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Abstract— This work studies secure inference on Binary Neural
Networks (BNNs), which have binary weights and activations as
a desirable feature. Although previous works have developed
secure methodologies for BNNs, they still have performance
limitations and significant gaps in efficiency when applied in
practice. We present SecBNN, an efficient secure two-party
inference framework on BNNs. SecBNN exploits appropriate
underlying primitives and contributes efficient protocols for the
non-linear and linear layers of BNNs. Specifically, for non-linear
layers, we introduce a secure sign protocol with an innovative
adder logic and customized evaluation algorithms. For linear
layers, we propose a new binary matrix multiplication protocol,
where a divide-and-conquer strategy is provided to recursively
break down the matrix multiplication problem into multiple
sub-problems. Building on top of these efficient ingredients,
we implement and evaluate SecBNN over two real-world datasets
and various model architectures under LAN and WAN. Exper-
imental results show that SecBNN substantially improves the
communication and computation performance of existing secure
BNN inference works by up to 29× and 14×, respectively.

Index Terms— Binary neural networks, private inference,
secure two-party computation.

I. INTRODUCTION

DEEP learning (DL) [1] has been widely adopted in
real-life applications. However, it is challenging to

deploy large-weight DL models in computation- and energy-
constrained devices (e.g., smartphones, wearables, and edge
IoT devices). For example, AlexNet [2] contains 60 million
parameters and 650,000 neurons, which is computationally
expensive and consumes extensive memory resources for
inference. Fortunately, a game-changing technique, Binary
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Neural Network (BNN) [3], has been introduced as one of the
most efficient solutions for such devices. BNN is an extreme
case of parameter quantization, where weights and activa-
tions are restricted to ±1. Such binary characteristics have
led to remarkable progress in applying BNNs on resource-
limited platforms, since they can save significant amounts
of storage, computation, and energy consumption [4], [5].
With the increasing trend of lightweight and practical neural
networks, more and more research efforts are devoted to BNNs
in academia [6], [7], [8], [9], [10]. Meanwhile, due to their
superior performance, BNNs have been practically employed
in various applications like person re-identification [11],
robotics [12], wearable devices [13], and self-driving car [14].

Similar to other DL techniques, BNNs suffer from privacy
issues when applied in remote inference services with the
client-server architecture [15], [16]. In particular, a server
hosting a BNN model provides inference APIs to the clients
who can send their queries to the server and receive the
corresponding analysis results. In this process, the queries may
be highly sensitive and the server can easily compromise the
privacy of clients (i.e., revealing the queries). An attractive
option to tackle this issue is the secure inference based on
secure two-party computation (2PC) techniques [17], [18],
[19], [20], [21], [22], [23], [24], [25], which can provide
provable security guarantees. At a high level, secure inference
considers a real-world scenario, where the server holds the
proprietary weights w of a model M , and the client pays to
learn the prediction M(w, x) on a privacy-sensitive sample
x . 2PC protocols are applied to guarantee that the server
learns nothing about x , while the client learns nothing about
w beyond M(w, x) and what can be deduced from the result.

Two lines of research work can achieve secure BNN infer-
ence. Unfortunately, they suffer from noteworthy efficiency
issues. In particular, (1) the advanced general 2PC-based
systems [23], [24], [25] can be directly applied to the BNN
inference task. However, they are not designed for the binary
properties of BNNs, and thus exhibit large performance bottle-
necks. (2) Researchers also design new solutions dedicated to
BNN inference. As the first attempt, Riazi et al. [15] propose
a BNN private inference framework XONN, which purely
exploits Yao,s Garbled Circuit (GC) techniques [26] to imple-
ment both linear and non-linear layers. It provides a modular
approach for integrating 2PC protocols with BNNs, achieving
a constant-round secure inference scheme. However, as shown
in recent studies [23], [25], GC has expensive communication
costs due to transmitting garbled tables, and high computation
overhead introduced by invoking encryption operations per
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gate. Thus, it becomes the principal performance bottleneck.
Recently, Samragh et al. [16] designed an optimized variant
(denoted as XONN+ in this paper), where the non-linear
protocols are still constructed using expensive GC, but the
evaluation of linear functions has been optimized utilizing
Oblivious Transfer (OT) [27]. Nevertheless, the communica-
tion overhead of OT-based linear layers is still heavy.

This paper presents SecBNN, an efficient secure two-party
inference framework tailored for BNNs. The core novelty of
SecBNN lies in its ability to exploit the binary characteristics
of BNNs to design cryptographic protocols specifically crafted
for each layer within the model. It provides the following
new insights. (1) A new sign protocol for non-linear layers.
Sign is an important activation function in BNNs, to binarize
the output of linear layers. We propose a new adder logic
and effective evaluation algorithms to evaluate this function.
This design minimizes the required communication rounds and
AND gates. (2) An efficient binary matrix multiplication
protocol for hidden linear layers. In secure BNN inference,
matrix multiplication occupies the major overhead. To solve
this issue, we first propose a new protocol based on correlated
OT (COT) [28], and further design a divide-and-conquer
strategy to recursively break down the matrix multiplication
problem into multiple sub-problems over a smaller size, each
of which can be evaluated more efficiently. (3) A new binary-
integer multiplication protocol for the first linear layer.
This protocol is customized for the first linear layer of BNNs,
where the weights are binary but the inference samples are
integers. We implement it with a new COT-based method for
better communication overhead.

To evaluate the designed protocols, we apply SecBNN
to representative benchmarks (e.g., MNIST, and CIFAR10).
Compared to secure BNN inference works [15], [16], SecBNN
significantly reduces the communication (i.e., 3.33 ∼ 29.62×)
and computation (i.e., 3.20 ∼ 14.29×) cost. In sum, we make
the following contributions.

• We provide a novel paradigm with a new adder logic
and efficient protocols for evaluating the sign function in
non-linear layers of BNNs.

• We design an efficient binary matrix multiplication pro-
tocol for linear layers with a new divide-and-conquer
strategy and customized constructions.

• The experimental results show that SecBNN achieves
up to 29× and 14× communication and computation
improvements over prior works, respectively.

We begin with the technical contributions of SecBNN in
Section II, and detail the useful preliminaries in Section III.
In Section IV, we provide the threat model and high-level
overview of SecBNN. Sections V and VI present our non-
linear and linear protocols, respectively. Section VII reports the
experimental results. In Section VIII, we discuss the related
works, and then conclude this work in Section IX.

II. TECHNICAL CONTRIBUTIONS

A BNN consists of alternating non-linear and linear layers.
The former contains sign activation and maxpooling functions,
while the latter can be divided into the first linear layer
and hidden linear layers according to different input forms.
To achieve secure BNN inference efficiently, SecBNN takes

advantage of the binary characteristic of BNNs, i.e., the
weights and activations are restricted as ±1,1 and provides
new insights in designing protocols for each layer.

A. Non-Linear Layers
The non-linear activation function in BNNs can be repre-

sented as a sign protocol, where the server and the client hold
the secret shares of x ∈ Z2ℓ , and aim to securely compute
y = sign(x),2 thereby obtaining the secret shares of y. Given
the boolean mapping, the sign function can be reformulated
as y = MSB(x) ⊕ 1, and hence the problem is converted
into securely computing MSB.3 Besides, the other non-linear
layer, i.e., maxpooling, can be evaluated using the simple idea
in [15], which causes a slight overhead in our evaluation.
Hence, we omit the detail here and illustrate it in Section V.

Three strategies are currently available for securely evaluat-
ing MSB. The first one is based on GC, which was employed
in prior secure BNN inference works [15], [16]. Nevertheless,
as discussed in Section I, GC has heavy communication and
computation overhead [23]. The second one is to leverage
OT, which was proposed in the state-of-the-art 2PC-based
inference system, Cheetah [25]. However, we observe that this
solution requires multiple calls to the costly 1-out-of-2m OT
primitive (m is a hyperparameter). Another one is to employ an
advanced adder like the parallel prefix adder (PPA) [29], [30].
Such adders consist of two components: input computation
and circuit evaluation, both requiring AND and cost-free XOR
operations. Unfortunately, directly applying this construction
cannot achieve better performance than Cheetah [25], due to
the large number of AND gates and communication rounds.
As a result, these approaches suffer from notable performance
bottlenecks.

In SecBNN, we re-enable the adder-based method for MSB,
because it only requires secure evaluation of AND gates, which
is more friendly than GC and OT. Compared to the advanced
adder, i.e., PPA, our method employs a more streamlined adder
circuit and more efficient evaluation protocols. Technically,
(1) we design a novel circuit logic that integrates the input
computation and circuit evaluation processes together, and
reduce the number of AND gates based on a lean tree-based
evaluation. Compared to the counterpart based on PPA, our
protocol reduces both communication and interaction rounds.
(2) For the protocol design, we identify two types of AND
gates with different input forms that appear in the circuit.
To improve communication performance, we construct cus-
tomized protocols for each type of AND gates. In contrast, the
PPA-based method uses a general protocol for all AND eval-
uations, without capturing this feature. Overall, our solution
offers superior efficiency over the GC-based counterparts [15],
[16] and the state-of-the-art OT-based method [25]. Table I
shows the theoretical results.

B. Hidden Linear Layers
For the evaluation of hidden linear layers, a binary matrix

multiplication protocol is needed, which takes as input two

1Similar as prior secure BNN inference works [15], [16], in SecBNN, the
binary weights and activations are represented in the boolean form using the
mappings: +1 → 1 and −1 → 0.

2sign(x) is +1 if x ≥ 0 and -1 otherwise.
3MSB(x) is the most significant bit of x .
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TABLE I
COMPARISON OF COMMUNICATION COST WITH PRIOR WORKS FOR

NON-LINEAR PROTOCOLS. FOR THE CONCRETE EXAMPLE,
WE USE THE SECURITY PARAMETER λ = 128

binary matrices X ∈ {−1, 1}
m×n and Y ∈ {−1, 1}

n×k owned
by the server and the client respectively, and outputs the
secret shares of Z = X · Y. As illustrated in XONN [15],
considering the boolean mapping of the inputs, this function
can be computed via cost-free XNOR along with a sum
operation over boolean shares. Thus, it is necessary to develop
a secure protocol to efficiently compute sum.

This function occupies the major overhead in secure BNN
inference. Existing works [15], [16] utilize GC or OT to
evaluate it. However, these methods are costly in both commu-
nication and computation. In SecBNN, we attempt to exploit
the advanced boolean-to-arithmetic (B2A) protocol [23], [25]
to evaluate this function. The main insights are that the sum
operation on arithmetic shares is free, and the B2A protocol
can be efficiently built based on COT [28]. For ease of
understanding, we talk about a simple vector case with size n,
i.e., computing the arithmetic shares of y =

∑
i∈[n]

xi , where
xi ∈ {0, 1} is boolean-shared between the server and the client.
Specifically, we first convert the boolean shares of each xi
to ℓ-bit arithmetic shares, where ℓ = ⌈log(n + 1)⌉ + 1 to
prevent overflow [16], and then sum the generated arithmetic
shares for free. Furthermore, when extended to the matrix
form, we observe that by carefully setting up the receiver’s and
sender’s messages, multiple COT instances can be combined
to reduce the communication cost. As a result, this solution
obtains better communication and runtime performance than
the prior protocols [15], [16].

Despite achieving overall advantages in different network
environments (i.e., LAN and WAN) as shown in Section VII,
the above sum protocol is sensitive to the network bandwidth.
The primary reason is attributed to the O(nℓ) asymptotic
communication complexity of this protocol, which leads to
an increase in runtime on the communication-limited network
environment. Nevertheless, optimizing this overhead may be
hard, since any reduction in n or ℓ will affect the correctness
with a non-negligible probability. Rather, we propose a divide-
and-conquer strategy, which reduces the communication cost
by slightly increasing the communication round. The main

TABLE II
COMPARISON OF COMMUNICATION COST WITH PRIOR WORKS FOR LIN-

EAR PROTOCOLS, WHERE THE INPUTS ARE (m × n)-DIM X AND
(n × k)-DIM Y.FOR CLARITY, WE DEFINE ℓ̄ = ⌈log n⌉ + 8 AND ℓ =

⌈log(N + 1)⌉ + 1.FOR THE CONCRETE EXAMPLE, WE USE THE
SECURITY PARAMETER λ = 128.∗ DENOTES OUR BINARY

LINEAR PROTOCOL USING THE DIVIDE-AND-CONQUER
OPTIMIZATION

insight is to sum on each n′-dimension (n′ < n) sub-vector
and hence to execute B2A on a smaller bitlength ℓ′

=

⌈log(n′
+1)⌉+1. After that, we obtain

⌈ n
n′

⌉
summations, which

are summed by first calling our optimized ℓ′-to-ℓ bitlength
extension protocol. Totally, our communication complexity is
O(nℓ′

+
n
n′ (ℓ − ℓ′)). By picking n′ appropriately, we save

nearly half the communication compared to our basic solution.
Note that SecBNN adaptively chooses the appropriate proto-
col with or without this optimization regarding the network
environment, thereby carefully balancing the round and com-
munication complexity for better performance. Table II shows
the theoretical communication overhead of our protocol.

C. First Linear Layer

For the first linear layer of BNNs, where the inference
samples are not necessarily binarized, a variant of the above
matrix multiplication protocol for Z = X·Y is required. In this
function, X ∈ {−1, 1}

m×n is also a binary weight matrix
owned by the server but Y ∈ Zn×k

2ℓ as an inference sample
is an integer matrix owned by the client.

The source of the inefficiency of prior solutions [15], [16]
is that the usage of OT results in high communication costs.4

To achieve a communication-efficient protocol, we aim to
build a new COT-based evaluation by constructing a corre-
lation function between the sender’s messages. Specifically,
we consider an instance that the server and client jointly
compute a scalar multiplication x · y, where x ∈ {−1, 1}

and y ∈ Z2ℓ . To evaluate it, the client first constructs a
correlation function f (α) = 2y + α. Then, the two parties
call a 1-out-of-2 COT, where the client is the sender with
the input f (·) and the server is the receiver with the choice

4XONN+ [16] proposed an offline/online protocol for the amortized setting.
In the offline phase, the client and the server engage in a Random OT (ROT)
protocol assuming the model weights are known in advance and are served as
the choice bits. During the online phase, the sender only sends two masked
messages. It is not hard to figure out that the overall communication overhead
of this protocol equals the OT-based method in XONN [15].
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bit b that is 0 if x = −1 and 1 otherwise. After that, they
obtain the shares of x · y if the client sets the share as
[x · y]0 = −α − y and the server sets the share as the output
of COT, i.e., [x · y]1 = b · 2y + α. Note that the above
design and function construction are essentially different from
existing multiplexer [32] or boolean-integer multiplication [33]
protocols, since our binary value is from {+1, −1} rather
than {0, 1}. When extending this idea to the matrix form, the
batching technique [18], [33] can be used to further reduce the
computation and communication complexities. Table II shows
the detailed communication complexity analysis.

III. PRELIMINARIES

A. Notations

Let λ be the security parameter. [x]
ℓ indicates that x is

arithmetic shared in Z2ℓ between the server and the client,
while [x]

B denotes the boolean shares in Z2. [n] denotes the
set {1, 2, · · · , n}. ∧ and ⊕ represent logical AND and XOR
operations, respectively. ⌈·⌉ and ⌊·⌋ denote the ceiling and
flooring functions, respectively. We use bold lower-case letters
(e.g., x) to represent vectors, and bold upper-case letters (e.g.,
X) to represent matrices. X[i, ·] and X[·, j] denote the i-th row
and j-th column of X, respectively. Given two matrices X and
Y, X ◦ Y refers to the Hadamard product (i.e., element-wise
product). ⊠ indicates the vector-matrix multiplication without
accumulation: given an m-length vector x and Y with size
m × n, x ⊠ Y outputs Z with size m × n. ⊞ denotes the
matrix-vector XOR: given Y with size m × n and an n-length
vector x, Y⊞x outputs Z with size m ×n. Besides, X[ j, ·] = r
means that each element in X[ j, ·] equals r .

1) Fixed-Point Representation: Similar to existing secure
inference works [15], [16], [25], we encode a real number, i.e.,
a float-point number, x̂ ∈ R as a field element x ∈ Fp using
its fixed-point representation. Given the fractional bitlength
s (also called scale), the mapping from reals to their field
representation is x = ⌊x̂ · 2s

⌋ mod p, and vice versa, the
mapping from the field representation to reals is (x −c · p)/2s

where c = 1{x > (p − 1)/2}.

B. Binary Neural Networks

Similar to traditional neural networks, a BNN comprises
a sequence of linear and non-linear layers, except that the
weights and activations of these layers are restricted to ±1.
Below, we briefly describe the functionalities of these layers.

1) Binary Linear Layers: A fully-connected layer (FC)
takes as input an n-length activation vector x ∈ {+1, −1}

n

and a weight matrix W ∈ {+1, −1}
m×n , and outputs y ∈ Rm

using a linear transformation y = W · x. The convolutional
layer (CONV) is another form of linear transformation, which
can be represented with matrix multiplication [22], [23].

2) Batch Normalization Layer: A batch normalization layer
(BN) is typically applied to the output of linear layers to
normalize the results. For the output y of FC, BN multiplies
the i-th element of y by γ [i] and adds β[i] to the result,
where γ ∈ Rm is the scaling vector and β ∈ Rm is the
shift vector. For the output of CONV, BN multiplies all of
the i-th channel’s elements by a scalar γ [i] and adds β[i] to
the resulting channel.

3) Sign Activation Layer: The output of BN is usually fed
to a binary activation function. It takes as input x ∈ Rn and
maps it to y = sign(x) ∈ {+1, −1}

n , where sign outputs
either +1 or −1 based on the sign of x.

4) Binary MAXPOOLING LAYER: Pooling layers operate
on image channels outputted by CONV, which slides a window
on the channels and aggregates the values into a single output.
Maxpooling and averagepooling are two of the most common
pooling operations. However, averagepooling is usually not
used in BNNs since the average of multiple binary values is
no longer binary.

C. Cryptographic Primitives
1) Secret Sharing: We adopt 2-out-of-2 secret sharing

schemes over different power-of-2 rings [34], categorized into
boolean sharing and arithmetic sharing. In the boolean sharing,
the sharing algorithm ShrB(x) inputs x in Z2 and outputs two
shares [x]

B
0 and [x]

B
1 satisfying [x]

B
0 ⊕ [x]

B
1 = x in Z2. The

reconstruction algorithm RecB([x]
B
0 , [x]

B
1 ) takes as input the

two shares and outputs x . Given two boolean-shared values,
the XOR operation can be non-interactively evaluated, and
AND requires invoking OT primitive. Besides, we denote the
arithmetic shares of x ∈ Z2ℓ by [x]

ℓ
= ([x]

ℓ
0, [x]

ℓ
1) with

x = [x]
ℓ
0 + [x]

ℓ
1 mod 2ℓ. The operations on arithmetic shares

are similar to those of boolean shares, except that XOR and
AND are replaced by addition and multiplication, respectively.
We denote the arithmetic sharing and reconstruction algo-
rithms as ShrA(·) and RecA(·), respectively.

2) Oblivious Transfer: In the 1-out-of-2 oblivious transfer
(OT) protocol [27], a sender inputs two ℓ-bit messages m0,
m1 ∈ {0, 1}

ℓ and a receiver inputs a choice bit b ∈ {0, 1}.
At the end of the protocol, the receiver obtains mb and the
sender receives nothing. SecBNN relies on two variants of
OT [35], i.e., 1-out-of-2 correlated OT (

(2
1

)
-COTℓ) and 1-

out-of-2 random OT (
(2

1

)
-ROTℓ). In the

(2
1

)
-COTℓ, the sender

inputs a correlation function f (r) = x + r , and the receiver
inputs a choice bit b. After the protocol, the sender receives
a random r ∈ {0, 1}

ℓ and the receiver obtains mb, where
m0 = r and m1 = x + r . In the

(2
1

)
-ROTℓ, the sender

has no inputs and obtains random m0, m1 ∈ {0, 1}
ℓ, while

the receiver obtains mb. The above OT primitives are usually
realized with OT extension techniques (typically, IKNP [35]
and silent OT extension [28], [36]). Like [25], we use the
low-communication silent OT extension [28] as the underlying
building block, where

(2
1

)
-ROTℓ enjoys almost 0 amortized

communication cost,5 and
(2

1

)
-COTℓ communicates ℓ + 1 bits

within 2 rounds.

D. 2PC Functionalities
SecBNN adopts the following 2-party functionalities, with

detailed protocols outlined in Appendix A.
1) AND: The functionality FAND takes [x]

B and [y]
B as

input and returns [x ∧ y]
B . Cheetah [25] gives the most

communication-efficient protocol for FAND with two calls of
silent

(2
1

)
-ROT1. This protocol requires 4 bits of communica-

tion within 2 rounds.
5Similar as the advanced Cheetah [25], the complexity analysis in SecBNN

ignores the communication and round overhead introduced by
(2
1
)
-ROTℓ.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 10,2024 at 06:46:57 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: SecBNN: EFFICIENT SECURE INFERENCE ON BINARY NEURAL NETWORKS 10277

2) Boolean to Arithmetic (B2A): The ℓ-bit B2A function-
ality, Fℓ

B2A, takes [x]
B as input and returns the arithmetic

shares of the same value x , i.e., [x]
ℓ. We use the silent(2

1

)
-COTℓ-based protocol [25], which requires ℓ + 1 bits of

communication within 2 rounds.
3) Bitlength Extension With Known MSB (SExt): The

functionality, Fℓ′,ℓ

SExt, takes ℓ′-bit shares [x]
ℓ′

with positive
x as input and returns ℓ-bit shares of the same value, i.e.,
[x]

ℓ. We instantiate the protocol of [32] using the silent
OT extension, which reduces the communication cost from
ℓ − ℓ′

+ 2λ + 2 to ℓ − ℓ′
+ 3 bits.

IV. SECURE BNN INFERENCE

This section details the threat model and the high-level
overview of SecBNN.

A. Threat Model
The security of SecBNN is provably provided against a

semi-honest probabilistic polynomial time adversary A that
either corrupts the client or the server but not both. In this
setting, A strictly follows the specification of designed pro-
tocols, but attempts to infer more private information from
the received messages. Security is modeled in the simulation
paradigm [37], [38], which defines a real interaction and an
ideal interaction. In the real interaction, the parties execute
protocols according to the specification in the presence of A
and the environment Z . In the ideal interaction, the parties
send their inputs to an ideal functionality that faithfully exe-
cutes the operation. Secure inference requires that no environ-
ment can computationally distinguish between real and ideal
interactions. The protocols in SecBNN invoke multiple sub-
protocols, and we use the hybrid model to describe them like
prior works [23], [32]. This is analogous to the real interaction,
except that sub-protocols are replaced by the corresponding
ideal functionalities. By convention, a protocol invoking a
functionality F is referred to as the “F-hybrid model”.

Remark: As with all semi-honest secure protocols [15], [16],
[23], [25], our SecBNN is not designed to defend against
active adversaries or side-channel attacks. In the following,
we discuss possible solutions to deal with these malicious
behaviors. (1) Active adversaries: For adversaries who might
deviate from protocol specifications to gain unauthorized infor-
mation, a possible solution is to utilize the zero-knowledge
proof techniques [39], [40], combined with specific consis-
tency check strategies, to ensure data integrity [41], [42].
However, even with the most advanced methods, the proto-
col overhead will increase by several orders of magnitude.
(2) Side-channel attacks: To our knowledge, no existing
2PC-based secure inference protocols currently address the
impact of side-channel attacks. These attacks exploit secret-
dependent side information generated during the execution of
cryptographic protocols to perform secret recovery attacks.
A potential solution could involve introducing random dummy
operations or masks into the side information, thereby weaken-
ing the direct correlation between the side information and the
secret. This might be a valuable direction for future research.

B. Overview of SecBNN
SecBNN provides an end-to-end private inference service

via securely evaluating each layer of BNNs using efficient

Fig. 1. Overview of secure BNN inference in SecBNN.

protocols, as shown in Figure 1. Recall that a BNN simply
contains a sequence of connected layers of appropriate dimen-
sions. When securely realizing each layer, SecBNN maintains
the following invariant6: the client and the server begin with
boolean/arithmetic shares of the input to the layer, and end
with boolean/arithmetic shares of the output of the layer after
the protocol. This allows us to stitch protocols for proper layers
sequentially to obtain a complete secure inference scheme. The
semi-honest security will follow trivially from the sequential
composability of individual sub-protocols [38], [43].

V. PROTOCOLS FOR NON-LINEAR LAYERS

This section presents efficient protocols for the non-linear
layers of BNNs including (1) sign activation layers and (2)
binary maxpooling layers. The corresponding functionalities
are shown in Table III.

A. Sign Activation Protocol
The sign activation function computes y = sign(x) for each

input x , and outputs +1 if x ≥ 0 and −1 otherwise. With the
boolean encoding of the output, this function can be simplified
to extract the most significant bit (MSB) of x , i.e.,

y = MSB(x) ⊕ 1. (1)

Formally, the MSB protocol takes as input ℓ-bit shares [x]
ℓ

and outputs [MSB(x)]B . For efficient MSB evaluation, in the
following, we represent it as a boolean adder, and propose a
new construction logic and efficient protocol designs, assum-
ing ℓ is a power of 2 (general cases will be discussed later).

Let eℓ, . . . , e1 and fℓ, . . . , f1 are the bitwise representation
of [x]

ℓ
0 and [x]

ℓ
1 respectively, and hence MSB(x) = cℓ ⊕ eℓ ⊕

fℓ, where cℓ = cℓ−1 ∧ (eℓ−1 ⊕ fℓ−1) ⊕ (eℓ−1 ∧ fℓ−1) is the
ℓ-th carry bit. Given gi = ei ∧ fi and pi = ei ⊕ fi for i ∈ [ℓ],
cℓ can be reformulated as

cℓ = gℓ−1 ⊕ (pℓ−1 ∧ gℓ−2) ⊕ · · · ⊕ (pℓ−1 ∧ · · · ∧ p2 ∧ g1).

(2)
To obtain cℓ, we construct a log ℓ-layer tree and traverse the
tree from the leaves until reaching the root. The leaves adhere
to the following operation

g1
k = gk p1

j = p2 j−1 ∧ p2 j−2, (3)

where k ∈ [ℓ − 1] and j ∈ [2, ℓ/2]. Then in the r -th layer
(r = 2), the tree needs to update g and p as follows

gr
k = gr−1

2k−1 ⊕ (gr−1
2k−2 ∧ pr−1

2k−1)

gr
1 = gr

2 ⊕ (gr−1
2 ∧ pr−1

2 )

pr
j = pr−1

2 j ∧ pr−1
2 j−1, (4)

6An exception is the first linear layer that takes the client’s samples and
the server’s model weights as input.
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TABLE III
IDEAL FUNCTIONALITIES OF NON-LINEAR FUNCTIONS

where k ∈ [2, ℓ/2r−1
] and j ∈ [2, ℓ/2r

]. When r ≥ 3, we also
follow the Equation 4 except that gr

k = gr−1
2k ⊕ (gr−1

2k−1 ∧ pr−1
2k )

if r ≥ 3. Finally, cℓ equals glog ℓ

1 , and MSB(x) can be further
obtained via cost-free XOR operations.

To evaluate the above AND operations, we provide two cus-
tomized protocols based on the silent OT extension [28], as we
identify two different input forms in the tree. Specifically,
for the intermediate nodes, as well as p1

j for j ∈ [2, ℓ/2]

in the leaves, we use the generic 5AND protocol [25] to
perform AND operations, since the input of each node is
boolean shared between the parties. Then we observe that
g1

k for k ∈ [ℓ − 1] in the leaves can be computed using our
simplified 5AND∗ protocol in Algorithm 6 of Appendix A,
since the inputs ei and fi are held by the server and the
client, respectively. The protocol 5AND∗ only requires one
call of

(2
1

)
-ROT1 with 2-bit communication, saving half of

the communication and computation overhead compared with
5AND.

Algorithm 1 details our sign protocol. We would like to
emphasize that our new designs significantly improve the
current advanced adder, i.e., PPA [29], [44], in both com-
putation and communication performance. Specifically, (1)
our approach achieves better computation performance by
reducing the required interaction rounds, thereby minimizing
the effect of network latency. PPA consists of two sequential
processes to compute MSB: an input computation step that
needs one round of interaction, followed by a circuit evaluation
step that involves log ℓ rounds of interaction. Overall, log ℓ +

1 interaction rounds are required. By contrast, our evaluation
logic saves a round of interaction. (2) For communication
performance dominated by the AND evaluation, our approach
requires fewer AND gates, and provides efficient and cus-
tomized protocols for two types of AND with different input
forms. In comparison, PPA needs more AND operations due
to the redundant circuit, and it fails to capture the input feature
of AND gates, resorting instead to a generalized protocol for

all AND gates. The experimental results in Section VII also
implicitly demonstrate the superiority of our protocol.7

Remark: We would like to clarify that the above adder-
based method provides the same level of security as GC
and OT, specifically resistance to probabilistic polynomial-
time adversaries. Specifically, on the one hand, the adder is
composed only of AND and XOR gates. The AND gates
are evaluated using the protocol of Cheetah [25], while the
evaluation of XOR gates is a local operation that does not
require interaction between the parties. Thus, the security of
the AND gate evaluation is ensured by the AND protocol in
Cheetah, and the XOR gates, which incur no communica-
tion cost, remain secure due to the absence of information
exchange between parties. On the other hand, like existing
secure inference works [15], [16], [23], [25] and GC/OT
protocols, all intermediate results in our adder-based protocol
are represented as secret shares or are masked by randomness.
In summary, the adder-based protocol we employed offers
security on par with GC- and OT-based methods.

1) Correctness and Security: Given the correctness of cℓ,
it is not hard to deduce that y = MSB(x) ⊕ 1 = (eℓ ⊕ fℓ ⊕

cℓ)⊕1. Now we prove the correctness of the carry bit cℓ, i.e.,
g[1] in Algorithm 1. Specifically, in Algorithm 1, the server
and the client participate in log ℓ iterations and jointly evaluate
Equations 3 or 4 in each iteration to update the vectors g and
p. For clarity, let gi = g[i], pi = p[i], and gr , pr denote g and
p that are waiting for update in Round r , r ∈ [log ℓ], respec-

tively. Then we have that g[1] in Round log ℓ equals to glog ℓ

1 ,
where [glog ℓ

1 ]
B

= [glog ℓ

2 ]
B

⊕ ([glog ℓ−1
1 ]

B
∧ [plog ℓ−1

2 ]
B) =

([glog ℓ−1
2∗2 ]

B
⊕ [glog ℓ−1

2∗2−1 ]
B

∧ [plog ℓ−1
2∗2 ]

B) ⊕ [([glog ℓ−2
2∗1 ]

B
⊕

[glog ℓ−2
2∗1−1 ]

B
∧[plog ℓ−2

2∗1 ]
B)∧([plog ℓ−2

2∗2 ]
B
∧[plog ℓ−2

2∗2−1 ]
B)] = · · · =

[gℓ−1]
B

⊕ ([gℓ−2]
B

∧ [pℓ−1]
B) ⊕ · · · ⊕ ([g1]

B
∧ [p2]

B
∧

· · · ∧ [pℓ−1]
B). Given the correctness of FAND and FAND∗ ,

the above equation is equal to Equation 2, thus proving
correctness. The security follows easily the (FAND∗ ,FAND)-
hybrid.

2) Communication Complexity: The client and the server
communicate in this protocol only for FAND∗ and FAND.
To compute [g1

k ]
B for k ∈ [ℓ − 1], We need ℓ − 1 AND∗

gates. Then the leaves of the adder also needs ( ℓ
2 − 1) AND

gates to compute p1
j for j ∈ [2, ℓ/2]. Further, in the r -th

layer, r ∈ {2, 3, · · · , log ℓ}, ℓ
2r × 3 − 1 AND gates are needed.

Overall, we require ℓ−1 instances of FAND∗ and 2ℓ− log ℓ−

3 instances of FAND, and this gives us total communication
of 2(ℓ − 1) + 4(2ℓ − log ℓ − 3) = 10ℓ − 4 log ℓ − 14 bits.

3) General Case: The bitlength of [x]
ℓ, i.e., ℓ, maybe (1)

powers of 2 (Algorithm 1 is applicable to this case), (2) even
but not powers of 2, and (3) odd. In each round r ∈ [⌈log ℓ⌉],
the evaluation of {pr

} and {gr
} is identical in the three cases,

with only slight differences in computing gr
1. We can make

minor modifications on protocol 5Sign to deal with the latter
two cases. Specifically, for case (2), in Round r ∈ [2, ⌈log ℓ⌉],
if ⌈

ℓ

2r−1 ⌉ is even, [gr
1]

B
= [gr

2]
B

⊕ [gr−1
1 ]

B
∧ [pr−1

2 ]
B will be

evaluated via invoking line 9 of Algorithm 1, otherwise, [gr
1]

B

7We do not report the experimental results of using PPA to evaluate MSB.
Nonetheless, our scheme does improve this approach, due to the state-of-the-
art counterpart in Cheetah [25], superior to the PPA-based method, still has
performance disadvantages over our protocol as shown in Section VII.
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will not need to be computed since [gr
1]

B
= [gr−1

1 ]
B . Except

for this step, other operations are the same as in case (1). For
case (3), in Round 2, [g2

1]
B

= [g1
2]

B
⊕ [g1

1]
B

∧ [p1
2]

B will
be evaluated via invoking FAND, and other operations are the
same as in case (2).

Algorithm 1 Secure Sign Activation Protocol 5Sign

Input: Arithmetic shares [x]
ℓ

∈ Z2ℓ

Output: Boolean shares [y]
B

= sign(x) ∈ Z2
1: The client and the server parse [x]

ℓ
0 and [x]

ℓ
1 to

eℓ||eℓ−1|| · · · ||e1 and fℓ|| fℓ−1|| · · · || f1, respectively.
2: The client and the server initiate {[g]

B
0 , [p]

B
0 = {ei |i ∈

[ℓ]}} and {[g]
B
1 , [p]

B
1 = { fi |i ∈ [ℓ]}}, respectively.

3: The client and the server invoke FAND∗([p[i]]B
0 , [p[i]]B

1 )

to obtain [g[i]]B for i ∈ [ℓ − 1], and FAND([p[2i −

1]]
B, [p[2i − 2]]

B) to obtain [p[i]]B for i ∈ {2, · · · , ℓ
2 }.

▷ Round 1
4: for r ∈ {2, · · · , log ℓ} do ▷ Round 2 ∼ Round log ℓ

▷ Evaluate {gr
} and gr

1 in each round r
5: if r = 2 then
6: The client and the server invoke FAND([g[2i −

2]]
B, [p[2i − 1]]

B) and obtain [a]
B , and then learn

[g[i]]B
= [g[2i − 1]]

B
⊕ [a]

B locally, for i ∈ [2, ℓ

2r−1 ].
7: else
8: The client and the server invoke FAND([g[2i −

1]]
B, [p[2i]]B) and obtain [a]

B , and then learn [g[i]]B
=

[g[2i]]B
⊕ [a]

B locally, for i ∈ [2, ℓ

2r−1 ].

9: The client and the server invoke
FAND([g[1]]

B, [p[2]]
B) and obtain [a]

B , and then
learn [g[1]]

B
= [g[2]]

B
⊕ [a]

B locally.
▷ Evaluate {pr

} in each round r
10: The client and the server invoke

FAND([p[2i]]B, [p[2i − 1]]
B) and obtain [p[i]]B ,

for i ∈ [2, ℓ
2r ].

11: end for
12: The client generates [y]

B
0 = eℓ ⊕ [g[1]]

B
0 and the server

generates [y]
B
1 = fℓ ⊕ [g[1]]

B
1 .

13: Return [y]
B

4) Integrate Batch Normalization for Free: In BNNs, BN is
useful to normalize feature x before applying the activation
function. We can apply the BN fusion technique [15] to
evaluate this layer for free. Specifically, a BN followed by
an activation layer is equivalent to y = sign(γ · x + β) =

sign(x +
β
γ
), where the latter equation works since γ is a

positive value. Thus, the fusion of BN and activation layers is
realized by a single invocation of protocol 5Sign.

B. Binary Maxpooling Protocol
The binary maxpooling layer is used to obtain the maximum

value among the binary activations within an n × n sliding
window. This operation can be expressed as y = max(x),
where x = (x1, . . . , xn×n) ∈ {+1, −1}

n×n . Given the boolean
encoding (+1 → 1 and −1 → 0), this function can be
represented only with AND and NOT gates, as follows,

max(x) = ¬ (¬x1 ∧ ¬x2 ∧ . . . ∧ ¬xn×n) . (5)

Prior protocols [15], [16] utilized GC to evaluate this equation.
However, the inherent limitations of GC are the high commu-
nication cost, e.g., 2λ(n2

− 1) bits as reported in Table I, due
to transmitting garbled tables [26], and the heavy computation
overhead due to invoking encryption operations.

We attempt to construct a max protocol built on the silent
OT primitive, and use a tree-reduction mode for better round
complexity. We observe that in SecBNN, the inputs of the
max function are boolean shares [x]

B
0 and [x]

B
1 , on which the

NOT gate is cost-free and the AND gate can be efficiently
implemented by invoking FAND. Based on this observation,
our solution only requires 4(n2

−1) bits of communication and
achieves λ

2 × communication improvement, i.e., at least 64×,
compared with GC-based methods [15], [16]. Further, instead
of sequentially evaluating AND gates on n×n elements, we use
a tree-reduction mode to reduce communication rounds. The
insight is to recursively partition the input into two halves and
then evaluate the elements of each half. Specifically, assuming
n is a power of 2 (general cases will be discussed below), the
parties arrange the n × n values into a 2-ary tree with the
depth of log n2, and evaluate the tree in a top-down fashion.
Algorithm 2 details our maxpooling protocol.

1) Correctness and Security: From Algorithm 2, t =

RecB([t]B
0 , [t]B

1 ) = [x]
B
0 ⊕ [x]

B
1 ⊕ 1 = ¬x. Then given the

correctness of FAND, after the tree evaluation we have y =

RecB([y]
B
0 , [y]

B
1 ) = [t[0]]

B
0 ⊕[t[0]]

B
1 ⊕1 = (t[1]∧ t[2]∧ . . .∧

t[n ×n])⊕1 = ¬(¬x[1]∧¬x[2]∧ . . .∧¬x[n ×n]) = max(x).
Security follows trivially that in the FAND-hybrid.

2) Communication Complexity: The client and the server
communicate in this protocol only for FAND (line 3). Overall,
our protocol requires n2

−1 AND gates for each window with
the size of n × n. Therefore, given m sliding windows, the
overall communication cost is 4m(n2

−1) bits, and the number
of communication round is log n2.

3) General Case: Protocol 5Maxpool can be easily extended
to the setting where the window size is not a power of 2. In this
case, we do not have a perfect binary tree of recursion, and
need to slightly change our recursion/tree traversal. Inspired
by [23], our method is to construct multiple maximal possible
perfect binary sub-trees where the leaves are disjoint subsets of
the values within the window. The sub-trees can be evaluated
using Algorithm 2 to obtain the corresponding values. Then,
in the same manner, these values as leaves continue the tree
evaluation until the final result is obtained.

Algorithm 2 Secure Binary Maxpooling Protocol 5Maxpool

Input: Boolean shares [x]
B of size n × n.

Output: Boolean shares [y]
B

= max(x).
1: The client and the server set [t]B

0 = [x]
B
0 and [t]B

1 =

[x]
B
1 ⊕ 1, respectively.

2: for j = 1 to log n2 do
3: The client and the server invoke FAND([t[2(k − 1) +

1]]
B, [t[2(k − 1)+ 2]]

B) for k ∈ [
n2

2 j ], and obtain [t[k]]
B .

4: end for
5: The client and the server compute [y]

B
0 = [t[0]]

B
0 and

[y]
B
1 = [t[0]]

B
1 ⊕ 1, respectively.

6: Return [y]
B .
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TABLE IV
IDEAL FUNCTIONALITIES OF LINEAR FUNCTIONS

VI. PROTOCOLS FOR LINEAR LAYERS

This section presents efficient protocols for the linear layers
of BNNs including (1) binary linear layers and (2) the first
linear layer. The corresponding functionalities are shown in
Table IV.

A. Binary Linear Protocol

Binary linear layers can be formalized as Y = W · X,
where W ∈ {−1, +1}

m×n is the model weight owned by
the server, and X ∈ {−1, +1}

n×k is secret-shared between
the server and the client. As illustrated in [15], this matrix
multiplication operation can be evaluated with the XNOR-
PopCount paradigm, if W and X are encoded to boolean
values. For ease of understanding, we illustrate a vector case
in Figure 2, i.e., W[ j, ·] ·X[·, i]. Briefly, element-wise XNOR
operations between the encoded W[ j, ·] and X[·, i] are first
evaluated. Next, PopCount is executed: first computing p as
the sum of the XNOR outputs, and then outputting 2p − n.
In this paradigm, XNOR is cost-free, and hence the challenge
is to efficiently compute the sum p.

We explore the boolean-to-arithmetic (B2A) protocol since
the sum operation on arithmetic shares is free and this
protocol can be built upon the efficient COT primitive [28].
Specifically, we first convert the boolean shares to ℓ-bit
arithmetic shares with ℓ = ⌈log(n + 1)⌉ + 1 to prevent
overflow [16], and then sum the generated arithmetic shares
for free. When extending to the matrix form, by carefully
setting up the receiver’s and sender’s messages in COT, the
batching technique can be adopted to reduce the computation
and communication complexities. The main insight is that,
when evaluating XNOR, i.e., Z[ j, ·] = W[ j, ·]⊕X[·, i]⊕1 for
each j ∈ [m], [Z[ j, ·]]B

1 = W[ j, ·] ⊕ [X[·, i]]B
1 ⊕ 1, but

[Z[ j, ·]]B
0 always equals [X[·, i]]B

0 . It means that the same
choice bit of [X[·, i]]B

0 is used for the corresponding column
of [Z]

B
1 . Thus, we can evaluate Z with nk invocations of

Fig. 2. Equivalence between the binary linear function and the XNOR-Pop-
Count operation.(2

1

)
-COTmℓ, rather than mnk invocations of

(2
1

)
-COTℓ. More

importantly, in the COT implementation, the mask bitlength,
i.e., the AES block size, is typically 128. Therefore, the masks
in our protocol can be generated using mℓ

128 AES evaluations,
achieving a 128

ℓ
× computation improvement.

Despite the overall advantages, our protocol consumes
O(nℓ) of the asymptomatic communication complexity in the
above vector example. As discussed in Section II-B, when
working in a communication-limited network environment,
this complexity results in a rise in runtime due to the low
bandwidth. To alleviate the communication overhead without
sacrificing correctness, we propose a divide-and-conquer strat-
egy. The main insight is to first perform B2A on a small
bitlength ℓ′

= ⌈log(n′
+ 1)⌉ + 1 (ℓ′ < ℓ), and then sum

on each n′-dimension (n′ < n) sub-vector.8 Finally, we sum
the ⌈

n
n′ ⌉ summations by first invoking the ℓ′-to-ℓ bitlength

extension protocol. In our setting, the inputs to the extension
protocol are always positive, thus we can adopt the MSB-
known bitlength extension protocol in SIRNN [32] and further
optimize it using silent OT as shown in Algorithm 8 of
Appendix A. As a result, this protocol requires ℓ − ℓ′

+ 3 bits
of communication within 3 rounds. Note that in our evalu-
ation, we adaptively choose the appropriate protocol with or
without the divide-and-conquer strategy regarding the network
environment, to carefully balance the round and communica-
tion complexity, thereby optimizing overall performance. The
detailed secure binary linear protocol is given in Algorithm 3.

1) Correctness and Security: The multiplication between
W and X can be split into k matrix-vector multiplications.
Below, we focus on the correctness of the i-th matrix-vector
multiplication, denoted by W · X[·, i]. First, we prove the
correctness of our B2A gadget, i.e., M = [W⊞X[·, i]⊕1]

B
0 +

[W ⊞ X[·, i]⊕ 1]
B
1 − 2[W ⊞ X[·, i]⊕ 1]

B
0 ◦ [W ⊞ X[·, i]⊕ 1]

B
1 .

Specifically, let ZB
0 denote the choice bit matrix, where ZB

0 =[X[1, i]]B
0 · · · [X[n, i]]B

0
...

. . .
...

[X[1, i]]B
0 · · · [X[n, i]]B

0

. From line 7 of Algorithm 3 and

the correctness of batched
(2

1

)
-COT, we have

M = Recℓ′

([M]
ℓ′

0 , [M]
ℓ′

1 )

= (−Ts + [Z]
B
0 ) + ([Z]

B
1 + Tc)

= (−Ts + [Z]
B
0 ) + ([Z]

B
1 + Ts − 2B ◦ [Z]

B
1 )

= [Z]
B
1 + [Z]

B
0 − 2[Z]

B
0 ◦ [Z]

B
1 . (6)

Observe that [Z]
B
0 and [Z]

B
1 are boolean shares of W ⊞

X[·, i] ⊕ 1 from line 3 in Algorithm 3, which proves our
B2A gadget. Next the parties accumulate each row of [M]

ℓ

and obtain the final result [Y[·, i]]ℓ. Given the correctness

8We set the optimal n′ with the goal of minimizing communication.
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Algorithm 3 Secure Binary Linear Protocol 5BinaryLinear

Input: Encoded weight W ∈ {0, 1}
m×n from the server.

Encoded input’s shares [X]
B
0 , [X]

B
1 ∈ {0, 1}

n×k from the
client and the server, respectively.

Output: Arithmetic shares [Y]
ℓ

= W′
·X′

∈ Zm×k
2ℓ , where W′

and X′ are original weight and input, respectively.
1: for i ∈ [k] do
2: The client and the server initiate empty m×n matrices

Tc and Ts , respectively.
3: The client sets [Z[ j, ·]]B

0 = [X[·, i]]B
0 , for j ∈ [m],

and the server sets [Z]
B
1 = (W ⊞ [X[·, i]]B

1 ) ⊕ 1.
4: for j ∈ [n] do
5: The server constructs a correlation function

f j (α) = α − 2[Z[·, j]]B
1 , for α ∈ Zm

2ℓ′
; the client sets

b j = [Z[0, j]]B
0 .

6: The client and the server run
(2

1

)
-COTmℓ′ , where

the server is the sender with input f j and the client is the
receiver with choice bit b j . The server sets its output as
Ts[·, j], while the client sets its output as Tc[·, j].

7: The server sets [M[·, j]]ℓ
′

0 = [Z[·, j]]B
0 −

Ts[·, j] mod 2ℓ′

; the client sets [M[·, j]]ℓ
′

1 = [Z[·, j]]B
1 +

Tc[·, j] mod 2ℓ′

.
8: end for
9: For j ∈ [⌈

n
n′ ⌉], the client and the server locally

compute [Q[q, j]]ℓ
′

=
∑

t∈[n′]
[M[q, j · n′

+ t]]ℓ
′

mod 2ℓ′

,
for q ∈ [m].

10: The client and the server invoke Fℓ′,ℓ

SExt([Q]
ℓ′

), and
obtain [Q]

ℓ.
11: For j ∈ [m], the client and the server locally com-

pute [p]
ℓ

=
∑⌈n/n′

⌉

t=1 [Q[ j, t]]ℓ mod 2ℓ, and [Y[ j, i]]ℓ =

2[p]
ℓ
− n mod 2ℓ.

12: end for
13: Return [Y]

ℓ

of Fℓ′,ℓ

SExt, Recℓ([Y[·, i]]ℓ0, [Y[·, i]]ℓ1) = W · X[·, i]. Security
follows trivially that in the (

(2
1

)
-COTmℓ′ ,Fℓ′,ℓ

SExt)-hybrid.
2) Communication Complexity: We first give the commu-

nication cost without our divide-and-conquer strategy, where
the client and the server communicate only for nk calls to(2

1

)
-COTmℓ. Thus, the total communication is nk(mℓ + 1)

bits. When adopting the divide-and-conquer optimization, our
protocol consists of two communication processes, i.e., B2A
and the bitlength extension. B2A requires nk calls to

(2
1

)
-

COTmℓ′ , which introduces nk(mℓ′
+ 1) communication bits

within 2 rounds and ℓ′
= ⌈log(n′

+1)⌉+1. The bitlength exten-
sion process requires mk⌈

n
n′ ⌉ calls to Fℓ′,ℓ

SExt, which introduces
mk⌈

n
n′ ⌉(3+ℓ−ℓ′) bits within 3 rounds and ℓ = ⌈log(n+1)⌉+1.

Overall, the communication cost (bit) is given in Equation 7
within 5 rounds.

nk(mℓ′
+ 1) + mk⌈

n
n′

⌉(3 + ℓ − ℓ′) (7)

B. First Linear Protocol

The first linear layer, comprising either an FC or a
CONV layer, can be formulated as Y = W · X, where

W ∈ {−1, +1}
m×n is the weight owned by the server and

X ∈ Zn×k
2ℓ is the input sample owned by the client. The

inefficiency of previous protocols [15], [16] stems from the
high communication overhead introduced by OT.

To achieve a communication-efficient protocol, we propose
a new COT-based solution along with batching optimizations.
For clarity, we take a scalar multiplication instance, i.e., w ·

x , where w ∈ {−1, +1} and x ∈ Z2ℓ . The main idea is to
construct a correlation function between the sender’s messages
and then incorporate local post-processing. To this end, we first
construct a correlation function f (α) = 2x + α. Then, the
client and the server call a

(2
1

)
-COTℓ, where the client is the

sender with the input f and the server is the receiver with
the choice bit b (b = 1 if w = +1 and 0 otherwise). After
that, the two parties can obtain the shares of w · x if the client
sets [w · x]

ℓ
0 = −α − x and the server sets [w · x]

ℓ
1 as the

output of COT, i.e., [w · x]
ℓ
1 = α + b · 2x . Further, since the

matrix multiplication operation involves the dot product of
each row of W with k columns of X, we can evaluate Y with
mn invocations of

(2
1

)
-COTkℓ, rather than mnb invocations of(2

1

)
-COTℓ. Similar to our binary linear protocol, this batching

optimization achieves a 128
ℓ

× computation improvement.
1) Correctness and Security: The multiplication of W ∈

{−1, +1}
m×n and X ∈ Zn×k

2ℓ can be split into m vector-
matrix multiplications, i.e., multiplying each row of W by X.
Now we focus on the correctness of the i-th vector-matrix
multiplication denoted as W[i, ·] · X. Let B denote the choice
bit matrix. By the correctness of batched

(2
1

)
-COTkℓ, we have

M = Recℓ([M]
ℓ
0, [M]

ℓ
1) = −X+2X◦B. As shown in line 5 of

Algorithm 4, all elements of the j-th row in X are multiplied
by the same bit b j . Thus, M can be expressed as

M = −X + 2X ◦

b1 · · · b1
...

. . .
...

bn · · · bn

 . (8)

Observe that if b j = 0, M[ j, ·] = −X[ j, ·] +

2X[ j, ·] ◦ [0, · · · , 0] = −X[ j, ·], otherwise M[ j, ·] =

−X[ j, ·] + 2X[ j, ·] ◦ [1, · · · , 1] = X[ j, ·]. Therefore M =

Recℓ([M]
ℓ
0, [M]

ℓ
1) = W[i] ⊠ X. We next accumulate each

column of [M]
ℓ and obtain the final result [Y[i, ·]]ℓ. Security

follows trivially that in the
(2

1

)
-COTkℓ-hybrid.

2) Communication Complexity: The client and the server
communicate only for mn calls to

(2
1

)
-COTkℓ in line 5 of

Algorithm 4. Therefore, the overall communication overhead
is mn(kℓ + 1) bits within 2 rounds.

VII. EVALUATION

A. Experiment Setup

1) Implementation: SecBNN is built on top of the EMP
toolkit9 in C++. To privately evaluate Python-based mod-
els, we use the EzPC framework10 to translate the model
description and trained parameters from Pytorch to the equiv-
alent description in C++, which is then executed by our
designed cryptographic backends. Like existing secure infer-
ence works [15], [16], [25], we simulate both LAN and WAN

9https://github.com/emp-toolkit
10https://github.com/mpc-msri/EzPC
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Algorithm 4 Secure First Linear Protocol 5FirstLinear

Input: The binary weight W ∈ {−1, +1}
m×n from the server,

and the input X ∈ Zn×k
2ℓ from the client.

Output: Arithmetic shares [Y]
ℓ

= W · X ∈ Zm×k
2ℓ .

1: for i ∈ [m] do
2: The client and the server initiate empty n×k matrices

Tc and Ts , respectively.
3: for j ∈ [n] do
4: The client constructs a correlation function

f j (α) = 2X[ j, ·]+α, for α ∈ Zk
2ℓ ; the server sets b j = 1 if

W[i, j] = +1 and 0 otherwise.
5: The client and the server run

(2
1

)
-COTkℓ, where

the client is the sender with input f j and the server is the
receiver with choice bit b j . The client sets its output as
Tc[ j, ·], while the server sets its output as Ts[ j, ·].

6: end for
7: The client sets [M]

ℓ
0 = −Tc − X and the server sets

[M]
ℓ
1 = Ts where M = W[i, ·] ⊠ X.

8: For j ∈ [k], the client and the server locally compute
[Y[t, j]]ℓ =

∑n
t=1[M[t, j]]ℓ.

9: end for
10: Return [Y]

ℓ

settings. Under LAN, the bandwidth is 384MBps and the
latency is 0.3ms. Under WAN, the bandwidth is 44MBps
and the latency is 40ms. All experiments are performed on
AWS c5.9xlarge instances with Intel Xeon 8000 series CPUs
at 3.6GHz. The reported results of all experiments represent
the mean overhead, averaged over 10 runs.

2) Datasets and models: We evaluate SecBNN on MNIST
and CIFAR10 datasets, which are two popular benchmarks
considered in prior secure BNN inference works [15], [16].
We adopt the representative BNN models from XONN [15],
most of which are also used in XONN+ [16]. The architectures
are denoted as BM2 and BM3 for MNIST, BC2, BC3, BC4
and BC5 for CIFAR10. In Appendix B, we detail the model
architectures we used. We emphasize that these models achieve
comparable accuracy [15] to that of fixed-point full-precision
models in prior secure inference works [23], [24].

B. Microbenchmark Evaluation

We compare the performance of our protocols with the
advanced counterparts in XONN [15], XONN+ [16] and
Cheetah [25]. All results are evaluated using a single thread.

1) Sign Activation Protocol: We compare the proposed
sign activation protocol with the GC-based counterparts of
XONN and XONN+ under different bitlengths in Table V.
Note that although XONN and XONN+ follow the same
circuit logic, XONN+ needs to reconstruct the inputs in GC,
which consumes additional overhead. We can observe that
SecBNN achieves 31.64 ∼ 41.37× communication perfor-
mance improvement over XONN. Besides, SecBNN gains
runtime speedups on both LAN and WAN. Compared to
XONN+, SecBNN exhibits better performance advantages.

Beyond application to BNNs, our sign protocol can serve
as a general building block for many operations such as

TABLE V
COMPARISON OF OUR NON-LINEAR PROTOCOLS WITH XONN [15],

XONN+ [16] AND CHEETAH [25] UNDER DIFFERENT BITLENGTHS OR
WINDOW SIZES. THE NUMBER OF INSTANCES IS 105

ReLU [25]. To illustrate its efficiency, we also compare it
with the state-of-the-art silent OT-based solution of Cheetah
in Table V. We observe that the communication cost of our
protocol always outperforms that of Cheetah, which is in line
with the theoretical analysis in Table I. Similar conclusions
apply to the runtime overhead. The main reason is that the
communication cost of Cheetah is at a disadvantage due to
the usage of costly 1-out-of-2m OT primitives. Note that the
bitlength in SecBNN is small, more precisely, less than 14 in
our evaluation.11

2) Binary Maxpooling Protocol: In Table V(b), we compare
the proposed binary maxpooling protocol with GC-based solu-
tions (XONN, XONN+) under different window sizes. XONN
and XONN+ utilize the same GC logic for maxpooling, and
neither requires the reconstruction of secret-shared inputs.
We observe that SecBNN reduces the communication cost by
about 65×, in line with the theoretical analysis in Table I. This
communication advantage also significantly boosts the runtime
of our protocol especially under WAN (about 5×).

11We set the minimal bitlength of arithmetic shares according to the size
of linear layers so that the protocol’s outputs are bitwise equivalent to the
cleartext execution without balancing efficiency and accuracy. Specifically,
the bitlength is reset for each linear layer, where the main operation related
to the bitlength is the bitcounting of a boolean vector with size n, and n
depends on the size of the linear layer. To represent the output with a signed
value without overflow, we set the bitlength as ℓ = ⌈log(n +1)⌉+1, which is
minimal for perfect correctness. ℓ is further used in the following non-linear
operation. In our BNN models, n < 212 and hence ℓ < 14.
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TABLE VI
COMPARISON OF OUR LINEAR PROTOCOLS WITH XONN [15] AND

XONN+ [16] UNDER DIFFERENT DIMENSIONS

3) Binary Linear Protocol: Table VI(a) compares our
binary linear protocol with the OT-based solution of XONN+.
Our protocol is superior to XONN+ by at least 2× for the
communication performance, and achieves 2.86 ∼ 3.33×

runtime speedups under WAN. We omit the comparison with
the GC-based method in XONN since optimized full adder
circuits in GC are not given. Nonetheless, our protocol does
improve the counterpart of XONN, since XONN+, inferior
to our protocol, still has overall performance advantages over
XONN.

We further justify the advantage of our divide-and-conquer
strategy under a communication-limited setting, i.e., WAN,
in Table VII. The optimized protocol boasts a communication
cost about 2× lower than the non-optimized method while
achieving better runtime performance. The exception is under
LAN, where the usage of this strategy additionally increases
25% runtime on average. This is because, in a low-latency
environment, communication is no longer the primary factor
affecting the runtime. As a result, SecBNN adaptively config-
ures this strategy based on the network environment.

4) First Linear Protocol: Table VI(b) reports the perfor-
mance of our secure first linear protocol and the OT-based
methods in XONN and XONN+. XONN+ implements this
operation in the offline/online paradigm. For a fair evaluation,
we focus on the overall overhead, which is the same as that of
XONN. Our protocol provides at least 2.18× communication
performance improvement over these two methods. Such com-
munication advantage also significantly improves the runtime,
since the communication dominates the main overhead of
OT-based solutions. Moreover, while slow-down is observed

TABLE VII
EFFECT OF OUR DIVIDE-AND-CONQUER STRATEGY ON BINARY LINEAR

LAYERS.SECBNN ∗ IS THE OPTIMIZED PROTOCOL USING THIS STRAT-
EGY, AND SECBNN IS THE NON-OPTIMIZED VARIANT

TABLE VIII
COMPARISON WITH XONN [15] AND XONN+ [16] ON MNIST AND

CIFAR10.THE REPORTED RESULTS OF XONN+ DO NOT INCLUDE
THE OFFLINE OVERHEAD, AND THEREFORE SECBNN SHOULD

HAVE BETTER ADVANTAGES

under LAN, our solution still outperforms prior works by
1.35 ∼ 3.23×.

C. End-to-End Inference Evaluation
1) Comparison With Secure BNN Inference Works: In

Table VIII, we compare the performance of SecBNN with
two advanced secure BNN inference works, XONN and
XONN+, under the same settings as reported in XONN+
(LAN: 1.25 GBps, 0.25ms; WAN: 20 MBps, 50ms). Besides,
we used a width of s = 1.5 for XONN+, consistent with the
width used in our SecBNN to ensure a fair comparison. The
communication and runtime costs of these works are extracted
from Figures 5 and 8 of XONN+. Compared with XONN,
SecBNN requires about 20× and 27× less communication on
MNIST and CIFAR10, respectively. For the runtime, SecBNN
is about 10× faster than XONN. Compared with XONN+ on
CIFAR10,12 SecBNN achieves 5× communication improve-
ment on average, and also gains a boost (3 ∼ 4×) on the
runtime.

2) Effect of Our Optimized Binary Linear Protocol:
Recall that we optimize the proposed binary linear proto-
col by designing a divide-and-conquer strategy under the

12We omit the comparison with XONN+ on MNIST, since XONN+ did
not conduct experiments on this dataset.
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Fig. 3. Effect of our optimized binary linear protocol on different models
with CIFAR10 under WAN.

communication-limited network setting. Figure 3 demonstrates
the applicability of our optimized protocol under WAN.
Observe that the optimized protocol always outperforms the
non-optimized method under WAN. Moreover, the runtime
advantage is greater when the model size increases. The main
reason is that a larger model brings more communication over-
head and causes higher delays in the communication-limited
network environment. Overall, the optimized protocol achieves
about 2× communication and 1.5× runtime improvement on
those models.

VIII. RELATED WORKS

A quantity of secure two-party inference frameworks [15],
[20], [24], [25], [45], [46] have been proposed by utilizing
advanced cryptographic techniques as well as various model
architecture optimizations. We briefly discuss them as follows.

A. Secure Inference With Advanced Cryptographic
Techniques

CryptoNets [17] is perhaps the first work for secure neu-
ral network inference, which utilizes leveled homomorphic
encryption (LHE) schemes and approximates non-linear func-
tions with polynomials. While there are several subsequent
works following this paradigm [47], [48], [49], the inherent
limitations of LHE are high computation costs. To mitigate this
problem, several works, like MiniONN [19], Chameleon [45],
Delphi [24] and Gazelle [20], proposed hybrid protocols.
Specifically, they used additively homomorphic encryption
(AHE) to evaluate linear layers and GC for non-linear layers.
Subsequently, CrypTFlow2 [23] designed optimized OT-based
non-linear protocols, thereby significantly improving the per-
formance of GC-based counterparts. Based on CrypTFlow2,
Huang et al. recently presented the state-of-the-art 2PC infer-
ence framework, Cheetah [25], which improves the above
OT-based protocols utilizing the advanced silent OT exten-
sion [28] and designs efficient AHE-based linear protocols.

B. Secure Inference With Model Architecture Optimizations

Many works [15], [16], [24], [33], [46], [50], [51] focus on
the co-design of architecture-optimized neural networks and
customized cryptographic protocols for better performance.
COINN [46] proposed mixed low-precision quantization with
clustered weights, and customized matrix multiplication pro-
tocol for evaluating these crypto-friendly linear functions.
Quotient [33] presented secure inference and training strategies
with ternary weights, i.e. {−1, 0, +1}. It introduced use-
ful primitives such as repeated quantization to stabilize the
optimization process and COT-based protocols for matrix mul-
tiplication. As a special flavor of quantization, BNNs quantize

both the weight and activation with a 1-bit representation. The
main advantage of such binary values is that the heavy matrix
multiplication is replaced as cost-free XNOR operations. Uti-
lizing the unique binary characteristic, XONN [15] proposed
the first secure BNN inference framework, which purely
exploits GC for linear and non-linear functions. Following
this paradigm, [16] proposed XONN+, a hybrid optimized
protocol where GC is used for non-linear operations and
linear functions are evaluated by invoking OT. Most recently,
[52] conducts secure BNN inference based on the techniques
from XONN+, where the linear and non-linear layers are
evaluated using OT and GC, respectively. The only difference
between these two solutions is that XONN+ operates in the
offline-online setting, while this work considers an end-to-end
inference mechanism. Consequently, the overall performance
of both solutions is nearly identical. Along this line, our
work aims to further improve the performance of secure BNN
inference, by designing fundamental cryptographic protocols.

IX. CONCLUSION

This work presents SecBNN, a practical secure two-party
inference framework on BNNs. The main contributions of
SecBNN are new insights and constructions for the secure
and efficient evaluation of linear and non-linear layers of
BNNs. In particular, we propose a secure sign protocol with
a novel adder logic and customized evaluation algorithms
for non-linear layers, and a new binary matrix multiplication
protocol for linear layers, where a divide-and-conquer strategy
is employed to recursively break down the evaluation into
multiple sub-problems. Building upon these efficient com-
ponents, we evaluate SecBNN over several representative
benchmarks. Experimental results show that SecBNN signifi-
cantly improves existing BNN inference works.

Below, we discuss the limitations of SecBNN and will
leave addressing these limitations as future work. Specifically,
(1) the inherent properties of BNNs make them more suitable
for the relatively simple prediction tasks demonstrated in
Section VII. When exploring more complex prediction tasks
using BNNs, their inference accuracy will be a primary
consideration. Recent advancements in various aspects,
including model architectures, loss functions, and quantization
errors, have greatly improved the inference accuracy [4] and
could potentially alleviate this concern. In addition, the
development of tailored secure protocols for these strategies
will be necessary to strike a balance between accuracy and
efficiency. (2) As described in Section IV-A, our protocols are
custom-designed to defend against semi-honest adversaries
and cannot defeat more powerful malicious adversaries.
However, when considering the malicious adversaries, even
with the most advanced techniques, the protocol overhead
will increase by several orders of magnitude. These remain
areas for future exploration.

APPENDIX

A. Supporting Protocols

1) Protocols for FAND and FAND∗ : Algorithm 5 shows the
input-shared AND protocol of Cheetah [25]. We also propose
a non-shared AND protocol in Algorithm 6.
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2) Protocol for FB2A: Algorithm 7 shows the
(2

1

)
-COTℓ

based B2A protocol from Cheetah [25].
3) Optimized Protocol for Fℓ′,ℓ

SExt: We present an optimized
bitlength extension protocol, which utilizes silent COT and
builds over the protocol in SIRNN [32].

Algorithm 5 Input-Shared AND Protocol 5AND

Input: P0 and P1 hold [x]
B and [y]

B , where x, y ∈ {0, 1}.
Output: P0 and P1 learn ⟨z⟩B

0 and ⟨z⟩B
1 , respectively, s.t. z =

x ∧ y.
1: P0 and P1 invoke 2 calls to

(2
1

)
-ROT1 based Algorithm 1

of [35], to learn ([c]B
0 , [a]

B
0 , [b]

B
0 ) and ([c]B

1 , [a]
B
1 , [b]

B
1 ),

respectively, satisfying [c]B
0 ⊕ [c]B

1 =
(
[a]

B
0 ⊕ [a]

B
1
)

∧(
[b]

B
0 ⊕ [b]

B
1
)
.

2: Pi , i ∈ {0, 1}, locally computes [e]B
i = [x]

B
i ⊕ [a]

B
i and

[ f ]
B
i = [y]

B
i ⊕ [b]

B
i , and sends [e]B

i and [ f ]
B
i to P1−i .

3: Pi , i ∈ {0, 1}, locally compute e = RecB([e]B
0 , [e]B

1 ) and
f = RecB([ f ]

B
0 , [ f ]

B
1 ).

4: Pi , i ∈ {0, 1}, locally computes [z]B
i = (i ∧ e ∧ f ) ⊕

([a]
B
i ∧ f ) ⊕ ([b]

B
i ∧ e) ⊕ [c]B

i .

Algorithm 6 Non-Shared AND Protocol 5AND∗

Input: P0 and P1 hold x and y respectively, where x, y ∈

{0, 1}.
Output: P0 and P1 learn ⟨z⟩B

0 and ⟨z⟩B
1 , respectively, s.t. z =

x ∧ y.
1: P0 and P1 invoke 1 call to

(2
1

)
-ROT1 in Algorithm 1

of [35], to learn ([c]B
0 , a) and ([c]B

1 , b), respectively,
satisfying [c]B

0 ⊕ [c]B
1 = a ∧ b.

2: P0 computes e = x ⊕ a and sends e to P1.
3: P1 computes f = y ⊕ b and sends f to P0.
4: P0 locally computes [z]B

0 = (a ∧ f ) ⊕ [c]B
0 . P1 locally

computes [z]B
1 = (y ∧ e) ⊕ [c]B

1 .

Algorithm 7 Boolean to Arithmetic Protocol 5B2A

Input: P0 and P1 hold [x]
B
0 and [x]

B
1 respectively, where x ∈

{0, 1}.
Output: P0 and P1 learn ⟨y⟩

ℓ
0 and ⟨y⟩

ℓ
1, respectively, s.t. y =

x .
1: P0 and P1 invoke 1 call to

(2
1

)
-COTℓ where P0 is the

sender with a correlation function f (α) = α + [x]
B
0 and

P1 is the receiver with input [x]
B
1 . After

(2
1

)
-COTℓ, P0

learns r and sets z0 = 2ℓ
− x , and P1 learns z1.

2: Pi , i ∈ {0, 1}, computes [y]
ℓ
i = [x]

B
i − 2 · zi .

B. Model Architecture

Table IX summarizes the model architectures employed for
each dataset. The models are adopted from XONN [15], and
detailed descriptions can be found in the appendix of XONN.
These models are parameterized with s, which denotes the
model width. Unless otherwise specified, we experimentally
use s = 1 for MNIST and s = 1.5 for CIFAR10.

Algorithm 8 MSB-Known Extension 5
ℓ′,ℓ

SExt

Input: P0 and P1 hold [x]
ℓ′

0 and [x]
ℓ′

1 respectively, where
MSB(x) = 0.

Output: P0 and P1 learn [y]
ℓ
0 and [y]

ℓ
1, respectively, s.t. y =

x .
1: P0 and P1 invoke FAND∗(¬MSB([x]

ℓ′

0 ), ¬MSB([x]
ℓ′

1 )),
and learn [z]B .

2: P0 and P1 set [w]
B
0 = [z]B

0 ⊕ 1 and [w]
B
1 = [z]B

1 ,
respectively, where w = MSB([x]

ℓ′

0 ) ∨ MSB([x]
ℓ′

1 ).
3: P0 and P1 invoke Fℓ−ℓ′

B2A
(
[w]

B)
and learn [w]

ℓ−ℓ′

.
4: Pi , i ∈ {0, 1}, outputs [y]

ℓ
i = [x]

ℓ′

i − 2ℓ′

· [w]
ℓ−ℓ′

i mod 2ℓ.

TABLE IX
MODEL ARCHITECTURES AND ACCURACY EMPLOYED

FOR EACH DATASET

Table IX also provide concrete accuracy for each model
we used. It is worth noticing that compared with existing
secure BNN inference works [15], [16], our solution does
not compromise model accuracy. The rationale is as follows.
First, our solution and existing works all adopt 2PC techniques
for protocol design. Second, our solution does not introduce
any efficiency-driven modifications to the original BNN model
structure. As a result, the improvements in communication
and computational performance achieved by our solution,
compared to previous works, are accomplished without any
compromise in model accuracy.
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