
1

Function Interaction Risks in Robot Apps:
Analysis and Policy-based Solution

Yuan Xu, Yungang Bao, Member, IEEE, Sa Wang, Member, IEEE, and Tianwei Zhang

Abstract—Robot apps are becoming more automated, complex and diverse. An app usually consists of many functions, interacting
with each other and the environment. This allows robots to conduct various tasks. However, it also opens a new door for cyber attacks:
adversaries can leverage these interactions to threaten the safety of robot operations. Unfortunately, this issue is rarely explored in past
works.
We present the first systematic investigation about the function interactions in common robot apps. First, we disclose the potential risks
and damages caused by malicious interactions. We introduce a comprehensive graph to model the function interactions in robot apps
by analyzing 3,100 packages from the Robot Operating System (ROS) platform. From this graph, we identify and categorize three
types of interaction risks. Second, we propose novel methodologies to detect and mitigate these risks and protect the operations of
robot apps. We introduce security policies for each type of risks, and design coordination nodes to enforce the policies and regulate the
interactions. We conduct extensive experiments on 110 robot apps from the ROS platform and two complex apps (Baidu Apollo and
Autoware) widely adopted in industry. Evaluation results showed our methodologies can correctly identify and mitigate all potential
risks.

Index Terms—Function interaction, risk identification, risk mitigation, robot apps

F

1 INTRODUCTION

Robotic vehicles, such as automated vehicles, drones and
self-driving cars are assisting humans with any dangerous
or tedious jobs. In order to adapt to different conditions,
a robot app usually consists of multiple processes (a.k.a.
nodes), with each one focusing on one specific function, e.g.,
localization, path planning. They interact with each other to
complete the end-to-end task.

As functions become more complex and their number
increases, many companies encapsulate these functions as
interfaces to ease the development of robot apps for their
products, such as Ford Open XC [1], Dji Onboard SDK
[2], UR Application Builder [3]. Developers can then use
these functions to create new apps. Another solution is
public platforms, where functions are developed in a crowd-
sourcing manner by third-party developers and distributed
through the open-source function markets. The most main-
stream platform is the Robot Operating System (ROS) [4],
which provides thousands of open-source robot functions.
Functions from this platform have been widely adopted in
the research community and many commercial products,
such as Dji Matrice 200 drone [2], PR2 humanoid [5] and
ABB manipulator [6].

However, these functions can be the Achilles’ Heel of
robot apps, threatening the safety of robot operations. This
hazard derives from two observations. One is code shar-
ing without any security check. Different from other well-

Y. Xu and T. Zhang is with School of Computer Science and Engineering,
Nanyang Technological University. Singapore 639798, Singapore. (Corre-
sponding author: T. Zhang.)
Y. Bao and S. Wang are with the State Key Laboratory of Computer Archi-
tecture, Institute of Computing Technology, University of Chinese Academy
of Sciences, Beijing 100190, China and Peng Cheng Laboratory, Shenzhen,
China. (e-mail: xuyuan@ict.ac.cn).

developed app stores (e.g., mobile devices [7], PCs [8],
IoT [9]), the ROS platform does not enforce any security
inspection over the submitted code. An adversary can eas-
ily upload malicious functions to the platform for users
to download. The other is the interaction feature among
different function nodes in the robot apps and the physical
environment. Even one malicious node can affect the states
and operations of the entire app, leading to severe privacy
breach and physical damages [10]. For instance, Chrysler
Corporation recalled 1.4 million vehicles in 2015 due to a
software vulnerability in its Uconnect dashboard computers
[11]. An adversary could exploit it to hack into a jeep
remotely and take over the dashboard functions.

To ensure the safety of robot apps, we need to answer
these two questions: What potential risks and security incidents
can a malicious interaction bring? How can we mitigate malicious
interactions inside the apps? Unfortunately, there are currently
few studies focusing on the interactions in robot apps.
Security analysis of interactions in IoT systems have been
explored [12]–[14]. As robot apps have more complex and
distinct features, it is hard to apply the above methods to
the robot ecosystem, as discussed in § 7.

In this paper, we present the first study to explore the
function interactions in common robot apps from the per-
spective of security and safety. We make three contributions
to answer the above two questions. First, we introduce a
comprehensive interaction graph to model all the interac-
tions in robot apps. Although numerous apps have been
implemented for various robot devices and tasks, there are
still no systematic summaries about the characteristics of
function node interactions. To achieve this, we implement a
rule-based tool to automatically analyze 3100 packages from
the ROS platform, categorize them into 17 types and build
a graph to cover all possible interactions. We also select

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

2

110 popular robot apps from the ROS platform to verify
our interaction graph. This model lays a foundation for our
risk analysis and mitigation in this paper, and also aims to
enhance people’s understanding about the characteristics of
robot apps for other purposes in the future.

Second, we analyze potential risks from those interac-
tions in common robot apps. We classify these risks into
three types. (1) General Risk: it happens when multiple
function nodes share the same states, and malicious nodes
attempt to compromise the states by sending wrong mes-
sages. (2) Robot-Specific Risk: this is caused by the conflict
between the robot’s velocity and the frame rate of the image
recognition function. (3) Mission-Specific Risk: this refers to
the violation of users’ expectation regarding the safe and
secure behaviors of the robot system. We provide detailed
analysis and examples to show the possible consequences of
each risk.

Third, we introduce a list of novel methodologies to
detect and mitigate risks from suspicious interactions in
robot apps. The core of our methodologies is a set of co-
ordination nodes, which are used to regulate the interactions
and enforce security policies. We design a coordinate node
with some security policies to mitigate each type of risk.
At runtime, end users can observe the high-risk interactions
and enforce the desired policy to the corresponding coordi-
nation node if a risk occurs.

We conduct extensive experiments to evaluate the effec-
tiveness of our methodologies. (1) We select 110 robot apps
from the ROS platform, covering 24 robots of 4 types. We
can correctly identify all potential risks from three types
of vulnerable interactions, with negligible overhead at both
the offline and online stages. (2) We perform large-scale
evaluations on more complex and practical robot apps: we
select 2 apps from the ROS platform for the home and
autorace scenarios, each containing 10 functions to perform
6 tasks; we also deploy 2 self-driving apps (Autoware
[15] and Apollo [16]), which are widely adopted in the
autonomous vehicle industry. We successfully identify 198
high-risk interactions in these 4 apps, and mitigate them
promptly and effectively.

This paper is the extension of our previous work [17].
Compared to the previous work, we made the following
extensions and changes: (1) We designed a novel tool to
analyze 3100 data packets in the ROS platform and model
the function interactions in the robot apps. (2) We verified
that the tool can identify all potential risk interactions in
robot apps. (3) We ported our methodology from the ROS 1
version to the DDS-based ROS 2 version, thereby enhancing
its applicability and practicality.

2 BACKGROUND & THREAT MODEL

2.1 Interaction in Robot Apps
Robot apps run on the embedded computer of a robot
device to interpret sensory data collected from the envi-
ronment, and make the corresponding action decisions. The
workflow of a robot app can be represented as an interaction
graph, where each node represents a certain function, and
edges represent the dependencies of the functions in this
app. Figure 1 shows a navigation app as an example. This
robot app is composed of three major processing stages [18],

Localiza
tion

Explore
Map

Global
Map

Pose Path

Explora
tion

Path
Tracking

Velocity
Driver

Path
Planning

Local
Map

Costmap
Gen

VelocityGoal

SENSORS PERCEPTION PLANNING CONTROL ACTUATORS

Navigation App

ENV

Fig. 1: An example of the navigation app.

[19]: (1) Perception: the robot extracts estimated states of the
environment and the device from raw sensory data. It uses
the Localization node to determine the device position,
and the CostmapGen node to model the surroundings. (2)
Planning: the robot determines the long-range actions. It
uses the Path Planning node to find the shortest path,
and the Exploration node to search for all accessible
regions. The Exploration node also exposes an external
service for users to launch a navigation mission. (3) Control:
the robot processes the execution action and forwards these
motions to the actuators. It uses the Path Tracking node
to produce velocity commands following the planned path,
and the Velocity Driver node to convert the velocity to
instructions for the motor to drive the wheels.

One big feature of robot apps is the high interactions
among various function nodes in the workflow. Based on
the triggered events, the interactions can be classified into
two groups:
Direct interaction (solid line). This denotes the interac-
tion between two functions (ellipses), which are directly
connected in the workflow and share common robot states
(squares). Robot states are defined as the collection of all
aspects and knowledge of the device that can impact future
behaviors [20], e.g., position, orientation, explored maps.
The computation of one function can change some robot
states, which will affect the computation of another func-
tion. For instance, in Figure 1, the action of Path Planning
is triggered by the event that Localization generates the
robot’s current position and orientation. Then the two nodes
have direct interaction over the robot states of position and
orientation.
Indirect interaction (dotted line). This refers to the de-
pendency of two functions, which are not connected in the
workflow, but can interact with each other via the envi-
ronmental context. One node in the app can issue actions
to change the environmental context (e.g., obstacles, space,
etc.), which will further influence another node. In the
navigation app, the functions in the Control stage generate
commands to control the robot to change the physical en-
vironment. This triggers the functions in the Perception to
conduct new computations. For instance, the map created
by the CostmapGen function depends on the action from
the Path Tracking function. As a result, these two func-
tion nodes are indirectly interacted, although they are not
directly connected in the workflow.

Note that Figure 1 is just an abstract interaction graph.
An actual robot app can have a very complex interaction
graph with large numbers of nodes and interactions. Figure
1 in the Appendix File gives an interaction graph for a real-
world home-based robot app.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

3

User Robot Environment

DeveloperROS Platform ROS Core Lib

Download Integration

Deploy Robot Apps

Operation

Development

1 2

3

5

4

6

Launch

Mission Mission
Execution

Feedback
Phone

Cloud

APP

3
rd

-party
functions

customized
functions

Topics

Services

Fig. 2: The lifecycle of robot app development (blue parts)
and operation (green parts).

2.2 Robot App Platform
In robotics, the most popular app platform is Robot Op-
erating System (ROS) [4]. Both the research community
and industry widely adopt ROS as the foundation or the
testbed for their apps, such as Dji Matrice 200 drone [2],
PR2 humanoid [5] and ABB manipulator [6]. In this paper,
we mainly focus on the ROS platform. Our methods and
conclusions can be generalized to other platforms as well.

The ROS platform offers two kinds of services. First, it
provides robot core libraries, which act as the middleware
between robot apps and hardware. These core libraries sup-
port hardware abstraction, message passing mechanisms
and device drivers for hundreds of sensors and motors.
Second, the ROS platform maintains thousands of robot code
repositories (a.k.a. repos) for distributed version control, code
management and sharing.
Development and operation of robot apps. Figure 2 il-
lustrates the key concepts and components in the lifecycle
of robot app development and operation. First, the design
of the app is decomposed into several necessary functions.
Among them core functions (white ellipses) need to be cus-
tomized by the developer, while non-core functions (black
ellipses) can be downloaded from ROS code repos (¶).
Then the developer uses ROS core libraries to organize
these functions as an app workflow (·) and deploys the
app to the robot (¸). Each function is abstracted as a ROS
node and connected with others through ROS Topics. The
ROS topics are many-to-many named buses that store the
robot or environment states. Each topic is implemented by
the publish-subscribe messaging protocol: some nodes can
subscribe to a topic to obtain relevant data, while some
nodes can publish data to a topic.

The robot communicates with end users through ROS
Services. The ROS services are a set of interfaces of the robot
app exposed to end users. Each service is implemented by
the Remote Procedure Call (RPC) protocol and allows users to
launch tasks or adjust function parameters. Once the robot
receives a mission from the user’s phone (¹), it executes the
mission and interacts with the surrounding environment at
runtime (º). The user will receive the notification from the
robot when all tasks are completed (»).

2.3 Threat Model and Problem Scope
In this paper, we consider a threat model where some nodes
of a robot app are untrusted. Those adversarial nodes aim
to compromise the robot’s operations, forcing it to perform
dangerous actions. This can result in severe security and
safety issues to machines, humans and environments [21].

This threat model is drawn from four observations. First,
the ROS platform is open for everyone to upload and share

their code repos without any security check. As a result,
an adversarial developer can insert malicious code to a
repo and publish it to the ROS platform for other users to
download. This has been highlighted in the design docu-
ment of ROS2 Robotic Systems Threat Model [22]: “third-
party components releasing process create additional security
threats (third-party components may be compromised during their
distribution)”. Second, the quality of third-party function
code is not guaranteed. A lot of functions in the ROS
platform lack of coding standards or specifications. They
may also contain software bugs that can be exploited by an
adversary to compromise the nodes at runtime [21], [23]. By
inspecting the latest commit logs in the Robot Vulnerability
Database [24], 17 robot vulnerabilities and 834 bugs (e.g.,
no authentication, uninitialized variables, buffer overflow)
were discovered in the repos of 51 robot components, 37
robots and 34 vendors in the ROS platform. Most of them are
still not addressed yet. Third, the high interactions among
nodes in a robot app can amplify the attack damage. If an
adversary controls one node, it is possible that he can affect
other nodes directly or indirectly, and then the entire app.
Finally, this threat model is widely adopted in prior works
regarding ROS security [25], [26].

Given this threat model, our goal is to design a method-
ology and system, which can identify and mitigate the safety
risks caused by the malicious nodes inside robot apps. For
instance, an adversary can flood the path planning node to
block other nodes publishing goals or increase the speed so
that the robot would be too fast to miss the target searching
objects or obstacles in the surroundings. We focus on the
protection of node interactions (both direct and indirect)
instead of the operation of individual nodes. We further as-
sume the underlying OS and ROS core libraries are trusted:
the operational flow and data transmission are well pro-
tected, and the isolation scheme is correctly implemented so
the malicious nodes are not able to hijack the honest ones
or the privileged systems. How to enhance the security of
the ROS core libraries [21], [27] and mitigate vulnerabilities
from networks [28], sensors [29]–[36], actuators [37], [38]
and controllers [39] are orthogonal to our work.

3 FUNCTION INTERACTION ANALYSIS

In this section, we aim to draw an interaction graph to
model all the functions in the ROS platform and their com-
munications. Up to the date of writing, the ROS platform
contains 941 repos with around 3,100 packages. A function
is typically composed of multiple packages, while a repo is
usually developed for one specific function. Hence, we first
implement an automatic tool to categorize these repos based
on the function type they can achieve1 (§ 3.1). Then we build
an interaction graph based on this categorization (§ 3.2).

3.1 Categorization of Robot Functions

We first build an automatic tool to perform large-scale
analysis on all the repos from the ROS platform. Past

1. There are a few complex repos which can realize more than one
functions. Such a repo commonly comprises multiple sub-packages.
Our tool splits them into sub-repos by analyzing the package.xml file
in each sub-package. Each sub-repo focus on one function.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

4

1. mqtt_bridge
2. rqt_image_view
3. rtt_exploration
4. wge100_driver
5. jsk_recognition
……

Repo
Name

The ROS Platform
Package 1
Package 2
Package 3
Package 4
ReadME
……

One Repo Package 1
src
Package.xml
……link to the

hosting site

Related Document

Manifest
File

Function 1

Function 2

implement

implement

Function 1
Function 2

Function 3
Function 4

ROS Application Task
multiple
repos

Runtime
Navigation

Fig. 3: The relationship among the app, repo, package,
function and task.

works adopted Natural Language Processing and code de-
pendency clustering techniques to analyze smartphone and
home-based IoT apps [40]–[46]. However, it is challenging
to apply these techniques to the ROS apps. First, a large
portion of repos have poor code quality and the descriptions
are not well documented, which can hardly reflect the char-
acteristics of the functions. According to our analysis, 340
out of 941 repos do not provide the function descriptions in
the documents, while 14 repos even use Japanese or German
for the description. Second, the dependencies across repos
do not provide accurate or useful information for clustering.
On one hand, most repos achieve simple functions (e.g.
localization, teleoperation) without importing any other re-
pos. On the other hand, some common repos are imported
by various repos without any connections. For instance,
cv_bridge calls the OpenCV library to process images. It
can be imported by the recognition, QR-based localization
or vision-based mapping using function calls, rather than
publish-subscribe message protocol.

Instead, we adopt the rule-based approach to analyze
and categorize repos. We use the Stanford TokensRegex [47]
to implement such an automatic tool. This tool includes two
processes: key information extraction and function classification.
Key Information Extraction. To identify the function type
of a ROS repo, three particular attributes of the repos can be
inspected:

1) the repo name, which can directly reflect the functional-
ity of this repo;

2) the manifest file (i.e. package.xml), which shows a func-
tional brief of the repo.

3) the related document (i.e. README file), which presents
the detailed information of this package, including
function description, topics and services;

Figure 3 illustrates the interrelationships of various com-
ponents within the ROS architecture. As described in § 2.2,
ROS systematically maintains an inventory of indices (i.e.
repo names), each linked to their respective source code
within the hosting platform. A repository comprises sin-
gle or multiple ROS packages, alongside their associated
documentation, specifically, a README file. Each package
encompasses source code and a manifest file, otherwise
known as ’package.xml’. This manifest file primarily serves
the purpose of detailing version information, descriptions,
and dependencies. Notably, a specific robotic function may
be realized through the implementation of a single package
or a combination of multiple packages, suggesting that a
repository can contain more than one functionality. The
developers can construct a ROS app by integrating these

TABLE 1: The successful identifications in 941 repos.

Function Type
Repo
Name

Manifest
File

ReadMe
File Manual

Automation
Rate

Preprocessing 18 41 13 12 85.71%
Localization 17 13 3 2 94.29%
Mapping 15 11 4 1 96.77%
Recognition 21 23 4 2 96.00%
Path Planning 44 49 5 5 95.15%
Goal Planner 5 4 0 2 81.82%
Path Tracking 8 37 11 12 82.35%
Teleoperation 7 21 1 1 96.67%
Speech Generation 2 1 5 1 88.89%
Switch 3 2 1 0 100.00%
Mobile 2 26 4 6 84.21%
Manipulator 2 30 2 3 91.89%
Speaker 0 0 5 1 83.33%
Sensor 10 77 16 25 80.47%
Visualization 98 60 11 0 100.00%
Support 14 45 25 27 75.68%
Extension 23 72 18 106 51.60%
Top 14 Function Type 154 335 74 73 88.52%

functions with functions from other repositories or their
customized functions. At runtime, all nodes in the app
transmit data through interactions and cooperate to execute
a task, such as navigation and exploration.

Listing 1 demonstrates an example of the three critical
attributes sourced from the RRT exploration repository. We
view the package name as an essential data point, with the
remaining two key pieces of information being extracted
from the manifest file and the associated documentation.
Specifically, within the manifest file, we target text en-
capsulated within the ’description’ tags as a pivotal piece
of information. Regarding the related documentation, our
initial step involves filtering out irrelevant distractions, such
as installation commands and prerequisites outlined in the
example. Subsequently, we employ the remaining repository
description as another fundamental piece of information.

*** the repo name ***
r r t e x p l o r a t i o n
*** the manifest file (package.xml) ***
<d e s c r i p t i o n>
A ROS package t h a t implements a multi −robot RRT−
based map e x p l o r a t i o n algorithm . I t a l s o has the
image−based f r o n t i e r d e t e c t i o n t h a t uses image
process ing to e x t r a c t f r o n t i e r points
</ d e s c r i p t i o n>
.

*** the related document (README) ***
I t i s a ROS package t h a t implements a multi −robot
map e x p l o r a t i o n algorithm f o r mobile robots . I t i s
based on the Rapidly −Exploring Random Tree (RRT)
algorithm . I t uses occupancy girds as a map repre −
s e n t a t i o n . The package has 5 d i f f e r e n t ROS nodes:
(1) Global RRT f r o n t i e r point d e t e c t o r node .
(2) Local RRT f r o n t i e r point d e t e c t o r node .
.
1 . Requirements
The package has been t e s t e d on both ROS K i n e t i c and
ROS Indigo , i t should work on other d i s t r i b u t i o n s
l i k e Jade .
$ sudo apt-get install ros-kinetic-gmapping
.
2 . I n s t a l l a t i o n
Download the package and place i t i n s i d e the / s r c
f o l d e r in your workspace . And then compile using
catkin make .
.

Listing 1: An example of the three attributes

Function Classification. To categorize 941 repos into 17
types of robotic functions in Table 1, we first select 500
repos as the training set and assign them to 5 annotators

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

5

with rich ROS development capabilities. These annotators
manually classify the function types of each repo from
three particular attributes mentioned above. In the event
of ambiguity, further classification was achieved via deeper
analysis of dependencies and source code. To estimate the
consistency of the analysis results across the 5 annotators on
the 17 robotic function types, we calculated the Fleiss’ kappa
coefficient, which yielded a score of 0.92. We observed that
inconsistencies were primarily present in repos with either
insufficient documentation or those that fit into multiple
types concurrently. Then we use string regular expressions
to match these rules with tokens in the key information
over the rest of 441 repos. Finally, we manually analyze
these 441 repos to verify the correctness of our automatic
classification. The matching rules for different functions
are listed in Table 2. Taking the Visualization function
as an example, the rule is to determine whether the key
information contains one of two kinds of tokens. One token
is the function-related words and their variants, such as
visualize and simulation. The other token is the function-
related tool names, such rqt and gazebo. These tools are
designed to visualize the robot and different tasks. Due
to the fact that the more information probably hides more
inferences, we identify the function types from repo name,
manifest file and related documents successively, which
means the matching process is finished if it succeeds in one
piece of key information. The rest of repos that cannot be
detected automatically will be analyzed manually.

Table 1 shows the results of our automated function clas-
sification. The automation rate is the ratio of the successfully
identified number to the sum of repos in this function. We
can observe that the automation rate of most function types
is more than 80% except the Support and Extension
functions. Fortunately, the repos in the Visualization,
Support and Extension belong to the Others domain,
they are independent of the function nodes in the interaction
graph. Thus, considering the repos in the first 14 function
types, the automation rate of function nodes can reach
88.52%. Among these successfully automated classified re-
pos, the accuracy of our classification can achieve 99.82%.
Results. In our evaluation, this tool can successfully identify
the function types of 88.52% ROS repos. The rest repos
(11.48%) are some corner cases. For example, the language
used in some repos is too vague or has no description
at all. For these cases, we analyzed manually, with very
minor effort. We believe our tool can adapt to future ROS
repos as well. It is worth noting that a repo may contain
multiple tokens at the same time, which means that the
repo belongs to multiple function types. For example, the
turtlebot repo contains both Extension token (urdf) and
teleoperation token (teleop). Thus, the sum of the repo
numbers in Table 2 (i.e. 1135) is larger than the number of
our target repos (i.e. 941).

Table 2 illustrates our analysis results about all func-
tion types of repos under the ROS1 kinetic version in the
platform: 941 repos are split into 1135 ones as some repos
implement two or more functions. Then they are categorized
into 17 function types in five domains.

The first three domains include main functions for
computing the robot tasks. In the Perception domain, the
Preprocessing function has the largest proportion, which

converts the raw sensory data or calibrates multiple data
to the desired representation. Then the processed data are
transmitted to the Localization and Mapping functions
to form the knowledge of navigation, or transmitted to
the Recognition function to generate the corresponding
information. In the Planning domain, functions are used to
parse a high-level task to a set of low-level actions based
on the knowledge from the environment. For example, the
Path Planning function receives the coordinate of the
destination and computes a collision-free path to reach
that position. The Goal Planner function encapsulates
each action into a basic unit and defines the corresponding
logic execution sequence. The planned actions are then
forwarded to the functions in the Control domain to drive
the actuators. The actuators can be commonly classified
into three categories: wheels or rotors in mobile robots,
manipulator and speaker. The first two actuators are driven
by the Path Tracking function, which generates adaptive
velocities to control these robots navigating in the real
world. The Speech Generation function creates audios
for the speaker to respond to users’ requests. This function
also includes packages from many cloud providers. The
switcher function is used to switch on/off certain actu-
ators for some specific tasks.

In addition to the three main domains, we also identify
two more categories. In the Drivers domain, the functions
allow the robot to interface with various actuators. The
Others domain has the largest number of repos. Specifically,
the Visualization function provides a GUI plugin for
users to control the robot. The Support function builds
a bridge between ROS and many third-party platforms,
making the robot apps compatible with AI frameworks,
mobile apps, and cloud services. The Extension function
provides the wrappers of core libraries in ROS to ease the
robot app development.

3.2 Building an Interaction Graph
With the above categorization, we analyze the message
types between different repos, and generate an abstract
interaction graph, as shown in Figure 4. From the figure,
we can observe that functions in Perception, Planning and
Control domains constitute all the computational nodes (the
gray ellipse) in the interaction graph2.
Key Information Extraction. Our approach to identifying
all interactions within a variety of robot apps begins with
recognizing the messages transmitted between different
functional nodes. As discussed in § 2.1, function nodes
share robot states through direct interactions. The robot
states are generally estimated values the function node
computes based on the sensory data. We use a solid arrow
to represent the direct interaction between two nodes, which
is implemented in a topic pattern. Specifically, two func-
tions are connected if the source node publishes message
types which are subscribed by the destination node. The
message type published/subscribed by adjacent nodes is la-
beled above the arrow. For example, the published message
type of the Path Planning function is ‘nav msgs/Path’,

2. According to the sensor types supported by ROS [48], we further
split the Recognition function into several recognition subfunctions,
e.g. temperature/illuminance/humidity recognition.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

6

TABLE 2: Categorization of repos in the ROS platform.
Domain Function Type # of Repos # Rule Example Repos

Perception
(17.6%)

Preprocessing 84 (7.4%) (calibrat | preprocess | vision | image | laser | gps | imu | point cloud | depth cloud)/w+ lidar camera calibration
Localization 35 (3.1%) localiz/w+ | slam slam karto
Mapping 31 (2.7%) map/w+ | slam homer mapping
Recognition 50 (4.4%) ((detect | recogni)/w+ | identification) (face | lane | temperature | luminescence | humidity | ...) jsk recognition

Planning
(10%)

Path Planning 103 (9.1%) nav/w+ | moveit | explor/w+ | global plan/w+ robot navigation
Goal Planner 11 (1%) plan/w+ (behavior | goal | mission)/w+ behaviortree planner

Control
(10%)

Path Tracking 68 (6%) local plan/w+ | track/w+ teb local planner tutorials
Teleoperation 30 (2.6%) teleop/w+ joy teleop
Speech Generation 9 (0.8%) talker | tts | speaker | generate speech homer tts
Switcher 6 (0.5%) iot | internet of thing iot bridge

Drivers
(18.4%)

Mobile 38 (3.3%) (driver | hardware interface) (mobile | wheel) ackermann controller
Manipulator 37 (3.3%) (driver | hardware interface) (manip | grasp)/w+ agile grasp
Speaker 6 (0.5%) (driver | hardware interface) (speech | audio | tts) xbot talker
Sensors 128 (11.3%) (driver | hardware interface) (lidar | camera | radar | imu | sensors ... (exclude above three types)) xsens driver

Others
(44%)

Visualization 169 (14.9%) view | (visual | rqt | simula | rviz)/w+ rqt reconfigure
Support 111 (9.8%) (bridge | dependency | library | plugin | wrapper)/w+ aws ros1 common
Extension 219 (19.3%) (ros | msgs | description | urdf | tools)/w+ ros pytest

Fig. 4: The interaction graph of robot functions.

which is the same as the subscribed message type of Path
Tracking function. Thus, a connection appears from the
Path Planning to Path Tracking.

In order to extract shared messages across diverse repos-
itories of the ROS platform, we undertook a thorough
analysis of two primary sources: README files and source
code. As depicted in Listing 2, the majority of the stan-
dard README files disclose subscription and publication
topic names (highlighted in gray) and their associated mes-
sage types (indicated in blue) relevant to the repository.
Simultaneously, the number of message types defined by
ROS is finite, encompassing 32 basic message types [49]
(e.g., ColorRGBA, Time) as determined by its core, and
an additional 86 internal state types [50] (e.g., Path, imu).
A matching process between these type names and their
corresponding characters in the README files enables the
extraction of all related topics. Subsequent categorization is
achieved by associating these with the relevant ’Publish’ or
’Subscribe’ keywords. Moreover, ROS offers some specific
function interfaces for subscription and publishing. Identi-
fying these interface names within the source code can also
locate corresponding topics and related operations. Service
extraction is also similar to the topics, which can also be
obtained through related interfaces and keywords.

*** the related document (README) ***
4.2.2. Subscribed Topics
• The map (Topic name i s defined by the ∼map topic
parameter) (nav msgs/OccupancyGrid) .
44.2.3. Published Topics
• detected points (geometry msgs/PointStamped Message) :
The t o p i c on which the node publ ishes detec ted
f r o n t i e r points .

.
*** the source code ***
r o s : : Subscriber sub= nh . subscr ibe (map topic , 100 ,
mapCallBack) ;
void mapCallBack (const gnav msgs::OccupancyGrid : :
ConstPtr& msg)
.
r o s : : Publisher targetspub = nh . a d v e r t i s e<
geometry msgs::PointStamped>(”/detected points” , 10) ;
.

Listing 2: An example of the two sources

Interaction Graph. By connecting all these function nodes
with identified message types, we introduce an interaction
graph of robot functions to reveal such a complete closed-
loop robot operation in Figure 4. Specifically, function nodes
in the Perception domain receive physical environmental
information from sensors and convert it to robot internal es-
timated states (e.g. pose). Function nodes in the Planning do-
main generate long-term plans (e.g. path) based on robot’s
knowledge. All data flows converge to the function nodes
in the Control domain, which output action commands (e.g.
velocity) to control related actuators. Then the actuators can
alter the surrounding environment, and force the function
nodes in the Perception to repeat the above procedure.

In addition, from Figure 4, we can also observe that
function nodes also have indirect interactions via the physi-
cal environment. The action commands generated from the
function nodes in the Control domain can alter the robot’s
surrounding environment, which will also affect some func-
tion nodes as they need to re-estimate the latest robot states
and determine the actions at the next moment. We use dot-
ted arrows to represent such indirect interactions caused by

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

7

!"#$%&'&()*$+,-.$/$01

!2#$+3"34/56&2,72$+,-.

!"#$
%&'()*+,

-!".&

/&+&)+&/$
)(0/*1(0

*!".&2
3&'"+&/$0(/&

!"#4%&'2
3&'"+&/$0(/&

!8#$0,--,3'/56&2,72$+,-.

)(0+3('$
")1(0

5+"+&

6&3)&61(0$
&%&0+

&%&0+23&'"+&/$
0(/&

")1(023&'"+&/$
0(/&

99

99

!)#$%&'&()*$+,-.$/$51

Direct Interaction Risk Indirect Interaction Risk

Fig. 5: Three types of interaction risk.

the changes of environmental contexts. For example, after
the Path Tracking node generates velocity and drives
the robot to a new context, the obstacle’s position relative
to the robot has also changed. Then the function nodes in
Perception need to update the robot states (e.g. map and
pose). If an obstacle is added to an unknown map, the Path
Planning node may need to re-plan a new path.

4 RISK ANALYSIS

We analyze safety risks caused by malicious function nodes
and interactions. We classify these risks into three categories
(Figure 5 and Table 4). We describe how each risk can incur
unexpected behaviors to threaten the robot’s safety.

4.1 General Risk (GR)
GR is caused by a direct interaction. It occurs when multiple
function nodes share the same robot states. If one node is
malicious, it can intentionally change the robot states to
wrong values to affect the robot operation. Based on the
interaction graph, there are two conditions to trigger the
GR. First, two or more function nodes are connected to the
same successor node, and at least one of them is untrusted.
Second, the transmitted message types among the above
function nodes need to be the same. This guarantees that
all these nodes share the same robot state through the direct
interaction.

According to the number of topics, GR can be further
divided into two types. (1) General Risk with Single Topic
(GR-ST): multiple high-risk nodes publish to one same topic,
subscribed by the successor node (Figure 5a). (2) General
Risk with Multiple Topics (GR-MT): both the indegree and
outdegree of the topic are equal to 1. There can be multiple
parallel topics with the same message type subscribed by
the successor function (Figure 5b).

4.2 Robot-Specific Risk (RSR)
RSR happens in an indirect interaction, due to the conflict
behaviors related to the robotic mobility characteristic. This
mobility feature requires the robot to recognize real-time en-
vironment conditions (e.g. obstacle avoidance, traffic light)
and react to them promptly. The robot’s maximal velocity
is determined by its reaction time, which further depends
on two factors [51], [52]. The first factor is the processing
time for collision avoidance, which is the end-to-end latency
from obstacle detection to velocity control. The second factor
is the frame rate of the Image Recognition function. The
faster the robot is, the larger frame rate this function requires

to respond to the rapid changes of the environment. This
paper only focuses on the second factor as the processing
latency is the safety issue of the internal function node (i.e.
Path Tracking) rather than the interaction between two
nodes.

Figure 5c shows the mechanism of RSR. There are two
types of high-risk function nodes: (1) the image-related
node is used to understand the current detected conditions
through image recognition. (2) The max vel-related node
outputs the maximal velocity value to the corresponding
topic based on the current condition. These two nodes
affect each other via an indirect interaction (dotted line).
The maximal velocity and image frame rate should satisfy
certain conditions to guarantee the robot can function cor-
rectly. If either node is malicious and produces anomalous
output (too large maximal velocity or too small frame rate),
the requirement can be compromised, bringing catastrophic
effects in some tasks.

4.3 Mission-Specific Risk (MSR)
MSR refers to the violation of users’ expectations regarding
the safe and secure behaviors of a robot system. It exists
in the indirect interaction between an event-related node
and action-related node (Figure 5d), when there are conflicts
between them, regulated by some scenario-specific rules.
Although some GRs and RSRs may also lead to the violation
of these rules, the causes and mitigation strategies are totally
different. So it is necessary to discuss MSR separately. There
are two types of high-risk nodes in MSR: (1) the event-
related ones include all the nodes in the Perception domain
except Preprocessing. The robot uses those nodes to
understand the conditions of the physical environment.
(2) The action-related ones include all the nodes in the
Control domain which can directly interact with the actuator
drivers. They are used to actively change the actual states
of both the robot and environment. If either of these nodes
are malicious, the robot and task can be compromised with
unexpected consequences.

The rules to prevent MSR are determined by the mis-
sions and usage scenarios, which are usually specified by
users. Table 3 lists some examples of MSRs and the corre-
sponding rules in four scenarios. (1) In a domestic context,
robots are designed to manage various human-centric tasks,
e.g., house cleaning, baby-sitting. They are required not to
disturb human’s normal life. (2) In a warehouse context,
industrial robots are introduced to achieve high automation
and improve productivity, such as manipulators and au-
tonomous ground vehicles (AGV). These robots are required
to complete each subtask correctly, efficiently and safely. (3)
In a city context, autonomous vehicles and delivery robots
move at high speeds in the transportation system, and han-
dle complex events from an outdoor dynamic environment.
Thus, they need to obey the transportation rules and ensure
the safety of passengers and public assets. (4) Robots are
also deployed in many specialized scenarios to conduct
professional missions. For example, rescue robots are used
to search for survivors or extinguish fires. Medical robots
are used in hospitals to diagnose and treat patients. Military
robots are designed in battlefields to destroy enemies or
constructions. These robots need to follow the rules related
to their specific missions.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

8

TABLE 3: Examples of Mission-Specific Risks and Rules.
Scenario Description

Domestic
The companion robot must send an alert when a user is in danger.
The robotic vacuum must be turned off when a user is sleeping.

Warehouse
The manipulator must not grasp objects that exceed its limited weight.
The AGV must recharge when the battery level is below a threshold.

City The mobile vehicle must follow the traffic rule.
The mobile vehicle must maintain a safe distance with passengers.

Specialized
The firefighter robot must send an alert when detecting the wounded.
The precision of the surgery robot must be above a specified threshold.

4.4 Summary of Risks from Each Domain

An arbitrary malicious node in the robot app can incur the
above risks. We discuss the potential risks and consequences
caused by malicious functions in each domain.
Perception. If a node in the Perception domain is untrusted,
the robot states will be estimated as wrong values. Follow-
ing the direct interactions, the robot will take anomalous
actions, which violate the rules of MSR. Moreover, since the
Recognition function typically adopts sensor fusion to
reduce uncertainty caused by the physical limit of different
sensors, such a threat can cause GR as well.

For instance, an autonomous vehicle is navigating
the highway. A malicious Preprocessing function in-
tentionally sends wrong sensory data to the Object
Recognition function to cause optical illusions, e.g., rec-
ognizing a turn right sign as a stop sign. This will violate
the traffic rule: “vehicles cannot stop on a highway”.
Planning. A malicious node in the Planning domain can
interrupt the current task, or reset the robot states to wrong
values. In a common robot app, there can be multiple
Global Planner functions for different goals based on
various events from the Recognition functions. This gives
the malicious node chances to win the competition against
other goals and compromise the robot states (GR). Besides,
the malicious node can also directly modify the goal to make
the robot take anomalous actions in a specific event (MSR).

For instance, a robot vacuum is executing the cleaning
task in a living room. The Global Planner function is
compromised and controlled by an adversary to set a new
destination goal as the master bedroom for stealing privacy.
This can violate a possible MSR rule: “the robot vacuum
cannot enter the bedroom”. If the robot does not have
enough power to clean the master bedroom, this will violate
the MSR rule: “the AGV must recharge when the battery
level is below a specified threshold.” (Table 3).
Control. If a function in the Control domain is malicious,
the adversary can launch attacks in three ways. First, the
function can interrupt or suspend other actions from dif-
ferent interactions (GR). Second, it can increase the veloc-
ity to cause failures of image-related recognition functions
through the indirect interaction (RSR). Third, it can directly
control the robot to take unexpected actions in a specific
scenario (MSR).

For instance, in a task of searching dangerous goods or
wounded persons, the robot device receives images through
the equipped camera at a certain frame rate. If the max vel
node is malicious and intentionally increases the maximal
velocity, there will be no or less correlation between adjacent
frames. The Image Recognition function may fail to
process each frame promptly, and frames containing safety-
related information (e.g. drug, thief) can be missed.

Algorithm 1: Potential Risk Discovery
Input: N . A set of nodes in a robot app

T . A set of topics in a robot app
Np

j . A set of nodes publish to the topic j
T s
i . A set of topics subscribed by the node i

T p
i . A set of topics published by the node i

Output: RN . Risk nodes in a robot app
1 foreach topics tj ∈ T do
2 if num(Np

j) >1 then

3 RNST
gr ←

{
Np

j

}
;

4 if (‘max vel’ ∈ tj .name) ∧ (tj .type == ‘std msgs/Float64’)
then

5 RNmax
rsr ←

{
Np

j

}
;

6 foreach string sn ∈ EVENT MSG TYPE do
7 if (sn ∈ tj .type) ∨ (‘detect’ ∈ tj .name) then
8 RNevent

msr ←
{
Np

j

}
;

9 foreach string sn ∈ ACTION MSG TYPE do
10 if sn ∈ tj .type ∨ (‘goal’ ∈ tj .name) then
11 RNaction

msr ←
{
Np

j

}
;

12 foreach node ni ∈ N do
13 sort node’s subscriptions T s

i by T s
i .type;

14 foreach subscription sk ∈ T s
i do

15 if sk.type == sk+1.type then
16 RNMT

gr ← {ni};

17 foreach subscription sk ∈ T s
i do

18 if sk.type == ‘sensor msgs/Image’ then
19 foreach publication pm ∈ T p

i do
20 foreach string sn ∈ RECOG TOPIC NAME

do
21 if sn ∈ pm.name then
22 RN image

rsr ← {ni};

5 MITIGATION METHODOLOGY

We present a novel methodology to mitigate the malicious
function interactions. The core of our solution is a set of
coordination nodes (§ 5.1) and security policies (§ 5.2), as
summarized in Table 4.

5.1 Coordination Node
The coordination nodes are deployed inside the robot apps
to regulate the interactions and enforce the desired security
policies. They are designed to be general for different types
of robots, function nodes and risks. Developers can deploy
them into apps without modifying the internal function
code. Users can adjust configurations based on their de-
mands. Note that coordination nodes are not derivatives
of third-party libraries, and their underlying logic is main-
tained relatively straightforward to preclude the possibility
of embedded malicious code. Indeed, the scenario wherein
an adversary circumvents security and seizes control of a
node via hacking or other means, may indeed pose a risk.
We recognize this as a legitimate concern; however, such a
scenario is orthogonal to our current research.

5.1.1 Coordination Node Deployment
We design three types of coordination nodes, to mitigate
three types of risks respectively (Figure 6).
General Risk Coordination Node (GRCN). This node is
inserted between the high-risk nodes and their successor

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

9

TABLE 4: Summary of risks, threats and mitigation for function interactions.
Risk Domain Threat Coordination Node Executor Policy Parameter Description

GR Perception,
Planning, Control GRCN Developer

Block Block Bit Allow/block the action of chosen flow.
FIFO Queue Timeout Choose the action based on fifo order with time limit.
Priority Queue Timeout, Priority Choose the action based on priority order with time limit.
Preemption Priority Choose the action based on priority order.

RSR Control RSRCN Developer Block Block Bit Allow/block the velocity control action of chosen flow.
Safe Threshold, Priority Adjust max velocity based on fps data.

End User Constrain Max vel limit Limit adjustable max velocity limit with a user-defined value.

MSR
Perception,

Planning, Control MSRCN End User Block Block Bit Allow/block the action of chosen flow.

!"#$%&'&(")$*+,-$.//(0+'"1/'$2/0&$3&4)/56&'7

!"#$%&
'()*+,"(!)-"*&
./012304

5*

!8#$*/8/79:4&;+<;$*+,-$.//(0+'"1/'$2/0&$3&4)/56&'7

!)6&
7$%"58'9

:!);$

,<+

8!);$=
($%)'$#&*"#$

!)6>7$%=
($%)'$#&*"#$

==

#$'$5'$#&
5"*#8-"*

5*

,<+&
!"*8'"(

!)6&
7$%"58'9

!;#$>+,,+/'9:4&;+<;$*+,-$.//(0+'"1/'$2/0&$3&4)/56&'7

5"*'("%&
)5-"*

+')'$

7*'=($%)'$#&
*"#$

)5-"*=($%)'$#&
*"#$

==
5*

<$(5$<-"*&
7*'

5"*'("%&
)5-"*

Fig. 6: Three types of coordination nodes (purple circles).

node (Figure 6a). The published topics of each high-risk
node need to be remapped to the subscribed topic of this
GRCN to create new data flows, and the published topic of
the GRCN need to be mapped to the subscribed topic of the
successor node. Thus, the GRCN can control each data flow
from the high-risk nodes based on various policies.
Robot-Specific Risk Coordination Node (RSRCN). This
node needs to coordinate the conflict between the image-
related node and max vel-related node (Figure 6b). We use
the same method to insert the RSRCN between the max vel-
related node and its successor node. To collect the frame
rate from the image-related node, we insert a fps monitor
node to subscribe to the detected condition topic published
by the image-related node. This fps monitor node measures
the frequency of the triggered event and publishes the frame
rate to the fps topic. The RSRCN subscribes to this fps topic
and uses it as reference for max velocity adjustment.
Mission-Specific Risk Coordination Node (MSRCN). This
node needs to allow/block the actions taken under wrong
conditions (Figure 6c). Thus, it is deployed between each
action-related node and its successor, and subscribes to all
perception event topics of event-related nodes. In this way,
the MSRCN can collect all perception events in the app and
obtain the control of each action. It is worth noting that
there can be multiple GRCNs for each interaction, but the
numbers of both RSRCN and MSRCN are always one.

5.1.2 Potential Risk Discovery

To locate the deployment position of each coordination
node, we propose Algorithm 1 to identify all potential
interactions and related high-risk nodes. The procedure
commences with simulating the lifecycle of the applica-
tion offline, thus auto-generating the interaction graph.
The graph is then traversed, wherein all high-risk function
nodes are automatically identified using Algorithm 1. The

TABLE 5: Description of EVENT MSG TYPE.
Message Type Description
sensor msgs/
BatteryState

Measurement of the battery state (voltage,
charge, etc).

sensor msgs/
Temperature Measurement of the temperature.

sensor msgs/
RelativeHumidity

Defines the ratio of partial pressure of water
vapor to the saturated vapor pressure at a
temperature.

sensor msgs/
MagneticField

Measurement of the Magnetic Field vector at
a specific location.

sensor msgs/
FluidPressure

Measurement of the pressure inside of a fluid
(air, water, etc), atmospheric or barometric
pressure.

sensor msgs/
NavSatFix

Measurement for any Global Navigation
Satellite System (latitude, longitude, etc).

sensor msgs/
Illuminance

Measurement of the single photometric
illuminance.

nav msgs/
Odometry

Measurement of an estimate of a position
and velocity in free space (pose, twist, etc).

TABLE 6: Description of ACTION MSG TYPE.
Actuator Message Type Description

Mobile
geometry msg/
Twist

This expresses the velocity in
free space broken into its linear
and angular parts.

Manipulator
control msgs/
FollowJoint
TrajectoryAction

This defines the joint trajectory
to follow.

Speaker
audio common
msg/AudioData

This defines the audio data to
speak.

identification for each type of high-risk nodes involves the
following set of rules:

GR Rule: Nodes that publish topics with an indegree
greater than 1 are identified and denoted as RNst

gr with
single topics (Lines 1-3). Nodes that subscribe to more than
one topic of the same message type are regarded as RNmt

gr

with multiple topics (Lines 12-16).

RSR Rule: To identify image-related node RN image
rsr and

max vel-related node RNmax
rsr , the topic name and type of

each subscribed or published message is checked (Lines 4-
5, 17-22). We search the keywords (e.g., ’detect’, ’people’,
’face’) in the RECOG TOPIC NAME string list. Evaluations
in § 6 indicate this keyword searching can effectively iden-
tify the RSR nodes.

MSR Rule: For the identification of event-related node
RNevent

msr and action-related node RNaction
msr , the mes-

sage type of each topic is checked (Lines 6-11). The
check is made against the EVENT MSG TYPE or AC-
TION MSG TYPE lists as the message types commonly
follow standard ROS naming conventions [53]. Detailed
lists of EVENT MSG TYPE and ACTION MSG TYPE are
shown in Table 5 and Table 6.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

10

5.2 Security Policies

To mitigate the malicious interactions in an app, each type of
coordination nodes implements a set of policies. Table 4 lists
the policies we have built along with the descriptions and
parameters for GRCN, RSRCN and MSRCN. Each policy
needs to be configured by either the developer or end user,
as shown in the “Executor” column.
GRCN Policies. GRCN aims to coordinate data flows from
different high-risk nodes. We use four types of policies to
adapt to different scenarios. Specifically, the block policy
is used when the user wants to stop the current action
immediately in case of emergency. When multiple high-risk
nodes publish control commands, the preemption policy
will choose the action with the highest priority. For exam-
ple, both the Safe Control and Path Tracking nodes
publish velocity to the Mobile Driver node. However,
the safe control action should be taken first because it is
responsible for ensuring the user’s safety. FIFO Queue and
Priority Queue policies are used for high-risk nodes with
high requirements of completion time, such as search, rescue
and obstacle avoidance.
RSRCN Policies. RSRCN aims to resolve the conflicts
between data flows from the image-related (iflow) and
max vel-relate (vflow) nodes. We use three types of policies
to adjust the maximal velocity of the robot. Block policy
allows/blocks the action from vflow and does not affect the
action from iflow. Safe policy uses thresholds to bridge the
maximal velocity with fps. Based on the fact that a higher
velocity requires a faster processing capability, we assume
the maximal velocity is proportional to the fps. Then the
threshold serves as a scale factor and can be configured
by users. Constrain policy sets a maximal velocity limit to
ensure safety in complex and dynamic environments. This
is particularly useful when users want the robots to work at
low speeds psychologically even though they drive within
safe speed ranges.
MSRCN Policies. MSRCN aims to coordinate the conflicts
between the data flows from the event-related node (eflow)
and action-related node (aflow). We only adopt block policy
to decide whether the action should be taken under some
specific conditions. However, the block bits of eflow and
aflow are different. Bit 0/1 in aflow denotes that the ac-
tions are allowed/blocked, while Bit 0/1 in eflow represents
whether the condition event is triggered or not. Thus, end
users can control all the actions under arbitrary conditions.

To reduce the complexity of configuring our method-
ology for inexperienced end users, we delegate part of
the policy selection and parameter configuration tasks to
the developers. It is reasonable because some risks are
derived from the race condition while the others are caused
by falling short of the user’s expectation. Specifically, the
developers enforce appropriate policies for each GRCN and
set the corresponding parameters. Moreover, the developers
also preset the parameters in the block and safe policies
for RSRCN based on the robot’s characteristics. On the
other hand, the end users only have the control of policy
selection in RSRCN and MSRCN. The parameters they need
to configure are just max vel limit in RSRCN and block bit
in MSRCN. These two parameters are configured based on
specific contexts and tasks. For example, in scenarios where

!"#$%

App Instrumentor (Development) Security Service (Operation)

Data
Collector

Risk
Controller

Coordination Node
Deployment

Potential Risk
Discovery

Robot App
Simulation

Instrumented
Robot App

cn

cn

Runtime

dc rc

cn cn

!

" #

$

% &

User
Config.

Policies

Developer
Config.

'

Fig. 7: RTRON system overview.

a robot navigates an area densely populated with people
and a speed constraint is in effect, users can manually set
the upper limit of the robot’s speed. In this way, even
if malicious nodes tamper with the speed through high-
risk interactions, the robot can be guaranteed to navigate
at a safe speed. Table 4 shows the role of end users and
developers for each policy (the “Executor” column).

5.3 Methodology Implementation

We design RTRON, a novel end-to-end system implement-
ing methodologies mentioned above. RTRON enables the
developer to integrate necessary coordination nodes into a
potentially vulnerable robot app without altering the origi-
nal function nodes and set up specific security policies. Then
the end user can safely launch the patched app on the robot,
and configure other policies before the task starts. Figure
7 illustrates the overview of RTRON, which comprises two
main components: app instrumentor and security service.
App Instrumentor. This module aims to identify all po-
tential risks from the source code of the target app and
automatically deploys coordination nodes to capture events
and actions from high-risk function nodes. Specifically, the
Potential Risk Discovery submodule first simulates the target
app’s lifecycle and automatically constructs the interaction
graph offline (¶). By using Algorithm 1, it traverses all
function nodes (black circles in Figure 7) within the graph
and generates the information identified from three types of
risks (·). The collected data is then employed to set up the
coordination nodes. All these nodes would be automatically
deployed in the app by the Coordination Node Deployment
submodule after the developer configures a set of topics and
parameters for each node (¸). Topics specify the data transi-
tion between the potential node and coordination node and
parameters provide the policy choices and related options
of each policy to end users. Meanwhile, the developers also
check the details of the risks, select the optional policies for
GRCN and configure related parameters.

Figure 8(a) shows a GRCN instance. The GRCN con-
tinuously tracks velocity data from three risky nodes:
Navigation Control, Tele-operation and Safe
Control. The data transmission of each node is denoted
as flow1, flow2, and flow3. After launching the app, the
developer have the option to select the Priority Queue
policy and assign the highest priority to flow3 from Safe
Control, signifying that its velocity action should always
be prioritized. However, if the coordination node fails to
receive the corresponding actions within a specified timeout
duration (e.g., 0.2s), it will proceed to transmit the velocity
action of flow2, which holds the second-highest priority.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

11

!"#$%&'(#)*(+
,"#$%-'(#)*(+%."//),0

!"#$%&#'()%*+,-(.%/,(%)&#'+(%.(01#'2(3$%),+(#1(01#'2(&4,(
!"#$%.,5(1*$,-(4"++"#'6+3,)"7)(1"+/(8,9,'.6(%'5(%)&#'61,$%.,5('#5,+:

,"#$%-'(#)*(+%1$2)'#.

;1"22,1(&4,-(<=<=>=?><=(@<-=A-=B

3-$+2%
,$#)2$1%4(5

,C#0@-(D%E,1F(4#'".#1

6(#'7'$.%(6*(+.

8#(79

8#(79%8'2

((,C#0@-((@(((((%C#0@-(((@

((,C#0@-((=(((((,C#0<-(((@

)$")/

:7*(+%
,$#)2$1%4(5

%C#0@-(4#9,
%C#0<-(21%+3,C#0<-(5,.,).(3%1/"'2

!"#$%&'(#)*(+
,"#$%-'(#)*(+%."//),0

!"#$%&#'()%*+,-(4"+4%.)G(D,.0,,'(H3+(%'5(4%I(9,$#)".F()#'.1#$(
!"#$%.,5(1*$,-(1#D#.6+3,)"7)(1"+/(84%IJ9,$6(%'5("4%2,61,$%.,5('#5,+:

,"#$%-'(#)*(+%1$2)'#.

;1"22,1(&4,-(<=<=>=?><=(@<-=A-=?

;)<=-$#%
,$#)2$1%4(5

9C#0@-(3%.G(.1%)/"'2

6(#'7'$.%(6*(+.

8#(79 >)?$ @(+.2,)'+

8#(79%8'2

((9C#0@-((=

;)<=-$#=#'/'2

((9C#0@-((@><

AB,$.B(#1C%D,'(,'20

((9C#0@-((@>@K(A

(("C#0<-(((A><K(@

(("C#0A-(((@>LK(<

)$")/)$")/)$")/

E/)F$%
,$#)2$1%4(5

"C#0@-(5,.,).(3%1/"'2
"C#0<-(5,.,).($%',

(a) Developer console of GRCN

!"#$%&'(#)*(+
,"#$%-'(#)*(+%."//),0

!"#$%&#'()%*+,-(4*$&3$,(9,$#)".F()#'.1#$(C#0+(+G%1,(9,$#)".F(+.%.,(
!"#$%.,5(1*$,-(2,',1%$(1*$,(84*$&3$,('#5,+(3*D$"+G(.#(#',('#5,:

,"#$%-'(#)*(+%1$2)'#.

;1"22,1(&4,-(<=<=>=?><=(@<-=A-=@

2$#$G
(6$,)*(+ 9,$#)".F

C#0<+)-'F)*(+%
7(+2,(# 9,$#)".F

C#0@ .)?$%
7(+2,(# 9,$#)".F

C#0A

6(#'7'$.%(6*(+.

8#(79 D,$$/6*(+ HEHI=J"$"$ D,'(,'20=J"$"$

8#(79%8'2

((C#0@-((=

((C#0<-((@

((C#0A-((=

D,'(,'20

((C#0@-((@

((C#0<-((<

((C#0A-((A

A'/$("2%K.L

((C#0@-((=><

((C#0<-((=>@

((C#0A-((=>=M

D,'(,'20C%A'/$("2

((C#0@-((@K(=><

((C#0<-((<K(=>@

((C#0A-((AK(=>=M

)$")/)$")/)$")/)$")/

(b) End user console of RSRCN (c) End user console of MSRCN

Fig. 8: Developer and end user console of each risk in RTRON. The red solid rectangle denotes a button for the end users.
The blue/red box represents policy-related configuration parameters for the developers/end users.

cn ID
node type

node description
trigger time

risk info
policy

obj

gr cn

rsr cn

msr cn

block bit
timeout
priority

block bit
timeout
priority

threshold
max_vel_limit

block bit
timeout

gr policy

rsr policy

msr policy

rc dc

m
e
ta

d
a
ta

Fig. 9: Risk model of three types of risks in Data Collector.

Security Service. This module aims to visualize and mit-
igate the risks of malicious interactions at runtime. As
the robot executes the task within its environment (¹), all
coordination nodes in the instrumented app continuously
transmit their data to the Data Collector submodule (º). This
information is stored as a risk model, comprising metadata
and a collection of policy parameters. As shown in Figure
9, the metadata records basic information of a coordination
node, including its ID, node type, node description, trigger
time and risk information. This metadata is then used by
the Risk Controller submodule to visualize risk data and
provide interfaces for end users to enforce policies to each
coordination node (»). Some of these policies are manda-
tory, while others are optional, depending on the real-world
demands (e.g., task or scenario). Figure 8 presents the user
consoles for three types of coordination nodes. There are
three components in each console. (1) The rule violation
summary component shows the violation cause and rule of
this risk. (2) The rule violation details component presents
the trigger time and detailed information, e.g., potential
malicious nodes, flows. (3) The policies options component
provides optional policy to either developers or end users in
the different stages of RTRON. Note that the end users only
have full control of policy selection for RSRCN and MSRCN,
and parameter configurations for two specific policies. Once
all policies are configured by the end user, the Risk Controller
will send the user-defined parameters to each coordination
node to safeguard the robot (¼).

Taking RSRCN as an example (Figure 8(b)). End users
can check the current violation information and reset the
corresponding policy parameters at runtime. When a robot
moves from an obstacle-free environment (e.g., Highway)
to a complex environment (e.g. downtown area), users can

select the Constrain policy in an RSRCN to limit the robot’s
maximal velocity.
Policy Configuration. To sum up, the protection is enforced
by both the developer and end user with the following steps:

1) Risk Identification. In the development stage, the developer
first launches the target robot app in the simulator, and uses
just an one-line command “rosrisk-search [gr|rsr|msr|all]”
to automatically identify potential risks in the app. Based on
the identified information, the developer needs to configure
the name of predecessor nodes and successor nodes in each
coordination node configuration file. Note that there is no
need to modify the source code of the original app in
this step. Each coordination node would be launched and
deployed into the app automatically.
2) Risk Mitigation. Risks are mitigated in both the develop-
ment stage and operation stage. As shown in Figures 8(a)
and (b), the developer can choose the GRCN policy (blue
button), and customize GRCN and part of RSRCN param-
eters for each policy (blue square). In the operation stage,
the end users can get the console of RSRCN and MSRCN.
They can choose RSRCN and MSRCN policy (red button),
and customize MSRCN and part of RSRCN parameters for
each policy (blue square).

6 EVALUATION

We aim to answer the following questions:

• Can our interaction graph model all the interactions in
robot apps? (§ 6.1)
• Can we effectively detect three types of interaction risks?

What is the relationship between the interaction risks and
task characteristics in each robot app? (§ 6.2)
• How many coordination nodes are required to deploy in

a typical robot app? How to configure the policy for an
end user under various environmental contexts? (§ 6.3)
• What is the performance overhead of RTRON? (§ 6.4)

Testbed. We study 110 open-source apps from the ROS
showcase website [54], covering 24 different robots includ-
ing mobile base (MB), mobile manipulator (MM), micro
aerial vehicle (MAV) and humanoid robot (HR). Table 7
summarizes the categories of these apps, numbers and the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

12

ROSBot
2.0 Pro

Person

Level
Crossing

Sign

Parking

Lane

Tunnel

Turtlebot3
Traffic Lights

6 Tasks

1 Teleoperation

3 Food Delivery

5 Safe Detection

2 Chat

4 House Cleaning

6 Object Search

12 Functions

Preprocessing, Localization, Mapping,

Recognition, Path Planning, Global

Planner, Path Tracking, Teleoperation,

Speech Generation, Mobile Driver,

Speaker Driver, Sensors Driver

6 Tasks

1 Lane Detection & Control

2 Traffic Light Detection

3 Sigh Detection 4 Parking

5 Level Crossing Detection

6 Tunnel Driving

9 Functions
Preprocessing, Localization,

Mapping, Recognition, Path

Planning, Global Planner,

Path Tracking, Mobile Driver,

Sensors Driver

3 Tasks

1 Lane Detection & Control

2 Traffic Light Detection

3 City Driving

9 Functions

Preprocessing, Localization,

Mapping, Recognition, Path

Planning, Global Planner,

Path Tracking, Mobile Driver,

Sensors Driver

(a) Home (b) Autorace (c) Autoware

Jaguar2015XE

(d) Baidu Apollo

Jaguar2015XE

Fig. 10: Four simulated scenarios in the Gazebo/LGSVL.

applicable robot types. In addition, we also perform analysis
of more complex apps (Figure 10):

• Home scenario: home-based apps and robots are used to
accompany people and conduct housework. These tasks
include teleoperation, chat, food/drink delivery, clean-
ing, safe detection, and object search. We use four ROS
apps (Remote Control, Face/Person Detection, Object
Search and Voice Interaction) of RosBot 2.0 Pro [55] to
develop one home app (Figure 10a).
• AutoRace scenario [56]: this type of apps is designed

for competition of autonomous driving robot platforms.
To ensure that the robot can drive on the track safely,
there are six necessary missions for the robot to execute,
including lane detection & control, traffic light detec-
tion, sign detection, parking, level crossing detection and
tunnel driving. We use the open-source Autonomous
Driving app of Turtlebot3 [57] which can realize all six
tasks in the autorace scenario (Figure 10b).
• Autonomous driving scenario: we consider two mainstream

self-driving apps: Autoware [15] and Apollo [16], which
have been fully deployed and tested in physical au-
tonomous vehicles. These two apps are more complex
than the AutoRace scenario, with a richer set of self-
driving modules composed of sensing, computing, and
actuation capabilities (Figure 10c and 10d).

It is worth noting that the 110 open-source apps drawn
from the ROS showcase website are basic code offerings
by various open-source robot companies. These apps tend
to comprise several function nodes designed to perform
a single and straightforward task such as area navigation
or exploration. In stark contrast, real-world scenarios fre-
quently present intricate circumstances where robots are
required to respond to numerous events within a specific
scenario - from avoiding obstacles to obeying traffic signals
and even performing overtaking. Consequently, to assess
our method’s efficacy more accurately and practically, we
elected to focus on these 4 complex apps, which more
closely mirror real-world situations.
Experimental Setup. Since this paper focuses on the soft-
ware risks in robot apps, we mainly use simulation to
validate our solution. We choose the Gazebo simulator [58]
and ROS Kinetic in the home and autorace scenarios and
the LGSVL simulator [59] with ROS Indigo for Apollo 3.5.
We use Rviz [60] to visualize 3D information from both the
simulator and robot apps.

6.1 App Analysis

Table 7 summarizes the categories of these apps, numbers
and the applicable robot types. All these apps can be illus-
trated using our interaction model, as shown in the fourth

GR
ST

GR
MT

RSR
Image

RSR
Max_vel

MSR
Event

MSR
Action

0

10

20

30

40

20

13

1

21

55
8

3
1

4
1

35

18

5 4

18

1

13 14

2 3 3

A
m
o
u
n
t
o
f
R
is
k
In
te
ra
c
ti
o
n
s

Home

AutoRace Apollo

Autoware

Risk
Type

Fig. 11: Numbers of high-risk nodes in four robot apps.

column. We describe the top five robot apps in the ROS
platform that are most commonly used, according to Table
7.
Remote control. This type of apps is designed to control the
robot remotely from smartphones, joysticks or keyboards.
It uses Teleoperration to receive the signals from the
remote controller and Mobile/Manipulator Driver to
transfer these signals to each actuator’s control command.
2D/3D mapping. These apps aim to create a 2D/3D
map of an unknown environment through remote con-
trol. End users use Teleoperration to move the robot
to explore the unknown zones. During the exploration,
Preprocessing sends structural sensory data to Mapping
for map creation.
Navigation. This type of apps instructs a robot to navigate
through an obstacle-filled known environment and reach
a specified destination. These apps use Localization to
estimate the robot’s position, and Path Planning to com-
pute a collision-free path from its position to the destination.
Then, Path Tracking is called to follow the path until the
robot achieves the goal or the mission fails.
SLAM. These apps can be regarded as the combination of
Mapping and Navigation. To reach an arbitrary destination
in an obstacle-filled unknown environment, the apps use
Mapping and Localization simultaneously to transfer
the unknown map to a known one and locate its position.
Face/Person Detection. These apps receive images from
cameras (Preprocessing) and apply the OpenCV
face/person detector based on an Adaboost cascade of Haar
features/HOG (Recognition). They publish regions of in-
terests (ROIs) of the detection and a debug image, showing
the processed image with the ROIs that is likely to contain
faces or persons.

6.2 Risk Identification

We successfully identify 198 risk interactions in the four
target apps. The verification process for risks involves a
two-step process. We commence by generating an interac-
tion graph for each complex app, as depicted in Figure

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

13

TABLE 7: Analysis of open-source robot apps from the ROS showcase website [54].
App Categories # of apps Robot Type Set of function nodes Example Robot
Remote Control 23 (20.8%) MB, MM, HR, MAV Teleoperation+Mobile/Manipulator Driver Caster
Panorama 2 (1.8%) MB Preprocessing Turtlebot3
2D/3D Mapping 8 (7.3%) MB Preprocessing+Mapping+Teleoperation+Mobile Driver Xbot
Navigation 22 (20%) MB, MM, MAV Preprocessing+Localization+Path Planning+Path Tracking+Mobile Driver Tiago++
SLAM 11 (10%) MB Preprocessing+Localization+Mapping+Path Planning+Path Tracking+Mobile Driver Roch
Exploration 5 (4.5%) MB Preprocessing+Localization+Mapping+Goal Planner+Path Planning+Path Tracking+Mobile Driver Turtlebot2
Follower 8 (7.3%) MB Preprocessing+Recognition+Mobile Driver Magni Silver
Manipulation 8 (7.3%) MM Preprocessing+Localization+Path Planning+Path Tracking+Manipulator Driver LoCoBot
Face/Person Detection 8 (7.3%) MB, MM, MAV Preprocessing+Recognition ARI
Object/Scene Detection 5 (4.5%) MM Preprocessing+Recognition Tiago
Object Search 1 (1%) MM Preprocessing+Localization+Recognition+Goal Planner+Path Planning+Path Tracking+Mobile Driver ROSbot 2.0 PRO
Gesture Recognition 3 (2.7%) HR, MAV Preprocessing+Recognition+Manipulator Driver COEX Clover
Voice Interaction 5 (4.5%) MB, HR Preprocessing+Recognition+Speech Generation+Speaker/Mobile/Manipulator Driver Qtrobot
Autonomous Driving 1 (1%) MB Preprocessing+Localization+Recognition+Goal Planner+Path Planning+Path Tracking+Mobile Driver Turtlebot3

TABLE 8: Examples of high-risk nodes in the Home and AutoRace apps.
Scenario Risk Type High-Risk Nodes Sub Topic Name Sub Topic Type Pub Topic Name Pub Topic Type Pub Node

Home

GR-ST /move base - - /cmd vel geometry msgs/Twist /gazebo
/teleop twist keyboard - - /cmd vel geometry msgs/Twist /gazebo

GR-MT /gazebo - - /camera/depth/image raw sensor msgs/Image /find object 3d
/gazebo - - /camera/rgb/image raw sensor msgs/Image /find object 3d

RSR-Image /find object 3d /camera/rgb/image raw sensor msgs/Image /objects std msgs/Float32MultiArray /search manager
MSR-Event /move base /odom nav msgs/Odometry - - -
MSR-Action /rosbot tts - - audio common msgs/AudioData /rosbot audio/audio /rosbot audio

AutoRace

GR-ST /detect tunnel - - /move base simple/goal geometry msgs/PoseStamped /move base simple/goal
/rviz - - /move base simple/goal geometry msgs/PoseStamped /move base simple/goal

GR-MT /detect/lane - - /detect/lane std msgs/Float64 /control/lane
/detect traffic light - - /control/max vel std msgs/Float64 /control/lane

RSR-Image /detect sign /camera/image compensated sensor msgs/Image /detect/traffic sign std msgs/UInt8 /core mode decider
RSR-Max vel /detect parking - - /control/max vel std msgs/Float64 /control lane
MSR-Event /core node controller /detect/tunnel stamped std msgs/UInt8 - - -
MSR-Action /detect tunnel - - /cmd vel geometry msgs/Twist /gazebo

10. Following this, a manual examination of each high-
risk interaction identified by our method is undertaken to
confirm their accuracy, while simultaneously ensuring no
risks have been overlooked. Figure 11 lists the numbers of
extracted nodes with respect to each risk type. We can ob-
serve the numbers of risk interactions in the autorace (blue
bar) and autoware (yellow bar) apps are larger than home
(red bar) and apollo (green bar) apps, although the home
app has the largest number of functions. This is caused by
the differences in the internal structure of each robot app.
In the home scenario, each task is relatively independent.
However, in the autorace and autoware apps, all tasks are
organized as a monolithic component to control the robot
to drive safely. To achieve this, these two apps need to
recognize various scenes from sensory images and take the
corresponding actions. Consequently, the high dependency
among those tasks increases the number of GRs. Moreover,
the requirement of image and scene recognition increases
the number of image-related RSRs and event-related MSRs.
Table 8 gives examples of the identified high-risk nodes for
each type in Home-based and AutoRace app. Texts marked
in red are for risk identification in our system.

6.3 Risk Mitigation

CN Analysis. We use the extracted risk information to
deploy CNs. For GRs, the number of GRCNs depends on the
number of high-risk interactions linked to the same node.
Thus, we check the GR information of “Pub Node” and
deploy the GRCN between high-risk nodes and their pub
nodes. For RSRs, since RSRCNs directly publish velocity
messages to the Mobile Driver function, the number of
RSRCN is always 1. The subscriptions of RSRCN are related
to the number of image-related nodes and max vel-related
nodes. Besides, as described in § 5.1, each image-related
node should be assigned to an fps monitor node to generate
the processing rate of the image recognition process. So
the number of required fps monitor nodes depends on the

TABLE 9: Numbers of CNs in four complex robot apps.
GRCN RSR

Scenario Perception Planning Control FMN CN
MSR
CN

Home 8 3 1 2 1 1
AutoRace 16 2 4 5 1 1

Apollo 4 1 1 3 1 1
Autoware 11 3 2 1 1 1

number of image-related nodes. For MSRs, the number of
MSRCNs is 1, as all event-related and action-related nodes
publish corresponding messages to the MSRCN, which then
sends the action message to all related actuator driver nodes.

Table 9 lists the numbers of three types of CNs in the four
robot apps. GRCNs account for a large portion of the total
added nodes. Due to a large number of RSR image-related
interactions, the autorace app has more fps monitor nodes
than the home app.
Policy Selection. We implement a variety of policies for
three types of CNs. How to select the appropriate policy for
each CN is critical for the secure operation of robot apps. We
use the home app as an example to illustrate the guideline
for policy selection.
GRCN: this is designed to coordinate direct high-risk in-
teractions between multiple connected nodes. Based on the
types of interacted topics, we classify GRCN into three
categories: perception, planning and control. As shown in
Table 10, the messages of interacted topics in perception
are related to the sensory information (e.g. images) or
preprocessed robot states (e.g. footprints, status). Typically,
multiple messages with the same type are published to the
same target node, and processed in parallel for either sensor
fusion or state monitoring. Thus, there is no contention
among these messages.

Messages of the interacted topics in planning or con-
trol contend with each other to get the long-term and
instant control of the robot. Specifically, when a message
of a new planning goal is received, the robot must first
complete the previous goal before executing the current

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

14

TABLE 10: High-risk interacted topics and features of three
GRCN types in the home app.

CN Type Interacted Topics Feature

Perception

‘/explore server/status’, ‘/move base/status’,
‘tf’, ‘tf static’, ‘/camera/rgb/image raw’,
‘/camera/depth/image raw’,
‘/move base/global costmap/footprint’,
‘/move base/local costmap/footprint’

State
Parallelization

Planning
‘/move base/goal’, ‘/move base/cancel’,
‘/move base simple/goal’

Goal
Queuing

Control ‘/cmd vel’
Action

Preemption

TABLE 11: Processing time of potential risk discovery.
Processing Time (s)

Application Node
Number

Topic
Number GR RSR MSR

Teleoperation [61] 4 17 0.114 0.113 0.057
Voice Interaction [62] 6 7 0.035 0.035 0.011
Mapping [63] 6 25 0.308 0.299 0.152
Navigation [64] 8 63 0.764 0.727 0.498
Exploration [65] 10 84 1.12 1.086 0.753
Home 21 125 3.121 3.199 1.927
AutoRace [56] 25 112 4.075 4.049 2.105
Apollo [16] 21 39 0.631 0.606 0.306
Autoware [15] 38 218 2.945 2.931 1.747

one. For example, an object search task is launched af-
ter the search_manager node publishes a goal to the
/move_base_simple/goal topic. An adversary can use a
malicious rviz node to send another arbitrary destination
to this topic. The object search task will be immediately
interrupted and then the robot is controlled to reach the
designated position. Thus, a GRCN with the ‘FIFO Queue’
or ‘Priority Queue’ policy can delay such malicious actions
without task interruption.

Different from the planning messages, the control mes-
sages need to control the robot immediately. End users can
select the ‘Preemption’ policy of GRCN for coordination. For
instance, the malicious teleop_twist_keyboard node
can flood the /cmd_vel topic while the robot is following
a planned path to the destination. Then the topic receives
the messages from both teleop_twist_keyboard and
move_base nodes simultaneously, which causes the robot
to switch velocity in the two target directions. By assigning
the highest priority to the move base-related velocity con-
trol interaction (i.e. /cmd_vel), the move_base node can
control the robot first.
RSRCN: end users are not recommended to set the ‘Block’
or ‘Safe’ policy. These two options should be chosen by app
developers after extensive evaluations. Instead, users can
choose the ‘Constrain’ policy to set a maximal velocity value
to limit the robot’s speed. This is very effective and safe,
especially when the robot’s working environment is highly
complex and dynamic, and the task completion time is not
very critical. For example, if an adversary compromises
the move_base node and increases the robot’s speed to a
dangerous level, this can cause a potential traffic accident.
By setting an appropriate threshold in the ‘Safe’ policy or
max vel limit in the ‘Constrain’ policy, the robot will slow
down its speed without object detection failures.
MSRCN: although there is only one policy option,
users can customize different rules to allow/block
the actions of specific robots under specific condi-
tions. Taking the home app as an example, the
MSRCN receives messages from three event-related topics

1 2 3 4 5 6 7 8 9 10

0

2

4

6

CN Number

L
a
te

n
c
y
 (

m
s
) ROS 2

ROS 1

Fig. 12: Overhead of CNs in an end-to-end data flow.

(/objects, /person_detector/detections, /odom)
and two action-related topics (/audio/audio, /cmd_vel).
Users can set a rule to disallow the robot’s movement when
it detects the target object. This can identify and mitigate
the interruption of the object search task caused by the
malicious rviz node mentioned above.
Effectiveness Evaluation. We assume that a node in a high-
risk interaction is manipulated by an attacker and sends
malicious messages to its successor nodes. In the absence
of coordination nodes, the attack success rate is 100%. But
when we deploy the coordination node, because the topic is
renamed, all malicious messages will be intercepted by the
coordination node, and decisions will be made through the
policy. We found that our method can also achieve 100% suc-
cess rate in preventing such attacks that exploit interaction
when the policy is chosen correctly. For the detailed process,
please refer to the video: https://youtu.be/fZeLJEZkfec.

6.4 Performance Overhead

Offline Overhead Evaluation. We evaluated the processing
time in the RTRON’s risk discovery phase, specifically the
high-risk node identification in various robot apps. The
performance results, as outlined in Table 11 , were obtained
from nine unique apps, each with different quantities of
topics and nodes. Experimental data was collected from
multiple iterations (n=20) to compute an average latency.
The risk identification process, which operates offline, im-
poses a minimal overhead. It was also observed that the
number of nodes and topics influences the processing dura-
tion, as the risk discovery process depends on the traversal
of either nodes or topics (Algorithm 1). The GR and RSR
discovery processes both involve two iterations, while the
MSR discovery process requires only one iteration of topics.
Consequently, the processing time required for GR and RSR
discovery is almost identical, and typically exceeds that of
MSR. A noteworthy exception to this pattern was observed
with the autorace application, which despite having fewer
nodes and topics than the home application, demonstrated
the greatest processing time. This anomaly can be attributed
to a higher incidence of high-risk GR interactions (9), ne-
cessitating additional operations (i.e. matching related topic
type and name) during node iteration.
Runtime overhead. Runtime overhead can be attributed to
two primary factors: the coordination nodes and the security
service. The security service is only responsible for risk
monitoring and policy configuration of each coordination
node, without any interference on the execution of the robot
app. Similar to IoT policy enforcement systems [66], [67],

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

15

GR
ST

GR
MT

RSR
Image

RSR
Max_vel

ASR
Event

ASR
Action

0

10

20

30

20

13

1
0

21

5

25

15

3

0

23

5

Risk Type

A
m

o
u

n
t

o
f

R
is

k
 I
n

te
ra

c
ti

o
n

s
ROS1 ROS2

Fig. 13: Numbers of high-risk nodes in ROS1-based and
ROS2-based Autoware app.

we ignored this process’s overhead since user intervention
is required solely during mission launch or scenario alter-
ations. Conversely, coordination nodes, distributed among
function nodes within the robotic app, can potentially ex-
tend end-to-end latency from perception to control stages.
Notwithstanding, although there are dozens of nodes in a
typical robot app, these nodes work in a parallel multi-flow
mode. Commonly, each data flow includes fewer than 10
nodes. So we consider the overhead of end-to-end latency
within 10 coordination nodes. As shown in Figure 12, the
latency induced by these 10 nodes is around 5ms (red circle
line). This is trivial even for the autonomous driving app
with the strongest real-time constraint: according to the
industry standards published by Mobileye [68] and design
specifications from Udacity [69], the latency for processing
tragic condition in an autonomous driving app should be
within 100 ms, which is far larger than the overhead of
coordination nodes.

6.5 Transferability Analysis

We have upgraded our methodology from the ROS 1 to the
DDS-based ROS2 [70]. The DDS framework is designed to
provide higher efficiency and reliability, low latency, and
scalability, as well as configurable quality of service (QoS)
parameters. These elements are universally desirable in
robotic platforms and adopted by most commercial robots.
Effectiveness Analysis. To assess the effectiveness of our
approach in the ROS2 setting, we separately analyzed the
ROS1 and ROS2-based open-source autonomous driving
app - Autoware. Figure 13 illustrates the high-risk nodes
identified by RTRON in these two settings. It is evident that
our method shows more potential risks in the ROS2-based
Autoware app, due to the integration of more functions in
ROS2, resulting in a higher number of nodes and inter-
actions compared to the ROS1-based version. We did not
evaluate other apps like Baidu Apollo because the latest ver-
sions of these apps utilize custom-developed middleware.
Nonetheless, since these middleware, similar to ROS2, rely
on DDS distributed architecture, our approach is applicable
to these frameworks as well. We have successfully ported
our methodology to a DDS-based autonomous driving sys-
tem provided by our partner, Desay Automotive.
Performance Analysis. Since the offline processing time
of the potential risk discovery module is associated with
Algorithm 1, rather than the system, we focus on the evalu-
ation of RTRON’s runtime overhead in both ROS1 and ROS2
environments. As Figure 12 shows, despite an increase in

coordination nodes to 10, the overall end-to-end latency still
remains below 5ms (blue triangle line). It is worth noting
that unlike the ROS1 with a centralized architecture, DDS-
based ROS2 employs a distributed architecture. In such a
context, all nodes are independent and do not need a master
node to coordinate. Therefore, in scenarios with a small
number of coordination nodes, the latency observed in the
ROS2 context is notably lower than that in the ROS1 context.

7 RELATED WORKS

Robotic Security. Existing research on robotic security has
mainly focused on traditional security issues in robot sys-
tems, e.g., network communication [27], denial-of-service
attacks [21] and software vulnerabilities [39], [71], [72]. In
addition, adversaries can also spoof the sensory data ([29]–
[34], [36]), fake the actuator signals [38], or tamper with the
micro-controller input [39].

In this paper, we focus on a new type of security issue
in robot apps, caused by malicious interactions. We are the
first to demonstrate the feasibility and severity of this threat,
as well as a possible defense solution against it.
Interaction Risk Mitigation. Prior work studied the in-
teraction risks in IoT apps [12]–[14]. Users adopt opera-
tion rules following the “If-This-Then-That” (IFTTT) trigger-
action programming paradigm [73], [74] to express automa-
tion behaviors among IoT devices. These methods translate
the rules to the interaction graph, and verify if conflicts
or policy violations can occur between interactions. For
instance, a heater control app might activate a heater at
a preset time, whereas another temperature control app
opens the window upon detecting temperatures above a
predefined threshold. This unexpected interaction would
cause a potential risk of thief entry. The current approach
focuses on enforcing an ”allow/block” policy to enhance
IoT security after identifying such high-risk interactions.

However, applying these methods to robot apps presents
challenges. As noted in Table 4, risk mitigation policies must
be tailored to specific interaction risks. Consider a scenario
with an autonomous vehicle: if its speed does not match
with the frame rate processing, a direct blocking of the
speed control, as per the IoT approach, would lead to abrupt
braking on highways, and then a rear-end collision. This
difference arises from the distinct natures of the IoT and
RV ecosystems. In IoT, users link sensors and actuators via
rules. These rules use environmental factors (time, humidity,
etc.) to create indirect interactions among various IoT de-
vices. Such interactions are mostly independent and operate
within a fixed closed-loop space, so blocking one interaction
has little effect on most other interactions. Conversely, RVs
operate in dynamic environments with interdependent in-
teractions. As Figure 4 shows, all interactions will finally
converge into some unified control flows, ensuring RV
safety. Such a structure makes blocking any non-redundant
interaction possible with errors in the final control flow,
which in turn indirectly crashes the entire RV. Furthermore,
risks in RVs derive not only from indirect interactions, i.e.,
RSR and MSR, but also from direct ones, i.e., GR, given
the holistic decision-making of onboard controllers. This is
markedly different from the decentralized nature of IoT.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

16

Thus, addressing RV interaction risks is more complex,
requiring concurrent efforts from developers and users in
enforcing risk mitigation policies.

8 CONCLUSION

Function interaction provides great flexibility and conve-
nience for robot app development. However, it also intro-
duces potential risks that can threaten the safety of robot
operations. This is exacerbated by the fact that current
robot app stores do not provide security inspection over
the function packages. We present the first study towards
the safety issues caused by suspicious function interaction
in robot apps. We introduce a novel end-to-end system and
method to enforce security policies and protect the function
interactions in robot apps. We hope this study can open a
new direction for robotics security, and increase people’s
awareness about the importance of function interaction pro-
tection.

ACKNOWLEDGEMENT
This work was supported in part by Singapore MoE AcRF
Tier 1 RG108/19 (S), NTU-Desay Research Program 2018-
0980, the National Natural Science Foundation of China
(Grant No. 62090020), Youth Innovation Promotion Asso-
ciation of Chinese Academy of Sciences (2013073), and the
Strategic Priority Research Program of Chinese Academy of
Sciences (Grant No. XDC05030200).

REFERENCES

[1] “Openxc platform,” http://openxcplatform.com/, 2020.
[2] “Dji onboard sdk,” https://developer.dji.com/onboard-sdk/,

2020.
[3] “Application builder,” https://www.universal-robots.com/buil

der/, 2020.
[4] “Open source robot operating system,” http://www.ros.org/,

2019.
[5] “Ros pr2 package,” http://wiki.ros.org/Robots/PR2/, 2020.
[6] “Ros abb package,” http://wiki.ros.org/abb/, 2020.
[7] “Google play,” https://play.google.com/store/, 2020.
[8] “Ubuntu appstore,” https://ubuntu.com/blog/tag/appstore/,

2020.
[9] “Samsung smartthings,” https://www.smartthings.com/, 2020.
[10] N. DeMarinis, S. Tellex, V. P. Kemerlis, G. D. Konidaris, and

R. Fonseca, “Scanning the internet for ros: A view of security
in robotics research,” in International Conference on Robotics and
Automation (ICRA), 2019.

[11] “After jeep hack, chrysler recalls 1.4m vehicles for bug-
fix,” https://www.wired.com/2015/07/jeep-hack-chrysler-recal
ls-1-4m-vehicles-bug-fix/, 2015.

[12] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference threats
in smart homes: Categorization, detection and handling,” in CoRR
abs/1808.02125, 2018.

[13] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu, and B. Ur,
“Autotap: synthesizing and repairing trigger-action programs us-
ing ltl properties,” in International Conference on Software Engineer-
ing (ICSE), 2019.

[14] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in
ACM Conference on Computer and Communications Security (CCS),
2019.

[15] “The autoware.ai project,” https://github.com/Autoware-AI/au
toware.ai, 2020.

[16] “Baidu apollo,” https://github.com/ApolloAuto/apollo, 2020.
[17] Y. Xu, T. Zhang, and Y. Bao, “Analysis and mitigation of function

interaction risks in robot apps,” in International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2021.

[18] Siciliano, Bruno, and O. Khatib, Springer handbook of robotics. Se-
caucus, NJ, USA: Sprinter-Verlag New York, Inc.: Springer, 2016.

[19] Y. Xu, T. Zhang, J. Han, S. Wang, and Y. Bao, “Towards practical
cloud offloading for low-cost ground vehicle workloads,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2021.

[20] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[21] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schart-
ner, “Security for the robot operating system,” IEEE Trans. Robotics
and Autonomous Systems, vol. 98, pp. 192–203, 2017.

[22] “Ros 2 robotic systems threat model,” https://design.ros2.org/ar
ticles/ros2 threat model.html, 2020.

[23] J. R. Mcclean and C. Farrar, “A preliminary cyber-physical security
assessment of the robot operating system (ros),” in Proceedings of
SPIE, 2013.

[24] “Robot vulnerability database (rvd),” https://github.com/aliasro
botics/RVD/, 2020.

[25] D. K. Hong, J. Kloosterman, Y. Jin, Y. Cao, Q. A. Chen, S. A.
Mahlke, and Z. M. Mao, “Avguardian: Detecting and mitigating
publish-subscribe overprivilege for autonomous vehicle systems,”
in European Symposium on Security and Privacy (EuroS&P), 2020.

[26] B. Breiling, B. Dieber, and P. Schartner, “Secure communication for
the robot operating system,” in IEEE Systems Conference (SysCon),
2017.

[27] B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-level
security for ros-based applications,” in International Conference on
Intelligent RObots and Systems (IROS), 2016.

[28] J. Chen, Z. Feng, J.-Y. Wen, B. Liu, and L. Sha, “A container-based
dos attack-resilient control framework for real-time uav systems,”
in Design, Automation, and Test in Europe (DATE), 2019.

[29] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun,
“On the requirements for successful gps spoofing attacks,” in ACM
Conference on Computer and Communications Security (CCS), 2011.

[30] N. Nighswander, B. M. Ledvina, J. Diamond, R. Brumley, and
D. Brumley, “Gps software attacks,” in ACM Conference on Com-
puter and Communications Security (CCS), 2012.

[31] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang,
and Y. Yang, “All your gps are belong to us: Towards stealthy
manipulation of road navigation systems,” in USENIX Security
Symposium (USENIX Security 18), 2018.

[32] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle:
Adversarial optical channel exploits against lidars for automotive
applications,” in International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), 2017.

[33] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A.
Chen, K. Fu, and Z. M. Mao, “Adversarial sensor attack on lidar-
based perception in autonomous driving,” in ACM Conference on
Computer and Communications Security (CCS), 2019.

[34] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Con-
trolling uavs with sensor input spoofing attacks,” in Workshop on
Offensive Technologies (WOOT), 2016.

[35] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabri-
cating implicit control over actuation systems by spoofing inertial
sensors,” in USENIX Security Symposium (USENIX Security 18),
2018.

[36] Y. Shoukry, P. D. Martin, P. Tabuada, and M. B. Srivastava, “Non-
invasive spoofing attacks for anti-lock braking systems,” in Inter-
national Workshop on Cryptographic Hardware and Embedded Systems
(CHES), 2013.

[37] F. Fei, Z. Tu, R. Yu, T. Kim, X. Zhang, D. Xu, and X. Deng, “Cross-
layer retrofitting of uavs against cyber-physical attacks,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[38] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu,
and X. Xinyan, “Detecting attacks against robotic vehicles: A
control invariant approach,” in ACM Conference on Computer and
Communications Security (CCS), 2018.

[39] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin,
and S. Zanero, “An experimental security analysis of an industrial
robot controller,” in IEEE Symposium on Security and Privacy (S&P),
2017.

[40] X. Pan, Y. Cao, X. Du, B. He, G. Fang, R. Shao, and Y. Chen,
“Flowcog: Context-aware semantics extraction and analysis of
information flow leaks in android apps,” in USENIX Security
Symposium (USENIX Security 18), 2018.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

17

[41] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerg-
ing smart home applications,” in IEEE Symposium on Security and
Privacy (S&P), 2016.

[42] R. Xu, H. Saı̈di, and R. J. Anderson, “Aurasium: Practical policy
enforcement for android applications,” in USENIX Security Sym-
posium (USENIX Security 12), 2012.

[43] X. yong Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang,
C. A. Gunter, and K. Nahrstedt, “Identity, location, disease and
more: inferring your secrets from android public resources,” in
ACM Conference on Computer and Communications Security (CCS),
2013.

[44] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,
and A. Prakash, “Flowfence: Practical data protection for emerg-
ing iot application frameworks,” in USENIX Security Symposium
(USENIX Security 16), 2016.

[45] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “Iotpot: Analysing the rise of iot compromises,” in
USENIX Workshop on Offensive Technologies (WOOT), 2015.

[46] X. yong Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The
peril of fragmentation: Security hazards in android device driver
customizations,” in IEEE Symposium on Security and Privacy (S&P),
2014.

[47] “Stanford tokensregex,” https://nlp.stanford.edu/software/toke
nsregex.html, 2020.

[48] “Sensors supported by ros.” http://wiki.ros.org/Sensors/, 2020.
[49] “Standard ros messages,” http://wiki.ros.org/std msgs, 2023.
[50] “Common ros messages,” http://wiki.ros.org/common msgs,

2023.
[51] B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and V. J.

Reddi, “Mavbench: Micro aerial vehicle benchmarking,” in Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018.

[52] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driv-
ing: Constraints and acceleration,” in International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), 2018.

[53] “Ros messages,” http://wiki.ros.org/Messages/, 2020.
[54] “Robots that you can use with ros.” https://robots.ros.org/, 2020.
[55] “Rosbot 2.0 pro,” https://store.husarion.com/collections/dev-k

its/products/rosbot-pro/, 2020.
[56] “Turtlebot3 autorace,” https://emanual.robotis.com/docs/en/pl

atform/turtlebot3/autonomous driving, 2020.
[57] “Turtlebot3,” https://emanual.robotis.com/docs/en/platform/t

urtlebot3/overview/, 2020.
[58] “Gazebo 3d robot simulator.” http://gazebosim.org/, 2020.
[59] “Lgsvl simulator.” https://www.lgsvlsimulator.com/, 2020.
[60] “Rviz 3d visualization tool for ros.” https://www.stereolabs.com

/docs/ros/rviz/, 2020.
[61] “Rosbot teleoperation app,” https://husarion.com/tutorials/ros

-tutorials/3-simple-kinematics-for-mobile-robot/, 2020.
[62] “Xiaoqiang voice interaction app,” https://community.bwbot.or

g/topic/492/, 2020.
[63] “Rosbot slam app,” https://husarion.com/tutorials/ros-tutorials

/6-slam-navigation/, 2020.
[64] “Rosbot navigation app,” https://husarion.com/tutorials/ros-t

utorials/7-path-planning/, 2020.
[65] “Rosbot exploration app,” https://husarion.com/tutorials/ros-t

utorials/8-unknown-environment-exploration/, 2020.
[66] W. Ding and H. Hu, “On the safety of iot device physical interac-

tion control,” in ACM Conference on Computer and Communications
Security (CCS), 2018.

[67] Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: Dynamic
enforcement of security and safety policy in commodity iot,” in
Annual Network and Distributed System Security Symposium (NDSS),
2019.

[68] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Reinforcement
learning for autonomous driving,” in NIPS Workshop on Learning,
Inference and Control of Multi-Agent Systems, 2016.

[69] “An open source self-driving car,”
https://www.udacity.com/self-driving-car/, 2020.

[70] “Ros2 document,” https://docs.ros.org/en/galactic/index.html,
2023.

[71] C. G. L. Krishna and R. R. Murphy, “A review on cybersecurity
vulnerabilities for unmanned aerial vehicles,” in IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), 2017.

[72] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “Rvfuzzer: Finding input validation bugs
in robotic vehicles through control-guided testing,” in USENIX
Security Symposium (USENIX Security 19), 2019.

[73] C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-
based smart homes,” in PLAS@CCS, 2016.

[74] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things,” in HotNets, 2015.

Yuan Xu is a research fellow in School of
Computer Science and Engineering, at Nanyang
Technological University. His research interests
include secure robot system, performance op-
timization, and physical attacks. He received
his Ph.D. degree in computer engineering from
Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, in 2021. He re-
ceived his master degree in Software Engineer-
ing from University of Sciences and Technology
of China in 2013.

Yungang Bao is a professor of the State Key
Laboratory of Computer Architecture, Institute of
Computing Technology (ICT), Chinese Academy
of Sciences (CAS). He is the director of Re-
search Center for Advanced Computer System
(ACS). Yungang received his BS degree in com-
puter science from Nanjing University in 2003,
and his PhD degree in computer engineering
from ICT, CAS in 2008. During 2010-2012, he
did postdoc research in Department of Com-
puter Science, Princeton University, working with

Prof. Kai Li on the PARSEC project.

Sa Wang is an associate professor at Institute
of Computing Technology, Chinese Academy of
Sciences. He got his Ph.D. degree in January
2016 in Institute of Software, Chinese Academy
of Sciences, advised by Prof. Tao Huang. He re-
ceived his bachelor degree in Computer Science
from University of Sciences and Technology of
China in 2009. His research fields mainly include
cloud computing, operating systems, virtualiza-
tion and performance models.

Tianwei Zhang is an assistant professor in
School of Computer Science and Engineering,
at Nanyang Technological University. His re-
search focuses on computer system security.
He is particularly interested in security threats
and defenses in machine learning systems, au-
tonomous systems, computer architecture and
distributed systems. He received his Bachelor’s
degree at Peking University in 2011, and the
Ph.D degree in at Princeton University in 2017.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3348772

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 08,2024 at 02:17:05 UTC from IEEE Xplore. Restrictions apply.

