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Abstract—The growth of deep learning training (DLT) jobs
in modern GPU clusters calls for efficient deep learning (DL)
scheduler designs. Due to the extensive applications of DL
technology, developers may have different demands for their
DLT jobs. It is important for a GPU cluster to support all these
demands and efficiently execute those DLT jobs. Unfortunately,
existing DL schedulers mainly focus on part of those demands,
and cannot provide comprehensive scheduling services. In this
work, we present UNISCHED, a unified scheduler to optimize
different types of scheduling objectives (e.g., guaranteeing the
deadlines of SLO jobs, minimizing the latency of best-effort jobs).
Meanwhile, UNISCHED supports different job stopping criteria
(e.g., iteration-based, performance-based). UniSched includes two
key components: Estimator for estimating the job duration, and
Selector for selecting jobs and allocating resources. We perform
large-scale simulations over the job traces from the production
clusters. Compared to state-of-the-art schedulers, UNISCHED can
significantly decrease the deadline miss rate of SLO jobs by up
to 6.84×, and the latency of best-effort jobs by up to 4.02×,
To demonstrate the practicality of UNISCHED, we implement and
deploy a prototype on Kubernetes in a physical cluster consisting
of 64 GPUs.

Index Terms—Distributed systems, deep learning, GPU cluster
scheduling.

I. INTRODUCTION

THE tremendous progress of deep learning (DL) technol-
ogy makes DL training (DLT) an indispensable workload

in research institutes and commercial cloud providers. Training
a production-level DL model usually demands huge efforts in
terms of time and GPU resources. Consequently, these compa-
nies and institutes typically establish large-scale GPU clusters
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TABLE I
CATEGORIZATION OF DLT JOBS IN MODERN GPU CLUSTERS, AND THEIR

CORRESPONDING SCHEDULING SOLUTIONS

Latency
Demands

Stopping
Criteria

Iteration-Based Performance-Based

Service Level Objective [14], [17] [16], [25]

Best-Effort
[1], [2], [3], [4], [5], [6]

[7], [8], [9], [10] [19], [26], [27]

to satisfy intensive demands of DLT jobs from different users.
A scheduler is required to manage the execution of DLT jobs
and allocate resources to them.

As DL models are practically used in different scenarios
for different purposes, users can have distinct demands for the
scheduling and execution of their DLT jobs in the GPU cluster.
These demands can be categorized from two perspectives, as
summarized in Table I. First, users may have different expecta-
tions for the scheduling latency. In particular, some users hope
their jobs to be completed within specified deadlines. These
jobs are mainly for production development, DL competitions
and challenges, and research paper submissions. These jobs are
referred to as Service Level Objective (SLO) jobs. In contrast,
other jobs are expected to be completed as soon as possible
without specific deadlines. We call them best-effort jobs. Sec-
ond, as DLT is an iterative process, users may have different
stopping criteria to complete the training job. For instance,
some users may specify the number of training iterations for
their jobs. Other users prefer to stop the training jobs when the
models meet the desired performance indicated by some metrics
(e.g., accuracy, mAP, loss).

A shared GPU cluster can contain a mixture of the above jobs
with different demands. Then the question we aim to answer in
this paper is: how can we efficiently schedule those jobs and
satisfy both their scheduling latency requirement and stopping
criteria? Unfortunately, existing works mainly focus on certain
specific demands, and cannot cover all the types simultaneously.
Particularly, the majority of DL schedulers aim to reduce the
scheduling latency [1], [2], [3], [4], [5], [6] or maintain job
fairness [7], [8], [9], [10] for best-effort jobs. Thus they miss
the opportunities of guaranteeing the deadlines of SLO jobs.

To satisfy the deadline requirement of SLO jobs, prior studies
propose deadline-aware schedulers for traditional big data jobs
[11], [12], [13], which could be extended to schedule DLT
workloads. However, these solutions do not consider the unique
features of DLT jobs, and cannot achieve optimal efficiency.
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Recently researchers propose deadline-guaranteed scheduling
systems tailored for DLT jobs. GENIE [14] automatically iden-
tifies the optimal resource allocation for SLO jobs. However,
it requires modifications of the underlying DL frameworks
(e.g., tensorflow [15]), and ignores the resource requirements
from users. HyperSched [16] aims to improve the performance
of Hyper-Parameter Optimization jobs, and cannot be directly
adapted to generic DLT jobs. Our recent work, CHRONUS [17],
can satisfy generic SLO and best-effort jobs simultaneously.
However, it only considers the iteration-based stopping crite-
rion, while ignoring the performance-based criterion. The main
objective of Hydra [18] is to meet the deadline while reduce the
latency for SLO jobs in a heterogeneous GPU cluster. However,
it does not consider best-effort jobs, and fails to support the
performance-based criterion.

This paper presents UNISCHED, a novel scheduling system
that can satisfy all the scheduling latency demands and stop-
ping criteria in a unified way. UNISCHED is improved over
CHRONUS [17]. For a mixture of different types of jobs in a
shared GPU cluster, UNISCHED is able to guarantee the SLO
jobs’ deadlines, minimize best-effort jobs’ latency, and support
both iteration-based and performance-based stopping criteria.
To achieve these goals, UNISCHED needs to address three key
challenges. First, the lack of job runtime information mis-
leads the job selection and resource allocations of UNISCHED.
Chronus is built upon the high intra-job predictability of DLT
jobs. Hence, it is feasible to mathematically model the execution
speed of distributed training jobs with any resource alloca-
tions [6], [14], [19]. However, runtime estimator proposed in
CHRONUS performs not satisfactorily for two reasons. (1) The
preemption overhead of DLT workloads will prolong the job
execution time. For example, the preemption overhead of GPT-
3 [20] can be up to several minutes. The unawareness of the
preemption overhead will increase the job runtime prediction
error. The inaccurate runtime estimation further misleads the
scheduler to make ineffective decisions. (2) CHRONUS cannot
handle the performance-based criteria jobs due to the lack of
the number of training iterations. To address this challenge,
we propose Estimator to improve the job runtime accuracy.
Specifically, we devise the sr-aware estimator to incorporate
the preemption overhead into the job runtime prediction. The
core idea is to use the statistical expected value of the preemp-
tion overhead. We also design the training iteration estimator
for performance-based criteria jobs to estimate the number of
training iterations needed to reach the targeted performance. It
uses a technique from [21] to characterize the relationship be-
tween the number of training iterations and performance metric
in an online manner, and then approximates the job duration.

Second, the mixture of profiler jobs, best-effort jobs and
SLO jobs complicates the job scheduling. To date, Chronus is
the only DL scheduler that accounts for a mixture of best-effort
and SLO jobs. Profiler jobs are necessary for online profiling of
job runtime, as adopted in some works [6], [7], [19]. CHRONUS

employs resource reservation, shortest remaining time first,
and mixed integer linear programming (MILP) to handle these
three job types separately. However, these ad-hoc techniques
increase the scheduling complexity and miss joint optimization
opportunities. We propose to redesign the reward functions

for different job types, where the difference between jobs is
represented by the reward value over time. This transforms the
scheduling of all job types into an MILP optimization problem,
alleviating the error-prone ad-hoc design and simplifying the
implementation.

Third, the execution speed of a distributed training job can
be affected by the GPU allocation topology. In other words,
training jobs are placement-sensitive, and can achieve faster
speed on consolidated GPUs due to reduced local communica-
tion costs. However, previous deadline-aware schedulers [11],
[12], [13], [22] only take into account the amount of available
resources, rather than their topology. While CHRONUS considers
the placement sensitivity of SLO jobs and enforces the strict
consolidation placement through the round-up technique, it sac-
rifices the placement efficiency of best-effort jobs. Existing DL
schedulers for deadline guarantee [16], [18] also do not provide
efficient placement strategies for best-effort jobs. UNISCHED

relaxes the strict consolidation placement constraint for SLO
jobs and introduces a novel approach for identifying appropriate
resource allocations for both best-effort and SLO jobs. This
methodology, inspired by Hived [4] allows for flexible resource
allocations within the MILP optimization framework. Unlike
CHRONUS, which executes job selection and resource allocation
sequentially, UNISCHED optimizes both processes simultane-
ously through a unified solver.

To evaluate UNISCHED, we perform large-scale simula-
tions on Helios [23] and Philly [2] traces from SenseTime
and Microsoft respectively. Evaluation results demonstrate
that UNISCHED can reduce up to 6.84× deadline miss rate.
Compared with existing deadline-aware schedulers, UNISCHED

reduces up to 4.02× latency of best-effort jobs. We further im-
plement UNISCHED as a custom scheduler with the Kubernetes
system [24], and deploy it on a physical cluster consisting of
64 GPUs. This cluster supports various common DL models
for computer vision, natural language processing. Evaluations
show that UNISCHED can effectively guarantee SLO jobs’ dead-
lines and maintain best-effort jobs’ execution latency. The con-
tributions of this paper are:

• UNISCHED features the Estimator that can predict job
duration for various stopping criteria, including iteration-
based and performance-based ones.

• UNISCHED explicitly takes the overhead of suspension
and resumption into account when estimating the duration
of jobs.

• UNISCHED unifies job profiling, scheduling and resource
allocation into one MILP framework, and makes efficient
joint optimization to determine when and how to execute
DLT jobs.

II. MOTIVATION

We discuss the categorization of DLT workloads in modern
GPU clusters, the importance of performance-based stopping
criteria jobs, and the advantages of joint optimization.

A. Categorization of DLT Workloads

We categorize DLT workloads from two perspectives. The
first one is scheduling latency. According to the survey in
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Fig. 1. Comparison of training epochs using three stopping criteria: default
iteration-based stopping, stopping at maximum accuracy, and stopping at 99%
of maximum accuracy over tasks. [C] and [I] indicates cifar10 [30] and
imagenet [31] respectively.

[17], there can be two types of scheduling objectives: (i) Users
expect their jobs to be scheduled as soon as possible. These
are exploratory jobs for debugging and testing purposes, so
users hope to receive the execution feedback promptly and
then adjust their programs or hyperparameters. These jobs are
generally called “best-effort jobs”. (ii) Users do not need their
jobs to be scheduled immediately. Instead, they set specific
deadlines, before which these jobs should be completed. Those
jobs are mainly involved in scenarios where certain deadlines
are enforced, such as product development pipeline, research
paper submission, AI challenges, competition, etc. These jobs
are referred to as “SLO jobs”. In addition, the survey in [17]
discloses the existence of soft SLO jobs: users can tolerate the
deadline violation of DLT jobs to certain extent, giving the
scheduler more flexibility to schedule SLO jobs.

The second categorization perspective is stopping criteria.
There are also two common strategies for users to determine
the completion of a DLT job. (i) Iteration-based criterion. The
users just specify fixed numbers of iterations. Then the cluster
executes the DLT jobs for the required iterations. Note that the
model after the final iteration may not be the optimal one due
to the overfitting phenomenon. The system will make check-
points at different iterations so the users can select the best
model during training. (ii) Performance-based criterion. The
users specify the expected performance for the resulting model.
Then the training job will be early stopped if the model reaches
the performance requirement at a certain iteration. Existing
DL frameworks including ray [28] and optuna [29] provide
an interface to terminate a job when the performance metric
reaches a target value. RubberBand [25] and HyperSched [16]
also account for early stopping to terminate a job when the per-
formance metric converges. Note that the users are required to
set a maximal number of training iterations to avoid unreachable
performance requirements.
Comparison between different stopping criteria. The adop-
tion of the iteration-based stopping criteria simplifies the job
runtime prediction. But it should be noted that the ultimate
objective of DL training is to attain high-performing DL mod-
els. While the iteration-based stopping criteria is widely used,
the performance-stopping criteria may result in a reduction of
training. As demonstrated in Fig. 1, using max accuracy for
performance-stopping criteria can reduce the number of training
iterations by up to 22% compared to the default training itera-
tion. The epoch reduction can be up to 31% when the targeted
accuracy is 99% of the max accuracy. CHRONUS can lead to a

potentially significant consumption of GPU resources and delay
in the execution of other jobs in the future, due to the adoption
of the maximal training iteration to approximate job runtime.

B. Advantages of Joint Optimization

A key distinction between UNISCHED and CHRONUS lies in
the joint optimization. UNISCHED implements joint optimiza-
tion through two aspects.

First, joint job selection in UNISCHED benefits both profiler
and best-effort jobs without affecting the attainment of SLO.
This approach helps to avoid the situation where online pro-
filing becomes a bottleneck for deadline guarantees. In con-
trast, CHRONUS reserves a fixed number of GPUs (up to 16)
for profiling purposes. However, when the GPU cluster has a
limited amount of resources to meet the deadline guarantees
of SLO jobs, a surge in SLO job submissions can occur. The
reserved GPU nodes may not be sufficient to handle the profil-
ing of these bursty job submissions, leading to a large number
of pending SLO jobs and potential SLO violations. Scaling
profiling resources adaptively in an isolated manner might be
another solution to address the bursty submission issue. This
solution would impose an extra burden on system maintenance.
Differently, our proposed unified approach is elegant to inte-
grate scaling profiling resources adaptively without any extra
engineering effort. Additionally, CHRONUS does not distinguish
between the importance of best-effort jobs, which is not realistic
in a production environment.

Second, the joint optimization approach in UNISCHED can
improve the latency efficiency of best-effort jobs while still
meeting the deadline requirements of SLO jobs. As an example,
consider a scenario where four 6-GPU SLO jobs compete for
access to three 8-GPU nodes. The round-up technique used
in CHRONUS can only allocate GPU resources to three of the
SLO jobs due to its strict consolidated placement constraint.
However, UNISCHED leverages Estimator to predict the job
runtime under different resource allocations, enabling it to sat-
isfy the deadline requirements of all four SLO jobs. Similarly,
in a scenario where there are three 6-GPU SLO jobs and one
6-GPU best-effort job, CHRONUS cannot allocate resources to
all the jobs. In contrast, UNISCHED can relax the consolidated
placement constraint for one of the SLO jobs without violating
its corresponding deadline, and allocate consolidated resources
to the best-effort job to reduce the corresponding latency (i.e.,
maximizing its reward value).

III. SYSTEM DESIGN

UNISCHED is a new scheduler to achieve various scheduling
goals. UNISCHED is improved over CHRONUS [17], and ad-
dresses its following limitations: (1) CHRONUS can satisfy the
mixture of both SLO and best-effort jobs, but only accept the
iteration-based stopping criterion. UNISCHED can handle jobs
with the stopping criterion of different performance metrics.
(2) CHRONUS performs job profiling, selection, and resource
allocation separately in an ad-hoc way. In contrast, UNISCHED

introduces a unified MILP framework, which jointly optimizes
all the stages with better efficiency. We begin by introducing our
system assumptions and providing an overview in Section III-A.
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Fig. 2. UNISCHED consists of two components to manage DLT jobs: Estimator for predicting the job duration and Selector for job selection and
resource allocation. Each job experiences two phases: profiling phase (orange dashed line) for collecting job information to estimate the job duration and
execution phase (black dashed line) for job execution.

Subsequently, we delve into the details of each component in
Section III-B–III-C.

A. System Assumptions and Overview

UNISCHED makes certain assumptions regarding DLT jobs
and GPU clusters. (1) The memory of a single GPU can support
at least single-sample training. (2) For simplicity, UNISCHED

assumes that the DLT jobs perform a data-parallel distributed
training approach and adopt the all-reduce to synchronize the
gradients. (3) Our consideration involves a shared cluster that
has homogeneous GPU resources and physical network con-
nections. Our system can also be generalized to heterogeneous
GPU clusters (Section VIII).

Fig. 2 shows the workflow of UNISCHED. It consists of two
main components: Estimator for predicting the job duration
and Selector for selecting jobs and allocating resources to
them for execution. Each job experiences two phases in its
lifecycle. The first phase is profiling (orange dashed lines in
Fig. 2). All the newly submitted jobs are treated as profiler jobs.
(1) In the Selector, the jobs are placed in the profiler job
queue. The reward generator is called to assign a reward to
each job (❶). The policy generator then generates all possible
resource allocation solutions for each job (❷). Finally, a MILP
solver is utilized to identify an effective solution (❸) so the
selected job will be scheduled for profiling. (2) In the Esti-
mator, the runtime speed estimator predicts the runtime speed
of each profiler job over different resource allocations (❹). The
training iteration estimator predicts the number of training
iterations for jobs with performance-based criterion (❺). Based
on such information, the estimated job duration is produced.

The second phase is execution (black dashed lines in Fig. 2).
The estimated duration is forwarded to the Selector. The
job is then placed in either the SLO job queue or best-effort
job queue, depending on its scheduling latency requirement
specified by its user. The following procedure is similar to
the profiling phase: the Selector generates the reward and
allocation policy for the job and adopts the MILP solver to
identify the optimal scheduling solution. The MILP solver also
requires the estimated job duration from the profiling phase for

the solution generation. Then the selected job will be placed on
the assigned GPUs for execution.

UNISCHED unifies the scheduling workflow in two aspects.
First, in the profiling phase, UNISCHED processes the best-effort
and SLO jobs in a unified way. All the jobs are referred to as
profiler jobs. They are only distinguished in the execution phase.
Second, the Selector processes the profiling and execution
phases in a unified way, i.e., they adopt the same methodology
to generate the reward and allocation policy regardless of the
phases. These unified strategies make it easy to manage, imple-
ment and maintain the entire system workflow.

Before elaborating our approach, we summarize the rele-
vant symbols used in this paper in Table II if not particularly
specified.

B. Estimator

Formally, we consider a set of N jobs: J = {j0, j1, . . . ,
jN−1}. Assume the vector of job duration for J is Tdur, the
vector of training iteration for J is Niter, the vector of time
cost of suspension and resumption for J is Nsr, the vector of
time cost per iteration for J is Titer.

The Estimator is responsible for predicting the duration
T dur
i of ji. This is calculated as follows:

T dur
i = T sr

i +N iter
i · T iter

i . (1)

Note that the number of training iterations N iter
i is directly

specified by users for iteration-based criterion, or indirectly
predicted for performance-based criterion. We estimate Titer,
Niter and Tsr by the runtime speed estimator, training iteration
estimator, and SR-aware estimator, respectively. UNISCHED

only needs to allocate at most 2 GPUs for each job during
profiling stage, regardless of its actual resource demands. We
will discuss how to schedule these jobs during profiling stage
in Section III-C.

1) Runtime Speed Estimator: DLT jobs exhibit an iterative
and repetitive pattern during training. This motivates UNISCHED

to use a simple yet effective way to estimate Titer. The Esti-
mator executes profiler jobs on actual machines for a fixed
time, which is empirically set as five minutes.
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TABLE II
SUMMARY OF NOTATIONS

Sym. Definition

�·� ceiling
�·� floor

Tdur vector of job duration
Tsr vector of time cost of suspension and resumption
Titer vector of time cost per iteration
Tcomp vector of computation time cost per iteration
Tlease vector of lease length

Niter vector of training iterations
Ngpu vector of GPU request
Nnode vector of GPU node request
Ncell vector of cell count
Ncon vector of cell request

J job set
J slo SLO job set
N job count
M total GPU count in the cluster
ji ith job in J
jslo
i ith job in J slo

Fi deadline count of ji
Fmax maximal deadline count across all jobs
Df,i fth deadlines of ji
Vf,i reward value for deadline Df,i

Qf,i lease term count of deadline Df,i

Li lease term count to complete ji
Pi resource allocation count of job ji
Ai resource allocation set of job ji
Ai,p pth allocation policy of job ji
A∗

i optimal allocation policy for job ji
S binary matrix to indicate which deadline each job hits

xk,i indicator of whether ji obtains the kth lease
yk,i indicator of whether to select policy Ai,p

Rslo weighted deadline miss rate

Let Ngpu and Nnode be the vector of GPU request and GPU
node request for J respectively. We consider two scenarios
for ji.

First, this is a single-GPU job (N gpu
i = 1). Then UNISCHED

allocates one GPU in profiling, and measures its computation
time T comp

i as the time cost per iteration, i.e., T iter
i = T comp

i .
Second, this is a multi-GPU job (N gpu

i ≥ 2). Then we should
consider both computation time and communication time.
There are also two possibilities: (i) this job will be executed
on one machine in the execution phase. Then we allocate two
GPUs on the same machine to this profiler job (N node

i = 1),
and measure the gradient communication time T 1

i ; (ii) this job
will be distributed to multiple machines in the execution phase
(N node

i ≥ 2). Then we allocate two GPUs from two machines to
this profiler job and measure the corresponding gradient com-
munication time T 2

i . To summarize, the time cost per iteration
for ji can be modeled as:

T iter
i =

⎧
⎪⎨

⎪⎩

T comp
i if N gpu

i = 1,

T comp
i + (N gpu

i − 1) · T 1
i if N node

i = 1, N gpu
i ≥ 2,

T comp
i + (N gpu

i − 1) · T 2
i otherwise.

(2)

Previous works [6], [32] also adopt similar performance
modeling with Eq. 2 to estimate the job runtime speed. The key

idea is that we can just use two GPUs to capture the intra-node
and inter-node communication overheads (T 1

i and T 2
i ), then the

total timing cost for a job with an arbitrary number of GPUs can
be derived accordingly. Another point is that our system testbed
only focuses on utilizing PCIe and RDMA for communication.
There are cluster designs adopting the underlying GPU topol-
ogy of non-unified communication cost [33] including PCIe,
NVLink, and GPUDirect. We leave the modeling of non-unified
communication cost as our future work. These profiling results
are reported to the MILP solver to determine the placement
policy for each job.
Discussion. We further demonstrates the effectiveness of
Eq. 2 and how Eq. 2 handles some exceptional cases. (1) Our
Eq. 2 is a simplified version of runtime speed estimator in [6],
where we intentionally disregard the overlap between gradient
computation and network communication overhead. If they are
overlapped, Eq. 2 may result in an overestimation of T iter

i , which
can secure the deadline guarantees for SLO jobs and improve
SLO guarantee objective. (2) We only consider the data-parallel
distributed training with all-reduce to synchronize the gradients.
How to extend our solution to other parallelism mechanisms
(e.g., tensor parallel, pipeline parallel) and model the execution
time is our future work. (3) Eq. 2 cannot model the PCIe
bandwidth saturation scenario, which is very rare in practice.
In case it happens, we can update T iter

i during the execution
stage to account for PCIe bandwidth saturation. (4) Our empir-
ical evaluations in Section VI-A prove the estimation error of
Eq. 2 is acceptable.

2) Training Iteration Estimator: For the iteration-based
stopping criterion, the user directly specifies N iter. For the
performance-based criterion, it is non-trivial to predict N iter

from the specified performance requirement. The performance
metric is typically non-linear to the number of training iterations
[34]. We adopt a method from [21] to predict the relationship
between the performance metric and training progress. The ba-
sic idea is to model the observed performance metrics using an
ensemble of probabilistic learning curve models, e.g., Weibull,
log-power. These models can extrapolate future performance
via only a few observed performance metrics. This method is
robust to different performance metrics (accuracy, mAP, F1-
score, loss) and optimization techniques (SGD, Adam). Several
schedulers [26], [27] have adopted it to predict when the perfor-
mance metric of the DLT job will satisfy the stopping criterion.

UNISCHED first uses the performance metric observed in the
profiling phase to predict the required number of training iter-
ations. However, just using such metric in this phase can result
in significant prediction errors, as demonstrated in Fig. 7(c).
The prediction error comes from two aspects: (1) we change
the batch size in the profiling phase to collect the accurate job
computation time per iteration, and (2) the number of collected
metrics is limited during the profiling phase. We notice that
even we use the training hyper-parameters and the number of
required GPUs, the prediction error is still significant (shown
Fig. 7(c) when x-axis is 20%). Hence, we also collect the per-
formance metrics in the executing phase to gradually eliminate
the prediction error.
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Fig. 3. The overhead of job suspension and resumption: (a) the job
suspension overhead (y-axis) of training VGG19, ResNet18, ResNet50, Mo-
bileNetV2, GoogLeNet over cifar10 on 1 GPU and 16 GPUs; (b) the job
resumption overhead (y-axis) of training VGG19 over cifar10 on different
numbers of GPUs (x-axis).

3) SR-Aware Estimator: UNISCHED allows a DLT job ji
to be suspended and resumed during the training progress,
which increases the scheduling flexibility but inevitably brings
a certain overhead of suspension and resumption operations,
denoted as tsr

i . Fig. 3 shows the overhead of job suspension and
resumption. In Fig. 3(a), the suspension overhead of various
models over cifar10 with different numbers of GPUs remains
consistently within a range of 4 seconds. Fig. 3(b) illustrates that
scaling the number of allocated GPUs increases the resumption
overhead of training VGG19 over cifar10. Overall, the resump-
tion overhead is much larger than the suspension overhead. Note
that tsr

i represents the combined overhead of job suspension and
resumption, rather than that of job resumption or suspension.
Practically, we use such combined overhead during the profiling
phase and update it in the execution phase. According to Fig.
3, the difference in the combined overhead during the profiling
(2-GPU) and execution (16-GPU) phases is within 5 seconds for
training VGG19 over cifar10. This suggests that directly using
the combined overhead during the profiling phase is acceptable
compared to long training time.

For an SLO job ji, we assume it runs for n lease terms, and
its corresponding deadline is m lease terms (n≤m). A lease
term is the smallest unit for a job to run continuously, which
will be explained in detail in Section III-C1. The overhead of
suspension and resumption operations for an SLO job ji is up
to tsr

i .
We assume the occurrence of suspending and resuming a

DLT job follows a uniform probability distribution. Hence
the probability that an SLO job is suspended and resumes

for k times is
Ck

n−1C
k+1
m−n+1

Cn
m

, where k ∈ [0,min(n− 1,m− n)].
Therefore, we can approximate the overhead of job suspension
and resumption T sr as follows:

T sr
i =

min(n−1,m−n)∑

k=0

k · tsr
i ·

Ck
n−1C

k+1
m−n+1

Cn
m

. (3)

For a best-effort job that requires n lease terms, the prob-
ability that suspension and resumption occurs is 1

2 . Hence,
its corresponding T sr is n

2 · tsr
i . To summarize, Estimator

offers three unique contributions. (1) It predicts the speed of
DLT jobs across various resource allocation topologies with
at most 2 GPUs. (2) It approximates the number of training
iterations required to achieve a target validation metric. This

Fig. 4. Illustration of lease terms. The duration of the SLO lease term is
set as an integral multiple of that of the BE lease.

estimation is particularly valuable for jobs with performance-
based stopping criteria. (3) It considers the significant overhead
of suspension and resumption in job execution. By account-
ing for these factors, our estimator effectively minimizes the
gap between the predicted duration of a job and its actual
execution time.

C. Selector

The Selector is primarily responsible for producing
resource-time scheduling decisions for profiler jobs in the pro-
filing phase, and SLO jobs and best-effort jobs in the execution
phase. It adopts the lease-based training scheme to convert job
scheduling into the MILP optimization problem, and designs
reward generator to successfully manage all three types of jobs.
It also uses the policy generator to select the job and resource
allocation jointly.

1) Lease-Based Training: A DLT job is split into multiple
periods (i.e., lease terms) which have the equal length. A job is
allowed to run only if the scheduler assigns a lease term to it. It
needs to renew the lease when it expires. The job can continue
the execution if the renewal is successful, and suspended and
yield the resources otherwise.

UNISCHED implements two sorts of leases: SLO lease for
SLO jobs, and BE lease for best-effort and profiler jobs. During
each scheduling cycle, the expired leases are allocated to the
chosen jobs by the Selector. To make it easy to manage,
the length of an SLO lease is set as an integral multiple of that
of a BE lease. In this setting, expiration of a BE lease may not
cause the expiration of an SLO lease, while expiration of an
SLO lease occurs simultaneously with the expiration of a BE
lease. Fig. 4 shows an example of the two leases.

2) Reward Generator: Previous deadline-aware schedulers
[11], [12], [13] only take into account the strict deadline re-
quirement, i.e., a job must be finished before the specific time.
Based on a user survey in [17], users expect to have the soft
deadline requirement, where the DLT jobs can be completed
after the deadlines with some penalty.

To enable this demand, a reward function is introduced in
UNISCHED to formulate various types of requirements (profiler,
best-effort, strict SLO, and soft SLO). Cluster users can also
give such functions to the scheduler during job submission. The
reward is defined as a step function with the values ranging
between 0 and 100. Fig. 5(a) illustrates the functions of different
requirements.

A profiler job expects a short waiting time to achieve the run-
time speed information as soon as possible, and thus is regarded
as a best-effort job with a fixed remaining time (e.g., 5 minutes).
Therefore we set the reward of all profiler jobs as a fixed reward
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Fig. 5. The illustration of different types of jobs: (a) the relationship
between completion time and reward value for different types of jobs;
(b) A two-by-two matrix to categorize these types.

value 1. Such reward design handles well the starvation of jobs
while maintaining the deadline guarantee for SLO jobs. We
have two scenarios to consider: (1) if the cluster-wide GPU
resources available are only sufficient to meet the deadlines
of SLO jobs, newly submitted jobs may experience resource
starvation until certain jobs are completed, otherwise users have
the option to assign an exceptionally high reward value, thereby
increasing the likelihood of their job being executed quickly; (2)
if there exist some extra cluster-wide GPU resources in addition
to the ones used for meeting deadlines of SLO jobs, the reward
generator of UNISCHED gives priority to newly submitted jobs
(profiler jobs) over best-effort jobs. This prioritization strategy
effectively prevents job starvation. Best-effort jobs are expected
to be completed as soon as possible. Their reward values are as a
reciprocal of the corresponding estimated remaining time. Strict
SLO jobs need to be finished before the deadlines (= 100).
Their reward decreases gradually and gives longer delays in
completion time1.

To ensure that newly submitted jobs and best-effort jobs do
not impact the deadlines of SLO jobs, we assign a significantly
lower reward value to profiler and best-effort jobs compared
to SLO jobs (using a ratio of 1 out of 100). Additionally, to
expedite the completion of profiler jobs, we set their reward
value higher than any best-effort jobs. For best-effort jobs, the
reward value is reciprocally proportional to the remaining time,
prioritizing jobs with the shortest remaining time. In fact, how
to determine the reward of any job depends upon the practical
needs. Setting extremely high values for SLO jobs would dis-
courage users from submitting best-effort jobs. Setting small
values for SLO jobs would encourage UNISCHED to satisfy
more best-effort jobs to maximize the reward values and violate
the deadlines for SLO jobs. We follow the prior work [13] and
account for our user survey to determine the reward value. There
is no complete answer to the selection of reward values. We
leave it as our future work.

Our reward function enables the Selector to manage all
types of DLT jobs in a unified way, as shown in Fig 5(b). The
best-effort jobs can be counted as the noncritical profiler job.
Similar to the profiler job, the strict SLO job has a constant
reward value besides exceeding the deadline. The Soft SLO job
can be considered as the noncritical strict SLO job.

1Users may have other expressions of reward functions for their soft SLO
jobs. Note that any functions can always be approximated as the step function
in UNISCHED.

3) Policy Generator: The policy generator produces all pos-
sible resource allocation solutions for each job. Following the
buddy cell idea in HiveD [4], we denote 8-GPU, 4-GPU, 2-
GPU, 1-GPU compute nodes as level-4, level-3, level-2, level-
1 cells respectively. Such resource abstraction enables us to
allocate resources considering GPU affinity not just the number
of GPUs.

We consider a job ji with N gpu
i GPUs to explain how to

leverage this resource abstraction to generate resource allo-
cation policies. We use a quadruple (c0, c1, c2, c3) to denote
any allowable resource allocation for this job, which represents
the requested numbers of level-0, level-1, level-2, and level-3
cells, respectively. For example, for a job requesting 6 GPUs,
possible resource allocations are (0, 0, 0, 1), (0, 1, 1, 0), and
(6, 0, 0, 0). For N gpu

i GPUs, the policy generator outputs the
allocation policies by enumerating all quadruples. To reduce
the optimization complexity of making allocation decisions, the
policy generator is only applicable to the job with N gpu

i ≤ 16.
4) Joint Optimization of Job Selection and Allocation: With

the assistance of the reward generator and policy generator, we
can model the process of job selection and resource allocation as
a MILP problem. At each BE scheduling cycle, the Selector
is responsible for combining all the jobs (including SLO jobs at
the SLO scheduling cycle) and making decisions for job status
update and GPU resource assignment.
Consideration of rewards. We consider at one scheduling
cycle there are N jobs: J = {j0, j1, j2, . . . , jN−1} and M
available GPUs. Each job ji requires N gpu

i GPUs, with the
duration T dur

i estimated by the Estimator. We denote the
deadline count of job ji as Fi. When the job ji is completed
right before the corresponding fth deadline, it can obtain the
reward value Vf,i. Further, we use Fmax to represent the max
number of deadlines across all jobs. Assume the vector of lease
length for J is Tlease. For job ji, we set T lease

i as BE lease length
for best-effort and profiler jobs, and SLO lease for SLO jobs
respectively. For each job ji, it requiresLi = �T dur

i /T lease
i � lease

terms to complete. It also needs Qf,i = �Df,i/T
lease
i � lease

terms to complete before each deadline, where f ∈ [Fi]
2.

We denote a binary matrix S ∈ B
Fmax×N , where sf,i denotes

whether ji hits the corresponding fth deadline. A binary vari-
able xk,i is used to represent whether ji gets the kth lease. The
MILP solver is expected to produce a solution for the follow-
ing problem:

max
S

∑

i∈[N ]

∑

f∈[Fi]

sf,iVf,i, (4)

subject to:

xk,i, sf,i ∈ {0, 1}, ∀i ∈ [N ], f ∈ [Fi], (5)
∑

f∈[Fi]

sf,i ≤ 1, ∀i ∈ [N ], (6)

∑

k∈[Qf,i]

sf,ixk,i ≤ sf,iLi, ∀i ∈ [N ], f ∈ [Fi]. (7)

2We define [N ] = {0, 1, . . . , N − 1} in this paper, where N can be
different positive integers.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 30,2024 at 09:20:31 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: UNISCHED: A UNIFIED SCHEDULER FOR DLT JOBS WITH DIFFERENT USER DEMANDS 1507

Objective (4) aims to maximize the total reward values of all
jobs in the cluster. Constraint (5) restricts xk,i and sf,i as binary
values. Constraint (6) ensures each job gets at most one feasible
solution to meet the (soft) deadline. Constraint (7) guarantees
all jobs need to be finished before the (soft) deadlines.
Consideration of resource allocations. Next, we discuss
how to formulate resource allocation constraints. For a job
ji, UNISCHED adopts the policy generator to produce the re-
source allocation set Ai, which contains Pi allowable resource
allocation solutions. We denote as A∗

i the optimal allocation
that meets the consolidation requirement. We use φ(ji, Ai,p) to
represent the runtime speed of ji under an allocation Ai,p ∈ Ai.
We can leverage the Estimator to estimate φ(ji, Ai,p). Then
we formulate the normalized runtime speed φ̄ to quantify the
correlation between the job throughput and resource allocation
as follows:

φ̄(ji, Ai,p) =
φ(ji, Ai,p)

φ(ji, A∗
i )

. (8)

A higher φ̄(ji, Ai,h) indicates job ji runs faster under the allo-
cation Ai,h.

We introduce a binary variable yi,p to represent whether we
select the solution Ai,p for ji with resource allocation set Ai.
We denote the vector of total cell request as Ncon and the vector
of free cell count asNcell. The requested number of level-g cells
for resource allocation Ai,p is denoted as Ai,p(g). Then we can
add the following constraints into the optimization problem:

yi,p ∈ {0, 1}, ∀i ∈ [N ], p ∈ [Pi], (9)
3∑

g=0

2g ·N cell
g ≤M, (10)

N con
g =

∑

i∈[N ]

∑

p∈[Pi]

yi,pAi,p(g), ∀g ∈ {0, 1, 2, 3}, (11)

∑

k∈[Qf,i]

yi,psf,ixk,iφ̄(ji, Ai,h)

≥ yi,psf,iLi, ∀i ∈ [N ], f ∈ [Fi], p ∈ [Pi], (12)
∑

p∈[Pi]

yi,p ≤ 1, ∀i ∈ [N ]. (13)

Constraint (9) enforces yi,p to be a binary value. Constraint
(10) guarantees the number of occupied GPUs is no greater
than the capacity of the entire cluster. Commonly, we set
N cell

0 , N cell
1 , N cell

2 , N cell
3 as 0, 0, 0,M/8 respectively. Constraint

(11) guarantees the feasibility of the resource allocation solu-
tion. Constraint (12) guarantees the number of requested leases
can ensure the completion of the job under given resource
allocations. Constraint (13) ensures each job is assigned with
at most one feasible resource allocation solution.

Besides, we also need to ensure the identified solu-
tion achieves consolidation placement. In particular, we re-
fer 1-GPU, 2-GPU, 4-GPU, and 8b-GPU jobs (b ∈ Z

+) as
consolidation-friendly jobs, and other types of jobs are called
consolidation-hostile jobs. We say a resource allocation solu-
tion enjoys the consolidation feature if each job ji with N gpu

i

GPUs is deployed on �N gpu
i /8� nodes. Then the following

proposition is given:

Proposition 1: Assume the cluster has N cell
0 level-0, N cell

1

level-1, N cell
2 level-2, and N cell

3 level-3 free cells respectively.
The pending queue only contains N con

0 1-GPU, N con
1 2-GPU,

N con
2 4-GPU, and N con

3 8-GPU consolidation-friendly jobs3.
There exists a solution that can achieve the consolidation place-
ment when the following constraint (14) is satisfied:

3∑

g=i

2g−i ·N con
g ≤

3∑

g=i

2g−i ·N cell
g , ∀i ∈ {0, 1, 2, 3}. (14)

Proof: It is easy to construct a solution to meet the re-
quirement. We first allocate N con

3 level-3 free cells to 8-GPU
jobs in a consolidation way such that the allocated nodes have
no GPU fragmentation due to N con

3 ≤N cell
3 . Then we split the

remaining m′(=N cell
3 −N con

3 ) level-3 cells into 2m′ level-2
cells, and we have 2m′ +N cell

2 level-2 cells. According to
Eq. 14, the number of level-3 free cells is no less than that of
4-GPU jobs. Recursively, 2-GPU and 1-GPU jobs can satisfy
the consolidated placement.
Solving the optimization. UNISCHED leverages the MILP
solver to find a solution that can achieve the Objective (4) while
satisfying the Constraints (5-7, 9-14). Based on the solution,
UNISCHED identifies the jobs that need to be scheduled at this
cycle (xk,i), and the optimal resource allocations to host these
selected jobs (yi,p). The rest jobs are put in a pending queue
and will be considered at the next scheduling cycle. In terms of
profiling time requirement and BE lease scheduling flexibility,
the length of a BE lease term is fixed as 5 minutes. The length
of an SLO lease term is critical to the MILP solver efficiency.
A short SLO lease causes too many preemption operations for
SLO jobs, while a longer SLO lease makes the scheduling less
elastic. We set it as 10 minutes empirically.

Note that it takes some time for the MILP solver to generate
the optimization solution, which can have an impact on the
job execution. In order to mitigate the impact of these delays,
UNISCHED employs a caching mechanism for the optimization
solution generated during the previous scheduling cycle. If the
MILP solver cannot generate a new solution for the current cy-
cle within certain time, UNISCHED assigns the cached solution
to select jobs to minimize the search space and computational
overhead, and subsequently re-invokes the MILP solver.

IV. IMPLEMENTATION AND EXPERIMENTS

In this section, we discuss the implementation of our simu-
lator and Kubernetes [35] prototype. Then, we describe how to
construct our testbed and introduce the metrics and baselines.

A. Implementation Details

We develop a trace-driven simulator with 11,978 lines of
python code. It can simulate different scheduling mechanisms
in GPU clusters. The implementation of UNISCHED in our simu-
lator comprises of 1,113 lines of Python code. The MILP solver
employed as the backend is Gurobi 9.1 [36].

3Without loss of generality, an 8b-GPU job is counted as b 8-GPU jobs.
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Our physical prototyping implementation is built on top of
Kubernetes [35], which contains three key components: a client-
side watcher, controller, and scheduler. (1) A client-side watcher
is utilized to monitor the execution of DLT jobs and gather
the validation metric and job runtime speed. When the watcher
receives notifications from the controller that the lease will
expire, it makes checkpoints for the model. The client-side
watcher also reports the collected validation metric and runtime
speed every 5 minutes. (2) The controller notifies the scheduler
when the lease of a DLT job is nearing its expiration. It also
communicates with the watcher to trigger job checkpoint. The
implementation of job checkpoint is via signal handler function.
It talks to the MILP solver to solve Eq. 4 and make decisions
about job selection and resource allocations. The MILP solver
is implemented with an open-source goop library [37]. (3) The
scheduler is provided with scheduling information and events
(e.g., estimated remaining time, lease renewal). It is also re-
sponsible for job management (e.g., preemption, termination,
execution, and assigning resources).

B. Testbed

In this study, we evaluate the performance of two homoge-
neous GPU clusters, C120 and C96, each consisting of 120 and
96 nodes, respectively, with 8 GPUs per node. To assess the
performance of these clusters, we employ two realistic DLT
job traces: the Helios trace [23] from SenseTime and the Philly
trace [2] from Microsoft. We use the job submission time, job
duration, and number of GPUs required in the Helios and Philly
trace to construct the workloads for evaluation. As the job traces
do not provide deadline information, we generate deadlines for
strict and soft SLO jobs using a method that ensures a fair
representation of real-world conditions. Specifically, for strict
SLO jobs, we randomly generate a deadline within a range of
1.1 to 2 times the job duration, while for soft SLO jobs, we
set the first deadline, D0,i, in the same way as strict SLO jobs.
We then set additional soft SLO deadlines at 1.1, 1.2, and 1.5
times D0,i, with corresponding reward values of 80, 50, and 20,
respectively, as determined by a user survey [17].

Each job in our simulation trace contains submission time,
duration, deadline information, the number of GPUs, user
name, job type, model type, and stopping criteria. We consider
two stopping criteria: iteration-based, performance-based, and
the jobs adopting these criteria account for 80%, 20%, respec-
tively. The Helios and Philly trace do not include explicit in-
formation about iteration or performance criteria. Instead, they
provide attributes such as “duration” and “name”. For iteration-
based jobs, we use the job duration and job runtime speed to
deduce the corresponding training iteration. For performance-
criterion jobs, we identify a set of performance-aware key-
words, e.g., “detection”, “cifar10”, “imagenet”, “face”. Only for
these specific jobs do we assign performance-based stopping
criteria. For a job with the performance-based criterion, we
randomly choose the best metric or 99% best metric throughout
the training as the target value. Besides, we use the profiled
runtime speed on different GPU allocations and the preemption
overhead of a real job trace for evaluation. Note that we scale the

job speed for performance-criterion jobs to enforce the duration
of performance-criterion jobs to match that from the trace.

Besides, we adopted the same technique as CHRONUS to gen-
erate six workloads from Helios and Philly. These workloads
included jobs with all strict SLOs (H_SLO and P_SLO); work-
loads that mixed strict SLOs with best-effort jobs (H_MIX1 and
P_MIX1); and workloads that included strict SLOs, soft SLOs,
and best-effort jobs (H_MIX2 and P_MIX2).

C. Metrics

Weighted Deadline Miss Rate. This is to assess the level
of attainment with the SLO requirements. We consider a set
J slo of SLO jobs, where each job jsloi is assigned a reward
value W(jslo

i ) based on its SLO specification, as illustrated in
Fig. 5(a). To quantify the effectiveness of meeting these SLO
requirements, we introduce the concept of a weighted deadline
miss rate Rslo, which is defined by Eq. 15. Specifically, we set
the bounds of the reward values as Wmin = 0 and Wmax = 100.

Rslo =
1

|J slo|
∑

jslo
i ∈J slo

W(jslo
i )−Wmin

Wmax −Wmin
. (15)

Job Completion Time (JCT). This measures the latency
efficiency of best-effort jobs to evaluate the scheduling perfor-
mance. A smaller JCT indicates higher scheduling efficiency.
This metric measures the duration between the job submission
and job completion. Hence, the profiling overhead is also in-
corporated to compute Rslo and JCT.

D. Baselines

To fully demonstrate the benefits of UNISCHED, we select six
mainstream schedulers for comparison, which are classified into
two categories. Besides, we also make a detailed comparative
analysis between CHRONUS and UNISCHED.
Deadline-aware scheduler: (1) 3Sigma [22] applies the MILP
solver to schedule a mix of SLO and best-effort big data jobs.
It favors that SLO jobs preempt best-effort jobs, which can re-
markably restricts the MILP solver’s search space. The schedul-
ing cycle of 3Sigma is set as 60 seconds based on the job
time scale in our traces. (2) GENIE [14] proposes an offline
prediction model to estimate the processing rate and response
latency for various DL jobs. It enables DLT jobs to be executed
on different GPU resources in an elastic way and selects the
best placement policy. It assigns the highest priority to SLO
jobs with the smallest laxity but does not consider best-effort
jobs. We give best-effort jobs the lowest priority. (3) Hydra [18]
aims to reduce the average the job latency while reduce the
deadline miss rate. We set the priority of SLO jobs higher than
that of best-effort jobs. Also, we adopt shortest remaining time
first to manage both type of jobs. We implement it to fit into a
homogeneous GPU cluster. Note that, Hydra does not consider
preemptive scheduling.
Deep Learning scheduler: (4) Optimus [19] leverages an
online fitting model to predict the job training speed and dy-
namically allocates GPU resources for jobs to prioritize the job

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 30,2024 at 09:20:31 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: UNISCHED: A UNIFIED SCHEDULER FOR DLT JOBS WITH DIFFERENT USER DEMANDS 1509

to minimize the job completion time. We adopt the same imple-
mentation in [6]. (5) Themis [7] introduces a new metric, the
finish time fairness, to assess the scheduling fairness. We also
use the model proposed in [21] to estimate the duration of jobs
with the performance-based stopping criteria. We implement
Themis based on the implementation in [38].

V. END-TO-END EVALUATION

We first compare the performance difference between physi-
cal and simulator results to validate the fidelity of our simulator
(Section V-A). Then, we measure the performance of the entire
system using our simulator, and compare it with various base-
lines (Section V-B).

A. Physical Evaluation

Cluster testbed. We set up a cluster consisting of 16 GPU
nodes, and each node has 4 Tesla V100-32GB GPUs, 1 × 200
Gbs HDR InfiniBand, 64 CPU cores, and 256 GB memory,
connected via PCIe 3.0 x16. Our prototype deploys upon Ku-
bernetes 1.18.2 and adopts CephFS 14.2.8 to establish a ceph
distributed storage cluster to store checkpoints and resume the
job progress. When the job experiences lease expiration, it will
receive the notification from the scheduler to save the train-
ing state into the distributed storage. We choose the H_MIX2
workload to compare the evaluation results between our simu-
lator and Kubernetes prototype. The MIX2 workload contains a
mixture of best-effort, strict SLO and soft SLO jobs, which is a
realistic scenario. Furthermore, the proportion of distributed DL
training is higher than Philly [23], and distributed DL training
involves many complex placement decisions. To synthesize our
evaluation workload, we randomly sample a number of jobs
from the H_MIX2 workload, and assign random common DL
models (ResNet18, ResNet50, MobileNetV2, VGG19, BERT)
over different datasets (Cifar10, ImageNet, WikiText2) to them.
We sample the job whose number of requested GPUs is below
16 and the duration of which ranges between 5 minutes and
180 minutes. We follow the Helios’s job arrival pattern, and
only sample jobs the submission time of which is before eight
o’clock. We also vary the job submission density and com-
pare the performance between Kubernetes implementation and
simulation.
Evaluation results. Table III reports Rslo of SLO jobs and
average JCT of DLT jobs from simulation as well as Kuber-
netes implementation. We consider configurations (T [m]) with
different job densities with a fixed cluster capacity of 64 GPUs:
T [m] denotes m jobs are submitted within the first 8 hours.
For Rslo, the gap between simulation and Kubernetes proto-
type is at most 2.57%. For average JCT, the maximal relative
performance difference between simulation and Kubernetes is
5.38%. For small submission density, the deadline guarantee of
the simulator performs slightly worse than that of Kubernetes
prototype. For T [360] workloads, we observe that Kubernetes
prototype fails to satisfy the deadlines of certain long-duration
SLO jobs, and instead leaves more resources for other jobs
as a result of deadline guarantee performance improvement.
For T [720] workloads, the high submission density can lead

TABLE III
PERFORMANCE COMPARISONS BETWEEN SIMULATION AND KUBERNETES

IMPLEMENTATION IN Rslo AND AVERAGE JCT OVER DIFFERENT

WORKLOAD SUBMISSION DENSITIES

Job Load T [360] T [720]

Metric Rslo (%) Avg JCT (min) Rslo (%) Avg JCT (min)

Simulator 4.97 266.39 13.52 253.98
Kubernetes 3.92 274.42 16.11 267.40
Relative Diff 1.08% 2.93% 2.57% 5.38%

to heavy resource contention, and the simulator can use the
predicted information to make more accurate scheduling deci-
sions. Therefore, the simulator present better deadline guarantee
performance. Overall, the difference is not significant and does
not alter the conclusions from simulations.

B. Simulator Evaluation

SLO Enforcement. We compare Rslo of UNISCHED with other
baseline systems for the six workloads in Fig. 6(a). We observe
that UNISCHED gives the almost best results in all the workloads.
In contrast, DL schedulers are poor at guaranteeing deadlines,
as their designs do not take SLO into consideration.

Deadline-aware schedulers are more effective than DL sched-
ulers. (1) For SLO workloads, GENIE is superior to 3Sigma
and Hydra, but not as good as UNISCHED due to the utiliza-
tion of the preemption feature. UNISCHED obtains 1.17 - 4.82
× reduction in Rslo compared to these baselines over SLO
workloads. (2) For both MIX1 and MIX2 workloads, the exis-
tence of best-effort jobs further reduces Rslo because deadline-
aware schedulers can free more GPUs for SLO jobs by sacri-
ficing best-effort jobs. In comparison to deadline-aware sched-
ulers including 3Sigma, Hydra, and GENIE, UNISCHED attains
0.95 - 2.77 × reduction in Rslo. Compared to DL schedulers,
the reduction of Rslo in UNISCHED is much higher, i.e., 2.01 -
6.84 ×. Particularly, UNISCHED achieves 6.84X improvement in
Rslo compared to Themis on the P_MIX1 workload. There is no
clear dominant winner among 3Sigma, Hydra, and GENIE. Ad-
ditionally, GENIE cannot execute preemptive scheduling, hence
its effectiveness in deadline guarantee is not satisfactory in a
mixed workload scenario. (3) Compared to MIX1 workloads,
UNISCHED significantly reduces Rslo of SLO jobs in MIX2
workloads, due to the introduction of soft deadlines.
Best-effort job performance. Fig. 6(b) displays the average
JCT of best-effort jobs, normalized to that of UNISCHED. It can
be observed that, in comparison to other schedulers, UNISCHED

remains the most effective, and obtains 1.18 - 4.02 × reduction
in latency over different workloads. It outperforms DL sched-
ulers by 1.18-3.11 × because it has sufficient GPU resources
to minimize the latency of best-effort jobs without violating
the SLO requirements. Optimus can achieve shorter latency in
Helios workload in that Helios trace contains a larger proportion
of distributed DL jobs than Philly trace. UNISCHED reduces the
latency of deadline-aware schedulers by 1.66 - 4.02 ×, as it
seriously sacrifices these jobs to meet the requirements of more
SLO jobs.
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Fig. 6. Comparisons between different schedulers. UNISCHED outperforms other baselines in Rslo and average JCT over different workloads (a-b) and
submission densities (c-d).

Impact of the job density. We evaluate the performance of var-
ious schedulers with different job densities with the H_MIX2
workload. In order to evaluate the performance of our system
under various job densities, we conduct experiments where we
randomly remove 20% of jobs to reduce the job density to
80%, and also inject additional jobs to increase the densities to
120%, 140%, and 160%, as described in [39]. Fig. 6(c) shows
the results of SLO enforcement over different job submission
densities. UNISCHED reduces Rslo by 1.18-2.67 × compared
to other schedulers. A higher job density can increase Rslo of
all scheduling systems, and a lower density favors the SLO
enforcement of 3Sigma and GENIE. However, UNISCHED per-
forms the best SLO enforcement in various job densities.

Fig. 6(d) shows the average JCT of best-effort jobs, nor-
malized to that of UNISCHED. In terms of latency reduction,
UNISCHED outperforms GENIE by up to 3.78 × when the
submission density reaches 160%. Our UNISCHED gives the
lowest JCT for most configurations. An exceptional scenario
occurs when Optimus exhibits a latency that is 0.67 × that
of UNISCHED at a submission density of 80%. Compared to
deadline-aware schedulers, UNISCHED is able to release suf-
ficient GPU resources for best-effort jobs without violating
the requirement of SLO jobs. Compared to DL schedulers,
UNISCHED can schedule best-effort jobs more effectively based
on the profiling information.
Analysis of suspension and resumption. Fig. 8 shows the
average numbers of suspension and resumption events over
different workloads. For best-effort jobs, UNISCHED tends to
allocate GPU resources to shorter jobs. Hence, these jobs are
prone to renewal the leases with short remaining time. Differ-
ently, SLO jobs experience an average of 2-6 suspensions and
resumptions, which is significantly higher compared to best-
effort jobs. This is because UNISCHED tends to allocate GPU
resources to emergent SLO jobs. As a result, when newly sub-
mitted jobs arrive, UNISCHED needs to reallocate GPUs in order
to satisfy more SLO jobs. Consequently, SLO jobs experience
more suspension and resumption on average across different
workloads.

VI. PERFORMANCE BREAKDOWN

We first investigate the contribution of the Estimator and
Selector in Section VI-A and VI-B, respectively. Then we
compare between UNISCHED and CHRONUS in Section VI-C,
and analyze the advantages of UNISCHED over CHRONUS.

Fig. 7. Error analysis of predictor: (a) the average estimation error (y-axis)
of job speed over different GPUs (x-axis); (b) the speed estimation error (y-
axis) of BERT over varying GPUs (x-axis); (c) the estimation error (y-axis)
of training iteration predictor over training progress (x-axis) across different
tasks; (d) the estimator’s estimation error on best-effort and SLO jobs.

Fig. 8. Average numbers of suspension and resumption over different
workloads.

A. Estimator Evaluation

We first evaluate the effectiveness of the Estimator, where
the job runtime estimation is conducted.
Error analysis of predictor. We analyze the accuracy of the
Estimator from different perspectives. Fig. 7(a) shows the
average estimation errors of the job runtime speed (y-axis) for
our evaluated DL models via profiling two GPUs over different
allocated GPUs (x-axis, G[x] represents the number of allocated
GPUs is x). The increase in allocated GPUs widens the gap
between prediction and actual job runtime speed. The average
prediction error is within 5%. Furthermore, the runtime speed
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Fig. 9. Analysis of the Estimator. (a) Rslo comparison between the unification mechanism and static profiler; (b) the impact of the training iteration
estimator on Rslo; (c) the impact of the SR-aware estimator on Rslo; (d) the impact of the estimation error on Rslo.

estimator performs the worst on BERT with a local batch size
per GPU of 12. Fig. 7(b) compares its actual and prediction
results across varied numbers of allocated GPUs. The error is
up to 16.3% when 16 GPUs are assigned.

Fig. 7(c) presents the prediction error of training iteration
with the increase of training progress. Note that we disable the
training iteration prediction for training BERT due to a small
number of epochs. The prediction error presents a decreasing
trend when the Estimator collects more validation perfor-
mance information.

Fig. 7(d) shows the Estimator’s prediction performance on
best-effort and SLO jobs across different Heilos traces. Consid-
ering the large estimation error of the iteration estimator at the
initial stage of the training, we compare the prediction results
in the middle of the training with the actual execution time.
The average prediction error is still within 10%. Overall, our
designed Estimator presents accurate predictions across various
GPU demands, models, and job types.
Impact of unifying different types of jobs. In the profiling
phase, UNISCHED uses the reward generator to schedule the
profiler jobs together with the best-effort and SLO jobs in a
unified way. This reward generator enables UNISCHED to make
dynamic resource allocations to profiler jobs. To demonstrate
its superiority, we compare UNISCHED with a system that stat-
ically allocates a fixed number of compute nodes (2 in our
experiments) for job profiling. Fig. 9(a) shows Rslo between
UNISCHED and such static profiler. We observe that UNISCHED

achieves better Rslo compared to the static profiler. This is
because UNISCHED can dynamically adjust the resource scale
for profiler jobs by planning all jobs globally. Besides, our
experiment suggests that UNISCHED can significantly decrease
the longest pending time from 2,105 seconds to 840 seconds,
so the Estimator can respond to the jobs promptly.
Effectiveness of the training iteration estimator. Our Esti-
mator can support the performance-based stopping criterion
by predicting the number of training iterations. To evaluate
the effectiveness of this mechanism, we consider a baseline
where the system directly executes each job with the maximal
number of training iterations provided by its user. Fig. 9(b)
shows Rslo of these jobs with and without the training iteration
estimator. We observe that Rslo is reduced by 0.7%-5.1% when
UNISCHED estimates the number of iterations. This results from
that the training iteration estimator can inform the Selector

to leverage more accurate time-resource information to satisfy
the deadlines.
Effectiveness of the SR-aware estimator. We evaluate our
SR-aware estimator in the Estimator (Section III-B3). Fig.
9(c) shows Rslo of SLO jobs and latency of best-effort jobs
with and without the SR-aware estimator. The x-axis represents
the ratio between the experimental suspending/resuming over-
head and actual overhead. We manually increase the overhead
and observe that our SR-estimator can effectively reduce the
deadline miss rate. The SR-aware estimator can provide a more
reasonable runtime estimation and lead UNISCHED to make
time-dimension resource allocations more accurately.
Estimation accuracy analysis. The scheduling performance
can be affected by the prediction accuracy of the Estimator.
We perform a sensitivity analysis to evaluate this dependency.
We perturb the profiled job runtime with random Gaussian
noise, and present the scheduling result for different traces in
Fig. 9(d). In this figure, x-axis denotes the standard deviation
of the injected noise and y-axis shows Rslo of SLO jobs. We
can see UNISCHED demonstrates strong robustness at the noise
scale smaller than 40%. The Estimator can easily achieve
this in practice.

B. Selector Evaluation

Impact of the SLO lease length. We consider how the
SLO lease length could influence the deadline enforcement.
Fig. 10(a) shows the JCT of best-effort jobs and Rslo of SLO
jobs with the H_MIX1 workload. We observe that a short lease
term (leq 5 minutes) can cause more frequent preemption op-
erations with large overhead, leading to higher Rslo for SLO
jobs. A longer lease term could also increase Rslo as it restricts
the scheduling opportunities. Additionally, a similar experiment
on the H_MIX2 workload is also conducted. The performance
of Rslo and latency is small between 10 and 30 minutes, but
the 10-minute SLO lease length still achieves the lowest Rslo

and latency.
Effectiveness of the MILP solver. The MILP solver can
effectively improve the SLO enforcement by maximizing the
total reward value (Eq. 4). Here, we consider two scenarios
for the MILP solver: (1) maximizing the objective subject to
the constraints. (2) only finding a feasible solution to obey the
constraints. Fig. 10(b) and 10(c) show Rslo of SLO jobs and the

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 30,2024 at 09:20:31 UTC from IEEE Xplore.  Restrictions apply. 



1512 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 10. Performance analysis of the Selector. (a) Impact of the SLO lease length on Rslo and job latency; (b) impact of the objective on Rslo; (c)
impact of the objective on the job latency; (d) impact of the cluster capacity on the MILP solver latency.

latency of best-effort jobs respectively over different workloads
with and without the consideration of the objective. Our obser-
vation is that maximizing the objective can significantly reduce
Rslo of SLO jobs, and slightly increase the latency of best-effort
jobs. As we set a high reward value for SLO jobs, the scheduler
sacrifices the latency of best-effort jobs to maximize the total
reward value.

The latency of the MILP solver has impact on the scalability
of UNISCHED. When the cluster has a larger scale and higher job
submission rate, the MILP solver demands more time to find the
solutions, which could possibly cause larger pending overhead
and scheduling inefficiency. To evaluate this impact, we select
H_MIX2 and adjust the number of jobs to be proportional to
the capacity of the cluster. Fig. 10(d) shows the solver latency
under different scales of clusters and jobs. We observe that the
maximal latency induced by the MILP solver is less than 10
seconds, which is negligible compared to the long training time.
This implies that UNISCHED demonstrates high scalability in
handling
Effectiveness of joint optimization. The Selector adopts
joint optimization to decide on the job selection and resource
allocation simultaneously. To demonstrate its effectiveness, we
compare this strategy with the consolidation placement solu-
tion adopted in CHRONUS [17]. We adjust the requested GPU
amounts of some jobs in the H_MIX2 workload to get var-
ious ratios of consolidation-hostile jobs. Fig. 11(a) presents
the average JCT of best-effort jobs (lines) and Rslo of SLO
jobs (bars) respectively for the two mechanisms. We have two
observations:

1) The joint optimization technique can remarkably de-
crease Rslo of SLO jobs. Without this technique, the
Selectorwill fail to obtain a consolidation solution for
certain SLO jobs. Then these jobs will be placed in the
pending state, which could cause the violation of dead-
line requirements. When joint optimization is applied,
the MILP solver will allocate appropriate cell resources
to SLO jobs without violating their deadline constraint.
Then Rslo becomes smaller.

2) The performance gap between consolidation and co-
optimization techniques grows with the increase of the
consolidation-hostile proportion. This demonstrates that
consolidation-hostile jobs are sources to undermine per-
formance but co-optimization can mitigate them.

Fig. 11. Performance comparison between co-optimizing technique and
consolidation in Rslo (a) and normalized average latency (b) over different
percentages of consolidation-hostile jobs.

C. Comparison Between UNISCHED and CHRONUS

Since UNISCHED is improved over CHRONUS, we make a
comparison between the two systems. To clearly present the
performance impact of our proposed new designs, we make
a detailed performance comparison between UNISCHED and
CHRONUS for a mix of SLO and best-effort workloads. Our
proposed Estimator still can contribute to the scenario
where the cluster only accommodates SLO jobs, however,
the benefit of Selector is limited in such a scenario. Fig.
12(a) shows Rslo of these designs for the mix workloads. We
observe that UNISCHED can reduce up to 5.2% Rslo com-
pared to CHRONUS. To explore the performance gap between
UNISCHED and CHRONUS, we integrate the Estimator with
CHRONUS to predict the job duration, especially for jobs with
performance-based stopping criteria. Our observation is that
the Estimator plays an important role in reducing Rslo:
CHRONUS + Estimator gets a maximum Rslo reduction of
4.2% in H_MIX1 trace compared to CHRONUS. Besides, we
also perform an analysis of the combination of the Selector
with CHRONUS. The benefit of the Selector is not com-
parable to the Estimator, and the maximal Rslo reduction
brought by the Selector is 1.5% in P_MIX1 trace compared
to CHRONUS.

Fig. 12(b) presents the average JCT of UNISCHED and
CHRONUS as well as other variants over the mix workloads.
The reduction of the DLT job latency arises from two aspects:
(1) we use the accurate job duration time estimation for best-
effort jobs (Estimator), and (2) we distinguish the SLO and
best-effort jobs, and it would provide more GPU resources to
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Fig. 12. Comparison between UNISCHED, CHRONUS w/ the Estimator,
CHRONUS w/ the Selector, and CHRONUS in Rslo (a) and normalized
average latency (b) over workloads.

best-effort jobs when SLO jobs are not emergent (Selector).
We observe the Estimator improves the throughput of best-
effort jobs up to 1.73× compared to CHRONUS for the Helios
trace. However, UNISCHED enjoys relatively moderate perfor-
mance gains. Higher Rslo of CHRONUS also indicates that more
resources are allocated to best-effort jobs. Hence, CHRONUS can
even outperform UNISCHED in the P_MIX2 trace. Furthermore,
early work [23] points out that the job duration distribution of
Helios is more unbalanced than that of Philly. In this context,
accurate job duration prediction offers notable advantages in
Helios with unbalanced job duration distribution. Additionally,
the Selector balances the resource allocation for SLO and
best-effort jobs well, and it shows positive effects on the latency
reduction over different simulated traces, and speeds up the
throughput of best-effort jobs by 1.04− 1.66×. Overall, our
Estimator is beneficial to both SLO jobs across different
workloads, offering superior SLO enforcement compared to
the Selector. Additionally, it contributes to reducing latency
and achieving competitive performance compared to CHRONUS

in terms of latency reduction for best-effort jobs. This mainly
attributes to the accurate job duration. The Selector always
presents a positive impact on the latency reduction for best-
effort jobs and deadline guarantee for SLO jobs.

VII. RELATED WORKS

Deadline-aware scheduling. Deadline-aware scheduling was
investigated in the big data scenario, and modeled it as an MILP
problem [13], [22]. However, these solutions are not tailored to
DLT jobs and become less effective in GPU cluster schedul-
ing. For example, they cannot precisely predict the duration
of DLT jobs, and ignore the impacts of GPU topology and
job preemption. Recent research [14], [16], [18] switched to
the SLO requirements of DLT jobs. However, these solutions
do not consider the mixture of SLO and best-effort jobs with
different stopping criteria, which are practical in GPU clusters.
Different from the above systems, UNISCHED is an end-to-end
scheduler that can satisfy the scheduling goals of different jobs
and support various stopping criteria.
Deep learning schedulers. Various DLT job scheduling sys-
tems have been developed to achieve different goals. Some sys-
tems focus on improving resource utilization, such as Gandiva
[1] and Antman [5]. Other systems aim to boost job perfor-
mance, such as Tiresias [3] and Optimus [19]. Several systems
have also been proposed to maintain resource allocation fair-
ness, such as Themis [7], Gandivafair [8], and ASTRAEA

[40]. However, none of these solutions are effective in SLO
enforcement, which motivated us to develop UNISCHED tailored
to DLT jobs.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we design and implement UNISCHED, a novel
DLT scheduling system to satisfy various user demands and
stopping criteria of DLT jobs. We propose innovative tech-
niques to estimate job duration and allocate resources in an
effective and efficient way. We conduct comprehensive simula-
tions to show that UNISCHED outperforms various state-of-the-
art schedulers. The prototype implementation of UNISCHED on
Kubernetes further validates the practicability of our system.

We consider the following directions as future work. (1)
This paper mainly considers and evaluate the homogeneous
GPU clusters. It is easy to extend UNISCHED to heterogeneous
clusters. A new binary variable is needed in the constraint and
objective to denote the type of GPU resources. We will im-
plement UNISCHED on heterogeneous GPU clusters in the near
future. (2) Auto-scaling allows a user to specify a range of GPUs
for his DLT job. To enable this flexible mechanism, several
binary variables can be introduced to represent the selection of
every value in that range in the MILP optimization. This may
potentially incur larger search costs.
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