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Abstract—In this paper, we introduce SeiFS, a Secure and
Lightweight Feature Selection system designed to ensure high-
quality inputs for Machine Learning (ML) tasks. Unlike previ-
ous approaches involving multiple non-colluding servers, SeiFS
operates in a natural ML scenario where multiple entities
interact with a single server, without relying on additional
strong assumptions. Our work presents intrinsic optimizations
in feature selection that yield substantial performance improve-
ments, including a customized data encoding method, a size-
optimized comparison circuit, and a shared oblivious dimension-
ality reduction technique. The customized data encoding method,
combined with an optimized secure data access protocol, reduces
expensive comparison operations from O(m) to O(logm), where
m represents the number of samples. The size-optimized com-
parison circuit achieves up to a quadruple reduction in size
compared to naı̈ve implementations. Additionally, the shared
oblivious dimensionality reduction technique incorporates a novel
approximated top-k selection algorithm, resulting in a circuit
size reduction of approximately k×. Comprehensive experiments
conducted across various network settings demonstrate that
our protocols outperform existing solutions, delivering efficiency
improvements of an order of magnitude. Specifically, the end-to-
end execution of SeiFS on real-life datasets achieves at least 62.7×
improvements in runtime compared to the naı̈ve implementation
and takes up to 112.9× fewer runtimes than the state-of-the-art
in the LAN setting.

Index Terms—Feature selection, machine learning, server-
aided computation, secure evaluation

I. INTRODUCTION

In recent years, the advancement of Machine Learning (ML)
applications and services, such as ChatGPT, has been fueled
by the availability of ample data. However, data generated
across various domains are increasingly characterized by high
dimensionality and often contain irrelevant or obstreperous
information, which would compromise their quality and utility.
A significant challenge encountered when applying ML algo-
rithms to high-dimensional data is the “curse of dimensional-
ity”. This phenomenon occurs when data becomes sparser in
high-dimensional space, negatively impacting the performance
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of algorithms designed for low-dimensional spaces. Addition-
ally, a substantial number of irrelevant features can make
training the model computationally intensive and difficult to
implement in production. To address these challenges, feature
selection (FS) [1], [2] is a common method that can effectively
improve the data by identifying an optimal subset of features
that characterize the entire feature space. This leads to reduced
processing time for training and can even improve the accuracy
of the model [3].

Such practices may seem appealing, however, gaining direct
access to raw data collected from various data owners is
often heavily restricted due to privacy concerns. Consider an
example of a credit approval application, feature selection
(FS) plays a vital role in training a decision tree model
using data from multiple customers within a banking con-
sortium [4]. This decision-relevant data usually includes a
large volume of information that are sensitive to privacy,
such as monthly income and customer transaction history. The
risks of a confidentiality breach have led users to be more
reluctant to share their personal data and, in some cases, to
not use digital services at all. Regulations like the General
Data Protection Regulation (GDPR) also contribute to the
limitations on accessing personal data [5]. Additionally, the
essence of FS implies that well-preprocessed data features are
more likely to possess distinct classification characteristics.
However, this also increases the likelihood of potential ad-
versaries intentionally manipulating feature values to mislead
the target model, thereby resulting in more severe security
threats [6]. As such, ensuring the privacy of raw data and
safeguarding well-selected data features from disclosure by
adversaries during FS evaluation are of paramount importance.

A. Related Work

To meet this urgent need, several works have explored the
feasibility of performing FS under ciphertext using general-
purpose encryption techniques. Two notable contributions in
this regard are the private FS algorithms proposed by Rao
et al. [7] and Ono et al. [8], which rely on homomorphic
encryption (HE). However, these methods suffer from sig-
nificant computational complexity and limited applicability,
making them suitable primarily for trivial binary features or
small datasets. An alternative approach is secure multiparty
computation (MPC), wherein the server performing HE tasks
is replaced with a small set of untrusted servers. These servers
do not have input to the computation or receive output,
rather, their computational resources are available to the parties
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involved. For example, Li et al. [3] proposed a MPC based
approach to construct filter based FS, in which discrete or
continuous features are ranked based on their predictive ability,
measured through metrics such as Gini impurity. By distribut-
ing the computational workload across multiple non-colluding
servers, this scheme demonstrates exceptional efficiency and
scalability. However, it is important to note that the assumption
of non-collusion among parties, although prevalent in secure
distributed systems, is vulnerable to covert and undetectable
collusion.

Overall, prior works have achieved either high security by
using HE with prohibitive computational overhead [7], [8] or
high efficiency relying on MPC with a strong assumption of
multiple non-colluding cloud servers [3]. However, none of
these approaches simultaneously achieve both high security
and high efficiency.

B. Contributions

To overcome the aforementioned security-efficiency
dilemma, we introduce SeiFS, a secure and lightweight
feature selection pipeline prior to the commencement of
secure horizontal federated learning training [9], [10]. In
this paper, we focus on the filter-based FS technique, as it
allows us to maintain independence from the training process.
This technique is characterized by classifier independence,
independent evaluation of each feature, and efficiency and
scalability advantages. It comprehensively assesses all features
and identifies the optimal subset by analyzing their properties
using the Gini impurity. Discussions on other FS methods
will be explored in future studies.

Working in a single-server-aided secure computation frame-
work and providing security against static semi-honest adver-
saries, SeiFS achieves remarkable performance while offering
a higher level of security. This is accomplished through a
careful co-design of the secure function evaluation framework,
garbled circuits, distributed oblivious RAM, and the secure
top-k algorithm. We make several optimizations on each of
these components to boost online efficiency. Each of these
optimizations is of independent interest and can be leveraged
for other secure computation tasks. Our specific contributions
can be summed up as follows:
• We design a secure and efficient feature scoring process

that enables multiple data owners to score all features
collaboratively and obliviously with the assistance of a
single cloud server. This is achieved through the careful
integration of a modified feature encoding method, ef-
ficient oblivious data access functionalities, and secure
computation techniques. Compared to the state-of-the-
art method by Li et al. [3], our protocol demonstrates
a remarkable improvement in efficiency, surpassing it by
at least an order of magnitude. In particular, our modified
feature encoding method plays a crucial role in reducing
the number of expensive secure comparison protocols
required from O(m) to O(logm), where m denotes
the number of samples. This optimization significantly
minimizes the computational burden. Furthermore, we
introduce a novel size-optimized circuit representation for

TABLE I
NOTATIONS AND DESCRIPTIONS.

Notations Descriptions

κ Cryptographic security parameter
ℓ Date length in fixed-point representation
n Number of feature vectors
m Number of feature samples
N Number of federated learning participants
fij j-th element in the i-th feature vector
θ Threshold to split the instances into two sets I<θ and I≥θ

pz(Iij) Probability that Iij is classified as the class Lz (z ∈ [1, ϕ])
[v] Additive secret sharing in 2PC
⟨v⟩ Secret-shared value v in form of ⟨·⟩-sharing in 2PC

comparison operation, resulting in a substantial reduction
of the circuit size per comparison by a factor of 4.

• We propose and analyze an approximation algorithm for
performing top-k selection in the process of dimensional
reduction. Within SeiFS, the secure top-k selection pro-
tocol is obtained by garbled circuit. Superlatively, we
substitute the comparison component in the top-k circuit
with our size-optimized circuit representation, yielding
a further speedup in computational complexity. These
improvements are likely to be of independent interest for
a range of other secure computation tasks.

• SeiFS has been implemented and evaluated in two com-
putation environments that represent real-world LAN and
WAN connections. We also compare the performance
of SeiFS with the protocols proposed in [11], [3]. The
end-to-end evaluation results demonstrate the significant
improvements achieved by our protocols. Specifically, in
a LAN setting, our protocols reduce the running time by
approximately 45× compared to [11]. In a higher-latency
WAN setting, the running time is reduced by around
50×. Furthermore, when testing our protocols on various
real-world datasets, SeiFS consistently outperforms the
state-of-the-art approach proposed in [3]. Particularly in
network systems with a bandwidth exceeding 400MB/s,
SeiFS achieves at least an 18.5× improvement in on-
line running time. The experiments conducted validate
the practicality and scalability of SeiFS, particularly for
evaluating large volumes of high-dimensional data.

Paper Organization. We begin with a brief review of the
problem statement and preliminaries in Section II. Section III
introduces the model architecture and threat model used in this
paper. We elaborate the details of our design in Section IV.
We provide detailed implementation and experimental results
in Section V. Section VI concludes the paper and discusses
future work.

II. PROBLEM STATEMENT AND PRELIMINARIES
We start by elucidating our problem statement and intro-

ducing relevant cryptographic tools, but we refer the interested
reader to the bibliography.

A. Gini Impurity-based Feature Selection

One of the crucial decisions in constructing a ML structure
is the selection of the attributes that are used for further
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model training. Among various FS techniques [12], [13], [14],
[15], [16], [17], wrapper-based FS [12] integrates a supervised
learning algorithm into the training process and takes into
account feature dependencies. Embedded techniques [13], [14]
search for an optimal feature subset while constructing the
classifier, offering comparable advantages to wrapper tech-
niques but with higher computational complexity. Conversely,
filter-based techniques [15], [16], [17] concentrate on evalu-
ating the importance of features based on data characteristics.
The classifier-independent property makes it more versatile
and flexible, allowing us to provide a secure and efficient
pipeline for feature selection that can be integrated with
existing federated learning solutions [9], [10].

Filter-based methods, widely applied in machine learning
models like decision trees [18] and neural networks [3], entail
quantitatively evaluating each feature to identify those with
high information gain relative to class distribution. To quantify
the impurity of each feature, the Gini impurity measures are
often employed [19]. This method calculates the probability
that a randomly selected sample would be mislabeled if a label
is assigned randomly according to the label distribution. A
Gini impurity score of 0 represents the minimum impurity
achievable.

Given a data set D consisting of n feature vectors
(f1, · · · , fn) and one label vector with ϕ different classes, we
assume that the i-th feature fi is a discrete feature and that all
its feature instances can be counted at h different values. Let
Iij for j ∈ [1, h] be a set of instances with the value of the j-th
feature in fi. Then, the partition Ii1 ∪ Ii2 ∪ · · · ∪ Iih is formed.
Let pz(I

i
j) implies the probability that the j-th instance set

of the i-th feature (i.e., Iij) is classified as the z-th class Lz

(z ∈ [1, ϕ]). Then the Gini impurity of each instance set is
calculated as:

GI(Iij) =

ϕ∑
z=1

pz(I
i
j)× (1− pz(I

i
j)) (1)

where
∑ϕ

z=1 pz(I
i
j) = 1, which is equivalent to GI(Iij) = 1−∑ϕ

z=1 p
2
z(I

i
j). To determine the quality of fi for all i ∈ [1, n],

the weighted Gini impurities are taken as its Gini Score as
follows:

GS(fi) =
1

m

h∑
j=1

|Iij | ×GI(Iij) (2)

where m denotes the number of instances.
However, conventional Gini only works in scenarios where

we have categorical features. It is ineffective when dealing
with continuous ones. To overcome this issue, we utilize the
Mean-Split GINI proposed by Li et al. [3], and modify it to
be compatible with MPC. Let fij be the j-th element in the
i-th feature vector fi. The core idea behind Mean-Split GINI
is to split the instances in the i-th feature into two sets based
on their feature value and a threshold θ. The sets are defined
as Ii<θ = {fij |fij < θ, j ∈ [1,m]} and Ii≥θ = {fij |fij ≥ θ, j ∈
[1,m]}. Now, the Gini impurities of sets Ii<θ and Ii≥θ can be
computed as follows:

GI(Ii<θ) = 1−
ϕ∑

z=1

p2z(I
i
<θ);GI(Ii≥θ) = 1−

ϕ∑
z=1

p2z(I
i
≥θ) (3)

where pz(I
i
<θ) =

|Ii
<θ∩Lz|
|Ii

<θ|
and pz(I

i
≥θ) =

|Ii
≥θ∩Lz|
|Ii

≥θ
| denote

the probabilities that the elements in the set Ii<θ and Ii≥θ

are classified as Lz , respectively. The Gini Score of the i-th
continuous feature is then calculated as:

GS(fi) =
1

m
· (|Ii<θ| ·GI(Ii<θ) + |Ii≥θ| ·GI(Ii≥θ)) (4)

This process makes the continuous features consistent with
the original approach (Eq. (1) and (2) by dividing their values
into two discrete sets. Finally, based on the Gini Score of each
feature, we select the top-k features with the lowest scores.

B. Secure Function Evaluation

Secure Function Evaluation (SFE), a more general notion
of MPC, focuses on feasibility results. Essentially, an SFE
protocol should ensure that parties learn nothing during the
execution beyond the output of the protocol and what is
inherently leaked from it. In the context of privacy-preserving
FS, SFE proves valuable when mutually distrustful parties
need to collaborate under the guidance of a central server
(e.g., a service provider) without revealing their inputs to
one another. In this scenario, we follow the single-server-
aided SFE framework proposed by Kamara et al. [20], [21],
where parties {1, 2, · · · , N}, each with a private input xi for
i ∈ [1, N ], have only access to a single server S that has
no input to the computation but a vast yet bounded amount
of computational resources. The goal is to jointly evaluate an
m-ary function f on their data [20], [21], [22]. The idea is
as follows: rather than requiring all parties to do the same
work, let C ∈ {1, 2, · · · , N} be the party with significantly
more resources than others and taking on the work linear
in the size of the circuit representation of the function. The
remaining players distribute their private data between S and
C using secret sharing primitives and run general-purpose
MPC protocols for securely evaluating the desired function
f on all players’ private data.

As such, single-server-aided SFE, along with the underlying
secure two-party computation protocols, plays a crucial role in
the development of secure and privacy-preserving technologies
[23]. It offers a promising approach to designing efficient
and practical protocols for secure feature selection. In this
work, we specifically investigate the application of this model
to develop customized protocols that outperform previous
approaches in terms of both security and efficiency for feature
selection tasks [3].

C. Secure Two-party Computation

We introduce two types of secret sharing semantics and sev-
eral cryptographic primitives in secure two-party computation,
including Oblivious Transfer [24] and Garbled Circuit [25].
All operations in this paper are performed over the boolean
world Z2 and arithmetic world Z2ℓ . As is well known, the
boolean world is efficient for boolean circuits composed of
XOR and AND gates, which are commonly used to build non-
linear operations. It is rather efficient to evaluate the linear
computations over the arithmetic world such as addition and
multiplication [26]. To improve efficiency, we mix both types
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of field operations and will describe the conversion between
them as needed. All the operations over the boolean world are
specifically considered to be instances of the arithmetic world
when ℓ = 1. This can be achieved by replacing addition and
subtraction with XORs (⊕) and multiplication with ANDs (⊗).

1) Secret Sharing Semantics: In this paper, we use two
types of secret sharing semantics, i.e., additive secret sharing
and one of its variants.
[·]-sharing. This is a typical 2-out-of-2 additive secret sharing,
which splits a ℓ-bit secret value v in two ring elements in
Z2ℓ as [v]s and [v]c such that [v]s + [v]c ≡ v mod Z2ℓ ,
where [v]i for i ∈ {S,C} is sampled independently and
uniformly at random from Z2ℓ . Given two [·]-shared values
x and y, two parties (denoted as S and C) efficiently evaluate
addition/subtraction ([z]i = [x]i + [y]i for i ∈ {S,C}) and
scalar multiplication by a public value a ([a · x]i = a · [x]i for
i ∈ {S,C}) at local with no interaction. For rather complicated
multiplication over two [·]-shared values x and y, it holds
that z = ([x]s + [x]c) · ([y]s + [y]c) = [x]s[y]s + [x]s[y]c +
[x]c[y]s+[x]c[y]c. For this, party i ∈ {S,C} locally computes
[x]i[y]i, and then two parties use Beaver’s triple multiplication
technique [27] to generate the additive shares of [x]s[y]c
and [x]c[y]s. We also provide the detailed implementation of
Beaver’s triple multiplication based on the Oblivious Transfer
technique and Homomorphic Encryption in the Appendix A.
⟨·⟩-sharing. We call the value v ∈ Z2ℓ to be ⟨v⟩-shared when
the party Pi for i ∈ {S,C} holds the values (∆v, [δv]i) ∈ Z2

2ℓ ,
and there exist δv ≡p [δv]s + [δv]c and ∆v ≡p v + δv. To
add/subtract two ⟨·⟩-shared values x and y or multiply a public
value a, party i ∈ {S,C} locally executes ⟨x+y⟩ = ⟨x⟩+ ⟨y⟩
or ⟨a · x⟩ = a · ⟨x⟩. Besides, to obtain the ⟨·⟩-shared product
z of two ⟨·⟩-shared values x and y, party i ∈ {S,C} locally
computes [∆z]i and sends it to another party:

[∆z]i = i ·∆x∆y− [δx]i∆y− [δy]i∆x+[[δx][δy]]i+[δz]i (5)

where [[δx][δy]]i can be obtained by executing the instance
of Beaver’s protocol [27] in the data-independent phase. We
denote the case that either S or C performs ∆x∆y as i·∆x∆y .

2) Oblivious Transfer: Oblivious Transfer (OT) [24] is a
ubiquitous cryptographic primitive that can be used to develop
a variety of cryptographic protocols. In a generalized t-out-of-
n OT protocol presented by Ishai et al. [28], the sender inputs
n messages, each with ℓ-bit length, while remaining unaware
of which, if any, of the messages has been transmitted. On
the other hand, the receiver can obtain t of the messages by
inputting t choice values, but has no knowledge of the remain-
ing (n− t) messages. Typically, Beaver’s triple multiplication
over two ℓ-bit private values can be implemented through ℓ
instances of the 1-out-of-2 OT protocol. Before evaluating
the Garbled Circuit, the evaluator (as the receiver) and the
generator (as the sender) perform a 1-out-of-2 OT protocol
to obtain the garbled value of the input from the evaluator.
The OT protocol proposed by Yang et al. [29] is used as a
foundation for designing more efficient non-linear evaluations
in secure feature selection.

3) Garbled Circuit: The garbled circuit (GC) technique,
introduced by Yao [30], is a popular approach for secure two-
party computation. It enables two parties to evaluate arbitrary

boolean functions cooperatively without revealing their private
inputs. The basic idea is that the circuit constructor (i.e.,
garbler) generates an encrypted version of a circuit G̃ that
evaluates the function f using the algorithm CreateGC. The
garbler assigns garbled values to each wire wi of the circuit -
w̃0

i and w̃1
i - and keeps the values of j secret. For each gate

Gi inside the circuit, the garbler creates a garbled table T̃i

using symmetric encryption. Each entry in the table is created
as follows [31]:

Encκ
w̃

bi
i ,w̃

bj
j

(w̃G(bi,bj)
o ) = H(w̃bi

i ∥w̃
bj
j ∥κ)⊕ w̃G(bi,bj)

o (6)

With it, the garbled value of Gi’s output is only revealed given
the garbled values of Gi’s inputs. The garbler then sends the
garbled inputs w̃i and the garbled circuit G̃, consisting of
these garbled tables T̃ , to the evaluator. The evaluator uses
the Oblivious Transfer (OT) technique (described in Section
II-C2) to obtain their garbled inputs and can then evaluate
the garbled circuit using algorithm EvalGC. On the garbled
values corresponding to inputs of both parties, the evaluator
evaluates the garbled tables gate by gate, without learning any
intermediate values. If desired, the evaluator can return the
result to the generator.

Private evaluation with GC requires the function to be
decomposed as a circuit of binary gates that process the input
bit-wise. Accordingly, evaluating any functions with ℓ-bit input
requires the communication complexity of at least O(κℓ),
where κ is the cryptographic security parameter. There have
been several optimizations to GC, such as free-XOR [32] and
garbled-row reduction [33], [34], which can be applied to our
implementation.

D. Double-masking Aggregation
Secure aggregation protocol is a specialized multi-party

computation protocol that allows a set of clients to compute
the summation (a.k.a. aggregation) of their inputs. Let U =
{1, · · · , N} be a set of clients, each holding a private input xi

(e.g., integer, group element, vector). A protocol Π is a secure
aggregation protocol if it securely implements the following
ideal functionality: fAgg(x1, · · · , xN ) = (X, · · · , X) for X =∑

i∈{1,··· ,N} xi.
To implement such a functionality, Bonawitz et al. [9] build

up a secure and communication-efficient aggregation protocol
based on double-masking technique. Specifically, the double-
masking of private value xi includes two parts: the self-mask
generated by the owner i and the pairwise-mask generated
between i and each other client j (j ∈ {1, · · · , N}\i). The
double-masked value xi is denoted by χi:

χi =xi + PRG(bi)︸ ︷︷ ︸
self-mask

+
∑
i<j

PRG(mski,j)−
∑
i>j

PRG(mski,j)︸ ︷︷ ︸
pairwise-mask

(7)

where bi is a secret seed sampled by the client i and mski,j =
mskj,i is a pairwise agreed value between clients i and j for
each j ∈ {1, · · · , N}\i. In real-world applications, the pair-
wise can be generated by Diffie-Hellman key agreement [35],
[36]. Besides, PRG(·) represents the pseudorandom generator
instantiated with [37].
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E. Distributed Oblivious RAM

A similar primitive to the oblivious dimensionality reduction
required by the Gini impurity-based FS is referred to as
Oblivious RAM (ORAM) [38], [39], [40]. ORAM allows
the client to outsource its encrypted storage to an untrusted
server while hiding the data access patterns made to the
server at an index idx computed from some secret input. Each
ORAM scheme supports two basic functions, i.e., Read(idx)
and Write(idx, v) for semantic reads and writes to locations
specified by a secret-shared index idx.

Our implementation relies on FLORAM [40], a distributed
ORAM scheme based on Function Secret Sharing (FSS) [41].
In FLORAM, the private dataset D is ⟨·⟩B-shared between two
non-colluded servers S0 and S1 for reading, and [·]B-shared
between S0 and S1 for writing. To perform Read(idx), the
implementation utilizes FSS to generate a unit vector e with all
zero elements except e[idx] = 1. Each party holds one piece of
additive shares of vector e. Then, party Si for i ∈ {0, 1} locally
executes [∆D[idx]]

B
i =

⊕
j∈[0,n)[e[j]]

B
i · ∆D[j], where D[j]

represents the j-th item of dataset D. It is easy to verify that
∆B

D[idx] = [∆D[idx]]
B
0 ⊕ [∆D[idx]]

B
1 . To write to the location

idx, parties execute an instance of FSS protocol to construct
the additive shares of a vector e consisting of all zero elements
except e[idx]B = vB . Then, parties individually add these
shares into the [·]B-shared dataset they hold, i.e., [D

′
[j]]B =

[e[j]]B ⊕ [D[j]]B for j ∈ [0, n). It follows that [A
′
[j]]B =

[D[j]]B at all positions other than the targeted index idx ∈
[0, n). At index idx ∈ [0, n), there is [D

′
[idx]]B = [v]B ⊕

[D[idx]]B , producing a new value at the target index.

III. SYSTEM MODEL

We start this section by presenting our system architecture
in Section III-A. We then formally set up the threat model and
discuss the privacy requirement in Section III-B.

A. Architecture

We consider a typical horizontal federated learning setting
as our system architecture, as described in [42]. This setting
involves a central server and a set of N users ({1, 2, · · · , N}).
Each user owns a privacy-sensitive dataset Di consisting of n
feature vectors (f1, · · · , fn) and corresponding classification
label Lz over a given data space. The goal of the users is to
collaboratively refine the feature of the private samples they
hold, as outlined in Section II-A. The server is responsible
for orchestrating the procedure of feature selection. Naturally,
communication between users is facilitated through the server,
as there are no direct connections between users due to
geographical restrictions.

B. Threat Model and Privacy Requirement

Existing secure computation frameworks often rely on a
strong assumption that there exist multiple non-colluding
cloud servers [43], [44]. Different from them, our system
follows the conventional federated learning setting [45], i.e.,
all secure computations are implemented with the assistance

of only one cloud server. Following prior works in the single-
server-aided setting [46], [47], we assume a semi-honest adver-
sary A who can corrupt any subset of clients or the server. This
captures the property that the clients and server are always not
colluding, i.e., if one party is compromised by the adversary
A, the second party behaves honestly. Compromised parties
will execute operations as specified by the protocols, but may
attempt to deduce additional information. The rationale behind
such a threat assumption is that the service providers are typi-
cally well-established companies such as Google and Amazon.
They have few incentives to jeopardize their reputation, and
compliance with the agreement is the basis for long-term
cooperation among all participants. Another practical intuition
comes from the fear of financial audit and the stringent data
protection regulations such as GDPR. How to extend our
system to the malicious adversary model [48], [49], [50] is
future work.

Formally, we aim to achieve security against a static and
semi-honest probabilistic polynomial time adversary following
the simulation paradigm [21]. Intuitively, the security guaran-
tees that executing a protocol Π in the real model is equivalent
to Π in an ideal model with a trusted third party. Let OUTi

denote the output or view of client i during the execution of
Π. We define the execution of Π in real model among parties
in the presence of adversaries A as:

{REAL(i)(x; r)} = {OUTj : j is honest} ∪OUTi

where r represents the randomness. In the ideal execution,
OUTi represents the output returned to honest party i or any
value given by corrupted party i. The ideal-model execution of
Π between parties in the presence of independent simulators
S is defined as follows:

{IDEAL(i)(x; r)} = {OUTj : j is honest} ∪OUTi

Definition III.1 (Security). For a function F , n-party protocol
Π securely computes F if there exist a set {Simi}i∈[m+1] of
polynomial-size transformations such that for all polynomial-
size adversaries A = (A1, · · · ,Am+1), for all input x and
random value r, and for all i ∈ [m+ 1],

{REAL(i)(x; r)} =c {IDEAL(i)(x; r)}

where =c denotes computational indistinguishability.

We now present a Lemma from [47], [51] that we will utilize
to prove security. Since many of our protocols involve multiple
sub-protocols, we describe them with the hybrid model. This
lemma asserts that to prove the security of a protocol Π in the
presence of a set of adversaries A, it suffices to show that the
protocol is secure in the semi-honest model.

Lemma III.1. (F-hybrid model) A protocol that invoking
a functionality F is said to be in F-hybrid model if each
multi-party sub-protocol Πi securely computes corresponding
functionalities in the presence of a set semi-honest adversaries
A. Then Π is also secure in the presence of the adversary A.

IV. SEIFS DESIGN

In this section, we present a series of secure functions
as the main building blocks for secure feature selection.
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Fig. 1. Technical overview. The server and client C (C ∈ {1, 2, · · · , N})
perform work that is polynomial in the size of the circuit, while the (N − 1)
remaining clients do sublinear work.

Unlike the previous scheme [3] that outsources all private
data to multiple non-colluding cloud servers, our approach
leverages a single-server-aid framework [21] and optimizes
time-consuming components. We begin by giving a high-level
technical overview of our single-server-aid feature selection
framework in Section IV-A. Following that, we dive into the
details of the core components that we have optimized to
improve the efficiency of the selection process. Finally, we
present how these components can be integrated into a secure
feature selection protocol in Section IV-F.

A. Technical Overview

Following the prior GC-based single-server-aid SFE frame-
work [21], we develop customized constructions with several
optimizations for corresponding secure computations over the
secret-shared feature values. The core idea is to have the
server and one client (assuming C ∈ {1, 2, · · · , N}) perform
work that is polynomial in the size of the circuit, while
the remaining (N − 1) clients do sublinear work. Such a
construction would yield a standard secure two-party protocol
(2PC) with low communication and computation costs for
one party. Further, instead of using the GC to evaluate any
general-purpose function as done in [21], we exploit the
mixed-protocols [44], [11] to evaluate operations with an
efficient representation as an Arithmetic circuit (i.e., additions
and multiplications) using secret-shared based protocols, and
operations with an efficient representation as a Boolean circuit
(e.g., comparisons and divisions) using GC. Several previous
works have demonstrated that such a mixed-protocol approach
can result in better performance than using GC alone [44],
[11], [52].

Recall that the involved parties are N clients {1, 2, · · · , N}
and a cloud server S in this paper. Each client i holds a
private dataset Di that includes n feature vectors {f1, · · · , fn}
with length m and a label vector with ϕ different classes.
We consider the case where the instances of the same feature
are distributed uniformly and randomly among N clients. The
clients aim to refine the features in a federated evaluation

way without revealing the private dataset Di and selected
features to any clients or the server. We focus on the Gini
impurity-based FS method, which is composed of two typical
computational blocks: evaluating the Gini scores of features
and reducing feature dimensionality to k features with the
lowest score. As depicted in Fig. 1, we decompose each
block into smaller, composable cryptographic gadgets while
-Dmaintaining the security guarantees given in Section III-B.
Each unit is tailored to be compatible with our single-
server-aid SFE construction, enabling cost-effective and low-
bandwidth execution of secure feature selection.

At a high level, the server and clients jointly evaluate the
Gini scores for all features as described in Section II-A in
a privacy-preserving way. This evaluation incorporates secure
processes for aggregation, comparison, division, and multi-
plication. Along with the above single-server-aid SFE frame-
work, our secure aggregation protocol ΠAgg for functionality
FAgg(x1, · · · , xN ) =

∑N
i=1 xi starts with agreeing on a com-

mon random seed using distributed key generation protocol
[53] among the clients who will receive the aggregation result.
The participants then leverage the double-masking aggregation
protocol (as described in Section II-D) to have the server
obtain the sum

∑N
i=1(xi−PRG(Seed)). In the end, the clients

have a secret sharing of sum [
∑N

i=1 xi]i = PRG(Seed) while
the server holds [

∑N
i=1 xi]s =

∑N
i=1 xi−N ·PRG(Seed). For

ease of exposition, we provide the implementation in Fig. 7 in
Appendix B. Besides, the server S and the client C perform
the division using a GC as [44] and implement the secure mul-
tiplication ΠMul with Beaver’s triple multiplication technique
[54]. For more challenging comparison, our efforts revolve
around two orthogonal directions that are combined to enable
better performance in terms of efficiency: 1) minimizing the
number of comparison operations through the use of binary
tree encoding and oblivious reading and writing protocols,
as done in Section IV-B and IV-C; and 2) optimizing the
circuit size and latency for lightweight comparison, as shown
in Section IV-D.

The second block can be split into the secure top-k selection
and the oblivious reading. The former selects the k lowest
scores from the n Gini scores and returns their indexes. The
latter is used to refine the private dataset consisting of n
features such that the features with the selected indexes are
retained without revealing to the client the selected items.
However, the challenge we encounter is more complex since
all inputs and outputs in this setting are secret-shared. To
address this challenge, we present our optimization with
the circuit size of O(n + k2) for top-k selection from n
values in Section IV-E. Besides, we introduce an optimized
reading protocol based on the latest distributed oblivious RAM
technology for dimensionality reduction in Section IV-C.

B. Encoding and Evaluating Feature Vectors

As discussed in Section II-A, the Gini impurity based
continuous feature selection measures the likelihood of incor-
rect classification of samples [4] by partitioning m feature
samples into two sets I<θ and I≥θ and counting all possible
classification probabilities in each set, i.e., pz(I<θ) =

|I<θ∩Lz|
|I<θ|
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Fig. 2. An example of feature encoding. 1 Feature sorting. Each client
i ∈ [1, N ] generates the shares of her/his private dataset Di and sends one
piece of the shares (i.e., ⟨Di⟩s) to the cloud server. 2 Encoding sorted
feature as a complete binary search tree. For each feature, the client constructs
a binary search tree, in which all nodes in the left subtree have feature values
that are smaller than the value of its root node, while all nodes in the right
subtree have values that are greater than the value of its root node. 3
Encoding tree as array. The array records all information about each sample,
including its index, index of the root of the left subtree, index of the root of
the right subtree, feature value, and label, where ⋆ represents the value that
can be set randomly, and # denotes the value sampled randomly from [1, ϕ],
where ϕ is the total number of classes.

and pz(I≥θ) =
|I≥θ∩Lz|

|I≥θ| . Li et al. [3] proposed the Mean-Split
Gini scheme, which uses the mean of the feature values as a
good approximation for an optimal splitting threshold θ, which
reduces the number of expensive comparison operations from
O(m2) to O(m). We further present how to achieve the mean
partition using O(logm) comparison operations. Here, we
omit the subscripts that identify the client and feature vectors,
as all clients perform the same procedure for each continuous
feature. The fundamental intuition is that considering a sorted
feature vector (assuming in ascending order), the threshold
value θ always appears at a critical position (denoted as pidx
in the following). This critical index has the following two
properties: (1) for all data whose indexes are less than or
equal to pidx, their values must be less than or equal to the
threshold; (2) for all data whose indexes are greater than pidx,
the corresponding values must be greater than the threshold.
This also implies that pidx equals to the dimensionality of set
I<θ (i.e., |I<θ| = pidx, and |I≥θ| = m− pidx).

To learn pidx of each continuous feature efficiently, each
client encodes locally the features as an array T as shown
in Fig. 2, which records the data structure of a Balanced
Binary Tree (BBT) [55] with ordered feature values. The client
modifies the standard BBT as shown in 2 of Fig. 2. First, the
client complements the BBT as a complete binary tree guided
by Table II and allocates a virtual index to these supplemented
nodes. Taking the example given in Fig. 2, since the node with
idx = 5 in the (⌈log(m + 1)⌉ − 1)-th layer is located at the
right subtree, its missing left child should be set to its parent
node (i.e., the node with value 40) with the virtual index of 6
while its missing right child should be itself with the virtual
index of 7. The second modification is that we redirect each
leaf node of the complete binary tree by setting its right child
index to itself while its left child index to its prior index. Note
that the supplemented nodes in the left subtree are linked to
their parent’s index while the supplemented nodes in the right
subtree need to be linked to their own actual index. Then, 3
in Fig. 2 presents the procedure of encoding the modified BBT
into an array T . A node in the tree is stored in T in the depth-
first search order, where the index of the root is denoted as

tidx. The row with index idx in T (also denoted as T [idx])
consists of all information about the node including (1) the
index of the node in the sorted features; (2) the index of its left
child; (3) the index of its right child; (4) the feature value of
the node; (5) the corresponding label; (6) the identification of
whether it is a real feature or a supplemented node. Similarly,
any feature vector from clients can be naturally represented
as an array T of length 2⌈log(m+1)⌉ − 1. In such a way,
locating pidx requires at most ⌈log(m+1)⌉ instances of secure
comparison protocol.

TABLE II
COMPLEMENTING THE BALANCED BINARY TREE.

Left Child Right Child
Left Subtree – Grandparent Node
Right Subtree Parent Node Itself

Benefiting from the structure of this binary tree encoding,
we also design an efficient method to count the classification
of each set, i.e., |I<θ ∩Lz| and |I≥θ ∩Lz|. We define two ϕ-
length arrays q<θ and q≥θ, in which the z-th entry of vector
q<θ[z] (resp., q≥θ[z]) stores the number of samples classified
as z-th label Lz in the set I<θ (resp., I≥θ). By assuming that
the root node of the tree is the threshold, the client sets two
initial sets A< and A≥. Similar to the definition of the set
I , each element in the set A< (resp A≥) is less than (resp
greater than or equal to) the current root node. Besides, the
client initializes two ϕ-length arrays a0< and a0

≥ to count the
classification in the initial sets A0

< and A0
≥. Let T (0) = T

be the whole evaluation space. Given the threshold θ, the i-th
evaluation (computing b(i−1) = 1{T [cidx(i−1)].value < θ})
allows us to relocate the current root node cidx(i) and narrow
down the evaluation space to a new tree T (i) with cidx(i) as
the root node. Let the left child and right child of cidx(i) as
l(i) and r(i), we compute cidx(i) as below:

cidx(i) ← l(i−1) + b(i−1) · (r(i−1) − l(i−1)) (8)

Then, the sets A< and A≥ can be repartitioned by the follow-
ing three guidelines: (1) the parent node of the current root
node cidx(i) would be placed to set A< if cidx(i) = r(i−1);
(2) the current root node cidx(i) is kept in the set A≥; and
(3) the nodes in the right subtree of T (i) should be moved to
set A≥ if cidx(i) = l(i−1), or the nodes in the left subtree of
T (i) are moved to set A< if cidx(i) = r(i−1). Accordingly, we
update a(i)< and a(i)≥ so that they strictly record the classification
of the sets A

(i)
< and A

(i)
≥ , respectively. At the end, we have

q< = a(⌈log(m+1)⌉)
< and q≥ = a(⌈log(m+1)⌉)

≥ . We formally
describe our algorithm for evaluating the BBT in Algorithm 1.

It becomes more challenging when evaluating Algorithm 1
in a secret domain. As the basic requirement is to seal all
values from both parties, we use existing protocols [44] for
secure additions and multiplications, and design an efficient
protocol for secure comparison in Section IV-D. However, it
is not enough to hide intermediate values to avoid all leaks. For
example, if the secure computation leaks the memory access
pattern across each evaluation, the client can obtain pidx
directly. What is more, if the client captures the modification
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Algorithm 1 pidx,q<θ,q≥θ ← BBT(T , θ, tidx, a(0)< , a(0)≥ )

1: cidx(0)∥l(0)∥r(0)∥v(0)∥L(0)∥d(0) ← Read(T , tidx)
2: for 0 < i ≤ ⌈log(m+ 1)⌉ − 1 do
3: b(i−1) ← 1{v(i−1) < θ}
4: cidx(i) ← l(i−1) + b(i−1) · (r(i−1) − l(i−1))
5: cidx(i)∥l(i)∥r(i)∥v(i)∥L(i)∥d(i) ← Read(T , cidx(i))
6: ai

< ← Write(ai−1
< , L(i−1), d(i−1)b(i−1)(2b(i−1) − 1))

7: ai
≥ ← Write(ai−1

≥ , L(i−1), d(i−1)b(i−1)(1− 2b(i−1)))
8: ai

< ← Write(ai
<, L

(i), d(i)(1− b(i−1))(2b(i−1) − 1))
9: ai

≥ ← Write(ai
≥, L

(i), d(i)(1− b(i−1))(1− 2b(i−1)))
10: nidx(i) ← r(i) + b(i−1) · (l(i) − r(i))
11: Temp(i) = {nidx(i)}
12: for i ≤ j < ⌈log(m+ 1)⌉ − 2 do
13: for x ∈ Temp(j) do
14: x∥l∥r∥v∥L∥d← Read(T , x)
15: ai

< ← Write(ai
<, L, d · (2b(i−1) − 1))

16: ai
≥ ← Write(ai

≥, L, d · (1− 2b(i−1)))
17: Temp(j) ← Temp(j) − {x}
18: Temp(j+1) ← {l, r}
19: end for
20: end for
21: end for
22: b(i) ← 1{v(i) < θ}
23: pidx← l(i) + b(i) · (r(i) − l(i))
24: ai+1

< ← Write(ai
<, L

(i), d(i)b(i)(2b(i) − 1))
25: ai+1

≥ ← Write(ai
≥, L

(i), d(i)b(i)(1− 2b(i)))
26: q<θ = ai+1

< ; q≥θ = ai+1
≥

27: return pidx, q<θ , q≥θ

of a< or a≥ at the last evaluation, then it would infer the
location of pidx with a high probability since the input space
is limited in the range of {−1, 0, 1}. Both of these examples
enable the client to learn the evaluation path, which is not
allowed according to our security requirements. Our goal here
is to obliviously access or read all information of T [idx] with
secret shared index idx and obliviously modify the item in
a< or a≥. Thus, we formalize the above tasks as oblivious
reading and writing functionality. More details can be found
in Section IV-C.

With both of these tools, we read the specified item by
Read(T , idx) at the beginning of each evaluation and then
update the array a< and a≥ following the first guideline as:

ai< ←Write(ai−1
< , L(i−1), d(i)b(i−1)(2b(i−1) − 1)) (9)

ai≥ ←Write(ai−1
≥ , L(i−1), d(i)b(i−1)(1− 2b(i−1))) (10)

where d(i) represents the identification of whether cidx(i) is
a real feature. Given the current root node cidx(i) and its
classification L(i), we remove its record from a< and add
1 to the L(i)-th item in a≥ if and only if cidx(i) = l(i−1) as:

ai< ←Write(ai<, L
(i), d(i)(1− b(i−1))(2b(i−1) − 1)) (11)

ai≥ ←Write(ai≥, L
(i), d(i)(1− b(i−1))(1− 2b(i−1))) (12)

Besides, for all nodes in the subtree, we update a< and a≥
as:

ai
< ←Write(ai<, L, d · (1− 2b(i−1))) (13)

ai
≥ ←Write(ai≥, L, d · (2b(i−1) − 1)) (14)

Fig. 3. An example of BBT evaluation. The red values are the current root
node, the green nodes represent the parent of the current node and the blue
ones indicate the nodes in the subtree that need to be moved.

To facilitate understanding, we give an example in Fig. 3 to
show how to obtain pidx, q<θ and q≥θ intuitively. Given the
threshold of the feature samples given in Fig. 2 to be θ = 30,
the first evaluation moves the current root node with values
of 20 and the node with the value of 30 in the subtree to the
set A≥. The second evaluation obtains the current root node
cidx(2) = 3. Its parent node should be moved from A≥ to
A< due to cidx(2) = r(1). Since the current root node is a
leaf node, the sets A< and A≥ do not need to be modified.
In the end, the node pidx = 2 is determined to be set I≥θ in
the third evaluation.

C. Oblivious Reading and Writing via Improved FLORAM

Line 1 of Algorithm 1 shows that each interaction starts by
reading the item with the given index from the array without
revealing the accessed item. Similar functionality also works
in the oblivious selection of k features as outlined in Section
II-E: given the indexes of features with the lowest Gini scores,
the functionality refines the raw dataset such that the clean
dataset only stores the features with the given indexes. Besides,
Algorithm 1 requires a large number of calls to Write(·) so that
secret-shared values are written into the specified items of the
array. Inspired by FLORAM [40], we propose new techniques
to improve efficiency for oblivious reading and writing.

In FLORAM, given the particular index idx, performing
such oblivious reading and writing has to generate tokens [e]s
and [e]c using Function Secret Sharing (FSS) [56] in the online
phase, such that [eidx]s ⊕ [eidx]c = 1 and [ej ]s ⊕ [ej ]c = 0
for all j ̸= idx. Intuitively, we can improve the online
efficiency of our construction if we generate the token in a
data-independent phase. To run FSS, the parties iteratively
execute the GC protocol log n times, which requires perform-
ing log n OTs. Since the implementation of concurrent OTs
significantly slows down the FSS evaluation, we utilize the
silent OT extension technique built upon the vector oblivious
linear evaluation [29], which enables us to generate a large
amount of random correlated OT correlations (COTs) before
the FSS evaluation with only a small amount of additional
communication for each GC instance [46].

Assume that FSS generates the unit vector e related to a
random index ridx sampled from the corresponding index
space in the offline phase. In the online phase, given the dataset
D shared in the form of ⟨·⟩, the additive secret-shared index
[idx], and a command op, the parties first reveal an offset
β that records the difference between the random index and
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Protocol 2 Didx ← Read(D, idx)
Require: A unit vector e consisting of zero all except e[ridx] = 1,

where ridx is a random index. S holds ∆e = e + [δe]s + [δe]c
and [δe]s while C has ∆e and [δe]c.

1: Party i for i ∈ {S,C} computes [β]i = [ridx]i− [idx]i and sends
the result to each other;

2: for 1 ≤ j ≤ |D| do
3: Party i for i ∈ {S,C} locally computes [ej+β (mod |D|) ·
Dj ]i = i ·∆ej+β (mod |D|) ·∆Dj −∆ej+β (mod |D|) · [δDj ]i−∆Dj ·
[δej+β (mod |D|) ]i + [δej+β (mod |D|) · δDj ]i;

4: Party i for i ∈ {S,C} locally computes [b]i ← [b]i +
[ej+β (mod |D|) · Dj ]i;

5: end for
6: Party i ∈ {S,C} locally sets [Didx]i ← [b]i;
7: return Didx

special index, i.e., β = ridx− idx. Then, we correct the unit
vector with random index ridx to obtain the unit vector with
special index idx by using ej+β (mod |D|) for j ∈ [1, |D|].

For the command op = Read, the core idea of FLORAM
is to calculate the dot product of the unit vector and the
dataset. Following this, parties have to perform the secure
computation to take off the mask of [∆Didx

]i to obtain
[Didx]i, which inevitably leads to a communication overhead
for each invocation of Read(). Motivated by this, we further
reduce the overhead of the online phase by introducing a
new non-interactive computation. In detail, we require the unit
vector e shared in the form of ⟨·⟩. With the observation that
⟨v⟩ = ⟨[v]s⟩+ ⟨[v]c⟩, it can be easily obtained by sharing [e]i
in the form of ⟨·⟩ to each other after running the GC-based
FSS. Let j̃ = j+β (mod |D|). Party i ∈ {S,C} performs the
local computation as follows:

[Didx]i = [

|D|∑
j=1

(ej+β (mod |D|) ·Dj)]i

=

|D|∑
j=1

(i ·∆ej̃∆Dj
−∆ej̃ [δDj

]i −∆Dj
[δej̃ ]i + [δej̃δDj

]i)

(15)
where the last item [δej̃ · δDj

]i can be computed via Beaver’s
multiplication protocol in a data-independent phase as both δej̃
and δDj are random values. By doing this, the online phase
only requires local computation without interaction between
participants, thus resulting in a great gain in efficiency.

Along with the design of FLORAM, the command Write in
the Arithmetic world for any j ∈ [1, |D|] can be executed as:

[D
′

j ]i ← [Dj ]i + x · [ej+β (mod |D|)]i (16)

However, a slightly different protocol is required to implement
the more complex functionality in our scheme where the input
x keeps secret-shared. The Beaver’s multiplication protocol
can be integrated into Eq.(16) directly, but resulting in a
communication overhead linear in the size of the dataset. To
get over this, party i ∈ {S,C} takes as inputs ⟨x⟩ and ⟨e⟩.
Similar with Eq.(15), parties obtain the additive share of x ·ej̃
for j ∈ [1, |D|] by non-interactive local computation as below:

[x · ej̃ ]i = i ·∆x∆ej̃ −∆x[δej̃ ]i −∆ej̃ [δx]i + [δxδej̃ ]i (17)

where [δxδej ]i is generated in the data-independent phase.

Protocol 3 D′ ← Write(D, idx, x)
Require: An unit vector e which consists of all zero except e[ridx] =

1, where ridx is a random index. S holds ∆e = e+ [δe]s + [δe]c
and [δe]s while C has ∆e and [δe]c. Besides, party i for i ∈
{S,C} has [δx · δe]i generated by the Beaver’s multiplication
protocol.

Ensure: D
′
idx = Didx + x and D

′
j = Dj for all j ∈ [1, |D|]\{idx}.

1: Party i for i ∈ {S,C} computes [β]i = [ridx]i−[idx]i and sends
the result to each other;

2: for 1 ≤ j ≤ |D| do
3: S locally computes [D

′
j ]s ← [Dj ]s +∆x ·∆ej+β (mod |D|) −

∆x · [δej+β (mod |D|) ]s − ∆ej+β (mod |D|) · [δx]s + [δx ·
δej+β (mod |D|) ]s;

4: C locally computes [D
′
j ]c ← [Dj ]c−∆x · [δej+β (mod |D|) ]c−

∆ej+β (mod |D|) · [δx]c + [δx · δej+β (mod |D|) ]c;
5: end for
6: return D

′

Protocols 2 and 3 describe our design details for oblivious
reading and writing, which are built upon FLORAM but with
a more efficient implementation. To sum up, the introduction
of data-independent computation and non-interactive online
computation allows a blazing-fast online evaluation.

D. Lightweight Comparison Protocol

As mentioned above, our work is based on the GC. We
advance the state-of-the-art secure two-party computation for
comparison [11], [44], by developing a more efficient circuit
representation. For standard functionalities, we use the size-
optimized circuit constructions summarized in [26]. Impor-
tantly, our size-optimized comparison circuit can replace any
secure comparison circuit, leading to improved efficiency and
performance gains. Examples include but are not limited to
the secure implementation of activation function ReLU1 in
privacy-preserving machine learning tasks, which has gained
substantial attention in current privacy preservation research
[46], [47], [57].

To compare two secret-shared values [a] and [b] with ℓ-bit
length, the naı̈ve method [11] with a circuit proceeds as shown
in Fig. 4(1) involves the following steps: (1) Compute a =
[a]0 + [a]1 mod 2ℓ and b = [b]0 + [b]1 mod 2ℓ by obtaining
x = [a]0+[a]1, x−2ℓ, y = [b]0+[b]1 and y−2ℓ using four ℓ-bit
adder/subtractor modules (ADD/SUB). (2) Use a multiplexer
(MUX) to check whether x (resp. y) overflows and output
x (resp. y) if there is no overflow, otherwise x − 2ℓ (resp.
y−2ℓ). (3) Compare a and b using an ℓ-bit comparator (CMP).
If the output of the comparison circuit is demanded to be
secret-shared, it would be implemented by performing an ADD
module with a random value r, which requires an additional
ℓ-bit ADD gate. This design results in 16ℓ table entries per
comparison [34]. Such a huge overhead motivates us to further
reduce the overhead incurred by comparison operations as it
has a direct impact on the feature selection process.

The key insight behind our first optimization is that the
comparison can be reformulated as sign(a − b) [58], which
equals 1 if a < b and 0 otherwise. Fig. 4(2) shows its im-
provement by only assembling sign(a−b) into the circuit. By

1ReLU(x) = max{0, x}.
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Fig. 4. Circuit construction for comparison. (1) Naı̈ve construction. It consists
of five ℓ-bit ADDs, two ℓ-bit MUXs, and one ℓ-bit CMP. (2) Simplified
comparison. It consists of three ℓ-bit ADD, one ℓ-bit MUX, and one ℓ-bit
CMP. (3) Simplified comparison with the limited regime. It consists of one
ℓ-bit CMP and one ℓ-bit ADD.

having two parties pre-compute and provide [x]i = [a]i − [b]i
as inputs, the circuit computes x = [x]s + [x]c mod 2ℓ using
two ADD/SUB modules and a MUX, and check x against 2ℓ−1

using a CMP. Despite the savings of two ADD/SUB modules
and a MUX (i.e., 6ℓ tables entries), it still needs to perform
expensive modulo additions to exactly reconstruct x. Our
second optimization takes into account the data regime without
overflow, significantly simplifying the circuit but introducing
an additional fault. As shown in Fig. 4(3), this optimization
avoids the reconstruction of x within the circuit by having
one party (assumed to be C) input 2ℓ − [x]c instead of
[x]c. This change only requires one comparator to check if
[x]s ≤ 2ℓ− [x]c, reducing the table entries to 4ℓ. In Appendix
C, we give the implementation in Fig. 8 and discuss the
practical advantages of our size-optimized circuits in multiple
aspects.

Theorem IV.1. For any x ∈ Z2ℓ and v sampled uniformly at
random from Z2ℓ , the additive shares of x are [x]c = 2ℓ − v
and [x]s = x+ v mod 2ℓ, respectively. We have:

Pr{G̃sign([x]s, 2
ℓ − [x]c, r) ̸= sign([x]s, 2

ℓ − [x]c, r)} =
|x|
2ℓ

Proof. We defer the proof to Appendix D due to limited space.
The error probability Prϵ =

|a−b|
2ℓ

has a limited impact since
in practice |x| ≪ 2ℓ for typical choices of the data field. We
also experimentally verify the claim in V.

E. Top-k Selection via Garbled Circuit

The traditional top-k selection functionality
(
n
k

)
-MIN in

[59] is defined as follows: given a list of n numbers
{x1, x2, · · · , xn}, the function outputs k ≤ n smallest ele-
ments in the list . It is also considered that an augmented
functionality

(
n
k

)
-MIN takes n pairs of value and its index

(xi, idxi) and returns k smallest elements and their corre-
sponding indexes. In this study, we consider a slight variation
of this functionality, referred to as

(
n
k

)
-MIN2, where the output

is limited to only the k indexes with the smallest list elements.
This can be easily derived from

(
n
k

)
-MIN as described in

Algorithm 4. The algorithm keeps a sorted list of the current k
minimum values and uses a “for” loop to insert each (xi, idxi)
into its correct location in the sorted arrays.

Algorithm 4 {idxi}k ←
(
n
k

)
-MIN2 {(xi, idxi)}n, k)

1: OPT = {∅}k, idxlist = {∅}k
2: for 1 ≤ i ≤ n do
3: Topt ← xi, Tidx ← idxi

4: for 1 ≤ j ≤ k do
5: b← 1{Topt < OPT[j]}
6: xi = xi ⊕ b · (OPT[j]⊕ Topt)
7: OPT[j] = OPT[j]⊕ b · (OPT[j]⊕ Topt)
8: idxi ← idxi ⊕ b · (idxi ⊕ idxlist[j])
9: idxlist[j]← idxlist[j]⊕ b · (idxlist[j]⊕ Tidx)

10: end for
11: end for
12: return idxlist

Algorithm 5 {idxi}k ← ATopk({(xi, idxi)}n, π, k, b)
1: {(xπ(i), idxπ(i))}n ← π{(xi, idxi)}n
2: for 1 ≤ i ≤ b do
3: (x

′
i, idx

′
i)←

(n
b
1

)
-MIN{(xπ(i·n

b
+j), idxπ(i·n

b
+j))}n

b
4: end for
5: idxlist←

(
b
k

)
-MIN2{(x

′
i, idx

′
i)}b

6: return idxlist

Whichever functionality it is, computing top-k naı̈vely
would require a circuit made of O(nk) comparisons and
thus results in the circuit size of O(ℓnk), where ℓ is de-
noted as the data length. Inspired by secure approximate
k-nearest neighbors search [59] for

(
n
k

)
-MIN, we provide

an efficient algorithm for an approximate
(
n
k

)
-MIN2, which

enables a relatively smaller circuit size. The intuition of
[59] is that the optimal circuit size O(ℓn) of

(
n
k

)
-MIN2 is

achieved when k is a constant. Accordingly, if we construct
α bins large enough to store the data shuffled uniformly
and randomly over the permutation choice π, evaluating
the minimum value of each bin (i.e., (x

′

i, idx
′

i) ←
(
n/α
1

)
-

MIN{(xπ(1), idxπ(1)), · · · , (xπ(n/α), idxπ(n/α))}) would con-
sume O(ℓ · n/α) gates. As such, the circuit size can be
reduced from O(ℓnk) to O(ℓ · (n + kα)). Moreover, k · α =
O(n) achieves the optimized circuit size O(ℓn). Along with
our lightweight comparison protocol, we expect that

(
α
k

)
-

MIN2{(x′

π(i), idx
′

π(i)), · · · , (x
′

π(α), idx
′

π(α))} is exactly
(
n
k

)
-

MIN2{(x1, idx1), · · · , (xn, idxn)} with the probability of at
least (1− λ)(1− |max{xi}|

2ℓ
)(n+kα).

We give a concrete illustration for the approximate Top-k
selection in Algorithm 5. Notably, our scheme is of indepen-
dent interest and can effectively utilize its efficiency advantage
for Top-k selection based on garbled circuits. This approach
can be applied to various applications, such as secure k-nearest
neighbor classifiers [59].

Theorem IV.2. Given a uniformly random permutation π
for any n data-index pairs {(xi, idxi)}n, λ0 > 0 and a
positive function f+, for 0 < λ < λ0 and k = f+(λ), the
number of bins α can be set to kr/λ such that the output
of ATopk({(xi, idxi)}n, π, k, α) with the lightweight compar-
ison protocol is exactly

(
n
k

)
-MIN2{(x1, idx1), · · · , (xn, idxn)}

with the probability of at least (1− λ)(1− |max{xi}|
2ℓ

)(n+kα).

Proof. We defer the proof to Appendix E due to limited space.
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F. Putting All Together

By combining the mentioned ingredients, we present our
main protocol, which includes a more in-depth explanation of
our algorithms for both components, specifically the evaluation
of feature scores and dimensionality reduction. We consider a
federated setting with N clients and a single cloud server.
When securely realizing each component, we maintain the
following invariant: participants take the arithmetic shares
of the input to each cryptographic gadget and end with the
arithmetic shares of the output of the gadget after the protocol.
Semi-honest security of the protocol will follow trivially from
the composability of individual sub-protocols. Besides, the
inputs to secure feature selection are floating-point numbers,
encoded as fixed-point integers.

At the beginning of the evaluation of the feature score,
the server and N clients perform n instances of the secure
aggregation protocol for n features, where client i ∈ [1, N ]
takes as inputs {(

∑
fj − PRG(Seedj))}n. The protocol en-

ables each client i holds one piece of shares of threshold
[θj ]i = PRG(Seedj) for the j-th feature. Then the server
locally generates another piece of threshold by computing:
[θj ]s =

∑N
i (

∑
fj−PRG(Seedj))

m so that [θj ]s + [θj ]i = θj for any
i ∈ [1, N ]. Following that, client i ∈ [1, N ] encodes locally
each feature into a BBT and records the BBT into an array
T . We incorporate both secure reading and writing protocols,
arithmetic sharing based secure computation, and garbled
circuit based comparison protocol to evaluate our modified
BBT evaluation algorithm. Intuitively, all intermediate values
are secret-shared between client i and cloud server while the
participants keep invisible to traverse the BBT. The evaluation
of BBT returns to the server and client i the additive shares
of |Ii<θ|, |Ii≥θ|, {|Ii<θ ∩ Lz|}ϕ and {|Ii≥θ ∩ Lz|}ϕ. Next, all
participants run 2ϕ+2 instances of the secure aggregation pro-
tocol to generate the additive shares of

∑N
i |Ii<θ|,

∑N
i |Ii≥θ|,

{
∑N

i |Ii<θ ∩ Lz|}ϕ and {
∑N

i |Ii≥θ ∩ Lz|}ϕ between server
S and client C. Note that here client C takes as input the
required aggregated value masked with a random value (i.e.,
PRG(Seed)), while the remaining (N − 1) clients input their
secret values. According to Eq. (3) and (4), client C and server
S compute the Gini scores of n features by running 2n GC
based division protocol as [44] following the two Beaver’s
triple multiplication protocols.

In the dimensionality reduction process, we implement our
approximate top-k selection using a GC to extract k features
with the minimum Gini scores. We make further optimization
to improve the performance by embedding our optimized GC
based comparison module. To achieve this, we develop our
GC implementation with the majority of the standard opti-
mizations [60], allowing us to save more than several orders
of magnitude in both runtime and memory usage compared
to [11]. Finally, once received the k feature indexes, client
i ∈ [1, N ] updates the dataset via the secure reading protocol.

Theorem IV.3. SeiFS provides a secure data pre-processing
protocol to realize the ideal functionality of Gini impurity
based feature selection with the assistance of a single cloud
server in the presence of semi-honest admissible adversaries.

Proof. We defer the proof to Appendix F due to limited space.

V. EVALUATION

A. Experiment Setup

We perform the evaluation with Amazon EC2 instances
(c5.4xlarge) under different network settings (LAN and WAN).
In the LAN setting, we use multiple instances from the “Asia-
Pacific Southeast” region. Here, we set the bandwidth between
cloud instances to 3GBps and achieved a round-trip time
(RTT) of 0.3ms by configuring Traffic Control in the Linux
kernel. Each instance is designated for clients and the cloud
server. We simulate the WAN setting with instances hosted
in the “Asia-Pacific Southeast” and “US West” regions with
a latency of about 20ms and throughput of about 400MBps.
We implement our protocols on top of the ABY library [11],
but substantially modify the way the secret sharing and the
comparison protocol are implemented. Also, we extend the
Ferret protocol [29] in the EMP toolkit to support the VOLE-
based OT extension [29]. The reported values are the average
of ten trials and do not include the one-time setup.

Recall that N is the number of clients, m is the number
of records in the private database that each client holds,
n stands for the number of continuing attributes, and ϕ
denotes the number of classifications. The running time of
our algorithm is guaranteed to be independent of the input data
values because each component is designed to be oblivious.
We test our method using dummy data for various settings
of the aforementioned parameters and use 4 threads for all
implementations. Since the primary focus of our work is on
continuous attributes, we do not include discrete ones in our
benchmarks. Besides, the algorithms in this work do introduce
errors into the final result, from the lightweight comparison
circuit and approximated top-k selection. These errors have
been theoretically proven to be controllable below a reasonably
small value. To validate this claim, we examine the accuracy
of the proposed methods by running our protocols for binary
classification tasks over three real-world datasets: Cognitive
Load Detection2 (COG), Lee Silverman Voice Treatment3

(LSVT), and Speed Dating4 (SPEED).

B. End-to-End Evaluation

Multi-client. Considering the different numbers of clients
(N = {2, 10, 20, 30, 40, 50}) in our setting, we evaluate
the runtime with a fixed m = 32K, n = 100, k = 10
(λ = 0.2) and ϕ = 2. Fig. 5(a) and Fig. 6(a) plot the
results over different network environments. We observe that
in both settings, our algorithm achieves about two orders of
magnitude more efficient in terms of runtime than a naı̈ve
garbled circuit implementation. SeiFS achieves 2.6 ∼ 3.1×
runtime improvements, which are greatly attributed to the fact
that our feature encoding method reduces the number of secure
comparison protocols required from O(m) to O(logm).

2https://www.ubittention.org/2020/data/Cognitive-load%20challenge%
20description.pdf

3https://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation
4https://www.openml.org/search?type=data&sort=runs&id=40536&status=

active
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Fig. 5. Comparison of SeiFS and naı̈ve garbled circuit-based approach for secure feature selection tasks in the LAN setting. We document that our protocol
completes in a runtime ranging from a few seconds to an hour, depending on the size of the dataset. Compared to the hours the naı̈ve protocol requires, our
protocol demonstrates a significant efficiency gain.
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Fig. 6. Comparison of SeiFS and naı̈ve garbled circuit-based approach for secure feature selection tasks in the WAN setting.

Multi-sample. Fig. 5(b) and Fig. 6(b) compare the runtime
over different samples in the baseline and our improved
algorithms under the LAN and WAN settings. Here, we fix
the number of clients to 10, and other variants are the same
as in previous experiments. According to the results, the
proposed algorithm significantly improves the bottleneck in
the naı̈ve garbled circuit implementation for secure feature
selection tasks. It is noticeable that the runtime of the proposed
method grows slowly with the increase in the number of
samples in both figures, which is in close accordance with
the curve of the logarithmic function. This comes from two
main aspects: (1) comparison operations take up a significant
portion of the overhead of the task, and (2) reducing the
number of comparisons and the circuit size for implementing
secure comparisons as we have done is extremely effective in
improving the efficiency of the secure feature selection task.

Multi-feature. In Fig. 5(c) and Fig. 6(c) we summarize how
the performance of SeiFS depends on the number of features.
We include in the figures the runtime of our complete protocols
as well as the naı̈ve garble circuit with the same and fixed
m = 32K, N = 10, k = 10 (λ = 0.2) and ϕ = 2. With
the increasing number of features, SeiFS shows its advantages
in runtime, while naı̈ve garbled circuit implementations suffer
more involved protocols than SeiFS. Under WAN with 20ms
high network latency, the online runtime of SeiFS for high-
dimensional datasets is around 60% higher than the naı̈ve
garbled circuit. This gap becomes progressively larger as the
number of features increases, since our approximate top-k
algorithm decouples the multiplicative relationship between n

and k, reducing the circuit size for top-k selection implemen-
tation from O(ℓnk) to O(ℓ(n + kb)), where ℓ represents the
data length and b is the number of bins required by our top-k.

Multi-classification. We further report the runtime of both
SeiFS and the naı̈ve garbled circuit under different classifi-
cations. As seen in Fig. 5(d) and Fig. 6(d), SeiFS shows a
slightly more distinct change than the naı̈ve garbled circuit
implementation. This is mainly because the comparison op-
erations occupy most of the computational resources in the
naı̈ve garbled circuit implementation. Other functions used
to accommodate changes in the number of classifications
(e.g., secure multiplication and division) are far less than the
overhead of expensive comparisons, even if they require more
computation, The situation is completely different in SeiFS.
The increase in the number of other functions required by
our scheme is clearly identifiable due to the greatly reduced
overhead of the comparison operations.

Multi-thread. We also benchmark the proposed methods in
Table III, by running naı̈ve garbled circuit implementations
and SeiFS with different threads under the LAN and WAN
settings. The performance accounts for one call to the whole
protocol with m = 32K, N = 10, n = 100, k = 10 (λ = 0.2)
and ϕ = 2. We only measure the runtime excluding the data-
independent phase. We observe that the speed-ups obtained in
this way are up to 64.5× for the LAN setting and up to 46×
for the WAN setting, even if they are not strictly non-linear
with the number of threads. This is mainly due to the memory
and network constraints in our approach. Overall, the multi-
threaded mode produces a runtime of less than 2.3 seconds in
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TABLE III
EVALUATION OF SEIFS IN THE MULTI-THREAD MODE.

# threads LAN / WAN. Runtime (s)
naı̈ve Ours Speedup

1 142.48 / 3013.91 2.21 / 65.51 64.5 / 46.0
2 131.58 / 2910.96 2.09 / 62.74 62.9 / 46.4
4 118.01 / 2761.84 1.94 / 60.02 60.8 / 46.0
8 107.36 / 2685.33 1.80 / 57.85 59.6 / 46.4

16 93.32 / 2577.81 1.63 / 53.48 57.3 / 48.2
32 82.19 / 2433.78 1.61 / 51.82 51.1 / 47.1
64 77.05 / 2329.26 1.51 / 50.77 51.0 / 45.9
80 72.01 / 2072.60 1.49 / 47.48 48.3 / 43.7

the LAN setting and 65.51 seconds in the WAN setting.

C. Comparison against Naı̈ve Approaches

In Table IV, we demonstrate that the proposed algorithm
works well for real-world feature selection problems. One
issue for a fair comparison with the prior work [3] is that
it outsources all the calculations for the feature selection task
to multiple (three or four in their experiments) non-collusive
cloud servers in the LAN. That is why the speedup factor
in the WAN setting of [3] is empty. Besides, we re-run the
naı̈ve garbled circuit implementation under our environment.
From the table, SeiFS is 2.3 ∼ 112.9× faster than [3] and
62.7 ∼ 169.3× faster than the naı̈ve method in LAN. It is
40.1 ∼ 164.2× faster than the naı̈ve implementation in WAN
by virtue of slightly less accuracy. Even so, the accuracy does
not drop much compared to [3] in which all protocols provide
faithful implementations for functionalities.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present SeiFS, an efficient and secure
implementation for a practical machine learning data pre-
processing pipeline. Unlike prior solutions that rely on mul-
tiple non-colluding servers, SeiFS employs a single-server-
aided secure function evaluation, improving efficiency, secu-
rity, and scalability. To achieve these objectives, we incorpo-
rate state-of-the-art cryptographic primitives such as secret-
sharing, distributed oblivious RAM, and optimized garbled
circuits, as well as a newly developed feature encoding method
specifically tailored for secure feature selection computations.
Performance evaluations show that our solution scales well to
massive datasets with up to one million samples. In the future,
we plan to explore new methods to speed up the computation
of additional feature selection techniques, as well as extend
our protocols to protect against malicious deviations.
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APPENDIX A
BEAVER’S TECHNIQUE

A. Oblivious Transfer based Beaver Protocol

In oblivious transfer (OT) based Beaver protocol, both
parties engage in ℓ OTs on ℓ-bit strings, that is, OTℓ

ℓ. In detail,
the party C is assumed as sender with input (mi,0,mi,1)

to i-th OT, where mi,0 = ri
$← Z2ℓ is sampled randomly

and mi,1 = ri + 2ℓ · [x]C . Party S is the receiver taking
as input the choice bit [yi]S , where yi refers to the i-th bit
of [y]S . The execution of OT ensures that the receiver S
receives ri + 2ℓ · [x]C · [yi]S . That is followed by the step
where party C sets [[x]C [y]S ]C = −

∑ℓ−1
i=0 ri and party S sets

[[x]C [y]S ]S =
∑ℓ−1

i=0(ri + 2ℓ · [x]C · [yi]S).
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B. Homomorphic Encryption based Beaver Protocol

To compute the shares of the product [x]c[y]s, party C
encrypts [x]c and sends it to the server. Homomorphic encryp-
tion can be initiated using additive homomorphic encryption,
such as Paillier [61] or Damgard-Geisler-Kroigaard (DGK)
[62]. Party S then locally performs the multiplication of the
ciphertext and the plaintext to get the ciphertext of [x]c[y]s.
After masking this ciphertext with a random value r, party S
sends the result back to the client to decrypt. At the end of
the protocol, the parties hold the shares of [x]c[y]s, where the
party S holds r as the share while the party C has [x]c[y]s−r.

APPENDIX B
PROTOCOL OF SECURE AGGREGATION

Clients Server

Generate DH keypairs (𝐶𝑈
𝑆𝐾 , 𝐶𝑈

𝑃𝐾) and (𝑆𝑈
𝑆𝐾 , 𝑆𝑈

𝑃𝐾) and random 𝑆𝑒𝑒𝑑

Send public keys (𝐶𝑈
𝑃𝐾 , 𝑆𝑈

𝑃𝐾)

Broadcast list of received public keys to all clients in 𝑈1

Wait for enough clients 𝑈1 ⊆ 𝑈

Generate 𝑏𝑢 and compute mask msk𝑢,𝑣
Compute t-out-of-n secret shares for 𝑏𝑢 and msk𝑢,𝑣

Send encrypted shares of 𝑏𝑢 and msk𝑢,𝑣

Forward received encrypted shares

Wait for enough clients 𝑈2 ⊆ 𝑈1

Compute 𝜒𝑢 = 𝑥𝑢 + PRG 𝑏𝑢 + σ𝑢<𝑣 PRG msk𝑢,𝑣 − σ𝑢>𝑣 PRG msk𝑢,𝑣 + PRG 𝑆𝑒𝑒𝑑

Send 𝜒𝑢

Wait for enough clients 𝑈3 ⊆ 𝑈2
Send a list {𝑣} of survived clients from 𝑈4 ⊆ 𝑈3

Abort if |𝑈4| < t  

Send shares of 𝑏𝑢 for alive clients and 𝑆𝑈
𝑃𝐾 for dropped

Reconstruct secrets

Compute σ𝑢 ∈𝑈3 𝜒𝑢

Fig. 7. Secure Aggregation

APPENDIX C
COMPARISON OF SIZE-OPTIMIZED COMPARISON CIRCUIT

WITH OTHER WORKS

Here, we elucidate the interaction between client and server
required for secure comparison, as depicted in Fig. 8. Sub-
sequently, we extend our analysis to encompass a broader
evaluation of schemes developed with sophisticated crypto-
graphic technologies such as secret sharing and Function
Secret Sharing.

First, we provide a comparison of communication overhead
for secure comparison protocols against several state-of-the-
art schemes based on secret sharing. [11], [57], [63], [64] use
the naive GC implementation for comparison without opti-
mization. CrypTFlow2 [47] has made considerable headway
toward scalable secure neural network inference with secret
sharing and OT. Cheetah [46] subsequently optimizes CrypT-
Flow2 with a more efficient OT technique for comparison
operation. ABY2.0 [44] utilizes the offline-online paradigm
and optimizes the comparison circuit with a new secret sharing

Client C Server S

Create a comparison circuit ෨𝐺CMP

Send ෨𝐺CMP and ෥𝑤𝑖
[𝑥]𝐶

Prepare garbled value ෥𝑤𝑖
[𝑥]𝐶 for share [𝑥]𝐶

OT
Input share [𝑥]𝑆Input {෥𝑤𝑗

0, ෥𝑤𝑗
1}

Receive ෥𝑤𝑗
[𝑥]𝑆

Evaluate ෨𝐺CMP with ෥𝑤𝑖
[𝑥]𝐶 and ෥𝑤𝑗

[𝑥]𝑆

Fig. 8. Secure Comparison

primitives. As shown in Table V, our scheme achieves
the same optimal number of communication rounds as GC-
based schemes while reducing communication overhead by
approximately 4×. In contrast to solutions [46], [47] that
prioritize reducing communication costs, our scheme requires
the fewest number of communication rounds. It is worth noting
that federated participants are often geographically distributed,
making it difficult to fully utilize the performance of [46]
through LAN assistance. In the WAN setting, the latency of a
single communication round becomes a bottleneck for running
secure multi-party computation. Therefore, using a scheme
with the fewest number of rounds offers a significant perfor-
mance advantage. Especially in such a pay-as-you-go cloud
computing scenario, we believe that there is realistic economic
benefit in reducing the overall communication overhead and
the number of communication rounds.

Then, we compare it with the Function Secret Sharing
(FSS) based schemes [65], [66], [67], [68]. Although these
methods present benefits regarding online communication
costs and the complexity of rounds, they are predicated on
the unrealistic premise of a trusted dealer for Distributed
Comparison Function (DCF) key generation in the offline
phase [68], or their applicability is confined to limited input
domains (Z2ℓ or smaller) [66], [67], thus significantly restrict-
ing their practical use. Moreover, the online phase under FSS
based schemes is characterized by an increased computational
burden for gate evaluation. To illustrate, FSS based models
require 16ℓ AES calls for gate evaluation by both entities
during the online phase, in stark contrast to our framework,
which necessitates only 4ℓ AES calls for evaluating our size-
optimized comparison circuit. This quadruple discrepancy in
computational demand highlights the superior suitability of our
model for federated environments, especially on edge devices
with limited resources.

APPENDIX D
PROOF OF THEOREM IV.1

Proof. When x < 2ℓ−1, the sign is assigned a wrong result
if [x]s ≤ 2ℓ − [x]c. This case occurs when [x]s = x + v
mod 2ℓ ≤ v, that is, (x + v) causes overflow. Given v
sampled uniformly at random from Z2ℓ , the error probability
Pr{G̃sign([x]s, 2

ℓ−[x]c, r) ̸= sign([x]s, 2
ℓ−[x]c, r)} is x

2ℓ
for

x < 2ℓ−1. Consider another case where x is a negative value,
that is, x ≥ 2ℓ−1 in the fixed-point representation. Similarly,
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TABLE V
COMPARISON WITH PRIOR WORKS FOR SECURE COMPARISON PROTOCOLS. κ IS THE CRYPTOGRAPHIC SECURITY PARAMETER ASSOCIATED WITH

STANDARD CRYPTOGRAPHIC PRIMITIVES, TYPICALLY 128. n REFERS TO THE NUMBER OF FOUR-INPUT AND GATES. FOR ABY2.0 [44], WE HAVE
x1 = 2n2 + 8n3 + 22n4 AND x2 = n2 + n3 + n4 , WHERE n2 , n3 , n4 DENOTE THE NUMBER OF AND GATES IN THE BIT EXTRACTION CIRCUIT WITH 2,

3, 4 INPUTS, RESPECTIVELY. FOR EXAMPLE, WHEN ℓ = 64, THE CIRCUIT NEEDS n2 = 41, n3 = 27 AND n4 = 47.

Protocol Work Setup Online
Comm Comm Rounds

Secure Comparison
over ring Z2ℓ

GC [11], [57], [63], [64] – 16ℓκ 2
CrypTFlow2 [47] – 3

2
κ(ℓ+ 1) + 31ℓ− 13 logℓ+ 2

Cheetah [46] – 4(13κ+ 712) + 4ℓ+ 2 logℓ+ 2
ABY2.0 [44] x1(κ+ 1) + ℓ ℓ+ 2x2 log4ℓ+ 1

Our work – 4ℓκ 2

the wrong sign occurs when [x]s = x + v mod 2ℓ ≤ v.
This case captures the error probability Pr{G̃sign([x]s, 2

ℓ −
[x]c, r) ̸= sign([x]s, 2

ℓ − [x]c, r)} = 2ℓ−x
2ℓ

for x ≥ 2ℓ−1.
In summary, for any x ∈ Z2ℓ , this design incurs the error

probability of |x|
2ℓ

.

APPENDIX E
PROOF OF THEOREM IV.2

Proof. Given n data point {(x1, idx1), · · · , (xn, idxn)}, the
first step of Algorithm 5 is to distribute n/α data points over
the choice of permutation π into each bin. We first consider
the case of the number of bins α = k/λ. Let A1 represent the
event that each bin contains at least one of the top-k elements.
With the assumption that δ is sufficiently small and k → + ∝,
we have:

Pr[A1] = 1− (1− 1

α
)k = 1− ek·ln(1−

λ
k )

= 1− e−λ+O(1/k) ≥ λ− λ2

2
+O(1/k)

where the third and fourth equations hold from the Taylor
series of ln(1 + x) and ex, respectively. It is known that
the calculation of each bin is independent of each other, the
desired expectation of α bins can be computed as follows:

E = α · Pr[A1] =
k

λ
· (λ− λ2

2
+O(1/k))

= k · (1− λ

2
) +O(1)

To fix the value of λ, the expectation is at least k · (1 − λ)
due to the assumption of k → + ∝.

To discuss in a more general case where r > 1,
we denote A2 as the event that the outputs of

(n
α
1

)
-

MIN{(xπ(i·nα+j), idxπ(i·nα+j))}n
α

(the third step of Algorithm
5) for all i ∈ [1, α] and j ∈ [1, n/α] include all elements
of

(
n
k

)
− MIN2{(xi, idxi)}n, k)}. Now, we can compute the

probability of the event A2 as follows:

Pr[A2] = (1− k

α
)(1− k − 1

α
) · · · (1− 1

α
)︸ ︷︷ ︸

k

= e
∑k

c=1 ln(1− c·λ
kr )

= e−
λ
kr ·

∑k
c=1(c+O( 1

kr ))

= 1− λ

2kr−2
+O(

1

kr−2
)

where the second step comes from α = kr

λ , and the third and
fourth steps are extended by the Taylor series of ln(1+x) and
ex. From this, we can conclude that in the case of r > 1, the
upper limit of the probability of occurrence of A2 is 1−λ. With
the increase of r, the result of ATopk({(xi, idxi)}n, π, k, α)
is exactly

(
n
k

)
-MIN2{(x1, idx1), · · · , (xn, idxn)} with higher

probability.
On the other hand, each comparison component is substi-

tuted with our lightweight comparison protocol described in
Section IV-D, instead of naı̈ve garbled circuit implementation.
Following with Theorem IV.1, ATopk({(xi, idxi)}n, π, k, α)
consisting of O(n+ kα) comparison circuits would introduce
the error probability of at least 1−(1− |max{xi}|

2ℓ
)(n+kα). Thus,

the proposed algorithm obtains exact results with probability
at least (1− λ)(1− |max{xi}|

2ℓ
)(n+kα).

APPENDIX F
PROOF OF THEOREM IV.3

Proof. Review the technical roadmap described in Fig.1, we
use secure aggregation protocol proposed by [9] to securely
compute the functionality FAgg, GC [11] and OT [29] for the
division functionality FDiv, as well as Beaver’s triple technique
[54] for the functionality FMul. Naturally, security follows
these works. For computationally intensive tasks, we modify
them for more efficient representations but keep their imple-
mentation tools unchanged. For example, we design a new
circuit representation for the secure comparison functionality
FCMP, and use the approximated top-k algorithm to reduce the
comparison circuit required. Both implementations are based
on GC and OT as described in Section II-C3. This implies that
the proposed protocols securely compute the functionalities
FCMP and FATopK in (FGC, FOT)-hybrid model against semi-
honest adversary. Also, we optimize FLORAM for efficiency
gains in the online phase by moving expensive generation
work (which was implemented by GC and OT as discussed
in Section IV-C) to the offline phase. Thus, our optimized
protocols securely achieves the functionalities FRead and FWrite
in (FBeaver, FGC, FOT)-hybrid model under the semi-honest
threat model.

To sum up, SeiFS securely performs the Gini impurity based
feature selection in the (FAgg, FGC, FOT, FMul, FBeaver)-hybrid
model under the semi-honest threat model.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3422850

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 08,2024 at 03:20:05 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related Work
	Contributions

	PROBLEM STATEMENT AND PRELIMINARIES
	Gini Impurity-based Feature Selection
	Secure Function Evaluation
	Secure Two-party Computation
	Secret Sharing Semantics
	Oblivious Transfer
	Garbled Circuit

	Double-masking Aggregation
	Distributed Oblivious RAM

	System Model
	Architecture
	Threat Model and Privacy Requirement

	SeiFS Design
	Technical Overview
	Encoding and Evaluating Feature Vectors
	Oblivious Reading and Writing via Improved FLORAM
	Lightweight Comparison Protocol
	Top-k Selection via Garbled Circuit
	Putting All Together

	Evaluation
	Experiment Setup
	End-to-End Evaluation
	Comparison against Naïve Approaches

	Conclusion and Future Work
	References
	Appendix A: Beaver's technique
	Oblivious Transfer based Beaver Protocol
	Homomorphic Encryption based Beaver Protocol

	Appendix B: Protocol of Secure Aggregation
	Appendix C: Comparison of size-optimized comparison circuit with Other Works
	Appendix D: Proof of Theorem IV.1
	Appendix E: Proof of Theorem IV.2
	Appendix F: Proof of Theorem IV.3

