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Abstract—Deep Neural Networks are well-known to be vulnerable to Adversarial Examples. Recently, advanced gradient-based

attacks were proposed (e.g., BPDA and EOT), which can significantly increase the difficulty and complexity of designing effective

defenses. In this paper, we present a study towards the opportunity of mitigating those powerful attacks with only pre-processing

operations. We make the following two contributions. First, we perform an in-depth analysis of those attacks and summarize three

fundamental properties that a good defense solution should have. Second, we design a lightweight preprocessing function with these

properties and the capability of preserving the model’s usability and robustness against these threats. Extensive evaluations indicate

that our solutions can effectively mitigate all existing standard and advanced attack techniques, and beat 11 state-of-the-art defense

solutions published in top-tier conferences over the past 2 years.

Index Terms—Adversarial examples, deep learning, adversarial attacks, BPDA
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1 INTRODUCTION

ARTIFICIAL Intelligence (AI), especially Deep Learning (DL)
has become the most important class of technologies in

the past decade. Recently, with the rapidly increasing require-
ments for experimenting the DL applications such as training
or inference, cloud computing providers start to provide DL-
related computing as services. This Deep Learning as a Ser-
vice (DLaaS) can significantly improve the usage of the end-
users or small enterprises to train a DL model or use existing
DLmodels to inference. For instance,Microsoft started to pro-
vide the inference as a service [1] that can help users to use DL
models with low latency and cost. However, novel security
issues are found in such DLaaS scenarios that threaten the
usage of theDLaaS.

Szegedy et al. [2] proposed the concept of Adversarial
Examples (AEs): with imperceptible modifications to the
input, the Deep Neural Network (DNN) model will be fooled
to givewrong prediction results. Since then, a huge amount of
research effort has been spent to enhance the powers of the
attacks, or mitigate the new attacks (Fig. 1). This leads to an

arms race between adversarial attacks anddefenses. Basically,
the generation of AEs can be converted into an optimization
problem: searching for the minimal perturbations that can
cause the model to predict a wrong label. Attackers used the
gradient-based approaches to identify the optimal perturba-
tions (e.g., FGSM [3], I-FGSM [4], LBFGS [2], C&W [5]). To
defeat those attacks, a lot of defenses were proposed to obfus-
cate the gradients such as making them shattered or stochas-
tic [6], [7], [8], [9], [10].

Unfortunately, those gradient obfuscation-based defenses
were further broken by advanced attacks [12], [13]. Backward
Pass Differentiable Approximation (BPDA) was introduced to
handle the shattered gradients by approximating the
gradients of non-differentiable functions. Expectation over
Transformation (EOT)was designed to dealwith the stochastic
gradient by calculating the expectation of gradients of ran-
dom functions. These two attacks have successfully defeated
the previous defenses [12], and even new defenses published
after their disclosure was still proven to be vulnerable to
BPDA, EOT, or their combination [14].

The question we want to address is: is it possible to continue
the arms race by mitigating the aforementioned advanced attacks
with more robust defense solutions? This is a challenging task.
First, these attacks assume very high adversarial capabili-
ties [14]: the attacker knows every detail of the DLmodel and
the potential defenses. This significantly increases the diffi-
culty of defense designs and invalidates existing solutions
that require hiding the model details or defense mechanisms.
Second, BPDA and EOT target the root causes of gradient
obfuscation: the non-differentiable operation can always be
approximated, and the random operation can be estimated by
its expectation. It is indeed difficult for the defender to bypass
these assumptionswhile still preservingmodel usability.

One possible defense strategy is adversarial training [4]:
we can keep generating adversarial examples from the train-
ing-in-progress model using the Projected Gradient Descent
(PGD) attack technique, and augmenting them into the
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training set to improve the model’s robustness. This strategy
is shown to be effective against different types of adversarial
attacks including BPDAand EOT.However, it can bring a sig-
nificant cost to perform adversarial training with large-scale
DNN models and datasets. So we are more interested in an
efficient method, which can be directly applied to a given
model without altering it. [15] proposed a preprocessing-
based solution: they tested 25 existing preprocessing func-
tions and placed them into 10 groups. For each inference, an
ensemble of 5�10 functions is randomly selected to transform
the input before feeding it to the target model. This strategy
canmitigate amore sophisticated BPDA,where the adversary
attempts to use a neural network to approximate the non-dif-
ferentiable operations.

In this paper, we also focus on the preprocessing-based
defense to enhance themodel’s robustness against all existing
adversarial attacks. Different from [15], we aim to utilize a sin-
gle lightweight transformation function to preprocess the
input images. This is expected to significantly reduce the com-
putation cost and logic complexity for model inference, which
is critical when the task is deployed in resource-constrained
edge and IoT devices. To achieve this goal, we make the fol-
lowing contributions.

First, we analyze the features and assumptions of different
attacks and identify three properties for designing a qualified
preprocessing function gð�Þ. The first one is usability-preserv-
ing, which is to guarantee gð�Þwill not affect the model perfor-
mance on clean samples. The next two properties are non-
differentiability and non-approximation, to enhance the model
robustness against both standard and advanced gradient-
based attacks.

Second, we introduce a novel preprocessing function that
can meet the above properties. Our function consists of two
steps: (1) a DCT-based quantization is used to compress the
input images, which can achieve non-differentiability; (2) a
dropping-pixel strategy is further introduced to distort the
image via random pixel dropping and displacement. This
step can increase the difficulty and fidelity of approximation.
Both steps are usability-preserving, thus their integration will
cause a negligible impact on the model performance.

We conduct extensive experiments to show the effective-
ness of our solutions. It can constrain the attack success rate
under 7 percent even with 10,000 rounds of BPDA+EOT
attack (dozens of GPU hours for 100 samples), which signifi-
cantly outperform 11 state-of-the-art gradient obfuscation
defenses published recently in top-tier conferences. To better

promote this research direction, we release a toolkit online,1

including the implementation of our defense techniques, a
summary of other defense methods as well as various adver-
sarial attacks.

The roadmap of this paper is given as follows. In Sec-
tion 2, the research background including the basic attack
concept and development history is given. In Section 3, we
define the threat model and defense requirements. In Sec-
tion 4, the methodology insights are illustrated with three
specific properties. In Section 5, the practical defense solu-
tion is presented. In Section 6, the extensive evaluation is
listed to show the effectiveness of our method. In Section 8,
we conclude our work.

2 BACKGROUNDS

2.1 Attack Concept and Scenarios

An adversary can add human-unnoticeable perturbations on
the original input to fool a DNN classifier. Formally, the target
DNN model is a mapping function fð�Þ. Given a clean input
sample x, the correspondingAE is denoted as ex ¼ xþ dwhere
d is the adversarial perturbation. Then AE generation can be
formulated as the optimization problem in Equation (1a) (tar-
geted attack where l0 6¼ fðxÞ is the desired label set by the
attacker) or Equation (1b) (untargeted attack).

minkdk; s:t:fðexÞ ¼ l0 (1a)

minkdk; s:t:fðexÞ 6¼ fðxÞ: (1b)

Generally, there are two attack scenarios [16], deter-
mined by the adversary’s knowledge about the target sys-
tem. (1)White-box scenario: the adversary knows every detail
about the neural network model including the architecture
and all the parameters. He is also aware of the defense
mechanism and the corresponding parameters. (2) Black-box
scenario: the adversary does not have any knowledge about
the victim system. In addition to these two scenarios, there
are also some works [7] assuming the adversary knows all
details about the model but not the defense mechanism. It is
not quite realistic and reasonable to hold the defense secret,
as “this widely held principle is known in the field of secu-
rity as Kerckhoffs’ principle.” [16]. So we exclude this sce-
nario in this paper.

2.2 Development History

Round 1: Attack.As the first study, Szefedt et al. [2] adopted
the L-BFGS algorithm to solve the optimization problem of
AE generation. Shortly after this work, a couple of gradient-
based methods were introduced to enhance the attack tech-
niques: the gradient descent evasion attack [17] calculated
the gradients of neural networks to generate AEs; Fast Gra-
dient Sign Method (FGSM) [3] calculated the adversarial per-
turbation based on the sign of gradients, which was further
improved by its iterative versions (I-FGSM [4] and MI-
FGSM [18]). Deepfool [19] is another iterative method that
outperforms previous attacks by searching for the optimal
perturbation across the decision boundary. Meanwhile,

Fig. 1. The number of research papers published on Arxiv.org about
adversarial examples. Data source: [11].

1. https://github.com/YiZeng623/Advanced-Gradient-Obfuscating
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some other techniques were proposed to increase the attack
efficiency: Jacobian-based Saliency Map Attack (JSMA) [20]
estimated the saliency map of pixels w.r.t the classification
output, and only modified the most salient pixels. One pixel
attack [21] is an extreme-case attack where only one pixel
can be modified to fool the classifier.

Round 2: Defense. With the advance of adversarial attacks,
defense solutions were proposed to increase the robustness of
DNNmodels. They can be classified into three categories. The
first direction is adversarial training [4], [22], [23], where AEs
are usedwith normal examples together to trainDNNmodels
to recognize and correct malicious samples. The second
direction is to train other models to assist the target one. Mag-
net [24] used detector networks to identify AEs by approxi-
mating the manifold of normal examples. Generative
Adversarial Trainer [25] utilized training target networks
along with a generative network to generate adversarial per-
turbation for the target model to distinguish. The third direc-
tion is to design AE-aware network architecture or loss
function. DeepContractiveNetworks [26] added a contractive
penalty to alleviate the effects of AEs. Input Gradient Regular-
ization [27] countered AEs by penalizing the degree of varia-
tions of input perturbations on the output. Defensive
distillation [28] generated soft training labels from one net-
work and retrained a second networkwith higher robustness.
Thismethod claimed to have very high resistance against AEs
andwas one of the strongest defenses at that time.

Round 3: Attack. A more powerful attack, C&W [5], was
proposed by updating the objective function to minimize lp
distance between AEs and normal examples. C&W can effec-
tively defeat Defensive Distillation [5] and other defenses
with assistedmodels [29] with high attack success rates.

Round 4: Defense. Since then, new defense strategies were
introduced to increase the difficulty of AE generations by
obfuscating the gradients. Five input transformations were
tested to counter AEs in [6], including image cropping and
rescaling, bit-depth reduction, JPEG compression, total vari-
ance minimization (TV), and image quilting. Prakash et al.
[7] designed Pixel Deflection (PD), which randomly redistrib-
utes a small number of pixels as artificial perturbation and
applies wavelet-based denoising to remove both artificial
and adversarial perturbation. Xie et al. [8] proposed to use a
randomization layer to randomly rescale the input image
with zero-paddings. Buckman et al. [9] introduced Ther-
mometer encoding, which encodes input images with dis-
crete values to prevent the direct calculation of gradient
descent during AE generation. Das et al. [30] proposed
SHIELD that compresses different regions of an image with
random compression levels to mitigate AE perturbations.
Those solutions are effective against all prior attacks.

Round 5: Attack. To particularly target the gradient obfusca-
tion-based defenses, two more advanced attacks were
introduced. BPDA [12] copes with the non-differentiable
obfuscation operation by approximating the gradients during
back-propagation. EOT [31] deals with the randomization
obfuscation operation by averaging the gradients of multiple
sessions. More detailed descriptions about BPDA and EOT
can be found in Section 4. After the disclosure of these two
attacks, a large number of defenseworks have been published.
Unfortunately, most of them did not consider or incorrectly
evaluate these two attacks, and some representative solutions

have been analyzed and proved to be incapable of defeating
BPDA and EOT attacks [14]. Up to now, there are still no effec-
tive preprocessing-based defenses. This is what we aim to
address in this paper.

3 THREAT MODEL AND DEFENSE REQUIREMENTS

It is necessary to specify the adversarial capabilities and
defense requirements in our consideration as follows.

3.1 Threat Model

Adversarial Goals. There are two main types of adversarial
attacks: untargeted attacks that try to mislead the DNN
models to an arbitrary label different from the correct one,
and targeted attacks which succeed only when the DNN
model predicts the input as one specific label set by the
adversary [5]. In this paper, we focus on evaluating the tar-
geted attacks. The untargeted attacks can be mitigated in a
similar way.

Adversary’s Knowledge. We consider a white-box scenario,
where the adversary has full knowledge of the DNN model,
including the network architecture, exact values of parame-
ters, and hyper-parameters. We further assume that the
adversary has full knowledge of the proposed defense,
including the algorithms and parameters. For the defenses
employing randomization techniques, we assume the ran-
dom numbers generated in real-time are perfect with a large
entropy such that the adversary cannot obtain or guess the
correct values.

It is worth noting that this white-box scenario represents
the strongest adversaries. Under such a scenario, a big num-
ber of existing state-of-the-art defenses are invalidated as
shown in [14]. This also significantly increases the difficulty
of defense designs.

Adversarial Capabilities. The adversary is outside of the
DNN classification system, and he is not able to compromise
the inference computation or the DNN model parameters
(e.g., via fault injection to cause bit-flips [32] or backdoor
attacks [33]). All he can do is to manipulate the input data
with imperceptible perturbations. In the context of computer
vision tasks, he can directly modify the input image pixel val-
ues within a certain range.We use l1 and l2 distortionmetrics
to measure the scale of added perturbations: we only allow
the generated AEs to have either a maximum l1 distance of
8/255 or amaximum l2 distance of 0.05 [12].

3.2 Defense Requirements

Based on the above threat model, we list a couple of require-
ments for a good defense solution:

First, there should be no modifications to the original
DNN model, e.g., retraining a model with different struc-
tures [28] or datasets [34]. We set this requirement for two
reasons. (1) Model retraining can significantly increase the
computation cost, especially for large-scale DNN models
(e.g., ImageNet scale [35]). (2) Those defense methods lack
generality to cover various types of attacks. They “explicitly
set out to be robust against one specific threat model” [16].

Second, we consider adding a preprocessing function
over the input samples before feeding them into the DNN
models. Such preprocessing operation can either remove
the effects of adversarial perturbations on the inference or
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make it infeasible for the adversary to generate AEs adap-
tively, even he knows every detail of the operation. This
function should be general-purpose and applicable to vari-
ous types of data and DNNmodels of similar tasks.

Third, this preprocessing function should be lightweight
with negligible computation cost to the inference pipeline.
Besides, it should also preserve the usability of the original
model without decreasing its prediction accuracy. Input
preprocessing can introduce a trade-off between security
and usability: the side effect of correcting the adversarial
examples can also alter the prediction results of clean sam-
ples. A qualified operation should balance this trade-off
with maximum impact on the adversarial samples and min-
imal impact on the clean ones.

4 METHODOLOGY INSIGHTS

We aim to design a preprocessing function gð�Þ, which trans-
forms an input image x 2 X to an output with the same
dimension. Then given a DNN model fð�Þ, the inference
process becomes y ¼ fðgðxÞÞ. This function gð�Þ needs to
mitigate the adversarial attacks within the threat model and
satisfy the defense requirements, as described in the previ-
ous section. We identify some properties and design philos-
ophy of a good methodology in this section and give a
specific algorithm in the next section.

4.1 Methodology Presentation

This preprocessing function must preserve the usability of
the target model, i.e., exerting minimal influence on the
accuracy of clean samples. This gives the first property:

Property 1. (Usability-preserving) gð�Þ cannot affect the predic-
tion results of clean input: fðgðxÞÞ � fðxÞ, 8x 2 X .

Second, as most of the attacks generate adversarial exam-
ples by calculating the gradients of the model parameters.
When a preprocessing function is introduced, this calcula-
tion becomes: 5xfðgðxÞÞ ¼ 5xfðxÞ 5x gðxÞ. So a common
approach is shattered gradient-based defense, where the
preprocessing operation gð�Þ is designed to be non-differen-
tiable. With this property, the adversary is not able to craft
AEs based on the gradient of the model using standard
methods (e.g., FGSM, C&W, Deepfool, etc.).

Property 2. (Non-differentiability) gð�Þ is non-differentiable, i.e.,
it is hard to compute an analytical solution for5xgðxÞ.
It is interesting to note that this property can defeat the

advanced EOT attack [12] as well. This attack was proposed
to invalidate the defense solutions based on model input
randomization, by statistically computing the gradients
over the expected transformation of the input x. Formally,
for a preprocessing function gð�Þ that randomly transforms
x from a distribution of transformations T , EOT optimizes
the expectation over the transformation with respect to the
input by: 5xEt�T fðgðxÞÞ ¼ Et�T 5x fðgðxÞÞ. EOT can help
to get a proper expectation with samples at each gradient
descent step. However, if gð�Þ is non-differentiable, the
adversary cannot calculate the gradient expectation to gen-
erate AEs either.

A function gð�Þ with the non-differentiability property
can still be vulnerable to sophisticated attacks, e.g.,

BPDA [12], where the adversary can approximate gð�Þ with
a differentiable function g0ðxÞ. For instance, in the experi-
mentation of the initial BPDA attack [12], the adversary
used g0ðxÞ ¼ x as an approximation to calculate the gradient
of gðxÞ. He keeps gð�Þ on the forward pass and replaces it
with x on the backward pass. The derivative of the gð�Þ will
be approximated as the derivative of the identity function,
which is 1. In [15], neural nets were further trained to
approximate non-differentiable functions, which can defeat
a wider range of shattered gradient-based defenses than the
identity function. To mitigate such threats, the preprcessing
function must meet the following property:

Property 3. (Non-approximation) It is difficult to find a differen-
tiable g0ðxÞ that can approximate the non-differentiable prepro-
cessing function gðxÞ when calculating its gradients, i.e.,
5xg

0ðxÞ � 5xgðxÞ.
A common strategy to reduce the possibility and fidelity

of approximating a non-differentiable function is to add
randomization in the operation. If the degree of randomiza-
tion is large enough, then it will be difficult for the adver-
sary to find a qualified deterministic differentiable function
for replacement, even using neural networks. However, a
high random transformation can also affect the model’s
usability (Property 1). So the key to the design of this func-
tion gð�Þ is to balance the trade-off between Properties 1 and
3 with a random non-differentiable operation. Past work
[15] adopted an ensemble of dozens of weak preprocessing
functions to defend against BPDA, making the entire infer-
ence system quite complex. In this paper, we aim to simplify
this by designing one single function to achieve the same
goal.

4.2 Methodology Summary

A preprocessing function gð�Þ that can meet the above three
properties can effectively increase the DNN model’s robust-
ness against existing adversarial attacks. Specifically, for
standard gradient-based attacks (FGSM, C&W, LBFGS,
Deepfool), non-differentiability in Property 2 can prohibit
the direct calculation of gradients, and the randomization
employed in Property 3 can obfuscate the gradient values.
A function with these two properties can provide higher
robustness against these standard attacks.

For those advanced attacks, the gradient expectation
attack (EOT) can be mitigated by Property 2. If a qualified
function with Property 3 is identified, the adversary may
have difficulty in discovering a replacement that can accu-
rately approximate this function. Then gradient approxima-
tion attack (BPDA) becomes infeasible or at least requires a
much higher cost. The combination of these two attacks can-
not compromise the model’s robustness either.

5 OUR PROPOSED SOLUTION

5.1 Overview

Our proposed function gð�Þ involves two critical steps to
process the input images. The first step (Step 1 in Algo-
rithm 1) adopts a DCT-based defensive quantization. Based
on [36], we further improve the quantization table to better
adapt to the machine’s visionary behavior. This can realize
the non-differentiability property while preserving the
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model’s usability. The second step (Step 2 in Algorithm 1) is
inspired by a dropping-pixel strategy [6], [8]. We propose a
novel technique to distort images by dropping randomly
selected pixels of input images and displacing each pixel
away from the original coordinates. Our proposed tech-
nique can generate highly randomized preprocessed images
while keeping a high accuracy for DNN inference.

Algorithm 1. Defense Preprocessing Function

Input: original image I 2 Rh�w

Output: processed image I 0 2 Rh�w

Parameters: defensive quantization table Q, distortion limit
d 2 ½0; 1�, size of grid d.

1: x0 ¼ 0, y0 ¼ 0;
2: nw ¼ w=d, nh ¼ h=d;
3: GI ¼ fðxm; ynÞjðm;nÞ 2 fð0; . . . ; nwÞ � ð0; . . . ; nhÞgg;

/* Step 1: DTC-based Quantization */
4: Set defensive quantization table Q.
5: for ðxm; ynÞ in GIfðx0; y0Þg do
6: dct ¼ DCT ðIðxm�1 : xm; yn�1 : ynÞÞ;
7: dctq ¼ Quantizationðdct; QÞ;
8: dctd ¼ Dequantizationðdctq; QÞ;
9: Iqðxm�1 : xm; yn�1 : ynÞ ¼ IDCT ðdctdÞ;
10: end

/* Step 2: Image Distortion */
11: Set random distortion limit d 2 ½0; 1�.
12: Set random size of grid d.
13: I 0 = ImageDistortion(I, d, d);
14: return I 0;

5.2 Step 1: DCT-Based Quantization

The first step is described in Lines 4-9 in Algorithm 1. The
input image is cut into grids of pixels with the size of the
grid d. Pixels in each grid are transformed into the fre-
quency space via Discrete Cosine Transform (DCT) [37] as
shown. Here we use a 2D-DCT with a grid size of 8� 8. A
defensive quantization table Q is then used to quantize all
the frequency coefficients. These DCT coefficients are fur-
ther de-quantized and transformed back into the spatial
space with an inverse DCT.

The critical factor in this step is the quantization table Q.
[38] directly used the JPEG quantization table Q50 to
remove the adversarial perturbations. This was proved
ineffective as the JPEG quantization table was designed to
compress the image based on the sensitivity of the human
visual system. Later on, more effective approaches were
proposed to mitigate certain adversarial attacks with ran-
domized quantization tables [30] or a dedicated quantiza-
tion table [36]. Such quantization techniques are proved to
have better defense performance on AEs than directly
deploying the JPEG quantization table Q50. For an attacker,
to defeat quantization-based defense, the adversarial per-
turbation on pixel values must be large enough to influence
the quantization results. Therefore, the motivation of
deploying quantization is to use such a non-differentiable
function to increase the difficulty for generating AEs within
a l2 bound.

In our solution, we introduce a novel and more effective
way to generate the quantization table, as shown in

Algorithm 2. We generate our new quantization table Q in a
statistical learning manner by summarizing the patterns of
the AEs. Here we use the C&W attack method to generate
the corresponding AE set (using different AE generation
methods will lead to similar results). In the algorithm, first,
all the 8� 8 blocks in the spatial domain (I in Line 8) are col-
lected from all the images’ color channels for both the clean
image set and the AE set ( _I in Line 9). By conducting DCT
on all the 8� 8 small blocks, we compare the difference of
DCT frequency coefficients (Line 10) to statistically under-
stand the difference brought by such AE attacks. This differ-
ence is presented as the coordinates of the particular
frequency coefficients which have the most significant
changes. We design our quantization table Q by such a sta-
tistical calculation.

Algorithm 2. Generating Quantization Table Q

Input: clean set In 2 Rn�h�w�3, adversarial set _In 2
Rn�h�w�3,
Output: defensive quantization table Q

1: Q0 ¼ O8�8; /* Generating a zero matrix of size 8� 8. */
2: for Ii in In do
3: for Ii;channel in Ii do
4: x0 ¼ 0, y0 ¼ 0;
5: nw ¼ w=8, nh ¼ h=8;
6: GI i ¼ fðxm; ynÞjðm;nÞ 2 fð0; . . . ; nwÞ � ð0; . . . ; nhÞgg;
7: for ðxm; ynÞ in GI ifðx0; y0Þg do
8: dctI ¼ DCT ðIi;channelðxm�1 : xm; yn�1 : ynÞÞ;
9: dctAdv ¼ DCT ð _Ii;channelðxm�1 : xm; yn�1 : ynÞÞ;
10: difmat ¼ dctI � dctAdvj j; xQ; yQ ¼ argmaxðdifmatÞ;
11: Q0ðxQ; yQÞþ ¼ 1;
12: end
13: end
14: end
15: Q ¼ ðQ0=maxðQ0ÞÞ � 80þ 20;
16: return Q;

The statistical results of the spatial domain of the AEs
with our DCT-based quantization are given in Fig. 2a. We
can observe that the DC coefficients on the up-left corner
are always significantly changed, and low frequencies are
relatively changed more than high frequencies. The quanti-
zation table is then designed according to such statistics
with the principle that the frequencies that are changed
more often with larger values are sensitive to DNN models.
We normalize all the values within (0,1) and remap each
value to the range of (20,100) (Line 15). The final Q table is
shown in Fig. 2b.

5.3 Step 2: Image Distortion

The second step of the proposed defense is a novel transfor-
mation procedure by improving the image distortion
method as the preprocessing function. It can provide a great
random variance between the original and transformed
samples without affecting the model performance.

We improved the dropping-pixels strategy [6], [8]. The
general idea is to drop certain randomly selected pixels
from the original image, and displace each pixel away from
the original coordinates. The whole procedure of the second
step consists of four stages, as illustrated in Fig. 3 in the
paper and Algorithm 3.
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Algorithm 3. Image Distortion

Input: original image I 2 Rh�w

Output: distorted image I 0 2 Rh�w

Parameters: distortion limit d 2 ½0; 1�; size of grid d.
/* 1.Select a starting point, e.g., upper-left corner */

1: x0 ¼ 0, y0 ¼ 0;
/* 2.Random distortion over grids */

2: nw ¼ w==d, nh ¼ h==d;
3: GI ¼ fðxm; ynÞjðm;nÞ 2 fð0; . . . ; nwÞ � ð0; . . . ; nhÞgg;
4: for ðxm; ynÞ in GIfðx0; y0Þg do
5: dx � Uð�d; dÞ;
6: dy � Uð�d; dÞ;
7: xm ¼ xm�1 þ d� ð1þ dxÞ;
8: yn ¼ yn�1 þ d� ð1þ dyÞ;
9: end

/* 3.Remapping grids in I to I0 */
10: GI0 ¼ fðx0m; y0nÞjx0m ¼ d�m; y0n ¼ d� n; ðm;nÞ 2 fð0; . . . ; nwÞ � ð0;

. . . ; nhÞgg;
11: for ðx0

m; y
0
nÞ in GI0 fðx0

0; y
0
0Þg do

12: I 0ðx0m�1 : x
0
m; y

0
n�1 : y

0
nÞ ¼ RemappingðIðxm�1 : xm; yn�1 : ynÞÞ;

13: end
/* 4.Reshape I 0 to the size of I */

14: I 0 ¼ reshapeðI 0Þ s.t. I 0 2 Rh�w;
15: return I 0;

Lines 11-13 in Algorithm 1 illustrate the second step of
our proposed image distortion method (in Algorithm 3).
This image distortion method consists of four steps as fol-
lows. (1) One of the four corners is randomly selected as a
starting point, e.g., the upper-left corner (line 1). (2) The
original image is a randomly distorted grid by grid. For
one grid, it will be either stretched or compressed based
on a distortion level sampled from a uniform distribution
Uð�d; dÞ (line 5-8). (3) Distorted grids are then remapped
to construct a new image (line 10-13). This step will drop
pixels: the compressed grids will drop rows or columns
of data; the stretched grids will cause the new image to
exceed the original boundary such that the pixels mapped
outside of the original boundary will be dropped (e.g., in
Fig. 1, the grid at the lower-right corner in stage 2 is
dropped in stage 3). (4) Reshape the distorted image to
the size of the original image by cropping or padding
(line 14).

For the proposed defense, the distortion limit d has an
influence on the distortion level of each grid. It also affects
the ratio of pixels that will be dropped. We apply a linear
search of d from 0.01 to 0.30, as shown in Table 4. The ASR
becomes 0 percent under our defenses, which shows that

the adversarial perturbation is delicate to this kind of distor-
tion. A larger d decreases the ACC on clean examples.

This step can drop a certain ratio of pixels and change a
huge number of pixel coordinates. In our experiments, the
distortion limit d is set as 0.15. In the ImageNet dataset, each
image will have around 20-30 percent pixels randomly
dropped and more than 90 percent pixel coordinates
changed each time after such preprocessing operation. This
can guarantee high randomness and improve the difficulty
of approximation with differentiable functions, while the
model can still give correct predictions.

5.4 Security Analysis

Our preprocessing function can satisfy the three require-
ments, with the following quantitative justification.

For usability-preserving, we measure the prediction
accuracy of clean samples for fðgðxÞÞ. Table 1 compares our
solution with prior methods. We can observe all the meth-
ods can maintain very high model accuracy (ACC). For
Property 2, our solution introduces defensive quantization,
which is non-differentiable.

For Property 3, we measure the uncertainty of the pre-
processed output to reflect the difficulty of approximation.
Specifically, given one image, we use gð�Þ to preprocess it
100 times, and randomly select 2 outputs. We use l2 norm
and Structural Similarity (SSIM) score [40] to measure the

Fig. 2. Frequency space statistical results of AEs (a) and the defensive
quantization table (b).

Fig. 3. Processing stages in the image distortion step.

TABLE 1
Quantitive Measurement of Variance of Output Images

Introduced by Various Kinds of Defenses

Defense l2 SSIM ACC (top-1)

Our method 0.22 0.30 0.95

Rand [8] 0.21 0.31 0.96

FD [36] 0.00 1.00 0.97

SHIELD [30] 0.03 0.88 0.94

TV [6] 0.02 0.97 0.95

BdR [39] 0.00 1.00 0.92

PD [7] 0.02 0.98 0.97

650 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 08,2024 at 09:58:30 UTC from IEEE Xplore.  Restrictions apply. 



variance between these two output images. Note that a
larger l2 norm or smaller SSIM score indicates a larger vari-
ance between the two images. When l2 norm is 0 or SSIM is
1, the output images are identical and the preprocessing
function is deterministic. For each preprocessing function,
we repeat the above process with 1,000 randomly selected
input images from the ImageNet dataset. The average SSIM
score and l2 norm are listed in Table 1. Our method can out-
perform other defenses with a larger l2 norm and smaller
SSIM. This indicates that our preprocessing function can
introduce the highest randomness to the output, as well as
the highest difficulty for the adversary to approximate it
with differentiable functions.

6 EVALUATION

6.1 Implementation

Configurations. We adopt Tensorflow as the DL framework
for implementation. The learning rate of BPDA is 0.1 and
the ensemble size2 of EOT is 30. All experiments were con-
ducted on a server equipped with 8 Intel I7-7700k CPUs
and 4 NVIDIA GeForce GTX 1080 Ti GPUs.

Target Model and Dataset. Our methods are general-pur-
pose and can be applied to various models as a preprocess-
ing step for computer vision tasks. Without the loss of
generality, we choose a pre-trained Inception V3 model [41]
over the ImageNet dataset as the target model of attacks
and defenses. This state-of-the-art model can reach 78.0 per-
cent top-1 and 93.9 percent top-5 accuracy. We randomly
select 100 images from the ImageNet Validation dataset for
AE generation. These 100 images can all be predicted cor-
rectly by this Inception V3 model.

Metrics. The pixel values are normalized to ½0; 1�. We use
the l2 norm to measure the number of perturbations gener-
ated by each attack, which is calculated by computing the
total root-mean-square distortion normalized by the num-
ber of pixels (299� 299� 3). We only accept adversarial
examples with a l2 norm smaller than 0.05. We consider the
targeted attacks where each target label different from the
correct one is randomly generated [12]. The BPDA and EOT
attacks are iterative processes: we stop the attack when an
example is generated which is predicted as its correspond-
ing target label and the l2 norm is smaller than 0.05. For
each attack round, we measure the prediction accuracy of
the generated AEs (ACC) and the attack success rate (ASR)
of the targeted attack. Note in this section, the ACCs are all
top-1 accuracy. A higher accuracy or lower attack success
rate indicates the defense is more resilient against the
attacks.

6.2 Mitigating BPDA Attack

We first evaluate our method against BPDA. The BPDA
attack evaluated in this subsection is experimented with the
same as in [12]. As mentioned in Section 4, the core idea of
BPDA is to approximate the obfuscated gradients of the pre-
processing function g. The practical way to experiment such
approximation in [12] is to assume gðxÞ � x such that

5xg
0ðxÞ � 5xgðxÞ. Then, the PGD is used to calculate the

approximated gradients step by step. We understand there
are other possibilities (e.g., [15]) to make such approxima-
tion besides assuming gðxÞ � x. The defense evaluation for
such case is given in Section 6.4.

For comparison, we re-implemented 7 prior solutions
including FD [36], Rand [8], SHIELD [30], TV [6], JPEG [6],
BdR [39], and PD [7]. We select these methods because they
are all preprocessing-only defense which fits our defense
requirements. We give a broader comparison with the
defenses that need to alter the target model in Table 5 at the
end of this section. Figs. 4a and 4b give the ACC and ASR
versus the perturbation rounds.

After 50 attack rounds, the ACC of all the previous solu-
tions except FD drops below 5 percent, and the corre-
sponding ASR reaches higher than 90 percent. FD can keep
the ASR lower than 20 percent and the ACC around 40
percent, which is still not very effective in defending
against BPDA. However, our method is particularly effec-
tive against the BPDA attack. We can maintain an accept-
able ACC (around 70 percent for 50 attack rounds), and
restrict the ASR to almost 0. RAND can also defeat BPDA
with a slightly lower ACC than ours. However, it will be
broken by the EOT attack, as we will show later. These
results are consistent with the l2 norm and SSIM metrics in
Table 1: the randomization in those operations causes large
variances for one image each time during inference which
significantly increase the difficulty for attackers to generate
AEs.

We continue the attack until the images with pertur-
bations reach the l2 bound (0.05). For our method, the
adversary needs 231 rounds to reach this l2 bound with
ACC of 57 percent and ASR of 2 percent. Therefore, we
conclude that our solutions can effectively mitigate the
BPDA attack.

Fig. 4. Defense results on BPDA: ACC (a) and ASR (b) and defense
results on BPDA+EOT: ACC (c) and ASR (d).

2. We tested different ensemble sizes for EOT ranging from 2 to 40.
The ensemble size has little influence on ASR or ACC. With a larger
ensemble size, it is possible to generate AEs with smaller l2.
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6.3 Mitigating BPDA+EOT Attack

Next, we consider a more powerful attack by combining
BPDA and EOT [14] which can defeat both shatter gradients
and stochastic gradients based defenses. Here we only con-
sider defense methods that can mitigate the BPDA attack.
This gives us two baselines: Rand and Random Crop3 [6].
Figs. 4c and 4d report ACC and ASR under BPDA+EOT
attack. We can observe both Rand and Random Crop fail to
mitigate this strong attack: ACC drops to below 20 percent
after 20 rounds, and ASR reaches 100 percent after 50
rounds. In contrast, our solution can still hold ACC of
around 60 percent and ASR of less than 10 percent after 50
attack rounds. These results confirm our claims and the
effectiveness of our method. We continue the attacks until
the images with adversarial perturbations reach the l2
bound (0.05) and our method can maintain the ACC to 58
percent and keep the ASR to 7 percent.

6.4 Mitigating Adaptive BPDA Attack

In previous implementation of BPDA attack, we use a naive
identity function (gðxÞ � x) to approximate the preprocess-
ing function following [12]. However, the adversary can
improve the attacks by approximating the transformation
with a neural network [15]. Thus, we adopt this adaptive
BPDA attack to evaluate our defense method. We use a 6-
layer DenseNet auto-encoder (same approximation attack
method as [15]) to evaluate our method.

The result is that the attacker cannot find a proper
approximation with such an attack. One example is shown
in Fig. 5: the approximated image (c) has a large variance
compared with the image preprocessed by our method (b)
with l2 norm as 0.22 and SSIM score as 0.35. Thus, such
approximation cannot give a useful gradient to generate a
successful AE.

We run the end-to-end attack with the trained neural net-
work on 100 images randomly selected from ImageNet and
the ASR is 0 under a maximum l2 norm of 0.05. The aver-
age quantitative variance between the approximated
image and the image processed by our method for the 100
images are: l2 norm is 0.16 and the SSIM score is 0.36.

6.5 Mitigating Standard Attacks

We also test our method against standard attacks (I-FGSM,
LBFGS, and C&W). An attack succeeds only if the predic-
tion of the model is the targeted class. We use Cleverhans

[42] to generate AE of all standard attacks. For FGSM and I-
FGSM, AEs are generated under two different l1 constraints
(� ¼ 0:01; 0:03). I-FGSM is iterated ten times. For LBFGS and
C&W, the optimization process is iterated until all targeted
AEs are found under l2 constraint. For LBFGS, the binary
search steps are set to 5, and the maximum number of itera-
tions is set to 1,000. For C&W, the binary search steps are
set to 5, the maximum number of iterations is set to 1000,
and the learning rate is 0.1. We evaluate themodel accuracy
(ACC)andattacksuccessrate(ASR),aswellasthe l1normand
l2norm,Table2(notethatFGSMisaone-stepattackanditisnot
really effective as a targeted attack). Its iterative version
I-FGSMwith� ¼ 0:03canreachASR95percent.Twooptimiza-
tion-based attacks, LBFGS and C&W, can even entirely break
thebaselinemodelwith100percentASR.

The defense results are shown in Table 3. All attacks are
conducted as targeted attacks. We randomly select labels
that are different from the original ones. Our solution has
little influence on the ACC of benign samples. The ASR of
those attacks can be kept as 0 percent and ACC can be main-
tained as around 90 percent.

For the distortion limit d, it has influence on the distortion
level of each grid. It also affects the ratio of pixels that will
be dropped. We apply a linear search of d from 0.01 to 0.30,
as shown in Table 4. The ASR becomes 0 percent under our
defenses, which shows that the adversarial perturbation is
delicate to this kind of distortion. A larger d decreases the
ACC on clean examples. Thus, a moderate d ¼ 0:15 is cho-
sen as the optimal value.

6.6 A Broader Comparison With More Defenses

We compare our solution with a broader set of defenses
against bounded attacks. These methods also adopt prepro-
cessing while some of them require model changes, e.g.,
model retraining (ME-Net) or adversarial training (Crop,

Fig. 5. (a) Original image I0. (b) Image produced by our method I1, (c)
Image produced by the approximated neural network I2. kI1 � I2k2 ¼
0:22, kI1 � I2kSSIM ¼ 0:35.

TABLE 2
Standard Attacks on Baseline Model

Attack l1 l2 Baseline

ACC ASR

Clean 0.000 0.0000 1.00 Nan
FGSM (� ¼ 0:01) 0.010 0.0099 0.36 0.00
FGSM (� ¼ 0:03) 0.030 0.0294 0.39 0.00
I-FGSM (� ¼ 0:01) 0.010 0.0040 0.13 0.79
I-FGSM (� ¼ 0:03) 0.030 0.0098 0.02 0.95
LBFGS 0.021 0.0013 0.00 1.00
C&W 0.156 0.0162 0.00 1.00

TABLE 3
Results of Our Defenses Against Standard Attacks

Attack l2 No Defense Our method

ACC ASR ACC ASR

No attack 0.0 100% Nan 95% Nan
I-FGSM 0.010 2% 95% 93% 0%
LBFGS 0.001 0% 100% 91% 0%
C&W 0.016 0% 100% 87% 0%
PGD-50 0.002 8% 86% 92% 0%
PGD-1000 0.003 0% 100% 92% 0%3. Random Crop are not considered in the previous subsection due

to its low model usability (30-40 percent ACC drop).
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JPEG, TV, Quilting, and ME-Net). These methods were
proved to be broken partially or entirely by BPDA or BPDA
+EOT in [16].

We summarize the analytic results, experimental data as
well as conclusions from literature in Table 5. The AE gener-
ation is either bounded by l1 (0.031) or l2 (0.05). Even com-
bined with adversarial training, most of them cannot
provide enough robustness. We can observe that our
method shows much better robustness against BPDA+EOT
(ACC is as high as 58 percent under the l2 bound). We also
reveal the satisfactory of the three properties (#1 to #3 in
Table 5) of those methods. All the defenses in Table 5 can
satisfy only part of the properties. Note that ME-Net meets
properties #2 and #3 but not #1, as it retrains the model with
preprocessed clean samples. We conclude that our three
properties are indeed an accurate indicator to reveal the dif-
ficulty of adversarial attacks.

7 DISCUSSION AND FUTURE WORK

In Section 4, we list three properties that instruct us to give
the practical defense solution. It is worth noting that some
other transformations can also be used as candidates to
build similar defense solutions. For instance, if we use FD
[36] to make the quantization step or use transformations
like Rand [8] to distort the image, the defense solution will
still be effective. This is because the FD [36] can also bring
defensive quantization and Rand [8] can introduce a large
variance as well (see Table 1).

Such a comparison is listed in Table 6. This evaluation
proves that our proposed solution has the best performance
on maintaining the ACC. Note that replacing our quantiza-
tion step by FD [36] will decrease the ACC from 0.72 to 0.64
and replacing our image distortion by Rand [8] will
decrease the ACC from 0.72 to 0.70. This proves our quanti-
zation step and image distortion step have better defense
performance than FD [36] and Rand [8], respectively. In
summary, the core idea of this paper is to give properties
that can help to build effective defense solutions to mitigate
advanced adversarial attacks. Therefore, we hope in future
work, better transformation functions can be discovered to
build stronger defense solutions.

The second perspective worth pointing out is that in this
paper we only consider the preprocessing-based defense.
Therefore, approaches like adversarial training may be
effective to mitigate the similar threats but are not within
our scope for evaluation and comparison.

TABLE 4
Impact of Distortion Limits on Defense Performance of the Proposed Defense

Attack d ¼ 0:01 d ¼ 0:05 d ¼ 0:10 d ¼ 0:15 d ¼ 0:20 d ¼ 0:25 d ¼ 0:30

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Clean 0.95 Nan 0.96 Nan 0.95 Nan 0.95 Nan 0.96 Nan 0.93 Nan 0.91 Nan
FGSM (� ¼ 0:01) 0.70 0.00 0.66 0.00 0.69 0.00 0.73 0.00 0.69 0.00 0.75 0.00 0.72 0.00
FGSM (� ¼ 0:03) 0.51 0.00 0.51 0.00 0.51 0.00 0.53 0.00 0.55 0.00 0.55 0.00 0.62 0.00
I-FGSM (� ¼ 0:01) 0.96 0.00 0.05 0.00 0.93 0.00 0.89 0.00 0.90 0.00 0.91 0.00 0.93 0.00
I-FGSM (� ¼ 0:03) 0.88 0.01 0.90 0.00 0.86 0.00 0.93 0.00 0.92 0.00 0.89 0.00 0.89 0.00
LBFGS 0.95 0.00 0.97 0.00 0.93 0.00 0.91 0.00 0.94 0.00 0.94 0.00 0.88 0.00
C&W 0.86 0.00 0.87 0.00 0.85 0.00 0.87 0.00 0.83 0.00 0.83 0.00 0.84 0.00

TABLE 5
Comparisons With a Broader Defenses on Bounded Attacks

Solutions Requirement Attack #1 #2 #3 l1 ¼ 0:031 l2 ¼ 0:05

Rand [8] ( EOT @ @ 0% -
PixelDefend [43] (,4 BPDA @ @ 9% -
Crop [6] (,4 BPDA+EOT @ - 0%
JPEG [6] (,4 BPDA @ @ - 0%
TV [6] (,4 BPDA+EOT @ @ - 0%
Quilting [6] (,4 BPDA+EOT @ @ - 0%
SHIELD [30] (,4 BPDA @ @ - 0%
PD [7] ( BPDA @ @ 0% -
Guided Denoiser [44] ( BPDA @ @ - 0%
ME-Net [45] tu,(,4 BPDA+EOT @ @ 13% -
FD [36] ( BPDA @ @ - 10%
Our method ( BPDA+EOT @ @ @ - 58%

(For defense requirements, tu: target model modification;(: input preprocessing; and4: adversarial training).

TABLE 6
Compare With Different Combinations After

50 Rounds of BPDA Attack

Defense ACC ASR

Our method 0.72 0.01

Our quantization + Rand [8] 0.70 0.01

FD [36] + Our image distortion 0.64 0.02

FD [36] + Rand [8] 0.63 0.03
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The other future direction is to enhance the attacks from
the adversarial perspective. Since more advanced attacks
based on BPDA were proposed in [15] and evaluated in Sec-
tion 6.4, we hope our methodology can also inspire the
invention of other advanced adversarial attacks in the
future. One of the potential attacks could be more adaptive
attacks by approximating the gradients by targeting par-
tially of the preprocessing function. Such an idea may help
to decrease the difficulty of the approximation-based adver-
sarial attacks. We believe such future research directions
can help to continue the arms race on the AE research.

8 CONCLUSION

We propose a novel and efficient preprocessing-based solu-
tion to mitigate advanced gradient-based adversarial attacks
(BPDA, EOT, their combination, and adaptive attacks). Specif-
ically, we first identify three properties to reveal possible
defense opportunities. Following these properties, we design
a preprocessing transformation function to enhance the
robustness of the target model. We comprehensively evaluate
our solution and compare it with 11 state-of-the-art prior
defenses. Empirical results indicate that our solution has the
best performance in mitigating all these advanced gradient-
based adversarial attacks.

We expect that our solution can heat the arms race of
adversarial attacks and defenses, and contribute to the
defender’s side. The proposed three properties can inspire
people to come up with better defenses. Meanwhile, we
expect to see more sophisticated attacks that can fully tackle
our defenses in the near future. All these efforts can advance
the study and understanding of AEs and DL robustness.
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