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Abstract

Circuit-based Private Set Intersection (circuit-PSI) empow-
ers two parties, a client and a server, each with input sets
X and Y, to securely compute a function f on the intersec-
tion X NY while preserving the confidentiality of X NY from
both parties. Despite the recent proposals of computationally
efficient circuit-PSI protocols, they primarily focus on the bal-
anced scenario where |X| is similar to |Y|. However, in many
practical situations, a circuit-PSI protocol may be applied
in an unbalanced context, where |X| is significantly smaller
than |Y|. Directly applying existing protocols to this scenario
poses notable efficiency challenges due to the communication
complexity of these protocols scaling at least linearly with
the size of the larger set, i.e., max(|X|,|Y]).

In this work, we put forth efficient constructions for unbal-
anced circuit-PSI, demonstrating sublinear communication
complexity in the size of the larger set. Our key insight lies
in formalizing unbalanced circuit-PSI as the process of obliv-
iously retrieving values corresponding to keys from a set
of key-value pairs. To achieve this, we propose a new func-
tionality named Oblivious Key-Value Retrieval (OKVR) and
design the OKVR protocol based on a new notion termed
sparse Oblivious Key-Value Store (sparse OKVS). We con-
duct comprehensive experiments and the results showcase
substantial improvements over the state-of-the-art circuit-PSI
schemes, i.e., 1.84 ~ 48.86x communication improvement
and 1.50 ~ 39.81 x faster computation. Compared to a very
recent unbalanced circuit-PSI work, our constructions outper-
form them by 1.18 ~ 15.99x and 1.22 ~ 10.44 x in commu-
nication and computation overhead, respectively, depending
on set sizes and network environments.

1 Introduction

In Private Set Intersection (PSI) [20,23,32,34,42-44,48,51],
two parties, the client with a set X and the server with a set
Y, securely compute the intersection X NY, without leaking
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the information of the items that are not in the intersection.
Depending on the output, PSI can be broadly classified into
two categories, plain PSI and circuit-based PSI (denoted as
circuit-PSI) [28]. Notably, circuit-PSI has garnered significant
attention in recent times [10,45,51]. Unlike plain PSI, which
directly reveals the plaintext of the intersection X NY, circuit-
PSI offers the capability to securely compute a function f on
the intersection and exclusively outputs the result f(X NY)
without leaking X NY. This expands the applicability of PSI
to a broader range of scenarios. Formally, for each element
x € X, the two parties acquire secret shares of b, where b = 1
if x € XNY and b = 0 otherwise. These shares can then be
leveraged to securely compute any desired function using
generic secure two-party computation protocols [26,57]. Re-
cent advancements in circuit-PSI protocols [6, 10,45,48,51]
have demonstrated efficient computation and achieved linear
communication complexity proportional to the size of the
parties’ sets.

While circuit-PSI protocols offer notable advantages, their
current emphasis is primarily on scenarios where the sets
held by the involved parties are of similar size (i.e., the bal-
anced setting). However, practical applications, particularly in
client-server scenarios, often demand the execution of circuit-
PSI protocols in an unbalanced setting. In such situations,
the client typically possesses a smaller set, compared to the
server’s considerably larger set. A relevant example is private
contact tracing for infectious diseases [9,55], where a client
aims to privately check if the collected tracing data aligns with
traces of diagnosed patients. Achieving this involves comput-
ing the cardinality function on the set intersection [55], with
only the client gaining knowledge of the count of matching
traces. In practical terms, the server may hold a set compris-
ing several million items, vastly outnumbering the client’s set,
which might only consist of a few hundred items.

Furthermore, Google [29] employed a private application
for measuring ad conversion rates, specifically examining the
revenues from ad viewers who later engage in related trans-
actions. In this scenario, a client (such as a holder of transac-
tion data) possesses records of customer transactions, while



a server (like an advertising company) maintains records of
customers who have viewed ads. The task involves intersect-
ing identifiers of those who viewed a specific ad with those
who completed a transaction, followed by the computation
of an aggregation function on the resulting intersection. No-
tably, the sets involved in this process are highly unbalanced,
given that the number of ad impressions typically exceeds the
number of transactions by orders of magnitude. Moreover,
the transaction records and ad views are privacy-sensitive, po-
tentially containing personal interests, preferences, and even
health-related information. Consequently, there is an impera-
tive need for such an unbalanced circuit-PSI protocol.

Nevertheless, the current landscape lacks effective tech-
niques tailored for unbalanced circuit-PSI scenarios. Existing
solutions encounter challenges, as they either compromise the
confidentiality of private intersections or impose substantial
communication overhead. On one hand, some studies have
introduced unbalanced PSI protocols [11,12,16,32,50] ad-
dressing scenarios where the server’s set is much larger than
the client’s. Despite their relevance, extending these proto-
cols to unbalanced circuit-PSI settings proves challenging,
as they inherently disclose the intersection in plaintext. On
the other hand, applying state-of-the-art circuit-PSI proto-
cols [6,10,45,48,51] directly to unbalanced settings is also
problematic. These protocols are specifically designed for par-
ties’ sets of similar size. When used in unbalanced settings,
these protocols incur at least linear communication complex-
ity on the larger set, leading to a notable performance decline,
especially in bandwidth-constrained network environments.
Refer to Section 1.3 for more details. The above discussion
raises the following natural question:

Can we construct concretely efficient unbalanced circuit-PSI
protocols with sublinear communication in the size of the
larger set?

1.1 Our Contributions

In this paper, we make an affirmative answer to the above
question. Our contributions can be summarized as follows:

* We construct highly efficient unbalanced circuit-PSI pro-
tocols, exhibiting communication overhead that scales
sublinearly with the size of the larger set. In line with
previous works, our protocols are secure against semi-
honest adversaries.

e At the heart of our methodology is a newly intro-
duced functionality called Oblivious Key-Value Re-
trieval (OKVR). We provide its construction based on a
novel notion termed sparse Oblivious Key-Value Store
(sparse OKVS).

* We implement our protocols alongside state-of-the-art
circuit-PSI protocols in a unified framework. The results
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Figure 1: Overview of our unbalanced circuit-PSI framework.
Rounded rectangles are contributions of this work.
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demonstrate the significant enhancements of our proto-
cols in both communication and computation overhead.
Specifically, our protocol achieves a communication cost
1.84 ~ 48.86x lower and a running time 1.50 ~ 39.81 x
faster compared to the state-of-the-art protocols. Very
recently, Son and Jeong [54] also present unbalanced
circuit-PSI protocols, and our constructions show reduc-
tions in communication and computation overhead by
1.18 ~ 15.99x and 1.22 ~ 10.44 x, respectively, depend-
ing on set sizes and network environments.

1.2 Overview of Our Techniques

The main insight driving our framework is that unbalanced
circuit-PSI can be formalized as obliviously retrieving the
values corresponding to keys from a key-value store', fol-
lowed by an equality test. We elaborate on this insight below.
For simplicity, we consider the scenario where the client’s set
comprises only a single element x and the server’s set is rep-

resented as Y = {y1,...,y, }. Specifically, the server initiates
the process by constructing a key-value store with key-value
pairs {(y1,7),..., (yn,7)}, Where each item y; serves as a key

and the corresponding value is a randomly sampled r. Sub-
sequently, the client employs x as the query key and oblivi-
ously retrieves a value r* from the server. This retrieved value
should satisfy »* = r if x € Y and r* is uniformly random
otherwise. Finally, the unbalanced circuit-PSI evaluation con-
cludes with the computation of a secret-shared output, derived
from a private equality test conducted on r* and r. To achieve
the fully-fledged construction based on the above insight, we
undertake three intermediate steps detailed in Figure 1, and
overview them in a bottom-up manner.

1. We introduce a new notion termed sparse Oblivious Key-
Value Store (sparse OKVS), designed to encode key-
value pairs into a compact representation while support-
ing efficient retrieval. Within this sparse OKVS abstrac-
tion, we identify and detail efficient instantiations that
align with our goals.

! A key-value store for & x ¥ is a data structure that represents a desired
mapping k; — v;, where (k;,v;) € K x V.



2. We present a new functionality called Oblivious Key-
Value Retrieval (OKVR). This serves the purpose of
obliviously retrieving the values corresponding to keys
from a key-value store. We construct an efficient OKVR
protocol, which is facilitated by utilizing the property of
sparse OKVS.

3. We construct fully-fledged unbalanced circuit-PSI pro-
tocols characterized by sublinear communication com-
plexity in the size of the larger set. The cornerstone
of our construction is a specialized padding-free vari-
ant of OKVR. This specifically addresses an efficiency
concern arising from commonly employed hash-to-bin
techniques in circuit-PSI.

Below, we give more technical details to illustrate the above
three intermediate steps.

Retrieving key-value pairs efficiently. The central objec-
tive of our framework is the efficient and oblivious retrieval of
key-value pairs. Thus, the starting point involves transform-
ing the server’s key-value pairs into a compact representation
conducive to efficient retrieval.

Although this functionality can be accomplished by lever-
aging Oblivious Key-Value Store (OKVS) [23,43], a primary
challenge lies in that the retrieval efficiency can not be well
guaranteed in existing OKVS. Specifically, OKVS comprises
two algorithms, namely (Encode, Decode). The Encode al-
gorithm takes a set of key-value pairs {(k;,V;) };c[s as input
and produces a vector D. The Decode algorithm takes D and
any key k as input, providing an output that corresponds to v;
if kK matches some k; used to generate D. In our framework,
the Decode algorithm aligns with our retrieval procedure and
will be implemented in an oblivious manner. Unfortunately,
prior works utilize OKVS instances in a black-box way, e.g.,
accessing the whole vector D for Decode, causing linear com-
munication complexity in the size of the key-value pairs. This
problem stems from the absence of explicit requirements for
decoding efficiency in existing OKVS.

We introduce a new OKVS notion, termed sparse OKVS,
designed to enhance decoding efficiency. A key difference
from prior OKVS constructions [23] lies in that the structure
of the output D from Encode can be organized as Dy||D; with
|Do| = @(|D;|), and Decode exclusively accesses a constant
number (e.g., 2 ~ 3) of elements within the larger Dy and an
arbitrary number of elements within the smaller D;. Conse-
quently, we refer to Dy as the sparse part and D as the dense
part. Importantly, accessing a constant number of elements on
the larger sparse part is a pivotal property for achieving effi-
cient oblivious key-value retrieval. Later, we will make a large
number of retrievals on the dense part nearly cost-free. We
identify existing constructions that satisfy the sparse OKVS
abstraction, such as Garbled Cuckoo Tables (GCT) [23,43].
Refer to Section 3 for more details.

Retrieving key-value pairs obliviously. Building upon the
efficient retrieval strategy outlined above, our next objective is

to facilitate the client to obliviously retrieve the server’s key-
value pairs with the following security guarantee. The server
should remain unaware of which value was retrieved, and the
client should not acquire knowledge of other key-value pairs
within the server’s set.

Unfortunately, it is challenging to achieve the above goal
while ensuring concrete efficiency. A possible solution to
oblivious key-value retrieval is employing Private Informa-
tion Retrieval (PIR)” [5,38-40], in which the client privately
retrieves the relevant items from the server’s OKVS encoding.
These retrieved items are used in the decoding for the recon-
struction of the corresponding value for the query. However, it
requires a substantial number of PIR queries, causing a huge
loss of efficiency. Moreover, PIR alone cannot safeguard the
privacy of the server’s key-value pairs.

We formalize the above objective as a new functionality
named Oblivious Key-Value Retrieval (OKVR). In OKVR,
the server possesses a large set of key-value pairs denoted
as L= {(ki,v1),...,(kn,vn)} and the client holds a smaller
query set Q = {qi,...,q:} with n>> r. After the execution,
the client obtains a value z; for each g; € Q, where z; = v; if
gi matches some k; and (kj,v;) € L. Otherwise, z; is a uni-
formly random value. To achieve concretely efficient and
asymptotically communication-sublinear OKVR, we present
the construction derived from sparse OKVS and a hybrid PIR
strategy. Specifically, we first utilize sparse OKVS to encode
the server’s key-value pairs into Dy||D;. Subsequently, PIR
is exclusively applied to the sparse part Dy to retrieve the
desired items, while the dense part D, owing to its small
size, is directly transmitted from the server to the client. This
ensures the retrieval of a constant number of items on Dy
via PIR, while the client can locally obtain a considerable
number of items in D with minimal cost. To enhance PIR ef-
ficiency further, given the requirement of multiple retrievals at
once, we exploit recent BatchPIR schemes [5,40] that substan-
tially reduce communication and computation overhead in
batch retrievals. Moreover, similar to prior works [11,45], we
address the PIR’s privacy concern regarding the server’s key-
value pairs by invoking an Oblivious Pseudorandom Function
(OPRF) [22] before the execution of sparse OKVS. Refer to
Section 4 for more details.

Constructing fully-fledged unbalanced circuit-PSI. We
propose an efficient construction of unbalanced circuit-PSI
from OKVR, achieving sublinear communication complexity
on the size of the larger set.

A key challenge is the PIR efficiency issue in OKVR
caused by the commonly employed hash-to-bin technique. In
constructing efficient circuit-PSI protocols [10,45], hash-to-
bin techniques are integral for reducing computational costs.
Specifically, the client employs Cuckoo hashing [41] to map
the set X of size-f into a table Ty of size m = (1+¢) -, where
€ > 0 is a constant. In this mapping, each bin of Ty contains

2The communication complexity of PIR is sublinear to the database size.



at most one item. Simultaneously, the server maps its items in
Y to a table 7y of size m using simple hashing, allowing each
bin to accommodate multiple items. After that, the client has
to conceal the mapped positions by padding dummy points
into empty bins of Ty [44,45]. The evaluation of unbalanced
circuit-PSI invokes the OK'VR functionality, where the client
inputs Tx and the server inputs {P;};c[,) with P := {(y/,r;)}
for all y' € Ty[i] and a random r;. Nevertheless, these dummy
points introduce additional overhead in terms of PIR queries
within the OKVR procedure, which dominates the overhead
of our unbalanced circuit-PSI protocol.

To mitigate this issue, we introduce a specialized padding-
free OKVR solution where the client only inputs the key set of
size t rather than (1 +¢€) - 7. The key insight here is that, prior
to PIR queries, the client is already aware that these dummy
points do not belong to the intersection. Consequently, ran-
dom values are obtained according to the functionality of
OKVR. Recall that OKVR outputs a random value when
a query is not present in the server’s key set. As a result,
our padding-free OKVR protocol invokes OKVR solely on
the bins of Tx that correspond to the elements of X and lo-
cally samples uniformly random values for the dummy points.
Notably, the confidentiality of the mapped positions is guar-
anteed because we take the whole client’s query set as input
to OKVR. Refer to Section 5 for more details.

1.3 Related Works

We elaborate on existing balanced circuit-PSI protocols as
well as related techniques in the unbalanced setting, and fur-
ther discuss the essential differences between these works and
our protocols.

Circuit-PSI. Circuit-PSI was initially introduced by Huang
et al. [28], leveraging generic secure computation techniques,
i.e., garbled circuits [57]. They employed optimized sort-
compare-shuffle circuits to reduce circuit size, resulting in a
circuit that contains O(nlogn) comparisons, where n repre-
sents the set size. Following this, several subsequent works
[15,44,46] aimed to reduce the number of comparisons and
hence optimize asymptotic computation and communication
complexity. Recently, Pinkas et al. [45] achieved the first
circuit-PSI protocol with linear communication complexity
by introducing a novel batch Oblivious Programmable Pseu-
dorandom Function (OPPRF) [35]. Similar to an oblivious
PRF that provides the sender with a key of PRF and the re-
ceiver with the outputs of the PRF on points of his choice, an
OPPREF enables the sender to additionally send the receiver
a hint that can program the PRF to output specific values
on certain input points privately chosen by the sender. The
main bottleneck of this protocol is that the computation com-
plexity is super-linear in the size of the server’s set [10,45].
This is caused by the expensive polynomial interpolation in
their OPPRF construction. Recent works [6, 33,48, 51] ad-
dressed this problem leveraging state-of-the-art OKVS such

as Garbled Cuckoo Tables (GCT) [23] that achieves linear
computation complexity. Chandran et al. [10] also proposed
specialized circuit-PSI protocols with both linear computation
and communication complexity. The main technique is a new
primitive called relaxed batch OPPRF. Moreover, Chandran et
al. [10] and Han et al. [27] presented specialized equality test
protocols aimed at further improving the concrete overhead
of circuit-PSI.

A potential limitation of the above state-of-the-art circuit-
PSI approaches is the communication complexity, which
scales at least linearly with the size of the two parties’ sets.
The fundamental reason is that these circuit-PSI utilize ex-
isting OKVS [23] in a black-box way and send the whole
encoded vector (i.e., the hint) to the client. In our work, to
avoid linear communication, we present sparse OKVS and
particularly focus on the decoding efficiency, which could be
used to construct sublinear circuit-PSI protocols.

Unbalanced PSI-related works. There are some related
PSI protocols in the unbalanced setting. We discuss the main
differences between these works and ours. Several works
proposed computation and communication efficient schemes
for unbalanced PSI [12, 16,32, 50] and labeled PSI [11, 16]
from fully homomorphic encryption (FHE). However, these
approaches face challenges when extending to our circuit-PSI
setting because they focus on directly outputting the inter-
section to the client. While the work on labeled PSI [11]
theoretically discussed the possibility of extending their pro-
tocol to unbalanced circuit-PSI, concrete constructions were
lacking. Subsequently, Lepoint et al. [36] proposed an unbal-
anced private join and compute (PJC) scheme for the inner
product, achieving sublinear communication cost in the size
of the larger set. This scheme focuses on computing the inner
product of associated values within the intersection and illus-
trates how to extend to compute arbitrary functions. However,
their construction relies on (garbled) Bloom filters [7, 19],
which encode n items into a vector of length O(An) with a sta-
tistical security parameter A. This leads to the communication
and computation complexity additionally depending on A. In
comparison, our unbalanced circuit-PSI protocols can realize
a Ax improvement on both the computation and communi-
cation overhead thanks to our concretely and asymptotically
efficient OKVR protocols.

Very recently, Son and Jeong [54] (SJ23) provided two
concrete constructions to instantiate the theoretical exten-
sion from labeled PSI to unbalanced circuit-PSI [11]. The
first construction follows the labeled PSI using FHE on poly-
nomial evaluation along with several optimizations, while
the second construction proposes a novel recursive solution.
However, their two constructions have a significant trade-off
between communication and computation due to balancing
the expensive homomorphic multiplication and the number of
communicated FHE ciphertexts. Different from their works,
we formalize circuit-PSI as obliviously retrieving the value
corresponding to a key from a key-value store, and provide



efficient constructions from sparse OKVS and BatchPIR. As
shown in Section 6.2, the main advantage is that our protocols
are more suitable for the unbalanced setting. Rather, SJ23
works well for relatively large client’s set sizes, e.g., at least
thousands of elements.

2 Preliminaries

2.1 Notations

We denote the two parties as client C and server S. We use
k and A to denote the computational and statistical security
parameters, respectively. For two distributions X and Y, we
write X ~. Y and X ~; Y if X and Y are computationally
and statistically indistinguishable, respectively. We use [n]
to denote the set {1,2,...,n} and D[i] to represent the i-th
element of a vector D. By a <— A, we denote that a is randomly
selected from the set A. a <+ A(x) denotes that « is the output
of the randomized algorithm A on input x, and a := b denotes
that a is assigned by b. (x,y) denotes the inner product of
x and y. (x)8 and (x)¥ denote Boolean shares of x such that
x=(x)B® (x)8. 1{x =y} outputs 1 if x = y and 0 otherwise.

2.2 Threat Model

Similar to prior circuit-PSI schemes [10,45,48,51,54], in this
work, we consider static semi-honest probabilistic polynomial-
time (PPT) adversaries. Namely, a PPT adversary A passively
corrupts either the client C or the server § at the beginning of
the protocol and honestly follows the protocol specification.
We use the standard simulation-based security definition for
secure two-party computation [25]. Like these previous works,
our construction invokes multiple sub-protocols, and we use
the hybrid model to describe them. By convention, a protocol
invoking a functionality ¥ is referred to as the #-hybrid
model. We give the formal security definition as follows.

Definition 1. Let view! (x,y) and view! (x,y) be the views
(including input, random tape, and all received messages) of
C and S in a protocol 11, respectively, where x is the input of
C andy is the input of S. Let out(x,y) be the protocol’s output
of both parties and F (x,y) be the functionality’s output. T1
is said to securely compute a functionality F in the semi-
honest model if for every PPT adversary A there exists PPT
simulators Sim . and Simg such that for all inputs x and y,

{Viewlg(x,y),out(x,y)} e {SimC(x7 ,(]:C(X,Y)), f(x,y)},

{view( (x,y), out(x,y)} ~c {Sims(x, F5(x,), (x7y)}~( b

2.3 Oblivious Key-Value Store

A key-value store [23,43] is simply a data structure that maps
a set of keys to the corresponding values. The definition is as
follows:

Functionality 7, pOPRF

Parameters: A PRF F : {0,1}* x {0,1}* — {0,1}".

Functionality:
1. Wait for input {xi,...,x,} € ({0,1}*)" from the re-
ceiver.
2. Wait for input k € {0, 1}* from the sender.
3. Output {F(k,x1),...,F(k,x,)} to the receiver.

Figure 2: Ideal functionality for multi-point OPRF

Definition 2. A Key-Value Store (KVS) is parameterized by a
key space K, a value space V, a set of randomized functions
H, input length n and output length m, and consists of two
algorithms:

* Encodey: on input key-value pairs { (ki,vi) }ie[n) € (K ¥
V)", outputs an object D € V"™ (or an error indicator
L with statistically small probability).

 Decodey: on input D € V™ and a key k € K, outputs a
value v € V.

Correctness. A KVS is correct if, for all L € (X x V)"
with distinct keys such that Encodey (L) #.L, it holds that
Decodey (Encodey (L), k) = v, where (k,v) € L.

Obliviousness [23]. A KVS is an Oblivious KVS (OKVS)
if, for all distinct {£?,...,k0} € X" and {k},...,k}} € K",
Encodey does not output L on {£Y,...,k0} and {k},... k!},
and then

{Encodeg ({(k%,v1),...
{Encodeg ({(k},v1),...

(KO v)}) | vi <= WV fori € [n]} ~

(kL v ) [ vi = 9 for i € [n]}.
@)

Double obliviousness [48, 51]. An OKVS is doubly
oblivious if, for all distinct {kj,...,k,} € X" and n val-
ues vi,...,v, each sampled uniformly at random from
vV such that Encodey does not output L for {ki,...,k,},
Encodey ({(k1,v1),. .., (kn,va)}) is statistically indistinguish-
able from an uniformly random element in 9. Note that
double obliviousness directly implies obliviousness [6,48].

Binary OKVS [23]. An OKVS is binary if, for any %,
Decodey (D, k) can be expressed as a binary linear combina-
tion of D, i.e., Decodey (D, k) := (D, h(k)) where h: K —
{0, 1}™ is some public function defined by H. In this work,
we restrict ourselves to binary OKVS schemes.

2.4 Batch Private Information Retrieval

In a Batch Private Information Retrieval (BatchPIR) scheme
[5, 13,30, 37,40], the client wants to privately download a
batch of b entries from the server’s dataset D of size n. A



BatchPIR consists of three routines, all taking the computa-
tional security parameter K as an implicit input:

* Query({i1,...,ip}) — (qu,st): on input a set of distinct
indexes {iy,...,i,} € ([n])’, outputs a query qu and a
private state st including the index set.

* Response(D, qu) — res: on input the database D and the
query qu, outputs a response res.

o Extract(st,res) = {y1,...,¥p }: given the state st and the
response res, outputs a batch of entries {y;,...,yp}.

A BatchPIR protocol should satisfy the following proper-
ties:

Correctness. A BatchPIR is correct if for any dataset D
and all distinct inputs I = {ij,..., i}, it holds that

Extract(st,Response(D,qu)) = D[i1],...,D[ip], (3)

where (st,qu) + Query(I).

Client query privacy. The client’s query should reveal no
information about the query indexes. Formally, a BatchPIR
scheme satisfies client query privacy if, for all PPT adversaries
A and all distinct batch query sets 11, with |I;| = ||,

Pr[A(qu) = 1] (st,qu) + Query(1})]

—Pr[A(qu) = 1| (st,qu) + Query()] < negl(x). X

Note that (Batch)PIR does not aim to protect the privacy of
the server’s dataset D [5].

2.5 Multi-point Oblivious
Function

Pseudorandom

An Oblivious Pseudorandom Function (OPRF) [22] is a proto-
col involving two parties, i.e., the sender and the receiver. The
sender inputs the key k € {0, 1}* of a PRF F and obtains noth-
ing, while the receiver takes x € {0, 1}’ as input and obtains
F(k,x) € {0,1}". In a multi-point OPRF (mpOPRF) [31], the
receiver takes as input {x1,...,x,} € ({0, 1}%)" rather than a
single point and obtains {F (k,x1),...,F(k,x,)} € ({0,1}°)".
The mpOPREF functionality is shown in Figure 2.

2.6 Secret Sharing and Equality Test

Our construction uses 2-out-of-2 boolean secret sharing tech-
niques [53]. The boolean shares of x € {0,1} are (x)5 and
<x>f , held by the client C and the server § respectively, satis-
fying x = (x)§ & (x)%. In our protocols, (x)? denotes that C
and § hold boolean shares of x. Our construction also invokes
a private equality test, which takes as input two ¢-bit values
x,y and outputs the boolean shares of b, where b := 1{x = y}.
We present the functionality in Figure 3. We use the state-of-
the-art construction [10] to instantiate this functionality.

Functionality Feq

Parameters: Client C and server S.

Functionality:
1. Wait for input x € {0, 1} from (.
2. Wait for input y € {0, 1}/ from .
3. Sample (b)§, (b)® uniformly at random from {0, 1}
such that b := [{x = y}.
4. Output (b)8, (b)8 to C and S, respectively.

Figure 3: Ideal functionality for private equality test

2.7 Cuckoo Hashing

Cuckoo hashing [41] uses o random hash functions
hiy...,hg 1 {0,1}* — [m] to map n elements into m bins,
where m = (14 ¢€) - n with the constant € > 0. The mapping
procedure is as follows. An element x is inserted into the bin
h;(x), if this bin is empty for some i € [a]. Otherwise, we pick
arandom i € o, insert x in /;(x), evict the item currently in
hi(x) and recursively insert the evicted item. The recursion
proceeds until no more evictions are necessary or a threshold
number of re-allocations are done. If the recursion stops for
the latter reason, it is considered a failure event, meaning there
exists at least an element that is not mapped to any bins. Some
variants of Cuckoo hashing maintain a set called the stash, to
store such elements. Stash-less Cuckoo hashing is where no
special stash is maintained. In this work, we only leverage
stash-less Cuckoo hashing.

3 Sparse Oblivious Key-Value Store

3.1 Definition

We present a new notion called sparse Oblivious Key-Value
Store (sparse OKVS), which incorporates a sparsity property
into OKVS introduced in Section 2.3. A formal definition is
provided below.

Definition 3. An OKVS is sparse if (1) the output
D of Encodey can be structured as D = Dy||D; with
|Do| = o(|D1|), and (2) for any k, Decodey(D,k) :=
(I(k)||r(k),Dol||D1), where two mappings 1, r are defined by
H such that [ - K — {0,1}P0l outputs a sparse binary vector
with a constant weight o and r: K — {0,1}P1l outputs a
dense binary vector.

In other words, the sparsity property allows Decode to only
access a constant number of elements in large Dy and an arbi-
trary number of elements in small D;. Thus, we refer Dy and
D; to the sparse and dense parts, respectively. Besides, the cor-
rectness and (double) obliviousness properties follow those



of OKVS in Section 2.3. For convenience in our construc-
tion, we use o mappings {/; : X — [|Do|] }ic[o to equivalently
represent the mapping  : K — {0, 1}/P0l, namely the output
of {li}ie[a] are o. non-zero positions of the mapping I’s out-
put. We emphasize that the sparsity property latter will be
importantly utilized to facilitate the efficiency of our oblivious
key-value retrieval constructions in Section 4.

Compared to OKVS [23], our sparse OKVS has the fol-
lowing technical advantage. Specifically, sparse OKVS en-
codes key-value pairs into a compact representation for ef-
ficient retrieval with a constant number of accesses on the
large sparse part. This is an important property for applica-
tions in the unbalanced setting. However, many OKVS [23],
e.g., polynomial and random matrix-based solutions, do not
have this property. Building on sparse OKVS, the unbalanced
circuit-PSI in Section 5 achieves asymptotically sublinear
communication with the larger server’s set. In contrast, exist-
ing circuit-PSI protocols based on OKVS suffer from linear
communication complexity due to using OKVS in a black-
box manner.

3.2 Instantiation

Before giving instantiations that fall within our definition of
sparse OKVS, it is crucial to note that many recent instances
of OKVS do not meet this criterion. Counterexamples in-
clude those based on polynomials or random matrices [23,43],
where Decode requires accessing all positions of the output of
Encode. Besides, although RB-OKVS [6] and Garbled Bloom
Filter (GBF) [19] satisfy the definition of sparse OKVS, they
require accessing O(A) positions of the Encode’s output. This
is concretely inefficient in our following constructions.

In this work, we instantiate sparse OKVS using Garbled
Cuckoo Table (GCT) [23,43]. In a GCT, a set of n key-value
pairs is encoded into a vector represented as Dg||D;, where
the sparse part Dy is of size s = O(n) and the dense part D,
contains very few d = A+ O(logn) items. Generally speaking,
for a set of key-value pairs L = {(k,v1),...,(kn,vn)}, the
encoding algorithm constructs a matrix A based on the keys
ki,...,k,, where the i-th row of A equals /(k;)||r(k;) for two
mappings / : {0,1}* — {0, 1}* with constant weight-o output
and r: {0,1}* — {0,1}¢. Here, I can be represented by {/; :
{0,1}* — [s]}i[o)» Where ot is a small constant (e.g., 2 or 3).
Namely, [(k) is 1 only in a positions, i.e., [;(k), ..., lg(k).
Thus, it holds the sparsity property as defined in the above.
The output Dy||D; satisfies that A - (Do||D1)T = (vi,...,v,).
To solve this equation, there are several novel methods such
as Cuckoo graph strategies [23,43] and triangulation-based
techniques [48]. We refer the interested readers to their works
[23,43,48].

Functionality 7okvr

Parameters: Client  and server S. The input sizes of C
and § are t and n, respectively, where n > ¢. The output
size of C is t. The key space K and the value space V.

Functionality:

1. Wait for input a set of keys O = {q1,...,¢:} € X'
from C.

2. Wait for input a set of key-value pairs L =
{(klavl)a'“v(kmvn)} € (KX W)n from §.

3. Output Z :={z1,...,z/} € V" to C, where z; = v;
if gi = kj and (k;j,v;) € L, otherwise z; is uniformly
sampled from V.

Figure 4: Ideal functionality for oblivious key-value retrieval

4 Oblivious Key-Value Retrieval

4.1 Definition

We propose a new functionality called Oblivious Key-Value
Retrieval (OKVR). The formal definition of OKVR is given in
Figure 4. Generally speaking, the server has a large set of key-
value pairs L = {(ky,v1),..., (kn,vs)} and the client holds a
small set of keys Q = {q1,...,q:}, where n > t. For each
gi € O, the client wants to obtain the corresponding value v;
if g =k; and (k;,v;) € L, and a uniformly random value oth-
erwise. After the protocol execution, neither party should gain
any additional information. In particular, the server should
not learn which value was retrieved, while the client should
not learn the other key-value pairs in the server’s set. More-
over, the client even does not know whether the query is in
the server’s key-value pairs, when the server’s values are uni-
formly random.

A similar functionality is Batch Oblivious Programmable
Pseudorandom Function (B-OPPRF) [45]. We explain the
differences between our OKVR and B-OPPREF as follows. (1)
Unlike B-OPPRF, we particularly focus on the unbalanced
setting and aim to achieve sub-linear communication on the
larger set. (2) While B-OPPRF requires a specific distribution
(e.g., related but uniform distribution) of values, our OKVR
functionality supports arbitrary values. Given these features,
OKVR itself may be of independent interest and can be em-
ployed for key-value retrieval scenarios to ensure privacy for
both parties in the client-server setting. We also note that
our OKVR can be viewed as a batched variant of symmetric
keyword PIR [14] with the following exception: our OKVR
requires responding to a random value when the query is not
in the key-value pairs, but symmetric keyword PIR returns
a special symbol for this situation. Below, we give an effi-
cient construction of OKVR, which is built on sparse OKVS
in Section 3 and crucially exploits its sparsity to facilitate



efficiency.

4.2 Construction

We introduce the construction of OKVR in Figure 5 based
on sparse OKVS, which achieves sublinear communication
cost in the size of the server’s large set. The core idea of our
OKVR protocol is that the server first exploits a sparse OKVS
to encode the key-value pairs L = {(k;,v1),..., (kn,v,)} into
a compact vector Dyl||D;. Then, the client employs a Batch
Private Information Retrieval® (BatchPIR) protocol [5,40]
to secretly retrieve the desirable items from Dy||D; that are
used to compute the corresponding values of the query Q =
{q1,---,q:}. Note that this requires ¢ - (a.+ |D;|) PIR queries,
where a is the access number on the sparse part Dy required
for decoding. Such a large number of PIR queries on the dense
part Dy, e.g., |Di| = A+ O(logn) for GCT [23], will dominate
the overhead of this solution.

To further improve performance, we present a hybrid PIR
strategy exploiting the sparsity property of sparse OKVS.
That is the decoding process requires only accessing a small
constant number o of positions from the sparse part Dy, while
accessing a large number of positions from the dense part
D, of small size. In our hybrid PIR strategy, the two parties
invoke PIR only on Dy, while D; is directly sent to the client
by the server. As a result, this strategy takes o - ¢ PIR queries
in total, significantly saving ¢ - |D;| PIR invocations.

Besides, to hide information of the server’s key-value pairs
L, we additionally invoke a multi-point Oblivious Pseudoran-
dom Function (mpOPRF) protocol [31]. It takes the query
0={qi,-..,q;} from the client and the PRF key k from the
server, and returns F(k,g;) to the client for ¢; € Q. We let
the server compute Dy||D; on PRF-masked key-value pairs,
denoted as L' = {(k;, v + F (k,k;)) }ie[n|- After PIR, the client
can de-mask retrieved items using {F (k, ;) };e|;) to obtain the
desired values.

We analyze the asymptotic communication complexity,
which consists of three parts. (1) The mpOPRF protocol re-
quires O(t) communication cost. (2) o.-# PIR queries on Dy
consume O(t - /n) or O(z -logn) depending on PIR schemes
[5,38,40]. (3) Taking GCT as an example, sending D requires
A+ O(logn) communication cost. Therefore, the asymptotic
communication cost of OKVR scales sublinearly with the
server’s set size n.

Theorem 1. Given a BatchPIR scheme with client query
privacy and a sparse OKVS algorithm, the protocol in Figure
5 securely computes Fokvr in Figure 4 against semi-honest
adversaries in the Fupopre-hybrid model.

Proof. We prove the following two properties.
Correctness. There are two cases for the correct-
ness analysis. (1) In the case ¢; € {ki,...,k,} and

3Compared to PIR, BatchPIR [5,40] has concretely lower communication
and computation overhead when performing batch retrievals.

gi = kj, according to the correctness of mpOPREF, sparse
OKYVS, and BatchPIR, z; = DecodeH(D0||D1 s q,'> —F(k,q,’) =
Decodey (Do||Dy,kj) — F(k,kj) = v; with overwhelming
probability. (2) In the case ¢q; ¢ {ki,...,k,}, due to
the pseudorandomness of the underlying PRF, z; =
Decodey (Do||D1,q:) — F (K, ;) is pseudo-random.

Security. We exhibit simulators Sim, and Sim; for simu-
lating the view of the corrupt client C and server S, respec-
tively, and prove that the simulated view is indistinguishable
from the real one via standard hybrid arguments.

Corrupt client. Sim(Q,Z) simulates the view of the cor-
rupt C. It executes as follows:

 Sime samples uniform values ¢. < F for i € [f].
Then, it invokes the mpOPRF receiver’s simulator
Simfy oprr(Q,Q'), where Q' := {q},...,q;}, and ap-
pends the output to the view.

+ Sim¢ uniformly samples Do||D; + F* x F¢ such that
for g; € Q, Decode(Dy||D1,qi) = zi + ¢}, where ¢} € O'.
Moreover, Sim follows the real protocol to generate qu
and computes Response(Dy, gu) — res, and appends res
and D, to the view.

We argue that the view output by Sim is indistinguishable
from the real one. We first define three hybrid transcripts
Ty, T1, T>, where Ty is the real view of C, and T is the output
of Simc.

1. Hybridg. The first hybrid is the real interaction described
in Figure 5. Here, an honest § uses real inputs and inter-
acts with the corrupt C. Let T denote the real view of

C.

2. Hybrid;. Let 71 be the same as Ty, except that the
mpOPRF execution is replaced by the mpOPRF re-
ceiver’s simulator Simff]popRF(Q Q'), where Q' has ¢ el-
ements {¢,...,q,}, each of which is uniformly sampled
from F. The simulator security of mpOPRF and pseudo-
randomness of the underlying PRF guarantee this view
is indistinguishable from 7.

3. Hybrid,. Let 75 be the same as T, except that Dy||D;
is sampled uniformly from F* x F¢ such that for ¢; €
Q. Decode(Dy||D1,q;) = zi + g, where g; € Q'. More-
over, Sim, follows the real protocol to generate qu and
Response(Dy,qu) — res is executed locally by Sim,.
By the double obliviousness property of sparse OKVS,
the simulated Dy||D; has the same distribution as it
would in the real protocol. Consequently, both distribu-
tions of Dy||D; are randomly uniform with the constraint
Decode(Do||D1,qi) = zi + 4} Hence, T} and 75 are sta-
tistically indistinguishable. This hybrid is exactly the
view output by the simulator.

Corrupt server. Simg (L, L) simulates the view of the cor-
rupt S. It executes as follows:



Protocol I1lokvr

Parameters: Client C and server S. Functionality Fmpoprr for F : {0,1}* x {0,1}* — F in Figure 2. A sparse OKVS
scheme (Encodey, Decodey) with K = {0,1}* and ¥V =T over a field F, where H consists of o+ 1 random mappings
{1 :{0,1}* — [s]}icog and r: {0,1}* — {0,1}. A BatchPIR scheme (Query, Response, Extract).

Inputs: C inputs a set of keys O = {q1,...,q:} € ({0,1}*)". S inputs a set of key-value pairs L = {(k1,v1),..., (kn,vu)} €
({0, 1} x F)™.

Protocol execution:

1. C and § invoke Fmpoprr, in which C acts as the receiver with the input Q and § acts as the sender with the input
k <—{0,1}*. Then, C obtains Q' :={¢},...,q;}, where ¢, := F(k,q;) € F for i € [t].

2. S invokes sparse OKVS to compute Do||D; := Encodey (L) € F* x F¢, where L' := {(ky,v1 +F (k,k1)), ..., (kn,vn +
F(kky))}.

3. C computes a set I := {1;(qi) }ie|),je|a) Of size 0. When there are collisions, I needs to be filled with distinct values to
size or. C executes Query(I) — (qu, st) of BatchPIR and sends gu to S.

4. S executes Response(Dy,qu) — res on the sparse part Dy and sends res to C. In parallel, S also sends the dense part
D to C.

5. C invokes Extract(st,res) to learn {Do[l;(g:)]}icl),jejog- C computes and outputs Z := {z1,...,z} with z; :=
Decodey (Do ||D1, i) — g, where Decodey (Do|D1, i) := X jeja) Dollj(qi)] + (r(qi),D1) over F.

Figure 5: Protocol for oblivious key-value retrieval

* Simg generates a random key k. Then, it invokes the
mpOPRF sender’s simulator Sim,SnpOpRF(k7 1) and ap-
pends the output to the view.

* Simg samples uniformly random I = {i, - ,ig }
[s]* with distinct values and invokes Query(I) —
(qu,st). Simg appends gu to the view.

a distinguisher D that can distinguish 77 and 7, with
non-negligible probability, then we can construct a PPT
adversary A4 to break the client query privacy of the
BatchPIR scheme as follows: A4 sends I and I; as the
challenge message to the challenger, where Iy is the
query index generated using C’s real inputs and /; is
uniformly sampled. Then, 4 receives the query cipher-

text Query(I,) — qu from the challenger, where b is
uniformly sampled. Then, A executes as C in Hybrid;
with the corrupt § except the BatchPIR query genera-
tion step. After that, 4 invokes D with $’s view in the
above interaction and outputs D ’s output. Note that if

We argue that the view output by Sim is indistinguishable
from the real one. We first define three hybrid transcripts
Ty, T1, T>» where Ty is the real view of §, and 7> is the output
of Simg.

1. Hybridg. The first hybrid is the real interaction described

in Figure 5. Here, an honest C uses real inputs Q and
interacts with the corrupt S. Let Ty denote the real view
of S.

2. Hybrid;. Let 77 be the same as T, except that the
mpOPRF execution is replaced by its sender’s simulator
SimﬁmOPRF(k, 1) where k is uniformly sampled by Simg.
The security of the mpOPRF functionality guarantees
the view is indistinguishable from the real execution.

. Hybrid,. Let 7, be the same as 77, except that the query
index set / is replaced by uniformly random iy, - - ,ig; €
[7]* with distinct values. This hybrid is computation-
ally indistinguishable from 7} by the client query pri-
vacy of the BatchPIR scheme. Specifically, if there is

qu <+ Query(Iy), the view of the corrupt S is exactly Tj.
If qu + Query(1;), the resulting view corresponds to T5.
Therefore, 4 can break the client query privacy of the
BatchPIR scheme with the same advantage as D.

O

5 Unbalanced Circuit-PSI

5.1 Definition

We give the formal definition of the unbalanced circuit-PSI
(UCPS]) functionality in Figure 6. This functionality closely
follows prior circuit-PSI works [45,51], except with a par-
ticular focus on the unbalanced setting. Generally speaking,



Functionality 7ycps)

Parameters: Client C and server S. The input sizes of C
and S are ¢ and n, respectively, where n >> . The output
size is m = (1+¢€) -t with a constant € > 0. A function
Reorder : ({0,1}*)" — (n: [t] — [m]), which on input a
set of size ¢ outputs an injective mapping T.

Functionality:
1. Wait for input a set X = {xi,...,x} € ({0,1}*)’
from C.
2. Wait for input a set ¥ = {yi,...,y.} € ({0,1}*)"
from .
3 )-

. Compute 7t + Reorder(X

4. For i € [m], sample (b;)§, (b;)® € {0,1} uniformly
such that (b)E & (b))% =1 if Elx,/ € X,y; €

Y s.t.xy; =y; where i = n(i'), and (b)) ® (b;)8 =0

otherwise.

5. Output ({(b;)§ }iejm); ) to C and {(bi){ }ief t0 S.

Figure 6: Ideal functionality for unbalanced circuit-PSI

it allows the client to input a small set X of size ¢ and the
server to input a large set Y of size n, where n > . After the
protocol, the two parties will learn secret shares of whether
an element of X lies in the intersection. These secret-shared
outputs along with X can then be used in any subsequent
secure computation [36,52].

5.2 Construction

We propose the construction of UCPSI from OKVR in Fig-
ure 7. We emphasize that the main difference from previous
circuit-PSI works [10,45,48,51] is that our UCPSI achieves
sublinear communication complexity on the size of the larger
set. Below, we explain our idea by first giving a basic construc-
tion from our OKVR functionality, followed by an optimized
version employing a padding-free OKVR technique tailored
to UCPSL

Basic construction. Following circuit-PSI, we utilize hash-
to-bin techniques [44,45], which reduce the intersection eval-
uation on all items to only execute on bins with fewer items.
The construction contains the following three steps.

(1) Hash-to-bin. The hash-to-bin technique employs
Cuckoo hashing [41] and simple hashing as follows. Given the
set X of size ¢, the client creates a Cuckoo hash table Tx of size

= (14-¢)-t with  hash functions /1y, ..., hg : {0, 1} — [m],
where € > 0 is a constant. It ensures that for each x; € X, x;||j
is stored at Tx[h;(x;)] for some j € [B]. Due to m > t, there
are some empty bins and we require padding these bins with
dummy items that are marked as L. On the other hand, the
server constructs a simple hash table 7y of size m using the

same hash functions as the above. Specifically, given the set
Y of size n, for each y; € Y, this table stores y;||j at all loca-
tions Ty[h;(y;)] for j € [B]. In Ty, each bin may hold more
than one item. Unlike other works [16,36] that pad all bins to
a pre-defined maximum size with dummy items, we do not
need padding since our protocol will combine the items of
all Ty ’s bins into a single set for subsequent steps. Obviously,
the total number of items in all Ty’s bins is fixed, i.e., Bn.

(2) OKVR. Since both parties use the same hash functions,
our scheme only requires checking whether the item placed in
a bin by the client is among the items placed in this bin by the
server. We employ our OKVR to accomplish this functionality.
Specifically, for each i-th bin, the server samples a random
value r; and constructs a set of key-value pairs P, := {(y/,r;) }
for all y’ € Ty [i]. The client and the server invoke the OKVR
protocol with input Tx and {P;};c|,, respectively. After the
protocol, the client obtains r; for i € [m]. Note that r}’s are
uniformly random, because in each bin of 7y the client only
queries once.

(3) Private equality test. In this step, the client and server
check r; = r}, and compute boolean secret shares of b; that
indicates whether the client’s i-th element is in the server’s set.
This operation is achieved by the private equality test (EQ)
functionality #rq in Figure 3. This operation causes a small
overhead in our unbalanced case since we only require O(t)
invocations, where t < n.

Optimization from padding-free OKVR. The dominant
cost of the basic construction stems from the OKVR step,
which requires BatchPIR with m = (14 ¢€) - queries on the
server’s dataset { P;} icm]- To reduce this overhead, we propose
padding-free OKVR that only consumes ¢ BatchPIR queries.
We emphasize this reduction is important, since as shown in
Section 6.1, € is usually chosen as 0.27.

The main insight is that OKVR outputs a random value
when a query is not found in the server’s key set, which is
actually the case for dummy items _L in the table Tx. In detail,
before BatchPIR queries, the client has known that these L
items are not in the intersection, and hence a random 7} will
be obtained according to the functionality of OKVR. There-
fore, we present an efficient padding-free strategy for invoking
OKVR. In particular, let 7 : [f] — [m] be an injective mapping
that maps an element index of X to the position in Ty, i.e.,
(i) = hj(x;) such that Tx [h;(x;)] = x;|| j. Then, the client in-
vokes Foxvr only with{Tx [r(i)]}c|, and learns {r* }ie[r
and for j € [m]\{n(i)}ic(y, r} is sampled umformly from

{0, l}é by the client. One may question whether it leaks to
the server the mapping of the client’s Cuckoo hashing table,
which depends on the client’s private input set. We note that
this is not the case because the client combines all queries into
a batch to perform BatchPIR on a single database from key-
value pairs of all server’s bins. We give the formal description
of our UCPSI protocol in Figure 7, and the correctness and
security are analyzed below.



Protocol execution:

Tx[hj(x:)] = xi j.

Protocol ITjcps

Parameters: Client C and server S. 3 hash functions {; : {0,1}* — [m]}c(g used in Cuckoo hashing, where m = (1 +¢) -t
with a constant € > 0. Ideal functionalities 7gq in Figure 3 with input bitlength ¢ := A +logm and Fokvr in Figure 4.

Inputs: C inputs a set X = {x1,...,x} € ({0,1}*)". Sinputs aset Y = {y1,...,y,} € ({0,1}*)".

1. C maps X into a Cuckoo hash table Tx of m bins, such that for any x € X, there exists an j € [B] satisfying Tx [h;(x)] = x]| j.
Define a function 7 : [¢] — [m] that maps an element index of X to the position in Ty, i.e., T(i) =

2. S maps Y into a simple hash table 7y of m bins, such that for any y € Y and all j € [B], it holds that y|| j € Ty [h;(y)].
3. Fori € [m], S samples random r; € {0, 1}, and defines P, := {(y/,r;)} for all y’ € Ty[i].

4. Cand S invoke Foxvr with input {Tx[(i)]}ic[;) and {P; } e[y respectively. C initializes empty R* := {r{,...,r;,} and
assigns the output of Fogvr to {r;(i)}iem. For j € [m]\{n(i) };c|, rj is sampled uniformly from {0, 1}

5. Fori € [m], C and § invoke Frq with input r* and r;, respectively. As a result, they learn boolean shares <b,~>g and
<b,->115' , respectively, where b; = 1 if 7 = r; and b; = 0 otherwise.

hj(x;) such that

Figure 7: Protocol for unbalanced circuit-PSI

Theorem 2. The protocol in Figure 7 securely computes
Fucest in Figure 6 against semi-honest adversaries in the
(Fokvr, FEQ)-hybrid model.

Proof. We prove the following two properties.

Correctness. There are three cases for the correctness anal-
ysis. (1) In the case where x € X NY, there exists a unique
Jj such that Tx[hj(x)] = x||j and y||j € Ty[hj(y)] and x =y
with an overwhelming probability according to the statistical
analysis of Cuckoo hashing. From the correctness of OKVR,
when § samples r, C will obtain r* such that r* = r. From
the correctness of EQ, C and § obtain secret shares of b = 1.
(2) In the case where x € X \ Y, there exists a unique j such
that Tx[h(x)] = x||j but Tx [h;(x)] ¢ Ty [hj(x)]. According to
the correctness of OKVR, C will obtain a random r*. The
collision may occur namely r* = r Ax ¢ Y, which violates the
correctness. The false positive error probability in each bin
equals 2~¢. By setting £ = A+ logm, a union bound shows
the overall probability of false positive is 2%, which is negli-
gible. Due to r* # r with overwhelming probability and the
correctness of EQ, C and § obtain secret shares of b = 0. (3)
In the case of dummy points, C directly samples 7* uniformly
at random. The correctness is the same as the second case.

Security. We exhibit simulators Sim¢ and Simg for simu-
lating corrupt C and S, respectively, and argue the indistin-
guishability of the produced transcript from the real execution.

Corrupt client. Sime (X, (%, {(b)§ }icpn)) simulates the
view of the corrupt C. It executes as follows:

e Sim, = {r],....rh}

uniformly samples R*

and invokes the OKVR’s client simulator
SimGgvr ({Tx [n(1)] iep {r Yiew)- Simc appends the
output to the view.

* Sim¢ invokes the EQ’s client simulator SimgQ(r;‘, (b))B)
for i € [m], where r} € R*, and appends the output to the
view.

The view simulated by Sim is computationally indistin-
guishable from the real one by the underlying simulators’
indistinguishability. It is worth noting that although for all
keys in each set P; of key-value pairs, the corresponding value
is always a uniformly random r;, the client’s output {r} }c
of OKVR is still uniformly random. The reason is that for
each P;, at most one value is retrieved by the client according
to the property of Cuckoo hashing.

Corrupt server. Simg (Y, {(b;)§}icp)) simulates the view
of the corrupt S. It executes as follows:

* Simg samples uniformly random {ry,...,r,} and gen-
erates {Pi}c|y like Figure 7, and invokes the OKVR’s
server simulator SiméKVR({Pi},»e[m] ,L). Sims appends
the output to the view.

* For i € [m], Simg invokes the EQ’s server simulator
SiméQ(ri7 (b;)®) where r; is sampled as above, and ap-
pends the output to the view.

It is straightforward to see that the view simulated by Sim
is computationally indistinguishable from the real one by the
OKVR and EQ simulators’ indistinguishability.

O



6 Implementation and Evaluation

We implement our protocols in Java, and run the experiments
on a single Intel Core 19-9900K with 3.6GHz and 128GB
RAM. All evaluations are performed using 8 threads. We
simulate the network connection using the Linux tc command.
The simulated network settings include LAN (10Gbps band-
width and 0.05ms RTT latency) and WAN (50Mbps band-
width with 80ms RTT latency). Given that we focus on the un-
balanced setting, where the client may only have constrained
resources (e.g., very low bandwidth), we also test our pro-
tocols on a simulated mobile network setting (1Mbps band-
width and 80ms RTT latency). Our source code is available at
https://github.com/alibaba-edu/mpc4].

6.1 Implementation Details

A unified circuit-PSI framework. We provide a comprehen-
sive circuit-PSI framework that serves as a unified platform
for implementing both our proposed protocols and state-of-
the-art circuit-PSI schemes. This framework involves a full
re-implementation of existing circuit-PSI schemes, such as the
general circuit-PSI protocols4 (PSTY 19 [45],CGS22 [10] and
RR22 [48]) and the unbalanced circuit-PSI protocol SJ23 [54].
The necessity for a large-scale re-implementation arises from
the original implementations being conducted under different
underlying protocols and experimental settings. This diver-
sity poses challenges for fair comparisons. Specifically, some
prior implementations, like CGS22, focus solely on balanced
circuit-PSI, lacking support for unbalanced cases’. (2) There
are variations in performance evaluations due to different
thread settings: PSTY 19, CGS22, and SJ23 evaluate their
protocols in the single-thread setting, while RR22 employs
multi-thread execution. (3) Different protocols instantiate un-
derlying cryptographic primitives. For instance, PSTY19 and
CGS22 utilize IKNP OT for the equality test, while RR22 and
SJ23 use different silent OT variants, namely Silver OT [18]
and Ferret OT [56], respectively. To address these challenges,
we provide unified implementations and conduct fair compar-
isons within our framework. The details are elaborated in the
subsequent sections.

Implementation details of our protocols. We set the com-
putational security parameter kK = 128 and the statistical se-
curity parameter A = 40. The used dataset is 128-bit random
strings. We note that our implementation is generic and the
dataset can be set as arbitrary values of any length. Following
existing circuit-PSI protocols [10,45,48], we set the size of
the server’s set as 22 ~ 222, We choose the smaller size of

“Bienstock et al. [6] recently propose nearly-optimal OKVS and also
apply it in circuit-PSI (called BPSY23). Currently, we do not include this
baseline because (to the best of our knowledge) we cannot find a way of
supporting multi-thread encoding for their OKVS construction without in-
creasing the encoding rate. Note that BPSY23 has a similar performance as
RR22 (Refer to Figure 7 of BPSY23).

3See Issue #4 of the CGS22 open-source implementation for details.

the client’s set as 2% ~ 212, since the client is defined to use
a smaller set in our focused unbalanced setting. To complete
our constructions, we implement the following components.

Stash-less Cuckoo hashing. We use stash-less Cuckoo
hashing with 3 hash functions that store n elements into
[(1+4¢€)-n] bins, where € > 0. Based on the analysis of
PSZ18 [47], € is usually chosen as 0.27, which has been
widely used in prior works [10,45,51].

Blazing-fast OKVS. We implement the blazing-fast OKVS
with clustering as our sparse OKVS, as proposed by RR22
[48], following their open-source code [2] as a reference. The
underlying field F is instantiated as GF (2°). Specifically, the
elements are distributed into several buckets through a hash
function. Each bucket independently generates an OKVS, and
these individual OKVS are subsequently merged. Notably, the
OKVS encoding for each bucket operates independently and
is amenable to parallel processing, leading to a substantial
enhancement in efficiency. The blazing-fast OKVS offers two
variants employing 2 or 3 hashing functions, both of which are
included in our evaluation for a comprehensive assessment.

BatchPIR. We implement the state-of-the-art vectorized
BatchPIR [40], utilizing their open-source code [4] as a ref-
erence. We specifically opt for the BatchPIR variant due to
its support for batched PIR queries with very low communi-
cation costs. We adopt the JNI technique to invoke the BFV
homomorphic encryption [8,21] provided by Microsoft SEAL
library v4.1 [3]. Our implementation aligns with the chosen
parameter settings and also leverages the modulus switching
technique to effectively reduce the size of response cipher-
texts.

mpOPRF. We implement OMG-DH-based OPRF [31,50],
enabling the server to encode inputs and initialize PIR proto-
cols in the setup phase (specific details of the setup setting will
be elaborated later). For better efficiency, we use FourQ el-
liptic curve [17], renowned for its rapid scalar multiplication
of random points and an efficient implementation of hash-
to-curve operations. We note that existing unbalanced PSI
protocols integrate FourQ and similar techniques to expedite
the setup phase [11,12,16].

Equality test. We implement the private equality test (EQ)
protocol in CGS22 [10]. This protocol has low communica-
tion costs and is rooted in the solution to the Millionaires’
problem within the CrypTFlow2 framework [49]. It recur-
sively performs equality tests on substrings organized in a
tree structure. To conduct tests on leaf substrings, a 1-out-
of-2* OT scheme is employed, where s is a constant and we
set s = 4, aligning with the choice made in [10]. Our OT
implementation utilizes a silent OT variant, namely, Ferret
OT [56].

Pre-processing setting. Similar to unbalanced PSI proto-
cols [11, 12, 16], we establish our framework within the pre-
processing setting. This configuration allows the server to
pre-process its input set during the setup phase, enhancing
online performance. Specifically, the pre-processing in our


https://github.com/alibaba-edu/mpc4j
https://github.com/shahakash28/2PC-Circuit-PSI/issues/4

Table 1: Performance of our OKVR.

Protocol Param. Comm. (MB) Encoding Length Time LAN (s) Time WAN (s) Time Mobile (s)
n t Setup | Online Sparse Dense Setup | Online | Setup | Online | Setup Online
27 0.672 34.465 5.968 37.999 6.460 | 184.990 12.373
2201 28 | 17.875 1.950 | 2,222,080 | 5,120 | 45.037 1.578 | 48.936 2.338 | 195.781 18.729
OKVR 212 12.924 103.210 3.681 | 106.693 6.874 | 254.439 | 113.133
2-Hash 2% 0.789 97.594 9.414 | 98.013 9.667 | 243.289 16.110
222 | 28 | 17.875 3.331 | 8,902,656 | 20,480 | 126.995 2.320 | 129.698 3.384 | 277.929 31.115
212 13.041 324.424 5.999 | 332.950 9.313 | 484.606 | 116.570
2% 0.656 22.724 2.804 | 26.462 3.345 | 173.364 9.088
2201 28 | 17.875 2.566 | 1,406,976 | 3,072 | 33.377 1.094 | 36.544 2.046 | 184.136 | 23.381
OKVR 212 9.750 108.453 4.126 | 109.869 6.709 | 258.608 86.654
3-Hash 2% 0.726 67.583 4.336 | 74.997 5.054 | 218.303 10.949
222 | 28 | 17.875 2.636 | 5,638,144 | 12,288 | 131.976 2.690 | 145.952 3.414 | 280.235 25.437
212 18.664 217.321 5.866 | 287.687 | 10.726 | 400.932 | 163.956

protocol encompasses tasks such as hashing the input set into
bins, encoding elements within these bins using sparse OKVS,
and initializing BatchPIR. Notably, these pre-processing tasks
are independent of the client’s inputs and can be efficiently
completed during the setup phase [12].

Implementation details of baselines. We re-implement
state-of-the-art circuit-PSI schemes including PSTY 19 [45],
CGS22 [10], RR22 [48], and SJ23 [54]. Our implementations
and comparisons are fair for the following reasons. (1) All
their implementations support multi-thread execution and are
compatible with both balanced and unbalanced settings. We
test both our protocols and prior works under the same and
commonly used experimental setting (e.g., thread numbers
and security parameters) and the same 128-bit dataset. (2)
We instantiate the underlying building blocks using the same
state-of-the-art techniques. For example, all protocols invoke
Ferret OT [56] as the OT extension. We also introduce the
advanced optimizations in prior works. Below, we give more
detailed descriptions.

SJ23. We re-implement the two constructions of SJ23 [54]
due to the absence of an available open-source implementa-
tion. We set the polynomial degree and modulus coefficient
based on the analysis provided by SJ23, while also determin-
ing the query power according to APSI parameters [1]. In the
case of their first construction, we integrate the noise flooding
technique [24], introducing an encryption of zero with 40-bit
noise during the response generation phase. For the second
construction, we adopt SEAL’s default configurations for the
ciphertext modulus to ensure a sufficient noise budget for
the multiplication of a multiplicative mask. Notably, partition
numbers per bin in SJ23 are fixed for specific set sizes. To
accommodate arbitrary set sizes, we employ the lookup table
method, as identified in the RR22 implementation [2], to esti-
mate partition numbers per bin. This approach allows us to
support a broader range of set sizes in our re-implementation.

PSTY19. We re-implement PSTY 19 while introducing two
crucial optimizations to enhance performance. Firstly, we
address the computational bottleneck identified in PSTY 19

[10,45], specifically associated with polynomial interpolation
(MegaBin). To mitigate this, we substitute the MegaBin oper-
ation with the 3-Hash Garbled Cuckoo Table (3H-GCT) [23].
Secondly, to further optimize communication costs, we incor-
porate the state-of-the-art equality test protocol from CGS22
into PSTY 19 and instantiate it with Ferret OT.

CGS22 and RR22. We re-implement CGS22 and RR22
and adhere to their original experimental settings. A notable
adjustment is made by employing the equality test protocol of
CGS22, integrated with Ferret OT, to decrease communication
costs in our implementations.

6.2 Experimental Results

We compare our protocols with the state-of-the-art balanced
circuit-PSI, i.e., PSTY19 [45], CGS22 [10], and RR22 [48],
and unbalanced circuit-PSI SJ23 [54], which consists of two
constructions, called SJ23-C1 and SJ23-C2. The runtime and
communication costs of our constructions and previous works
are shown in Tables 1 and 2. Note that in the setup phase,
the communication is dominated by sending Galois and relin-
earization keys of the underlying homomorphic encryption
in BatchPIR to the server. As these keys remain independent
of the server’s set, they can be sent only once and cached
for repeated protocol executions [12, 16]. Consequently, this
communication cost can be amortized over multiple client
requests.

Performance of OKVR. We first test the performance of
our main building block, i.e., OKVR, in Table 1. We report
the communication and computation costs to show the scal-
ability of OKVR. For example, for the server’s set size 2%
and the client’s set size 2'2, it only requires 13.041 MB and
9.313 seconds in the WAN setting. Moreover, we also test
the length of the encoded vector and observe that the length
of the dense part is much smaller than that of the sparse part.
This is consistent with our construction in Section 4. We note
that the size of the dense part can be further reduced when
utilizing sparse OKVS without clustering. For instance, with



Table 2: Communication and runtime comparison of our protocols with previous works. The best result is marked in green, and

the second best result is marked in blue.

Param. Protocol Comm. (MB) Time LAN (s) Time WAN (s) Time Mobile (s)
n t Setup | Online Setup | Online | Setup Online Setup Online
PSTY19 [45] 0.308 | 32.859 0.100 7.020 2.224 18.035 5.162 356.548
CGS22[10] 0.317 | 30.978 0.117 | 10.866 2.581 21.736 5.377 340.301
RR22 [48] 1.882 33.087 0.137 7.941 3.386 19.778 21.067 358.152
24 SJ23-C1 [54] 1.994 5.938 7.996 4.232 10.380 8.567 18.581 58.258
SJ23-C2 [54] 3.958 18.608 2.750 2.252 7.599 9.669 40.451 164.546
Our UCPSI 2-Hash | 18.172 1.872 | 82.666 3.655 87.271 7.310 | 236.127 23.341
Our UCPSI 3-Hash | 18.172 2457 | 58.875 1.937 | 64.045 5.610 | 214.787 26.816
PSTY19 [45] 0.405 33.057 0.077 6.965 2.188 17.816 5.787 358.192
220 CGS22[10] 0415 31.196 0.075 | 11.674 2.575 22412 6.235 343.088
RR22 [48] 1.980 33.278 0.134 8.028 3.386 19.117 21.935 360.385
28 SJ23-C1 [54] 1.994 5.938 8.265 3.843 9.812 8.752 18.284 57.751
SJ23-C2 [54] 3.957 18.609 2.828 2.021 7.565 9.247 | 41.127 165.253
Our UCPSI 2-Hash | 18.270 3.336 | 113.585 2.616 | 117.690 6.843 | 267.438 35.475
Our UCPSI 3-Hash | 18.269 3.921 80.066 1.521 83.482 6.012 | 235.190 39.270
PSTY19 [45] 0.687 | 34.028 0.175 8.221 2.350 18.510 8.380 365.269
CGS22[10] 0.697 | 32.537 0.110 | 12.426 2.678 23.398 8.767 353.945
RR22 [48] 2.352 | 34.080 0.186 8.521 3459 | 20.147 | 25.007 369.325
212 SJ23-C1 [54] 4.854 9.669 6.393 11.932 8.955 17.296 41.982 96.145
SJ23-C2 [54] 3.958 18.607 2.715 1.917 7.960 9.164 | 40.486 164.379
Our UCPSI 2-Hash | 18.551 17.616 | 191.363 5.157 | 199.714 12.317 | 350.308 158.070
Our UCPSI 3-Hash | 18.551 25.149 | 161.069 6.254 | 165.943 14.949 | 315.529 222.685
PSTY19 [45] 0.308 | 130.148 0.090 | 31.202 2.237 62.721 5.067 | 1,405.807
CGS22[10] 0.318 | 122.418 0.095 | 61.104 2.591 91.548 5.343 | 1,352.874
74 RR22 [48] 1.882 | 130.376 0.133 | 34.840 3.343 67.732 20.567 | 1,407.752
SJ23-C1 [54] 5.227 6.618 | 102.531 | 10.102 | 103.283 15.881 | 112.038 70.543
SJ23-C2 [54] 3958 | 42.674 11.998 3.728 16.224 15.202 | 44.846 369.253
Our UCPSI 2-Hash | 18.172 2.856 | 287.176 7.330 | 295.251 11.241 | 443.559 36.117
Our UCPSI 3-Hash | 18.172 2.668 | 323.034 7.627 | 316.533 11.544 | 483.251 35.354
PSTY19 [45] 0.405 | 130.346 0.077 | 31.955 2.255 64.689 5.838 | 1,407.101
)22 CGS22[10] 0.415 | 122.636 0.080 | 64.442 2.670 | 93.478 6.361 | 1,357.350
RR22 [48] 1.980 | 130.567 0.318 | 35.146 3.331 64.838 | 21.478 | 1,410.698
28 SJ23-C1 [54] 5.226 6.618 | 103.195 9.663 | 101.296 15.717 | 111.341 70.589
SJ23-C2 [54] 3.957 | 42.673 11.075 3.555 16.572 15.720 | 45.625 368.650
Our UCPSI 2-Hash | 18.269 5.583 | 398.922 5.785 | 399.003 10.471 | 557.363 57.775
Our UCPSI 3-Hash | 18.269 7.291 | 287.933 5.425 | 297.677 10.449 | 446.333 71.604
PSTY19 [45] 0.687 | 131.322 0.281 | 35.768 2.355 66.032 8.363 | 1,416.060
CGS22[10] 0.697 | 123.982 0.112 | 66.434 2.633 | 101.694 8.766 | 1,369.970
RR22 [48] 2.352 | 131.369 0.162 | 39.705 3.584 | 69.666 | 25.332 | 1,422.936
212 SJ23-C1 [54] 5.227 6.618 | 101.144 | 10.897 | 104.207 16.169 | 112.113 71.405
SJ23-C2 [54] 3.957 | 42.675 11.639 3.464 16.575 15.108 | 44.739 368.319
Our UCPSI 2-Hash | 18.551 33.130 | 623.735 | 13.086 | 631.618 | 20.526 | 795.836 295.674
Our UCPSI 3-Hash | 18.551 25.361 | 672.840 | 12.123 | 674.243 19.188 | 843.413 230.016

the server’s set size 220, the sizes of the dense part are 72 and
56 in our 2-Hash and 3-Hash OKVR protocols, respectively.

Communication comparison. The comparison between
our protocols and recent balanced circuit-PSI techniques, i.e.,
PSTY19, CGS22, and RR22, is reported in Table 2. We can
observe that our protocols achieve the lowest online communi-
cation cost, outperforming them by 1.84 ~ 48.86 x. Moreover,
our protocols exhibit greater advantages when the difference
between the set sizes of the client and server is significant.
In addition, when comparing with SJ23, the communication
of our constructions is 1.18 ~ 15.99 x better than their proto-
cols in the extremely unbalanced setting, e.g., the client set of
size 2* and 28. For the client’s set size 2!2, our protocols still

outperform the second construction of SJ23.

Runtime comparison. As evidenced by Table 2, our pro-
tocols consistently outperform balanced circuit-PSI works
PSTY19, CGS22, and RR22 across all set sizes and network
setups. Specifically, the runtime efficiency of our construc-
tions surpasses these works by 1.50 ~ 39.81x. On the other
hand, when compared with SJ23, the runtime of our construc-
tions is 1.22 ~ 10.44 x better in the extremely unbalanced
setting, e.g., the client set of size 24 and 28. Moreover, we
observe that SJ23 works well for relatively large client’s set
sizes, e.g., 212 and has a similar high overhead even when the
set size decreases. The reason is that SJ23 requires packing
a large number of the client’s elements into a ciphertext and



amortizing the overhead of expensive FHE operations. Be-
sides, the two SJ23 protocols have varying runtime results be-
tween LAN and Mobile settings due to large communication
differences, which will affect the performance in bandwidth-
limited settings. Rather, our two UCPSI constructions with
2-Hash and 3-Hash have a similar communication cost and
particularly perform better in these constraint network set-
tings.

7 Conclusion

In this work, we introduce unbalanced circuit-PSI construc-
tions that achieve sublinear communication complexity in
the size of the larger set. The core idea is the functionality
and construction of Oblivious Key-Value Retrieval (OKVR),
which may be of independent interest. We fully implement
our constructions and state-of-the-art circuit-PSI protocols in
a unified framework for fair comparisons. We evaluate the
efficiency of our constructions and the results show that our
scheme achieves up to 48.86x communication improvement
and 39.81 x runtime reduction over previous works.
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A Unbalanced Circuit-PSI with Payloads

In some scenarios, each input item of the parties has an as-
sociated payload. The task is to compute a function of the
payloads of the items in the intersection. In this section, we

extend our unbalanced circuit-PSI protocol to support com-
puting functions on the intersection of input sets along with
associated payloads.

Formally, the client inputs a small set X of size ¢ along
with an associated value set X, and the server inputs a large
key set Y of size n along with an associated value set ¥. Af-
ter the protocol, the two parties will compute a function on
the intersection and the corresponding payloads. This con-
struction is significantly built on our unbalanced circuit-PSI
protocols in Figures 7 except for the following parts. (1) In
step 3 of the unbalanced circuit-PSI protocol, the client sam-
ples random r;, w;, and defines P; := {(y/, r;||(F—w;))}, where
y =yl||j € Ty[i] for some j € [B] and ¥ is the payload of y.
(2) In step 4, the two parties invoke Foxvr on this new key-
value pairs P;, and the client obtains r} ||w}. After Foxvr, the
generic 2PC functionality will then take as input (#, w}, x;, %;)
from the client and (r;, w;) from the server.
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