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Abstract

Multi-objective evolutionary algorithms (MOEAs) are widely
used for searching optimal solutions in complex multi-
component applications. Traditional MOEAs for multi-
component deep learning (MCDL) systems face challenges
in enhancing the search efficiency while maintaining the di-
versity. To combat these, this paper proposes µMOEA, the
first LLM-empowered adaptive evolutionary search algo-
rithm to detect safety violations in MCDL systems. Inspired
by the context-understanding ability of Large Language Mod-
els (LLMs), µMOEA promotes the LLM to comprehend the
optimization problem and generate an initial population tailed
to evolutionary objectives. Subsequently, it employs adaptive
selection and variation to iteratively produce offspring, bal-
ancing the evolutionary efficiency and diversity. During the
evolutionary process, to navigate away from the local optima,
µMOEA integrates the evolutionary experience back into the
LLM. This utilization harnesses the LLM’s quantitative rea-
soning prowess to generate differential seeds, breaking away
from current optimal solutions. We evaluate µMOEA in find-
ing safety violations of MCDL systems, and compare its per-
formance with state-of-the-art MOEA methods. Experimen-
tal results show that µMOEA can significantly improve the ef-
ficiency and diversity of the evolutionary search.

Introduction
Multi-component deep learning systems (MCDL systems)
are intricate and characterized by significant uncertainty due
to their complexity. These systems often involve multiple in-
teracting modules, each with its own set of parameters and
behaviors, leading to unpredictable emergent properties. In
real-world scenarios, MCDL systems are increasingly be-
ing deployed in domains with substantial societal impact,
such as autonomous vehicles, healthcare, and financial ser-
vices. For instance, autonomous driving systems integrate
various components (e.g., object detection, path planning,
and decision-making), where even minor faults in one com-
ponent can lead to catastrophic outcomes (Bojarski et al.
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2016). Therefore, it is crucial to detect as many safety vi-
olations as possible in these systems to mitigate risks and
ensure reliability (Goodfellow et al. 2017).

Multi-objective evolutionary algorithms (MOEAs) are
widely applied to search for elite solutions to find safety vio-
lations in MCDL systems (Tian et al. 2022; Abdukhamidov
et al. 2023b,a). They can be formulated as multi-objective
optimization problems (Zhou et al. 2011). In practical evo-
lutionary search solutions based on genetic algorithms, these
multiple objectives correspond to various perspectives (e.g.,
maximize the quality of the solution, improve the diver-
sity of solutions, balance the cost of solutions against bene-
fits) (Ehrgott, Ide, and Schöbel 2014; Long 2014). However,
there are trade-offs between these objectives as they conflicts
with each other in many real-world scenarios.

The evolutionary search process generally consists of
three steps: 1) initializing the initial population, 2) evaluat-
ing each generated individual with a defined fitness function,
and 3) selecting high-fitness individuals to conduct variation
operators to generate offspring iteratively. However, exist-
ing MOEAs for detecting safety violations in MCDL sys-
tems (Tian et al. 2022) face two challenges that have not
been well addressed.

• Challenge-1: The initialization of the population highly
affects the search efficiency for elitist solutions. How-
ever, in many MOEAs, the initial population is created by
random initialization of parameters in the entire search
space, which is highly contingent and uncertain.

• Challenge-2: The evolutionary search process is prone
to get stuck at local optima. In existing MOEAs, the in-
dividuals of each generation are generated by the high-
fitness individuals retained from previous generations,
which tend to cause convergence prematurely and result
in a large number of iterations that only find few similar
safety violations of the MCDL systems.

The goal of this paper is to overcome the above challenges
and improve the evolutionary search efficiency and diversity.
Large Language Models (LLMs), such as GPT-4 from Ope-
nAI (Roumeliotis and Tselikas 2023)), have demonstrated
remarkable abilities in language understanding and quanti-



tative reasoning (Romera-Paredes et al. 2024; Zhang et al.
2022). So we propose to leverage these capabilities to gen-
erate the initial population and navigate the evolutionary
search process away from the local optima. However, de-
spite the LLMs’ expertise in interacting with humans, it is
infeasible to directly apply them to search for optimal and
diverse solutions for detecting safety violations of MCDL
systems. This is because MCDL systems normally have high
dimensionality and complexity, making it difficult for LLMs
to fully and accurately understand the search space. Addi-
tionally, since LLMs may not have enough specific domain
knowledge about the MCDL systems, they will arbitrarily
modify existing solutions and make up unreasonable solu-
tions, rendering them less effective.

We design µMOEA, the first LLM-empowered adaptive
evolutionary methodology. µMOEA uses LLM’s ability in
language understanding to better comprehend the search
task, which creates the individuals of the initial population
considering the objectives instead of random initialization,
thus addressing C1. Based on the initial population, to bal-
ance the search efficiency and diversity, µMOEA introduces
adaptive selection and a suite of adaptive variations, which
can dynamically adjust the mutation and crossover proba-
bilities based on the feedback from the search process and
the scores of chromosomes of individuals on different objec-
tives. During the search process, when it gets stuck, µMOEA
feeds back the evolutionary experience into the LLM, har-
nessing its quantitative reasoning ability to generate differ-
ential seeds to break out of local optimal solutions, thus ad-
dressing C2. We evaluate the effectiveness of µMOEA in
the task of searching for solutions to detect safety viola-
tions in MCDL systems (represented by the industrial au-
tonomous driving system), and compare it with the state-of-
the-art method based on multi-objective genetic algorithm
(NSGA-II). Experimental results show that µMOEA can find
more diverse elitist solutions more efficiently.

Background
Multi-Component Deep Learning Systems
MCDL systems are characterized by their intricate internal
logic, extensive interactions, and high coupling among vari-
ous components (Amodei et al. 2016; Varshney 2016). Their
complexity and opaqueness are further exacerbated by the
substantial uncertainty, high degree of interdependence, and
unpredictable nature of interactions across different deep
learning models within the systems. Thus an MCDL system
is often referred to as a “black box” (Hassija et al. 2024),
making it challenging to thoroughly detect potential safety
issues under varying conditions. It is necessary and urgent to
have effective methods for the examination and detection of
the internal problems in MCDL systems, without requiring
a detailed understanding of the intricate workings.

A proven strategy to detect safety violations in MCDL
systems is to generate solutions that simulate the diverse op-
erational conditions and assess the system’s behaviors (in-
cluding responses, decisions, operations/actions) to validate
whether it adheres to the safety specifications (Borg et al.
2018). Ensuring the safety and reliability of MCDL systems

requires diverse solutions to detect various potential vulner-
abilities and failures of MCDL systems in a wide range of
conditions (Asharf et al. 2020). However, given the large
state space of MCDL systems, traditional methods strug-
gle to cover more possible cases efficiently. Thus, there is
a growing need for more adaptive and comprehensive ap-
proaches to safety assessment of MCDL systems.

MOEAs For MCDL Systems
MOEAs, represented by NSGA-II (Deb et al. 2002), are
widely used in detecting safety violations in MCDL systems.
They are capable of exploring the vast and complex space
of system behaviors and identify any misbehaviors (Mishra
et al. 2019). This is achieved with evolving and optimiz-
ing solutions to cover possible situations (Wirsansky 2020)
where the system behaviors violate the safety specifications.

The overall process of an MOEA (e.g., NSGA-II) is given
as follows.

• Initial population: NSGA-II commences by initializing
a population of N solutions, which is randomly gener-
ated within the solution space.

• Fitness function: given a solution space S and
objective functions f1, f2, ..., fm, the multi-
objective optimization can be formulated as:
maxx∈S{f1(x), f2(x), ..., fm(x)}. To detect the
safety violations in MCDL systems, the multiple objec-
tives commonly include maximizing the fault detection
and solution diversity.

• Ranking-based selection: in the i-th generation, the so-
lutions are evaluated by the fitness function and sorted by
the crowding distance. Pi consists of the non-dominated
solutions obtained by each Pareto frontier. NSGA-II se-
lects k solutions from Pi.

• Variation: NSGA-II calculates the crossover probability
and mutation probability for each selected solution, and
compares the probability with the threshold of variation
to determine whether to conduct multi-point crossover
or value mutation on it. The probability of variation is
calculated by a random value in (0, 1) and the threshold
is pre-defined by a fixed value in (0, 1).

• Iterative generations: after generating N offspring solu-
tions, the next generation’s population is determined by
selecting the best N solutions from the current popula-
tion Pi and the offspring population Pi+1. NSGA-II iter-
atively searches and refines candidate solutions based on
their performance against these defined objectives.

Methodology
We introduce µMOEA, a novel LLM-empowered adaptive
evolutionary search algorithm for MCDL systems. The de-
tailed process of µMOEA is illustrated in Algorithm 1 and
Figure 1. It consists of three steps: instructing the LLM to
create the initial population (line 2), evolving the popula-
tion adaptively to search for optimal solutions (line 3-12),
guiding the LLM to generate differential seeds based on the
feedback of the evolutionary process (line 13-14). Below we
give detailed explanation of each step.



Algorithm 1: LLM-empowered adaptive evolutionary search
Ensure: The solution set SCR
Require: The form of solution AE, starting prompt pt
1: P← ∅, P← P

⋃
LLM generate(AE, pt)

2: while not TerminationCondition() do
3: TS, SC, MS← ∅
4: for pi ∈ P[-1] do
5: execute pi
6: if ∃ ego safety violation in pi then
7: SCR← SCR

⋃
pi

8: calculate fitness S
9: TS← TS

⋃
S

10: SC, MS← ADAPTIVE SELECTION(P, S)
11: P← P

⋃
ADAPTIVE VARIATION(SC, MS)

12: prompt = pt + generate feedback(P, S)
13: P← P

⋃
LLM generate(prompt)

14: return SCR
15: procedure ADAPTIVE SELECTION(P, S)
16: SC,MS ← ∅
17: CRr,MRr = calculate variation rate(S)
18: for pi, pj ∈ P do
19: select fitness si, sj ∈ S
20: ci,j = generate crossover probability(si, sj , S)
21: if ci,j > CRr then
22: SC ← SC

⋃
(pi, pj)

23: for pi ∈ P do
24: mi = generate mutation probability(si, S)
25: if mi > MRr then
26: MS ←MS

⋃
pi

27: return SC, MR
28: procedure ADAPTIVE VARIATION(SC, MS)
29: for xi ∈ SC do
30: p′i, p

′
j ← adaptive crossover(xi)

31: PN ← PN
⋃
{p′i, p′j}

32: for pi ∈MS do
33: p′i ← adaptive mutation(pi)
34: PN ← PN

⋃
p′i

35: return PN

Instructing LLM to Create Initial Population
When starting an evolutionary search, instead of randomly
initializing N solutions as the initial population, µMOEA
makes the LLM understand the evolutionary task and cre-
ate the initial population by considering the objectives of the
search. This is achieved with the linguistic prompt. An ex-
ample of the prompt patterns are shown in Table 1, which
are designed from the following aspects:

• The structure of the solution, including essential blocks
of the test case, the participant or element that each block
represents. This promotes the LLM to understand the cor-
rect representation of solutions.

• The keyword/statement, essential attributes and their
value ranges of each block. This promotes the LLM to
reason within the feasible ranges.

• The examples of feasible solutions and their explanations
of the requirements. This promotes the LLM to learn the
test requirements.

These components of the prompt pattern enable µMOEA to
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Figure 1: Overall workflow of µMOEA

facilitate the LLM to understand the requirement and learn
how to generate individuals for the initial population. This
also addresses the limitation of the LLM that struggles with
high-dimensional search spaces.

Table 1: Prompt patterns for LLM-based initial population

Prompt Sample of linguistic patterns

Starting
Prompt

You are an expert of < MCDL system>
We want you to generate <N>solutions
for the system

Task Under-
-standing
Prompt

<The form of the solution>
<Introduction of parameters of solution>
<Introduction of the elitism of solution>

µMOEA sends the starting prompt along with the task un-
derstanding prompt into the LLM, to obtain the initial pop-
ulation. Taking the autonomous driving system as an exam-
ple, a template of “introduction of the elitism of solution” is
given as follows: the trajectories of NPC vehicles and pedes-
trians are required to disturb the ego vehicle’s driving path.
They need to be different from each other, and the waypoints
of them need to involve different lanes.

Evolving Population Adaptively for Optimal
Solutions
Based on the initial population, µMOEA adaptively evolves
them to search for diverse optimal solutions to detect safety
violations in the MCDL system. Each solution is encoded
as an individual Pi = {C1, C2, ...Cn}, where Cn represents
the n-th chromosome consisting of a series of genes (a chro-
mosome commonly corresponds to an element or object in
the solution, and a gene corresponds to an action or opera-
tion). Different from existing MOEAs where the parent in-
dividuals and their chromosomes undergo the same level of
mutation and crossover, µMOEA adopts adaptive selection
and adaptive variations, to improve the heritability of the
elite features and search efficiency.

(1) For each generation, µMOEA builds improved Pareto-
optimal solutions considering multiple objectives to mea-
sure the potential of solutions to expose safety violations of



the MCDL system. The criticality metric is used to eval-
uate how close the tested MCDL system’s behavior is to
safety violations. The multi-objectives of µMOEA include
criticality and diversity. Practically, criticality is formulated
as: fsi

c = mint∈si{SV t
MCDL}, where SV is the distance

to safety violations. The diversity metric is used to eval-
uate the coverage of the test cases generated by previous
generations. Practically, diversity is formulated as: fsi,sj

d =∑|si|
n=1

∑|sj |
m=1 TDsn

i
,sm

j

|si|∗|sj | The fitness function is represented as:

S ← argi∈G {minfc(i),maxfd(i)}
where G represents the current generation; fc is the metric
that evaluates how close the tested MCDL system’s behav-
ior is to safety violations; fd is the metric that evaluates the
coverage of test cases generated by previous generations.

(2) Based on (1), µMOEA performs adaptive selection,
which selects high-fitness solutions based on the fitness eval-
uated by the multiple objectives as parents for variation to
generate offspring, iteratively producing Pareto-optimal so-
lutions. To determine the solutions for crossover and muta-
tion, µMOEA varies the probabilities of crossover and muta-
tion adaptively in response to the fitness values of the cur-
rent population, which promotes high-fitness solutions hav-
ing larger crossover probabilities and low-fitness solutions
having larger mutation probabilities.

(3) For the selected individuals, µMOEA performs adap-
tive variation: which includes adaptive crossover and adap-
tive mutation. It dynamically selects different types of vari-
ation operations based on the ranking of chromosomes’
scores in the population on each objective, which makes elite
chromosomes better spread their features into the offspring
with more different chromosomes, and makes inferior chro-
mosomes more disrupted. Below we give detailed descrip-
tion of these two steps.

Adaptive Selection. For the current population and its
parents, µMOEA adaptively determines the candidate solu-
tions to conduct crossover and mutation according to their
fitness values and fitness level of the population. For the
solution si with fitness fi in the population pn, fmax and
fmin represent the maximal and minimal fitness values in
pn respectively. For each population pn, µMOEA calculates
the average values of fitness, represented as f . The mutation
probability of si is PMi. For the two solutions si and sj ,
their crossover probability is represented as PCi,j , and f

′

i,j
is the larger of the fitness values.

For the selection of solutions for crossover, the higher the
fitness value of one solution, the larger the probability of
crossover between it and the other candidate solution. For
si and sj , The closer f

′

i,j is to fmax, the larger the PCi,j

is. The crossover probability of si and sj is computed as
follows, where 0 < k2, k4 ≤ 1. If PMi ≥ thresholdnm,
µMOEA will conduct adaptive mutation on it.

PMi = min{k2(fmax − fi)/(fmax − f), k4}
For the selection of solutions for mutation, the smaller the

fitness value of the solution, the higher the probability of
mutating its parameters. For si, the closer fi is to fmin, the

larger PMi is. The mutation probability of si is computed
as follows, where 0 < k2, k4 ≤ 1. If PMi ≥ thresholdnm,
µMOEA conduct adaptive mutation on it.

PMi = min{k2(fmax − fi)/(fmax − f), k4},

To disrupt the solutions with above-average fitness val-
ues to search the spaces for the region with global optimum,
and ensure that all solutions with subaverage fitness values
compulsorily undergo mutation, we use a value of 0.6 for k1
and k2, and 1.0 for k3 and k4. These values can be changed
according to the actual needs.

Since the threshold of variation (thresholdn) has great
effects on the overall variation of the population pn, differ-
ent from the MOEAs that pre-define a fixed value for the
threshold, µMOEA computes thresholdn for each popula-
tion pn adaptively based on the population’s overall level
of fitness values. When the fitness values of the solutions
in pn converge, µMOEA decreases the thresholdn to fa-
cilitate the crossover and mutation to create more different
offspring. Similarly, if the fitness values of the population
scatter, µMOEA increases the thresholdn to accelerate the
convergency to find an optimal solution. The calculation of
thresholdn is given as follows, where 0 < c1,m1 ≤ 1.

thresholdn = c1(fmax − f) +m1(f − fmin)

Adaptive Variation. This includes adaptive crossover and
adaptive mutation. The variation strategy has a higher prob-
ability that the generated offspring can integrate the advan-
tages of parents in convergence and diversity.

For adaptive crossover, given two candidate solutions of
crossover, based on the objective that the solution ranks
highest in the population, the chromosome with the high-
est value on the objective is selected for crossover using
the single-point crossover with a random chromosome in the
other candidate solution.

For adaptive mutation, given the candidate solution of
mutation, different types of mutation operations are dynami-
cally determined based on the fitness values of chromosomes
in the solution. If the chromosome has a high score on any
objective in the population, µMOEA adjusts its parameters
slightly (e.g., modifying the parameters of some genes on it)
to better explore the surrounding space. Otherwise, µMOEA
makes major changes to it, e.g., changing the combinations
or sequences of genes on it, adding new actions/operations
into it, replacing some genes with new actions/operations.

Guiding LLM to Generate Differential Seeds
For the generated solutions, µMOEA runs them to detect the
safety violations in the MCDL system. During the adap-
tive evolutionary search, we find that as the iterations in-
crease, the evolutionary search is prone to falling into lo-
cal optimality, causing the newly generated solutions simi-
lar to those optimal solutions generated by previous genera-
tions. To solve the issue, when the evolutionary search gets
stuck, µMOEA generates differential seed solutions for the
next generation, which encourages the exploration of more
diverse solutions.



Table 2: Rules for feedback prompt generation

Rule Sample of feedback prompt

1
Each solution in <SE>exposed a safety violation of <MCDL system>. So they are what we want.
No safety violation occurred in <SN>, which are not required by us. We want you to
generate <N>solutions that can expose safety violations and differentiate from <SE>

2
The solutions in <R>are not different enough from <SE>. Please re-generate to create new
solutions that have high potential to expose safety violations of <MCDL system>.

Specifically, when the high-fitness solutions in t consec-
utive generations remain the same, µMOEA selects the opti-
mal solutions generated by the previous iterations (collect-
ing their chromosomes in SE), and generates the feedback
prompt using Rule 1 in Table 2 (where SN represents the
chromosomes of non-optimal solutions). The prompt pattern
of Rule 1 is to promote the LLM to learn the characteristics
of previous evolutionary iterations, and then create differen-
tial seed solutions leveraging its reasoning capability.

Considering that the LLM is typically accustomed to gen-
erating outputs that resemble the examples provided in the
input, µMOEA examines the differences between the LLM’s
generated solutions to the input solutions. For the solu-
tion si, its difference from the input solutions is calculated
as: di = (

∑
xo∈(SN

⋃
SE) EDsi,xo)/r, where ED repre-

sents the Euclidean Distances between two solutions. For
the LLM’s generated solutions that do not meet the differ-
ence requirements with the previous solutions, µMOEA gen-
erates the prompt based on Rule 2 in Table 2 to make the
LLM re-generate qualified differential seed solutions.

Evaluation
To evaluate the effectiveness and advancement of µMOEA,
we apply it to search for solutions that detect safety vio-
lations of the representative MCDL system, and compare
µMOEA’s performance to the state-of-the-art method.

Experiment Setup
MCDL System. Autonomous driving systems (ADSs) ex-
emplify a prototypical case of multi-component deep learn-
ing (MCDL) systems, comprising various components built
upon multiple deep learning models. These components and
models engage in high-frequency communication and input-
output interactions. Given the considerable social implica-
tions of autonomous driving technology, detecting safety vi-
olations of ADSs is of substantial importance.

We select the industrial full-stack ADS, Baidu Apollo
(apo 2013) to evaluate the ability of µMOEA in finding
safety violations of MCDL systems, due to the representa-
tiveness, practicality and advancedness. (1) Representative-
ness. Apollo ranks among the top 4 leading industrial ADS
developers (Funicello-Paul April 1, 2024) (the other three
ADSs, Waymo, Ford, and Cruise, are not released publicly).
(2) Practicality. Apollo can be readily installed on vehicles
for driving on public roads (Hersey April 1, 2024) (it has
provided self-driving services for real vehicles (autoware-
foundation Sepetem 1, 2023; Baidu April 1, 2024)). (3) Ad-

vancedness. Apollo is actively and rapidly updated (the re-
leases of Apollo update on a weekly basis).
Test Platform. We conducted the experiments on Ubuntu
20.04 with 500 GB memory, an Intel Core i7 CPU, and an
NVIDIA GTX2080 TI. SORA-SVL (Huai 2023) (an end-to-
end AV simulation platform which supports connection with
Apollo) and San Francisco map are selected to execute the
generated solutions. During the experiments, all modules of
Apollo are turned on, including perception module, localiza-
tion module, prediction module, routing module, planning
module, and control module.
Evaluation Metrics. To evaluate the effectiveness of the
method in detecting diverse safety violations of the ADS,
the metrics include the following aspects:

• How many types of safety violations are detected?
• How many solutions are generated on average to detect

one safety violation?
• How long does it take on average to detect the first safety

violation and all found types of safety violations?

To metric how distinct the different types of detected
safety violations are, we calculate the average difference
among them by Euclidean Distances. For two solutions si
and sj , the calculation of Euclidean Distance, EDsi,sj is
given as follows:

EDsi,sj =

∑|si|
n=1

∑|sj |
m=1 TDsni ,s

m
j

|si| ∗ |sj |

TDsni ,s
m
j
=

α∑
k=0

√
(xsni .k

− xsmj .k)2 + (ysni .k − ysmj .k)2

The larger the distance, the more different the safety-
violation types. sni represents the n-th chromosome in si.
|si| and |sj | represent the number of chromosomes in si and
sj respectively. (xsni .k

, ysni .k) represents the position of k-th
gene of the n-th chromosome in si. α represents the minimal
number of genes in the two chromosomes sni and smj .

Effectivenss of µMOEA
We run µMOEA for 24 hours to detect safety violations of
Apollo. For the found safety violations, we analyze their root
causes by locating the incorrect operations of modules in
Apollo. Furthermore, based on the analysis, we classify the
found safety violations into distinct types. To account for the
randomness, the experiments are repeated five times and the
average results are provided as follows.



Table 3: Comparison results of µMOEA, µMOEAr and
µMOEAn

µMOEA µMOEAr µMOEAn

types of
detected SV 10 10 6

number of solutions
to detect one SV 12 12.7 24.3

time to detect
the first SV 11min 39min 17min

time to detect
all types of SVs 14h 15h 22h

For each run, on average, 3756 solutions (min 3346 and
max 4015) are generated by µMOEA and 313 (min 292 and
max 355) out of them have safety violations of Apollo.
µMOEA can detect 10 distinct types of safety violations of
Apollo, which are all revealed in the first 14 hours.

To evaluate the benefit of the LLM-based initial popula-
tion creation and differential seed generation, we conduct
the ablation experiments of µMOEA. Two variant versions
µMOEAr and µMOEAn are implemented. µMOEAr

creates the initial population by random initialization of so-
lutions, and µMOEAn evolves the solutions without differ-
ential seeds. We run µMOEA, µMOEAr and µMOEAn for
the same amount of time, and compare their effectiveness
and efficiency. The results are shown as Table 3 (where SV
is the abbreviation for safety violation) and Figure 2.

(a) The found safety violation
types over time

(b) The number of safety viola-
tions over time

Figure 2: The running results of µMOEA, µMOEAr,
µMOEAn

µMOEAr can detect 10 types of safety violations of
Apollo, and µMOEAn can detect 6 types of safety viola-
tions of Apollo. On average, in the 24-hour run, µMOEAr

generates 3922 solutions (min 3853 and max 4014), and 308
of them (min 289 and max 315) detect safety violations of
Apollo. For µMOEAn, it generates 3352 solutions (min
3099 and max 3480), and 138 of them (min 121 and max
150) detect safety violations of Apollo.

Table 3 shows that µMOEAr takes the most time to de-
tect the first safety violation of Apollo. It can be seen from
Figure 2(a) that in early-generation solutions, the number
of safety violations detected by µMOEAr is the least. We
can conclude that µMOEA’s creation of initial population cre-
ation helps generate better initial population than random
initialization.

For µMOEAn, Table 3 shows that the number of safety

violation types detected by it is fewer than µMOEA and
µMOEAr, and it takes more time to detect all found types
of safety violations. The average Euclidean Distance across
the detected different safety violation types of µMOEA is
81.10 meters, and that of µMOEAr is 69.72 meters. From
Figure 2(b), we can see that as the iterations of evolutionary
search increase, the growth of safety violations detected by
µMOEAn is slowest. We can conclude that the differential
seeds of µMOEA can help solve the local optimal and detect
more diverse types of safety violations.

It’s worth noting that, during the iterations of µMOEA and
µMOEAr, after a few types of safety violations have been
found, the detection of safety violations grows faster. We
analyze that it benefits from the feedback-based differen-
tial seed generation. As the evolutionary iterations increase,
the solutions of feedback increase. µMOEA can better learn
more experience about the characteristics of optimal solu-
tions, which can improve the quality of the generated differ-
ential seed solutions.

Advancement of µMOEA
We evaluate µMOEA in comparison to the state-of-art
method that uses the multi-objective genetic algorithm
(NSGA-II) to detect safety violations of Apollo: MOSAT
(Tian et al. 2022). MOSAT generates the first population by
randomly initialized individuals. Based on them, MOSAT
uses multi-objective genetic algorithm to search for opti-
mal and diverse solutions. The individuals are evaluated by
multi-objective fitness function, which contains the elitism
and diversity. MOSAT determines crossover probability and
mutation probability of parent individuals by random rates
and the fixed variation threshold. The variation operators
that are defined to manipulate individuals include uniform
crossover and mutation.

We run MOSAT on the same road in San Francisco as
µMOEA. For the sake of fairness, in each 24-hour running,
the number of individuals in each generation of MOSAT and
µMOEA are the same. The comparison results of µMOEA and
MOSAT are shown as Table 4.

Table 4: Comparison results of µMOEA and MOSAT

Approach µMOEA MOSAT
types of detected SV 10 6

number of solutions
to detect one SV

min 10.1 61.0
max 13.7 65.9
avg 12 62.1

time to detect the
first SV (min)

min 1 2
max 12 28
avg 7 16

time to detect all
found types of SVs

(hour)

min 11.3 16.0
max 13.6 18.9
avg 12.9 18.1

In each 24-hour running, MOSAT can find 6 types of
safety violations of Apollo. On average, MOSAT generates
3541 solutions (min 3208 and max 3719), and 57 (min 49
and max 61) out of them detect safety violations of Apollo.



µMOEA detects 10 distinct types of safety violations of
Apollo and all of them are detected in the first 14 hours.
MOSAT detects 6 types of safety violations of Apollo and all
of them are detected in the first 19 hours. The average Eu-
clidean Distance across the detected different safety viola-
tion types of µMOEA is 81.10 meters, and that of µMOEAr

is 64.70 meters. Moreover, the 6 types of safety violations
are all revealed in the 10 types of safety violation detected
by µMOEA. It takes µMOEA less time to detect the first safety
violation of Apollo than MOSAT. Therefore, compared with
MOSAT, µMOEA can detect more types of safety violations
of Apollo in a shorter time. On average, one safety viola-
tion of Apollo occurs in 12 solutions generated by µMOEA.
MOSAT generates 62 solutions to find one safety viola-
tion of Apollo. The safety-violation exposure frequency in
µMOEA is higher, which shows that µMOEA can efficiently
detect more safety violations of Apollo. The comparison
results show that µMOEA can more effectively detect more
types of safety violations in the MCDL system.

Related Work
Large Language Models for Reasoning
Recent advancements in large language models (LLMs)
have demonstrated their potential in a variety of tasks, in-
cluding quantitative reasoning. LLMs have tremendous ca-
pabilities in solving complex tasks, from quantitative rea-
soning to understanding natural language (Romera-Paredes
et al. 2024). Early models such as GPT-3 have been shown
to generate coherent text and perform well in tasks that re-
quire contextual understanding, but they often struggle with
more complex reasoning tasks, particularly those that in-
volve multi-step logic or abstract thinking.

To address these limitations, researchers have proposed
various approaches to enhance the quantitative reasoning ca-
pabilities of LLMs. One notable method is the integration
of external knowledge bases (Mann et al. 2020), which has
been shown to improve the accuracy and depth of reason-
ing by providing models with additional contextual infor-
mation. Another approach is the use of prompt engineering
(Reynolds and McDonell 2021), where carefully designed
prompts guide the model towards better reasoning outcomes.
Furthermore, there has been growing interest in the ap-
plication of LLMs to quantitative reasoning tasks in spe-
cific domains, such as mathematical problem-solving, where
domain-specific training data can significantly enhance the
model performance.

Multi-Objective Evolutionary Algorithms
Multi-objective evolutionary algorithms (MOEAs) have be-
come a prominent tool for solving multi-objective optimiza-
tion problems due to their ability to find a set of Pareto-
optimal solutions in a single run (Fonseca, Fleming et al.
1993; Ishibuchi, Tsukamoto, and Nojima 2008; Zitzler, Lau-
manns, and Thiele 2001). Populations in MOEAs generally
evolve through high-performing candidate solutions being
mutated or recombined to form the next generation.

One of the most typical MOEAs is the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) (Zitzler and Thiele

1999; Deb et al. 2002), which introduced key innovations
such as fast non-dominated sorting and crowding distance
mechanisms to find the optimal solutions and maintain solu-
tion diversity. NSGA-II has since become a benchmark for
comparing other MOEAs due to its balance between com-
putational efficiency and solution quality, which has led to
a better understanding of the trade-offs involved in using
MOEAs for different types of multi-objective problems

Conclusion and Discussion
In this paper, we propose µMOEA, an LLM-empowered
adaptive evolutionary search method for multi-component
deep learning systems. Different from existing MOEAs that
detect safety violations of MCDL systems starting by ran-
domly initialized population, µMOEA leverages LLM’s abil-
ity in language understanding and quantitative reasoning to
better comprehend the evolutionary task and create high-
quality solutions for the initial population. Based on these,
µMOEA adopts an adaptive multi-objective evolutionary al-
gorithm to efficiently search for optimal and diverse solu-
tions. To navigate the search away from the local optima,
when the evolutionary process gets stuck, µMOEA feedbacks
the characteristics of iterations into the LLM to facilitate the
learning of evolutionary experience and population charac-
teristics. Then it promotes the LLM to generating differen-
tial seed solutions for the next generation. We uses µMOEA
to detect safety violations of a representative MCDL sys-
tem, industrial autonomous driving system. Furthermore, we
evaluate the performance of µMOEA by ablation experiments
and compare it with the state-of-the-art method that uses
multi-objective genetic algorithm to search solutions for di-
verse safety violations of the system. The experimental re-
sults show that µMOEA can effectively and efficiently detect
safety violations of MCDL systems and surpass the state-of-
the-art method.

To leverage the LLM’s capability, µMOEA inputs the
prompt into GPT-4 by sending the API request, which brings
extra time cost for waiting the model output. Generally, the
time cost for each request is about 40 seconds, which gen-
erates 6 solutions on average. The extra time cost for a so-
lution generated by GPT is 7 seconds. Moreover, the LLM
has a limit on the number of input characters, which limits
the potential capability of µMOEA due to the limited num-
ber of samples for context learning and thought chain. Cur-
rently, µMOEA generates the feedback prompt incrementally
and updates the early iterations with latest iterations when
the characters of the prompt exceeds the limit.

As future work, we aim to employ a local LLM to reduce
the time cost for request, and intelligently select the input
examples for the feedback, with the potential to further im-
prove the performance and ability of µMOEA. However, there
are two main economic implications for deploying µMOEA
in the real world: (1) operational costs of remote LLM ac-
cess; and (2) infrastructure costs of local LLM deployment.
For MCDL systems with infrequent updates or without com-
plicated test requirements, remote access to GPT may be
cost-effective. For defect detection tasks, local training and
deployment of an LLM on the target system is generally
more economical.
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