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Abstract—Fueled by its successful commercialization, the recommender system (RS) has gained widespread attention. However, as
the training data fed into the RS models are often highly sensitive, it ultimately leads to severe privacy concerns, especially when data
are shared among different platforms. In this paper, we follow the tune of existing works to investigate the problem of secure sparse
matrix multiplication for cross-platform RSs. Two fundamental and critical issues are addressed: preserving the training data privacy
and breaking the data silo problem. Specifically, we propose two concrete constructions with significantly boosted efficiency. They are
designed for the sparse location insensitive case and location sensitive case, respectively. State-of-the-art cryptography building blocks
including homomorphic encryption (HE) and private information retrieval (PIR) are fused into our protocols with non-trivial
optimizations. As a result, our schemes can enjoy the HE acceleration technique without privacy trade-offs. We give formal security
proofs for the proposed schemes and conduct extensive experiments on both real and large-scale simulated datasets. Compared with
state-of-the-art works, our two schemes compress the running time roughly by 10× and 2.8×. They also attain up to 15× and 2.3×
communication reduction without accuracy loss.

Index Terms—Private computing, Cross-platform recommender systems, 2PC, Homomorphic encryption.
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1 INTRODUCTION

THE recommender system (RS) [1] has become an essen-
tial tool, providing accurate and personalized recom-

mendations for large-scale users. By simplifying decision-
making, RSs help users navigate vast amounts of avail-
able options, offering suggestions based on their spending
history. Major tech companies like Amazon, Google, and
ByteDance utilize RSs to target potential consumers, driving
significant commercial benefits and enhancing user experi-
ences across various applications [2], [3], [4]. Incorporating
social data into training datasets, alongside rating data,
further improves prediction accuracy [1], as users often
share preferences with close friends. This paper refers to this
approach as cross-platform RSs, a concept proven effective
in real-world deployments [1], [4].
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While cross-platform RSs offer significant benefits, two
major challenges hinder their rapid development. The first
issue is the privacy concern introduced by the gathering and
use of sensitive personal data especially when the data are
transferred between two enterprises. The sharing of either
social or rating data significantly raises the risk of informa-
tion leakage, and breaches of user privacy are very likely. In
some areas that have strong privacy cultures such as Europe,
the use and transfer of personal data are strictly constrained
by law (e.g., GDPR [5]). As a result, preserving data privacy
in cross-platform RSs is paramount. The second issue is that
the training data are extremely sparse, especially the social
data. For instance, the social density in the commonly used
testing dataset LiThing [6] is roughly 0.02%. The problem
becomes more challenging in the privacy-preserving con-
text. Specifically, if the conventional secure multiparty com-
putation (MPC) [7] or homomorphic encryption (HE) [8],
[9] is applied, we can train the RS model in a private way.
However, this line of works [10], [11] can hardly leverage
the data sparsity as the datasets are either encrypted or
shared. In consequence, prohibitive resource consumption
becomes a longstanding unsolved problem. In this paper,
we aim to conquer this dilemma by proposing schemes that
fully exploit the data sparsity to boost efficiency, yet offer
strong privacy preservation.

1.1 Related Works

In this paper, we focus on the collaborative filtering (CF)
model [1] within the RS framework [12]. This model factor-
izes the rating matrix into two matrices to predict missing
data. In the cross-platform setting, one party holds the rating
data, and the other holds the social data; they collaboratively
train the CF model. The core task of the process is securely
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computing matrix multiplication between the two parties.
Several methods [13] have been developed to address this
problem. In the following paragraphs, we review related
works and analyze their strengths and limitations.

Early work proposed by Jumonji et al. [11] turned to
use fully HE (FHE) [14] to enable recommendation on the
CF model without decryption during processing. To alle-
viate the heavy computational and communication loads
brought by FHE, multiple messages are packed as one
to compress the encryption/decryption costs. Huang et al.
proposed uSCORE [15], an FHE based scheme for the
data unbalanced scenario, that delegates most computa-
tional load to the service provider. In addition, a fast secure
matrix multiplication algorithm is designed atop the secure
sparse SVD optimization [16]. Due to the use of packing
methods [17], the ciphertexts have to be rotated to obtain the
encrypted results. Commonly, massive rotations are needed
for FHE enabled matrix multiplication. Hence, this becomes
the performance bottleneck.

However, the data sparsity is rarely utilized in schemes
[10], [11], [15], [18] to promote the efficiency, not to mention
specific customization for the cross-platform CF model.
Thus, ROOM [19] introduces a novel cryptographic prim-
itive, Read-Only-Oblivious Map, as a building block to
achieve sparse matrix multiplication. Although data spar-
sity (only row/column sparsity) is somehow exploited,
ROOM still suffers from large-volume communication and
heavy computational load. Chen et al. [20] combines the
FHE and secret sharing to enable multiplication for a sparse
matrix (plaintext) and a dense matrix (encrypted). This
method is custom designed for logistic regression where
the client holds a small dense matrix and the server holds
the model. Therefore, it only works well when one party’s
input is small and can hardly be extended for the large-scale
dataset. The most related work to this paper is S3Rec [21].
When the sparse locations are accessible, S3Rec generates
O(ϕl ×m) Beaver’s triples [7] to implement secure matrix
multiplication, where ϕ is the density of the input matrix
and l,m are the dimensions. Such direct adoption of exist-
ing MPC scheme [13] leads to unsatisfactory performance.
When the sparse locations are agnostic, private information
retrieval (PIR) [22] is used to fetch the non-spare values. To
be compatible with PIR and preserve the confidentiality of
the dense matrix, each element has to be encrypted individ-
ually with PHE [23], which results in massive computational
costs. Therefore, a scheme that can enjoy the benefit of the
packing method when working with PIR is desired.

1.2 Technical Challenges
This paper aims to break the efficiency bottleneck of existing
works and offer strong privacy preservation. It is non-trivial
to conquer the current technical dilemma without seek-
ing efficiency/privacy trade-offs. Through a comprehensive
analysis of recent advancements [19], [21], we condense out
the following technical challenges.

• How to enjoy the power of HE without impairing per-
formance? Theoretically, arbitrary computation in-
cluding matrix multiplication [16] can be sup-
ported by HE. However, the powerful function-
ality is costly. An effective method for computa-

tion/communication reduction is packing multiple
messages into one message before encryption. As a
side effect, existing works have to operate cipher-
text rotations to obtain the encrypted vector inner
product. Thus, massive rotations are needed when
dealing with large matrices. Unfortunately, rotation
is extremely expensive and consumes roughly 30×
more running time than the ciphertext multiplication
[24]. This is a longstanding and challenging problem
in related areas [17]. Significant performance gain
will be achieved if we can design a rotation-free
matrix multiplication scheme for cross-platform RSs.

• How to compress the cost when PIR is applied? In
the sparse location sensitive setting, PIR is used
for retrieving non-sparse elements. To preserve the
privacy of the queried matrix (dense matrix), each
element has to be encrypted. Moreover, to compute
the matrix multiplication, S3Rec [21] chooses PHE to
encrypt the dense matrix. As the elements have to be
encrypted one by one due to the use of PIR, massive
additional encryption costs are imposed. Straight-
forward adoption of existing packing methods can
hardly support secure vector inner product not to
mention matrix multiplication. Thus, how to bridge
the gap between PIR and HE packing acceleration is
vital and challenging. Furthermore, it is non-trivial
to compress the communication costs (upload and
download volumes) on the basis of the current well-
designed PIR protocol [22].

• How to guarantee provable security and comparable accu-
racy? In spite of the charming performance promo-
tion, the applied optimization methods should not
undermine data privacy as well as model accuracy.
In other words, we cannot adopt the approximate
algorithm [25] for HE that decreases the model ac-
curacy. In terms of privacy, we cannot reveal ad-
ditional information in exchange for better perfor-
mance. Existing works [10], [21] suffer from either
severe privacy risks or efficiency bottlenecks. Indeed,
it is challenging to provide provable security and
comparable accuracy beyond merely performance
promotion.

1.3 Our Contributions
In this paper, we propose two lean and fast sparse matrix
multiplication schemes for RS model training with strong
privacy preservation. In specific, Πins stands for the scheme
that can access the sparse locations in the input matrices,
and Πsen denotes the scheme that sparse locations are agnos-
tic. In sum, we make the following technical contributions.

• We present Πins that contributes two insights for
efficiency boosting. First, we carefully analyze the
computation task and convert it from standard ma-
trix multiplication to Hadamard product [26] be-
tween a dense matrix and an extremely spare matrix.
This idea eliminates the costly rotation operations
completely and can fully enjoy the high efficiency
of the existing packing method. Second, to handle
the case that we have to compute the vector inner
product, a novel matrix packing method is adopted.
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In doing so, the ciphertext results can be extracted
directly without rotation either.

• We present Πsen that conceals the sparse locations
and enables efficient secure matrix multiplication
simultaneously. We break through current perfor-
mance bottlenecks by providing dual optimizations.
The first new insight is using the packing based en-
cryption acceleration method on the database (dense
matrix) for PIR processing. To achieve this, we care-
fully design a new secure two-party sparse vector
inner product protocol that for the first time bridges
the gap between PIR and matrix packing. Second, the
communication overheads brought by PIR including
upload and download are further compressed by 2×
and 2.4×, respectively.

• Beyond boosting the efficiency, we provide formal
security proofs for Πins and Πsen. In addition, ex-
tensive experiments are conducted on two popular
testing datasets and two simulated large datasets.
Compared with the existing effort, the proposed Πins

and Πsen compress the running time by at least
5×, and 2.8×, and achieve up to 15× and 2.3× in
communication reduction, respectively.

2 BACKGROUND

Notations. We use the bold upper-case letters to denote the
matrices (e.g., M). The vectors are denoted as bold lower-
case letters (e.g., v). The element of i-th row and j-th column
in matrix M is written as M[i, j]. The k-th component of
vector v is v[k]. [a] stands for the integer set {0, ..., a − 1}.
We denote by lower-case letter with a circumflex symbol
to represent a polynomial, such as m̂. The i-the coefficient
of m̂ is written as m̂[i]. Given 2-power number N and q
(q > 0), let RN,q = Zq[X]/(XN + 1) to denote the integer
polynomial set. Given two polynomials m̂, n̂ ∈ RN,q , the
product ŝ = m̂ · n̂ ∈ RN,q is defined as

ŝ[i] =
∑

0≤j≤i

m̂[j]n̂[i−j]−
∑

i≤j≤N

m̂[j]n̂[N−j+i] mod q. (1)

2.1 Recommendation Model

A classic method [1] [4] to build a recommender system
is to factorize the rating matrix R to obtain a user-specific
matrix U and an item-specific matrix V. The system then
makes missing data prediction atop U and V. To provide
a more personalized and accurate prediction service, it
is common to incorporate the data from social networks
among users. The basic intuition of this method is easy
to capture. The user’s preference is likely to be similar to
one’s close friends. Thus, if the social data is embedded
as the regularization constraint, the prediction results can
be significantly improved [27]. The topology of a social
network can be represented using a directed graph, which
is often characterized by an adjacency matrix [28].

In this paper, we follow the state-of-the-art scheme [21]
that uses the classic model presented in [1]. Given the rating
matrix R ∈ Rm×n and the social matrix S ∈ Rm×m, the

model’s learning target is to obtain U ∈ Rl×m and V ∈
Rl×n through optimizing the objective function L.

L = min
U,V

1

2

m∑
i=1

n∑
j=1

I[i, j](R[i, j]−U[∗, i]TV[∗, j])2

+
α

2

m∑
i=1

m∑
f=1

S[i, f ]∥U[∗, i]−U[∗, f ]∥2F

+
β

2
(

m∑
i=1

∥U[∗, i]∥2F +
n∑

j=1

∥V[∗, j]∥2F ).

(2)

In the function L, the first term is the factorization of
rating matrix R, the second term indicates the social infor-
mation, the last term is the regularizer. Matrix I[·] records
the rated items, α, β are hyper-parameters, and ∥ · ∥2F is
the Frobenius norm. Normally, we adopt gradient descent
to solve L [1]. Assume the diagonal matrix A ∈ R with
diagonal elements ai =

∑m
j=1 S[i, j], the diagonal matrix

B ∈ R with diagonal elements bj =
∑m

i=1 S[i, j]. Let
D = AT +BT , then gradients of L can be written as:

∂L
∂U

= βU−V((R−UTV)T · I) + (
α

2
UD− αUST ), (3)

∂L
∂V

= βV −U((R−UTV)T · I). (4)

Given the gradients of L, the problem is boiled down to
computing the matrix products and additions. Recall that,
in this paper, the social matrix S and rating matrix R are
held by two different platforms (i.e., party P0 has R, party
P1 has S). P0 can compute first term of ∂L/∂U and ∂L/∂V
locally. While P0 and P1 need to compute the second term
of ∂L/∂U collaboratively in privacy-preserving way.

2.2 Cryptographical Tools
Arithmetic Secret Sharing (SS). SS [13] is a fundamental
tool used for MPC. Here we consider the two-party scenario.
For example, P0 has a message m in prime field Zp, and ran-
domly samples ⟨m⟩0 ∈ Zp as his share. Then, it computes
⟨m⟩1 = m − ⟨m⟩0 mod p as P1’s share. To recover m, P0

and P1 computes m = ⟨m⟩0 + ⟨m⟩1 mod p. For simplicity,
we omit the mod operation if the context is clear.
Homomorphic Encryption (HE). HE [17] generated cipher-
texts enable versatile evaluations without decryption during
the processing. HE schemes can be categorized into three
types, that are partial HE (PHE), somewhat HE (SHE), and
fully HE (FHE). In this paper, we use PHE [23] and lattice-
based SHE [17] schemes as the building block. A typical
addition PHE crypto-system, such as Paillier [23], involves
a pair of public and private keys {pkP, skP} and encryp-
tion/decryption algorithms {P.Enc,P.Dec}. Normally, pkP
is used to encrypt messages and skP is used for decryption.
Given two messages x, y, Paillier encryption offers the fol-
lowing functions.

• Addition homomorphism (⊕):
P.Enc(pkP, x+ y) ≜ P.Enc(pkP, x)⊕ P.Enc(pkP, y).

• Ciphertext-plaintext multiplication (⊗):
P.Enc(pkP, x · y) ≜ P.Enc(pkP, x)⊗ y.

The symbol ≜ indicates that two ciphertexts can be de-
crypted to the same plaintext, not numerically equal.
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Client Server
q ← PIR.Query(i)

q−→
r←− r ← PIR.Response(q,DB)

di ← PIR.Extract(r)

Fig. 1: An overview of non-interactive PIR protocol.

In this paper, we also apply lattice-based HE that is con-
structed atop the learning with errors (LWE) problem [14] or
its ring variant (RLWE) [29]. These two types of HE schemes
share the same public parameters HE.pp = {N, p, q, σ},
where p, q ∈ Z; q ≫ p > 0, and σ is the standard deviation
of a discrete Gaussian distribution used for error sampling.
In the RLWE scheme, the plaintext message is a polynomial
in RN,p. An RLWE scheme comprises three algorithms
denoted by {R.KeyGen,R.Enc,R.Dec}. In specific, R.KeyGen
generates the secret and public keys {pkR, skR} ∈ RN,q . We
can invoke R.Enc to encrypt the message m̂ ∈ RN,p, and ob-
tain its ciphertext CT ← R.Enc(pkR, m̂), where CT ∈ R2

N,q .
The decryption algorithm R.Dec takes the secret key skR, the
ciphertext CT as the input, and outputs the plaintext m̂. For
LWE scheme, the plaintext space is Zp, and the ciphertext
space is ZN+1

q . The syntax of LWE scheme is similar to
RLWE, we write it as a tuple {L.KeyGen, L.Enc, L.Dec},
which represents the key generation, encryption, and de-
cryption algorithm respectively. The generated key pair is
denoted as {pkL, skL} ∈ RN,q . In this paper, only linear
homomorphic evaluations are applied [9] and we focus on
the following functions.

• Addition (⊞) and subtraction (⊟) homomorphism:
Given two plaintexts m̂1, m̂2 ∈ RN,p, and their ci-
phertexts CT1,CT2, we have R.Enc(pkR, m̂1+ m̂2) ≜
CT1 ⊞ CT2, and R.Enc(pkR, m̂1 − m̂2) ≜ CT1 ⊟ CT2.

• Multiplication homomorphism (⊠):
For message m̂1, m̂2 ∈ RN,p, and the corresponding
ciphertexts CT1,CT2, we have R.Enc(pkR, m̂1 ·m̂2) ≜
m̂1 ⊠ CT2, and R.Enc(pkR, m̂1 · m̂2) ≜ CT1 ⊠ CT2.
Note that, the ciphertext-ciphertext and plaintext-
ciphertext multiplication are different in the calcu-
lation. For simplicity, we use the same symbol ⊠ to
represent them.

• Extraction, HE.Extract(CT, i):
For the message m̂ and its ciphertext CT, this func-
tion [30] can extract the i-th coefficient of m̂ from its
ciphertext, and transfer it to a LWE format ciphertext.
Only the specific required coefficient is revealed,
which guarantees no extra information leakage in-
curred. Thus, this function is pretty elegant.

Private Information Retrieval (PIR). PIR [22], [31], [32]
enables a client to send an encrypted query to the server,
then the server returns the result without knowing the
queried index. The query privacy is preserved. In this
paper, we consider the single server setting [22]. Assume
the server holds a database with n elements denoted as
DB = {d1, ..., dn}, and a client with the query index i.
The classic PIR construction comprises the following three
algorithms as shown in Fig. 1.

• q ← PIR.Query(i): the client runs this algorithm to
obtain an encrypted query for the chosen index i,
and send it to the server.

Globe Parameters: Hyperparameters α, β, learning rate η.
Input: The rating matrix R, the social matrix S.
Output: Return the user latent matrix U, item latent matrix V
to P0.
1. P0 initializes matrix U and V.
2. While (not coverage),
3. P0 locally computes:

T1 ← βU−V((R−UTV)T · I),
∂L
∂V
← βV −U((R−UTV)T · I),

4. P0 AND P1 securely compute and share the result:
{⟨T2⟩0, ⟨T2⟩1} ← α

2
UD− αUST ,

// the cryptographical tools are applied
5. P0 AND P1 computes:

U← U− η(T1 + (⟨T2⟩0 + ⟨T2⟩1)),
6. P0 locally computes:

V← V − η ∂L
∂V

,
7. Endwhile
8. return U and V to party P0.

Fig. 2: An overview of work flow.

• r ← PIR.Response(q,DB): upon receiving the en-
crypted query q, the server invokes this algorithm
to compute the encrypted query response r through
the database DB.

• di ← PIR.Extract(r): this algorithm let the client
extract the queried item (i-th item) from r.

3 PROBLEM STATEMENT

3.1 System Model and Work Flow

System Model. The proposed scheme consists of two parties
which are the rating platform and the social platform. Here,
we use the same notations as the Section 2.1. P0 denotes
the rating platform and P1 is the social platform. P0 holds
the online shopping records and comments of users that
can be represented as a rating matrix R. P1 could be any
social media such as Facebook, Wechat, etc. The relationship
between users is characterized as a social matrix S, which is
highly sparse in nature.
Work Flow. As shown in Fig. 2, we sketch the work flow
step by step. The notations are exactly the same as Section
2. The main task of both parties is to obtain the recom-
mendation model in a privacy-preserving way. Specifically,
P0 and P1 collaboratively calculate the factorization of the
rating matrix R through optimizing the objective function
L. The optimization goal is to seek a pair of matrices
{U, V} whose production is an approximation of R, i.e.,
(R ≈ UT · V). As the optimization method is gradient
descent, then the problem is converted to calculating L in
a privacy-preserving way. The first term of ∂L/∂U, and
∂L/∂V can be computed locally by P0 without interacting
with P1. However, the second term of ∂L/∂U contains both
social and rating data. Therefore, to preserve data privacy,
it needs to be collaboratively evaluated by P0 and P1 in a
privacy-preserving way. This corresponds to Step 4 in Fig.
2. In this paper, two protocols with different information
leakage settings are designed to fully explore data sparsity.

3.2 Threat Model

In practice, heavy security/privacy protection mechanisms
often incur unacceptable efficiency degradation [33]. On
one hand, the essential motivation of this paper is to boost
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the efficiency of privacy-preserving recommender systems.
On the other hand, the model accuracy directly affects
the economic benefits of both social and rating platforms.
Therefore, both parties have no interest in maliciously ma-
nipulating the data or deviating from the protocol. Consid-
ering this, we adopt the semi-honest (i.e., honest-but-curious)
threat model [20], [34], which is the same as the-state-of-
the-art work [21]. In specific, the probabilistic polynomial-
time adversary can compromise one of the parties (non-
conclusion) [35], [36] and observe the input/output view.
The adversary aims to infer private information from the
honest party by analyzing the corrupted party’s view. This
assumption is practical and widely applied to real-world
scenarios [20] that have privacy concerns.

4 PROPOSED SCHEME

In this section, we elaborate on the technical details of pro-
posed protocols, that serve for two different leakage settings
(i.e., Πins, Πsen). As the key insight, we aim to fully explore
the sparsity of the social data to promote performance.

4.1 Scheme Overview
In this paper, two secure and efficient schemes are proposed.
The first one is designed for insensitive data sparse location.
As discussed in work [21], this information can be fully
applied to promote efficiency. The second scheme aims to
conceal the sparse locations while supporting the same func-
tionality. For example, assume that party P1 holds a sparse
matrix Y ∈ Rm×m. The non-sparse locations can be denoted
as a set (or a vector) loc ← {(i, j)|Y[i, j] ̸= 0; i, j ∈ [m]}.
Assume that party P0 has dense matrix X ∈ Rn×m. As
shown in Fig. 2 (Step 4), P0 and P1 need to conduct secure
matrix multiplication X ·Y. In location insensitive scheme,
P1 shares loc with P0. While in location sensitive scheme
only vector size |loc| are revealed to P0. In practice, the
general sparsity level (i.e., |loc|) is often regarded as a
public statistic [21]. To make the technical details easier to
follow, we itemize the basic steps (i.e., Step 4 in Fig. 2) for
two schemes. Note that, we omit the operations that are
conducted by P0 or P1 locally.

The location insensitive scheme is dubbed as Πins. We
achieve Πins as follows.

1) P1 invokes the RLWE based HE scheme to generate
the public/private keys {pkR, skR} ∈ RN,q . The
model training public parameters (see Fig. 2) are
generated by P0. The cryptographic related public
parameters (see Section 2.2) are generated by P1. In
addition, P0 needs to share the non-sparse locations
(equivalent to sparse locations) of matrix U, written
as locU, with P1.

2) P1 generates the diagonal matrix D atop the social
matrix S. By checking locU, P1 can directly delete
the corresponding elements. For a simple example,
if the j-th column of U is sparse, the element D[j, j]
can be set as 0 (i.e., deleted). Afterward, the SV
packing method [37] (designed based on Chinese
Remainder Theory) is applied to further compress
the ciphertext size of D. Then, P1 uses pkR to
encrypt the compressed and packed D. At last, the

ciphertext will be sent to P0. Note that, the packing
size is shared as a public parameter.

3) P0 deletes the sparse elements of U, and computes
U · D, by utilizing the multiplication homomor-
phism property of RLWE-based HE. The result is
then masked and split into two secret shares. P0

keeps one share and sends the other to party P1.
4) P1 shares the non-sparse locations of S (written as

locS) with P0. After deleting the sparse elements, P1

packs ST by mapping its elements to the coefficients
of ring polynomials. The packed matrix will be
encrypted in exactly the same way as Step 2 of Πins.
Similarly, ciphertext should be sent to P0.

5) P0 deletes the sparse elements of U, then computes
U · ST . The result is also masked and split into
two secret shares. P0 keeps one share and sends the
other to party P1.

6) At last, party P0 and P1 collaboratively reconstruct
the final calculation result of (αUD/2− αUST ).

The location sensitive scheme is dubbed as Πsen. We
achieve Πsen as follows.

1) P0 generates the PHE private and public key pair,
P1 generates the RLWE HE private and public key
pair. The public parameters are set and shared in the
same way as the first step of Πins.

2) P1 obtains the diagonal matrix D. It packs D (SV)
and encrypts (RLWE) it using the same method as
Πins. The ciphertext will be sent to P0.

3) P0 computes U · D over ciphertext domain, and
forwards secrete shares to P1.

4) P1 leverages PIR methods to fetch the elements of
U from P0 . To preserve the privacy of U, P0 adopts
the SV packing method and PHE to encrypt U. Πsen

proposes a packing-compatible secure vector inner
product method for matrix multiplication.

5) Upon receiving the query result, P1 calculates and
remasks U·ST by applying the homomorphic prop-
erty of PHE. Afterward, P1 sends a secret share of
the encrypted result to P0. P1 keeps another share.

6) Same as Πins, P0 and P1 collaboratively reconstruct
the plaintext result of (αUD/2− αUST ).

4.2 Sparse Location Insensitive Scheme Πins

In this part, we illustrate the technical details of Πins. Several
advanced computing acceleration techniques are applied.
Besides, we also fully explore the sparsity and the linear
algebra tricks to co-design the optimization methods.

The first task of Πins is to compute UD. Note that D is a
diagonal matrix. To take advantage of this character, we can
convert this problem to Hadamard product [26] between U
and D if the diagonal elements of D are noted as a vector.
For instance, given two vectors x and y with m elements,
the Hadamard product can be written as x ⋆ y = (x[0] ·
y[0], ...,x[m−1]·y[m−1]). Then, let vector d[i] = D[i, i], i ∈
[m] and U ∈ Rl×m, UD is computed as follows.

UD =


U[0, ∗] ⋆ d
U[1, ∗] ⋆ d

...
U[l − 1, ∗] ⋆ d

 (5)
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The Equation 5 indicates that the computation cost of
UD can be further reduced if we consider the sparsity of
matrix U. Upon receiving locU, P1 only encrypt the non-
sparse elements. Accordingly, the computational load on
the on party P0 becomes lighter. Another interesting benefit
is that the SV packing method can be perfectly embedded
while eliminating the time-consuming rotation operations
[9]. We expand on this as follows.

Why choose SV packing. SV [37] can pack multiple
plaintexts into one message. In the ciphertext domain, the
homomorphic evaluation cost can be amortized by a factor
of 1/N , if N is the packing size. This property is often
termed as single instruction multiple data (SIMD) [9]. As-
sume that two vectors x,y with the same size N , and the
SV encoding/decoding algorithms are denoted as SV.En(·)
and SV.De(·). If x and y are encoded and encrypted using
the SV packing and the same HE scheme, the addition, and
subtraction homomorphism are perfectly preserved. The
homomorphic operators ⊞ and ⊟ can be directly applied to
obtain the ciphertext of x+y and x−y. The entrywise mul-
tiplication homomorphism also holds: {x[0] ·y[0], ...,x[N −
1] · y[N − 1]} = SV.De(R.Dec(R.Enc(pkR,SV.En(x)) ⊠
R.Enc(pkR,SV.En(y)))). Thus SV packing is an ideal choice
for securely computing Hadamard product.

However, it is challenging to tackle the vector inner
product by solely applying SIMD. In specific, given a ci-
phertext that is the encryption of the Hadamard prod-
uct of two vectors, written as R.Enc(pkR,SV.En(x)) ⊠
R.Enc(pkR,SV.En(y)), no straightforward method can be
employed to obtain the ciphertext of x · y. To address this,
existing works [38] propose to rotate the ciphertext. After
each round of rotation, one needs to invoke operator ⊞
to accumulate the ciphertexts. Through conducting certain
rounds of rotation (i.e., O(logN)), the generated HE cipher-
text implies the vector inner product xy. Note that the ho-
momorphic rotation is extremely expensive in the realm of
RLWE/LWE based HE. It is nearly 30×more expensive than
the multiplication operator [24]. To conclude, the massive
heavy rotations become the major bottleneck of HE based
secure matrix multiplication protocols and ultimately lead
to the inefficiency of the recommender system.

Exploring new and fast packing method. Restricted
by SV, when computing matrix multiplication (e.g., UST ),
most existing schemes [38] seek to adopt the particular
prime technique [39] to mitigate the heavy computational
load over homomorphic rotations, yet the security level is
reduced as the side effect. To attain a certain security level,
the lattice dimension has to be increased. As a result, all the
consecutive homomorphic operations will be slower. There
exists a seesaw effect between security level and efficiency in
rotation based schemes. To solve this dilemma, we propose
to use a rotation-free packing method that fits for matrix
multiplication to securely compute UST . Recall that the
plaintext of RLWE HE scheme is a polynomial (see Equation
1). Thus, in theory, a batch of messages can be packed as
the polynomial coefficients so as to amortize the costs [24],
[40]. In specific, as shown in Equation 1, the product of
two polynomials m̂ · n̂ implies the inner product of these
two coefficients vectors. Therefore, if the input vectors are
arranged appropriately as the coefficients, we can obtain the
inner product without rotation.

A toy example over Z25 (mod 25).

X =

[
1 3 5
7 9 11

]
,y =

24
6

⇒ z = Xy ≡
[
14 20

]T

Compute z using π1 and π2 (mod (X8 + 1, 25)).

π1(X)→ x̂ = 5X0 + 3X1 + 1X2 + 11X3 + 9X4 + 7X5

π2(y)→ ŷ = 2X0 + 4X1 + 6X2

⇓ ẑ ← x̂ · ŷ

ẑ = a0X0+a1X1+14X2+a3X3+a4X4+20x5+a6X6+a7X7

⇓ Extract the values in z from ẑ.

If the i-th coefficient in ẑ is colored, Do
Assume that the RLWE ciphertext of ẑ is RCTẑ ;
Compute LWE ciphertext: LCTẑ[i] ← HE.Extract(RCTẑ , i);
Arrange LCTẑ[i] into vector z according to Theorem 4.1;

Return the LWE ciphertext LCTz for vector z.

Fig. 3: A toy example for π1, π2 with N = 8 and p = 25.

Intuitively, the aforementioned packing method can
be regarded as linear mappings from the original ma-
trix/vector to the ring polynomial space. Formally, the
mapping functions of the matrix and vector π1 : Zl×m

p →
RN,p;π2 : Zm

p → RN,p are defined as follows:

x̂ = π1(X) where x̂[i ·m+m− 1− j] = X[i, j],

ŷ = π2(y) where ŷ[j] = y[j].
(6)

For π1 and π2, s.t. i ∈ [l], j ∈ [m]. Note that all the rest
coefficients of x̂, ŷ are set as 0. Accordingly, the multiplica-
tion z = Xy mod p is embedded in the coefficients of the
polynomial ẑ = x̂·ŷ. Since the number of the coefficients of a
polynomial is limited to N (i.e., x̂, ŷ ∈ RN,p), the constraint
condition l ·m ≤ N must hold to guarantee the correctness
of Equation 6. Formally, we give the following theorem to
specify the mathematical relationship between z and ẑ.

Theorem 4.1 (Matrix-vector multiplication). Given a matrix
X ∈ Zl×m

p , a vector y ∈ Zm
p , and two polynomials x̂ = π1(X),

ŷ = π1(y); set ẑ ← x̂ · ŷ and z← X ·y; for all i ∈ [l], j ∈ [m],
we have

∑
0≤j<m x̂[m−j]·ŷ[j] =

∑
0≤j<m X[i, j]·y[j], which

indicates z[i] = ẑ[i ·m+m− 1].

The correctness proof of Theorem 4.1 can be proved by
expanding the multiplication result and then comparing the
corresponding values of polynomial coefficients with the in-
ner products. Note that the values of z can be extracted from
the coefficients of ẑ by applying the function HE.Extract(·)
described in Section 2.2. The extracted ciphertexts are in
decryptable LWE format. Given these ciphertexts, one can
arrange them into a vector according to Theorem 4.1. Fi-
nally, the LWE ciphertext of the matrix-vector multiplication
LCTz is returned and will be fed into the next step of Πins.
To facilitate the understanding, we provide a toy example
of the whole processing in Fig. 3.

As shown in Fig. 4, we give the detailed implementation
for our location insensitive scheme Πins. To initiate the
protocol, party P0 and P1 collaboratively generate the public
parameters for RLWE/LWE HE scheme and the training
related parameter α. Note that, since the input matrices
are too large to be taken as the plaintext, we need to
partition them to obtain block matrices or subvectors that
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Implementation of Πins

Public Parameters: pp = {α,HE.pp, pkR, l,m, lw,mw}.
• {l,m} are the input matrix dimensions, and {lw,mw} are the partition window size, where 0 < lw ≤ l, 0 < mw ≤ m, lwmw ≤ N .
Input: P1 holds the social matrix S ∈ Zm×m

p , and the diagonal matrix D ∈ Zm×m
p , P0 holds the matrix U ∈ Zl×m

p . P0,P1 shares the
sparse locations to each other in matrices U,S.
Output: P0 and P1 obtain two shares ⟨Z⟩0, ⟨Z⟩1 ∈ Zl×m

p , respectively, where Z = αUD/2− αUST .

■ Securely compute UD:

1) P0 sends the non-sparse locations locU of U to P1. Then P0 deletes the sparse columns on U, and obtain the compressed
matrix U. P0 partitions U with window size N , and zero-padding is applied for the end subvector if necessary. Then, P0

encodes U as SVU ← SV.En(U).
2) On receiving locU, P1 deletes the elements D[i, i] if i-th column in U is sparse. The compressed diagonal vector of D is written

as d. Then P1 encodes and encrypts it as : RCTd ← R.Enc(pkR, SV.En(d)). The ciphertext RCTd is then forwarded to P0.
3) Given RCTd, P0 operates RCTU⋆d ← SVU ⊠ RCTd. Then P0 uniformly samples a random matrix R with exactly the same

scale and domain as U. P0 encodes R as SVR ← SV.En(R). P0 masks RCTU⋆d by computing RCT′
U⋆d

← RCTU⋆d ⊟ SVR.
Afterwards, P0 keeps R as its own share ⟨Z1⟩0, and sends the masked ciphertexts RCT′

U⋆d
to P1.

4) Upon getting RCT′
U⋆d

, P1 decrypts and decodes it as its share ⟨Z1⟩1 ← SV.De(R.Dec(skR,RCT
′
U⋆d

)).

■ Securely compute UST :

1) P1 sends the non-sparse locations locS of S to P0. Then, P1 compresses the matrix similarly by removing the sparse values.
Let the transferred S be S∗, the compressed matrix be S∗, and the j-th column vector in S∗ is denoted as s∗j .

2) P1 partitions s∗j into subvectors s∗j,ρ for j ∈ [m] (with zero-padding if necessary). The window size mw and a number of
subvectors are set dynamically according to locS. P1 maps all the subvectors into polynomials ŝρ = π2(s∗j,ρ). At last, P1

encrypts all the polynomials RCTρ ← R.Enc(pkR, ŝρ) and sends them to P0.
3) P0 receives the encrypted polynomials RCTρ for all m columns in S∗, and locS from P1. For j-th column in S∗, P0 first

compresses U to Uj . Then P0 partitions it into block matrices Uδ,ρ, where the window size lw ×mw and number of block
matrices are set dynamically according to locS. P0 maps all the matrices to polynomials ûδ,ρ = π1(Uδ,ρ).

4) P0 operates RCTδ ← ⊞ρ∈[m′](ûδ,ρ ⊠ RCTρ) for all δ ∈ [l′]. To remask the multiplication results, P0 first uniformly sample
a random vector q according to locS, and map it as a polynomial q̂ = π2(q), then operates RCT′

δ ← RCTδ ⊟ q̂ for δ ∈ l′.
Here l′ and m′ are the number of windows that are set dynamically according to locS and window size lw,mw . Similarly, P0

repeats the above operation for every column in S∗. The set of random vectors are arranged with the same format as U, which
is written as Q. At last, P0 keeps Q as its own share ⟨Z2⟩0, and sends all the masked multiplication ciphertexts RCT′

δ to P1.
5) On receiving all the ciphertexts RCT′

δ , P1 first extract the LWE ciphertexts by invoking LCT′
i ← HE.Extract(RCT′

j , ind). The
index j and ind can be computed with the window size, locS according to Theorem 4.1. For each LWE ciphertext, P1 decrypts
it by invoking L.Dec(skL, LCT

′
i). Then, P1 arranges each plaintext into the appropriate location of a matrix according to locS,

and keeps the matrix as its share ⟨Z2⟩1.

■ Compute and return the shares for Z:

1) P0 operates ¯⟨Z⟩0 ←
α
2
(⟨Z1⟩0 + ⟨Z2⟩0) mod p. Then, P0 expands ¯⟨Z⟩0 to meets the format Zl×m

p , that the values in sparse
locations are set to 0 according to locS. At last, P0 takes the expanded share ⟨Z⟩0 as the output.

2) P1 operates ¯⟨Z⟩1 ← −α(⟨Z1⟩1 + ⟨Z2⟩1) mod p. Then, P1 expands ¯⟨Z⟩1 to meets the format Zl×m
p , that the values in sparse

locations are set to 0 according to locS. At last, P1 takes the expanded share ⟨Z⟩1 as the output.

Fig. 4: Implementation of Πins.

are compatible with packing and encryption algorithms. For
computing UD, the window size is fixed to N . P0 and
P1 just trivially segment the input matrix and vector into
subvectors with N elements. Thus, in Fig. 4, we omit the
description of partition operation. For computing UST , the
partition window sizes lw and mw need to be dynamically
appointed according to the sparsity level of each column in
S (i.e, locS). In another word, the shape of the compressed
matrix/vector is uncertain, which results in the dynamic
nature of window size. The selection of lw,mw can be for-
malized as an optimization problem. We defer the analysis
on this issue to the performance evaluation section. Note
that in order to avoid message overflow when conducting
polynomial multiplication in a ring RN,q , the window size
parameters should meet lw ×mw ≤ N .

Πins breaks down the entire computing task Z =
αUD/2 − αUST into three steps, that are securely com-
puting UD, securely computing UST , and reconstructing
the two shares ⟨Z⟩0, ⟨Z⟩1, respectively. As the calculation of

UD is transferred to Hadamard product, we can not only
take the advantage of efficient SV packing method but also
eliminate heavy rotation operations. The entire processing
basically follows the tune of work flow described in Section
4.1. P0 first shares the sparsity with P1. Then P1 compresses,
packs and encrypts the diagonal vector d for D accordingly.
Once getting ciphertext from P1, P0 conducts homomorphic
multiplication evaluation, and remasks the results before
sending it to P1. P0 keeps the random masking matrix R
as its secret share. P1 can simply decrypt and unpack the
masked ciphertext as the share.

When the problem becomes matrix multiplication, SV
packing method [9] is often plagued by the seesaw effect
between security and efficiency. Therefore, the proposed
Πins seeks to explore rotation free packing method [24] (see
Equation 6). Similarly, since the input matrix S is extremely
spares, P1 first share the sparse locations locS with P0.
Then both parties compress their input matrices accordingly.
Since each row in S has different sparse locations, P0 needs
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to generate corresponding input matrices for each row. For
instance, if the i-th element in vector S∗ is sparse, then P0

just delete the i-th column. This operation almost brings no
additional computational load. In specific, UST is solved
by computing Us∗i for i ∈ [m]. In general, P0 and P1 col-
laboratively generate the two secret shares ⟨Z2⟩0, ⟨Z2⟩1 by
applying the similar secure two-party computation method.
As shown in Fig. 4, when computing UST , P0 and P1 also
use RLWE HE to encrypt the packed inputs; conduct ho-
momorphic evaluations to obtain the ciphertexts for matrix-
vector multiplication, and sample a random matrix Q to
remask the ciphertext. P0 simply takes random matrix Q as
its share. P1 needs to extract the coefficients from the RLWE
ciphertexts and decrypt them as its own secret share. Note
that, the extracted ciphertexts are in LWE format. Thus, P1

needs to decrypt them by invoking L.Dec(skL, ·). At last, P0

and P1 return two secrete shares ⟨Z⟩0, ⟨Z⟩0 as the outputs
for Πins, which will be fed into the next step in Fig. 2.

4.3 Sparse Location Sensitive Scheme Πsen

Compared with Πins, the key additional privacy enhancing
measurement is concealing the sparse locations in the input
matrices U,S. To achieve this goal while utilizing the input
sparsity for efficiency promotion, we introduce to use PIR to
fetch the values in U without disclosing the sparse locations
(i.e., query indexes) in S and the plaintexts in U. Similarly,
we also solve the problem by proposing two secure two-
party computation protocols. In specific, one is for UD
and the other is for UST . Once the intermediate shares are
obtained, the two parties jointly output the shares for Z.

The first core task in Πsen is computing UD. Recall that
matrix D is a diagonal matrix. The computing processing
of UD can be decomposed by calculating certain times of
Hadamard products as shown in Equation 5. Thus, if the
sparse locations in U need to be concealed, we have to
let party P0 who holds U to send PIR queries to party P1

to fetch element values in D. However, the costs brought
by invoking PIR protocols should be higher than directly
encrypting the entire diagonal vector d (i.e., D) and sharing
it with P0 for ciphertext-plaintext HE evaluation. In the
sparse location insensitive case, only column sparsity locS
can be utilized to compress the costs. Because if different
rows in U report different sparse locations, to be compatible,
the vector d has to be packed and encrypted accordingly.
Therefore, the increased costs in party P1 will be much
higher than decreased costs in party P0. Moreover, the
ciphertext volume sent from P1 to P0 will expands by l×. To
this end, in scheme Πsen, we choose to compute UD without
utilizing data sparsity.

The second core task in Πsen is securely computing UST .
Recall that the matrix S is extreme sparse [21] (≤ 0.02%).
Straightforward encryption of S leads to prohibitive costs.
To alleviate this issue and exploit data sparsity, PIR is
employed by P1 to fetch values in matrix U corresponding
to the sparse locations in S. For instance, to compute inner
product U[0, ∗] ·S[∗, 0], P1 first issues PIR queries with non-
sparse locations in ST [∗, 0] as the index to P0. Upon receiv-
ing the returned values, P0 and P1 can directly compute
the inner product without considering the sparse values.
Recall that S ∈ Zm×m

p , where m indicates the number

of users in the social platform, which is commonly large.
Thus, the computational cost will be significantly reduced
if S is extremely sparse. In addition, we further compress
the computation/communication costs by proposing the
following optimizations.

• Compress the encryption cost on P0. Recall that the
PIR protocol cannot preserve the privacy of queried data.
To protect the privacy of U and support secure ma-
trix multiplication, recent work [21] applied PHE to
encrypt the entire matrix U. This operation imposes
heavy encryption overheads on P0. We compress
the encryption cost by designing a protocol that is
compatible with SV packing method. It is non-trivial
to make this idea workable. First, on the P0 side, we
reorganize the query index to fit the packing opera-
tion. Second, if the packing size is s, P0 partitions the
rows in U and packs them using SV method. Third,
on the P1 side, the sparse matrix S is partitioned and
packed in the same way as U. Fourth, the random
factors used for remasking the encrypted result need
to be carefully designed to guarantee correctness
and security simultaneously. To achieve this goal, the
encrypted results are extended from a l ×m matrix
to a l×m×s tensor. In doing so, the encryption costs
on P0 are roughly compressed by s.

• Compress the communication cost.
1). The query history is recorded as a table T and
used to avoid repeat PIR processing with the same
index. P1 refers to T before issuing PIR query.
2). We propose to apply a compact PIR protocol
MulPIR [31] to further compress the upload and
download costs by adopting the following two tricks.
Note that, recently appeared fast symmetric key
based PIR schemes [41], [42] provide efficient online
query processing. However, the offline preparation
requires downloading the entire dataset in a stream-
ing way. Such optimizations do not fit our scheme.
[Compress the upload]. In the context of PIR [22],
the query issuer needs to encrypt (i.e., FV encryption
[29]) the index with the public key. In concrete, the
FV ciphertext is a tuple {CT0,CT1} in R2

N,q . A key
insight is that we can treat element CT0 as a random
factor sampled from RN,q . If the query issuer directly
shares a random seed λ ∈ {0, 1}κ in advance with
the server, the server can locally reconstruct CT0. In
doing so, the size of the encrypted query index is
compressed by a factor 2×.
[Compress the download]. In [22], the returned
query result is FV ciphertexts that no further pro-
cessing is needed that are decrypted by the query
issuer. Therefore, we can use the modulus switching
[29] method to reduce the ciphertext size. Given a
ciphertext CT ∈ R2

N,q from the query response, the
server can apply modulus switching to transfer CT
to a new ciphertext CT′ ∈ R2

N,q′ . In practice, q′ ≥ p2

is chosen large enough for correct decryption, where
p is the plaintext space. Thus, the download size is
reduced roughly by log2 q/(2 log p). For instance, if
the prime q′ is set around 225, the download cost
will be reduced by a factor 2.4×.
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Implementation of Πsen

Public Parameters: pp = {α,HE.pp, pkR, pkP, l,m, s}.
• {l,m} are the input matrix dimensions, and s is the partition window size (i.e., the packing size for PHE crypto-system).
Input: P1 holds the social matrix S ∈ Zm×m

p , and the diagonal matrix D ∈ Zm×m
p , P0 holds the matrix U ∈ Zl×m

p .
Output: P0 and P1 obtain two shares ⟨Z⟩0, ⟨Z⟩1 ∈ Zl×m

p , respectively, where Z = αUD/2− αUST .

■ Securely compute UD:

1) P1 first partitions the diagonal vector d of the input matrix D into subvectors with N (fetched from HE.pp) elements. Zero-
padding is applied for the end subvector if necessary. Then for each subvector, P1 packs it using SV method and encrypts it by
invoking RLWE HE scheme. Same as Πins, considering the partition size is fixed as N , we omit this processing. The ciphertext
of vector d is generated as RCTd ← R.Enc(pkR, SV.En(d)). Afterward, P1 sends RCTd to party P0.

2) Upon receiving RCTd, P0 partitions all the row vectors in matrix U in the same way as P1. The partition size (i.e., packing
size) is also set as N . Then P0 packing the input matrix using SV method as SVU ← SV.En(U). Afterward, P0 operates
RCTU⋆d ← SVU ⊠ RCTd. To remask the ciphertext, P0 uniformly samples a random matrix R ∈ Zl×m

p and partitions it in
the same way as U. To keep the format consistent, the partitioned R is also packed using SV as SVR ← SV.En(R). Then P0

operates RCT′
U⋆d ← RCTU⋆d ⊟ SVR. P0 keeps R as its own share ⟨Z1⟩0, and sends the remasked ciphertexts RCT′

U⋆d to P1.
3) Upon receiving RCT′

U⋆d, P1 decrypts and decodes it as its share ⟨Z1⟩1 ← SV.De(R.Dec(skR,RCT
′
U⋆d)).

■ Securely compute UST :

1) P0 partitions the matrix U into subvectors uδ,ρ (using zero-padding for end subvectors if necessary) with the window size
s, where ρ ∈ [l], δ ∈ [⌈m/s⌉]. Then P0 packs and encrypts all the subvectors as PCTuδ,ρ ← P.Enc(pkP, SV.En(uδ,ρ)). The
window size s is negotiated by P0 and P1 according to the data distribution in U and S, the PHE parameter setting, and the
applied SV packing method. In addition, the query index needs to be set as the PIR parameter shared between P0 and P1.

2) P1 partitions the matrix S into subvectors sµ,ν using exactly the same way as U, where µ ∈ [m], ν ∈ [⌈m/s⌉]. Then P1 first
checks the query history and fetches the needed results from the records. Otherwise, P1 issues a PIR query to P0 for the non-
sparse values in S. Given the non-sparse values locate within the same subvector sµ,ν , P1 invokes qµ,ν ← MulPIR.Query(µ, ν).
Then qµ,ν is sent to P0.

3) Upon receiving qµ,ν , P0 operates rµ,ν ← MulPIR.Response(qµ,ν ,U), where the matrix U is the database. Afterward, P0 returns
rµ,ν to P1.

4) On obtaining the query result rµ,ν , P1 recovers the queried value by invoking dµ,ν ← MulPIR.Extract(rµ,ν). Here, dµ,ν is a
packed and encrypted subvector fetched from matrix U. Then P1 operates PCTU·ST ← ⊕ν∈[⌈m/s⌉]dµ,ν ⊗ SVsµ,ν , for all all
queried index (µ, ν) where µ ∈ [m]. If several non-spare elements appear in the same subvector, only one PIR query is needed
and the processing remains the same.

5) P1 arranges the encrypted results PCTU·ST into an l×m empty temporal matrix T, and the sparse locations in T are all set to 0.
Then, P1 uniformly samples a random tensor Qt from Zl×m×s

p . P1 computes PCT0 ← P.Enc(pkP,SV.En(ϕ)), where ϕ = {0}s.
All the sparse locations in T are set as PCT0. P1 operates PCT′

U·ST ← T[i, j] ⊕ SV.En(Qt[i, j, ∗]), for all i ∈ [l], j ∈ [m]. P1

computes Q ←
∑

k∈[s]−Qt[i, j, k] for all i ∈ [m], j ∈ [n]. At last, P1 keeps Q as the secret share ⟨Z2⟩1, and sends PCT′
U·ST

to P0.
6) On receiving PCT′

U·ST , P0 first recovers the encrypted tensor as Zt ← SV.De(P.Dec(skP,PCT
′
U·ST )). Then P0 obtain its share

as ⟨Z2⟩0 ←
∑

k∈[s] Zt[i, j, k], where i ∈ [l], j ∈ [m].

■ Compute and return the shares for Z:

1) P0 operates ⟨Z⟩0 ← α
2
(⟨Z1⟩0 + ⟨Z2⟩0) mod p. Then, P0 takes the share ⟨Z⟩0 as the output.

2) P1 operates ⟨Z⟩1 ← −α(⟨Z1⟩1 + ⟨Z2⟩1) mod p. Then, P1 takes the share ⟨Z⟩1 as the output.

Fig. 5: Implementation of Πsen.

In Figure 5, we have described the implementation de-
tails for Πsen. As aforementioned, the computation of UD is
similar to Πins, we also use SV packing method and RLWE
HE scheme to pack and encrypt the input matrices U and
D. When computing UST , in order to adopt the packing
method on P0 for the encryption of U, we propose to
packing S in the same way. Thus, each non-sparse subvector
in S is a s-length vector (same as the packing size on
U). Recall that SV packing for PHE encrypted ciphertext
cannot support rotation operation. To compute the inner
product over ciphertext, we design a new and efficient SV-
compatible secure two-party vector inner product method.

A Toy Example of computing inner product.
Assume that party P0 holds input vector x =
(1, 2, 3, 4, 5, 6, 7, 8, 9), and party P1 holds sparse input
vector y = (1, 2, 0, 0, 0, 0, 0, 8, 0). The packing size
is set to 3. Then P0 packs x into three subvectors:
SVx0 ← SV.En(1, 2, 3),SVx1 ← SV.En(4, 5, 6),SVx2 ←

SV.En(7, 8, 9). The encrypted subvectors are written as
PCTx0 ,PCTx1 ,PCTx2 . On P1 side, y is partitioned
into three subvectors (1, 2, 0), (0, 0, 0), (0, 8, 0) denoted as
y0,y1,y2, respectively. The non-sparse subvectors are then
packed using SV, which is denoted as SVy0 ,SVy2 . Then,
P1 issues PIR queries to P0 to fetch the corresponding
subvectors PCTx0 ,PCTx2 . Upon receiving the results, P1

operates PCTx·y ← (PCTx0 ⊗ SVy0) ⊕ (PCTx2 ⊗ SVy2).
We interpret this operation in the view of plaintext do-
main as (1, 68, 0) ← (1 × 1, 2 × 2, 0) + (0, 8 × 8, 0). In
another word, PCTx·y is a ciphertext of vector (1, 68, 0).
To remask PCTx·y, P1 uniformly samples a random vector
r = (r0, r1, r2), where r = r0 + r1 + r2, and operates
PCT′

x·y ← PCTx·y ⊕ SV.En(r). The masked ciphertext
PCT′

x·y is then returned to P0, which is a ciphertext of
vector (1 + r0, 68 + r1, r2). P0 can recover this vector and
sum all the elements to obtain the masked inner product
x · y + r = 69 + r. Note that the modulo operations on the
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Fins: Functionality of Πins

Input: P1 holds the social matrix S ∈ Zm×m
p , and the diagonal

matrix D ∈ Zm×m
p , P0 holds the matrix U ∈ Zl×m

p . P0,P1

shares the sparse locations to each other in matrices U,S, and
the public parameters pp as defined in Figure 4.
Output: P0 and P1 obtain two shares ⟨Z⟩0, ⟨Z⟩1 ∈ Zl×m

p ,
respectively, where Z = αUD/2− αUST .

Fig. 6: Functionality of Πins.

Fsen: Functionality of Πsen

Input: P1 holds the social matrix S ∈ Zm×m
p , and the diagonal

matrix D ∈ Zm×m
p , P0 holds the matrix U ∈ Zl×m

p , and the
public parameters pp as defined in Figure 5.
Output: P0 and P1 obtain two shares ⟨Z⟩0, ⟨Z⟩1 ∈ Zl×m

p ,
respectively, where Z = αUD/2− αUST .

Fig. 7: Functionality of Πsen.

plaintext domain are omitted for simplicity.
By using our proposed SV-compatible secure inner prod-

uct method, UST can be correctly and efficiently computed
without any intermediate decryption operation. Moreover,
the lightweight character of PHE (compared to RLWE HE)
and the encryption acceleration technique SV are well lever-
aged without adopting any rotation operation. The random
factor in this method is expanded to a tensor rather than
a matrix to guarantee input privacy. With such efficiency-
boosting processing, the additional overhead brought by
random tensor generation and SV packing is negligible.

5 SECURITY ANALYSIS

In this section, we prove the security of the two schemes
Πins, Πsen against the semi-honest probabilistic polynomial
time (PPT) adversariesA. Specifically, we use the simulation
paradigm [43] to construct simulators that make the simu-
lated views indistinguishable from the real views. We first
define the ideal functionalities for Πins and Πsen to specify
the inputs and outputs. Then we elaborate on the simulator
construction details by bulleting the hybrid arguments.

5.1 Security of Πins

Πins is secure against the semi-honest PPT A, which is
formalized as following theorem.

Theorem 5.1 (Security of Πins). If the crypto-system RLWE
HE used in Πins are semantically secure against the semi-honest
adversaries, then the proposed protocol Πins is secure against the
semi-honest PPT A.

The proofs are deferred to Appendix A.

5.2 Security of Πsen

Πsen is secure against the semi-honest PPT A, which is
formalized as following theorem.

Theorem 5.2 (Security of Πsen). If RLWE HE, PHE, and PIR
protocol used in Πsen are semantically secure against the semi-
honest adversaries, then the proposed protocol Πsen is secure
against semi-honest PPT A.

The proofs can be found in Appendix B.

6 PERFORMANCE EVALUATION

In this section, we elaborate on the performance of Πins,
Πsen, and compare the experimental results with the state-
of-the-art scheme S3Rec [21]. Both the sparse location in-
sensitive and sensitive schemes are comprehensively eval-
uated in terms of computation, communication, storage,
and accuracy. The experiments are conducted over two
popular benchmark datasets, that are Epinions [44] and
LibraryThing (LiThing) [6]. In addition, since social recom-
mendation data is highly private and hard to acquire from
commercial organizations subject to legal requirements, we
synthetic two large-scale datasets to simulate the real-world
performance. The impact of social data sparsity is evaluated
by varying the data density.

6.1 Implementation Settings

The experiments are conducted on the computing machine
with Intel(R) Xeon(R) E5-2697 v3 2.6GHz CPUs with 28
threads on 14 cores and 64GB memory. The programming
language is C++. The tests are carried out in a local network
with on average roughly 3ms latency. We use mainstream
open-source libraries to implement cryptographical tools.
For RLWE/LWE HE scheme, the SEAL [45] library is used.
The cyclotomic ring dimension is chosen as 213 (i.e., N =
213) and the ciphertext space parameter is chosen as 247. It
guarantees 80-bit security. For PHE scheme (Paillier) [23],
we adopt libpaillier [46] and choose 128-bit security. The
public parameters in underlying building blocks including
the social recommendation system and the used PIR scheme
are all set exactly the same as the original papers [1], [31].
When implementing the comparison scheme S3Rec [21], the
general MPC library ABY [13] and SealPIR [22] are applied
by the same parameter settings. In all the experiments, the
length of secret sharing is chosen to be 64 bits. To be clear,
the sparse location insensitive/sensitive schemes of S3Rec
are denoted as S3Recins and S3Recsen, respectively. Nospa
stands for the simulated scheme without considering the
data sparsity. The remaining details will be given in the
corresponding subsections.

TABLE I: Testing dataset statitics
Dataset user item social relation social density

Epinions 11,500 7,596 275,117 0.21%
LiThing 15,039 14,957 44,710 0.02%

Dataset. To be consistent with the comparison scheme,
the same testing datasets Epinions [44] and LibraryThing
(LiThing) [6] are adopted. Similar to S3Rec, if the interac-
tions are less than 15, the corresponding users and items
will be removed. However, as shown in Table I, the scale
of the testing data is insufficient to simulate the real-world
situation. Up to now, the well-known E-commerce Amazon
[2] and social media giant Facebook [3] are serving more
than 1.5 × 109 users. To make the performance evalua-
tion results more convincing, we synthetic two large-scale
datasets by expanding the user number with factor 102 for
the real datasets Epinions and LiThing, respectively. The
simulated datasets for Epinions and LiThing are written
as SynEp and SynLi. In specific, the sparse level, as well
as the distribution of the simulated datasets, are fixed the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478786

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on November 05,2024 at 07:35:18 UTC from IEEE Xplore.  Restrictions apply. 



11

same as the corresponding original datasets. Using synthetic
large-scale datasets to simulate the performance is a com-
mon method [47] when the real data is highly private and
implies huge commercial interests. In addition, if the input
data distribution and sparsity level remain unchanged, the
reported results can precisely reflect the real performance.
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Fig. 8: Running time of Πins and S3Recins.
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Fig. 9: Communication cost of Πins and S3Recins.
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Fig. 10: Storage cost of Πins and S3Recins.

6.2 Performance Evaluation on Πins and S3Recins

In this part, we report the experimental results for our
insensitive sparse location scheme Πins and the comparison
scheme S3Recins [21]. We first briefly review the technical
details of these two schemes and then give an asymp-
totic analysis of the performance. Finally, the experimental
results are reported. Recall that, the main task of Πins

and S3Recins is to securely compute αUD/2 − αUST . In

S3Recins, the authors solve this problem by using the exist-
ing secure two-party computation protocol ABY [13] with-
out modification. Given the input matrices U ∈ Zl×m

p ,D ∈
Zm×m
p ,S ∈ Zm×m

p (l is set to 20), S3Recins generates lm2

Beaver’s triples to support matrix multiplication. To be fair,
we also use PHE (Paillier) to implement Beaver’s triple
for S3Recins. Note that, in S3Recins, both UD and UST

are computed with exactly the method. In contrast, Πins

computes UD and UST with two different acceleration
tricks. We use Π1

ins and Π2
ins to represent them and evaluate

their performance, respectively.
Computational costs. The main cost of S3Recins is gen-

erating the multiplication triples. For one triple, it needs to
conduct three-time encryption, one-time decryption, two-
time⊕, and two-time⊗ operations. The SV packing method
can also be applied to reduce computational costs for gen-
erating triples. However, compared to S3Recins, Π1

ins only
needs one-time encryption for each packed message other
than three times. For Π2

ins, the non-sparse elements in matrix
S are mapped directly into the polynomial coefficients.
As mentioned in Section 4.2, the results (inner product)
are implied in the coefficients. The computational cost is
then reduced by O(N/(lw × mw)), where N is the degree
of the polynomial and lw,mw are the partition window
sizes. Since the datasets Epinions and LiThing are small
and extremely sparse, the packing slots (i.e, 8192) cannot
be fully used if we choose the RLWE HE for Π1

ins. Instead,
we adopt the PHE scheme Paillier [23] as the encryption
scheme. Note that, Paillier also supports SV packing and
ciphertext-plaintext homomorphic operations. Compared to
RLWE HE, Paillier provides fewer packing slots (≈ 128)
and is unable to rotate the packed ciphertexts. Fortunately,
Π1

ins is achieved by computing Hadamard inner products,
which can be perfectly supported by Paillier. In contrast,
when the input matrices are expanded datasets SynEp and
SynLi, we adopt RLWE HE (i.e., FV [29]) to achieve Π1

ins. As
shown in Fig. 8, the specific running time of S3Recins and
Πins are given. For large-scale datasets SynEp and SynLi,
Πins achieves roughly 10× and 5× running time reduction.

Communication costs. In S3Recins, to generate one mul-
tiplication triple, two parties need to exchange three ci-
phertexts. Given the size of Paillier ciphertext ω bits, then
the communication volume for each triple is 3ω bits. By
using the packing method, the communication per triple
is reduced to 2ω + ω/ ⌊ω/(2ι+ 1 + λ)⌋ [13], where ι is
the length of a share and λ is the security parameter. The
total communication cost of S3Recins is (ϕlm2 + m)(2ω +
ω/ ⌊ω/(2ι+ 1 + λ)⌋), where ϕ is the data density of input
social matrix S. In Π1

ins, if the input data is small real
datasets, the total communication volume is (lω+1) ⌈m/s⌉,
where s is the packing size. Let φ be the size of an RLWE
HE ciphertext. Π1

ins introduces (lφ + 1) ⌈m/N⌉ bits com-
munication on large simulated datasets. Assume that the
extracted LWE ciphertext has γ-bit length, then Π2

ins needs
mφ ⌈ϕm/mw⌉ + lmγ bits communication. As depicted in
Fig. 9, for small real datasets Epinions and LiThing, S3Recins
and Πins introduce 5.599 GB, 2.168 GB, 0.91 GB and 2.499
GB communication costs, respectively. In the large datasets
SynEp and SynLi, Πins can decrease the costs roughly by
15× and 7×.

Storage costs. In this paper, we mainly consider the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478786

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on November 05,2024 at 07:35:18 UTC from IEEE Xplore.  Restrictions apply. 



12

total storage costs of two participants introduced by the
secure computing protocols. Although the ciphertexts will
be decrypted and the used storage space will be released, the
computing machine still needs to request sufficient storage
space to compress the running time. Otherwise, limited
storage space will become the bottleneck. Therefore, it is
necessary to review the maximum storage cost. For S3Recins,
the size of newly generated ciphertexts is the same as the
communication volume. For each multiplication triple, two
secret shares, and four temporary parameters with the same
length are generated. As aforementioned, the length of each
share is set to 64 bits. For our scheme Π1

ins and Π2
ins, we

only needs one share for each participants. We report the
maximum storage costs in Fig. 10, and the results show that
the storage costs of the location insensitive schemes are close
to their communication costs.
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Fig. 11: Running time of Πsen and S3Recsen.
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Fig. 12: Communication cost of Πsen and S3Recsen.
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Fig. 13: Storage cost of Πsen and S3Recsen.

6.3 Performance Evaluation on Πsen and S3Recsen

In this part, we report the experimental results and give
an analysis of the computation, communication, and stor-
age costs for Πsen and S3Recsen. Similarly, we denote the
secure computing of UD as Π1

sen, and Π2
sen stands for UST .

The input datasets remain unchanged. Recall that, in the
sparse location sensitive setting, we need to conceal both
the original values and their locations. To achieve this goal,
the comparison scheme S3Recsen as well our scheme Π2

sen

propose to apply PIR. In doing so, the needed values can be
fetched from U in a privacy-preserving way. To compress
the communication, a new and communication-efficient PIR
scheme is used in Π2

sen. In addition, we bridge the packing
method with PIR to further boost efficiency. Therefore, both
computation and communication costs are significantly re-
duced. Note that, the input matrix U is a diagonal matrix.
However, S3Recsen did not provide any optimization for
computing UD. As a result, Πsen outperforms S3Recsen in
all aspects.

Computational costs. In S3Recsen, all the elements in
matrix U are encrypted one by one as the database for
PIR. In contrast, Π2

sen packs the elements before encryp-
tion. Meanwhile, the PIR based vector inner product is
still supported without decryption during the processing.
Thus the encryption complexity on party P0 is reduced by
s×, where s is the packing size. Moreover, the additional
operations in the plaintext domain, including generating
s× more random numbers and aggregating the results, are
negligible. As mentioned above, using PIR to compute UD
is time-consuming due to the redundant PIR queries and
response processing. For each element in the diagonal vector
of D, at least one PIR query is needed. Also, D is extremely
sparse. To alleviate heavy PIR operations and fully explore
the extreme sparsity of D (i.e., 1/m), Π1

sen uses the same
method as Π1

ins. In Fig. 11, the running time of S3Recsen and
Π1

ins on four datasets are clearly shown. The results indicate
that our scheme consumes less time. In specific, for SynEp
and SynLi, we reduce the time costs roughly by 2.8×.

Communication costs. Π1
sen has significantly com-

pressed the communication cost for the following three
reasons. First, the packing method can reduce the number
of ciphertexts by the packing size (i.e., N ) that needs to be
exchanged. Second, the comparison scheme S3Recsen has to
issue m PIR queries. In particular, it commonly needs 2 to 3
RLWE ciphertexts to issue a PIR query. Third, the remasked
secret shares need to be returned, which brings O(l × m)
communication complexity. Without the packing process,
S3Recsen has to return all unpacked ciphertexts. For each
PIR query in Π2

sen, the upload communication is compressed
by 2×, and the download volume is compressed by 2.4×.
In addition, the total query number can be decreased if
more than one non-sparse element is located in the same
packing slot. Note that the packing operation conducted in
Π2

sen does not introduce an additional communication cost.
We report the specific costs in Fig. 12. Roughly, our scheme
Πsen achieves 2.3× communication reduction.

Storage costs. The storage costs of S3Recsen and Π2
sen

mainly comprise the following three parts. The first part is
the ciphertexts generated for PIR queries and responses. The
second part is the encrypted version of the input matrix U.
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The third part is the remasked encrypted results (encrypted
secret shares). The storage cost reduction offered by our
scheme Πsen stems from the packing operation on the matrix
U. We report the detailed costs in Fig. 13. For datasets
Epinions and LiThing, Π2

sen needs at most 5.545 GB and
3.907 GB storage volumes, yet Πsen only requires 2.581 GB
and 1.904 GB.
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Fig. 14: Running time of Πsen and Nospa.
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Fig. 15: Communication cost of Πsen and Nospa.
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6.4 Effect of Data Sparsity on Πsen and Nospa

In this part, we study the impacts on the data sparsity of the
proposed sparse location sensitive scheme Πsen by varying
the data density of the datasets Epinions and LiThing.
The density of an original simulated dataset is marked as
100%. If we uniformly delete 20% non-sparse values, then
the density becomes 80%. We report the performance by
varying the density from 20% to 100% with step length 20%.
In addition, a simulated scheme Nospa without considering
the data sparsity is used as the baseline to demonstrate
the performance gain. Specifically, Nospa encrypts all the

elements of input matrices using the same method as Πins.
Thus, the costs of Nospa should be a constant. Since Πins

introduces spare location leakage, we choose not to report
its performance for fairness. Note that, since data sparsity is
not utilized, Nospa encrypts the input matrix U rather than
the larger input matrix S.

Computational costs. When changing the data density,
the sparsity of input matrix D (diagonal) remains the same.
As a result, the computation complexity of Π1

sen should be
a constant. For P0, the encryption of matrix U (as the PIR
database) is also irrelevant to the data density. Therefore, the
key impact of data sparsity on Π2

sen is the PIR query scale.
In theory, the running time of Πsen increases linearly with
the data density. The Fig. 14 has demonstrated that Πsen

reduced the cost by 10% on Epinions, and at least 5× on
LiThing than Nospa.

Communication costs. Similarly, the communication
costs brought by Π1

sen and Nospa remain the same when
varying the data density. Thus, the number of issued PIR
queries becomes the only factor that causes the variation in
communication volume. With increasing data density, the
communication cost increases linearly. As shown in Fig. 15,
the communication costs of Nospa reach 2.828 GB and 2.413
GB on datasets Epinions and LiThing, yet Πsen only needs
2.074 GB and 1.304 GB.

Storage costs. The total storage costs of Πsen on simu-
lated datasets are already given in Section 6.3. When we
increase the data density, P1 needs to generate more PIR
queries. However, the processing of each query on the
party P0 requires the same storage complexity O(l×m)1/d,
where d is the dimension of the database index. Besides,
the other storage costs for the encrypted database on party
P0, the remasked ciphertexts, and the secret shares remain
unchanged. Thus, the total cost of Πsen varies slightly along
the data density variation. As demonstrated by Fig. 16,
when the data density is set as 20%, Πsen needs roughly half
of the full-dataset case, yet Nospa remains the same storage
costs as the communication volumes.

Remark. The comparison scheme S3Recsen has the same
asymptotic computation, communication, and storage com-
plexity as Πsen when varying the data density. In addition,
the overall performance is comprehensively evaluated in
Section 6.3. Thus, we omit it here due to space limitations.

6.5 Accuracy Evaluation

TABLE II: Accuracy Comparison
MF S3Recsen Πins Πsen

Epinions 1.197 1.063 1.064 1.062
LiThing 0.925 0.907 0.909 0.907

In this part, we review the impacts on the accuracy of
our proposed privacy-preserving schemes Πins, Πsen and
the comparison scheme S3Recsen. The mainstream accu-
racy measurement Root Mean Square Error (RMSE) [21] is
adopted. To demonstrate the advantage of incorporating the
social data for the recommendation, we use the classical
matrix factorization (MF) model [27] as the baseline. MF
takes only the rating matrix as the input. As shown in Table
II, Πins, Πsen and S3Recsen achieve higher accuracy than
the baseline MF. This demonstrates that the input social
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data can indeed improve the recommending accuracy. As
the used HE and PIR primitives in Πins, Πsen and S3Recsen
preserve the same calculation precision, these three schemes
offer roughly the same accuracy.

7 CONCLUSION AND FUTURE WORK

In this paper, we started with the motivation of boosting
the efficiency of privacy-preserving cross-platform recom-
mender systems. Through an in-depth analysis of the target
problem, we proposed two lean and fast privacy-preserving
schemes. One was designed for the sparse location insen-
sitive setting and the other was designed for the sparse
location sensitive setting. We fused versatile advanced mes-
sage packing, HE, and PIR primitives into our protocols
to guarantee provable security and to fully exploit the
input data sparsity. Without compromising the accuracy, our
proposed schemes have significantly promoted the overall
performance compared with the state-of-the-art work. In
the future, we will continuously investigate the sparsity
and privacy issues in social data incorporated recommender
systems. In addition, we will focus on enabling federated
or multiparty recommender systems with attractive features
such as model ownership protection.
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