid points. Alterna-
tively, attackers can introduce “stable” but malicious features
to generate fake map points, misleading the optimization
process. By disrupting the local mapping module in this
way, the attack compromises the system’s ability to maintain
local consistency and can introduce errors to other modules,
affecting the overall vSLAM performance.
Module 3: Loop Closing. The loop closing module en-
sures long-term consistency by identifying and correcting
accumulated drift through loop detection. It operates at a

low frequency, focusing on global optimization to improve
the entire map structure. When a loop is detected, the mod-
ule identifies spatio-similar keyframes and triggers global
bundle adjustment. This process adjusts all keyframe poses
and associated map points, correcting errors accumulated
over time. By refining the global pose graph, the module
ensures that the overall map remains consistent and accurate,
even as the RV revisits previously mapped areas, effectively
mitigating drift over extended trajectories.
I Potential Attacks. The loop closing module is susceptible
to two types of spoofing attacks: (1) Loop Closing Failure
Attack, where the robot revisits a previously observed loca-
tion, but the module fails to detect the loop, and (2) Illusion
Creating Attack, where the RV is misled into believing it
has revisited a location it has not actually encountered.
The first type of attack is difficult to execute effectively, as
subsequent observations of multiple keyframes often allow
for re-detection of loop closures, though it may be facilitated
through manipulations like map point corruption. The sec-
ond attack is more critical, as it introduces false positive
loop detection. This results in significant errors between
poses, misleading the robot and disrupting its global map
structure. False positives are particularly dangerous, as they
can propagate large-scale inaccuracies throughout the pose
graph, posing a severe threat to the system’s reliability.

2.3. Preliminary Verification and Issues

To validate our analysis, we conducted a set of prelim-
inary experiments using the KITTI dataset, as illustrated in
Figure 4. For the pose deviation attack and relocalization
attack, we directly modified the positions of extracted fea-
tures. In the pose deviation attack, shown in Figure 4(a), the
normal scenario depicts a vehicle waiting at an intersection
and then turning right. Under the attack scenario, a subset
of features (marked in purple) was randomly selected and
slightly shifted to the right (marked in red) over 50 consec-
utive frames. This caused significant errors in the vehicle’s
estimated pose, deviating from its correct trajectory. For the
relocalization attack, shown in Figure 4(b), we removed the
majority of extracted features (marked in purple), which led
to the vSLAM system crashing due to insufficient matching
pairs for reliable pose estimation.

For the map point manipulation attack and illusion
creating attack, we adopted patches and object manipu-
lations from previous work [33]. As Figure 4(c) shows,
we poisoned both the target and victim spaces with these
patches. This caused the system to incorrectly detect a loop
closure at an intersection, resulting in the vehicle being
relocated to the target frame. Furthermore, the system added
numerous erroneous map points to the map, corrupting the
overall structure. Although these experiments successfully
demonstrate the vulnerabilities of vSLAM systems, they also
highlight a critical limitation: directly modifying features
or employing such conspicuous and abnormal patches is
IMPRACTICAL in real-world scenarios.

Previous study [23] has shown the feasibility of generat-
ing patches through dynamic adjustment models. However,

4

Spoofing	Vector

Correct	Posi1on

Spoofed	Posi1on

Target	Posi1on

Vic1m	KeyFrame

Vic1m	KeyFrame

Target	KeyFrame

Spoofing	Vector

Pose	
Devia*on

Normal	Scenario

A3ack	Scenario

Correct	
Posi*on

Spoofed	
Posi*on

A"ack	Scenario

Correct	
Trajectory

Normal	Scenario

vSLAM	Crash

Spoofed	
Trajectory

(a) Pose Deviation Attack

(b) Relocalization Attack (c) Map Point Manipulation Attack and Illusion Creating Attack
Figure 4: Proposed attacks by directly modifying features (a,b) or using the patches (c) from previous work [33]

(a) Adversarial
Patch Generation

(b.1) Sticker
Pasting

(b.2) Object

Placement

(b.3) Light
Projecting

(a) Outdoor Scenario (b) Indoor Scenario

Figure 5: The Attack Scenario: (a) a malicious attacker and
(b.1-3) three types of attack vectors.

such approaches focus solely on hiding mismatched features,
limiting their effectiveness in spoofing attacks. Specifically,
these methods cannot control the positions of extracted
features, making them unsuitable for pose deviation and
relocalization attacks. Furthermore, they fail to provide a
sufficient number of consistent matches for executing an
illusion creating attack. In this paper, we propose an alter-
native strategy: can we exploit specific scenarios to achieve
our goals with the LEAST amount of natural attack vectors?

3. Models and Assumptions

3.1. Threat Model

Attack Goal. This work focuses on a scenario where an
attacker seeks to manipulate the localization and mapping
outcomes of vSLAM systems in autonomous vehicles or
robots by executing a camera spoofing attack. The attacker’s
objective is not merely to disrupt the system but to impose
a controllable and deliberate alteration. This level of control
enables the attacker to achieve specific malicious outcomes,
such as steering the vehicle off its intended path, creating
false perceptions of revisited locations, or introducing criti-
cal errors that could lead to accidents. Unlike prior work that
primarily focuses on unstructured or generalized attacks, our
approach emphasizes targeted attacks that guide the system
toward predefined and attacker-controlled outcomes, posing
a significant threat to safety and reliability.
System Model. This paper primarily focuses on exploring
the vulnerabilities of widely adopted vision-based SLAM
(vSLAM) systems used in RV applications. These systems
rely on camera-captured frames to perform real-time lo-
calization and mapping in both indoor and outdoor envi-

ronments. Specifically, during the visual odometry (VO)
process, vSLAM systems extract features from carefully
selected key pixels in each frame. These features are then
mapped and tracked across consecutive frames to estab-
lish correspondences. Finally, leveraging the optimization
methods outlined in § 2.1, the vSLAM system accurately
performs simultaneous localization and mapping, ensuring
robust trajectory estimation and environmental reconstruc-
tion for autonomous navigation.

3.2. Attacker Assumptions

Attack Scenario. To execute a practical attack in the real
world, this paper assumes a two-stage attack scenario:

(1) Offline Stage. In this stage, the attacker employs a
data acquisition vehicle or smartphone camera to traverse the
victim RV’s route and capture environmental visual contexts,
including landmarks and scene elements. The collected im-
age datasets are analyzed by SLAMTricker to identify
potential target attack scenarios—specific sequences of con-
secutive frames where the attacker can exploit vulnerabilities
using minimal or highly covert attack vectors. This analysis
ensures the feasibility of deploying undetectable or stealthy
attack patterns in the subsequent stage.

(2) Online Stage. Leveraging the insights from the offline
analysis, the attacker use SLAMTricker to fine-tune the
position and shape of the attack vectors based on the feature
distribution of each target scenario. During this phase, the
attacker carefully deploys these malicious vectors, ensuring
their alignment with the visual context of the target envi-
ronment. The attack is activated when the victim RV enters
the predefined target scenario, exploiting the spatio-temporal
consistency expected by the RV’s perception system.
Attacker Capability. During the offline stage, we assume
the attacker has knowledge of the victim’s driving environ-
ment and hardware platform, consistent with prior work on
localization-based spoofing attacks [23]–[26]. Specifically,
the attacker is aware of the general driving route and en-
vironmental context of the victim’s RV but does not have
access to camera frames from the victim’s system. Instead,
the attacker collects environmental data independently using
identical or similar hardware to replicate the visual context
of the target area before launching the attack. Our attack
operates under a grey-box access assumption, where the
attacker knows the victim employs the target vSLAM system

5

but lacks detailed internal technical information such as pro-
prietary algorithms or configurations. The attacker can infer
critical system behaviors through preliminary experiments
(e.g., deploying patches to observe their effects on perfor-
mance), as demonstrated in Figure 4. This grey-box assump-
tion is considered reasonable and practical, as attackers can
often obtain such knowledge through reconnaissance and
testing without requiring privileged access to the victim’s
internal data.
Stealthiness Consideration. A critical requirement for a
successful spoofing attack is to maintain its visual stealthi-
ness. Unlike adversarial attacks in the digital domain, which
focus on pixel-level indistinguishability, our approach aims
to ensure that the deployed attack vectors are semantically
and contextually appropriate within the target environment.
By adhering to existing physical attack methodologies [21],
[22], [34]–[39], we achieve this stealthiness through careful
selection and deployment of attack vectors,. Specifically,
(b.1) Sticker Pasting: The attacker can implement unnotice-
able adversarial patches on commonly seen real-world ob-
jects, such as a moving vehicle, making them appear natural
in the environment. (b.2) Object Placement: The attacker
can deploy malicious 3D objects strategically in areas out
of direct human attention but within the victim system’s
perception range, such as roadside or hidden locations. (b.3)
Light Projecting: In indoor scenarios, the attacker can use
a projector positioned outside a window to project malicious
patches onto walls or other surfaces. This approach enables
dynamic attacks without leaving physical traces.

4. SLAMTricker

4.1. Framework Overview

SLAMTricker is a comprehensive attack framework
designed to exploit vulnerabilities in vSLAM systems by
seamlessly integrating offline and online attack stages.

4.2. Offline Attack Scenario Search

The goal of offline attack scenario search is to identify
frames that are vulnerable to spoofing in a given environ-
ment. A vulnerable frame should satisfy two conditions: (1)
it can easily trigger the four proposed spoofing attacks, and
(2) it requires minimal attack vectors to successfully execute
the attack. To achieve this, we first formalize the workflow
of vSLAM systems, then analyze environmental constraints
to quantify the relationship between environmental contexts
and attack vectors, and finally propose a search scheme to
identify vulnerable frames for each type of attack.

4.2.1. vSLAM Formulation. The vSLAM module con-
sists of the following components: (1) Graph optimization
model G. (2) Pre-processing feature extraction function
Φ : Rn∗3 → Rn∗2, which maps 3D points into 2D pixels.
(3) Projection function ρ : Rn∗3 × R6 → Rn∗2, which
maps 3D map points into 2D map point coordinates in

the current frame using the estimated RV pose. (4) Feature
searching function Θ : Rn1∗2 × Rn2∗2 → Rn2∗2, which
identifies the most relative feature from a map point. Let
p ∈ R6 be the robot’s pose estimation, including 3D
coordinates and angles. M = (M1,M2, . . . ,Mnm

) is the
pristine 3D map points. Then we have m = ρ(M,p),
where m = (m1,m2, . . . ,mnm

), is the corresponding 2D
map point coordinates. Let K = (K1,K2, . . . ,Knk

) be the
pristine 3D features. Then we also have k = Θ(Φ(K),m),
where k = (k1, k2, . . . , knm

) is the identified relative 2D
features. Notations used in SLAMTricker are summarized
in Table 2 in Appendix.

4.2.2. Environment Constrains. We define the environ-
ment constraint (C) based on the distribution of map points.
A higher proportion of maliciously matched map points
correlates with a higher likelihood of causing pose estima-
tion errors. Frames with denser map points provide greater
opportunities for attackers, as spoofing fewer features can
yield significant disruptions. To quantify the concentration
of map points, we introduce the density metric dmi , which
measures the local density around a map point mi:

dmi
=Card({mj |(m1,m2, . . . ,mnm

) = ρ(M,p),

‖mi −mj‖2 ≤ τ, j ∈ [nm]}), (1)

where ‖mi−mj‖2 denotes the l2-normed distance between
a current map point mi and another map point mj in the
same frame. If the distance is less than a certain threshold
τ , mj can be regarded as a neighbor of mi. The number of
all neighbors Card(·) is defined as the density of mi.

We also define the attack ratio R, which is the propor-
tion of high-density map points (dmi ≥ γ), n′m, to the total
number of map points nm:

max R w.r.t. R =
n′m
nm

.all methods (2)

and

{
min ‖p− p′‖2 .features adding method
max ‖p− p′‖2 .features shifting method

A higher R and a larger pose offset (‖p−p′‖2) increase the
likelihood of achieving attack goals. Deployment methods
like features adding aim to minimize pose offset, while
features shifting maximizes it for greater deviation.

4.2.3. Attack Scenario Search Scheme. We propose an
Attack Scenario Search Scheme (Algorithm 1) to identify
vulnerable frames based on the vulnerabilities analyzed in
§ 2.2.
Pose Deviation Attack (Lines 2-6): To avoid misestimated
position being corrected by the next optimization in local
mapping module, we record the ID of each frame that is
selected as a keyframe (the trigger of next optimization).
When the number of frames between two keyframes exceeds
a specified threshold T1 and the attack ratio R exceeds the
threshold T2, these frames are considered suitable for attack.
Relocalization Attack (Lines 7-8): The number of input
pairs in each frame, excluding outliers and the selected high-
density map points, is also calculated. The comparison of the

6

Algorithm 1: Attack Scenario Search Scheme
Input: F . A set of frames in the given environment

T1 ∼ T5 . Thresholds of different attacks
Output: Fv . Target victim frames

KFv . Target victim keyframes
1 foreach Frame fi ∈ F do
2 if fi is a Keyframe then
3 j = i;
4 KF.add(fj)

5 if ((i− j) > T1) ∨ (R > T2) then
6 Fv .add(fj) ; // pose deviation atk

7 if fi.nmatch− fi.outliers− fi.n′
m < T3 then

8 Fv .add(fi) ; // relocalization atk

9 foreach KeyFrame kfi ∈ KF do
10 kfj .spoofpoints =

HgihDensityCompute(kfj .newMapPoints);
11 if (R > T2) ∨ (kfj .nmatch < T4) then
12 KFv .add(kfi) ; // map point manip. atk

13 if kfj = DetectLoop(kfi) then
14 if SearchByProjection(kfi, kfj) > T5 then
15 KFv .add(kfi) ; // illusion creating

atk

calculated result with the threshold T2 is used to determine
if the frame can effectively trigger this attack.
Map Point Manipulation Attack (lines 9-12): Upon re-
ceiving a keyframe from the local mapping module, all high-
density map points should be used as the attack target, as the
attacker can manipulate more points with the same attack
vector. So if R exceeds the threshold T2, it is deemed that
the exclusion of the map points in this keyframe will result
in a more significant effect. Furthermore, if the number of
model input pairs in the keyframe itself is less than the
threshold T4, it is believed that adding map points will have
a more pronounced attack effect.
Illusion Creating Attack (Lines 13-15): We iterate through
all keyframes to identify analogous scenarios across differ-
ent spaces. Due to the insufficient similarity, these spatially
separated keyframes do not trigger the loop correction in
subsequent optimization. The number of matching pairs of
these keyframes is counted. If it exceeds the threshold T5,
the attack is considered to be executed with minimal cost.

Thresholds T1 ∼ T5 can be obtained through reconnais-
sance and testing without requiring privileged access to the
victim’s internal data. In our study, T1 ∼ T5 are set to 20,
0.6, 10, 20, 40, respectively.

4.3. Online Spoofing Vector Generation

4.3.1. Attack Formulation. We first formulate the vSLAM
attacks. The attacker aims to launch a spoofing attack, which
manipulates the features to make vSLAM malfunction. Let
S = (S1, S2, . . . , SnS

) be the malicious features generated
from the spoofing vectors. S must satisfy the constraints
from the attack capability A and environment constraint
C: S ∈ A ∩ C. Let ms = (ms

1,m
s
2, . . . ,m

s
ns

) be the
2D map points influenced by the attack. We introduce
Ψ : Rn1∗2 × Rn2∗2 → Rn3∗2 to represent the attack’s
behavior on the pristine features k and malicious features

s. Then the vSLAM attack is formulated as the following
optimization problem:

min Latk(Ψ(k, s),m, p;G)

s.t. s ∈ {s|Θ(Φ(S),ms), S ∈ A ∩ C},
k = Θ(Φ(K),m),m = ρ(M,p)

(3)

where Latk is the spoofing loss to achieve the attack goal.

4.3.2. Input Perturbation Modeling. After analyzing the
spoofing attack capability A (§ 3.2) and environment con-
straint C (§ 4.2.2), there is still a big gap between spoofed
features (S) and model inputs. We close this gap by first
modeling three key functions (Φ, ρ,Θ) in vSLAM, and then
formulating the attack behavior Ψ based on these models.
Modeling Mapping Function (Φ). The key to modeling
the mapping function is to identify the features of the
current frame and the downsampling level at which each
feature is located. We use x and l to denote an image and
the downsampling level. Thus, the extracted 2D malicious
features Φ(S)l at level l can be written:

xl = Resize(x, ε, l), Φ(S)l = FastDetect(xl, S), (4)
where function Resize is a bi-linear interpolation down-

sampling method, reducing the resolution of x by the factor
εl. FastDetect is a function composition, including a fixed
3D-to-2D mapping based on the sensor’s setting, extracting
features from spoofed vectors at corresponding xl. Note this
process is deterministic, i.e., extracted features from one
image multiple times are the same.
Modeling Projection Function (ρ). This function projects
a 3D map point in the physical world to the 2D coordinate
in the current frame with an estimated pose. Such a process
requires two steps: (1) transforming the past 3D coordinates
of the map point to the current 3D coordinates, and (2)
projecting the current 3D coordinates to the 2D coordinates
in the frame. The step (1) can be described as follows:

[Mt, 1]′ = T · [Mt−1, 1]′

w.r.t. T =

[
R r
0′ 1

]
,

M = (M1,M2, . . . ,Mnm
)

Mi = (Mx
i ,M

y
i ,M

z
i),

(5)

where Mt and Mt−1 denote the 3D map points at time t
and t−1. T is a 4×4 transformation matrix to represent the
transformation relationship from Mt−1 to Mt. Specifically,
the transformation matrix is a diagonal matrix containing a
3× 3 rotation matrix R and a 3× 1 translation matrix r.

Once obtaining Mt, we can estimate the 2D map point
coordinate in the current frame using the equation below:

(mx
i ,m

y
i , 1)′ = IC · (

Mx
i

Mz
i

,
My

i

Mz
i

, 1)′

w.r.t. IC =

fx 0 cx
0′ fy cy
0′ 0 1

 , m = (m1,m2, . . . ,mnm
)

mi = (mx
i ,m

y
i),

(6)
Here (mx

i ,m
y
i) is the 2D map point coordinates in the

current frame. IC is the camera intrinsic matrix containing
the focal length along x-axis fx and y-axis fy, and the

7

!"

#"

$#"
%

!"#

$%&'(")*+(,
$"&*-#'%

(+*-.+#

Figure 6: The process of feature searching function Θ.

optical center offset along x-axis cx and y-axis cy. Note
all the camera intrinsic parameters are fixed and can be
estimated by attackers.
Modeling Feature Searching Function (Θ). This function
converts extracted features and projected map points into
inputs of the graph model, as shown in Figure 6. IIt traverses
all map points first, and then creates a container for each
map point, storing all features within a circular area of radius
r from the map point.

Let k′l = Φ(K)l. Because m is calculated from M , and
M is transferred from K in vSLAM, we can further provide
each mi a level lmi

in m, based on the corresponding k′l.
The final features generation follows a rule that level lki

of
the selected features ki must be the same as level lmi

of the
corresponding map point mi or the difference is 1, which
is formalized as:

Ki = {kj = (kxj , k
y
j)|(mx

i − kxj)2 + (my
i − k

y
j)2 ≤ r2,

i ∈ [nm], j ∈ [nk]}
s.t. lkj

∈ {lmi
− 1, lmi

, lmi
+ 1}, for each kj ∈ Ki

(7)
For each feature in the container, the feature searching

function computes the Hamming distance of descriptors
between all features kj ∈ Ki and the related map point
mi. The feature with the shortest distance kbest ∈ Ki

will form a pair with the map point mi and be put into
the corresponding histogram bin according to the rotation
angle difference between them. Histogram bins are twelve
containers for storing matching pairs of different angular
differences (interval: 30°). Finally, the three bins with the
most matching pairs (mi, k

best) are selected as inputs to
the model, while others are discarded. We can formulate
this process as following:

(mi, k
best) ∈ {(mi, k

best) | (8)

BinIdx((mi, k
best)) ∈ Top3BinIdx}

w.r.t. kbest = min HDist(kj ,mi), kj ∈ Ki

BinIdx(mi, k
best) =

|anglem − anglekbest |
30

(9)

Here HDist and BinIdx denote the functions of computing
the Hamming distance and the bin index. Top3BinIdx is the
set of top three bin indexes.
Formulating Attack Behavior (Ψ). This function simulates
the influence after adding malicious features to the original
features. For features adding and covering, Ψ represents a
union operation between two variables with selection:

Ψ(k, s) = (ki1 , ki2 , . . . , kij , sij+1 , . . . , sin)

s.t. rotation invariance of kij and spatial similarity
(10)

Algorithm 2: Spoofing Vector Generation Scheme
Input: m . Map points in the current frame
Output: R . The attack ratio

CS . The number of spoofing vectors
S . The 3D coordinates of a set of malicious features

in the physical world
/* Potential Spoofing Vector Discovery */

1 CS = Cs = 0;
2 foreach map point mi belongs to m do
3 dmi = 0;
4 foreach map point mj belongs to m do
5 if (‖mi −mj‖2 ≤ τ) ∧ (‖lmi − lmj ‖ ≤ 1) ∧

(i 6= j) then
6 dmi = dmi + 1 ; // density statistics
7 Ni.add(j) ; // set to store neighbors

8 if dmi ≥ γ then
9 V.add(mi, Ni) ; // vector to store victims

10 Cs = Cs + 1 ; // n′
m

11 R = Cs
nm

; // Attack Ratio
/* Vector Position Calculation */

12 foreach map point mi, Ni ∈ V do
13 sxi = mxi + r · sin 2π

α
; // atk point coordinates

14 syi = myi + r · sin 2π
β

; // in sample frame
15 lsi ∈ {lmi − 1, lmi , lmi + 1};

/* upsampling restores 3D coordinates */
16 if features shifting attack then
17 Sxi , S

y
i , S

z
i = upsample(sxi , s

y
i , lsi);

18 else
19 Sxi , S

y
i , S

z
i = upsample(mxi ,m

y
i , lmi);

/* merging based on intersections */
20 j = i;
21 while j! = V.size do
22 if (Ni ∩Nj) 6= ∅ then
23 V ′ = Ni ∪Nj ; // disjoint set V ′

24 V.erase(j);

25 else
26 j ++;

27 CS = Card(V ′) ; // Card(S)

For features shifting, Ψ represents a union operation with
selection combining with an element-wise perturbing oper-
ation:
Ψ(k, s) = (ki1 + d1, ki2 + d2, . . . , kij + dj , . . . , sin + dn)

(11)
where dj = (dxj , d

y
j) is the coordinate shifting along x-axis

and y-axis.

Spoofing Analysis. The selection of a malicious feature as
an input to the model is influenced by four factors: the
projected map point coordinates (m), the search radius (r),
the descriptor of the malicious feature, and the bin index
of the matching pair. The projected map point coordinates
can be calculated using Equation 6, while the search radius
is normally fixed as 15 in mainstream vSLAM frameworks
(ORB-SLAM2, DynaSLAM, ORB-SLAM3). To minimize
the descriptor distance in Equation 8, the attacker can em-
ploy solutions like designing the surrounding pixels based
on a pre-defined pattern in feature extraction or copying
the original feature area and changing its position. The
histogram bin index, which is dependent on the distribution
of rotation angle differences between map points and other
features, can be estimated by analyzing the victim robot’s
trajectory.

8

4.3.3. Objective Function Design. We introduce our ob-
jective function Latk. Unlike previous spoofing works that
perform the analysis on machine learning models, it is hard
to design adversarial examples to fool a graph optimization
model due to the wide distribution of model inputs. There-
fore, given a graph optimization model G, inputs (s, k,m)
and the corresponding correct pose output p, the attacker
aims to generate spoofing vectors S = A ∩ C, such that
G(s, k,m) = p′, where p′ is a malicious pose deviated
from the correct pose p. The objective function of a vSLAM
spoofing attack can be formulated as below:

min Latk ⇒ min Card(S) s.t. G(s, k,m) = p′

(12)
where G(s, k,m) = p′ is the target attack goal and s is

the result obtained after a series of pre-processing (Φ, ρ,Θ)
of the spoofing vectors S. Equation 12 aims to minimize the
number of potential spoofing vectors (Card(S)) to achieve
our goal. The goal of minimizing the spoofing loss Latk

(Equation 3) can be also equivalent to maximizing the attack
ratio R, shown in Equation 2.

4.3.4. Optimization. To optimize the objective function
Latk, we need to obtain a set of key information for each
frame, including the number of spoofing vectors, the posi-
tion of each malicious features in the physical world and
the attack ratio R. Thus, we propose an automatic spoofing
vector generation method (Algorithm 2) to solve the above
challenges. Specifically, the method consists of two steps.
The first step is the potential spoofing vector discovery.
As described in § 4.2.2, we design a novel metric called
density (dmi

) to denote the distribution of map point mi

in the frame. Here, we calculate the density of each map
point (Lines 2-6) and create a container to store the indexes
of other map points associated with the current map point
(Line 7). Note that the conditional statement contains the
judgement of the downsampling level of map points if using
the sticker or projection vectors, since the feature searching
function Θ only searches the features of the level adjacent to
the map point level (Equation 7). Once the density exceeds
a pre-defined threshold γ, the map point will be selected
and added into the victim map point container V (Lines 8-
10), which is a set. The threshold γ determines the attack
concealment: a smaller value enables more attack points but
increasing the dispersion and likelihood of being detected.
We can obtain the attack ratio R by the number of map
points in V , and the number of map points in this frame
(Line 11).

The second step is the vector position calculation, which
aims to get the position of each malicious feature in the
physical world and the number of spoofing vectors. Specif-
ically, we traverse all map points in the victim map point
container V . For each map point, we estimate the position of
malicious features under three constraints: (1) the distance
between the malicious feature and associated map point
cannot exceed the searching radius r (Equation 7); (2) the
downsampling level of the malicious feature must be near
the level of the associated map points (Equation 7); (3)

the rotation histogram bin where the malicious feature is
located must be within the top three bins with the largest
number (Equation 8). We use r, lmi

, α and β to denote the
boundary of the above three constraints (Lines 13-15). To
maximize ‖p−p′‖2 in Equation 2, we set r as the maximum
searching radius in the feature search function. The level of
malicious features can be chosen based on the real-world
condition. To ensure the third constraint, α and β for each
malicious feature should be the same so that all malicious
features can be collected in one rotation histogram bin, thus
increasing the possibility of being chosen as one of the top
three bins. We upsample the malicious features to restore
their 3D coordinates S in the physical world (Lines 16-
19). From Equation 2, we select different 2D coordinates
to restore based on features deployment methods, and count
the number of spoofing vectors through merging map point
neighbor containers into disjoint sets (Lines 20-27).

5. Evaluation

5.1. Attack on Public Datasets

In this subsection, we evaluate proposed
SLAMTricker attack using several well-established
public datasets: KITTI [27], [28], 4Seasons [29], EuRoC
[30], and TUM [31]. These datasets are widely regarded
as benchmarks for testing vSLAM performance in
applications such as autonomous driving, drone navigation,
and automated guided vehicles. We target three state-
of-the-art vSLAM frameworks, namely ORB-SLAM2
[15], DynaSLAM [16], and ORB-SLAM3 [17]. These
frameworks represent cutting-edge vSLAM techniques
with significant applications in both academic research
and industrial use cases. Details of the datasets and the
targeted vSLAM frameworks are provided in Appendix B.
We mainly illustrate the attack results of ORB-SLAM2 on
these datasets, if not specified. Quantitative results on all
the frameworks and datasets are presented in § 5.1.5. Table
3 in Appendix shows the attack contexts of our experiments
on datasets.

5.1.1. Pose Deviation Attack. Once an attack scenario
is identified, Algorithm 2 is employed to determine the
optimal number and positions of spoofing vectors required
for the attack. Our observations reveal that pose deviation
attack scenarios frequently occur during turning or parking
maneuvers. As shown in Figure 7, we utilize the feature
shifting method, wherein a truck with adversarial patches
(acting as the spoofing vector) slowly moves in front of
the victim vehicle. The patches are designed to manipulate
features (green boxes) detected by the vSLAM system,
causing deviations in the estimated trajectory. The left panel
of Figure 7 illustrates the comparison between the normal
scenario and the attack scenario. In the normal scenario,
the victim vehicle maintains its correct trajectory, waiting
at an intersection without deviations. Conversely, in the
attack scenario, the victim’s trajectory is spoofed, causing
significant pose deviation.

9

Spoofing	Vector

Normal	
Scenario

A3ack	
Scenario

Correct	
Trajectory

Spoofed	
Trajectory

Pose	
Devia?on

Vic?m	KeyFrame	
(ACer	A3ack)

Vic?m	KeyFrame	
(Before	A3ack)

Before	A3ack
KeyFrameID

1
Map	Points

0
A3ack	Points

774
A3ack	Ra?o

1

ACer	A3ack
Map	Points

1

Figure 7: Pose Deviation Attack.

FrameID

Spoofing	Vector

Map	Points

Bad	Map	Points

A9ack	Points

672

1

16

0

7

Valid	Map	Points
7

Before	A9ack

Before	A9ack

VicBm	Frame	
(Before	A9ack)

VicBm	Frame	
(AEer	A9ack)Spoofing	Vector

Map	Points	with	
High	Density

Figure 8: Relocalization Attack.

KeyFrameID

Spoofing	Vector

Map	Points

A9ack	Points

A9ack	Ra<o

118

2

56

20

0.357

Map	Points
21

Before	A9ack

AHer	A9ack

Spoofing	Vector

Map	Points	with	
High	Density

Vic<m	Frame	
(Before	A9ack)

Vic<m	Frame	
(AHer	A9ack)

Figure 9: Map Point Manipulation Attack.
Spoofing	Vector

Spoofing	Vector

Target	KeyFrame

Vic4m	KeyFrame

Vic4m	KeyFrame

Current	
Posi4on

Incorrect	
Close	Loop

Normal	
Scenario

A>ack	
Scenario

A>ack	
Scenario

Spoofed	
Posi4on

Target	
Posi4on

Figure 10: Illusion Creating Attack.

!"##" $%& #'()*!"##" $%& #'()*!"##" $%& #'()*!"##" $%& #'()*

Pose Deviation Relocalization Map Point Manipulation Illusion Creating
0.0

0.5

1.0

S
u

c
c
e
s
s
 R

a
te

ORB-SLAM2 DynaSLAM ORB-SLAM3

+,-

./012-

*1340567

+,-

./012-

*1340567

KITTI () EuRoC () TUM ()4Seasons ()

Figure 11: Attack success rates on three vSLAM frameworks.

5.1.2. Relocalization Attack. Relocalization attacks are
evaluated using the features that cover the deployment
method as depicted in Figure 8. The top image displays
the map point in yellow and the corresponding searched
feature in green prior to optimization. The bottom image
shows the frame after the relocalization attack has been
executed. Results indicate that a single spoofing vector can
effectively obscure seven input pairs in the identified frame,
resulting in a reduction in valid input pairs from 16 to 9,
thereby triggering the relocalization. During the attack stage,
the impact on the victim input pairs can be exacerbated by
deploying a white van in front of the victim vehicle, as the
van can obscure more points.

5.1.3. Map Point Manipulation Attack. The feasibility
of the map point manipulation attack through map points
culling is evaluated in Figure 9. Upon identification of the
attack scenario, the features covering deployment method
is used to obscure the high-density victim map points.
Algorithm 2 is employed to calculate the position of the 3D
object spoofing vector, which is then deployed in adjacent
keyframes of the attack scenario. In this scenario, there are
56 map points in the target victim keyframe, with 20 of
them being high-density points that can be covered by 2
spoofing vectors, resulting in an attack ratio of 0.357. For
simplicity, a white van is utilized to cover these victim map
points. We can observed that the victim map points fail to
be identified and the total number of map points in this
scenario is reduced from 56 to 21.

5.1.4. Illusion Creating Attack. Once an attack scenario
is identified, Algorithm 2 is applied to locate regions with
a high density of map points, enabling the deployment
of spoofing vectors to induce loop closure errors. In this
attack, we employ the feature adding deployment method
to increase the similarity between the victim’s victim and
target keyframes. As illustrated in Figure 10, the similarity
is enhanced by introducing a truck with adversarial patches
(highlighted by the red boxes) in both the target and vic-
tim keyframes. Unlike prior works that rely on impractical

setups [33], our approach minimizes environmental modifi-
cations by carefully selecting spoofing vectors with dense
features and strategically placing them in the target region.
The left panel of Figure 10 demonstrates the impact of
the attack on the victim vehicle’s trajectory. In the normal
scenario, the victim vehicle correctly follows its current
path. However, in the attack scenario, the vehicle mistakenly
identifies a loop closure at an intersection, causing it to
relocate its position to the target frame. This results in the
victim system perceiving the spoofed position as its current
location, demonstrating the effectiveness of this attack.

5.1.5. Quantitative Evaluation. Figure 11 shows the suc-
cess rate of the four attacks on three mainstream vSLAMs.
In particular, each attack is repeated 20 times on four
popular datasets: KITTI, 4Seasons, EuRoC and TUM.
Observations. (1) The pose deviation attack maintains simi-
lar success rates on different datasets. Higher concentration
of map points in the attack scenario and ratio of all map
points lead to higher attack success rate. (2) For the re-
localization attack, success rates differ across datasets due
to variations in map-point distributions and concentrations.
For example, the attack scenario in EuRoC is in a dark
hall, and most of the map points are concentrated on the
bright windows, so we can easily trigger relocalization as
long as we cover some windows. However, the scenarios in
other datasets still have some scattered map points that are
difficult to remove. (3) The map point manipulation attack
maintains high success rates on different datasets. This is
because the generation and distribution of map points are
relatively stable and will not be affected by randomness.
(4) The illusion creating attack relies on the similarity of
different locations in the dataset. Since both EuRoC and
TUM are collected in a single hall, identifying similar places
in this small area is difficult.

5.2. Attack on Physical Robotic Platform

In this subsection, we evaluate the impact of the pro-
posed four attacks on an physical robotic platform through a

10

!"#$%&'()$%*+&',*$$$$
"-.

!/#$01"'2$%*'345-$$$$$$$$$$$$$$

"-.

!"#$"%&&

#$"'()*"$

+*,-)%
./'()*0

123,45)%./'()*0

Figure 12: Experiment setup.

!"# #$%%& '() '!

Pose Deviation Relocalization Map Point Manipulation Illusion Creating
0.0

0.5

1.0

0

500

1000

1500

S
u

c
c
e
s
s
 R

a
te

Base(1080p,1x,Static) RES-720p

!"# #$%%& '() !"#

*+,-./+0

12%&/34

.35%

063768

RES-480p Speed-2x Speed-3x DYN

Base(1080p,1x,Static) DYNSpeed-2x Speed-3x M
a
p

 P
o

in
ts

 N
u

m
b

e
r

RES-720p RES-480p

Success Rate

Map Points Number

DR

DR

'! #$%%& '() '! !"# #$%%& '() '!

Figure 13: Transferability analysis in the physical world.

series of real-world case studies. Table 4 in Appendix shows
the attack contexts of our experiments in the physical world.
Experiment Setup. We adopt a physical unmanned ground
vehicle (UGV), which is equipped with a GoPro HERO 11
camera [40] to capture 720p images, and an onboard chip to
run Robot Operating System (ROS [41]) and ORB-SLAM3.
As shown in Figure 12, three attack vectors are selected: (1)
a dynamic object represented by a mobile robot with eight
pieces of white paper attached; (2) static objects including
traffic cones and whiteboard marking with mosaics; (3) a
Benq TH685P projector with 3500 lumens.

5.2.1. Attack Feasibility Analysis. In the offline stage,
the UGV is controlled to navigate in our university and
record the surrounding environment. The recorded video
is then processed using SLAMTricker, to identify the
target scenarios for each of the four spoofing attacks, as
illustrated in Figure 18. Next, the position of the spoofing
attack is computed based on the density of map points in the
frame. In the online stage, the appropriate spoofing vectors
are selected and deployed into the computed position. The
navigation task is launched, causing the victim robot to
autonomously move towards the designed attack scenario.
Each scenario is described in detail in Appendix B.

5.2.2. Transferability Study. In this subsection, we aim to
examine the transferability of our proposed attack method-
ology by evaluating the influence of three critical factors
on the efficacy of SLAMTrick. Specifically, we target
four critical factors, including image resolutions, vehicle
speeds, dynamic environments and different routes. Figure
13 presents the success rate and map points number of
the four physical attacks. The experiments are repeated 20
times, and the number of successful outcomes is recorded.
The details of each factor are as follows:
Image Resolution (Figure 19). Three image resolutions are
selected as input for ORB-SLAM3: 1080p (1980×1080),
720p (1280×720), and 480p (640×480). As vSLAM relies
on pixel differences to extract features, reducing the resolu-
tion leads to a decrease in the number of features extracted
per frame, consequently reducing the number of stable map
points. It is worth noting that an image ratio of 4:3 is
used in 480p resolution, contrasting with 16:9 in 1080p
or 720p resolutions. This deviation leads to the exclusion
of peripheral pixels on the right and left sides, which can
consequently contribute to a decrease in the quantity of
stable map points.
Vehicle Speed (Figure 20). To ensure the control group’s
consistency, the robot moved at a slower speed in each sce-

nario. Subsequently, the recorded 1080p video is accelerated
by factors of 2 and 3 by sampling frames. Since map points
are generated using stable features extracted from multiple
consecutive keyframes, higher vehicle speeds result in a
decrease in the number of keyframes along the same route,
leading to a reduction in the generated map points.
Dynamic Environments (Figure 21.ab). This experiment is
conducted at the normal vehicle speed and 1080p image res-
olution. However, a dynamic disturbance is introduced to the
environment in the first scenario by having a person move in
front of the victim robot during the attack. The impact of this
attack on the number of map points is minimal since moving
objects do not generate stable map points. While dynamic
disturbances may momentarily obscure some stable map
points, these points swiftly reappear after the disturbance
is gone, thus exhibiting a level of robustness in the face of
temporary disruptions.
Different Routes (Figure 21.ac). This experiment is also
conducted at the normal vehicle speed and 1080p image
resolution. However, the route variations introduced for the
victime robot lead to minor differences in the distribution
of map points. As shown in Figure 21a, the robot proceeds
linearly towards a wall. In contrast, Figure 21b shows the
robot navigates in a different route, first approaching a door
and then taking a right turn to face the wall. Despite these
variations in the angles for observing attack vectors, both
scenarios preserve a high attack success rate.
Quantitative Evaluation. Figure 13 presents the success
rate and number of map points for four physical attacks.
Each experiment is repeated 20 times, and the average
result is recorded. We can observe that the pose deviation
attack exhibits good robustness across various parameters.
This stems from the attack’s reliance on the victim map
points’ ratio rather than their absolute count. The success
rate of the relocalization attack rises as the number of
map points decreases. This can be attributed to the attack’s
efficacy in diminishing the map points by covering them
until the reduced count triggers relocalization. Similarly,
the success rate of the map point manipulation attack also
escalates with a decrease in the number of map points. This
effect arises due to the requirement of a sufficient number
of matching similar map points in a series of temporally
continuous keyframes across distinct spaces for triggering
a closed loop. The reduction in map points diminishes
such similar matches, resulting in the failure of the closed
loop. Consequently, the success rate of the illusion creating
attack experiences a decrease as the number of map points
increases. Notably, all the proposed attacks demonstrate
robustness under dynamic environments and different routes.

11

6. Related Work

Related Attacks on ORB-SLAM. Recently, Wang et al.
[24] employed 74 infrared lights in a parking lot to or-
chestrate a spoofing attack on vSLAM, which resulted in
the generation of discontinuous and uneven trajectories.
Ikram et al. [25] discovered that a straightforward patch
implementation can effectively by-pass all geometric checks
within the ORB-SLAM framework, leading to erroneous
loop closures in indoor environments. Chen et al. [23]
designed an adversarial patch generation method and im-
proved the robustness of these patches by hiding them on
common real-world objects. All of the above works can
be regarded as a specific use case of our proposed map
point manipulation attack through adding spoofing vectors.
Furthermore, through a comprehensive analysis of attack
scenarios and the utilization of diverse attack vectors, our
proposed techniques can control the spoofed position of each
attack goal and increase attack success rate, which could not
be achieved by prior works.
Related Attacks on DNN-based vSLAM. The integration
of deep learning models into vSLAM has gained significant
attention within the research community recently [42]–[44].
These works aim to enhance robustness in dynamic envi-
ronments by replacing a part of geometric vision tasks in
the vSLAM pipeline, such as depth estimation and optical
flow prediction. However, DNN-based vSLAM inherently
introduces increased computational overhead and is vulner-
able to adversarial attacks [26], [45]. Both the targets and
methods of these attacks differ significantly from this paper.

7. Discussion and Limitation

Attack Adaptability. The appropriate scenario for each
attack highly depends on the map points in the environment
and how robots behave, but widely exist in real-world situ-
ations. Specifically, the pose deviation attack happens when
a robot stays in one place for a long time, e.g., waiting at
traffic lights or parking in a lot. The relocalization attack is
more common in places with fewer map points, such as
highways and indoor areas. The map point manipulation
attack can also take place in areas with dense map point
distributions, such as parking lots and suburbs. The illusion-
creating attack occurs in areas with high similarities, which
is typical in office spaces and urban areas due to similar
furniture or building layouts.
Countermeasures. We discuss the potential defense strate-
gies at two levels. The first category is at the sensor level.
Sensor fusion, a technique for intelligently combining data
from multiple sensors, could be utilized as a defense against
vSLAM spoofing attacks. RV systems often have multiple
sensors, such as cameras, Lidar and IMU, to provide addi-
tional information to detect and counter an vSLAM attack.
There have been several sensor fusion algorithms proposed
with a focus on security and safety [47]–[50]. However, it
is important to note that this defense approach relies on
the majority of the sensors functioning correctly. While not

foolproof, incorporating sensor fusion can greatly increase
the difficulty of executing a successful attack.

The second category is at the model level. Since vSLAM
spoofing attacks rely heavily on the distribution of map
points, one potential defense is to introduce randomness in
the input pair selection for the nonlinear graph optimization
model. By doing so, the attacker is not able to predict when
and where to inject spoofing vectors into the victim frame.
To achieve this, one approach is to randomly select a feature
from the group of high-scoring candidates for each map
point instead of always selecting the feature with the highest
score. An alternative is to randomly choose some map point-
feature pairs from all inputs for optimization. While these
defense strategies have the potential to mitigate the risks
of vSLAM spoofing attacks, it is worth noting that the first
solution reduces the robustness of vSLAM, while the second
increases the likelihood of triggering relocalization.
Limitations. While SLAMTricker successfully demon-
strates controllable and systematic spoofing attacks against
multiple vSLAM systems, several limitations remain to
be addressed in future work: (1) Route dependence:
SLAMTricker assumes predictable trajectories for offline
analysis; effectiveness may drop if the victim deviates
significantly from the planned route. (2) Environmental
robustness: The attack remains reliable under moderate
illumination or occlusion changes but requires further val-
idation under extreme outdoor conditions such as strong
sunlight, rain, or crowded scenes. (3) Generalization: Eval-
uation is limited to sparse-feature-based vSLAM systems.
Extending the framework to dense or neural SLAM re-
mains future work. Nevertheless, the systematic analysis of
SLAMTricker deepens the understanding of fundamental
vulnerabilities in SLAM pipelines and provides insights for
designing more resilient algorithms.

8. Conclusion

This paper focuses on the security of vision-based vS-
LAM for position estimation tasks in RVs. We propose
the first camera spoofing attack framework for vSLAM.
We demonstrate the effectiveness of SLAMTricker by
conducting experiments on three popular vSLAM methods.
Our results highlight the importance of addressing security
risks in RVs relying on vSLAM and the need for robust
vSLAM modules to prevent malicious attacks.

Acknowledgements

We thank the reviewers for their insightful suggestions
and comments. This work is supported by the National Re-
search Foundation, Singapore, and Cyber Security Agency
of Singapore under its National Cybersecurity R&D Pro-
gramme and CyberSG R&D Cyber Research Programme
Office. Any opinions, findings and conclusions or recom-
mendations expressed in these materials are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore, Cyber Security Agency of Singapore
as well as CyberSG R&D Programme Office, Singapore.

12

References

[1] “irobot brings visual mapping and navigation to the roomba
980.” https://spectrum.ieee.org/irobot-brings-visual-mapping-and-n
avigation-to-the-roomba-980, 2023.

[2] “Nvidia drive.” https://on-demand.gputechconf.com/gtc-cn/2019/pd
f/CN9618/presentation.pdf, 2023.

[3] “Dji tello ros2.” https://github.com/tentone/tello-ros2, 2023.

[4] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-
Noguer, “Pl-slam: Real-time monocular visual slam with points and
lines,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), 2017, pp. 4503–4508.

[5] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu,
A. Kapoor, and S. A. Scherer, “Tartanair: A dataset to push the limits
of visual slam,” in Proceedings of the International Conference on
Intelligent Robots and Systems (IROS), 2020, pp. 4909–4916.

[6] K. Liu, A. Xiao, J. Huang, K. Cui, Y. Xing, and S. Lu, “D-lc-
nets: Robust denoising and loop closing networks for lidar slam in
complicated circumstances with noisy point clouds,” in Proceedings
of the International Conference on Intelligent Robots and Systems
(IROS), 2022, pp. 12 212–12 218.

[7] X. Zhao, S. Yang, T. Huang, J. Chen, T. Ma, M. Li, and Y. Liu,
“Superline3d: Self-supervised line segmentation and description for
lidar point cloud,” in Proceedings of the European Conference on
Computer Vision (ECCV), vol. 9, 2022, pp. 263–279.

[8] G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, “Mulran: Mul-
timodal range dataset for urban place recognition,” in Proceedings
of the International Conference on Robotics and Automation (ICRA),
2020, pp. 6246–6253.

[9] P. Gao, S. Zhang, W. Wang, and C. X. Lu, “Dc-loc: Accurate
automotive radar based metric localization with explicit doppler
compensation,” in Proceedings of the International Conference on
Robotics and Automation (ICRA), 2022, pp. 4128–4134.

[10] S. Zheng, J. Wang, C. Rizos, W. Ding, and A. el Mowafy, “Simultane-
ous localization and mapping (slam) for autonomous driving: Concept
and analysis,” Remote Sensing, vol. 15, no. 4, p. 1156, 2023.

[11] J. Cheng, L. Zhang, Q. Chen, X. Hu, and J. Cai, “A review of
visual slam methods for autonomous driving vehicles,” Engineering
Applications of Artificial Intelligence, vol. 114, p. 104992, 2022.

[12] K. L. Lim and T. Bräunl, “A review of visual odometry methods and
its applications for autonomous driving,” CoRR, vol. abs/2009.09193,
2020.

[13] A. Tourani, H. Bavle, J. L. Sánchez-López, and H. Voos, “Visual
slam: What are the current trends and what to expect?” Sensors,
vol. 22, no. 23, p. 9297, 2022.

[14] M. Filipenko and I. Afanasyev, “Comparison of various slam systems
for mobile robot in an indoor environment,” in Proceedings of the
IEEE Conference on Intelligent Systems, 2018, pp. 400–407.

[15] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, 2017.

[16] B. Bescós, J. M. Fácil, J. Civera, and J. Neira, “Dynaslam: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics Autom.
Lett, 2018.

[17] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual-inertial and multi-map slam,” IEEE Transactions on Robotics,
2021.

[18] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal
of Field Robotics, 2014.

[19] D. A. Schmidt, K. Radke, S. A. Çamtepe, E. Foo, and M. Ren, “A
survey and analysis of the gnss spoofing threat and countermeasures,”
ACM Computing Surveys, 2016.

[20] S. Z. Khan, M. Mohsin, and W. Iqbal, “On gps spoofing of aerial
platforms: a review of threats, challenges, methodologies, and future
research directions,” PeerJ Computer Science, 2021.

[21] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with devil:
Security of multi-sensor fusion based localization in high-level au-
tonomous driving under gps spoofing,” in USENIX Security Sympo-
sium, 2020.

[22] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and
Y. Yang, “All your gps are belong to us: Towards stealthy manipu-
lation of road navigation systems,” in USENIX Security Symposium,
2018.

[23] B. Chen, W. Wang, P. Sikorski, and T. Zhu, “Adversary is on the
road: Attacks on visual slam using unnoticeable adversarial patch,”
in USENIX Security Symposium, 2024.

[24] W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu, “I can see the
light: Attacks on autonomous vehicles using invisible lights,” in ACM
Conference on Computer and Communications Security, 2021.

[25] M. H. Ikram, S. Khaliq, M. L. Anjum, and W. Hussain, “Perceptual
aliasing++: Adversarial attack for visual slam front-end and back-
end,” IEEE Robotics Autom. Lett, 2022.

[26] Y. Nemcovsky, M. Jacoby, A. M. Bronstein, and C. Baskin, “Physical
passive patch adversarial attacks on visual odometry system,” in
ACCV, 2022.

[27] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Computer Vision and
Pattern Recognition, 2012.

[28] “Visual odometry / slam evaluation 2012,” http://www.cvlibs.net/dat
asets/kitti/eval odometry.php, 2022.

[29] “4seasons dataset,” https://cvg.cit.tum.de/data/datasets/4seasons-dat
aset, Tech. Rep., 2024.

[30] “The euroc mav dataset,” https://projects.asl.ethz.ch/datasets/doku.p
hp?id=kmavvisualinertialdatasets, 2023.

[31] “Rgb-d slam dataset and benchmark,” https://cvg.cit.tum.de/data/da
tasets/rgbd-dataset, 2022.

[32] “Urban street design guide - signal cycle lengths.”
https://nacto.org/publication/urban-street-design-guide/intersectio
n-design-elements/traffic-signals/signal-cycle-lengths/, 2022.

[33] Y. Xu, X. Han, G. Deng, G. Li, Y. Liu, J. Li, and T. Zhang, “Sok:
Rethinking sensor spoofing attacks against robotic vehicles from a
systematic view,” in EuroSP, 2023.

[34] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen, “See-
ing isn’t believing: Towards more robust adversarial attack against
real world object detectors,” in ACM Conference on Computer and
Communications Security, 2019.

[35] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei,
“Fooling detection alone is not enough: Adversarial attack against
multiple object tracking,” in International Conference on Learning
Representations, 2020.

[36] P. Jing, Q. Tang, Y. Du, L. Xue, X. Luo, T. Wang, S. Nie, and S. Wu,
“Too good to be safe: Tricking lane detection in autonomous driving
with crafted perturbations,” in USENIX Security Symposium, 2021.

[37] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and
Y. Elovici, “Phantom of the adas: Securing advanced driver-assistance
systems from split-second phantom attacks,” in ACM Conference on
Computer and Communications Security, 2020.

[38] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky, O. Drokin, and
Y. Elovici, “Phantom of the adas: Phantom attacks on driver-
assistance systems,” IACR Cryptology ePrint Archive, 2020.

[39] T. Sato, J. Shen, N. Wang, Y. Jia, X. Lin, and Q. A. Chen, “Dirty road
can attack: Security of deep learning based automated lane centering
under physical-world attack,” in USENIX Security Symposium, 2021.

[40] “Gopro hero 11,” https://gopro.com/en/us/shop/cameras/hero11-bla
ck/CHDHX-111-master.html, 2022.

13

https://spectrum.ieee.org/irobot-brings-visual-mapping-and-navigation-to-the-roomba-980
https://spectrum.ieee.org/irobot-brings-visual-mapping-and-navigation-to-the-roomba-980
https://on-demand.gputechconf.com/gtc-cn/2019/pdf/CN9618/presentation.pdf
https://on-demand.gputechconf.com/gtc-cn/2019/pdf/CN9618/presentation.pdf
https://github.com/tentone/tello-ros2
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://cvg.cit.tum.de/data/datasets/4seasons-dataset
https://cvg.cit.tum.de/data/datasets/4seasons-dataset
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://cvg.cit.tum.de/data/datasets/rgbd-dataset
https://cvg.cit.tum.de/data/datasets/rgbd-dataset
https://nacto.org/publication/urban-street-design-guide/intersection-design-elements/traffic-signals/signal-cycle-lengths/
https://nacto.org/publication/urban-street-design-guide/intersection-design-elements/traffic-signals/signal-cycle-lengths/
https://nacto.org/publication/urban-street-design-guide/intersection-design-elements/traffic-signals/signal-cycle-lengths/
https://gopro.com/en/us/shop/cameras/hero11-black/CHDHX-111-master.html
https://gopro.com/en/us/shop/cameras/hero11-black/CHDHX-111-master.html

[41] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in IEEE International Conference on Robotics and
Automation, 2009.

[42] L. Xiao, J. Wang, X. Qiu, Z. Rong, and X. Zou, “Dynamic-slam:
Semantic monocular visual localization and mapping based on deep
learning in dynamic environment,” Robotics and Autonomous Sys-
tems, 2019.

[43] S. Milz, G. Arbeiter, C. Witt, B. Abdallah, and S. K. Yogamani,
“Visual slam for automated driving: Exploring the applications of
deep learning,” in CVPR Workshops, 2018.

[44] R. Li, S. Wang, and D. Gu, “Deepslam: A robust monocular slam
system with unsupervised deep learning,” IEEE Trans. Ind. Electron,
2021.

[45] Z. Ali, M. L. Anjum, and W. Hussain, “Adversarial examples for
handcrafted features,” in BMVC, 2019.

[46] H. Kim, R. Bandyopadhyay, M. O. Ozmen, Z. B. Celik, A. Bianchi,
Y. Kim, and D. Xu, “A systematic study of physical sensor attack
hardness,” in IEEE Symposium on Security and Privacy, 2024.

[47] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of imu
and vision for absolute scale estimation in monocular slam,” Journal
of Intelligent and Robotic Systems, 2011.

[48] W. Huang and H. Liu, “Online initialization and automatic camera-
imu extrinsic calibration for monocular visual-inertial slam,” in IEEE
International Conference on Robotics and Automation, 2018.

[49] Y.-S. Shin, Y. S. Park, and A. Kim, “Direct visual slam using sparse
depth for camera-lidar system,” in IEEE International Conference on
Robotics and Automation, 2018.

[50] Y. Zhu, C. Zheng, C. Yuan, X. Huang, and X. Hong, “Camvox: A
low-cost and accurate lidar-assisted visual slam system,” in IEEE
International Conference on Robotics and Automation, 2021.

Appendix

1. Distribution of Map Points

In this section, we aim to generalize the common fea-
tures of the target scenario in order to enhance the efficiency
of identifying potential attack opportunities. The target sce-
nario for SLAMTricker is dependent on the distribution
of map points, and thus, this study conducts an in-depth
evaluation of various real-world environments to identify
and analyze the factors that determine the distribution of
map points. The scenarios in our evaluation is collected from
the KITTI dataset. Furthermore, additional scenarios were
recorded using a GO Pro 11 camera in order to expand
the scope of the evaluation. The ORB-SLAM2 framework
was used to analyze the distribution of map points in each
scenario. It is crucial to note that for a pixel in a frame to
be converted into a map point, it must first be extracted as
a feature and observed by multiple consecutive keyframes.
As such, we regard the feature extraction and temporal con-
tinuity as key factors that influence the distribution of map
points and conduct analysis. The results of this analysis can
also help us better understand the attack vectors applicable
to different scenarios (Table 1).

1.1. Feature Extraction. We investigate the correlation
between feature extraction and map point distribution from
three distinct perspectives: the complexity of the environ-
ment (Figure 14), the distance between the target object and
victim RV (Figure 15), and the lighting conditions (Figure
17). To specifically examine the impact of the complexity
of the environment on feature extraction, we selected three
representative scenarios. (1) A centralized environment,
characterized by a limited number of objects located close
together, such as an indoor corridor, results in a concentrated
distribution of features, making it a suitable target for our
proposed attacks. (2) A linear environment, characterized by
objects arranged in a linear structure from near to far, such
as a highway, results in a mostly concatenated distribution of
features, which makes it possible to attack more features by
using a 3D object close to the victim RV. (3) A decentralized
environment, characterized by objects scattered throughout
the frame, results in a scattered distribution of features,
making it unsuitable for our attacks.

The distribution of features at varying distances from
both the victim RV and the target object are depicted in
Figures 15a-c. A gradual decrease in distance is observed to
coincide with an increase in the number of features present
on the target object. This phenomenon can be attributed
to the fact that as the distance between the two entities
decreases, the number of pixels comprising the target object
also increases, leading to a greater level of detail being
present at close range. As the distribution of features is
contingent upon the distance between the victim RV and
the target object, it is important to consider the suitability
of different distances for potential attack scenarios. At far
distances, the absence of features renders the target object
unsuitable for attack. Conversely, at close distances, the
abundance of features presents challenges for certain types
of attacks, such as the pose deviation and relocalization
attacks. As such, it can be inferred that the optimal range for
targeted attacks is at medium distances, where the number
of features is sufficient for successful execution while still
being manageable.

Moreover, the presence of shadows under varying light-
ing conditions must also be discussed when evaluating po-
tential attack scenarios. As Figure 17 shows, shadow edges
are readily identified as features, making them advantageous
targets for attack. Note that projection vector is suitable for
this scenario, and the shape of the shadow can be flexibility
manipulated through a projector in the execution of such
attacks.

1.2. Temporal Continuity. The ability to maintain con-
sistency of features across consecutive keyframes is an
important factor to consider in evaluating potential attack
scenarios. The speed of the victim RV is a key determinant
of this continuity. As depicted in Figure 20a, when the
RV is driving at high speeds, small objects on the side
of the road may be difficult to detect as map points due
to the rapid changes in position of the target object. Con-
versely, at relatively low speeds (Figure 20b), small traffic
signs can be easily detected as map points. Furthermore,

14

large objects are guaranteed to be visible across multiple
keyframes, eliminating this issue (Figure 20c). In light of
these considerations, the scenario of small objects at high
speeds can be disregarded as they are unlikely to provide
features. Additionally, the pose deviation attack focuses on
attacks within consecutive keyframes, making both the high
and low speed of the RV unsuitable in this case.

2. Evaluation Details

Datasets (1) KITTI. The KITTI dataset, primarily geared
towards the autonomous driving domain, is a widely ac-
claimed dataset used for benchmarking machine learning
and computer vision algorithms. Collected predominantly in
varied urban settings, this dataset provides a comprehensive
suite of sensor data, encompassing 3D point clouds, and
images (comprising both stereo and RGB imagery). The
data in KITTI are collected from a standard station wagon
with two high-resolution color and grayscale video cameras.
Additionally, it includes object annotations for each scene.
For each frame in the data trace, there are 15 cars and 30
pedestrians at most. The diversity and richness of data make
KITTI uniquely positioned for tasks such as object detection
and tracking, road detection, and semantic segmentation,
crucial for the performance of autonomous vehicles. Overall,
it is an outdoor dataset captured from cities and highways
with automobiles.
(2) 4Seasons. The 4Seasons dataset is a versatile dataset
specifically tailored for autonomous driving and urban nav-
igation tasks under diverse and dynamic environmental con-
ditions. It is collected in various urban and rural environ-
ments across multiple seasons, times of day, and weather
conditions, providing a rich and varied data source for
robust algorithm development. The dataset’s emphasis on
environmental variability and seasonal changes makes it
uniquely suited for addressing challenges related to domain
adaptation and robust autonomous driving in real-world con-
ditions. Overall, it is an outdoor dataset captured in diverse
urban and rural environments under varying conditions.
(3) EuRoC. Distinctly different from KITTI, the EuRoC
dataset is tailored to meet the demands of robotics, specifi-
cally Micro Aerial Vehicles (MAVs). The dataset encom-
passes high-fidelity visual-inertial data recorded across a
variety of challenging indoor environments. The data are
collected in the ETH machine hall. Such an environment-
specific data collection makes EuRoC an excellent resource
for the development and evaluation of algorithms tackling
visual-inertial odometry, 3D reconstruction, and vSLAM, all
pivotal for the navigation and localization tasks of MAVs.
Overall, it is an indoor dataset collected in the ETH machine
hall with MAVs.
(4) TUM. The TUM dataset stands out for its extensive
utility in developing and testing algorithms for visual odom-
etry and vSLAM. Primarily gathered in different indoor
scenarios using a small automatic vehicle with a RGB-D
camera, this dataset is designed with a specific focus on
indoor robotics, e.g., Automatic Guided Vehicle (AGV).

What sets TUM apart is the inclusion of ground truth tra-
jectory data, which is obtained from a high-accuracy motion
tracking system. This ground truth data enables researchers
to carry out detailed performance evaluations of algorithms,
particularly those aimed at indoor robotic navigation and
mapping. Overall, it is a dataset with various indoor scenes
focusing on AGVs.
vSLAM Frameworks (1) ORB-SLAM2. ORB-SLAM2 is
an efficient and popular vSLAM system. Notably, ORB-
SLAM2 can concurrently compute the trajectory of the cam-
era and construct a sparse 3D reconstruction of the scene. Its
robustness extends to handling scenarios of intensive motion
clutter, enabling wide baseline loop closing, and relocaliza-
tion, supplemented with an automatic initialization function.
The advancements over its predecessor, the original ORB-
SLAM, are primarily manifested in an enhanced mapping
and loop closing system, providing increased robustness and
functionality.
(2) DynaSLAM. DynaSLAM is an advanced extension of
the ORB-SLAM2 framework. It differs from ORB-SLAM2
in its proficiency in managing dynamic objects. Traditional
vSLAM frameworks often stumble when dealing with non-
static environments. DynaSLAM addresses this challenge by
distinguishing and isolating dynamic objects from the static
background. The outcome is a more dependable mapping
and tracking of the environment.
(3) ORB-SLAM3. ORB-SLAM3 is the most popular open-
source vSLAM framework. It introduces a novel, robust,
real-time monocular vSLAM method capable of handling
dynamic scenarios and improved relocalization. Besides, it
introduces the concept of a multi-map system, which allows
the system to start a new map when the previous map is lost
and then merge the maps when the same area is revisited.
This functionality is not present in ORB-SLAM2.
Real-world Scenarios (1) Pose Deviation Attack (Figure
18(a)). In this attack scenario, a corner is selected as the
target. The UGV advances slowly, executing a right turn
upon reaching the wall. Since features are extracted from
multiple switches, we use a projector to project a complex
image, a large tree, onto the wall, thereby generating a
cluster of extra features. The features are converted into
map points through fixing the image for a while. Then we
animate the tree to the right after the local mapping module
stores the features into the map. The estimated position of
the robot undergoes a lateral shift, ultimately resulting in
a collision with the wall on the left during an attempt to
return to its original position.
(2) Relocalization Attack (Figure 18(b)). In this attack sce-
nario, an indoor corridor is selected as the target. The UGV
follows the wall while navigating. Features are obtained
from the front door and ceiling. To effectively overwrite
nearly all features and map points ahead, another UGV
equipped with a piece of white paper is controlled to over-
take from the left side of the victim UGV and move to its
front. The map points number in the remaining right corner
would be less than 10, and the robot re-estimates its pose
through a relocation operation, which takes approximately
12 seconds.

15

TABLE 1: The relationship between three attack vectors and different scenarios under each attack.
(sticker: 2D sticker : projection : 3D object)

Scenario Type Pose Deviation Attack Relocalization attack Map Point
Manipulation Attack

Illusion
Creating Attack

Feature
Extraction

Complexity
Centralized Environment
Linear Environment
Decentralized Environment - - - -

Distance
Close to the robot - -
Middle Distance
Far from the robot - - - -

Light Shadow

Temporal
Continuity Velocity

High Speed (Small Object) - - - -
Low Speed (Small Object) -
High Speed (Large Object) -

!"#$%&'()"*+,&-$.'/+)0'1&'(2%0)'&) !3#$4+'&")$.'/+)0'1&'($2$5+678"9 !:#$;&:&'()"*+,&-$.'/+)0'1&'(2%+(9

Figure 14: The relationship between environmental complexity and map point distribution.

!"#$%&'($)*+,"'-. !/#$0*112.$)*+,"'-. !-#$34&5,$)*+,"'-.

Figure 15: The relationship between distance and map point distribution.

!"#$%&'($)*++,$-$.&'$/01+"2!3#$456$)*++,$-$)7388$/01+"2!0#$%&'($)*++,$-$)7388$/01+"2

Figure 16: The relationship between vehicle speed and map point distribution.

Figure 17: The relationship between shadow and map
point distribution.

!"#$%&'($)(*+",&-$
./"01

!0#$2"3$%&+-4'$
2"-+356",&-$./"01

!7#$8(6&0"6+9",&-$
./"01

!:#$;665'+&-$<=(",->$
./"01

Figure 18: The four proposed spoofing attack scenarios in
physical world.
(3) Map Point Manipulation Attack (Figure 18(c)). In this
attack scenario, a laboratory with a large area of white
walls is selected as the target. The UGV moves around
the laboratory and returns to its starting location. On its
second pass through the attack area, a traffic cone and a
whiteboard marking with mosaics are placed in front of the
white walls. These spoofing vectors generate a large number
of additional features, which are eventually converted into

new map points after a while. The large discrepancy in the
distribution of map points before and after the two passes
results in the loop closing failure.
(4) Illusion Creating Attack (Figure 18(d)). In this attack
scenario, two similar areas within an outdoor corridor are
selected as targets, characterized by their extensive white
wall sections resulting in sparse map points. The UGV ini-
tially moves in a direct route to location A, and then drives
around and proceeds to location B. Under normal conditions,
the UGV can successfully estimate its pose and delineate an
accurate trajectory. We introduce identical features and map
points to both areas by deploying a whiteboard board with
mosaic markers. As the UGV reaches location B, the high
similarity between the map points of two regions triggers
the loop-closure module, causing a false loopback detection.
This makes the UGV incorrectly estimate that it continues
to navigate within location A, and draw a wrong map.

16

TABLE 2: Notations adopted in this work.
Notation Description Notation Description

SLAMTricker A vSLAM Attack Framework G Graph Optimization Model in vSLAM
Φ Pre-processing Feature Extraction Function in vSLAM ρ Projection Function in vSLAM
Θ Feature Searching Function in vSLAM Ψ Attack Behavior

HDist Calculate Hamming Distance BinIdx Calculate Bin Index
A Adversary’s Capability C Environment Conditions
Latk Spoofing Loss V Victim Map Point Container

Top3BinIdx A Set of Top 3 Bin Indexes p Estimated robot’s Pose
p′ Estimated robot’s Pose under Attack x An Image
M Pristine 3D Map Points m Calculated 2D Map Points
K Pristine 3D Features k Calculated 2D Features
S Malicious 3D Features from Spoofing Vectors s Calculated Malicious 2D Features
ms Influenced 2D Map Points by Attacks Φ(S)l Malicious 2D Features at Level l
k′l Extracted 2D Points at Level l Mt 3D Map Points at Time t
T 4×4 Transformation Matrix R 3×3 Rotation Matrix
r 3×1 Translation Matrix IC Camera Intrinsic Matrix
nm Number of Map Points and 2D Features n′m Number of High Density Map Points
nk Number of 3D Features nS Number of Malicious 3D Features
ns Number of Influenced Map Points dmi

Density for 2D Map Point mi

l Downsampling Level lmi
, lki

Level for Point mi, ki
ε Downsample Factor εl Downsample Factor at Level l

fx, fy Focal Length cx, cy Optical Center Offset
R Attack Ratio α, β Rotation Constraint
τ Threshold of Distance between Map Points γ Threshold of Point Density
r Searching Radius

TABLE 3: Attack contexts of our experiments on datasets.
Spoofing Attack Target Module Target Scenario (Dataset-ID) Deployment Methods Attack Goal
Pose Deviation Tracking Three-way junction (4Seasons-Office Loop) Features Shifting Pose Deviation
Relocalization Tracking Suburban Highway (KITTI-01) Features Covering Localization Failure
Map Point Manipulation Local Mapping Suburban Highway (KITTI-01) Features Covering Map Points Reduction
Illusion Creating Loop Closing Three-way junction (4Seasons-Neighborhood) Features Adding Pose Deviation

TABLE 4: Robustness analysis in the physical world.
Spoofing Attack Target Module Target Scenario Attack Vectors Deployment Methods Attack Goal
Pose Deviation Tracking Indoor Room Light Projection Features Shifting Crash
Relocalization Tracking Indoor Corridor Object Placement Features Covering Loss Time for Recovery
Map Point Manipulation Local Mapping Indoor Room Object Placement Features Adding Loop Closing Failure
Illusion Creating Loop Closing Outdoor Corridor Object Placement Features Adding Mapping Task Failure

Figure 19: The distribution of map points under different image resolutions.

Figure 20: The distribution of map points under different vehicle speeds.

Figure 21: The distribution of map points under dynamic environment and different routes.

17

	Introduction
	Studies on vSLAM Systems
	Position Estimation Overview
	Vulnerability Analysis
	Preliminary Verification and Issues

	Models and Assumptions
	Threat Model
	Attacker Assumptions

	SLAMTricker
	Framework Overview
	Offline Attack Scenario Search
	vSLAM Formulation
	Environment Constrains
	Attack Scenario Search Scheme

	Online Spoofing Vector Generation
	Attack Formulation
	Input Perturbation Modeling
	Objective Function Design
	Optimization

	Evaluation
	Attack on Public Datasets
	Pose Deviation Attack
	Relocalization Attack
	Map Point Manipulation Attack
	Illusion Creating Attack
	Quantitative Evaluation

	Attack on Physical Robotic Platform
	Attack Feasibility Analysis
	Transferability Study

	Related Work
	Discussion and Limitation
	Conclusion
	References
	Appendix
	Distribution of Map Points
	Feature Extraction
	Temporal Continuity

	Evaluation Details

