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Abstract— There is an increasing tendency to fine-tune large-
scale pre-trained language models (LMs) using small private
datasets to improve their capability for downstream applications.
In this paper, we systematically analyze the pre-train and then
fine-tune the process of generative LMs and show that the
fine-tuned LMs would leak sensitive keywords of the private
datasets even without any prior knowledge of the downstream
tasks. Specifically, we propose a novel and efficient keyword
inference attack framework to accurately and maximally recover
sensitive keywords. Owing to the fine-tuning process, pre-trained
and fine-tuned models might respond differently to identical input
prefixes. To identify potential sensitive sentences for training the
fine-tuend LM, we introduce a contrast difference score that
assesses the response variations between a pre-trained LM and
its corresponding fine-tuned LM. Following this, we iteratively
fine-tune the pre-trained model using these sensitive sentences
to minimize the disparity between the target model and the
pre-trained model, thereby maximizing the number of inferred
sensitive keywords. We implement two types of keyword inference
attacks (i.e., domain and private) according to our framework
and conduct comprehensive experiments on three downstream
applications to evaluate the performance. The experimental
results demonstrate that our domain keyword inference attack
achieves a precision of 85%, while our private keyword inference
attack can extract highly sensitive personal information for a
significant number of individuals (approximately 0.3% of all
customers in the private fine-tuning dataset, which contains
40,000 pieces of personal information).

Index Terms— Language models, fine-tuning, sensitive key-
words, personal information leakage.

I. INTRODUCTION

THE rapid development of deep learning techniques in
Natural Language Processing (NLP) has led to significant

advancements in Language Models (LMs), making them fun-
damental to various NLP tasks, such as text classification [1],
[2] and question answering [3]. Recent popular LMs, such
as Google’s BERT [4] and OpenAI’s GPT family [5], are
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composed of multiple layers of Transformer blocks with
millions of parameters [6]. Pre-training these LMs on massive
text corpora collected from the Internet is a common prac-
tice [7]. Large-scale LMs can understand and generate fluent
natural language [8], and minor parameter updates enable
direct application to various downstream tasks. Pre-trained
LMs can additionally be fine-tuned on small private datasets
for domain-specific applications without incurring the high
costs of training from scratch [4].

Pre-trained language models (LMs) have become a popular
way to improve the utility of downstream tasks and appli-
cations. The pre-training and fine-tuning process simplifies
the training of LMs, and their public availability has led to
several proposed attacks [9], [10], [11], [12], [13]. These
attacks have shown that large, pre-trained LMs may memorize
and leak individual samples [12]. Two types of attacks are
possible: membership inference [9], [10], [14], [15], which
infers whether an individual is part of the training data, and
sample inference [12], [16], [17], [18], [19], [20], which
directly extracts information from the individuals included
in the training data. The latter poses a greater threat to
LMs than the former, as it enables the extraction of more
sensitive information beyond just the inclusion of a given
individual in the training data. However, previous research has
concentrated on establishing a minimum level of memorization
without distinguishing between leaked public and sensitive
information. For instance, leaking common or highly dupli-
cated phrases is not considered a privacy violation, whereas
leaking sensitive keywords of individuals is [21]. We believe
that a comprehensive study on the risk of sensitive keyword
memorization in LMs is lacking.

In this paper, we focus on analyzing the leakage of sensitive
keywords from the training data of LMs. Particularly, we con-
centrate on the fine-tuning process of LMs, in contrast to most
of the previous attacks that target the pre-training process.
This is because the extracted information from pre-training
datasets is often crawled from the Internet. However, com-
pared to the pre-training datasets, the small private dataset
used for fine-tuning is usually confidential and contains mas-
sive sensitive information that should be kept private. For
instance, an airline can fine-tune a text summary model from
a pre-trained LM using customer feedback to enhance its
customer service [22].

Multiple challenges arise when attempting to extract sensi-
tive keywords during the fine-tuning process. First, one can
easily download the pre-trained LM but usually only have
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TABLE I
TAXONOMY OF PRIVACY INFERENCE ATTACKS

black-box access to the fine-tuned LM. How to infer sig-
nificantly sensitive information (i.e., keywords) from limited
clues is a significant challenge. Second, instead of inferring
a small part of keywords, we want to recover as many
sensitive keywords as possible, thereby exacerbating the threat
of the attack. However, this goal is difficult to accomplish
without prior knowledge of the private dataset utilized in the
fine-tuning process.

To address the challenges, we design a novel and effi-
cient attack framework to infer sensitive keywords from the
fine-tuning process. Our framework can perfectly match the
black-box setting and does not require any prior information
about the targeted fine-tuned LM. It entails three core steps:
sensitive sentence identification, sensitive dataset construction,
and keyword extraction. We have leveraged the fact that
pre-trained and fine-tuned models may exhibit behavioral
differences for the same input prefix, owing to the fine-tuning
process. Therefore, we first capitalize on the memorability of
the target LM, which was fine-tuned on the private dataset, and
propose a novel contrast difference score to identify sensitive
sentences by comparing the responses of the pre-trained and
fine-tuned (target) LMs on the same inputs. To maximally
recover sensitive keywords, we fine-tune the pre-trained LM
with the identified sensitive sentences and iterate the above
process to reduce the difference between the latest fine-tuned
and target LMs, from which we construct the sensitive dataset.
This process could bridge the gap between the target LM and
the pre-trained LM, enabling us to identify more sensitive
sentences. We finally infer the keywords of the fine-tuning
dataset by identifying the keywords of the sensitive dataset.
To ensure reproducibility, we employ standard keyword extrac-
tion techniques for various forms of keyword inference attack.

In our attack experiments, we utilize our framework to
implement two types of sensitive keyword attacks: domain and
private. For our pre-trained LM, we employ a representative
LM GPT-2 [5] released by OpenAI. We conduct our attacks
on three specific downstream applications that are fine-tuned
using three different types of private datasets. Our compre-
hensive experiments and analysis demonstrate that our domain
keyword inference attack can infer domain keywords with a
precision of 85%. Furthermore, our private keyword infer-
ence attack can extract massive amounts of personal private

information from over 120 users, accounting for approximately
0.3% of all customers in the private fine-tuning data. Our
novel attacks that utilize the proposed contrast difference score
for sensitive keyword selection can extract up to 4 times
more personal private information than random selection and
100 times more than state-of-the-art attacks.

Our main contributions are as below:
• We initially investigate the risk of sensitive keyword

memorization in LMs and accordingly introduce the key-
word inference attack targeting the fine-tuning process.

• We propose a novel and efficient attack framework to
accurately and maximally recover sensitive keywords.

• We implement domain and private keyword inference
attacks on multiple downstream applications to evaluate
the effectiveness of our attacks.

Paper Organization. The rest of the paper is organized
as follows: Section II provides an overview of related works,
while Section III introduces some basic concepts relevant to
generative language models and their implementation in the
attacks presented in Section V. Section IV outlines the threat
model and the taxonomy of the attacks, and presents their
definitions. In Section V, we present the details of our domain
keyword inference attack and private keyword inference attack.
Our experiment results are presented in Section VI, followed
by conclusions in Section VIII.

II. RELATED WORK

Recent studies [12], [13], [14], [23] have exposed the
vulnerability of LMs to privacy attacks. These attacks can
be classified into two categories based on the target privacy
information they intend to reveal, namely inference attacks on
input and training data. Table I presents these attacks.

A. Inference Attacks on Input Data

LMs serve as common embedding models for extracting the
representation of input sentences. However, some inference
attacks [14], [23] have revealed that embedding codes store
information about the input data, including sensitive personal
information. For instance, [14] conducted a white-box and
black-box attack, training an inversion model that receives a
text embedding code and produces the private words within
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the input sentence. Sometimes, attackers may focus on specific
sensitive words appearing in the input data within the embed-
ding. Meanwhile, [23] developed an attack model against
embedding models, training it to detect sensitive information
from the word sequence’s embedding vector representation.

B. Inference Attacks on Training Data

Numerous studies have demonstrated that large language
models memorize the training data and it is possible to infer
sensitive details of the training data by assuming a reasonable
attack model.

1) Membership Inference Attacks: Membership inference
attacks [9], [10], [14], [15] aim to determine if a sample
belongs in the training dataset and these attacks have been
applied to target LMs. Reference [9] proposed a user-level
membership inference technique to enable LM auditing and
determine if one’s data was part of the training data. Discov-
ering that the training data’s words and sentences are more
similar to each other than those not used when training, [14]
designed a similarity score for identifying membership. More-
over, [15] evaluated the model’s memorization across various
fine-tuning approaches using a threshold-based membership
inference attack.

2) Sample Inference Attacks: Different from member infer-
ence attacks that have access to some private data and aim
to judge whether the private data is used to train the model,
sample inference attacks intend to extract sensitive training
samples from a given pre-trained or downstream LM, which
are more harmful and more difficult to conduct. Reference [12]
primarily focused on generative LMs available to the public,
using six metrics, such as perplexity, to establish and select
sensitive training data from the target model. To generating
more diverse samples from the LM, one of their text generation
strategies are feeding a prompt derived from internet scraping
data to the model. This sampling strategy ensures that they
will generate samples that are similar in nature to the type
of data GPT-2 was trained on. Reference [11] examined the
information leaks occurring in LM updates and proposed the
differential score metric to distinguish the variation between
the LM snapshots before and after the update. Reference [16]
tried to extract the private information of the training data
for fine-tuning pre-trained LMs by modeling the behavioral
changes between the pre-trained and fine-tuned LMs. Ref-
erence [17] developed two metrics to detect the user-level
data leak by measuring the model’s ability to produce unique
sentence fragments from the training data. They use each
sequence in the training data as prompt to run the model. Their
study revealed that data leakage hinges on various factors and
proposed some mitigation suggestions. Recently, studies have
elaborated on the leakage of personal data in masked language
models, particularly those trained using clinical BERT mod-
els [18], [19] or large language models [20]. All these studies
test the model using generic prompts to fill in masked tokens
that represent the private information they wish to recover.

Few studies have explored the memorization of private per-
sonal information through sensitive keywords. Such keywords
can be highly sensitive and their leakage can be damaging.
Therefore, in this paper, we concentrate on analyzing the

leakage of sensitive keywords from training data. On the other
hand, these attacks mainly focus on the process of model
pre-training, thus mainly extracting privacy information from
the training datasets of pre-trained models. These training
datasets, however, are usually large corpora crawled from the
public Internet, which has no access to particular and specific
users’ confidential information. Instead, we aim to analyze the
fine-tuning process and extracting the sensitive information
from these small fine-tuning datasets.

III. PRELIMINARIES

We will first present a primer on generative language mod-
els, followed by an introduction to utilizing zlib compression
and generative techniques to extract keywords from sentences.

A. Generative Language Models

Machine learning models that generate natural language
are used in various applications, including automatic caption
generation, language translation [24], and next-word pre-
diction [25]. Generative language models are autoregressive
and operate on a fixed set of known tokens, referred to
as the model’s vocabulary, denoted by V . They model the
probability of a sequence of tokens x1, . . . , xi as the prod-
uct of the per-token probabilities conditional on their prefix
Pr(xi |x1, . . . , xi−1):

Pr(x1, . . . , xi−1, xi ) =

n∏
i=1

Pr(xi |x1, . . . , xi−1) (1)

The Transformer neural network architecture [26] is used in
state-of-the-art language models. During training, one objec-
tive is to maximize the negative log-likelihood of the language
model predicting the next token in training sentences given a
prefix [27].

Equation 1 provides a probability distribution over all
tokens in the vocabulary V , which can be represented as a
tree with |V| branches at each level. To generate text, the
tree is traversed iteratively using greedy decoding [28], top-
k sampling [29], or a beam search algorithm [30], while
conditioning the language model on all preceding tokens.

Pre-training and fine-tuning are essential steps in devel-
oping state-of-the-art generative language models. During
pre-training, the model is trained on a significant amount
of unlabeled text data using a self-supervised learning
approach [4]. The objective of pre-training is to acquire
general language representations that capture the underlying
structure and patterns of natural language. Fine-tuning follows
pre-training and involves using a smaller labeled dataset to
train the model on a specific task, such as text generation
or language understanding. During fine-tuning, the pre-trained
model’s weights are updated based on the labeled data of
the specific task. This approach is known as transfer learn-
ing [31], as the model can leverage the pre-trained knowledge
to improve performance on the new task.

The process of pre-training and fine-tuning has gained pop-
ularity because it enables developers to train language models
using limited labeled data, which is often a significant bot-
tleneck in various NLP applications. The pre-trained models
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can capture diverse linguistic patterns and structures, allowing
them to generalize better to new tasks with limited training
data. Fine-tuning can then be performed on the specific task,
resulting in a model that is accurate and efficient.

B. Zlib Compression

Zlib [32] is a software library utilized to compress data
through the DEFLATE algorithm, found in gzip file com-
pression program [33]. The Zlib entropy is a measure of the
randomness and predictability of the compressed data, with
low entropy indicating higher compression rates. To determine
the entropy of data compressed using Zlib, a frequency table
is constructed, counting the occurrence of each symbol in
the uncompressed data. The probability of each symbol’s
appearance is then calculated by dividing its frequency by the
length of the data. This process can be formalized using the
following equation:

−

n∑
i=1

p(i) log2(p(i)) (2)

where p(i) is the probability of symbol i appearing in the
uncompressed data, and n is the total number of symbols.

The formula calculates the information entropy or
self-information for each symbol i . The sum of the information
entropy for all symbols provides the overall Zlib entropy value.
Text compressors can identify repetitive, meaningless, or unin-
teresting patterns [12]. To filter out such patterns, we suggest a
straightforward approach using Zlib compression. We estimate
the Zlib entropy of the text by computing the number of bits
of entropy when compressed with Zlib compression.

C. Keyword Extraction

Extracting keywords from large, diverse datasets with many
documents can be challenging. Traditional methods, such as
rule-based or frequency-based approaches, may not be ade-
quate. Instead, advanced techniques like generative extraction,
which employ machine learning algorithms to identify relevant
keywords based on statistical patterns and data relationships,
are becoming more popular in fields like natural language
processing and information retrieval. However, these meth-
ods can be computationally intensive and require substantial
amounts of training data. In this paper, we use KeyBERT and
NER-BERT as our keyword extraction models:

KeyBERT [34] utilizes BERT embeddings [35] and unsuper-
vised learning to extract keywords and keyphrases. Four main
steps are included as it works: (1)BERT-based embeddings: It
uses the pre-trained BERT model to generate contextualized
word embeddings for each sentence in the input text; (2)Sen-
tence clustering: KeyBERT then applies clustering algorithms,
such as k-means, to group similar sentences together based
on their embeddings; (3)Maximal Marginal Relevance (MMR)
scoring: After clustering, KeyBERT uses the MMR algorithm
to score each sentence based on its relevance and diversity
within each cluster; (4)Keyword extraction: Finally, KeyBERT
extracts the most important keywords or phrases from the top-
ranked sentences. KeyBERT provides an efficient and effective

way to extract the most informative keywords or phrases
from text data, making it a popular choice for tasks such as
document summarization and content analysis.

NER-BERT [36] is a pre-trained model designed named
entity recognition (NER). The approach integrates two pow-
erful deep learning models, BERT and a conditional random
field (CRF) and comprises four primary steps: (1) BERT-based
embeddings: It first uses the pre-trained BERT model to
generate contextualized word embeddings for each token in
the input text; (2) Fine-tuning BERT: Next, it fine-tunes
the BERT model for named entity recognition by training
it on labeled data; (3) CRF: A CRF layer considering the
dependencies between neighboring tokens is then added to
improve the overall accuracy of named entity recognition;
(4)Inference: Once the model is trained, it can be used to
predict named entities in new input text. NER-BERT has
achieved state-of-the-art performance on various named entity
recognition benchmarks and is widely used in natural lan-
guage processing applications such as information extraction,
question-answering, and sentiment analysis.

IV. THREAT MODEL

We consider the generative NLP scenario with the pretrain-
then-finetune learning strategy, where the pre-trained genera-
tive LM is trained on a large amount of unlabeled raw data and
then fine-tuned for downstream tasks with limited private data.
This includes domains such as natural language generation,
chatbots, content recommendation systems, and more, where
fine-tuning on private data is prevalent. Figure 1 illustrates the
architecture of our keyword inference attack, which comprises
the following entities. (1) Pretrained Generative Model F .
Existing popular generative LMs are mainly Transformer
variants, consisting of millions of learnable parameters. They
are pretrained on extremely large corpus such as the English
Wikipedia in a unsupervised mode [37], which allows the
models to learn more general features of the language. The
well-trained LM F can generate meaningful sentences when
given prefixes. In particular, given the i-th word/token, F
outputs the probability of the next token F(x1, . . . , xi ). With
the softmax operation, the probability of the next token is:

Pr(xi+1|x1, . . . , xi ) = softmax(F(x1, . . . , xi )) (3)

In our experiments, we adopt the widely used GPT-2 as
the pre-trained LM. (2) Downstream User. With the small
private dataset of a specific domain Dp, the downstream
user fine-tunes the pre-trained LMs and obtains the fine-tuned
LM Fp to enhance model performance on the corresponding
downstream applications or fields. Since training a large-scale
pre-trained LM are highly expensive, state-of-the-art well-
trained LMs are usually downloaded from publicly available
sources. Compared with the training data for pre-training, the
fine-tuning data is likely to contain more sensitive and private
information for the downstream applications.

A. Adversary Capabilities

We consider the fine-tuned generative LM as an oracle
in this study, with the adversary only able to access the
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Fig. 1. Our keyword inference attack: we infer sensitive keywords with the
black-box access of fine-tuned LMs.

target model through the black-box setting. In this study,
we assume that the adversary has access to the pre-trained
LM and can fine-tune it to some extent. The adversary can
simultaneously query the pre-trained and target LMs to gener-
ate word sequences and their probability, but cannot examine
the weights or hidden states of the target LM. Furthermore,
we assume that the adversary has no prior knowledge about the
fine-tuning dataset of the target model such as the distribution
and the size of the dataset. This threat model is highly practical
as various LMs can be queried by APIs in the black-box
setting. For example, many models of the GPT family can
be accessed in this manner. While certain models using users’
datasets have implemented privacy protection measures, such
as differentially-private training [38], [39], there is still a
substantial risk of private information leakage when these
models are released.

B. Attack Taxonomy and Goals

We consider two types of keyword inference attacks:
domain and private. The domain keyword inference attack
aims to infer the keywords of the finetuning dataset that
contain related domain sensitive information. With the domain
keywords, the adversary can profile the private fine-tuning
dataset, which can further reconstruct a similar dataset for
other malicious purposes. Alternatively, the private keyword
inference attack enables the adversary to infer more specific
user personal private information in the target dataset. Such an
attack would seriously violate the privacy of data owners who
voluntarily provide their private data for fine-tuning purposes.

1) Domain Keyword Inference Attacks: In our domain key-
words inference attack, the adversary is primarily interested
in inferring the domain-related keywords of the target dataset.
Contrary to extracting precise sections of the training dataset,
the goal of this attack is to indiscriminately extract the
keywords of the target dataset that related domain sensitive
information. For example, in the sentence “Women with early
breast cancer (less than 3 cm) and no palpable axillary nodes
were recruited”, “breast cancer” is considered the domain
keyword. By identifying the keyword, the adversary can infer
that the private dataset is likely related to the medical domain,
potentially involving surgeries or patient symptoms of breast
cancer, which facilitates profiling the fine-tuning dataset.

Thus, domain keywords can be highly sensitive, containing
confidential and unpublished information.

2) Private Keyword Inference Attacks: In contrast to
domain keyword inference attack, private keyword inference
attack is more specific and targeted. The adversary is more
curious about sensitive information of specific users, such
as their name, location, and organization, contained in the
fine-tuning dataset. This attack is much more challenging to
conduct than the domain keyword attack. By launching a
private keyword inference attack, the adversary can construct a
library of personal sensitive information gleaned from the tar-
get model, which is extremely harmful. For example, an airline
company wants to refine its customer service experience and
employs customer reviews to fine-tune a pre-trained language
model. If the adversary were to obtain customers’ personal
information contained in the reviews, such action would be
deemed a severe violation of customers’ privacy and even be
dangerous to personal safety.

V. KEYWORD INFERENCE ATTACKS

A. Overview

Although the pre-train and fine-tune paradigm provides a
direct and effective way to fine-tune and apply state-of-the-art
pre-trained generative LMs to the corresponding downstream
tasks and applications, we find this process is accompanied
by hidden privacy risks. We intend to analyze the fine-tuning
leakage and infer sensitive keywords of the private fine-
tuning dataset. Our key insights are two-fold. First, due to the
memorability of the fine-tuned model, we filter out sensitive
sentences by comparing the difference between the responses
of the pre-trained and fine-tuned LMs. Then we continuously
fine-tune the pre-trained LM to reduce the difference between
the new fine-tuned and target LMs to maximize the extraction
of sensitive keywords. We propose a novel keyword inference
attack framework to extract sensitive keywords of the private
fine-tuning dataset, which consists of the following three steps.

• Sensitive Sentence Identification. We generate a large
number of sentences by unconditional sampling from the
target model and then identify sensitive sentences from
the candidates.

• Sensitive Dataset Construction. We next iteratively run
the sensitive sentence identification process and use the
filtered sensitive sentences to fine-tune the pre-trained
model and merge all the sensitive sentences as the
sensitive dataset.

• Keyword Extraction. We further identify and filter the spe-
cific keywords of the sensitive sentences in the sensitive
dataset.

Figure 2 illustrates the pipeline of our keyword inference
attack framework. Details of all three sentence identification,
dataset construction, and keyword extraction steps follow
shortly in this section.

B. Sensitive Sentence Identification

1) Candidate Sentence Generation: We first generate can-
didate sentences by continuously feeding Fp with an empty
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Fig. 2. Pipeline of our keyword inference framework.

input “[ ]”. To increase the diversity of the generated sentences,
we randomly sample a token from the output tokens with top
k highest probability values (i.e., top-k sampling) [29] as the
last token of the next query. Then, we can obtain a sentence as
the candidate sentence by repeating the query process until Fp
outputs the [E O S] (end of the sentence) token or the sentence
length reaches the pre-set bound.

Determining the optimal value of k poses a challenging
task. A higher value of k results in Fp generating tokens
with lower confidence, which could lower the likelihood of
generating memorized samples. Nevertheless, a smaller k is
known to narrow down the diversity of candidate sentences.
Sentences with high diversity play a crucial role in maximizing
our ability to extract the target model’s memorized sensitive
keywords.

For example, in our experiments, candidate sentences often
contain numerous repetitive words when k is set to 20. To alle-
viate this issue, we implement a time-decay strategy to regulate
the token selection process. When generating a sentence,
we initially select a token at random from the top k + t most
probable tokens. Here, the variance parameter t acts as the
offset. Increasing the offset value enhances the diversity of
the model’s output. However, maintaining a consistently high
offset value throughout the sentence generation process may
cause the sampling process to deviate from the memorized
output. Therefore, we implement an offset that follows a
time-decay function [12], starting at t = 20 and reducing to
t = 10 within the first 10 tokens of the sequence. This strategy
enables the language model to explore high-diversity tokens
while still following high-confidence paths during sentence
generation.

2) Sensitive Sentence Identification: We initiate the process
by employing the target language model Fp to generate
candidate sentences, followed by querying the pre-trained lan-
guage model F with the prefixes of these candidate sentences
to replicate the sentence generation process. Through this
procedure, we acquire the candidate sentences along with their
corresponding probability vectors. The identification of sensi-
tive sentences is then facilitated by assessing the difference
between the probability vectors of F and Fp. Formally, for a
given candidate sentence S, we query the pre-trained language
models with the prefixes S[: l] of S. Next, we utilize the
strategy for the candidate sentence generation to select the
next token and record the corresponding probability value of

the selected token. This selected token is concatenated as a
new prefix S[: l + 1], and the pre-trained language models are
queried again with this new prefix of S. This process repeats
until the candidate sentence S is fully generated. Then, we can
obtain the probability vector of F to predict each token of
S[l :]. Note that the probability vectors of Fp can be obtained
during the generation of the candidate sentence. We denote
the probability vectors as θ and θ p.

To determine whether a sentence contains sensitive key-
words (i.e., a sensitive sentence), we exploit the fact that
F and Fp may have a behavioral difference for the same
prefix due to the fine-tuning process. Thus, to quantify the
such behavioral difference, we design a novel metric, Contrast
Difference Score. Concretely, we use the Kullback-Leibler
(KL) divergence [40] between two probability vectors θ and
θ p as the contrast difference score.

Definition 1 (Contrast Difference Score): Let F and Fp be
the pre-trained and fine-tuned LMs. S denotes the sentence that
is generated by F and Fp with the same prefix of length l.
θ and θ p are the probability vectors of F and Fp to generate
S[l :] and ω is the generated word. The contrast difference
score of F and Fp on S is defined as

Scon(θ ||θ p) =

∑
ω

P(ω|θ) log
P(ω|θ)

P(ω|θ p)
(4)

a) Selection rationale: The selsction of the contrast
difference sore as a method for sensitive sentence identification
in our study was driven by its efficacy and applicability.
A higher KL divergence score indicates a lower similarity
between two distributions and thus a higher contrast difference
score indicates a lower similarity between two probability
vectors, which illustrates how different F and Fp predict the
tokens in the sentence. Table II displays an example of the
contrast difference scores of two types of sentences, where
Fp is fine-tuned from GPT-2 using the PubMed dataset [41].
The private sentences in the table are from the fine-tuning
dataset Dp, while the public sentences are randomly selected
from the Internet. We can observe that the contrast difference
score of the sentence from Dp is much higher than that
from the Internet. To further investigate the validity and
generality of the contrast difference score, in our paper,
we randomly sampled about 4000 samples from the Pubmed
dataset (i.e., the fine-tuning dataset) and the SST-2 dataset
(a public dataset from the Internet recording movie reviews),
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TABLE II
CONTRAST DIFFERENCE SCORES OF DIFFERENT TYPES OF SENTENCES

Fig. 3. An example that illustrates the reason for our threshold setting for
sensitive sentence identification.

and then acquired the average of contrast difference scores as
1.05 and 0.28 respectively. This demonstrates the effectiveness
of our contrast difference score to distinguish sentences orig-
inating from to sensitive target datasets. Experimental results
on other different datasets (Pubmed, Rotten Tomatoes and
Skytrax) demonstrate the generalization ability of our contrast
difference score.

b) Addressing sensitivity: After computing the contrast
difference score of a sentence, it is necessary to utilize
a threshold value δ, to determine whether the sentence is
sensitive enough, i.e., contains sensitive keywords. There is
a potential risk associated with the sensitivity of the contrast
difference score to variations. If the threshold value of contrast
difference score is not appropriate, it might raise high false
negative/positive rate. To mitigate this, we conduct a compre-
hensive analysis of the distribution of the contrast difference
scores. The analysis reveals that the score distribution of both
candidate sentences and target sentences follow a Gaussian
distribution. Figure 3 illustrates the score distribution of gen-
erated sentences using the PubMed dataset. To minimize the
impact of dataset size differences between the target dataset
and our candidate dataset, we normalize the score distribution
of candidate and target datasets. Observations show that only a
relatively small number of sentences have contrast difference
scores greater than 0.5. Therefore, the threshold value, δ,
should be set in such a way that it minimizes both the false
positive and false negative rates. We determine the mean

µ and standard deviation σ of contrast difference scores
of generated sentences and set δ = µ + σ . This selection
ensures the elimination of massive low-sensitive sentences as
well as the retention of an adequate number of high-sensitive
sentences. As shown in Figure 3, the optimal value is at the
point (marked with a star symbol) where the area of the
false positive rate equals the area of the true positive rate
(the red line intersects the scored distribution of sentences in
PubMed dataset). The figure shows that our threshold closely
approximates the optimal value.

To maximize the information content of the sentence candi-
dates and minimize the generation of useless content such as
“repeated” strings, we employ the zlib entropy [32]. Specif-
ically, we calculate the zlib entropy of the sentence which
represents the number of bits of entropy when the sequence
undergoes compression using zlib compression. This method
is useful for identifying sentences with repeated patterns and
meaningless strings. By combining the contrast difference
score and zlib entropy, we can filter out generated sentences
that are less likely to contain sensitive keywords.

C. Sensitive Dataset Construction

Although we can identify sensitive sentences using the con-
trast difference scores, the corresponding sensitive keywords
may be repeated and we cannot determine whether the number
of sensitive keywords reaches the limits of our attack. To effi-
ciently and maximally infer sensitive keywords, we propose
to iteratively run the sensitive sentence identification process
and fine-tune the pre-trained LM F using the filtered dataset
at each iteration. The pre-trained LM can be continuously
fine-tuned to reach the target LM Fp and follow its prediction
probability. The newly identified sentences thus own lower
and lower contrast difference scores in the iterative process
and are helpful to reduce the repetition and maximize the
extraction of sensitive keywords. This strategy isn’t reliant
on rigorous calibration to bypass overfitting. Actually, the
objective of iteratively fine-tuning the pre-trained model is to
accentuate the disparities between this model and the target
model, from which we seek to derive keywords. Consequently,
the performance of the pre-trained model doesn’t hold primary
significance in the context of our method and experiments.
We finally merge all sentences in the filtered datasets as our
sensitive dataset for further sensitive keyword identification.

D. Keyword Extraction

After constructing the sensitive dataset, we can use various
detection methods to extract the sensitive keywords depend-
ing on what types of keywords we want. In the following,
we implement the above two types of keyword inference
attacks according to the proposed attack framework.

1) Domain Keyword Inference Attack: We detail our imple-
mentations for the domain keyword inference attack below.
We first identify sensitive sentences and construct the sen-
sitive dataset that contains domain keywords. Then, we use
KeyBERT1 to extract keywords from our sensitive dataset.

1https://maartengr.github.io/KeyBERT/index.html
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We collect the extracted keywords to generate our domain
keyword dataset for further inference.

2) Private Keyword Inference Attack: We detail our
implementations for the private keyword inference attack
below. (1) Named entity extraction. After iden-
tifying sensitive sentences and constructing the sensitive
dataset, we use NER-BERT to extract the named enti-
ties sentence by sentence. Then, we collect the words
of name, location, and organization in the sensitive
dataset. (2) Privacy information restoration.
After the named entity extraction, we use the name, loca-
tion, or organization words as the inputs to query the target
model and we can get the sentences that may contain
more information such as country, date, and other private
information. For example, ‘P Howell’ and ‘K Nguyen’ are
first obtained in the name list. We then input these words
as prefixes into the target model one by one and output
the most likely next word each time, that is, to set top-
k to 1. (3) Privacy repository construction.
After restoring privacy information, we extract useful infor-
mation from the private sentences to construct a private
repository. To this end, one way is to extract relevant infor-
mation based on the rules of the generated sentence format.
More specifically, after the privacy information reconstruction
process, most of the sentences we recover will have a similar
structure. For example, we may obtain this kind of sentence:
‘P Howell is a Germany who flew on adria-airways on
2015-04-10 and says Outbound flight . . . ’. Therefore, we can
match and extract sensitive personal information based on this
sentence pattern. Of course, not all sentences follow this fixed
format. To maximize the extraction of sensitive keywords,
we can thus exploit the other way, i.e., NERBERT to identify
and extract other useful information based on the semantics
of the sentence.

VI. EXPERIMENTS

This section evaluates the proposed domain and private
inference attacks from different aspects. Firstly, we introduce
the common experimental setup, including the models and
baselines used. Next, we present the specific configurations
and experimental results of the domain and private inference
attacks. The code and data used in this paper are available at
https://github.com/zzrhh/keyword_inference_attacks.

A. Models

We evaluate our keyword attacks on LMs that are fine-tuned
from pre-trained GPT-2 provided by OpenAI through the
Huggingface Model Hub.2 All experiments are conducted on
LMs that are trained on the next-word prediction task and
pre-trained on the WebText [5] dataset, which consists of
40GB of English text scraped from the Internet. GPT-2 uses
a byte-pair encoder [42] for tokenization. More specifically,
we conduct experiments with GPT-2 small (124M parameters)
and follow the common way of fine-tuning to fine-tune the
entire model each time. We implement our keyword inference

2https://huggingface.co/gpt2

attacks in the black-box settings. We set an adaptive prefix
length of sentences and the default value is set as the half
length of each sentence, i.e., l =

|S|

2 (1/2, for short), where
|S| denotes the length of the sentence S. We retain about 84%
of the meaningful sentences using the zlib entropy.

B. Baselines

We implement the following keyword inference attacks as
baselines.

• Random: the method that randomly selects the generated
sentences from the target LMs for further keywords
extraction;

• Non-iteration: the simplified version of our attack which
does not use the filtered dataset to fine-tune the pre-
trained LM in each iteration of the sensitive dataset
construction.

• Sample recovery [12]: the attack exploiting the model’s
memorization ability to recover training samples of large
pre-trained LMs. As a baseline in this paper, we transfer
this attack to target the fine-tuning model.

• Ours: the attack proposed in Section V.

C. Domain Keyword Inference Attack

1) Configurations: We fine-tune GPT-2 with 100,000 sen-
tences for each downstream application and generate 20,000
candidate sentences by querying each target LM in each
iteration of the sensitive dataset construction. During the text
generation process, the top-k sampling algorithm was utilized
with a value of k set to 20 and an offset t (as described
in Section V) set to 10. Furthermore, in each iteration, the
model F will undergo 200 epochs of fine-tuning. For sen-
sitive datasets, the KeyBERT model will be used to extract
keywords, where each sentence corresponds to a keyword.
In addition, we provide details of the other specific exper-
imental setup, including the datasets and evaluation metrics
used.

a) Datasets: The evaluation spans datasets from the
medicine and movie domains: (1)PubMed [41] consists of
approximately 200,000 abstracts of randomized controlled
trials, totaling 2.3 million sentences. Each sentence of each
abstract is labeled with their role in the abstract using one of
the following classes: background, objective, method, result,
or conclusion; (2)Rotten Tomatoes3 consists of approximately
17,000 movies and their related critic reviews scraped from
Rotten Tomatoes.

b) Metrics: We evaluate our domain keyword inference
attack performance using Recall, Precision, and F1 score.
Consistent with the attack definition, we specify members
(i.e., the extracted keywords that appear in private datasets)
as positive data points and non-members (i.e., the extracted
keywords that disappear) as negative data points. Precision is
the ratio of predicted correct keywords to all keywords in our
constructed sensitive dataset, Recall is the ratio of predicted
correct keywords to all keywords in the target dataset, and

3https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-
movies-and-critic-reviews-dataset
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Fig. 4. Overall performance of our domain keyword inference attack on the
medical dataset PubMed.

TABLE III
OVERALL EVALUATION OF OUR DOMAIN KEYWORD INFERENCE ATTACK

F1 score [43] is the harmonic mean of precision and recall.
Precision measures the attacker’s confidence that a generated
keyword also appears in the target dataset while Recall focuses
on the number of sensitive keywords in the target dataset that
are at risk of being extracted.

2) Evaluation Results: Using Precision, Recall, and F1
score, we first evaluate the overall performance of our domain
keyword attacks against medicine and movie applications. The
results are shown in Figure 4 and Table III. We also analyze
the advantage of extracting phrases other than keywords from
the datasets, as shown in Table V. Finally, we evaluate the
effectiveness of different fine-tuning methods used, as depicted
in Figure 5.

a) Overall evaluation: Figure 4 depicts the performance
of our domain keyword inference attack on the medical
dataset PubMed. In each iteration, we use KeyBERT to
extract domain keywords from the sensitive dataset. We pro-
vide the corresponding Recall, Precision, and F1 score with
respect to each iteration on our sensitive dataset, as shown
in Figure 4 (a), 4 (b), and 4 (c), respectively. Meanwhile, the
Recall of newly generated keywords in each iteration is also
illustrated in Figure 4 (d) to demonstrate the advantage of our
attack using fine-tuning operations to extract more sensitive
keywords for each iteration. Among all baselines involved, our
proposed attack attains the highest Recall, Precision, and F1
score in almost every iteration, especially after 10 iterations,
our attack can gain a definite advantage. We owe the improved
performances to using our contrast difference score to identify
sensitive keywords. Moreover, the result in Figure 4 (d)

TABLE IV
OVERALL EVALUATION OF JAILBREAK ATTACKS

demonstrates that our proposed method can outperform the
baselines attaining the highest Recall to extract new keywords
in iteration. This is achieved by using the obtained filtered
dataset to fine-tune the pre-trained LM.

Table III further demonstrates the specific results of Pre-
cision, Recall, and F1 scores among three methods after the
final iteration. It shows that our constructed sensitive dataset
contains more domain keywords than the ones derived from
the baselines. Our proposed method, which utilizes the contrast
difference score to select sensitive sentences, achieves an
3.34% improvement in F1 score compared to the baseline
approach of random selection (Random). Meanwhile, the pro-
posed strategy that exploits the filtered dataset to fine-tune the
target model can obtain a 3.06% gain compared to not doing so
(Non-iteration). Furthermore, our method performs better than
the existing attack against pre-trained LMs (Sample recovery),
which attains an improvement of 3.05% in the F1 score. More
specifically, Our pipeline runs for only 10 iterations, after
which we obtain a sensitive dataset containing 4,651 sentences.
We can extract an equal number of keywords from these
sentences. In comparison, our training data includes 85,292
sentences (excluding some meaningless characters). Conse-
quently, although our precision can reach 100%, our recall is
constrained to 5.45% (4561/85292). Thus, when dealing with
a large training dataset, achieving a high recall in a limited
number of iterations is challenging. However, as depicted
in Figure 4 (b), our method maintains a stable precision as
the number of iterations increases. Therefore, if the training
dataset comprises fewer sentences or if we run more iterations,
we can achieve a higher recall without sacrificing precision,
which we believe is more critical in a black-box setting for
keyword extraction. This ensures confidence in the extracted
keywords. Additionally, after 10 iterations, our recall is 3.91%,
which is already very close to the maximum value (5.45%)
of recall. We also observe similar results on Rotten Tomatoes,
which further illustrates the versatility and effectiveness of our
attack.

Moreover, we also conducted experiments related to jail-
break attacks [44], which aim to manipulate the large language
model to generate unintended responses. Our comparative
experiment with jailbreak attacks (refer to Table IV) substan-
tiates the effectiveness of our attack. Specifically, we utilized
five mainstream jailbreak methods (AIM, Base64, PI, Zulu and
RWA) in large language models (LLMs) for comparison.

• AIM: An unfiltered and amoral prompt [45].
• Base64: This involves obfuscating the prompt through

Base64 encoding to bypass the safety mechanisms of
LLMs [46].
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Fig. 5. Impact of the finetuned methods on the performance of our domain
inference attack.

• PI (Prefix Injection): This method requires LLMs to start
the answer with a specific prefix [46].

• Zulu: This refers to using a low-resource language for
jailbreak attacks [47].

• RWA: Repeat Words Attack.4

Table IV clearly demonstrates that the jailbreak attacks
did not yield results as satisfying as ours. This comparison
accentuates the superiority of our approach over traditional
jailbreak methods.

b) The advantage of extracting phrases: On the other
hand, we also use the KeyBERT to extract phrases other
than individual words as keywords to show the effectiveness
of our attack. In this case, our attack is able to obtain
more sensitive information, which could pose a more serious
threat to the target model. Table V displays the extracted
phrases from the sensitive dataset using our method, along
with the target sentences they appear in. We observed that
the extracted keywords are highly informative as they contain
detailed information about symptoms, drugs, and the hospital.
Disclosing such information can lead to significant information
leakage. For instance, if we only extract the keyword ‘eyes’,
we will only know that the text pertains to eyes. However,
if we extract the phrase ‘dry eye’, we can deduce that this
text belongs to the medical domain, and could possibly be
from a private dataset that contains information regarding
patients with dry eye symptoms. It is essential to note that
dry eye is a common symptom, however, if the target dataset
comprises rare and sensitive diseases (such as AIDS) or
drugs that are still undergoing clinical trials, the extraction
of such information by an adversary can significantly violate
a patient’s privacy and lead to severe consequences.

c) Impact of fine-tuning methods: We also investigate
the impacts of different fine-tuning methodologies in our
domain keyword inference attack. GPT-2 model has 12 blocks,
we thus apply four different settings to fine-tune using the first
block(head), block 8-12(4 blocks), block 4-12(8 blocks), and
all blocks(full) respectively, which has covered common fine-
tuning approaches. Figure 5 shows the corresponding results.
It can be seen from the figure that fine-tuning the entire
model or just eight blocks of the model results in similar
performance. However, when fine-tuning a smaller number of

4https://www.zdnet.com/article/chatgpt-can-leak-source-data-violate-
privacy-says-googles-deepmind/

TABLE V
COMPARISON BETWEEN THE SENTENCES OF PUBMED AND THE

SENSITIVE DATASET IDENTIFIED BY OUR DOMAIN
KEYWORD INFERENCE ATTACK

TABLE VI
IMPACT OF THE KEYWORD EXTRACTION METHODS

ON THE PERFORMANCE OF OUR DOMAIN
KEYWORD INFERENCE ATTACK

blocks(head or 4 blocks), our domain keyword inference attack
becomes less effective.

d) Impact of keyword extraction methods: We also inves-
tigate the impacts of different keyword extraction methods
in our domain keyword inference attack. We compared our
keyword extraction methods with some mainstream methods.
TextRank [48] is an algorithm based on PageRank [49],
which is often used in keyword extraction and text sum-
marization. Term Frequency - Inverse Document Frequency
(TF-IDF) [50] is a widely used statistical method in natural
language processing and information retrieval. It measures
how important a term is within a document relative to a
collection of documents. Yake [51] is a light-weight unsu-
pervised automatic keyword extraction method which rests
on text statistical features extracted from single documents
to select the most important keywords of a text. Table VI
shows the corresponding results. We noted that the selection
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TABLE VII
SAMPLES OF RECONSTRUCTED SENSITIVE LIBRARY BY OUR

PRIVATE KEYWORD INFERENCE ATTACK

Fig. 6. Overall performance of our private keyword inference attack on the
airline dataset.

TABLE VIII
THE NUMBER OF PASSENGERS’ NAMES ASSOCIATE WITH AIRLINES,

DATES OR COUNTRIES EXTRACTED BY OUR PRIVATE KEYWORDS
INFERENCE ATTACK ON THE AIRLINE DATASET

Fig. 7. Personal entity extraction and fine-tuning blocks comparison on
airline dataset.

of the keyword extraction model did influence the results to a
certain degree. Our keyword extraction methods (KeyBERT)
exhibited compelling performance across this attack. Impor-
tantly, the selection of the keyword extraction method did not
significantly influence our final results.

D. Private Keyword Inference Attack

1) Configurations: For our private keyword inference
attack, our target dataset contains about 40,000 sentences. For
each iteration in the sensitive dataset construction, we generate
10,000 candidate sentences by querying each target LM.
We use the top-k sampling algorithm with k set to 20 and t set
to 10, similar to the domain keyword inference attack. Addi-
tionally, we fine-tune the model F for 200 epochs. To identify

name, location, and organization information in the sensitive
dataset, we utilize NER-BERT during the keyword extraction
process. We then use top-1 sampling to generate related
sentences and extract relevant information using NER-BERT
and grammatical rule-based methods. This information is used
to build our privacy repository. We next provide details about
the dataset and the evaluation metric used.

a) Dataset: The evaluation is conducted against an air-
line dataset Skytrax.5 It is a scraped dataset created from all
user reviews found on Skytrax which consists of 41396 Airline
Reviews.

b) Metric: In particular, for the private keyword infer-
ence attack, as we are extracting the private information of
a specific individual, we use the extracted user’s name as
a keyword to identify whether the individual appears in the
target training dataset and record the number of correctly
extracted keywords as a metric to evaluate the performance
of this attack.

2) Evaluation Results: With the extracted private keywords,
we can build a quadruple sensitive library ([name, country,
date, airline]) (see Table VII). In the end, we have constructed
a sensitive library including around 5,000 pieces of private
information of individuals. We compare our built library and
the target dataset and pick up the individuals that appear in
our library and a target private sentence at the same time, the
specific counts are delineated in Figure 6. We further analyze
the advantage of using the extracted named entities to query
the target model for further information recovery (as shown
in the ‘privacy information restoration’ step of our private
keyword inference attack). This essentially means that we can
obtain additional contextual information by inputting the ini-
tially extracted named entities into the target model. Table VIII
and Figure 7 (Left) list the corresponding number of correctly
extracted private keywords using given contextual information
and not. We finally evaluate the impacts of different fine-tuning
methods used, as delineated in Figure 7 (right).

a) Overall evaluation: The target dataset and our con-
structed sensitive library typically contains multiple records
for an individual passenger. Therefore, to fairly assess the
effectiveness of our proposed approach, we only consider
one relevant piece of information for each passenger when
counting the number of correctly predicted keywords.

Figure 6 reports the performance of our private keywords
inference attack on the airline dataset. As shown in Figure 6
(Left), the performance of our private keyword inference
attack is much better than the method without fine-tuning
(i.e., Non-iteration), random selection (Random) and existing
attack method (Sample recovery). After 10 iterations, more
than 100 passengers’ personal information can be recovered
using our attack, which is almost 100 times that of the Sample
recover’s result, and it is also much larger (4 times) than the
number that Random and Non-iteration attain. Moreover, the
number of newly generated keywords in each iteration is also
illustrated in Figure 6 (Right) to demonstrate the advantage of
our attack using the fine-tuning operation for each iteration.
The existing attack method((Sample recovery)) that mainly

5https://github.com/quankiquanki/skytrax-reviews-dataset
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focuses on pre-trained LM seems cannot directly apply to
extract personal private information as its performance is even
inferior to the Random and Non-iteration. Sample recovery
only acquires few new keywords in each iteration or even
fails to extract new keywords in some rounds. On contrary,
our attack using the fine-tuning operation in each iteration
can maximally and effectively extract sensitive information,
which constantly extracts more new keywords in each iteration
compared to the baselines.

b) The advantage of using contextual information: We
have also discussed the difference between extracting contex-
tual information from the target model to aid in subsequent
information recovery and directly extracting keywords in the
initial keyword extraction stage. In other words, we have
discussed the difference between utilizing the ‘privacy infor-
mation restoration’ step and not doing so. Intuitively, utilizing
the target model to gather contextual information for future
information recovery can increase the likelihood of extract-
ing additional information about an individual, such as their
country, airline, and date from the target airline dataset. In this
experiment, we recorded the number of individuals correctly
extracted with and without using contextual information, and
the results are presented in Table VIII. Specifically, we exploit
three settings with Name, Name + [airline, date, countr y]

1

and Name + [airline, date, countr y]
2. The setting Name

means that we only extract names from the target dataset.
The setting Name + [airline, date, countr y]

1 means that
in addition to the passengers names, we also extract one of
the pieces of information from the list [airline, date, country]
associated with the names contained in the target dataset. Sim-
ilarly, the setting Name + [airline, date, countr y]

2 means
that we extract two pieces of information from [airline, date,
country] that are associated with the name in the target dataset.
Table VIII shows a significant difference between using and
not using contextual information. The direct extraction method
may be suitable for extracting a single keyword (name), as it
has successfully extracted 175 passenger names from the
target airline dataset. However, it is incapable of extracting
more relevant information as it can only acquire 3 records
with Name + [airline, date, countr y]

2. In contrast, our
method using the target model to obtain contextual information
achieves a significant improvement, as it extracts 50 individ-
uals with Name + [airline, date, countr y]

2 records. In real
life, obtaining more associated information for a passenger can
pose a greater threat to their privacy. Thus, our attack, which
utilizes the target model to acquire contextual information, can
be even more harmful to personal information. Figure 7(Left)
shows the total counts of correctly extracted individuals with
the name plus two or more pieces of information from [coun-
try, date, airline]. It also illustrates that using the target model
to obtain contextual information can facilitate the retrieval of
more relevant private information for the target individuals.

c) Impact of fine-tuning methods: To have a full analysis
of fine-tuning leakage, we also investigate the impacts of
different fine-tuning methodologies in our private keyword
inference attack. The same as the impact of domain keyword
inference attack, we also apply four different settings to
fine-tune using the first block(head), block 8-12(4 blocks),

Fig. 8. Impact of the keyword extraction methods on the performance of
our private keyword inference attack.

TABLE IX
OVERALL EVALUATION OF THE NUMBER OF QUERIES

TO THE FINE-TUNED MODEL

block 4-12(8 blocks), and all blocks(full) respectively.
Figure 7(Right) shows the corresponding results. It is obvi-
ous that fine-tuning 8 blocks will leak more private dataset
information to our private keyword inference attack while only
fine-tuning the first block (head) would make our attack less
effective.

d) Impact of keyword extraction methods: We also inves-
tigate the impacts of different keyword extraction methods in
our private keyword inference attack. Similarly to the domain
keyword inference attack, we selected another three different
methods to conduct our experiment. NLTK [52] is widely
used in academia and industry for name entity recognition.
RoBERTa [53] builds on BERT and modifies key hyperparam-
eters. Stanford NER [54] is a tool provided by the Stanford
NLP Group that is used for identifying named entities in text.
Figure 8 shows the corresponding results. It can be seen from
the figure that our keyword extraction methods (NERBERT)
exhibited compelling performance across this attack. Similarly
to the domain keyword inference attack, the selection of the
keyword extraction method did not significantly influence our
final results.

VII. DISCUSSION

In the previous evaluations, our attack has demonstrated
its effectiveness as well as its strong generalization ability.
Furthermore, to obtain a comprehensive understanding of our
keyword inference attacks, in this section, we focus on explain-
ing the practicality of our threat model and the profound
privacy implications brought by our attacks. The details are
demonstrated as follows:

A. The Practicality of Our Threat Model

Our proposed attack model relies on the assumption of
having access to the pre-trained model and the ability to
fine-tune it multiple times. This threat model is highly prag-
matic as various pre-trained language models such as Bert
and GPT, are readily available. Fine-tuning these models

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 16,2024 at 01:46:23 UTC from IEEE Xplore.  Restrictions apply. 



5178 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

for downstream tasks, such as text generation, translation,
and text classification, is straightforward and requires few
computational resources. For example, a relatively simple task
(e.g. text classification) with a moderate dataset might be
achievable on a single high-end GPU or a cloud-based GPU
instance [4].

To realize our attacks, we present the details on time
complexity. In the following parts, we denote the length of
a sentence s as L(s), the total number of generate sentences
as n, and the total number of sensitive sentences we filtered
in sensitive dataset is denoted as m. We designed a pipeline
comprising three steps: 1)Sensitive Sentence Identification,
2) Sensitive Dataset Construction, 3) Keyword Extraction.
The time complexity of Sensitive Sentence Identification is
O(n × L(s)), Sensitive Dataset Construction is O(n), and
Keyword Extraction is O(m). As the steps are executed
sequentially, the overall time complexity of the pipeline is
O(n × L(s) + n + m). Specifically, we utilized the NVIDIA
GeForce RTX 3060 as our testing device. In each iteration,
our queries totaled approximately 20,000, incurring a cost of
merely about 0.07 GPU-days. This implies that the execution
of our process is not significantly time-consuming.

We also analyzed the time taken with different numbers of
queries. As shown in Table IX, an increase in the number of
queries necessitates a longer duration to generate and identify
sensitive sentences. However, even for 30,000 queries, the time
consumption is only 0.13 GPU-days, which is not significantly
high. During the extraction process, the time cost remains
minimal, estimated in tens of milliseconds, with negligible
differences observed across varying numbers of queries.

B. The Profound Privacy Implications

In our domain keyword inference attack, although we
observe only over a 3% improvement (PubMed) and a 6%
improvement (Rotten Tomatoes) in F1 score in our domain
keyword inference attack, it is imperative to highlight the
profound privacy implications that even such seemingly small
proportions can have. Typically, training a language model
with good generalization necessitates a large amount of data.
Therefore, when this improvement is applied to large training
datasets, it might lead to considerable leakage of training
data. In our experiment, we have recovered a total of 3,335
keywords on which the target model is trained on PubMed,
whereas for the baseline sample recovery, it only recovered a
total of 1,791 keywords.

Moreover, although we only extract about 0.3% personal
information in our private keyword inference attack, it is
imperative to highlight the profound privacy implications even
such a seemingly small proportion can have. For example,
an adversary extracting sensitive personal information of pas-
sengers, including flight details, nationalities, and names, can
expose individuals to multiple threats such as identity theft,
phishing attacks, authentication issues, personal reputation
harm, and potentially tracking and surveillance. Moreover,
training a language model with good generalization typically
necessitates a large amount of data. Therefore, when this
proportion (0.3%) is applied to large training datasets, it might
lead to considerable leakage of personal information. In our

experiment, We extracted 128 correct pieces of personal
information, accounting for 0.3% of the original training set,
of which 40,000 pieces of personal information were used for
training.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel keyword inference attack
framework to extract sensitive keywords by analyzing the
fine-tuning leakage of the pre-train and then fine-tuning the
paradigm. We first identify sensitive sentences using a care-
fully designed contrast difference score and the zlib entropy.
We fine-tune the pre-trained LM to approximate the target
model and maximally extract sensitive keywords. We imple-
ment two types of attacks according to our framework: domain
and private keyword inference attacks. We also conduct
comprehensive experiments on three types of downstream
applications to empirically evaluate the performance of our
attacks. We hope our attacks can attract the attention of
researchers in the fine-tuning leakage and heat the arms race
between privacy attacks and defenses. Our future work is
to extend our current threat model structure to encompass a
broader range of attacks and find correspond defend strate-
gies to mitigate these risks by meticulously considering the
data utilized for fine-tuning, implementing privacy-preserving
techniques, and adhere to best practices for model deployment.
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