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Abstract

Penetration testing, a crucial industrial practice for ensur-
ing system security, has traditionally resisted automation due
to the extensive expertise required by human professionals.
Large Language Models (LLMs) have shown significant ad-
vancements in various domains, and their emergent abilities
suggest their potential to revolutionize industries. In this work,
we establish a comprehensive benchmark using real-world
penetration testing targets and further use it to explore the
capabilities of LLMs in this domain. Our findings reveal that
while LLMs demonstrate proficiency in specific sub-tasks
within the penetration testing process, such as using testing
tools, interpreting outputs, and proposing subsequent actions,
they also encounter difficulties maintaining a whole context
of the overall testing scenario.

Based on these insights, we introduce PENTESTGPT, an
LLM-empowered automated penetration testing framework
that leverages the abundant domain knowledge inherent in
LLMs. PENTESTGPT is meticulously designed with three
self-interacting modules, each addressing individual sub-tasks
of penetration testing, to mitigate the challenges related to
context loss. Our evaluation shows that PENTESTGPT not
only outperforms LLMs with a task-completion increase of
228.6% compared to the GPT-3.5 model among the bench-
mark targets, but also proves effective in tackling real-world
penetration testing targets and CTF challenges. Having been
open-sourced on GitHub, PENTESTGPT has garnered over
6,500 stars in 12 months and fostered active community en-
gagement, attesting to its value and impact in both the aca-
demic and industrial spheres.

1 Introduction

Securing a system presents a formidable challenge. Offensive
security methods like penetration testing (pen-testing) and
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red teaming are now essential in the security lifecycle. As ex-
plained by Applebaum [1], these approaches involve security
teams attempting breaches to reveal vulnerabilities, providing
advantages over traditional defenses, which rely on incom-
plete system knowledge and modeling. This study, guided by
the principle “the best defense is a good offense”, focuses on
offensive strategies, specifically penetration testing.

Penetration testing is a proactive offensive technique for
identifying, assessing, and mitigating security vulnerabili-
ties [2]. It involves targeted attacks to confirm flaws, yielding
a comprehensive inventory of vulnerabilities with actionable
recommendations. This widely-used practice empowers orga-
nizations to detect and neutralize network and system vulner-
abilities before malicious exploitation. However, it typically
relies on manual effort and specialized knowledge [3], result-
ing in a labor-intensive process, creating a gap in meeting the
growing demand for efficient security evaluations.

Large Language Models (LLMs) have demonstrated pro-
found capabilities, showcasing intricate comprehension of
human-like text and achieving remarkable results across a
multitude of tasks [4, 5]. An outstanding characteristic of
LLMs is their emergent abilities [6], cultivated during training,
which empower them to undertake intricate tasks such as rea-
soning, summarization, and domain-specific problem-solving
without task-specific fine-tuning. This versatility posits LLMs
as potential game-changers in various fields, notably cyber-
security. Although recent works [7–9] posit the potential of
LLMs to reshape cybersecurity practices, including the con-
text of penetration testing, there is an absence of a systematic,
quantitative assessment of their aptitude in this regard. Con-
sequently, an imperative question presents: To what extend
can LLMs automate penetration testing?

Motivated by this question, we set out to explore the ca-
pability boundary of LLMs on real-world penetration test-
ing tasks. Unfortunately, the current benchmarks for pen-
etration testing [10, 11] are not comprehensive and fail to
assess progressive accomplishments fairly during the pro-
cess. To address this limitation, we construct a robust bench-
mark that includes test machines from HackTheBox [12] and



VulnHub [13]—two leading platforms for penetration test-
ing challenges. Comprising 13 targets with 182 sub-tasks,
our benchmark encompasses all vulnerabilities appearing in
OWASP’s top 10 vulnerability list [14] and 18 Common
Weakness Enumeration (CWE) items [15]. The benchmark
offers a more detailed evaluation of the tester’s performance
by monitoring the completion status for each sub-task.

With this benchmark, we perform an exploratory study
using GPT-3.5 [16], GPT-4 [17], and Bard [18] as representa-
tive LLMs. Our test strategy is interactive and iterative. We
craft tailored prompts to guide the LLMs through penetration
testing. Each LLM, presented with prompts and target ma-
chine information, generates step-by-step penetration testing
operations. We then execute the suggested operations in a
controlled environment, document the results, and feed them
back to the LLM to inform and refine its next steps. This
cycle (prompting, executing, and feedback) is repeated un-
til the LLM completes the entire penetration testing process
autonomously. To evaluate LLMs, we compare their results
against baseline solutions from official walkthroughs and
certified penetration testers. By analyzing similarities and
differences in their problem-solving approaches, we aim to
better understand LLMs’ capabilities in penetration testing
and how their strategies differ from human experts.

Our investigation yields intriguing insights into the capa-
bilities and limitations of LLMs in penetration testing. We
discover that LLMs demonstrate proficiency in managing spe-
cific sub-tasks within the testing process, such as utilizing
testing tools, interpreting their outputs, and suggesting subse-
quent actions. Compared to human experts, LLMs are espe-
cially adept at executing complex commands and options with
testing tools, while models like GPT-4 excel in comprehend-
ing source code and pinpointing vulnerabilities. Furthermore,
LLMs can craft appropriate test commands and accurately de-
scribe graphical user-interface operations needed for specific
tasks. Leveraging their vast knowledge base, they can design
inventive testing procedures to unveil potential vulnerabili-
ties in real-world systems and CTF challenges. However, we
also note that LLMs have difficulty in maintaining a coherent
grasp of the overarching testing scenario, a vital aspect for
attaining the testing goal. As the dialogue advances, they may
lose sight of earlier discoveries and struggle to apply their
reasoning consistently toward the final objective. Addition-
ally, LLMs overemphasize recent tasks in the conversation
history, regardless of their vulnerability status. As a result,
they tend to neglect other potential attack surfaces exposed in
prior tests and fail to complete the penetration testing task.

Building on our insights into LLMs’ capabilities in pene-
tration testing, we present PENTESTGPT, an interactive sys-
tem designed to enhance the application of LLMs in this
domain. Drawing inspiration from the collaborative dynamics
commonly observed in real-world human penetration testing
teams, PENTESTGPT is particularly tailored to manage large
and intricate projects. It features a tripartite architecture com-

prising Reasoning, Generation, and Parsing Modules, each
reflecting specific roles within penetration testing teams. The
Reasoning Module emulates the function of a lead tester,
focusing on maintaining a high-level overview of the penetra-
tion testing status. We introduce a novel representation, the
Pentesting Task Tree (PTT), based on the cybersecurity attack
tree [19]. This structure encodes the testing process’s ongoing
status and steers subsequent actions. Uniquely, this representa-
tion can be translated into natural language and interpreted by
the LLM, thereby comprehended by the Generation Module
and directing the testing procedure. The Generation Module,
mirroring a junior tester’s role, is responsible for construct-
ing detailed procedures for specific sub-tasks. Translating
these into exact testing operations augments the generation
process’s accuracy. Meanwhile, the Parsing Module deals
with diverse text data encountered during penetration testing,
such as tool outputs, source codes, and HTTP web pages. It
condenses and emphasizes these texts, extracting essential
information. Collectively, these modules function as an inte-
grated system. PENTESTGPT completes complex penetration
testing tasks by bridging high-level strategies with precise exe-
cution and intelligent data interpretation, thereby maintaining
a coherent and effective testing process.

We assessed PENTESTGPT across diverse testing scenar-
ios to validate its effectiveness and breadth. In our custom
benchmarks, PENTESTGPT significantly outperformed direct
applications of GPT-3.5 and GPT-4, showing increases in
sub-task completion rates of 228.6% and 58.6%, respectively.
Furthermore, when applied to real-world challenges such as
the HackTheBox active machine penetration tests [20] and
picoMini [21] CTF competition, PENTESTGPT demonstrated
its practical utility. It successfully resolved 4 out of 10 pene-
tration testing challenges, incurring a total cost of 131.5 US
Dollars for the OpenAI API usage. In the CTF competition,
PENTESTGPT achieved a score of 1500 out of a possible
4200, placing 24th among 248 participating teams. This eval-
uation underscores PENTESTGPT’s practical value in enhanc-
ing penetration testing tasks’ efficiency and precision. The
solution has been made publicly available on GitHub [22],
receiving widespread acclaim with over 6,200 stars to the
date of writing, active community engagement, and ongoing
collaboration with multiple industrial partners.

In summary, we make the following contributions:

• Development of a Comprehensive Penetration Testing
Benchmark. We craft a robust and representative penetra-
tion testing benchmark, encompassing a multitude of test
machines from leading platforms such as HackTheBox and
VulnHub. This benchmark includes 182 sub-tasks covering
OWASP’s top 10 vulnerabilities, offering fair and compre-
hensive evaluation of penetration testing. To the best of
our knowledge, this is the first benchmark in the field that
can provide progressive accomplishments assessments and
comparisons.



• Comprehensive Evaluation of LLMs for Penetration
Testing Tasks. By employing models like GPT-3.5, GPT-
4, and Bard, our exploratory study rigorously investigates
the strengths and limitations of LLMs in penetration testing.
To the best of our knowledge, this is the first systematic and
quantitative study for the capability of LLMs in performing
automated penetration testing. The insights gleaned from
this study shed valuable light on the capabilities and chal-
lenges faced by LLMs, enriching our understanding of their
applicability in this specialized domain.

• Development of an Innovative LLM-powered Penetra-
tion Testing System. We engineer PENTESTGPT, a novel
interactive system that leverages the strengths of LLMs
to carry out penetration testing tasks automatically. Draw-
ing inspiration from real-world human penetration testing
teams, PENTESTGPT integrates a tripartite design that mir-
rors the collaborative dynamics between senior and junior
testers. This architecture optimizes LLMs’ usage, signifi-
cantly enhancing the efficiency and effectiveness of auto-
mated penetration testing. We have open-sourced PENTEST-
GPT and it has received over 6,500 stars on GitHub, active
community contributions, and several industry partners in-
cluding AWS, Huawei, and TikTok to collaborate.

2 Background & Related Work

2.1 Penetration Testing
Penetration testing, or “pentesting”, is a critical practice to
enhance organizational systems’ security. In a typical penetra-
tion test, security professionals, known as penetration testers,
analyze the target system, often leveraging automated tools.
The standard process is divided into five key phases [23]:
Reconnaissance, Scanning, Vulnerability Assessment, Ex-
ploitation, and Post Exploitation (including reporting). These
phases enable testers to understand the target system, identify
vulnerabilities, and exploit them to gain access.

Despite significant advancements [11, 24, 25], a fully auto-
mated penetration testing system remains out of reach. This
gap results from the need for deep vulnerability understanding
and a strategic action plan. Typically, testers combine depth-
first and breadth-first search techniques [23]. They first grasp
the target environment’s scope, then drill down into specific
vulnerabilities. This method ensures comprehensive analysis,
leaning on expertise and experience. The multitude of spe-
cialized tools further complicate the automation. Thus, even
with artificial intelligence, achieving a seamless automated
penetration testing solution is a daunting task.

2.2 Large Language Models
Large Language Models (LLMs), including OpenAI’s GPT-
3.5 and GPT-4, are prominent tools with applications ex-
tending to various cybersecurity-related fields, such as code

analysis [26] and vulnerability repairment [27]. These models
are equipped with wide-ranging general knowledge and the
capacity for elementary reasoning. They can comprehend,
infer, and produce text resembling human communication,
aided by a training corpus encompassing diverse domains
like computer science and cybersecurity. Their ability to in-
terpret context and recognize patterns enables them to adapt
knowledge to new scenarios. This adaptability, coupled with
their proficiency in interacting with systems in a human-like
way, positions them as valuable assets in enhancing penetra-
tion testing processes. Despite inherent limitations, LLMs
offer distinct attributes that can substantially aid in the au-
tomation and improvement of penetration testing tasks. The
realization of this potential, however, requires the creation
and application of a specialized and rigorous benchmark.

3 Penetration Testing Benchmark

3.1 Motivation

The comprehensive evaluation of LLMs in penetration testing
necessitates a robust and representative benchmark. Existing
benchmarks in this domain [10, 11] have several limitations.
First, they are often restricted in scope, focusing on a narrow
range of potential vulnerabilities, and thus fail to capture the
complexity and diversity of real-world cyber threats. For in-
stance, the OWASP juiceshop project [28] is the most widely
adopted benchmark for web vulnerability evaluation. How-
ever, it does not include privilege escalation vulnerabilities,
which is an essential aspect of penetration testing. Second, ex-
isting benchmarks may not recognize the cumulative value of
progress through the different stages of penetration testing, as
they tend to evaluate only the final exploitation success. This
approach overlooks the nuanced value each step contributes
to the overall process, resulting in metrics that might not accu-
rately represent actual performance in real-world scenarios.

To address these concerns, we propose the construction of
a comprehensive penetration testing benchmark that meets
the following criteria:

Task Variety. The benchmark must encompass diverse tasks,
reflecting various operating systems and emulating the di-
versity of scenarios encountered in real-world penetration
testing.

Challenge Levels. To ensure broad applicability, the bench-
mark must include tasks of varying difficulty levels suitable
for challenging novice and expert testers.

Progress Tracking. Beyond mere success or failure met-
rics, the benchmark must facilitate tracking of incremental
progress, thereby recognizing and scoring the value added at
each stage of the penetration testing process.



3.2 Benchmark Design

Following the criteria outlined previously, we develop a com-
prehensive benchmark that closely reflects real-world pene-
tration testing tasks. The design process progresses through
several stages.

Task Selection. We begin by selecting tasks from HackThe-
Box [12] and VulnHub [13], two leading penetration testing
training platforms. Our selection criteria are designed to en-
sure that our benchmark accurately reflects the challenges
encountered in practical penetration testing environments. We
meticulously review the latest machines available on both
platforms, aiming to identify and select a subset that compre-
hensively covers all vulnerabilities listed in the OWASP [14]
Top 10 Project. Additionally, we choose machines that repre-
sent a mix of difficulties, classified according to traditional
standards in the penetration testing domain into easy, medium,
and hard categories. This process guarantees that our bench-
mark spans the full spectrum of vulnerabilities and difficulties.
Note that our benchmark does not include benign targets to
assess false positives. In penetration testing, benign targets are
sometimes explored. Our main objective remains identifying
true vulnerabilities.

Task Decomposition. We further parse the testing process of
each target into a series of sub-tasks, following the standard
solution commonly referred to as the “walkthrough” in pen-
etration testing. Each sub-task corresponds to a unique step
in the overall process. We decompose sub-tasks following
NIST 800-115 [29], the Technical Guide to Security Testing.
Each sub-task is one step declared in the Guide (e.g., network
discovery, password cracking), or an operation that exploits a
unique vulnerability categorised in the Common Weakness
Enumeration (CWE) [15] (e.g., exploiting SQL injection -
CWE-89 [30]). In the end, we formulate an exhaustive list of
sub-tasks for every benchmark target.

Benchmark Validation. The final stage of our benchmark
development involves rigorous validation, which ensures the
reproducibility of these benchmark machines. To do this, three
certified penetration testers independently attempt the pene-
tration testing targets and write their walkthrough. We then
adjust our task decomposition accordingly because some tar-
gets may have multiple valid solutions.

Ultimately, we have compiled a benchmark that effec-
tively encompasses all types of vulnerabilities listed in the
OWASP [14] Top 10 Project. It comprises 13 penetration
testing targets, each at varying levels of difficulty. These tar-
gets are broken down into 182 sub-tasks across 26 categories,
covering 18 distinct CWE items. This number of targets is
deemed sufficient to represent a broad spectrum of vulnera-
bilities, difficulty levels, and varieties essential for compre-
hensive penetration testing training. To foster community de-
velopment, we have made this benchmark publicly available
online [22].

4 Exploratory Study

We conduct an exploratory study to assess the capabilities
of LLMs in penetration testing, with the primary objective
of determining how well LLMs can adapt to the real-world
complexities and challenges in this task. Specifically, we aim
to address the following two research questions:
RQ1 (Capability): To what extent can LLMs perform pene-
tration testing tasks?
RQ2 (Comparative Analysis): How do the problem-solving
strategies of human penetration testers and LLMs differ?

We utilize the benchmark described in Section 3 to evaluate
the performance of LLMs on penetration testing tasks. In the
following, we first delineate our testing strategy for this study.
Subsequently, we present the testing results and an analytical
discussion to address the above research questions.

4.1 Testing Strategy
LLMs are text-based and cannot independently perform pen-
etration testing operations. To address this, we develop a
human-in-the-loop testing strategy, serving as an intermediary
method to accurately assess LLMs’ capabilities. This strategy
features an interactive loop where a human expert executes
the LLM’s penetration testing directives. Importantly, the hu-
man expert functions purely as an executor, strictly following
the LLM’s instructions without adding any expert insights or
making independent decisions.

Figure 1 decipits the testing strategy with the following
steps: ❶ We initiate the looped testing procedure by pre-
senting the target specifics to the LLM, seeking its guidance
on potential penetration testing steps. ❷ The human expert
strictly follows the LLM’s recommendations and conducts the
suggested actions in the penetration testing environment. ❸
Outcomes of the testing actions are collected and summarized:
direct text outputs such as terminal outputs or source code
are documented; non-textual results, such as graphical repre-
sentations, are translated by the human expert into succinct
textual summaries. The data is then fed back to the LLM,
setting the stage for its subsequent recommendations. ❹ This
iterative process persists either until a conclusive solution
is identified or an deadlock is reached. We then compile a
record of the testing procedures, encompassing successful
sub-tasks, ineffective actions, and any reasons for failure, if
applicable. For a more tangible grasp of this strategy, we offer
illustrative examples of prompts and corresponding outputs
from GPT-4 related to one of our benchmark targets in the
Appendix Section A.

To ensure the evaluation’s fairness and accuracy, we em-
ploy several strategies. First, we involve expert-level penetra-
tion testers1 as the human testers. With their deep pentesting
knowledge, these testers can precisely comprehend and ex-
ecute LLM-generated operations, thus accurately assessing

1We selected Offensive Security Certified Professionals (OSCP) testers.
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Figure 1: Overview of strategy to use LLMs for penetration
testing.

LLMs’ true capabilities. Second, we instruct the penetration
testers to strictly execute the commands given by the LLMs,
without altering any content or information, even upon identi-
fying clear errors. They are also instructed to faithfully report
the testing results back to the LLM without any additional
commentary. Third, for managing UI-based operations and
graphical results, we have adopted specific measures. Initially,
we instruct the LLMs to minimize the use of GUI-based tools.
For indispensable tools that cannot be avoided (e.g., Burp-
Suite), we propose a result-oriented approach: upon receiving
a GUI operation instruction, the testers first execute the oper-
ation based on their expert knowledge. Subsequently, they are
required to provide detailed, step-by-step textual descriptions
of their actions and the observed responses at each step, which
are then communicated back to the LLM. Should the LLM
express any objections or comments concerning a particular
step, the operation is to be repeated. This protocol ensures
the integrity of the feedback loop, guaranteeing that the LLM
obtains a comprehensive understanding of the testing results.

4.2 Evaluation Settings
We proceed to assess the performances of various LLMs in
penetration testing tasks using the strategy mentioned above.
Model Selection. Our study focuses on three cutting-edge
LLMs that are currently accessible: GPT-3.5 with 8k to-
ken limit, GPT-4 with 32k token limit from OpenAI, and
LaMDA [31] from Google. These models are selected based
on their prominence in the research community and consis-
tent availability. To interact with the LLMs mentioned above,
we utilize chatbot services provided by OpenAI and Google,
namely ChatGPT [32] and Bard [18]. For this paper, the terms
GPT-3.5, GPT-4, and Bard will represent these three LLMs.
Experimental Setup. Our experiments occur in a local setting
with both target and testing machines on the same private
network. The testing machine runs on Kali Linux [33], version
2023.1.
Tool Usage. Our study aims to assess the innate capabilities
of LLMs on penetration testing, without reliance on end-to-
end automated vulnerability scanners such as Nexus [34]
and OpenVAS [35]. Consequently, we explicitly instruct the
LLMs to refrain from using these tools. We follow the LLMs’
recommendations for utilizing other tools designed to validate
specific vulnerability types (e.g., sqlmap [36] for SQL injec-

tions). Occasionally, versioning discrepancies may lead the
LLMs to provide incorrect instructions for tool usage. In such
instances, our penetration testing experts evaluate whether the
instructions would have been valid for a previous version of
the tool. They then make any necessary adjustments to ensure
the tool’s correct operation.

4.3 Capability Evaluation (RQ1)

To address RQ1, we evaluate the performance of three lead-
ing LLMs: GPT-4, Bard, and GPT-3.5. We summarize these
findings in Table 1. Each LLM successfully completes at least
one end-to-end penetration test, highlighting their versatility
in simpler environments. Of these, GPT-4 excels, achieving
success on 4 easy and 1 medium difficulty targets. Bard and
GPT-3.5 follow with success on 2 and 1 easy targets, respec-
tively. In sub-tasks, GPT-4 completes 55 out of 77 on easy
targets and 30 out of 71 on medium. Bard and GPT-3.5 also
show potential, finishing 16 (22.54%) and 13 (18.31%) of
medium difficulty sub-tasks, respectively. However, on hard
targets, all models’ performance declines. Though they can
initiate the reconnaissance phase, they struggle to exploit iden-
tified vulnerabilities. This is anticipated since hard targets
are designed to be especially challenging. They often fea-
ture seemingly vulnerable services that are non-exploitable,
known as rabbit holes [37]. The pathways to exploit these
machines are unique and unpredictable, resisting automated
tool replication. For example, the target Falafel has special-
ized SQL injection vulnerabilities resistant to sqlmap. Current
LLMs cannot tackle these without human expert input.

Finding 1: Large Language Models (LLMs) have shown
proficiency in conducting end-to-end penetration testing
tasks but struggle to overcome challenges presented by
more difficult targets.

We further examine the detailed sub-task completion per-
formances of the three LLMs compared to the walkthrough
(WT), as presented in Table 2. Analyzing the completion sta-
tus, we identify several areas where LLMs excel. First, they
adeptly utilize common penetration testing tools to interpret
the corresponding outputs, especially in enumeration tasks
correctly. For example, all three evaluated LLMs successfully
perform nine Port Scanning sub-tasks. They can configure
the widely-used port scanning tool, nmap [38], comprehend
the scan results, and formulate subsequent actions. Second,
the LLMs reveal a deep understanding of prevalent vulner-
ability types, connecting them to the services on the target
system. This understanding is evidenced by the successful
completion of sub-tasks related to various vulnerability types.
Finally, LLMs demonstrate their effectiveness in code analy-
sis and generation, particularly in the tasks of Code Analysis
and Shell Construction. These tasks require the models to
read and generate codes in different programming languages.



Table 1: Overall performance of LLMs on Penetration Testing Benchmark.

Easy Medium Hard Average

Tools Overall (7) Sub-task (77) Overall (4) Sub-task (71) Overall (2) Sub-task (34) Overall (13) Sub-task (182)

GPT-3.5 1 (14.29%) 24 (31.17%) 0 (0.00%) 13 (18.31%) 0 (0.00%) 5 (14.71%) 1 (7.69%) 42 (23.07%)
GPT-4 4 (57.14%) 55 (71.43%) 1 (25.00%) 30 (42.25%) 0 (0.00%) 10 (29.41%) 5 (38.46%) 95 (52.20%)
Bard 2 (28.57%) 29 (37.66%) 0 (0.00%) 16 (22.54%) 0 (0.00%) 5 (14.71%) 2 (15.38%) 50 (27.47%)

Average 2.3 (33.33%) 36 (46.75%) 0.33 (8.33%) 19.7 (27.70%) 0 (0.00%) 6.7 (19.61%) 2.7 (20.5%) 62.3 (34.25%)

Table 2: Top 10 Types of Sub-tasks completed by each tool.

Sub-Tasks WT GPT-3.5 GPT-4 Bard

Web Enumeration 18 4 (22.2%) 8 (44.4%) 4 (22.2%)
Code Analysis 18 4 (22.2%) 5 (27.2%) 4 (22.2%)
Port Scanning 12 9 (75.0%) 9 (75.0%) 9 (75.0%)
Shell Construction 11 3 (27.3%) 8 (72.7%) 4 (36.4%)
File Enumeration 11 1 (9.1%) 7 (63.6%) 1 (9.1%)
Configuration Enumeration 8 2 (25.0%) 4 (50.0%) 3 (37.5%)
Cryptanalysis 8 2 (25.0%) 3 (37.5%) 1 (12.5%)
Network Enumeration 7 1 (14.3%) 3 (42.9%) 2 (28.6%)
Command Injection 6 1 (16.7%) 4 (66.7%) 2 (33.3%)
Known Exploits 6 2 (33.3%) 3 (50.0%) 1 (16.7%)

Table 3: Top Unnecessary Operations Prompted by LLMs on
the Benchmark Targets

Unnecessary Operations GPT-3.5 GPT-4 Bard Total

Brute-Force 75 92 68 235
Exploit Known Vulnerabilities (CVEs) 29 24 28 81
SQL Injection 14 21 16 51
Command Injection 18 7 12 37

This often culminates in identifying potential vulnerabilities
from code snippets and crafting the corresponding exploits.
Notably, GPT-4 outperforms the other two models regard-
ing code interpretation and generation, marking it the most
suitable candidate for penetration testing tasks.

Finding 2: LLMs can efficiently use penetration test-
ing tools, identify common vulnerabilities, and interpret
source codes to identify vulnerabilities.

4.4 Comparative Analysis (RQ2)

To address RQ2, we examine the problem-solving strategies
that LLMs employ, contrasting them with human penetration
testers. In each penetration testing trial, we concentrate on
two main aspects: (1) Identifying the unnecessary operations
that LLMs prompt, which are not conducive to successful
penetration testing, as compared to a standard walkthrough;
and (2) Understanding the specific factors that prevent LLMs
from successfully executing penetration tests.

We analyze the unnecessary operations prompted by LLMs
by breaking down the recorded testing procedures into sub-

Table 4: Top causes for failed penetration testing trials

Failure Reasons GPT3.5 GPT4 Bard Total

Session context lost 25 18 31 74
False Command Generation 23 12 20 55
Deadlock operations 19 10 16 45
False Scanning Output Interpretation 13 9 18 40
False Source Code Interpretation 16 11 10 37
Cannot craft valid exploit 11 15 8 34

tasks. We employ the same method to formulate benchmark
sub-tasks, as Section 3 outlines. By comparing this to a stan-
dard walkthrough, we identify the primary sub-task trials that
fall outside the standard walkthrough and are thus irrelevant to
the penetration testing process. The results are summarized in
Table 3. We find that the most prevalent unnecessary operation
prompted by LLMs is brute force. For all services requiring
password authentication, LLMs typically advise brute-forcing
it. This is an ineffective strategy in penetration testing. We
surmise that many hacking incidents in enterprises involve
password cracking and brute force. LLMs learn these reports
from accident reports and are consequently considered viable
solutions. Besides brute force, LLMs suggest that testers en-
gage in CVE studies, SQL injections, and command injections.
These recommendations are common, as real-world penetra-
tion testers often prioritize these techniques, even though they
may not always provide the exact solution.

To understand penetration testing trial failures, we cate-
gorize the reasons for the 195 trials, as shown in Table 4.
The primary failure cause is loss of session context. This
means models often lose awareness of previous test outcomes,
missing essential past results. This issue arises from LLMs’
challenge in handling conversation context. Each LLM has a
fixed token window, such as GPT-4 with a capacity of 8,000
tokens [39]. If critical information for a complex task exceeds
this limit, trimming it causes the loss of important details.
This is problematic in intricate tests where identifying vul-
nerabilities across services and forming a cohesive exploit
strategy is vital. This design flaw impacts the model’s efficacy
in dealing with layered, detailed tasks.



Finding 3: LLMs struggle to maintain long-term memory,
which is vital to link vulnerabilities and develop exploita-
tion strategies effectively.

Secondly, LLMs strongly prefer the most recent tasks, ad-
hering rigorously to a depth-first search approach. They tend
to immerse deeply into resolving the issues mentioned in
the most recent conversation, seldom branching out to new
targets until the ongoing path is exhaustively explored. This
behavior aligns with the studies [40, 41] that LLMs primar-
ily concentrate their attention at the prompt’s beginning and
end. In contrast, seasoned penetration testers adopt a more
holistic approach, strategically plotting moves that promise
the highest potential outcomes. When coupled with the afore-
mentioned session context loss, this proclivity drives LLMs to
become excessively anchored to one specific service. As the
testing advances, the models often neglect prior discoveries,
leading to an impasse.

Finding 4: LLMs strongly prefer recent tasks and a depth-
first search approach, often resulting in an over-focus on
one service and forgetting previous findings.

Lastly, LLMs have inaccurate result generation and halluci-
nation issues, as noted in [42]. This phenomenon ranks as the
second most frequent cause of failures and is characterized by
the generation of false commands. In our study, we observe
that LLMs frequently identify the appropriate tool for the task
but stumble in configuring the tools with the correct settings.
In some cases, they even concoct non-existent testing tools or
tool modules.

Finding 5: LLMs may generate inaccurate operations or
commands, often stemming from inherent inaccuracies
and hallucinations.

Our exploratory study on three LLMs in penetration testing
highlights their capability to complete sub-tasks. However,
they face issues with long-term memory retention, reliance
on a depth-first strategy, and ensuring operation accuracy. In
the subsequent section, we detail our approach to mitigate
these challenges and describe the design of our LLM-based
penetration testing tool.

5 Methodology

5.1 Overview
In light of the challenges identified in the preceding section,
we present our proposed solution, PENTESTGPT, which lever-
ages the synergistic interplay of three LLM-powered modules.
As illustrated in Figure 2, PENTESTGPT incorporates three
core modules: the Reasoning Module, the Generation Mod-
ule, and the Parsing Module. Each module reserves one LLM
session with its conversation and context. The user interacts

seamlessly with PENTESTGPT, where distinct modules pro-
cess different types of messages. This interaction culminates
in a final decision, suggesting the subsequent step of the pen-
etration testing process that the user should undertake. In the
following sections, we elucidate our design reasoning and
provide a detailed breakdown of the engineering processes
behind PENTESTGPT.

5.2 Design Rationale

Our central design considerations emerged from the three
challenges observed in the previous Exploratory Study (Sec-
tion 4): The first challenge (Finding 3) pertains to the issue
of penetration testing context loss due to memory retention.
LLMs in their original form struggle to maintain such long-
term memory due to token size limits. The second obstacle
(Finding 4) arises from the LLM chatbots’ tendency to em-
phasize recent conversation content. In penetration testing
tasks, this focuses on optimizing the immediate task. This
approach falls short in the complex, interconnected task envi-
ronment of penetration testing. The third obstacle (Finding 5)
is tied to the inaccurate results generation by LLMs. When
tasked to produce specific operations for a step in penetration
testing directly, the outputs are often imprecise, sometimes
even leading to false directions.

PENTESTGPT has been engineered to address these chal-
lenges, rendering it more apt for penetration testing tasks.
We draw inspiration from the methodologies employed by
real-world penetration testing teams, where directors plan
overarching procedures, subdividing them into subtasks for
individual testers. Each tester independently performs their
task, reporting results without an exhaustive understanding
of the broader context. The director then determines the fol-
lowing steps, possibly redefining tasks, and triggers the subse-
quent round of testing. Essentially, the director manages the
overall strategy without becoming entrenched in the minutiae
of the tests. This approach is mirrored in PENTESTGPT’s
functionality, enhancing its efficiency and adaptability in con-
ducting penetration tests. Our strategy divides penetration
testing into two processes: identifying the next task and gen-
erating the concrete operation to complete the task. Each
process is powered by one LLM session. In this setup, the
LLM session responsible for task identification retains the
complete context of the ongoing penetration testing status.
At the same time, the generation of detailed operations and
parsing of information is managed by other sessions. This
division of responsibilities fosters effective task execution
while preserving the overarching context.

To assist LLMs in effectively carrying out penetration test-
ing tasks, we design a series of prompts that align with user
inputs. We utilize the Chain-of-Thought (CoT) [43] methodol-
ogy during this process. As CoT reveals, LLMs’ performance
and reasoning capabilities can be significantly enhanced using
the input, chain-of-thought, output prompting format. Here,
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Figure 2: Overview of PENTESTGPT.

the chain-of-thought represents a series of intermediate nat-
ural language reasoning steps leading to the outcome. We
dissect the penetration testing tasks into micro-steps and de-
sign prompts with examples to guide LLMs through process-
ing penetration testing information step-by-step, ultimately
leading to the desired outcomes. The complete prompts are
available at our anonymized open-source project [44].

5.3 Reasoning Module
The Reasoning Module plays a pivotal role in our system,
analogous to a team lead overseeing the penetration testing
task from a macro perspective. It obtains testing results or
intentions from the user and prepares the testing strategy for
the next step. This testing strategy is passed to the generation
module for further planning.

To effectively supervise the penetration testing process and
provide precise guidance, it is crucial to translate the test-
ing procedures and outcomes into a natural language format.
Drawing inspiration from the concept of an attack tree [45],
which is often used to outline penetration testing procedures,
we introduce the notion of a pentesting task tree (PTT). This
novel approach to testing status representation is rooted in the
concept of an attributed tree [46]:

Definition 1 (Attributed Tree) A attributed tree is an edge-
labeled, attributed polytree G = (V,E,λ,µ) where V is a set
of nodes (or vertices), E is a set of directed edges, λ : E → Σ is
an edge labeling function assigning a label from the alphabet
Σ to each edge and µ : (V ∪E)×K → S is a function assigning
key(from K)-value(from S) pairs of properties to the edges
and nodes.

Given the definition of attributed tree, PTT is defined as
follows:

Definition 2 (Pentesting Task Tree) A PTT T is a pair
(N,A), where: (1) N is a set of nodes organized in a tree
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a) PTT Representation
Task Tree:
1. Perform port scanning (completed)
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  - Services are FTP, SSH, and Web Service.
2. Perform the testing
  2.1 Test FTP Service 
    2.1.1 Test Anonymous Login (success)
      2.1.1.1 Test Anonymous Upload (success)
  2.2 Test SSH Service 
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b) PTT Representation in Natural Language

Figure 3: Pentesting Task Tree in a) visualized tree format,
and b) natural language format encoded in LLM.

structure. Each node has a unique identifier, and there is a
special node called the root that has no parent. Each node,
other than the root, has exactly one parent and zero or more
children. (2) A is a function that assigns to each node n ∈ N
a set of attributes A(n). Each attribute is a pair (a,v), where
a is the attribute name and v is the attribute value. The set of
attributes can be different for each node.

As outlined in Figure 2, the Reasoning Module’s operation
unfolds over four key steps operating over the PTT. ❶ The



module begins by interpreting the user’s objectives to create
an initial PTT, formatted in natural language. This involves
instructing the LLM with designed prompts that contain the
above PTT definition and real-world examples. The outputs
from the LLM are parsed to ensure that the tree structure
is correctly represented, which can be formatted in natural
language through layered bullets, as shown in Figure 3. The
Reasoning Module effectively overcomes the memory-loss
issue by maintaining a task tree that encompasses the entire
penetration testing process. ❷ After updating the tree infor-
mation, a verification step is conducted on the newly updated
PTT to ascertain its correctness. This process checks explic-
itly that only the leaf nodes of the PTT have been modified,
aligning with the principle that atomic operations in the pen-
etration testing process should only influence the status of
the lowest-level sub-tasks. This step confirms the correctness
of the reasoning process, safeguarding against any potential
alterations to the overall tree structure due to hallucination by
the LLM. If discrepancies arise, the information is reverted to
the LLM for correction and regeneration. ❸ With the updated
PTT, the Reasoning Module evaluates the current tree state
and pinpoints viable sub-tasks that can serve as candidate
steps for further testing. ❹ Finally, the module evaluates the
likelihood of these sub-tasks leading to successful penetra-
tion testing outcomes. It then recommends the top task as
the output. The expected results of this task are subsequently
forwarded to the Generation Module for an in-depth analy-
sis. This is feasible, as demonstrated in the exploratory study,
since LLMs, particularly GPT-4, can identify potential vul-
nerabilities when provided with system status information.
This procedural approach enables the Reasoning Module to
address one of the inherent limitations of LLMs, precisely
their tendency to concentrate solely on the most recent task.
Note that in cases where the tester identifies that the correct
task is incorrect or not completed in a preferred way, he could
also manually revise the PTT through the interactive handle
further discussed in Section 5.6.

We devise four sets of prompts to sequentially guide the
Reasoning Module through the completion of each stage.
To bolster the reproducibility of our results, we optimize
these prompts further with a technique known as hint gener-
ation [47]. From our practical experience, we observe that
LLMs are adept at interpreting the tree-structured information
pertinent to penetration testing and can update it accurately
in response to test outputs.

5.4 Generation Module

The Generation Module translates specific sub-tasks from
the Reasoning Module into concrete commands or instruc-
tions. Each time a new sub-task is received, a fresh session is
initiated in the Generation Module. This strategy effectively
isolates the context of the overarching penetration task from
the immediate task under execution, enabling the LLM to

focus entirely on generating specific commands.
Instead of directly transforming the received sub-task into

specific operations, our design employs the CoT strategy [43]
to partition this process into two sequential steps. This design
decision directly addresses the challenges associated with
model inaccuracy and hallucination by enhancing the model’s
reasoning capability. In particular, ❺ upon the receipt of a
concise sub-task from the Reasoning Module, the Generation
Module begins by expanding it into a sequence of detailed
steps. Notably, the prompt associated with this sub-task re-
quires the LLM to consider the possible tools and operations
available within the testing environment. ❻ Subsequently, the
Generation Module transforms each of these expanded steps
into precise terminal commands ready for execution or into de-
tailed descriptions of specific Graphical User Interface (GUI)
operations to be carried out. This stage-by-stage translation
eliminates potential ambiguities, enabling testers to follow the
instructions directly and seamlessly. Implementing this two-
step process effectively precludes the LLM from generating
operations that may not be feasible in real-world scenarios,
thereby improving the success rate of the penetration testing
procedure.

By acting as a bridge between the strategic insights pro-
vided by the Reasoning Module and the actionable steps
required for conducting a penetration test, the Generation
Module ensures that high-level plans are converted into pre-
cise and actionable steps. This transformation process sig-
nificantly bolsters the overall efficiency of the penetration
testing procedure, and also provides human-readable outputs
of the complete testing process. We present a detailed PTT
generation process for a complete penetration testing target in
Appendix Figure 8, accompanied by an illustrative example
to aid understanding.
An Illustrative Example. We utilize a real-world running
example to illuminate how the Reasoning Module and the
Generation Module collaboratively operate to complete pene-
tration testing tasks. Figure 4 illustrates a single iteration of
PENTESTGPT working on the HackTheBox machine Car-
rier [48], a medium-difficulty target. As depicted in a-1), the
PTT, in natural language format, encodes the testing status,
revealing the open ports (21, 22, 80) with running services.
The Reasoning Module is subsequently instructed to identify
the available tasks. As highlighted in red, service scanning is
the only available task on the leaf node of the PTT. This task
is therefore chosen and forwarded to the Generation Module
for command generation. The generated command is exe-
cuted in the testing environment, and the execution result is
conveyed to the Reasoning Module to update the PTT. In
a-2), the Reasoning Module integrates the previous scanning
result into the PTT, cross-referencing it with the earlier PTT
to update only the leaf nodes. It then looks for the available
tasks to execute. In this case, two tasks emerge: scanning
the web service on port 80 and checking the SSH service for
known vulnerabilities. The LLM evaluates which task is more
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Figure 4: A demonstration of the task-tree update process on the testing target HTB-Carrier

promising and chooses to investigate the web service, often
seen as more vulnerable. This task is passed to the Generation
Module. The Generation Module turns this general task into
a detailed process, employing nikto [49], a commonly used
web scanning script. The iterative process continues until the
tester completes the penetration testing task.

5.5 Parsing Module

The Parsing Module operates as a supportive interface, en-
abling effective processing of the natural language informa-
tion exchanged between the user and the other two core mod-
ules. Two needs can primarily justify the existence of this
module. First, security testing tool outputs are typically ver-
bose, laden with extraneous details, making it computationally
expensive and unnecessarily redundant to feed these extended
outputs directly into the LLMs. Second, users without spe-
cialized knowledge in the security domain may struggle to
extract key insights from security testing outputs, presenting
challenges in summarizing crucial testing information. Con-
sequently, the Parsing Module is essential in streamlining and
condensing this information.

In PENTESTGPT, the Parsing Module is devised to handle
four distinct types of information: (1) user intentions, which
are directives provided by the user to dictate the next course
of action, (2) security testing tool outputs, which represent the
raw outputs generated by an array of security testing tools, (3)
raw HTTP web information, which encompasses all raw in-
formation derived from HTTP web interfaces, and (4) source
codes extracted during the penetration testing process. Users
must specify the category of the information they provide,
and each category is paired with a set of carefully designed
prompts. For source code analysis, we integrate the GPT-4
code interpreter [50] to execute the task.

5.6 Active Feedback

While LLMs can produce insightful outputs, their outcomes
sometimes require revisions. To facilitate this, we introduce
an interactive handle in PENTESTGPT, known as active feed-
back, which allows the user to interact directly with the Rea-
soning Module. A vital feature of this process is that it does
not alter the context within the Reasoning Module unless the
user explicitly desires to update some information. The rea-
soning context, including the PTT, is stored as a fixed chunk
of tokens. This chunk of tokens is provided to a new LLM
session during an active feedback interaction, and users can
pose questions regarding them. This ensures that the original
session remains unaffected, and users can always query the
reasoning context without making unnecessary changes. If
the user believes it necessary to update the PTT, they can
explicitly instruct the model to update the reasoning context
history accordingly. This provides a robust and flexible frame-
work for the user to participate in the decision-making process
actively.

5.7 Discussion

We explore various design alternatives for PENTESTGPT
to tackle the challenges identified in Exploratory Study. We
have experimented with different designs, and here we discuss
some key decisions.

Addressing Context Loss with Token Size: a straight-
forward solution to alleviate context loss is the employment
of LLM models with an extended token size. For instance,
GPT-4 provides versions with 8k and 32k token size limits.
This approach, however, confronts two substantial challenges.
First, even a 32k token size might be inadequate for penetra-
tion testing scenarios, as the output of a single testing tool
like dirbuster [51] may comprise thousands of tokens. Con-



sequently, GPT-4 with a 32k limit cannot retain the entire
testing context. Second, even when the entire conversation his-
tory fits within the 32k token boundary, the API may still skew
towards recent content, focusing on local tasks and overlook-
ing broader context. These issues guided us in formulating
the design for the Reasoning Module and the Parsing Module.

Vector Database to Improve Context Length: Another
technique to enhance the context length of LLMs involves
a vector database [52, 53]. By transmuting data into vector
embeddings, LLMs can efficiently store and retrieve informa-
tion, practically creating long-term memory. Theoretically,
penetration testing tool outputs could be archived in the vector
database. In practice, though, we observe that many results
closely resemble and vary in only nuanced ways. This sim-
ilarity often leads to confused information retrieval. Solely
relying on a vector database fails to overcome context loss in
penetration testing tasks. Integrating the vector database into
the design of PENTESTGPT is an avenue for future research.

Precision in Information Extraction: Precise information
extraction is crucial for conserving token usage and avoiding
verbosity in LLMs [54, 55]. Rule-based methods are com-
monly employed to extract diverse information. However,
rule-based techniques are engineeringly expensive given nat-
ural language’s inherent complexity and the variety of infor-
mation types in penetration testing. We devise the Parsing
Module to manage several general input information types, a
strategy found to be both feasible and efficient.

Limitations of LLMs: LLMs are not an all-encompassing
solution. Present LLMs exhibit flaws, including hallucina-
tion [56, 57] and outdated knowledge. Our mitigation efforts,
such as implementing task tree verification to ward off hallu-
cination, might not completely prevent the Reasoning Module
from producing erroneous outcomes. Thus, a human-in-the-
loop strategy becomes vital, facilitating the input of necessary
expertise and guidance to steer LLMs effectively.

6 Evaluation

In this section, we assess the performance of PENTESTGPT,
focusing on the following four research questions:
RQ3 (Performance): How does the performance of PEN-
TESTGPT compare with that of native LLM models and hu-
man experts?
RQ4 (Strategy): Does PENTESTGPT employ different
problem-solving strategies compared to those utilized by
LLMs or human experts?
RQ5 (Ablation): How does each module within PENTEST-
GPT contribute to the overall penetration testing perfor-
mance?
RQ6 (Practicality): Is PENTESTGPT practical and effective
in real-world penetration testing tasks?

6.1 Evaluation Settings
We implement PENTESTGPT with 1,900 lines of Python3
code and 740 lines of prompts, available at our open-source
project [22]. We evaluate its performance over the benchmark
constructed in Section 3, and additional real-world penetration
testing machines (Section 6.5). In this evaluation, we integrate
PENTESTGPT with GPT-3.5 and GPT-4 to form two work-
ing versions: PENTESTGPT-GPT-3.5 and PENTESTGPT-
GPT-4. Due to the lack of API access, we do not select other
LLM models, such as Bard. In line with our previous ex-
periments, we use the same experiment environment setting
and instruct PENTESTGPT to only use the non-automated
penetration testing tools.

6.2 Performance Evaluation (RQ3)
The overall task completion status of PENTESTGPT-GPT-
3.5, PENTESTGPT-GPT-4, and the naive usage of LLMs
is illustrated in Figure 5a. As the Figure shows, our solu-
tions powered by LLMs demonstrate superior penetration test-
ing capabilities compared to the naive application of LLMs.
Specifically, PENTESTGPT-GPT-4 surpasses the other three
solutions, successfully solving 6 out of 7 easy difficulty targets
and 2 out of 4 medium difficulty targets. This performance
indicates that PENTESTGPT-GPT-4 can handle penetration
testing targets ranging from easy to medium difficulty lev-
els. Meanwhile, PENTESTGPT-GPT-3.5 manages to solve
only two challenges of easy difficulty, a discrepancy that can
be attributed to GPT-3.5 lacking the knowledge related to
penetration testing found in GPT-4.

The sub-task completion status of PENTESTGPT-GPT-3.5,
PENTESTGPT-GPT-4, and the naive usage of LLM is shown
in Figure 5b. As the Figure illustrates, both PENTESTGPT-
GPT-3.5 and PENTESTGPT-GPT-4 perform better than
the standard utilization of LLMs. It is noteworthy that
PENTESTGPT-GPT-4 not only solves one more medium
difficulty target compared to naive GPT-4 but also accom-
plishes 111% more sub-tasks (57 vs. 27). This highlights that
our design effectively addresses context loss challenges and
leads to more promising testing results. Nevertheless, all the
solutions struggle with hard difficulty testing targets. As elab-
orated in Section 4, hard difficulty targets typically demand
a deep understanding from the penetration tester. To reach
testing objectives, they may require modifications to existing
penetration testing tools or scripts. Our design does not ex-
pand the LLMs’ knowledge of vulnerabilities, so it does not
notably enhance performance on these more complex targets.

6.3 Strategy Evaluation (RQ4)
We analyze PENTESTGPT’s problem-solving methods, com-
paring them with LLMs and human experts. Through manual
examination, we identify PENTESTGPT’s approach to pen-
etration testing. Notably, PENTESTGPT breaks down tasks
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on overall target completion and sub-task completion.

similarly to human experts and prioritizes effectively. Rather
than just addressing the latest identified task, PENTESTGPT
identifies key sub-tasks that can result in success.

Figure 6 contrasts the strategies of GPT-4 and PENTEST-
GPT on the VulnHub machine, Hackable II [58]. This ma-
chine features two vulnerabilities: an FTP service for file
uploads and a web service to view FTP files. A valid exploit
requires both services. The figure shows GPT-4 starting with
the FTP service and identifying the upload vulnerability (❶-
❸). Yet, it does not link this to the web service, causing an
incomplete exploit. In contrast, PENTESTGPT shifts between
the FTP and web services. It first explores both services (❶-
❷), then focuses on the FTP (❸-❹), realizing the FTP and
web files are identical. With this insight, PENTESTGPT in-
structs the tester to upload a shell (❺), achieving a successful
reverse shell (❻). This matches the solution guide and un-
derscores PENTESTGPT’s adeptness at integrating various
testing aspects.

Our second observation is that although PENTESTGPT be-
haves more similarly to human experts, it still exhibits some
strategies that humans will not apply. For instance, PENTEST-
GPT still prioritizes brute-force attacks before vulnerability
scanning. This is obvious in cases where PENTESTGPT al-
ways tries to brute-force the SSH service on target machines.

We analyze cases where penetration testing with PENTEST-
GPT failed, identifying three primary limitations. First, PEN-
TESTGPT struggles with image interpretation. LLMs are
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Figure 6: Penetration testing strategy comparison between
GPT-3.5 and PENTESTGPT on VulnHub-Hackable II.

unable to process images, which are crucial in certain penetra-
tion testing scenarios. Addressing this limitation may require
the development of advanced multimodal models that can
interpret both text and visual data. Second, PENTESTGPT
lacks the ability to employ certain social engineering tech-
niques and to detect subtle cues. For example, while a human
tester might generate a brute-force wordlist from information
extracted from a target service, PENTESTGPT can retrieve
names from a web service but fails to guide the usage of
tools needed to create a wordlist from these names. Third, the
models struggle with accurate exploitation code construction
within a limited number of trials. Despite some proficiency in
code comprehension and generation, the LLM falls short in
producing detailed exploitation scripts, particularly with low-
level bytecode operations. These limitations underline the
necessity for improvement in areas where human insight and
intricate reasoning are still more proficient than automated
solutions.

6.4 Ablation Study (RQ5)
We perform an ablation study on how the three modules:
Reasoning Module, Generation Module, and Parsing Module,
contribute to the performance of PENTESTGPT. We imple-
ment three variants:

1. PENTESTGPT-NO-PARSING: the Parsing Module is de-
activated, causing all data to be directly fed into the
system.

2. PENTESTGPT-NO-GENERATION: the Generation Mod-
ule is deactivated, leading to the completion of task gen-
eration within the Reasoning Module itself. The prompts
for task generation remain consistent.

3. PENTESTGPT-NO-REASONING: the Reasoning Module
is disabled. Instead of PTT, this variant adopts the same
methodology utilized with LLMs for penetration testing,
as delineated in the Exploratory Study.
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All the variants are integrated with GPT-4 API for testing.

Figure 7 presents the outcomes of three tested variants on
our benchmarks. Among these, PENTESTGPT consistently
outperforms the ablation baselines in both target and sub-task
completion. Our primary observations include: (1) Without
its Parsing Module, PENTESTGPT-NO-PARSING sees only a
slight drop in performance for task and sub-task completion.
Though parsing aids in penetration testing, the 32k token limit
generally covers diverse outputs. The Reasoning Module’s
design, which retains the full testing context, compensates for
the absence of the Parsing Module, ensuring minimal perfor-
mance reduction. (2) PENTESTGPT-NO-REASONING has the
lowest success, achieving just 53.6% of the sub-tasks of the
full variant. This is even lower than the basic GPT-4 setup.
The Generation Module’s added sub-tasks distort the LLM
context. The mismatched prompts and extended generation
output cloud the original context, causing the test’s failure.
(3) PENTESTGPT-NO-GENERATION slightly surpasses the
basic GPT-4. Without the Generation Module, the process
mirrors standard LLM usage. The module’s main role is guid-
ing precise testing operations. Without it, testers might require
additional information to use essential tools or scripts.

Table 5: PENTESTGPT performance over the active Hack-
TheBox Challenges.

Machine Difficulty Completions Completed Users Cost (USD)
Sau Easy 5/5 (✓) 4798 15.2

Pilgramage Easy 3/5 (✓) 5474 12.6
Topology Easy 0/5 (✗) 4500 8.3

PC Easy 4/5 (✓) 6061 16.1
MonitorsTwo Easy 3/5 (✓) 8684 9.2

Authority Medium 0/5 (✗) 1209 11.5
Sandworm Medium 0/5 (✗) 2106 10.2

Jupiter Medium 0/5 (✗) 1494 6.6
Agile Medium 2/5 (✓) 4395 22.5

OnlyForYou Medium 0/5 (✗) 2296 19.3
Total - 17/50 (6) - 131.5

Table 6: PENTESTGPT performance over picoMini CTF.

Challenge Category Score Completions
login web 100 5/5 (✓)

advance-potion-making forensics 100 3/5 (✓)
spelling-quiz crypto 100 4/5 (✓)

caas web 150 2/5 (✓)
XtrOrdinary crypto 150 5/5 (✓)
tripplesecure crypto 150 3/5 (✓)

clutteroverflow binary 150 1/5 (✓)
not crypto reverse 150 0/5 (✗)

scrambled-bytes forensics 200 0/5 (✗)
breadth reverse 200 0/5 (✗)
notepad web 250 1/5 (✓)

college-rowing-team crypto 250 2/5 (✓)
fermat-strings binary 250 0/5 (✗)
corrupt-key-1 crypto 350 0/5 (✗)

SaaS binary 350 0/5 (✗)
riscy business reverse 350 0/5 (✗)

homework binary 400 0/5 (✗)
lockdown-horses binary 450 0/5 (✗)

corrupt-key-2 crypto 500 0/5 (✗)
vr-school binary 500 0/5 (✗)
MATRIX reverse 500 0/5 (✗)

6.5 Practicality Study (RQ6)
We demonstrate PENTESTGPT’s applicability in real-world
penetration testing scenarios, extending beyond standardized
benchmarks. For this analysis, we deploy PENTESTGPT in
two distinct challenge formats: (1) HackTheBox (HTB) ac-
tive machine challenges, which present a series of real-world
penetration testing scenarios accessible to a global audience.
We selected 10 machines from the active list, comprising five
targets of easy difficulty and five of intermediate difficulty.
(2) picoMini [21], a jeopardy-style Capture The Flag (CTF)
competition organized by Carnegie Mellon University and
redpwn [59]. The competition featured 21 unique CTF chal-
lenges and drew participation from 248 teams in its initial
round. These challenges are now freely accessible online
for practice and reattempts. Our evaluation employed PEN-
TESTGPT in conjunction with the GPT-4 32k token length
API, defining the capture of the root flag as the metric for



a successful trial. We conduct five trials on each target and
documented the number of successful captures. Note that we
consider single successful capture out of five trials as success-
ful attempt over the target. This criterion reflects the iterative
nature of real-world penetration testing and CTF challenges,
where multiple attempts are allowed, and success is ultimately
determined by achieving the objective at least once.

Tables 5 presents PENTESTGPT’s performance across both
sets of challenges. In the HackTheBox challenges, PENTEST-
GPT successfully completed four easy and one medium diffi-
culty challenges, incurring a total cost of 131.5 USD—an aver-
age of 21.9 USD per target. This performance indicates PEN-
TESTGPT’s effectiveness in tackling easy to intermediate-
level penetration tests at a reasonable cost. Table 6 demon-
strates the performance of PENTESTGPT in the picoMini
CTF. In particular, PENTESTGPT managed to solve 9 out
of 21 challenges, with the average cost per attempt being
5.1 USD. Ultimately, PENTESTGPT accumulated a total of
1400 points2 and ranked 24th out of 248 teams with valid
submissions [60]. These outcomes suggest a promising per-
formance of PENTESTGPT on real-world penetration testing
tasks among various types of challenges.

7 Discussion

It is possible that LLMs used by PENTESTGPT were trained
on walkthroughs of the benchmark machines, which could
invalidate evaluation results. To counter this, we employ two
methods. First, We ensure the LLM lacks prior knowledge of
the target machine. We ascertain this by querying LLMs about
the tested machine’s familiarity. Secondly, our benchmark
comprises machines launched post-2021, ensuring they are
beyond OpenAI models’ training data. Our study on recent
HackTheBox challenges confirms PENTESTGPT’s ability to
solve without pre-existing target knowledge.

While we aim for universally applicable prompts, certain
LLMs avoid producing specific hacking content. For instance,
OpenAI has implement model alignments [61] to ensure the
GPT model outputs do not violate usage policies, including
generating malicious exploitation contents. We incorporate
jailbreak techniques [62–68] to coax LLMs into producing
relevant data. Improving reproducibility of PENTESTGPT
remains a focus area.

LLMs occasionally "hallucinate" [56], producing outputs
deviating from training data. This impacts our tool’s depend-
ability. To combat this, we’re researching methods [69] to
minimize hallucination, anticipating this will boost our tool’s
efficiency and reliability.

The ethical implications of employing PENTESTGPT in
penetration testing are significant and warrant careful consid-
eration. While PENTESTGPT can greatly enhance security by
identifying vulnerabilities, its capabilities also pose potential

2Each challenge’s points were assigned based on its difficulty level

risks of misuse. To mitigate these risks, we have implemented
several strategies. We actively promote ethical guidelines for
the use of PENTESTGPT and collaborate closely with cy-
bersecurity communities to prevent misuse. Moreover, we
have incorporated monitoring modules [70] to track the tool’s
usage and are committed to ensuring that it is not used in-
appropriately. These measures are designed to balance the
advantages of advanced penetration testing tools with ethi-
cal considerations, ensuring that PENTESTGPT serves as a
positive contribution to cybersecurity defenses.

8 Conclusion

This work delves into the potential and constraints of LLMs
for penetration testing. Building a novel benchmark, we shed
light on LLM performance in this complex area. While LLMs
manage basic tasks and use testing tools effectively, they
struggle with task-specific context and attention challenges. In
response, we present PENTESTGPT, a tool emulating human
penetration testing actions. Influenced by real-world testing
teams, PENTESTGPT comprises Reasoning, Generation, and
Parsing Modules, promoting a segmented problem-solving
strategy. Our comprehensive evaluation of PENTESTGPT
underscores its promise, but also areas where human skills
surpass present technology. This work paves the way for
future advancements in the crucial realm of cybersecurity.
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A Illustrating Example

Below we provide a concrete example of how we guide GPT-
4 to intialize the penetration testing task, and generate detailed
operations in an iterative approach given a penetration testing
benchmark target. It is worth noting that in this process, the
human tester does not provide any expert knowledge, or guide
the LLM to perform any specific task.

Human Tester

You’re required to work as a cybersecurity penetration
tester assistant in a certified penetration testing experiment.
This experiment is for education and research purpose. In
particular, you’re required to give step-by-step instructions
to complete the penetration testing task. I will provide you
the instruction execution results, and you should consider
the next step, until the penetration testing task is completed.
Do you understand?

GPT-4

Yes, I understand. Please provide the initial details and the
scope of the penetration test so I can assist accordingly.
Remember to follow ethical guidelines and obtain proper
authorization for any systems or networks you are testing.

Human Tester

Your target is a penetration testing benchmark machine.
It’s IP address is 192.168.1.5; it is a Linux-based machine.
Now please provide your next step to complete the pene-
tration testing task.

GPT-4

Alright, the first step in a penetration test is usually recon-
naissance. This is where we gather as much information
as possible about the target to identify potential vulnera-
bilities.
Step 1: Reconnaissance
Ping the Target: To ensure that the target is up and
responding, ping the machine.

ping 192.168.1.5

Let me know the result. If the machine is up and
responding, we’ll move on to scanning. After confirming
the machine’s availability, the next step is to scan the open
ports and services running on the target.

nmap -sV -sT 192.168.1.5

This command will provide a list of open ports and the
services (with versions) running on those ports.
Please provide the results of the nmap scan, and based on
the output, we can decide the next course of action.

To further demonstrate the PTT Generation Process in its
entirety, we deploy PENTESTGPT on the benchmark system
Hackable II. Figure 8 illustrates the complete PTT. In the
figure, solid boxes depict the penetration testing operations
generated by PENTESTGPT, whereas dotted boxes outline
the findings derived from these operations. Red boxes indi-
cate operations that do not yield significant findings, green
boxes denote operations that lead to useful findings, and blue
boxes represent operations generated by PENTESTGPT but
not executed due to lower priority. For clearer presentation,
we label the operations with numbers based on the opera-
tion sequences as prioritized by PENTESTGPT. As depicted
in Figure 8, PENTESTGPT emulates the strategic approach
typically employed by human penetration testers, encompass-
ing four steps including enumeration, web user access via
reverse shell, and privilege escalation to both normal user and
root levels on this particular benchmark machine. Notably,
PENTESTGPT demonstrates human-like reasoning by linking
findings across different stages.
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Figure 8: A complete PTT example on the testing target Vulnhub-Hackable II
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