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ABSTRACT
Sub-model extraction based federated learning has emerged as a

popular strategy for training models on resource-constrained de-

vices. However, existingmethods treat all clients equally and extract

sub-models using predetermined rules, which disregard the statisti-

cal heterogeneity across clients and may lead to fierce competition

among them. Specifically, this paper identifies that when making

predictions, different clients tend to activate different neurons of

the entire model related to their respective distributions. If highly

activated neurons from some clients with one distribution are incor-

porated into the sub-model allocated to other clients with different

distributions, they will be forced to fit the new distributions, which

can hinder their activation over the previous clients and result in

a performance reduction. Motivated by this finding, we propose a

novel method called FedDSE, which can reduce the conflicts among

clients by extracting sub-models based on the data distribution of

each client. The core idea of FedDSE is to empower each client to

adaptively extract neurons from the entire model based on their

activation over the local dataset. We theoretically show that FedDSE
can achieve an improved classification score and convergence over

general neural networks with the ReLU activation function. Experi-

mental results on various datasets and models show that FedDSE
outperforms all state-of-the-art baselines.
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dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Federated Learning; Submodel extraction; Distribution-aware

ACM Reference Format:
Haozhao Wang, Yabo Jia, Meng Zhang, Qinghao Hu, Hao Ren, Peng Sun,

and Yonggang Wen, Tianwei Zhang. 2024. FedDSE: Distribution-aware Sub-
model Extraction for Federated Learning over Resource-constrained Devices.

∗

Haozhao Wang and Yabo Jia contributed equally to this research.

†

Hao Ren is the corresponding author with hao.ren@ieee.org.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00

https://doi.org/10.1145/3589334.3645416

In Proceedings of the ACM Web Conference 2024 (WWW ’24), May 13–17,
2024, Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.

org/10.1145/3589334.3645416

1 INTRODUCTION
With the proliferation of edge devices like IoT and sensors, huge

amounts of data are generated continuously, which can be used to

train efficient machine learning models. However, the raised pri-

vacy concerns make it difficult to collect big data from edge devices

and send them to a central cloud for training. Federated Learning

(FL) [20, 32], which enables clients to collaboratively train machine

learning models in a decentralized manner without revealing their

private raw data, is an emerging paradigm that has been adopted

in various fields including medical image processing [44] and rec-

ommendation systems [9]. However, to deploy FL in practical edge

environments, it is necessary for the resulting systems to not only

preserve the privacy, but also satisfy the common pragmatic con-

straint, i.e., constrained resources such as energy, computation,

communication, and memory of edge devices [4, 13, 24].

To address the aforementioned issues, extracting the sub-model

from the entire model appears to be an effective solution, which

is also called partial federated learning, where each device only

trains a sub-model of the full global model. Two categories of sub-

model extraction methods for FL have been proposed: parameter

sparsifying methods [3, 18, 25, 37] and neuron pruning methods

[2, 5, 8, 15]. Parameters sparsifying methods extract sub-models by

selecting specific parameters from the entire neural network based

on the lottery ticket hypothesis [12]. Although they effectively

reduce the computation and communication costs, recent works

[4] have shown that such methods do not reduce the memory

trace because the activation outputs from neurons are much larger

than the original parameters. Neurons pruning methods [2, 5, 8,

15] extract sub-models by selecting a subset of neurons from the

entire neural network. For example, FedRolex [2] selects neurons

in a rolling way for each client. Considering their great advances

in terms of memory efficiency, this paper mainly focuses on the

category of neuron pruning methods.

Although current neuron pruning methods are effective in reduc-

ing memory usage, they do not account for statistical heterogeneity

(i.e., non-identically distributed data) [20, 27, 28, 33], potentially

leading to decreased performance. Specifically, this study reveals

the competition between clients with different data distributions

when only sub-models are locally trained. We observe that clients

tend to activate different neurons within the model during predic-

tion, closely linked to their respective data distributions. As data

distribution is neglected, the neurons highly activated for clients

https://doi.org/10.1145/3589334.3645416
https://doi.org/10.1145/3589334.3645416
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with one distribution may be extracted into a sub-model designated

to other clients with distinct distributions. Newly-assigned clients

may find it challenging to obtain effective representations over

local datasets via the sub-model with limited capacity, as they have

to force the neurons strongly linked to previous clients to adapt

to these new distributions. On the other side, such a re-fit process

may also in turn hinder the activation of these neurons over the

previous clients and result in a performance reduction.

Motivated by this finding, we propose a simple yet effective

method FedDSE to reduce the conflicts among clients by extracting

sub-models based on the data distribution of each client. The main

idea of FedDSE is to empower each client to adaptively extract

neurons from the entire model based on their activation over the

local dataset, where neuronswith the largest magnitude are selected.

In this way, the conflicts can be minimized since every client is

assigned its most appropriate neurons instead of the ones activated

for other clients with different distributions. Experiment results on

different datasets and models show that FedDSE can significantly

improve the training efficiency under the constraint of limited

memory compared to baselines. Our contributions are:

● This paper considers the statistical heterogeneity in FL with sub-

model extraction. Our findings reveal that clients with distinct

distributions tend to activate different neurons, leading to con-

flicts among them when the neurons are not assigned properly.

● We propose a novel training method, FedDSE, to extract sub-

models for each client based on their data distributions. In FedDSE,
the neurons of the sub-model are chosen based on their levels

of activation over the local dataset of each client, enabling us to

assign the most appropriate neurons to each client.

● We establish a theory for the convergence of FedDSE on general

neural networks with ReLU activation function, which shows

that our method has an asymptotic convergence rate.

● To validate the efficiency of the proposed method, we compare

FedDSE with state-of-the-art methods. Evaluation results show

that FedDSE can improve the performance by up to 2.72%.

2 RELATEDWORKS
Many approaches have been proposed to realize FL over memory-

limited devices, which can be categorized into twomain types based

on whether the weights of the global model are updated.

Training masks from the fixed-weights global model. This
category of works initially comes from the centralized scenario,

where the masked model of a dense network with random weights

performs surprisingly well without ever training the weights [1,

35, 36, 46]. Considering this phenomenon, some recent works seek

to find such a mask to reduce the communication budget in FL,

while simultaneously compressing the given global dense network

[17, 26, 41]. Although these methods achieve success separately,

their targets are totally different from ours. For example, Li et al.

[26] focus on the personalization of local models over different

clients via various masks. Anish et al. [41] and Isik et al. [17] seek

to reduce the computation and communication costs via the 1-bit

mask. In contrast, this paper mainly focuses on the issue of limited

on-device memory. While these prior methods can also reduce the

memory usage by reducing the size of parameters, they cannot

reduce the size of activation which consumes much more memory

[4]. Besides, these methods rely on a dense network, which may

also potentially increase the memory usage.

Training sub-model weights extracted from the global model.
These methods train the global model by updating the weights

of the extracted sub-model, which are further classified into two

categories, i.e., parameter sparsifying methods and neuron spar-

sifying methods [21, 29]. Parameters sparsifying methods extract

sub-models by selecting specific parameters from the entire neural

network [3, 18, 25, 37] , which are usually based on the theory

of the lottery ticket hypothesis [12]. Although they effectively re-

duce the computation and communication costs, recent works [4]

have shown that such methods do not reduce the memory trace

because the activation outputs from neurons are much larger than

the original parameters. Another line of methods is to extract the

sub-model by pruning neurons from the global neural network

[2, 5, 8, 15, 30]. For example, an earlier method randomly prunes

neurons from the global neural network for each client [5]. For the

heterogeneous edge devices, Fjord [15] and Hetero [8] employ a

similar approach. Theymanually define a neuron-order before train-

ing and construct sub-models for each client based on its memory

constraints, and then select neurons in accordance with this pre-

defined order. However, ordered extraction requires an adequate

number of high-capacity devices to accommodate the complete

model. Otherwise, as illustrated in Figure 1(a), many neurons lo-

cated towards the tail-end of the sequence may not be adequately

trained, resulting in degraded performance. In practice, the number

of large-capacity devices is generally far less than the low-capacity

devices, which restricts its application. Considering this limitation,

the recent work FedRolex [2] extracts the sub-model by selecting

neurons in a rolling way for each client such that all neurons can

be trained equally. However, such a method may cause competition

among clients, as we will illustrate later. These neuron pruning

methods are most close to this paper. But different from them, we

take the statistical heterogeneity into account when extracting

sub-models for different clients.

3 PRELIMINARIES
Basics of deep neural network. We consider a deep neural net-

work with 𝐿 layers, and each layer 𝑙 contains𝑚𝑙 neurons.We denote

the weight parameters of the model as w and the parameters of

the 𝑙-th layer as w𝑙 = (︀𝑤𝑙 , 𝑏𝑙 ⌋︀ with the weights𝑤𝑙 and bias 𝑏𝑙 . For

each 𝑖-th neuron in the 𝑙-th layer, we compute its activation output

as ℎ𝑙,𝑖 = 𝜎(𝑤𝑙,𝑖h𝑙−1
+ 𝑏𝑙,𝑖), where 𝜎(⋅) is the nonlinear activation

function (e.g., ReLU),𝑤𝑙,𝑖 and 𝑏𝑙,𝑖 denote the weights/bias for this

neuron, and h𝑙−1
represents the outputs of all neurons in the pre-

vious layer, i.e., h𝑙−1
= (︀ℎ𝑙−1,1, . . . , ℎ𝑙−1,𝑚𝑙−1

⌋︀. For simplicity, we

denote all weights of the network as w = (︀w1, . . . ,w𝐿⌋︀.
Problem formulation. Our objective is to allow all clients to col-

laboratively train a global model via FL. We presume that there

are 𝑁 clients, and each client 𝑛 has access only to its own private

dataset D𝑛 ∶= {𝑥𝑛𝑖 ,𝑦𝑖} with 𝐷𝑛 samples, where 𝑥𝑖 represents the

𝑖-th input data sample, and 𝑦𝑖 ∈ 𝐶 = {1, 2,⋯,𝐶} denotes the corre-
sponding label. D = {D1,D2,⋯,D𝑁 }, with 𝑁 = ∑𝑁𝑛=1

𝐷𝑛 . The goal

is to train a global model w by minimizing the total empirical loss

over the entire dataset D:

min

w
𝐹(w) ∶=

𝑁

∑
𝑛=1

𝐷𝑛

𝐷
𝐹𝑛(w), where 𝐹𝑛(w)=

1

𝐷𝑛

𝐷𝑛

∑
𝑖=1

𝑓 (w;𝑥𝑖 ,𝑦𝑖), (1)
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Figure 1: Illustration of existing methods that extract neurons with pre-defined rules. (a) An example of three types of clients
with order-based neurons selection (Fjord [15] and Hetero [8]). Neurons 4 and 5 may only be trained a few times due to the
limited number of large-capacity clients. (b) An example of two clients (different rows) selecting neurons in a rolling way
(FedRolex [2]). Clients may compete for neurons to fit their respective distinct distributions.

where 𝐹𝑛(w) denotes the local loss function of the 𝑛-th client,

which measures its private dataset’s local empirical risk, and 𝑓 (⋅)
is the cross-entropy loss function that quantifies the difference

between the predicted and ground-truth labels.

4 CHALLENGES AND MOTIVATIONS
4.1 Resource Properties of Edge Devices
LimitedMemory. Different from servers in the cloud, edge devices

generally have limited capability in terms of memory, energy, com-

munication, and computation. For example, the device Raspberry

Pi 1 Model A, which is widely used in edge applications, e.g., smart

home [19], only has a memory of 256 MB. Although the memory

is sufficient for the inference of neural networks, e.g., the popular

ResNet18 where the memory footprint is approximately 60 MB in

the inference process, the device can hardly support its training.

Specifically, training ResNet18 with a small batch size of 8 requires

a memory of 569.67 MB, which far exceeds the memory limit. The

available memory will become even less when other applications

are running on the device. On the other hand, energy consump-

tion is also strongly related to memory access. Widely used edge

devices mobile-phone which are usually equipped with intelligent

accelerators
1
. The memory of these mobile phones is composed of

DRAM in the CPU and SRAM in the accelerator. Under the 45nm

CMOS technology [14], a 32bit off-chip DRAM access consumes

640 pJ, which is two orders of magnitude larger than a 32bit on-chip

SRAM access (5 pJ) or a 32bit float multiplication (3.7 pJ). Despite

the energy efficiency of the SRAM, the accelerator usually has lim-

ited memory of SRAM. For instance, TPU [16] only has 28MB of

SRAM which is even smaller than the training memory footprint

of a small network MobileNetV2 using a small batch size of 1 [4].

This leads to numerous resource-intensive DRAM accesses, conse-

quently consuming significant energy and depleting the battery of

edge devices. In fact, SSD or Flash access costs even more energy

than DRAM. These properties of memory indicate the necessity of
training the sub-model on each local device.
Asymmetric network bandwidth of edge devices. Most current

methods use sub-models downloaded from servers to reduce the

download bandwidth. However, it is worth noting that upload band-

width is often much lower than download bandwidth and is the

1

https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html

main bottleneck for communication efficiency. This can be seen by

summarizing the bandwidth of mobile networks provided by differ-

ent global telecom operators
2
. In fact, the download bandwidth can

be up to 7.7 times larger than the upload bandwidth. Given this, a
natural improvement idea would be to download the full model from
the server to improve the training performance while only uploading
sub-models to ensure efficient communication.

4.2 Extracting Neurons with Pre-defined Rules
May Cause Competition

Here we demonstrate the necessity of extracting client-specific

neurons based on their unique data distribution in FL. We present

an analysis of the limitations of FedRolex [2], which is currently the

state-of-the-art method for FL with sub-model extraction. Specifi-

cally, Figure 1(b) illustrates a simple binary classification problem

for single-dimension data, where the label 𝑦 = 0 corresponds to

data points 𝑥 ≤ 0 and 𝑦 = 1 is assigned to 𝑥 > 0. All samples with

label 𝑦 = 0 are allocated to the first client and those with label 𝑦 = 1

to the second client. A two-layer neural network with two hidden

neurons and ReLU activation function is employed for this classi-

fication task. Our example reveals that during training, neurons

can become biased towards one particular client and fail to adapt

well to other clients’ data distribution. For instance, after the first

round, neuron 1 is trained to recognize data 𝑥 < 0 of client 1 by

updating the parameter 𝑤1,1,1 to negative (denoted by ’-’). In the

next round, it is designated to the second client and may struggle

to adjust to the new data 𝑥 > 0 by updating the parameter 𝑤1,1,1

from negative to positive (’+’). On the other side, the adjusting

process will also hinder its activation over data from the previous

client. Such a conflict is due to the neglect of data distribution when

extracting neurons into the sub-model for each client, where the

neurons strongly linked to clients with one distribution may be

designated to other clients with different distributions. To present

this problem formally, we establish the following theory for the

general two-layer neural networks.

Theorem 1. Consider a two-layer neural network employing the
ReLU activation function and being trained with a cross-entropy loss.
Let D𝑛1

comprise samples belonging to class 𝑠 , and D𝑛2
consist of

2

https://www.opensignal.com/reports/2023/02/global-state-of-the-mobile-network-

experience-awards
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Figure 2: Comparison of activation distributions of a 3-layer MLP on MNIST. (a-c) Activations of two clients on layer-1, 2 and 3.
(d) Activations of different layers trained on the full dataset.

samples from class 𝑐 , representing the datasets of clients 𝑛1 and 𝑛2

respectively. Let ℎ𝑖(D𝑛1
) = ∑𝐷𝑗=1

ReLU(w𝑇𝑖 x𝑗) represent the sum of
activations of the 𝑖-th selected hidden neuron across dataset D𝑛1

, with
𝐷 denoting the dataset size. Subsequently, training the sub-model ŵ
on dataset D𝑛2

and denoting 𝑝𝑘𝑠 as the probability score of sample
x𝑘 ∈ D𝑛2

over the trained sub-model, with a learning rate 𝜂 > 0,
yields the following observations:
●When the dataset D𝑛1

of client 𝑛1 is homogeneous to the local
training dataset D𝑛2

of client 𝑛2, i.e., ∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≥ 0 for

each sample x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) increases, where
the augmentation can be as high as 𝜂∑x𝑗 ∈D𝑛

1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −

𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 .
● Conversely, when the dataset D𝑛2

of client 𝑛1 is heterogeneous to
the local training dataset D𝑛2

of client 𝑛2, i.e.,∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≤

0 for each sample x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) decreases,
where the reduction isMin(ℎ𝑖(D𝑛1

),−𝜂∑x𝑗 ∈D𝑛
1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖−

𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗).

The proof can be found in Appendix 10. Theorem 1 suggests that

clients possessing homogeneous data distributions will mutually

amplify their activation learning, while clients with heterogeneous

data distributions will mutually diminish each other’s activation.

4.3 Neuron Properties of DNNs in FL
To investigate the principle of neuron competition, we seek to

present the properties of DNN neurons in FL. Through profiling

the training process of clients over local datasets, we find neurons

are activated differently for specific clients. To demonstrate the

potential in extracting neurons, we track the training progress of

different layers of a Multilayer Perceptron (MLP) as an example.

MLP is a simple and popular model for image classification, con-

sisting of multiple fully-connected layers. Figure 2 compares the

activation distributions (i.e., the output feature map produced by

a DNN layer) of a three-layer MLP fully trained on the MNIST

dataset. The number of neurons for layers 1 to 3 are 50, 24 and 10

respectively. We take the average activation of each neuron over

256 data samples. From Figure 2, we can get the following insights:

● Each client activates distinct neurons. Figure 2 (a)-(c) depict the
activation values of neurons in different layers for two clients

(five clients in total for experiments and we only take two for

better illustration here). Obviously, there exists a huge variance

between the activation distributions of those two clients. Their

curves barely overlap and those neurons with high activation

values also vary for each client. For instance, in layer-2, neuron-

16 generates a larger activation value for client-1 while a lower

value for client-2, indicating this neuron is activated more by

local data of client-1. Similarly, other clients also show their

correspondingly stressed neurons in each layer. This pattern

reveals a natural strategy: each client can extract neurons from the
global model based on their most activated ones.
● The activations of different layers differ. To further verify the above
point, Figure 2(d) shows the average activations of each layer on

i.i.d dataset. The values of each layer distinguish much between

each other: activation values of the first layer tend to be stable

while subsequent layers show more fluctuations. The activation
distributions vary as the model goes deeper, indicating that compar-
ing activations of different layers is insufficient to unmask neuron
properties for each client.

In fact, we have the following proposition to show that the acti-

vation magnitude is strongly related to the classification accuracy

which is represented as the probability score for each class.

Proposition 2. Given a well-converged two-layer neural network
with the ReLU activation function, high activation values have a large
impact on the probability score than low activation values. Specifically,
for any sample x with label 𝑦 = 𝑐 , the ratio of impact over probability
score 𝑝𝑐 between a high activation ℎ𝐻 and a low activation ℎ𝐿 is

approximately 𝑒𝛼(ℎ
2

𝐻−ℎ
2

𝐿), where 𝛼 > 0 is a constant.

The proof can be found in Appendix 10. Proposition 2 shows

that higher activation contributes more to the probability score

of the classification label. Jointly considering Proposition 2 and

Theorem 1, we can intuitively get that the accuracy of the global

model over the dataset of some specific client will be reduced when

the corresponding neurons with large activation are allocated to

other clients of which their data distributions are heterogeneous to

this client. More explanations are discussed in Appendix 9.

5 FEDDSE DESIGN
Motivated by the above findings, we propose to extract a sub-model

for each client based on its data distribution, where the detailed

workflow is presented in Algorithm 1. Our method FedDSE has the

following innovations. First, considering the sufficient download

bandwidth, we allow each client 𝑛 to pull the entire model w from

the server. Second, based on the basic property of neural networks
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Figure 3: Clients extract sub-models based on the magnitude
of neuron activation.

that inference consumes much less memory than training, each

client 𝑛 selects neurons by only running inference over the model

with a portion of its local dataset. Third, based on the observation

that the magnitude of neuron activation differs a lot for different

layers, each client extracts neurons in a layer-by-layer manner,

which does not requires caching the activation of previous layers.

Specifically, for each layer 𝑙 , the client 𝑛 only remains the top ra-

tio 𝑟 of neurons in a weighted sampling manner and prunes the other
neurons to obtain the sub-model w𝑛 = w⊙M𝑛

, where ⊙ denotes

the element-wise multiplication and M𝑛
is the mask. M𝑛

𝑙,𝑖, 𝑗 = 0 if

the neuron ℎ𝑙,𝑖 of the parameter 𝑤𝑙,𝑖, 𝑗 is pruned, and M𝑛
𝑙,𝑖, 𝑗 = 1

otherwise. The sampling probability of each neuron is determined

based on its activation. We apply a softmax function over the ac-

tivation ℎ𝑖 of each neuron 𝑖 , obtaining its sampling probability

𝑝(𝑖) = 𝑒
ℎ𝑖 ⇑𝑇

∑𝑚𝑗=1
𝑒
ℎ𝑗 ⇑𝑇 , where 𝑇 is the temperature. Obviously, one neu-

ron is more likely to be sampled once its activation is larger. In

particular, the neurons are selected in a uniform manner as the

temperature 𝑇 → ∞, while the neurons are selected in a TopK

manner as the temperature 𝑇 → 0, i.e., selecting neurons with the

highest activation values ∏︁ℎ𝑙,𝑖∏︁.
The client locally updates the sub-modelw𝑛 = w𝑛−𝜂∇w𝑛 𝑓𝑛(w𝑛),

where 𝑓𝑛(w𝑛) denotes the loss over a mini-batch of data and

𝜂 is the learning rate. Then, the server receives the sub-models

from all clients and aggregates them to update the global model:

w = w − 𝜂∑𝑛∈𝑁 p𝑛 ⊙∑𝐸𝑒=1
∇w𝑛𝑒 𝑓𝑛(w

𝑛
𝑒 ), where 𝑁 denotes the set

of selected clients and p𝑛 endows a weight for each element of

the sub-model parameters. We set p𝑛𝑙,𝑖, 𝑗 =
1

⋃︀𝑁𝑙,𝑖,𝑗 ⋃︀
with 𝑁𝑙,𝑖, 𝑗 repre-

senting the clients set that select the parameter𝑤𝑙,𝑖, 𝑗 . In fact, the

extraction process can also be conducted on the server by using a

data-free manner like [47]. We leave the discussion in Appendix 9.2.

6 THEORETICAL ANALYSIS
In this section, we formally analyze the performance of our pro-

posed method compared to existing methods over the two-layer

neural networks with ReLU activation function. We first show that

our method achieves a higher probability score than existing meth-

ods. Then, we establish the convergence theory of our method over

general non-convex loss functions.

6.1 Improved Probability Score
Following Theorem 1 and Proposition 2, we further compare the

impact of neuron competition over the activation, i.e., reduced

Algorithm 1 FedDSE Algorithm

Input: Global model w, and learning rate 𝜂, total communication

rounds 𝑇 .

Output: Trained global model w.

1: Initialize the model parameters w1;

2: procedure Server-side Optimization
3: for each communication round 𝑡 ∈ {1, 2, ...,𝑇} do
4: Randomly select a subset of clients 𝑁𝑡 ;

5: Distribute w𝑡 to each selected client;

6: for each selected client 𝑛 in parallel do
7: w𝑛𝑡+1

← 𝐶𝑙𝑖𝑒𝑛𝑡𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑛,w𝑛𝑡 );
8: Update the global model w𝑡 = w𝑡 − 𝜂∑𝑛∈𝑁𝑡 p

𝑛
𝑡 ⊙

∑𝐸𝑒=1
∇w𝑛𝑡,𝑒 𝑓𝑛(w

𝑛
𝑡,𝑒);

9: procedure ClientLocalUpdate(𝑛,w𝑛𝑡 )
10: Receive w𝑡 from the server;

11: Sample 𝑟 neurons layer-by-layer in activation-based proba-

bility to obtain the sub-model w𝑛𝑡,1 = w𝑡 ⊙M𝑛
𝑡 ;

12: for each local iterations 𝑒 from 1 to 𝐸 do
13: Update sub-model parameters on private data w𝑛𝑡,𝑒+1

=
w𝑛𝑡,𝑒 − 𝜂∇w𝑛𝑡,𝑒 𝑓𝑛(w

𝑛
𝑡,𝑒);

return Local update of the sub-model∑𝐸𝑒=1
∇w𝑛𝑡,𝑒 𝑓𝑛(w

𝑛
𝑡,𝑒);

activation value by allocating positive neurons of some specific

client to another heterogeneous client), and the probability score.

Proposition 3. When training sub-models on clients with het-
erogeneous distributions relative to a specific client 𝑛, the reduction
in neuron activation Δℎ(D𝑛) over the data D𝑛 of the specific client,
achieved through either random or sequential neuron selection strate-
gies, is greater compared to that of our distribution-aware selection
method Δℎ′(D𝑛) under the worst-case, i.e., Δℎ(D𝑛) ≥ Δℎ′(D𝑛).

The proof can be found in 10. The key is that existing strategies

cannot avoid allocating the top neurons of some specific client

to the other clients with heterogeneous distribution to the client,

leading to a great activation reduction to these top neurons. Then,

we have the following theory to show that the probability score

will also be reduced due to the reduced activation activation.

Theorem 4. Given a two-layer converged neural network includ-
ing𝑚 neurons with the ReLU activation function. The obtained proba-
bility score 𝑝𝑠(D𝑛) over the dataset D𝑛 of some specific client 𝑛 for a
given class 𝑠 , after running on heterogeneous clients with sub-models
extracted through either random or sequential neuron selection strate-
gies, is smaller than the probability score of our distribution-aware se-
lection method 𝑝′𝑠(D𝑛) under the worst-case, i.e., 𝑝𝑠(D𝑛) ≤ 𝑝′𝑠(D𝑛).

The proof is in 10. Theorem 4 indicates that our method can

maintain the probability score of previous clients by avoiding al-

locating neurons to conflicted clients with heterogeneous distri-

butions. Hence, our method can help the global model memorize

the data of clients selected in old rounds and improve the training

accuracy.

6.2 Convergence Analysis
To show the convergence, we make the following assumptions

which are widely adopted in FL.
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Assumption 1. (L-smoothness). The objective function 𝐹 is con-
tinuously differentiable and the gradient function of 𝐹 is L-smooth
with Lipschitz constant 𝐿𝑠 > 0, i.e., for all w, w′,

∏︁∇𝐹(w) −∇𝐹(w′)∏︁2 ≤ 𝐿𝑠∏︁w −w′∏︁2 .

Assumption 2. (Bounded variance). For all parametersw, the vari-
ance of the stochastic gradient in each client is bounded:E(∏︁∇w 𝑓𝑛(w)−
∇w𝐹𝑛(w)∏︁2) ≤ 𝜎2.

Assumption 3. (Bounded Hessian). There exists positive a constant
𝐻 such that for all w and 𝑛, the second partial derivatives of 𝑓𝑛 with
respect to the activation ℎ𝑛,𝑙,𝑖 for each layer 𝑙 and neuron 𝑖 satisfy:
∏︁∇2

ℎ𝑛,𝑙,𝑖
𝑓𝑛(w)∏︁2 ≤ 𝐻 .

Assumption 4. (Bounded Gradient). For all parameters w, the
gradient with respect to the loss is bounded: E(∏︁∇w 𝑓𝑛(w)∏︁2) ≤ 𝐺2,
and the embedding gradient with respect to each 𝑖-th neuron in the
𝑙-th layer is also boundded E(∏︁∇w𝑙,𝑖ℎ𝑙,𝑖(w)∏︁2) ≤ 𝐺2

ℎ .

The first two assumptions are generally used in the standard

analysis of Federated Learning [10, 40, 43]. Based on these assump-

tions, we derive the convergence properties of our algorithm on

general neural networks with ReLU activation function. The third

assumption is a strengthened version of Assumption 1, which is also

leveraged by previous studies [7]. The assumption of the bounded

gradient regarding the loss is also generally utilized [45]. Assump-

tion 4 slightly strengthens traditional assumption by also assuming

the bounded gradient regarding the activation.

To simplify analysis, we introduce an iteration index 𝑘 where

𝑘 = 𝑡 ∗ 𝐸 + 𝑒 . We also introduce an auxiliary model ŵ𝑛𝑘 , which is

the full model obtained by filling the sub-model w𝑛𝑘 with global

parameters in the latest global round. Notably, according to the

updating formula, ŵ𝑛𝑘 = w𝑡 when 𝑘 = 𝑡 ∗ 𝐸. To measure the impact

of extracting neurons. We define the error between the activation

h𝑛𝑚,𝑘 computed from the sub-model w𝑛𝑘 and h𝑛𝑘 calculated from

the filled auxiliary model ŵ𝑛𝑘 , as e
𝑛
𝑘 = h

𝑛
𝑚,𝑘 − h

𝑛
𝑘 . Based on these

definitions, we then have the following lemma.

Lemma 1. The gradient error of the sub-model is bounded by

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘)∏︁

2

2
≤𝐺2

ℎ𝐻
2

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘

∏︁e𝑙,𝑖,𝑘∏︁
2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
, (2)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer and 𝑆
𝑐
𝑙,𝜏 denotes

the set of un-selected neurons. ŵ𝑛𝑙,𝑖,𝑘−1
represents the parameters

connected to the neuron 𝑖 .

The proofs are deferred to Appendix 11.1. Lemma 1 indicates

that the error of the gradient calculated by the sub-model is related

to the activation difference and the gradient unselected by the sub-

model. Based on this lemma, we can derive the following theorem

for the convergence of the algorithm.

Theorem 5. Considering 𝐹∗ be the global minima of the loss
function, 𝛾 and 𝛼 are constants with 𝛾 > 0, 0 ≤ 𝛼 < 1, and the
learning rate 0 < 𝜂 ≤ 1

𝐿𝑠
, then for all neural networks with ReLU

activation function, the expected average of the squared gradient
norms of 𝐹 obtained by Algorithm 1 satisfies the following bound:

𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
≤ 2(𝐹(w1) − 𝐹∗)

𝜂

+ 2𝐿
2

𝑠𝜂
2

𝛼𝐺
2(1 + 𝛾)(1 + 𝛾)𝐾−1 − 1

𝛾2
+ 𝐾𝐿𝑠𝜂𝜎

2

2

𝑁

+ 4𝐿
2

𝑠𝜂
2(1 + 1

𝛾
)𝐺2

ℎ𝐻
2

𝐾

∑
𝑘=1

𝑘−1

∑
𝜏=1

(1 + 𝛾)𝑘−1−𝜏
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

∏︁e𝑙,𝑖,𝜏∏︁
2

2

+ 16𝐾𝐿
2

𝑠𝜂
4

𝐸
2

𝐺
2(1 + 1

𝛾
), (3)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer.

Detailed derivations are deferred to Appendix 11.3. Theorem 5

shows that the convergence performance of FL with sub-model ex-

traction heavily relies on the activation error e𝑛𝑘 . Rather than select-

ing neurons based on their location according to conventional meth-

ods, our approach extracts neurons based on the magnitude of their

activation. Hence, our method maximizes the potential to reduce

the activation error. Since the global model w𝑡 periodically equals

ŵ𝑛𝑘 , Theorem 5 also indicates the convergence of the global model,

i.e., ∑𝑇𝑡=1
E∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2
≤ ∑𝐾𝑘=1

E∏︁ 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
. Now,

we consider the feature distance ∏︁e∏︁2

2
is bounded by a constant 𝜖 > 0

which is determined by the ratio, i.e., ∏︁e∏︁2

2
≤ 𝜖2

. Obviously, 𝜖 → 0 as

𝑟 → 1. We show that the final convergence error is strongly related

to the extraction ratio 𝑟 .

Theorem 6. Considering 𝐹∗ be the global minima of the loss
function and the learning rate 0 < 𝜂 ≤ 1

4𝐿𝑠
, then for all neural

networks with ReLU activation function, the expected average of the
squared gradient norms of 𝐹 obtained by Algorithm 1 satisfies the
following bound for all 𝑡 ∈ N:

1

𝑇

𝑇

∑
𝑡=1

∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)⌋︂

𝑇

+ 4𝐸( 𝐿𝑠⌋︂
𝑇
+ 1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝐸

2
𝐺

2

𝑇
, (4)

where 𝛼 relies on the extraction ratio of the sub-model with 0 ≤ 𝛼 < 1.

Proof can be found in Appendix 11.4. Since 𝜖 → 0 and 𝛼 → 0 as

𝑟 → 1, Theorem 6 indicates that the error asymptotically converges

to 0 with respect to the iteration 𝑡 and 𝑟 .

7 EXPERIMENTS
Datasets and models. We evaluate the performance of the pro-

posed FedDSE over three models and four mainstream datasets,

including a CNN for EMNIST [23], a pre-activated ResNet18 [38]

for CIFAR-10 and CIFAR-100 [22], and a ResNet34 [38] for Tiny-

ImageNet
3
. Like [8], we adopt the Static Batch Normalization and

use a scalar module after each convolution layer. We use four con-

volution layers to compose the CNN model, whose channels are

{64, 128, 256, 512}, respectively.
Data heterogeneity.We follow the non-IID split method in Het-

eroFL [8]. In the following of this paper, L indicates the number of

3

http://cs231n.stanford.edu/tiny-imagenet-200.zip
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Table 1: The comparison of test accuracy of different methods. Each experiment is conducted three times with random seeds.

Method

High Data Heterogeneity(%) Low Data Heterogeneity(%)

EMNIST CIFAR-10 CIFAR-100 TinyImageNet EMNIST CIFAR-10 CIFAR-100 TinyImageNet

HeteroFL 93.21±1.23 38.13±1.91 8.00±2.45 5.72±1.20 97.61±1.02 47.01±1.34 11.16±2.02 10.52±1.22

Federated Dropout 87.96±2.11 50.16±2.63 10.47±2.87 10.17±1.32 97.63±1.92 58.16±2.26 16.21±2.10 19.18±1.30

FedRolex 91.41±1.15 55.61±1.62 14.02±1.90 15.39±1.24 98.61±0.98 68.04±1.34 20.81±1.18 19.44±1.19

DepthFL 92.34±1.12 49.42±1.49 11.22±1.79 12.45±0.97 97.75±0.95 55.93±1.25 17.87±1.52 20.99±1.03

Flado 93.36±1.35 57.82±1.72 16.98±1.88 20.48±1.19 97.58±1.26 65.89±1.08 19.12±1.71 21.41±1.13

FedDSE 95.34±1.24 58.19±1.57 16.61±1.87 22.19±1.27 98.65±1.01 70.82±1.16 22.93±1.31 22.88±1.01

classes each client has. According to the size of L, we define High
Data Heterogeneity and Low Data Heterogeneity. For EMNIST and

CIFAR-10, 𝐿 = 2 indicates High Data Heterogeneity and 𝐿 = 4

means Low Data Heterogeneity For CIFAR-100 and TinyImageNet,

we adopt 𝐿 = 5 for High Data Heterogeneity and 𝐿 = 10 for Low

Data Heterogeneity.

Model heterogeneity. We define five different client model capac-

ities 𝛽 ={1 (0, 0.01, 0.99), 1/2 (0.01, 0.98, 0.01), 1/4 (0.01, 0.98, 0.01),

1/8 (0.01, 0.98, 0.01), 1/16 (0, 1, 0)}. As most clients’ capacities do not

reach the capacity of the server and include several intermediate

values, we define a ratio 𝛼 = 1⇑16 to better simulate the real client

distribution. Each client’s model capacity fluctuates around 𝛼 of

the original capacity. Using 1⇑2 as an example, 1⇑2 represents client

model capacity and (0.01, 0.98, 0.01) represents the probability dis-

tribution of {1⇑2+ 1⇑16, 1⇑2, 1⇑2− 1⇑16}. The global model channels

are allocated according to the number of channels in each layer of

the client model.

Baselines.We compare five recent partial learning (PT) FL meth-

ods, including HeteroFL [8], FedRolex [39], Federated Dropout[6],

DepthFL [21], and Flado [29]. To guarantee the fairness of com-

parison, we use the same learning rate, local epochs, as well as

communication rounds for all methods. More details about each

method and dataset can be found in the Appendix 12.

Configurations and platform. For EMNIST, CIFAR-10 and CIFAR-

100, we apply bounding box crop [34] to augment the images. In

each communication round, 10% of the 100 clients are selected for

training, with frc = 10%. At the beginning of each communication

round, the selected clients’ capacities are dynamically chosen from

a uniform distribution. Experiments are conducted atop PyTorch

framework. The specifics of hyperparameters are shown in the

Appendix. Experiments are carried out on computing machines

with Nvidia RTX 3090, K80 and 1080Ti GPUs.

Evaluation metric. For image classification tasks, global accuracy

is adopted as the evaluation metric, which is defined as the server

model’s accuracy over the entire test set. Besides, we also compare

the cost of memory, communication, and computation of FedAvg

and FedDSE in Table 5 of the appendix.

7.1 Performance Comparison with Baselines
Table 1 compares our FedDSE with five baselines. The temperature

of FedDSE is set to be 0. FedDSE almost achieves the best perfor-

mance across all settings. In addition, the results have proved that

under high data heterogeneity, FedDSE significantly outperforms

FedRolex on EMNIST and CIFAR10. This indicates that when the

number of classes is relatively small, our method can accurately

capture and activate the relevant neurons for training, hence achiev-

ing better results on EMNIST and CIFAR10 with 10 classes and 𝐿 = 2.
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Figure 4: Impact of client model heterogeneity distribution
in EMNIST and CIFAR-10

While for CIFAR100 with 100 classes and 𝐿 = 5 where the sizes of

the client dataset remain the same, it becomes difficult to select the

active neurons, and the improvement is a mere 0.9%. Under low data

heterogeneity where the client datasets are evenly distributed, the

model converges faster and leads to prominent training overhead

reduction. On the simple EMNIST dataset, FedDSE achieves similar

accuracy as FedRolex. For complex datasets like CIFAR10 and CI-

FAR100, under more evenly distributed data, FedDSE outperforms

other methods significantly by selecting and activating relevant

neurons. HeteroFL can hardly cope with the situation when most

client capacities are not up to the server capacity. The reason is

that the neurons in the later part of the same layer will be trained

with few times, and these neurons cause an accuracy drop in the

global model. This phenomenon is not very obvious over EMNIST

due to the simplicity of the dataset, as training a limited number of

neurons can achieve decent results. It is worth noting that Flado

outperforms FedDSE on CIFAR-100. The main reason is that Flado

leverages gradient to select neurons which may also take the data

heterogeneity into account. Nevertheless, the sampling-based se-

lection strategy may limit the efficiency of sub-model selection.

7.2 Impact of Client Model Heterogeneity
In the above experiments, the distribution of client capacities is

set uniformly. Now we conduct the test by varying the value of 𝜌

to introduce different distributions. We choose two client model

capacities 𝛽=1/2,1/16. 𝜌 is defined as the proportion of 1⇑2 clients.

For example, 𝜌 = 0.2 means that client capacity of 1⇑2 accounts for

0.2 and 1⇑16 accounts for 0.8.

Figure 4 shows that the accuracy increases as 𝜌 increases on the

whole. For EMNIST in Figure 4(a), under high data heterogeneity,

the peak is reached at 𝜌=1. This indicates that the model conver-

gence requires a combination of a large number of models. Thus the

accuracy increases linearly with 𝜌 . Under low data heterogeneity,

the peak appears at 𝜌 = 0.4, proving that a large global model is not

a prerequisite for fast convergence. Therefore, when 𝜌 exceeds 0.4,

the model accuracy fluctuates up and down as 𝜌 increases. For the
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Figure 5: Ablation Study
complex CIFAR-10 dataset in Figure 4(b), the accuracy continues to

increase with the increase of 𝜌 . This indicates that FedDSE is suit-
able for appropriately increasing the model parameters to improve

the effect when dealing with complex problems.

7.3 Impact of Statistical Heterogeneity
In the above experiments, we define high and low data heterogene-

ity. In EMNIST, they are set as 𝐿 = {2, 4}, respectively. Here, we
set 𝐿 = {2, 4, 6, 8, 10}. In doing so, the testing results can reflect the

influence of the degree of data heterogeneity on global accuracy.

Figure 5(a) shows that the accuracy improves significantly when

𝐿 = 2 and 𝐿 = 4, while the impact of data heterogeneity becomes

mild from 𝐿 = 4 to 𝐿 = 10. In the scenario of 10 classes, it is common

for users to encounter up to 4 classes at most.

7.4 Impact of Client Selection
Rather than simply setting frc as 10%, we vary the number of se-

lecting clients from 5% to 20% with a step length of 5%. Figure 5(b)

shows that under high data heterogeneity, frc improves the accu-

racy significantly when it increases from 5% to 10%. However, from

10% to 20%, the effect of frc becomes mild. Through Figure 5(b)

we can find that a decent balance between model accuracy and

convergence overhead can be reached when frc = 10%.

7.5 Impact of Data Size for Extraction
In the above experiments, the entire client dataset is adopted as the

inference data. Here, we vary the inference batch size as {64, 128, 256,

𝑎𝑙𝑙} to explore the impact of the inference data scale. In specific,

’all’ refers to the size of the local dataset, which is 500 in EMNIST.

Figure 5(c) shows that when the inference batch size reaches 128,

the activated neurons selected can basically meet the requirements

during inference. Figure 5(c) also indicates that simply increasing

the inference batch size beyond 128 brings negligible accuracy gain.

In other words, adopting an appropriate batch size leads to faster

model convergence and fewer selected clients.

7.6 Comparison with Federated Distillation
FLwith knowledge distillation accommodates heterogeneousmodel

structures among clients and thus also allows training heteroge-

neous sub-models over different clients [31, 42]. In fact, our method
is orthogonal to these methods.We can utilize FedDSE to extract sub-
models and then adopt federated distillation to aggregate all sub-

models. To show this, we also compare our method with FedDF [31]

on EMNIST, as shown in Figure 5(d). It can be observed that combin-

ing with federated distillation can further improve the performance

of FedDSE. Besides, our method combined with federated distilla-

tion outperforms the baseline.

7.7 Impact of Temperature
In practice, we can also choose the temperature adaptively to

achieve both benefits of activation-based selection and evenly-

trained selection. To show this, we also conduct some experiments

to compare FedDSE with hard-TopK and with soft-TopK, as shown

in Table 2 on EMNIST. Homo. (1⇑4) denotes that all clients are
homogeneous and can only train 1⇑4 of the full model, and Het-

erogeneous capability adopts the same setting as Table 1. It can

be observed from the table that 𝑇 = 0 and 𝑇 = 1 perform better

separately in different scenarios. Generally, higher temperature is

more applicable to the settings where the capability of clients are

homogeneous and vice versa. It is also worthwhile to note that our

method always outperforms SOTA baseline, i.e., FedRolex.

Table 2: Impact of different Temperature.

Capacity Method

Data heterogeneity

High Low Homogeneity

Homo. (1/4)

FedRolex 93.35 97.29 97.04

FedDSE (T=0) 81.25 89.74 88.05

FedDSE (T=1) 96.59 98.21 97.83

Homo. (1/2)

FedRolex 97.76 98.52 98.74

FedDSE (T=0) 91.51 96.53 95.24

FedDSE (T=1) 98.45 99.16 99.09

Heterogeneous

FedRolex 91.41 98.61 98.67

FedDSE (T=0) 95.34 98.65 98.69
FedDSE (T=1) 94.60 97.86 98.15

8 CONCLUSION
This paper focuses on sub-model extraction in federated learning.

We have observed that clients tend to activate distinct neurons of

the model due to statistical heterogeneity. This may lead to a com-

petition problem for neurons in the sub-model when extracted inap-

propriately. To address this challenge, we propose a new sub-model

extraction method for FL called FedDSE that exploits the activation

distribution properties of neural networks and edge devices. Our

method selects neurons with the largest activation value, adaptively

designating them to different clients. We prove the convergence of

our method theoretically and demonstrate its effectiveness through

experimental results that outperform state-of-the-art techniques.
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9 MOTIVATION AND METHOD DETAILS
9.1 Discrepancy of Activation Distribution
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Figure 6:
Activation of
clients.

We conduct an experiment using a three-layer

MLP onMNIST to visualize activation discrep-

ancies across clients (Figure 6). Five clients,

each with two classes, are represented by

unique colors. The second layer’s activations

over all client datasets reveal the variation

among clients, demonstrating how data distri-

bution differences affect activation patterns.

In neural networks, activation patterns mir-

ror data distribution to clearly distinguish

class differences. The network’s inference process progressively

enhances separability so the final classification layer can tell classes

apart. Therefore, activations represent their corresponding classes

uniquely and in FL, clients with diverse class distributions have

differing activation distributions.

9.2 More details about the design of method
The goal of FedDSE downloading the entire global model is to

utilize the local dataset to identify neurons with large activation.

Many recent data-free methods have been proposed, which makes it



WWW ’24, May 13–17, 2024, Singapore, Singapore Haozhao et al.

G
en

er
at

o
r

z

Noise

…

…

Global Model

Local Sub-model
Pseudo Data 

Figure 7: Sub-
model extraction
based on the
pseudo data.

unnecessary to rely on the real local

dataset. Like [47], the server trains a

generator on clients’ local models to

produce pseudo-data samples mimick-

ing their distributions. With these, the

server extracts neurons similarly to Fed-

DSE. Privacy concerns over potential

sample recovery can be mitigated as gen-

erator’s privacy leakage depends on its

training strategy. The server can train

naively for distribution learning instead

of replicating original data.

10 PROOFS OF THEORIES
We study a two-layer ReLU neural network with𝑚 hidden neurons, trained using

cross-entropy loss, focusing mainly on binary classifications for broad applicability.

We denote the parameters of the second layer as w2 and the parameters of class 𝑐

are w2,𝑐 . Similarly, we denote w1,𝑖 as the first-layer parameters corresponding to the

𝑖-th hidden neuron, and 𝑤1,𝑖,𝑗 as a first-layer parameter connected between the input

neuron 𝑗 and hidden neuron 𝑖 . Besides, the activation of the 𝑖-th hidden neuron is

denoted as ℎ
𝑘
𝑖 = 𝜎(w1,𝑖x𝑘) with the input sample as x𝑘 with extend dimension 1 to

incorporate the bias, and h𝑘 = (︀ℎ1

𝑖 , ℎ
2

𝑖 , . . . , ℎ
𝑚
𝑖 ⌋︀ as the activation vector outputted by

the hidden layer. To optimize the parameters, the neural network will first compute

the probability and loss for each class 𝑐 and sample x𝑘 :

𝑝
𝑘
𝑐 =

𝑒
w

2,𝑐 h
𝑘

∑𝐶𝑠=1
𝑒w2,𝑠 h𝑘

, 𝐿𝑘 = −
𝐶

∑
𝑐=1

𝐼(𝑦
𝑘
= 𝑐)log 𝑝

𝑘
𝑐 , (5)

where 𝐼(⋅) denotes indication function. The gradient of w𝑘𝑐 is:

𝑔(w𝑘
2,𝑐) = −(𝐼(𝑦

𝑘
= 𝑐) − 𝑝

𝑘
𝑐 )h

𝑘
. (6)

According to the backward propagation, the gradient 𝑔(w𝑘
1,𝑖) of the parameter corre-

sponding to the 𝑖-th hidden neuron is:

𝑔(w𝑘
1,𝑖) = −(1 − 𝑝

𝑘
𝑐 )𝑤2,𝑐,𝑖x

𝑘
+

𝐶

∑
𝑠≠𝑐,𝑠=1

𝑝
𝑘
𝑠 𝑤2,𝑠,𝑖x

𝑘
(7)

10.1 Proof of Theorem 1
Proof. To investigate the change of activation from the previous client 𝑛1 to the

current client 𝑛2 , we start with the optimization of the last-layer classifier parameters.

Specifically, we consider the current client contains the samples of class 𝑐 whereas the

previous client only contains the samples of class 𝑠 . After neuron selection, we denote

𝑁𝑖 the set of selected neurons for each client 𝑖 and denote
ˆh as the activation vector

of the hidden layer in sub-model ŵ. The gradient of parameters corresponding to the

class 𝑐 and class 𝑠 respectively for each sample x𝑘 with the label 𝑦
𝑘
= 𝑐 is:

∇𝐿𝑘

∇ŵ𝑘
2,𝑐

= −(1 −
𝑒
ŵ

2,𝑐
ˆh𝑘

∑𝐶𝑖=1
𝑒ŵ2,𝑖

ˆh𝑘
)ˆh𝑘 ,

∇𝐿𝑘

∇ŵ𝑘
2,𝑠

=
𝑒
ŵ

2,𝑠
ˆh𝑘

∑𝐶𝑖=1
𝑒ŵ2,𝑖

ˆh𝑘
ˆh𝑘 . (8)

The updating formula of the two parameters is:

ŵ𝑘
2,𝑐 = ŵ𝑘

2,𝑐 + 𝜂(1 − 𝑝
𝑘
𝑐 )

ˆh𝑘 , ŵ𝑘
2,𝑠 = ŵ𝑘

2,𝑠 − 𝜂𝑝
𝑘
𝑠

ˆh𝑘 . (9)

Since the activation value from the ReLU function is always positive, i.e., h≥0, we can

intuitively find that the parameters ŵ𝑘
2,𝑐 corresponding to the local class 𝑐 always

increase while the parameters ŵ𝑘
2,𝑠 corresponding to the class 𝑠 of previous client

always decreases. Further, we can derive the final converged parameter by solving the

following equation to find the saddle points:

𝜕𝐿𝑘

𝜕ŵ𝑘
2,𝑐

= 0,
𝜕𝐿𝑘

𝜕ŵ𝑘
2,𝑠

= 0, (10)

where the solution is:

ŵ𝑘
2,𝑐 →∞, ŵ𝑘

2,𝑐 → −∞. (11)

Hence, we can derive that the local training process over all samples of local data will

update the classifier parameters as:

ŵ2,𝑐 →∞, ŵ2,𝑐 → −∞. (12)

Now, we consider the parameters update in the first layer. For each selected neuron

𝑖 ∈ 𝑁𝑛
2
, the gradient of its connected parameter w𝑘

1,𝑖 under sample (x𝑘 , 𝑦𝑘 = 𝑐) is:

𝜕𝐿𝑘

𝜕w𝑘
1,𝑖

=−(︀
𝐶

∑
𝑐=1

(𝐼(𝑦𝑘 =𝑐)−𝑝
𝑘
𝑐 )𝑤2,𝑠,𝑖⌋︀x

𝑘
=𝑝

𝑘
𝑠 (𝑤2,𝑠,𝑖 − 𝑤2,𝑐,𝑖)x

𝑘
, (13)

where 𝐼(⋅) is an indication function. Considering the local training process over the

local dataset D𝑛 , the updated formula of the parameter w𝑘
1,𝑖 is:

w′
1,𝑖 = w1,𝑖 + 𝜂

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 − 𝑤2,𝑠,𝑖)x

𝑘
, (14)

where 𝐷 is the number of samples in each client. Based on equation (12), we can get

that 𝑤2,𝑐,𝑖 − 𝑤2,𝑠,𝑖 > 0 when the number of local training epochs is sufficient. Now,

we can obtain the activation average of this updated neuron 𝑖 over any dataset D:

ℎ
′
𝑖(D)= ∑

x𝑗 ∈D
ReLU((w′

1,𝑖)
𝑇 x𝑗)=

𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗
+𝜂

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠(𝑤2,𝑐,𝑖−𝑤2,𝑠,𝑖)(x

𝑘
)
𝑇 x𝑗),

When the datasetD is homogeneous to the local datasetD𝑛 , i.e.,∑x𝑘 ∈D𝑛 𝑝
𝑘
𝑠 (x

𝑘
)
𝑇 x𝑗 ≥

0 for any x𝑗 ∈ D, according to the monotonicity of the ReLU function, we have

ℎ𝑖(D)=
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗
)≤

𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗
+𝜂

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 − 𝑤2,𝑠,𝑖)(x

𝑘
)
𝑇 x𝑗 )

= ℎ
′
𝑖(D) ≤

𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗
) +

𝐷

∑
𝑗=1

ReLU(𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 − 𝑤2,𝑠,𝑖)(x

𝑘
)
𝑇 x𝑗 )

= ℎ𝑖(D) + 𝜂
𝐷

∑
𝑗=1

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 − 𝑤2,𝑠,𝑖)(x

𝑘
)
𝑇 x𝑗 , (15)

where ℎ𝑖(D) represents the activation mean of the 𝑖-th neuron of the non-updated

model ŵ over the dataset D. Based on this equation (15), considering D = D𝑛 , we
can immediately derive that the local training process increases the neuron activation

over the local dataset, i.e., ℎ𝑖(D𝑛) ≤ ℎ
′
𝑖(D𝑛). The increased overall activation is

𝜂∑
𝐷
𝑗=1
∑
𝐷
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 . Similarly, when the dataset D is heteroge-

neous to the local dataset D𝑛 , i.e.,∑x𝑘 ∈D𝑛 𝑝
𝑘
𝑠 (x

𝑘
)
𝑇 x𝑗 ≤ 0 for any x𝑗 ∈ D, based on

the monotonicity of the ReLU function, we have

ℎ
′
𝑖(D) =

𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗
+ 𝜂

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 − 𝑤2,𝑠,𝑖)(x

𝑘
)
𝑇 x𝑗 )

=max(ℎ𝑖(D) −
𝐷

∑
𝑗=1

ReLU(−𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖−𝑤2,𝑠,𝑖)(x

𝑘
)
𝑇 x𝑗 ), 0) ≤ ℎ𝑖(D). (16)

Thus, the overall activation of each selected 𝑖-th neuron on datasetD decreases after lo-

cal updateswithD𝑛 :ℎ𝑖(D) ≥ ℎ
′
𝑖(D). The reduction amount ismin(−𝜂∑𝑗,𝑘 𝑝

𝑘
𝑠 (𝑤2,𝑐,𝑖−

𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , ℎ𝑖(D)). Proof complete. □

10.2 Proof of Proposition 2
Per [11] (Theorem 1), sample features in class 𝑐 converge to their mean h𝑐 , and the

corresponding converged parameters w2,𝑐 align with class activation mean (w2,𝑐 =

𝛼h𝑐 ; 𝛼 >0). Thus, a labeled sample (x, 𝑦=𝑐) has an activation close to its class mean,

h≈h𝑐 . Hence, high and low activations’ effects can be separately derived from Eq. (5):

Impact(𝑝𝑐 , ℎ𝐻 ) =
𝑒
w

2,𝑐,𝐻ℎ𝐻

∑𝐶𝑠=1
𝑒w2,𝑠 h

≈
𝑒
𝛼ℎ2

𝐻

∑𝐶𝑠=1
𝑒w2,𝑠 h

, (17)

Impact(𝑝𝑐 , ℎ𝐿) =
𝑒
w

2,𝑐,𝐿ℎ𝐿

∑𝐶𝑠=1
𝑒w2,𝑠 h

≈
𝑒
𝛼ℎ2

𝐿

∑𝐶𝑠=1
𝑒w2,𝑠 h

. (18)

Computing their ratio derives the proposition.

10.3 Proof of Proposition 3
Per Theorem 1, under worst-case scenarios, as neurons from a specific client 𝑛’s

dataset D𝑛 are assigned to a client with dissimilar data distribution, their activation

magnitudes can be reduced to zero. Given that current strategies often allocate top

neurons of certain clients to heterogeneous ones, these neurons’ highest activations

drop to zero. Let ℎ
𝑛
𝑖 (D𝑛) denote the 𝑖-th neuron’s activation in client 𝑛, and suppose

𝑟 neurons with the highest magnitudes are numbered 1 to 𝑟 and selected by other

clients. The total reduction in activation due to existing methods is:

Δℎ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑖 (D𝑛). (19)

Considering that our distribution-aware method avoids clients selecting the top neu-

rons in the client𝑛 when they have heterogeneous distributions, we denote the selected

neurons to be 𝑜
1

, . . . , 𝑜
𝑟
. Hence, the overall reduction in activation by our method is:

Δℎ
′
=

𝑟

∑
𝑖=1

ℎ
𝑛

𝑜𝑖
(D𝑛) (20)
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Considering that the neurons numbered 1 to 𝑟 have the largest activation, i.e.,ℎ
𝑛
𝑖 (D𝑛) ≤

ℎ
𝑛
𝑗 (D𝑛), for any1 ≤ 𝑖 ≤ 𝑟, 𝑟 + 1 ≤ 𝑗 ≤𝑚, we have

Δℎ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑖 (D𝑛) ≥

𝑟

∑
𝑖=1

ℎ
𝑛

𝑜𝑖
(D𝑛) = Δℎ

′
. (21)

10.4 Proof of Theorem 4
Proof. We consider there are𝑚 neurons in the global neural network’s hidden

layer. Assume that neurons 1 to 𝑟 have the highest activations on client𝑛1 with dataset

D𝑛 of class 𝑠 samples. We demonstrate next that when these neurons are allocated

without regard for data distribution, the global model’s probability score over client 𝑛1

decreases. In the worst case, round 𝑡 , clients 𝑆𝑡 with diverse data to client 𝑛1 extract

sub-models including neurons 1 to 𝑟 . Client 𝑛 doesn’t participate. Per Theorem 1, their

local sub-model activations are zero after ample local training. Given local parameters

for neuron 𝑖 in selected client 𝑛 𝑗 as w
𝑛𝑗

1,𝑖
, we then observe:

ℎ
𝑛𝑗

𝑖
(D𝑛) = ∑

x𝑘 ∈D𝑛

ReLU((w
𝑛𝑗

1,𝑖
)
𝑇 x𝑘) = 0, (22)

for each client𝑛 𝑗 ∈ 𝑆𝑡 that contains the 𝑖-th selected neuron. After that, the parameters

of each neuron in different clients are aggregated correspondingly in a FedAvg manner,

and the global parameters of the 𝑖-th neuron are w1,𝑖 =
1

⋃︀𝑆𝑡 ⋃︀ ∑𝑛𝑗 ∈𝑆𝑡
w
𝑛𝑗

1,𝑖
. Now, we

can obtain the overall activation value ℎ𝑖(D𝑛) of each 𝑖 neuron in 1 to 𝑟 of the global

model on the dataset D𝑛 of the client 𝑛:

ℎ𝑖(D𝑛) = ∑

x𝑘 ∈D𝑛

ReLU(w𝑇
1,𝑖x

𝑘
) = ∑

x𝑘 ∈D𝑛

ReLU((
1

⋃︀𝑆𝑡 ⋃︀
∑
𝑛𝑗 ∈𝑆𝑡

w
𝑛𝑗

1,𝑖
)
𝑇 x𝑘)

≤
(𝑎)

1

⋃︀𝑆𝑡 ⋃︀
∑

x𝑘 ∈D𝑛
∑
𝑛𝑗 ∈𝑆𝑡

ReLU((w
𝑛𝑗

1,𝑖
)
𝑇 x𝑘) = 0, (23)

where the inequality (a) is due to the convexity of the ReLU function. Since the

activation ℎ𝑖(D𝑛) ≤ 0, we have ℎ𝑖(D𝑛) = 0. As a consequence, the activation of

neurons numbered 1 to 𝑟 in the global model over some specific client 𝑛 will be

significantly reduced with an inappropriate selection strategy. Since the classifier

parameters 𝑤2,𝑠,𝑖 connected the 𝑖-th hidden neuron and the class 𝑠 approach are not

selected when 𝑟 + 1 ≤ 𝑖 ≤𝑚, their value approaches the activation mean of samples

with the class 𝑠 when the model converges based on Theorem 1 in [1]. Thus, we denote

𝑤2,𝑠,𝑖 = 𝛼𝑠ℎ
𝑠
𝑖 and 𝑤2,𝑐,𝑖 = 𝛼𝑐ℎ

𝑐
𝑖 , for 𝑟 + 1 ≤ 𝑖 ≤ 𝑚, where 𝛼𝑠 > 0 and 𝛼𝑐 > 0 are

constants. Then, the probability score 𝑝𝑠 of the global model over the dataset D𝑛 is:

𝑝𝑠 = ∑

x𝑘 ∈D𝑛

𝑒
w

2,𝑠 h
𝑘

∑𝐶𝑐=1
𝑒w2,𝑐 h𝑘

≈
𝐷𝑒

𝛼𝑠 ∑𝑚𝑖=𝑟+1
(ℎ𝑠
𝑖
)2

𝑒
𝛼𝑠 ∑𝑚𝑖=𝑟+1

(ℎ𝑠
𝑖
)2
+ 𝑒

𝛼𝑐 ∑𝑚𝑖=𝑟+1
ℎ𝑐
𝑖
ℎ𝑠
𝑖

≤
𝐷𝑒

𝛼𝑠 ∑𝑚𝑖=𝑟+1
(ℎ𝑠
𝑖
)2

𝑒
𝛼𝑠 ∑𝑚𝑖=𝑟+1

(ℎ𝑠
𝑖
)2
+ 𝑒

𝛼𝑐 (𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛ℎ
𝑠
𝑚𝑖𝑛

, (24)

where ℎ
𝑠
𝑚𝑖𝑛 and ℎ

𝑐
𝑚𝑖𝑛 is the minimum activation among all neurons for class 𝑠 and 𝑐

respectively. Our method selects neurons based on each client’s distribution, hence

we argue that clients 𝑆𝑡 with diverse data do not pick the top 1-𝑟 neurons for client

𝑛. We denote their chosen neurons as 𝑛
1

to 𝑛
𝑟
. Analogous to (24), we derive a new

probability score 𝑝
′
𝑠 for the global model w over dataset D𝑛 .

𝑝
′
𝑠 ≤ 𝐷

𝑒
𝛼𝑠 ∑𝑚−𝑟𝑖=1

(ℎ𝑠
𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟𝑖=1

(ℎ𝑠
𝑛𝑖
)2
+ 𝑒

𝛼𝑐 (𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛ℎ
𝑠
𝑚𝑖𝑛

, (25)

Since ℎ
𝑠
𝑖 ≤ ℎ

𝑠
𝑗 for any 1 ≤ 𝑖 ≤ 𝑟 , 𝑟 + 1 ≤ 𝑗 ≤ 𝑚, we have 𝑒

𝛼𝑠 ∑𝑚𝑖=𝑟+1
(ℎ𝑠
𝑖
)2
≤

𝑒
𝛼𝑠 ∑𝑚−𝑟𝑖=1

(ℎ𝑠
𝑛𝑖
)2
. Hence, the upper bound of the score 𝑝𝑠 is smaller than 𝑝

′
𝑠 , i.e.,

𝐷𝑒
𝛼𝑠 ∑𝑚𝑖=𝑟+1

(ℎ𝑠
𝑖
)2

𝑒
𝛼𝑠 ∑𝑚𝑖=𝑟+1

(ℎ𝑠
𝑖
)2+𝑒𝛼𝑐 (𝑚−𝑟)ℎ

𝑐
𝑚𝑖𝑛

ℎ𝑠
𝑚𝑖𝑛

≤ 𝐷𝑒
𝛼𝑠 ∑𝑚−𝑟𝑖=1

(ℎ𝑠
𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟𝑖=1

(ℎ𝑠
𝑛𝑖
)2
+𝑒𝛼𝑐 (𝑚−𝑟)ℎ

𝑐
𝑚𝑖𝑛

ℎ𝑠
𝑚𝑖𝑛

.

□

11 PROOFS OF CONVERGENCE THEORIES
11.1 Proof of Lemmas
In this paper, without loss of generality, we assume equal local dataset sizes and full

client participation in each round. Our analysis focuses on a two-layer ReLU neural

network (not explicitly mentioned for brevity). To simplify analysis, we define index

𝑘 = 𝑡 ∗ 𝐸 + 𝑒 . Based on Algorithm 1, we derive the following update rule:

w𝑛𝑘+1
= w𝑛𝑘 − 𝜂∇w𝑛

𝑘
𝑓𝑛(w

𝑛
𝑘 ). (26)

We consider the following auxiliary global model w̄𝑘+1
to bound local updates:

w̄𝑘+1
= w̄𝑘 − 𝜂

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝑓𝑛(w

𝑛
𝑘 ) (27)

Obviously, w̄𝑘 = w𝑡 , when 𝑘 = 𝑡 ∗ 𝐸. Moreover, we denote ŵ𝑛𝑘 as the full model

which supplements sub-modelw𝑛𝑘 with global parameters from the latest round. By the

update rule, we have ŵ𝑛𝑡,𝑒 = w𝑡 for all local iterations 𝑒 , and 1

𝑁 ∑
𝑁
𝑛=1

ŵ𝑛𝑘 = w̄𝑘 for

any 𝑘 . Also, we introduce an auxiliary full model to bound the error of the sub-model:

w̃𝑘+1
= w̃𝑘 − 𝜂

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ

𝑛
𝑘 ). (28)

Lemma 1.1 Consider the gradient∇w⊙M 𝑓 (w⊙M) from a sub-model and another
gradient𝑄(∇w 𝑓 (w)) = ∇w(h𝑚)∇h𝑚 𝑓 (h𝑛) from the full model with activations
pruned by the sub-model set to zero (h𝑚 = h⊙m). For ReLU two-layer networks, these
gradients are equivalent:∇w⊙M 𝑓 (w⊙M) = 𝑄(∇w 𝑓 (w)).

Proof. We prove the lemma by showing that pruning neurons are equivalent

to setting their activations to 0, demonstrating gradient equivalence. Focusing on

pruning the 𝑝-th neuron in the (𝑙 − 1)-th layer, the activation of each 𝑖-th neuron

in the 𝑙-th layer becomes ℎ𝑙,𝑖 = 𝜎(∑𝑗≠𝑝 𝑤𝑙,𝑖,𝑗ℎ𝑙−1, 𝑗 + 𝑏𝑙,𝑖). Since unconnected

parameters remain unchanged, we concentrate on those connected to pruned neurons.

Given their gradients are zero, proving this entails showing that the gradients of

parameters linked to deactivated neurons are also zero. We categorize these into input

and output parameters relative to the given neuron. Define "non-activated feature" as

𝑎𝑙,𝑖 = ∑
𝑚𝑙−1

𝑗=1
𝑤𝑙,𝑖,𝑗ℎ𝑙−1, 𝑗 + 𝑏𝑙,𝑖 and the error received back from the 𝑝-th neuron in

𝑙 + 1-th layer as 𝛿𝑙+1,𝑝 . The gradient∇𝑤𝑙,𝑖,𝑗 𝑓 (w) of each outputting parameter for

the 𝑗 -th neuron in the (𝑙 − 1)-th layer is

∇𝑤𝑙,𝑖,𝑗 𝑓 (w) = ℎ𝑙−1, 𝑗∇𝑎𝑙,𝑖ℎ𝑙,𝑖(𝑎𝑙,𝑖)

𝑚𝑙+1

∑
𝑝=1

𝑤𝑙+1,𝑝,𝑖𝛿𝑙+1,𝑝 . (29)

Obviously, by setting the activation ℎ𝑙−1, 𝑗 to be 0, its outputting parameters also

become 0, which equals to pruning the neuron. Since ∇𝑎𝑙−1, 𝑗
ℎ𝑙−1, 𝑗(𝑎𝑙−1, 𝑗) = 0

holds for each neuron with the ReLU, the gradients of its connected parameters are

∇𝑤𝑙−1, 𝑗,𝑞
𝑓 (w)=ℎ𝑙−2,𝑞∇𝑎𝑙−1, 𝑗

ℎ𝑙−1, 𝑗(𝑎𝑙−1, 𝑗)

𝑚𝑙

∑
𝑖=1

𝑤𝑙,𝑖,𝑗𝛿𝑙,𝑖 =ℎ𝑙−2,𝑞 ⋅0⋅

𝑚𝑙

∑
𝑖=1

𝑤𝑙,𝑖,𝑗𝛿𝑙,𝑖 =0,

which completes the proof. □

11.2 Proof of Lemma 1
Proof. : E∏︁∇ŵ𝑛

𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) − ∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁

2

2
measures the distance be-

tween the gradient computed from the full model and from the sub-model. To calculate

this distance, we use Lemma 1.1 to transform the gradient that was computed from

the sub-model into the gradient of the entire model. Specifically, according to the

chain rule of backward, the gradient of the parameters of 𝑖-th neuron in 𝑙-th layer for

the entire model ŵ𝑛𝑘−1
is∇ŵ𝑛

𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
). Similarly, the gradient

of the parameters connected to the 𝑖-th non-pruned neuron in the 𝑙-th layer of the

sub-model w𝑛𝑘−1
= ŵ𝑛𝑘−1

⊙M𝑛𝑘−1
is ∇ŵ𝑛

𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) where

h𝑚,𝑘−1
= h𝑘−1

⊙m𝑘−1
. We define error between them is e𝑛𝑘−1

= h𝑛𝑚,𝑘−1
− h𝑛𝑘−1

. We

use 𝑆𝑙,𝑘−1
to denote the set of selected neurons in the 𝑙 -th layer and 𝑆

𝑐
𝑙,𝑘−1

to denote its

complementary set in the 𝑙 -th layer, i.e., the set of unselected neurons. Applying Taylor

expansion to∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) around the full activation point h𝑛𝑘−1

obtains:

∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h
𝑛
𝑚,𝑘−1

) = ∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h
𝑛
𝑘−1

) + 𝑅(e𝑛𝑘−1
), (30)

where 𝑅(e𝑛𝑙,𝑖,𝑘−1
) = ∇

2

h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
)
𝑇e𝑙,𝑖,𝑘−1

+ . . . denotes the infinite sum of all

partial derivatives. Based on the Assumption 3 and basics of Taylor series, the error is:

∏︁𝑅(e𝑛𝑙,𝑖,𝑘−1
)∏︁

2

2
≤ 𝐻

2

∏︁e𝑙,𝑖,𝑘−1
∏︁

2

2
. (31)

Then, we have the following inequality:

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ
𝑛
𝑘−1

)−∇w𝑛
𝑘−1

𝑓𝑛(w
𝑛
𝑘−1

)∏︁
2

2
=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1

⋅ ∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h
𝑛
𝑘−1

) −∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h
𝑛
𝑚,𝑘−1

)∏︁
2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐
𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h
𝑛
𝑘−1

)∏︁
2

2

=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
𝑅(e𝑛𝑘−1

)∏︁
2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐
𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ
𝑛
𝑘 )∏︁

2

2
,

≤
(𝑎)

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

𝐺
2

ℎ𝐻
2

∏︁e𝑙,𝑖,𝑘−1
∏︁

2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐
𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ
𝑛
𝑘 )∏︁

2

2
, (32)

where (𝑎) follows from Assumption 4. The proof is done. □
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11.3 Proof of Theorem 5
Our proof starts from the L-smooth assumption (Assumption 1):

E(𝐹(w̃𝑘+1
) − 𝐹(w̃𝑘)) ≤ E ∐︀∇𝐹(w̃𝑘), w̃𝑘+1

− w̃𝑘 ̃︀ +
𝐿𝑠

2

E∏︁w̃𝑘+1
− w̃𝑘∏︁

2

2
. (33)

The inequality contains two items and we bound them separately:

E∏︁w̃𝑘+1
−w̃𝑘∏︁

2

2
=𝜂

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
=
(𝑎)

𝜂
2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

(∇ŵ𝑛
𝑘
𝑓𝑛(ŵ

𝑛
𝑘 )− (34)

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 ))∏︁

2

2
+𝜂

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
≤
(𝑏)

1

𝑁
𝜂

2

𝜎
2

2
+𝜂

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
,

where (𝑎) follows that E∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘 ) = E∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘 ) and E∏︁v∏︁

2

= E∏︁v−Ev∏︁2

+

∏︁Ev∏︁2

. (𝑏) is due to the independence among clients and the zero mean and follows

from the Assumption 2. For another item, we have

E ∐︀∇𝐹(w̃𝑘), w̃𝑘+1
− w̃𝑘 ̃︀ = −𝜂E ̂︂∇𝐹(w̃𝑘),

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )]︁ (35)

=−
𝜂

2

E
⎨
⎝
⎝
⎝
⎪
∏︁∇𝐹(w̃𝑘)∏︁

2

2
+∏︁

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
−∏︁∇𝐹(w̃𝑘)−

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2

⎬
⎠
⎠
⎠
⎮
.

when 0 < 𝜂 < 1

𝐿
, Substituting (34) and (35) into (33) derives

E(𝐹(w̃𝑘+1
)−𝐹(w̃𝑘))≤

𝜂

2

E∏︁∇𝐹(w̃𝑘)−
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)∏︁

2

2
−
𝜂

2

E∏︁∇𝐹(w̃𝑘)∏︁
2

2
+
𝐿𝑠𝜂

2

𝜎
2

2

2𝑁

⇔
(𝑎)

𝜂

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
+ E(𝐹(w̃𝑘+1

) − 𝐹(w̃𝑘))

≤ 𝜂E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
+
𝐿𝑠𝜂

2

𝜎
2

2

2𝑁
, (36)

where (a) holds because

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)∏︁

2

2
≤E∏︁∇𝐹(w̃𝑘)∏︁

2

2
+E∏︁∇𝐹(w̃𝑘)−

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
. (37)

Now, we seek to present the bound of E∏︁∇𝐹(w̃𝑘) − 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘 )∏︁

2

2
:

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
≤

1

𝑁

𝑁

∑
𝑛=1

E∏︁∇𝐹𝑛(w̃𝑘) −∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2

≤
(𝑎)

𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̃𝑘 − ŵ
𝑛
𝑘 ∏︁

2

2
≤

2𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

(E∏︁w̃𝑘 − w̄𝑘∏︁
2

2
+ E∏︁w̄𝑘 − ŵ

𝑛
𝑘 ∏︁

2

2
) , (38)

where (a) follows from Assumption 1. Next, we analyze the bound of ∏︁w̃𝑘 − w̄𝑘∏︁
2

2
and

∏︁w̄𝑘 − ŵ
𝑛
𝑘 ∏︁

2

2
. First, considering the previous synchronization iteration is 𝑘0 , we have

E∏︁w̄𝑘 − ŵ
𝑛
𝑘 ∏︁

2

2
=
(𝑎)

𝜂
2

E∏︁
𝑘

∑
𝜏=𝑘

0

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛𝜏
𝑓𝑛(w

𝑛
𝜏 ) −

𝑘

∑
𝜏=𝑘

0

∇w𝑛𝜏
𝑓𝑛(w

𝑛
𝜏 )∏︁

2

2

≤
(𝑏)

2𝜂
2

(𝑘−𝑘0)
𝑘

∑
𝜏=𝑘

0

1

𝑁

𝑁

∑
𝑛=1

E∏︁∇w𝑛𝜏
𝑓𝑛(w

𝑛
𝜏 )∏︁

2

2
+2𝜂

2

(𝑘−𝑘0)
𝑘

∑
𝜏=𝑘

0

E∏︁∇w𝑛𝜏
𝑓𝑛(w

𝑛
𝜏 )∏︁

2

2

≤
(𝑑)

4𝜂
2

𝐸
2

𝐺
2

, (39)

where (𝑎) holds because w̄𝑘
0
= ŵ𝑛𝑘

0

= w𝑘
0
. (𝑏) is due to the Cauchy-Schwarz

inequality. (𝑒) is due to Assumption 2. For another item, we have

E∏︁w̃𝑘−w̄𝑘∏︁
2

2
=E∏︁(w̃𝑘−1−

𝜂

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ
𝑛
𝑘−1

))−(w̄𝑘−1
−
𝜂

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘−1

𝑓𝑛(w
𝑛
𝑘−1

))∏︁
2

2

≤
(𝑎)

(1+𝛾)E∏︁w̃𝑘−1
−w̄𝑘−1

∏︁
2

2
+(1+

1

𝛾
)
𝜂

2

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ
𝑛
𝑘−1

)−∇w𝑛
𝑘−1

𝑓𝑛(w
𝑛
𝑘−1

)∏︁
2

2

≤
𝑘−1

∑
𝜏=1

𝜂
2

(1 + 𝛾)
𝑘−1−𝜏

(1 +
1

𝛾
)

1

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛𝜏
𝑓𝑛(ŵ

𝑛
𝜏 ) −∇w𝑛𝜏

𝑓𝑛(w
𝑛
𝜏 )∏︁

2

2

≤
(𝑏)

𝑘−1

∑
𝜏=1

𝜂
2

(1 + 𝛾)
𝑘−1−𝜏

(1 +
1

𝛾
)
⎛
⎜
⎝

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

𝐺
2

ℎ𝐻
2

∏︁e𝑙,𝑖,𝜏 ∏︁
2

2
+ 𝛼𝐺

2

⎞
⎟
⎠
, (40)

where (𝑎) is based on (v1 + v2)
2

≤ (1 + 𝛾)v2

1
+ (1 + 1

𝛾
)v2

2
for 𝛾 > 0. (𝑏) is based

on Assumption 4 with a constant 0 < 𝛼 < 1 and Lemma 1. Let the minimum loss be

𝐹∗ . Substituting (40) and (39) back into (38), bringing the derived inequality back into

(36), and further computing its sum from 𝑘 = 1 to 𝐾 completes the proof.

11.4 Proof of Theorem 6
Proof. Based on the L-smooth assumption (Assumption 1), we have

E(𝐹(w̄𝑘+1
) − 𝐹(w̄𝑘)) ≤ E ∐︀∇𝐹(w̄𝑘), w̄𝑘+1

− w̄𝑘 ̃︀ +
𝐿𝑠

2

E∏︁w̄𝑘+1
− w̄𝑘∏︁

2

2

= 𝜂E ̂︂∇𝐹(w̄𝑘),−
1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w

𝑛
𝑘 ) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )]︁ + 𝜂Ê︀∇𝐹(w̄𝑘),

−
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)̃︂+

𝐿𝑠𝜂
2

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w

𝑛
𝑘 )−

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )+

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)∏︁

2

2
≤
(𝑎)

𝜂

2

E∏︁∇𝐹(w̄𝑘)∏︁
2

2
+
𝜂

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)−

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w

𝑛
𝑘)∏︁

2

2

−
𝜂

2

E∏︁∇𝐹(w̄𝑘)∏︁
2

2
−
𝜂

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
+
𝜂

2

E∏︁∇𝐹(w̄𝑘)−
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)∏︁

2

2

+𝐿𝑠𝜂
2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w

𝑛
𝑘)−

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)∏︁

2

2
+𝐿𝑠𝜂

2

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)∏︁

2

2

≤
(𝑏)

(𝐿𝑠𝜂
2

+
𝜂

2

)
1

𝑁

𝑁

∑
𝑛=1

E∏︁∇w𝑛
𝑘
𝐹𝑛(w

𝑛
𝑘 ) −∇ŵ𝑛

𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
(41)

−(
𝜂

2

−𝐿𝑠𝜂
2

)E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
+
𝜂

2

E∏︁∇𝐹(w̄𝑘)−
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2

≤
(𝑐)

(𝐿𝑠𝜂
2

+
𝜂

2

)(𝐺
2

ℎ𝐻
2

𝑟𝑀𝜖
2

+𝛼𝐺
2

)−(
𝜂

2

−𝐿𝑠𝜂
2

)E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘)∏︁

2

2
+2𝐿𝑠𝜂

3

𝐸
2

𝐺
2

,

where (𝑎) holds because 2𝑎𝑏 ≤ 𝑎
2

+ 𝑏
2

and −2𝑎𝑏 = −𝑎
2

− 𝑏
2

+ (𝑎 − 𝑏)
2

, and (𝑏)

is due to ∏︁∑
𝑛
𝑖=1

𝑎𝑖∏︁
2

2
≤ 𝑛∑

𝑛
𝑖=1

∏︁𝑎𝑖∏︁
2

2
. (𝑐) holds based on two inequalities:

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
≤
(𝑗)

𝐿𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̄𝑘 − ŵ
𝑛
𝑘 ∏︁

2

2
≤
(𝑘)

4𝐿𝑠𝜂
2

𝐸
2

𝐺
2

,

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ

𝑛
𝑘 ) −∇w𝑛

𝑘
𝑓𝑛(w

𝑛
𝑘 )∏︁

2

2
≤
(𝑙)
𝐺

2

ℎ𝐻
2

𝐿

∑
𝑙=1

∑
𝑖∈𝑆𝑙,𝑘

𝜖
2

+𝛼𝐺
2

≤𝐺
2

ℎ𝐻
2

𝑟𝑀𝜖
2

+𝛼𝐺
2

,

where (𝑗) follows from Assumption 1 and (𝑘) is derived by (39). (𝑙) is based on based

on Lemma 1 and Eq.(40) by considering there are𝑀 total neurons, i.e.,∑
𝐿
𝑙=1

𝑚𝑙 = 𝑀 .

Considering w̄1 = w1 and 𝐹∗ ≤ 𝐹(w̄𝐾+1), summing both sides of (41) from 𝑘 = 1 to

𝐾 and making re-organization gets:

𝐾

∑
𝑘=1

(
1

2

− 𝐿𝑠𝜂)E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2

≤
𝐹(w1) − 𝐹∗

𝜂
+𝐾(𝐿𝑠𝜂 +

1

2

)(𝐺
2

ℎ𝐻
2

𝑟𝑀𝜖
2

+ 𝛼𝐺
2

) + 2𝐾𝐿𝑠𝜂
2

𝐸
2

𝐺
2

. (42)

Note that ŵ𝑘 = w𝑡 when 𝑡 ∗ 𝐸 = 𝑘 , we have
𝑇

∑
𝑡=1

E∏︁∇w𝑛
𝑘
𝐹(w𝑛𝑘 )∏︁

2

2
≤

𝐾

∑
𝑘=1

E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ

𝑛
𝑘 )∏︁

2

2
. (43)

Then, setting𝜂 =
⌈︂

1⇑𝑇 with𝜂 < 1

4𝐿𝑠
, and𝐾 = 𝑇 ∗𝐸, the theorem is established. □

12 MORE EXPERIMENTAL DETAILS
Table 3: Experimental setup details.

Local Ep. 𝜂 Batch Size Rounds Momentum Weight Decay

2 0.001 16 2500 0.9 5.00E-04

The experimental setup is

listed in Table 3. The Impact

of client model heterogene-

ity distribution on Cifar100

is presented in Table 4. Besides, they are highly related to intelligent service quality

Table 4: Varied client heterogeneity.

CIFAR-100 (𝜌) 0 0.2 0.4 0.6 0.8 1

High Data Heterogeneity(%) 1.93 4.92 6.63 6.44 6.29 7.38

Low Data Heterogeneity(%) 1.76 5.98 8.36 9.14 9.18 8.70

in terms of timeliness. Our pa-

per’s method advances edge in-

telligence by extracting neurons

and training sub-models on the

edge device, thus reducing mem-

ory usage, computation, and communication costs.

Table 5: Resource consumption.

Method
Peak Comp. cost(GFlops) Communication

Memory (MB) 2 local Ep.s 5 local Ep.s Size (MB) Time (s)

FedAvg 569.67 225.63 564.075 89.18 3.16

FedRolex 188.17 75.21 188.025 32.34 1.05

FedDSE 188.17 112.815 225.63 60.76 1.37

Given local infer-

ence occurs once

per round but lo-

cal training re-

peats, our approach

adds minimal ex-

tra cost. To demon-

strate, we use a batch size of 8, 2-5 local epochs, a 500-sample dataset, and ResNet18 on

CIFAR10 (3,32,32). Incorporating FedRolex (akin to HeteroFL) in Table 5, we present

both upload/download communication sizes.
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