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Abstract—Graph Transformer is a new architecture that sur-
passes GNNs in graph learning. While there emerge inspiring
algorithm advancements, their practical adoption is still limited,
particularly on real-world graphs involving up to millions of
nodes. We observe existing graph transformers fail on large-scale
graphs mainly due to heavy computation, limited scalability and
inferior model quality.

Motivated by these observations, we propose TORCHGT,
the first efficient, scalable, and accurate graph transformer
training system. TORCHGT optimizes training at three different
levels. At algorithm level, by harnessing the graph sparsity,
TORCHGT introduces a Dual-interleaved Attention which is
computation-efficient and accuracy-maintained. At runtime level,
TORCHGT scales training across workers with a communication-
light Cluster-aware Graph Parallelism. At kernel level, an Elastic
Computation Reformation further optimizes the computation by
reducing memory access latency in a dynamic way. Extensive
experiments demonstrate that TORCHGT boosts training by up
to 62.7× and supports graph sequence lengths of up to 1M.

Index Terms—Graph Transformer, Distributed Training,
Sparse Attention, Graph Parallelism

I. INTRODUCTION

Graph-structured data has long been prevalent and indis-
pensable in many real-life applications such as social network
construction and molecule analysis. Thus, there emerges a
specific family of graph learning methods, namely graph
neural networks (GNNs) [1]–[3]. GNNs have gained giant
breakthroughs and exhibit impressive performance in many
tasks such as node classification [4]–[7] and link prediction
[3], mainly due to their message passing mechanism [8],
which models the inherent properties of graph structures.
However, this module in classic GNNs also leads to commonly
acknowledged over-smoothing [9], over-squashing [10], [11]
and limited expressivity [12] issues.

To address these deficiencies, a latest approach called graph
transformer shows more promising power in capturing the
inter-dependencies among nodes. Graph transformer is built
upon the classical Transformer [13] which allows nodes to
attend to all other nodes, and integrates multiple graph struc-
ture encodings to include important graph properties. Due to
the great modeling capability, graph transformer has garnered
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TABLE I: Graph transformers outperform classical GNNs on
graph-level and node-level (Flickr) tasks.

Model ZINC
Test MAE↓

PCQM4M-LSC
Validate MAE↓

Flickr
Test Acc.(%)↑

Traditional
GNNs

GAT 0.384 - 54.29
GCN 0.367 0.169 61.49

Graph
Transformers

GT 0.226 0.141 68.59
Graphormer 0.122 0.123 66.16

surging interest in recent years and a large number of models
have been proposed [14]–[17]. Existing graph transformers
mainly operate by treating graph nodes as input tokens and
constructing an input sequence consisting of all the graph
nodes. Besides, graph structure encoders are designed as a
graph adaptation of the original Transformer architecture. By
integrating structural information, graph transformers exhibit
competitive performance and outperform traditional message-
passing GNNs (e.g., GCN [1] and GAT [3]) on both node
classification [16]–[21] and graph classification [14], [15],
[22] tasks, as shown by Table I. We can obviously see graph
transformers obtain the highest scores than GNNs on all tasks.

Real-world graphs can easily involve millions of nodes
[23], [24], making the sequence length enormously large. For
example, in the current graph transformers’ operation way,
processing the citation graph dataset ogbn-papers100M from
Open Graph Benchmark [23] (including more than 100 mil-
lion nodes) requires high dimensional inputs with prohibited
sequences. Moreover, as illustrated by the profiled results
in §II-B, training graph transformers with long sequence is
crucial for model quality and the development of versatile
graph transformer application scenarios. However, we find
most existing graph transformer research works [14], [15],
[25], [26] are only limited to small graphs due to a lack of
compatible systems tailored for the graph transformer model
training with long sequences. More specifically, there are three
deficiencies in current works:

First, graph transformers with standard attention have
poor scalability to long sequences, due to the computation
and memory complexity of O(N2), quadratic on the number
of nodes (N ) in a graph [14], [15], [27]–[30]. Taking fully-
connected attention as graph foundation encoders captures the
implicit all-pair influence beyond neighboring nodes, but also
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limits existing graph transformers only on small-graph appli-
cations [14], [15], [27]–[30]. Figure 2 demonstrates that even
with a state-of-the-art attention library, i.e., FlashAttention
[31], the computation of the dense attention mechanism is still
a bottleneck during the graph transformer training.

Second, current algorithms either compromise model
quality or are only applicable to a single graph learning
task. To reduce computation pressure, some graph transform-
ers shorten the input sequences by harnessing neighbor sam-
pling [16], [32] similar adopted in classic GNNs [2], [33], [34].
Others like [25] attempt to overcome the quadratic complexity
by replacing full attention with approximate attention methods.
However, using sampling methods or simply adopting sparse
patterns like [35], [36] loses critical connectivity informa-
tion and thus sacrifices model precision. On the other hand,
some works [17], [20], [21] use self-defined adapted attention
modules to reduce memory consumption, but are limited to a
specific task, e.g., node classification. They are neither general
to versatile graph learning tasks nor portable to be scaled in
large-scale training.

Third, no existing works exploit systematic optimizations
to realize efficient and scalable training. Several graph
transformers [25], [26] apply graph structure to relieve the
computation burden. However, this sparse pattern is highly
irregular in memory access due to the skewed property
of graphs, which is challenging for optimizing the system
throughput. Moreover, with large datasets, the memory con-
sumption of model activations grows rapidly, necessitating a
scalable system design and memory optimization. But existing
works [14]–[16], [25], [26] only focus on the implementation
of graph transformers in a single GPU, thus limited to very
small graphs. Although there has been a breakthrough for
large language models (LLMs) by partitioning along the
input sequence dimension and training long sequences across
devices [37]–[40], those sequence parallelism ways cannot be
directly transplanted on graph transformers due to the extra
graph encodings and neglection of structure properties.

To bridge these gaps, we design TORCHGT, the first dis-
tributed training system that scales graph transformer model
to large graphs with billions of edges. Our system abides four
design goals: scalable, efficient, convergence-maintained, and
task-agnostic. Existing graph transformer works neither facil-
itate efficiency by well-designed parallelism from the system
perspective nor propose scalable algorithms for universal graph
learning tasks, thus making it challenging to meet those goals.
This hinders the practical development of advanced graph
transformer models on real-world graphs. The core design
of TORCHGT derives from the following three key insights.
First, the learning of graph transformers highly benefits from
graph structures. Specifically, the structure of many real-
world graphs is highly sparse [41]–[43], which reflects the
inherent vertex-vertex interactions. This sparsity could be a
guide for how graph transformers attend to nodes to reduce
computation costs while maintaining correct connections. In
addition, considering the structural property in the system de-
sign also contributes to optimal hardware throughput. Second,

the order of input graph tokens is alterable. Unlike inputs in
famous LLMs like GPT [44] whose token order is crucial for
model understanding and generation process [44], [45], graph
transformers focus more on connections between nodes. Thus,
we can modify the input arrangement to exploit graph prop-
erties (e.g., local clusters) for more specialized optimizations.
Third, the block-sparse format is a good match for irregular
graph clusters. Block-sparse formats store data contiguously
in memory, reducing storage overheads and memory access.
But directly exploiting it on dense attention matrices will
drop connectivity and result in substantial accuracy loss [46],
[47]. However, by integrating it into our specialized clustered
pattern, we find the computation can be further accelerated
while maintaining model accuracy.

As such, our key idea is to design an accuracy-maintained
and compute-efficient system from both algorithm and system
perspectives to support large-scale graph transformer training.
Specifically, TORCHGT consists of three key innovations.
Dual-interleaved Attention is a local-global interleaved atten-
tion that integrates graph structural topology into the attention
module and selectively combines the global information into
the attention with the graph structure search, which efficiently
speeds up the attention computation while maintaining the
models’ qualities. Cluster-aware Graph Parallelism splits
the input graph tokens according to the cluster nature of
graphs, thus boosting the attention computation throughput
and facilitating system scalability. It also allows us to take
advantage of the cluster feature in more fine-grained kernel
optimizations. Inspired by the block-sparse format, Elastic
Computation Reformation dynamically transfers the clus-
tered attention pattern into a specialized cluster-sparse format
to reduce the irregular memory access latency. It includes an
Auto Tuner to automatically control the transfer to maintain the
model convergence. Through extensive experiments, we show
TORCHGT successfully achieves scalable and efficient graph
transformer training on large graphs. It also boosts training
by up to 62.7× across various graph learning tasks while
maintaining accuracy.

In summary, we make the following contributions:
★ TORCHGT is the first graph transformer system that facili-

tates efficient, scalable, and accurate training on large-scale
graphs as well as universal graph learning tasks.

★ TORCHGT is the first to identify the major challenges
that hinder existing graph transformers from scaling to
large graphs and explore the graph-specific optimization
opportunities which are neglected previously.

★ We propose three key techniques to meet all design goals
from algorithm and system co-design perspectives.

★ Experiments show TORCHGT achieves up to 62.7×
speedup and near-linear scalability, supporting graph se-
quence lengths of up to millions.

II. BACKGROUND AND MOTIVATION

A. Graph Transformer

Graph transformer architecture has attracted surging atten-
tion in graph representation learning in recent years [48].
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Fig. 1: The test accuracy of graph transformers when trained
with different sequence lengths S.

Current representative graph transformers integrate graph
structural encodings into the input and attention map in
the Transformer architecture. The input sequence is built
by tokens generated with graph attributes. Specifically, some
works [14]–[16], [18], [49]–[51] calculate node positional
encodings beforehand and add them to the inputs before the
attention module. Other works [14], [15], [17], [32], [52] add
graph structural information into the self-attention matrix as
bias. Several works [19], [25], [26] combine message-passing
GNNs and the attention mechanism together. Here we only
focus on the former two types of graph transformers since
they are currently most representative.

A basic Transformer consists of multi-head attention (MHA)
and feed-forward network (FFN) which contains two linear
layers. Given an input sequence H = [h1, · · · , hS ]

⊤ ∈ RS×d

where S is the sequence length and d is the hidden dimension,
MHA first projects its input H to three subspaces: Q, K and
V with projection weight matrices WQ ∈ Rd×dK ,WK ∈
Rd×dK ,WV ∈ Rd×dV . The MHA output is calculated as:

H ′ = softmax
(
QK⊤
√
dK

)
V (1)

where dK is the second dimension of K. MHA captures the
pair-wise similarity of input tokens in the sequence.

For a graph G = (V,E) with nodes V = {v1, · · · , vN}
and edges E =

{
e1, · · · , e|E|

}
, here we list the formulation

of Graphormer [14] as an example:

h
(0)
i = xi + z−

deg−(vi)
+ z+

deg+(vi)
(2)

Aij =
(hiWQ) (hjWK)

⊤
√
dK

+ biasϕ(vi,vj) (3)

where h
(0)
i is the beginning attribute of node i, xi is the

node feature, and z−, z+ ∈ Rd are learnable embeddings
specified by the in-degree deg−(vi) and out-degree deg+(vi).
The encodings in Equation 2 allow the attention to capture
the node importance. Aij is the (i, j)-element of Query-Key
product matrix, namely the attention coefficient. biasϕ is a
learnable scalar shared across all layers, and ϕ (vi, vj) is the
distance of the shortest path (SPD) between node vi and vj ,
which is the shortest hops that vi needs to pass to reach vj .

B. Long Sequence for Graph Transformers

For better illustration, we categorize current graph learning
tasks into two types to discuss the need of training in long
sequences: (1) graph-level task, and (2) node-level task.
Long Sequence for Graph-level Tasks. For such tasks, the
input sequences represent a set of graphs while the output is
a set of labels representing the types of corresponding graphs.
When processed by graph transformers, all nodes in each input
graph need to be encoded as input tokens and are concatenated
into an input sequence. As such, the length of each sequence
equals the number of nodes in each graph. In this task, if
the graph size, i.e., the number of nodes, grows very large,
the input sequence can be too long to be trained by current
methods. For instance, the MalNet [53] dataset contains graphs
with up to 552K nodes.
Long Sequence for Node-level Tasks. These tasks classify
each node in an input graph with a specific label. In the node
classification task, the input sequences can either encode all
nodes in the graph or a mini-batch of nodes. For the former
case, the input sequence can be enormously long for large-
scale graphs, which is not supported by most models. For the
latter, with a larger batch size, both the training throughput and
the trained model quality can be improved. Both cases validate
the necessity and advantages of long sequence training.

However, existing graph transformers have some inherent
constraints in performing the above tasks. While graph-level
scenario has been explored in [14], [15], existing endeavors
do not generalize to large-scale graphs endemic to node-level
prediction. Our TORCHGT strives to include both tasks by
joint algorithm-system design. The scale of graphs applicable
to current models is still limited, thus leaving long sequence
training still an urgent necessity. Besides, training large-scale
graphs in short sequence suffers from lower training through-
put, downgraded model quality and limited graph transformer
applications. Figure 1 illustrates the impact of sequence length
on the test accuracy of two representative models Graphormer
[14] and NodeFormer [17] on two datasets. Both models show
superior performance on longer sequences. On the AMiner-CS
dataset, Graphormer with a 4K sequence length improves the
test accuracy by up to 0.9% compared to the short sequences.
On the Pokec dataset, sampling-based NodeFormer with 100K
sequence length outperforms the case with 10K sequence
length by a staggering 12% accuracy. These results necessitate
the need for long sequence training of graph transformers.

C. Issues and Opportunities

Most existing graph transformer works [14], [15], [19], [25],
[26], [32] are only limited on small graphs due to a lack of
compatible systems tailored for the graph transformer model
training with long sequences. They have three main issues
when applied to long sequence training.
I1: Attention Computation Bottleneck. Graph transform-
ers with standard (dense) attention treat the graph as fully-
connected with the MHA mechanism calculating attention for
all node pairs. Thus, it requires the computation complexity
of the attention module to be quadratic on the number of
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Fig. 2: Training iteration time breakdown when training
Graphormer on ogbn-products in different sequence lengths
on two types of GPUs: RTX 3090 and A100.

nodes (N2) in a graph, which limits the models’ scalability to
extremely long sequences. Currently, there is a breakthrough
in standard attention optimization, i.e., FlashAttention [31].
FlashAttention accelerates the attention module by fusing the
IO-bound GPU kernels like Softmax and Dropout within
the attention computation. However, even with FlashAttention
to train graph transformers with long sequences, e.g., sequence
length of 512K, we still identify that the attention module
dominates the overall training time.

To show this, we conduct an experiment to record the
iteration time breakdown when using FlashAttention, as il-
lustrated in Figure 2. Current FlashAttention does not support
the modified attention module like those augmented with bias
encodings [14], [15], [17], [32], so we disable the bias in this
experiment to only examine the computation efficiency. We
separate the computation time of FlashAttention from the com-
prehensive training iteration. We can obviously observe that no
matter on longer or shorter sequences, attention computation
still dominates over 80% of training time, indicating a severe
attention bottleneck. However, both the standard attention and
FlashAttention fail to leverage one important characteristic
of the graph, namely its topology structure, which we find
profoundly impacts the effectiveness of system optimizations.
I2: Degraded Model Convergence and Limited Tasks. Many
efforts [17], [25], [35], [54] have been made to overcome
the computation bottleneck of the attention module. Among
them, [54] prunes the attention module and leaves a major
backbone to reduce the computation cost for LLMs. Some
works [35], [36], [55], [56] propose sparse patterns on atten-
tion to scale linearly, but most of them are designed for natural
language processing (NLP). They cannot be simply grafted
to graph transformers since they fail to consider the inherent
graph structure information when approximating attention,
thus resulting in subpar model performance. Several graph
transformers [16], [32], [57] harness neighbor sampling or
graph pooling that only selects a subset of nodes to be trained
at each iteration, without reducing the computation complexity.
Nonetheless, all the above methods sacrifice model precision
by dropping the connectivity information.

In the graph domain, efficient attention is not well studied.
Few graph transformers like [26] apply the graph structure to
attend nodes and maintain graph-specific information. How-

TABLE II: Backward (BW) time of topology-pattern & dense
counterpart when training Graphormer on ogbn-products.

Seq. Length S=64K S=128K S=256K S=512K

Topology-pattern
BW. Time/ms 116.99 234.28 499.289 963.91

Dense BW. Time/ms 1.53 3.78 10.02 29.01

ever, they limit the implementation to the GNN-encoding-
based model architecture, e.g., GraphGPS [25], and highly rely
on the message-passing scheme for excellent model perfor-
mance. Other methods [17], [20], [21] use self-defined adapted
attention modules to achieve linear complexity. However, all
those works are constrained to a single application task, failing
to generalize to versatile graph tasks. Additionally, with GNN
structure encodings or self-defined attention, the model can
hardly be scaled to multiple workers.
I3: Lack of Specific System Optimizations. As far as we
know, currently there is no existing framework to optimize
graph transformer training from the system level. FFN opera-
tions in MHA are dense in computation and regular in memory
access. However, utilizing graphs on the attention module is
sparse in computation and requires irregular and fine-grained
memory access due to the skewed nature of graph structures,
which inevitably becomes the performance barrier.

Existing solutions [15], [25], [26] directly apply graph
topology in the attention computation while ignoring the
pattern differences between graph transformer and standard
Transformer-based models. To better illustrate, we experi-
mentally examine the impact of irregular memory access
by the topology-pattern attention in Table II. The topology-
induced memory access latency is tremendous, reaching up to
33.2× slowdown than dense computation. To increase models’
scalability, recent works [37]–[40] split the input sequences
and distribute the computation across devices. However, this
parallelism neglects various graph encoding modules and fails
to distinguish input tokens in graph domain from tokens
in NLP. Those differences invoke specialized and dedicated
system designs for graph transformers towards more efficient
memory optimizations and more aggressive parallelism.

III. TORCHGT DESIGN

We propose TORCHGT, an algorithm-system co-optimized
system tailored for graph transformer training on large-scale
graphs. It follows four design principles:
• Scalable. TORCHGT can scale graph transformer training

to extremely large graphs (solving I3).
• Efficient. TORCHGT reduces over 90% computation re-

quired by standard attention, overcoming the attention com-
putation bottleneck (solving I1).

• Convergence-maintained. TORCHGT maintains comparable
model convergence to the graph transformer with standard
attention, and successfully balances the trade-off between
training efficiency and model quality (solving I2).

• Task-agnostic. TORCHGT generalizes to various graph
transformer models and graph learning tasks (graph-level
and node-level) (solving I2).
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A. System Overview

Motivated by all the observations in §II-C, our key idea
is to co-design an accuracy-maintained and compute-efficient
attention module with a graph-parallelism-enabled system
framework to support long sequence training. As shown in
Figure 3, TORCHGT intelligently optimizes training across
three levels from the top to bottom hierarchy: algorithm,
runtime and kernel. We propose a topology-induced and
accurate attention algorithm in the algorithm level. We present
a novel cluster-aware graph parallelism to scale the training
in the runtime level. In the kernel level, we design a memory-
optimized computation pattern specialized for clustered atten-
tion. Specifically, TORCHGT consists of three key modules:
• Dual-interleaved Attention: In the algorithm level, it in-

tegrates locally graph-induced topology into the attention
computation pattern and periodically overlays it with the
fully-connected information, which efficiently reduces the
computation burden while maintaining the model’s quality
as much as possible. It is tailored for versatile graph
transformer models with local-global interleaved attention.

• Cluster-aware Graph Parallelism: From the distributed run-
time perspective, we design a cluster-aware graph paral-
lelism tailored for graph transformers. It splits the graph
tokens in sequences according to the clustering nature of
graphs, thus computing attention with locality and facilitat-
ing the system scalability.

• Elastic Computation Reformation: It reformats the graph-
induced pattern obtained at the runtime level into our
customized and fine-grained cluster-sparse pattern at the
underlying execution kernel level. It further improves the
attention computation throughput by greatly alleviating ir-
regular memory access. To balance the efficiency-quality
trade-off, we build an Auto Tuner to make an elastic transfer
of cluster sparsity.

B. Dual-interleaved Attention

Motivated by I1 in §II-C, TORCHGT explores the oppor-
tunity of integrating graph structure to reduce the substantial

computation cost. For optimizations aiming at graph trans-
formers, we design an interleaved attention to realize a local-
global interleaved attention and ensure model convergence.
Local Topology-induced Pattern. In NLP tasks, the tokens
in a sequence represent words, while in graph transformers
the tokens are nodes of the input graph. Besides, most graph
transformers like [14], [17] adopt the standard attention, which
can be viewed as a fully-connected graph since all tokens
attend to every other token to perform inner products, leading
to quadratic complexity. Motivated by the sparse attention
methods [35], [36], we find the local topology-induced pattern
that makes use of the underlying structure of the input graph
is desirable to guide the pair-wise node interactions. Graphs
innately own two desiderata for attention mechanism: (1)
small pair-wise node interactions (large sparsity), and (2) data
locality. In addition, most sparse patterns in NLP are only
approximations [36] to their dense counterparts under specific
contexts, while in our scenario the graph structure is real and
valid, without the need of approximations. Thus, we compute
attention by attending each node to its immediate neighbors
in the graph, reducing the interacted node pairs.

We formulate the local topology-induced pattern as below.
To train on a graph G = (V,E), we generate an input sequence
S ∈ RS×d comprised of graph tokens corresponding to a node
set Ṽ ∈ V . Ṽ can be equal to either the whole nodes V , e.g.,
in graph-level tasks, or a subset of V , e.g., in node-level tasks
if the node number is too large. For each node set Ṽ , we
construct a local attention graph G̃ = (Ṽ , Ẽ), where the edge
set Ẽ is also a subset of the original edge set E. If there
exists a global token in the model that attends to all nodes
in the graph and is attended to by all nodes, we augment
Ẽ with the global token’s edges. The general attention co-
efficient Ãij of graph transformers without graph encodings

is computed in: Ãij = softmax
(

(hiWQ̃)·(hjWK̃)⊤√
dK̃

)
. The

updated node attribute h′
i for each node i is computed as

the weighted sum of the features of its neighboring nodes
from Ṽ : h′

i =
∑

j∈N (i) Ãij(hjWṼ ), where N (i) denotes the
set of neighboring nodes of node i. Each neighbor’s feature
vector hj is weighted by the attention coefficient Ãij , and
these weighted features are summed to update the attribute of
node i. By using our local topology-induced pattern G̃, the
attention only computes coefficients of connected node pairs.
Interleave Fully-connected Pattern. Implementing the atten-
tion computation via the graph structure can greatly reduce
the computation cost. However, it sometimes slows the model
accuracy and convergence, which can be shown by experiment
results in Figure 10. The local graph-induced attention slightly
degrades the model convergence, which is mainly because
the topology-induced pattern restricts the attention mechanism
from extracting the high-order neighboring information. Intu-
itively, larger sparsity induces more absence in the attention
computation, and increases the model error. Building on this,
we empirically interleave a fully-connected attention on the
local graph-induced attention.

To fill the performance gap between sparse attention and its



dense counterpart, we need to figure out when to interleave
the dense pattern. Motivated by the sparse attention theories
in [58], we conclude three critical conditions under which we
use the topology-induced pattern on attention:
• C1: Every node in the sequence S always attends to itself.
• C2: There exists a Hamiltonian path that directly connects

all nodes Ṽ in the sequence.
• C3: All nodes in the sequence should be able to attend

to other nodes, either directly or indirectly after L graph
transformer attention layers.
The Hamiltonian path [59] or traceable path is a path in

a graph that visits each node exactly once. For each graph
G̃ corresponding to the input sequence, the Dual-interleaved
Attention module searches it across the above three conditions.
We use a heuristic approach Dirac’s theorem [60] to do
quick checks so the overhead is negligible in epoch time.
If it satisfies these conditions, we perform attention compu-
tation with the topology-induced sparse pattern. Otherwise,
TORCHGT heuristically determines the current sparse pattern
may introduce more errors and we utilize the fully-connected
attention mechanism in this case to ensure model quality.
Computation & Memory Complexity. The topology of many
real-world graphs can be immensely sparse. For instance, the
ogbn-arxiv graph has 169K nodes and 1.2M edges, resulting in
a sparsity of 4.1×10−5 (the proportion of nonzero elements in
the whole adjacency matrix). As a result, the local topology-
induced attention significantly reduces the computation and
memory-access complexity from O(N2) to O(Ẽ). Though we
interleave several fully-connected attention occasionally, the
overall computation efficiency is still improved significantly.
Model Convergence. Graph-centric attention [26] and classi-
cal GNNs [2], [3] prove that sparse attention can maintain the
model convergence comparable to its dense counterpart. [18],
[58] propose sparse attention can obtain similar universality
as dense attention under some assumptions. Borrowing it
to TORCHGT, our Dual-interleaved Attention can provide
universal approximation properties that every continuous func-
tion f can be approximated to any desired accuracy using
a suitable sparse pattern under the three conditions, thus
obtaining convergence similar to dense counterparts.

C. Cluster-aware Graph Parallelism

To better fit the topology-induced attention pattern and
increase the system scalability, we introduce a graph
transformer-specialized parallel training style: Cluster-aware
Graph Parallelism, which exploits the graph cluster character-
istics to guide the distributed training.
Utilization of Graph Cluster. Graph cluster (community)
[61], [62] is one essential characteristic of real-world graphs,
referring to a subset of nodes within a graph that exhibit a
higher degree of connectivity with each other compared to
nodes in other parts of the graph. Although the graph structure-
based attention in §III-B greatly reduces the computation, this
sparse and highly-skewed nature of graphs triggers substantial
irregular memory access since edge connections are distributed

in an uneven pattern, bringing extra overhead to training. Con-
sequently, employing the graph cluster structure on GPUs is
promising for graph transformer training improvement. There
exist some approaches in traditional graph learning [62], [63]
to utilize graph cluster, but they are aimed for CPU processing
with limited parallelization. [64] also exploits graph cluster but
focuses on redundant data loading in GNN computing.

Therefore, to explore the performance benefits of graph
cluster on graph attention computing, we incorporate a
lightweight node reordering to cluster nodes and improve the
spatial locality during attention computation, without chang-
ing the connectivity correctness. The key insight is that the
proximity of node IDs is more likely to be scheduled to
the adjacency of computing units on GPUs where they get
processed. In detail, we leverage METIS [65], a community-
based graph reordering technique for great cluster locality
and ease of integration with parallelism. Specifically, it uses
multilevel recursive bipartitioning to divide and coarsen the
graph while preserving the essential structure. We optimize
the implementation of METIS for a lower cost: we capture
the cluster information of graphs and map such locality from
the upper level to the underlying GPU kernels, which also
enables us to leverage the L1 & L2 cache for refined cluster
capturing (later discussed in §III-D).
Specialized Graph Parallelism. To increase the scalability of
graph transformers, intuitively TORCHGT employs parallelism
technologies to dispense the computation across devices.
There have been extensive studies in sequence parallelism
technologies [37]–[39] for LLMs to support efficient long
sequence training. However, current parallelism methods for
language models trigger two challenges when applied to graph
transformers: (1) failing to leverage graph properties; (2) not
supporting various graph encodings. In traditional language
models, the input sequence encodes the context of a specific
sentence. As such, training the language model requires tokens
in the input sequence concatenated in a pre-defined order. In
contrast, we observe that for graph learning tasks, there is
no need for graph transformers to predict sequences (graph-
level task) or tokens (node-level task) within a position-fixed
context, since they only rely on the graph topology to construct
the structural encodings. A motivating example of parallelizing
graphs with graph cluster is the graph-level task, where only
the global token is critical for inferring the graph type and
other node tokens can be arranged in any order.

Based on this insight, we are the first to design a Cluster-
aware Graph Parallelism specialized for graph transformers,
as shown in Figure 4. Specifically, the raw input sequences
S and graph encodings B are randomly partitioned across P
devices. Each local sub-sequence Ssub and sub-encodings are
projected to local matrices: Qsub,Ksub,Vsub,Bsub ∈ R S

P ×d,
assuming they have the same dimensionality. Then in each
graph transformer layer, all subspaces are combined together
into complete matrices Q,K,V , and B via the highly ef-
ficient all-to-all collective communication operation. All-to-
all operation owns an advantage over other communication
operations (e.g., all-gather and reduce-scatter) in terms of
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Fig. 4: Detailed training process on one worker with
TORCHGT, which includes three key components.

much smaller communication volume and overall better scala-
bility, which is also proved in [38]. All-to-all gathers matrices
in sequence dimension and splits in the head, resulting in
Q,K,V , and B ∈ RS× d

P . Now that since matrices are
complete in the sequence dimension, TORCHGT reorganizes
the layout according to the clustering nature of graphs dis-
cussed before. Then the Dual-interleaved Attention conducts
attention computation in the clustered layout, exemplified as
blue, orange and green rectangles in Figure 4. After attention
computation, another all-to-all transforms the output tensor
back to subspace S′

sub for subsequent operators such as FFN
and layer normalization in the graph transformer layer.
Communication Complexity. Thanks to all-to-all, Cluster-
aware Graph Parallelism has low communication volume and
scales exactly well with more servers. Given hidden size d,
sequence length S, and parallelism degree P , TORCHGT
performs all-to-all with a total message size 3Sd before
the attention computation, and another all-to-all for attention
output with size Sd. Therefore, TORCHGT performs two all-
to-alls with communication volume per GPU of 4Sd/P and
communication complexity of O(S/P ), while other operations
like all-gather have communication complexity of O(S). Thus,
TORCHGT has better scalability with increasing parallelism
degree on extremely long sequences.

In summary, compared with sequence parallelism methods
for LLMs, our Cluster-aware Graph Parallelism favors the
graph transformer architecture in several aspects. First, all-to-
all gathers in sequence dimension, leading to exactly integrated
graph topology, which the topology-induced sparse pattern in
§III-B can be perfectly applied to. Second, the graph encodings
B share the same sparse layout as attention mapping so the
parallelism of graph transformers only brings a trivial memory
footprint and communication overhead, thus facilitating model
scalability and ensuring memory efficiency.

D. Elastic Computation Reformation

Cluster Sparsity. The topology-induced attention pattern can
significantly reduce the computation cost, but also leading to
substantial irregular memory access due to the highly skewed
nature of graphs. Figure 5(b) gives an example with the cluster
dimensionality of 8 and sequence length of 64K. We observe
that only the diagonal clusters in the clustered adjacency

(a) Original Sparse Layout (b) Clustered Attn. Layout (c) Cluster-sparse Layout

Fig. 5: Three attention layouts after Dual-interleaved Atten-
tion, Cluster-aware Graph Parallelism and Elastic Computa-
tion Reformation respectively. (c) is obtained by compacting
elements to adjacent neighbors inside clusters.

matrix appear in dense patterns most and show lower sparsity,
which can benefit from locality since nodes in each cluster are
close to each other. On the other hand, other clusters appear
highly sparse patterns and more irregular shapes (denoted as
sparse cluster). Accessing the embeddings of computation
like aggregation in this pattern requires a large number of
atomic operations. Consequently, those remaining irregular
clusters still engender heavy overhead. To exemplify, training
Graphormer on ogbn-arxiv (S=64K) in Figure 5(b) takes 375
ms per epoch, while its dense counterpart only takes 81ms.

To further reduce the memory access latency, we propose
a memory-efficient Elastic Computation Reformation which
introduces the cluster sparsity. Motivated by the block-sparse
pattern in [36], [46], [47], we reformat the clustered layout
in Figure 5(b) to a fine-grained cluster-level fashion in Figure
5(c). Specifically, as shown in Figure 4, for each sparse cluster,
TORCHGT transfers the scattered edges inside it to multi-
ple substructures of compact and adjacent edge connections,
which is denoted as sub-blocks. The transferred dense cluster
can have multiple randomly scattered sub-blocks, the number
of which is decided by the number of real edges in the
cluster and the dimension of sub-block db. Note that there will
be totally k2 clusters for the whole layout with the cluster
dimensionality of k. Figure 5(c) depicts the cluster-sparse
layout with k=8, in which most sparse clusters are transferred
to dense ones with tight sub-blocks. This cluster sparsity
offsets the downside of irregular memory access incurred by
the topology-induced pattern.
Transfer Strategy. Applying static cluster-sparse transferring
will result in model quality degradation since the cluster
sparsity changes the original graph structure by modifying
edges. Some performance-related information (e.g., conver-
gence) for model training is only available at runtime. Without
considering the runtime information, the system will suffer
from an inferior model accuracy or inefficient memory access.

Thus, TORCHGT designs the following two strategies:

• Indolent Transferring. TORCHGT only transfers clusters
that are extremely sparse and irregular. Although such an
inactive way may miss some optimization opportunities, it
can refrain from model quality decline and be more portable.
Concretely, TORCHGT only transfers sparse clusters whose
sparsity value βC is smaller than that of the current whole
graph βG. Note that the sparsity value refers to the propor-
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Fig. 6: (a) Profiled hardware statistics of GPU when computing
in different sub-block size db. The ideal db considers both load
balance and cache hit rate. (b) Computation throughput of the
indexing kernel in different db normalized on that of db=2.

tion of nonzero elements in the whole adjacency matrix.
• Elastic Transferring. We dynamically adjust the amount of

transferred dense clusters along the training. First, we set a
threshold value βthre for controlling cluster-sparse transfer.
If the sparsity of a cluster βC is smaller than the threshold
βthre, TORCHGT transfers it to a dense cluster. To decide
the value of βthre in each training epoch, we design an Auto
Tuner in the next part for modeling βthre.

Hyperparameter Modeling. The hyperparameters can be
tuned to accommodate various graph patterns. We design an
Auto Tuner to dynamically select the hyperparameters k, db
and βthre, and formulate the analytical model.

(1) Cluster dimensionality k, sub-block dimension db. We
can leverage GPU L1 and L2 caches to improve the mem-
ory access locality of sub-block computation. In this way,
smaller sub-blocks can enjoy the data locality benefit from
the L1 cache while larger clusters can enjoy the locality
from the larger L2 cache. Specifically, we determine k as:
k = ⌊

√
QL2
id ⌋, i ∈ N, where QL2 is the L2 cache size

and d is model hidden dimension. To determine the sub-
block dimension db, we profile the computation throughput
and some hardware statistics of the indexing kernel w.r.t.
different db values. Figure 6(a) shows the workload balance in
GPU computing unit downgrades (the lower warp occupancy,
the worse balance) as db increases, while both L1 & L2
cache hit rates increase. Thus, there exists a trade-off between
these two metrics in deciding db. Moreover, Figure 6(b) also
demonstrates the values of obtaining the optimal computation
throughput lie in the middle range. Both cases suggest the
middle value is the ideal choice. For example, for RTX 3090
GPU and model hidden dimension of 64, we fit k=8 and
db=16. These two values can also be selected by users.

(2) Transfer threshold βthre. Motivated by [7], to estimate
the convergence, Auto Tuner tracks a running average loss
Ft = 0.9Ft−1 + 0.1Lt, where Lt is the loss at epoch t. Con-
sidering the training throughput, a Loss Descent Rate (LDR)
is defined as LDRt = Ft−Ft−1

ett
, where ett is the t-th epoch

training time. At the beginning βthre,0 is initialized as βG from
the set {0, βG, 1.5βG, 5βG, 7βG, 10βG, 1}, which is developed
by profiling different datasets. When LDRt ≥ LDRt−δ for
some δ ∈ N (here we use δ = 10) which specifies the range
of epochs for LDR comparisons, TORCHGT heuristically

TABLE III: Detailed information of datasets in evaluation.
Node-level

Datasets # Nodes # Edges # Feats Task

Amazon [24] 1,598,960 132,169,734 200 107-class Classif.
ogbn-arxiv [23] 169,343 1,166,243 128 40-class Classif.

ogbn-products [23] 2,449,029 61,859,140 100 47-class Classif.
ogbn-papers100M [23] 111,059,956 1,615,685,872 128 Binary Classif.

Graph-level

Datasets # Graphs Avg.
# Nodes

Avg.
# Edges Task

ZINC [66] 12,000 23.2 24.9 Regression
ogbg-molpcba [23] 437,929 26.0 28.1 128-task Classif.

MalNet [53] 10,833 15,378 35,167 5-class Classif.

TABLE IV: Detailed information of graph transformer models.

Models # Layers Hidden Dim. # Head

Graphormerslim (GPHslim) 4 64 8
Graphormerlarge (GPHlarge) 12 768 32

GT 4 128 8

determines the current βthre suffices to reduce the loss. Then
Auto Tuner increases βthre to the next value in the set to
gain higher speed. On the other hand, LDRt < LDRt−δ in δ
epochs denotes the training is about to converge or too many
errors are introduced by quantization. In this case, Auto Tuner
reduces βthre to the previous value from the set to enable
more stable and accurate training.

IV. EVALUATION

We implement TORCHGT atop PyTorch 2.1 [67]. We study
the performance of TORCHGT on versatile datasets and graph
learning tasks in the following aspects: (1) Efficiency (§IV-A),
(2) Convergence (§IV-B), (3) Scalability (§IV-C), and (4)
micro-benchmarks and ablation studies to examine the impact
of each technique and hyperparameter (§ IV-D).
Datasets and Models. We evaluate TORCHGT on versatile
real-world graph datasets with multiple scales. The detailed
information is shown in Table III, including both node-level
and graph-level tasks. The MalNet dataset is constructed from
all categories of the full datasets. We use three classical
graph transformer models commonly adopted for evaluation,
including GraphormerSlim (GPHSlim) [14], GraphormerLarge

(GPHLarge) [14], and GT [15]. Note that TORCHGT can
also be applied to other graph transformer models. As shown
in Table IV, we follow the hyperparameter configurations
reported in their original papers as closely as possible.
Baselines. All models cannot be directly trained on selected
large graphs. Due to the lack of existing graph transformer
systems, we meticulously replicate each model with simple
graph parallelism following its original implementation as
the vanilla version, denoted as GP-RAW. On the basis of
this, we have also developed other variants incorporating
FlashAttention [31] denoted as GP-FLASH, and topology-
induced sparse attention denoted as GP-SPARSE.
Testbed. Our experiments are performed on two GPU servers.
❶3 GPU servers each with 8 NVIDIA RTX 3090 GPUs
(24GB). Intra-server connections (CPU-GPU, GPU-GPU) are
based on PCIe 4.0x16 lanes and inter-server connections are
via 1Gbps Ethernet. ❷2 servers each with 8 A100 GPUs
(80GB) with NVLink and 200Gbps InfiniBand.



TABLE V: Detailed comparison of training speed and test accuracy of methods when training on one 3090 GPU server. OOM
means the method runs out of memory. TORCHGT always outperforms GP-FLASH in throughput and accuracy on all the
models and datasets. GP-RAW with full attention runs out of memory in all cases.

Model Method MalNet ogbn-papers100m ogbn-products ogbn-arxiv Amazon

tepoch(s) Test Acc.(%) tepoch(s) Test Acc.(%) tepoch(s) Test Acc.(%) tepoch(s) Test Acc.(%) tepoch/s Test Acc.(%)

GPHSlim

GP-Raw OOM - OOM - OOM - OOM - OOM -
GP-Flash 2158.37 90.87 1201.13 90.11 27.69 66.39 0.44 48.25 17.31 63.51

TORCHGT 195.54(11.0×) 92.71 19.15(62.7×) 96.82 0.54(50.8×) 66.75 0.11(3.9×) 53.81 1.00(17.5×) 73.10

GPHLarge

GP-Raw
OOM

OOM OOM OOM - OOM - OOM -
GP-Flash 2512.88 96.93 56.51 44.48 3.46 22.11 36.83 73.34

TORCHGT 654.72(3.8×) 98.60 16.10(3.5×) 63.06 1.16(3.0×) 42.38 11.07(3.3×) 73.75

GT
GP-Raw OOM - OOM - OOM - OOM - OOM -
GP-Flash 1426.24 74.54 1235.02 88.86 28.80 66.20 0.50 53.98 8.88 69.07

TORCHGT 242.58(5.9×) 90.13 26.33(46.9×) 89.60 0.79(36.3×) 82.11 0.09(5.3×) 56.72 0.76(11.7×) 72.98

TABLE VI: Training time per epoch of trianing GPHSlim

on one A100 server. TORCHGT can still improve training
efficiency compared with GP-FLASH.

Model Method MalNet ogbn-papers100m ogbn-products Amazon

tepoch(s) tepoch(s) tepoch(s) tepoch(s)

GPHSlim
GP-Flash 668.23 492.79 5.34 3.43

TORCHGT 160.61(4.2×) 244.07(2.1×) 2.86(1.9×) 1.69(2.0×)

A. End-to-end Training Throughput

We compare the end-to-end training time per epoch and test
accuracy of TORCHGT with all baselines on one server, as
shown in Table V. The sequence length is 256K for GPHSlim

and GT, and 32K for GPHLarge. When training on ogbn-arxiv,
we set the sequence length to 64K for GPHSlim and GT.
The speedup in the bracket is the relative throughput of each
method on the basis of GP-FLASH. In each training task, we
treat the first 10 epochs as the warmup stage and only record
statistics afterward. TORCHGT substantially outperforms GP-
FLASH by 3.3∼62.7×. This is mainly because TORCHGT
significantly reduces the computation complexity of the at-
tention module. Additionally, GP-RAW runs out of memory
(OOM) on all datasets under the current sequence lengths due
to its O(N2) memory complexity of the attention module.
For instance, GP-RAW requires over 200GB memory to store
the attention score, i.e., QK⊤, of only one attention head
for the ogbn-products dataset. We also conduct evaluations
of GPHLarge on one A100 server as shown in Table VI.
TORCHGT still shows impressive acceleration and outper-
forms GP-FLASH up to 4.2× on such frontier equipment.
In summary, TORCHGT realizes efficient training of graph
transformers with a marvelous improvement.

The speedup difference is mainly related to the input graph
topology and model structure under long sequences. If the in-
put graph is very sparse (up to 99% sparsity), Dual-interleaved
Attention first boosts attention by a large margin. If an obvious
clustering pattern exists in the graph, then attention can be
further accelerated by 2∼3× with the other two modules.
Since we mainly improve attention computation, the more
proportion it accounts in total model computation, the higher
speedup on epoch time. For instance, in Table V GPHSlim

achieves notable speedup on papers100M owing to the above.
Ogbn-arxiv shows a smaller speedup on all models since it
has poorer sparsity and cluster property.

TABLE VII: Training throughput and test accuracy of meth-
ods. The accuracy of GP-FLASH decreases because of BF16.

GP-FLASH TORCHGT-BF16 TORCHGT-FP32

ogbn-arxiv tepoch(s) 0.44 0.08 0.11
Test Acc.(%) 48.25 48.29 53.81

Amazon tepoch(s) 17.31 0.60 1.00
Test Acc.(%) 63.51 63.58 73.10

16 32 64
GPU number 
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Fig. 7: Scalability results of TORCHGT in training GPHSlim

on ogbn-products on many A100 servers. (a) With fixed
sequence length, throughput reduces almost linearly. (b) With
fixed computational load per GPU, throughput remains well.

B. Model Convergence

We examine the model accuracy and convergence curves
of TORCHGT on various models in Table V and Figure
8. Table V summarizes the test accuracy achieved by all
systems on three models. On large-scale datasets, TORCHGT
gives higher model accuracy while GP-RAW runs out of
memory. GP-FLASH harms the model accuracy in some
datasets, e.g., Malnet and Amazon since FlashAttention only
supports FP16/BF16 precision [31] in computing which may
downgrade model convergence compared to FP32 precision.
In contrast, TORCHGT supports FP32 precision without com-
promising model accuracy. To better validate this, we compare
the training throughput and test accuracy of GP-FLASH and
TORCHGT-BF16 in Table VII. On BF16, TORCHGT obtains
similar accuracy with FlashAttention, indicating the accuracy
drop of FlashAttention is mainly caused by reduced precision.
TORCHGT even achieves higher speedup with BF16, but
we choose to use FP32 since it gives higher accuracy with
notable speedup. From Figure 8, we also see that GP-FLASH
converges to low accuracy and lead to far slower convergence
than our system, verifying it preserves model quality well.
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Fig. 9: Scalability experiments of training GPHSlim on ogbgn-
products. (a) The supported maximum sequence length w.r.t.
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In both cases TORCHGT shows greater scalability than others.

C. System Scalability

Training Throughput on Multiple Servers. First, we eval-
uate the training throughput of TORCHGT on multiple A100
servers to validate it also scales out well with more servers.
As shown in Figure 7, we conduct two sets of scalability
evaluations on up to 8 servers(each with 8 A100 GPUs) with
extremely long sequences and record the sequence training
time on the ogbn-products dataset. In Figure 7(a), we fix the
sequence length to 1024K and increase the server number. We
can see TORCHGT still obtains notable speedup when scaling
to more servers. Especially, when the GPU count is doubled,
the training throughput correspondingly increases by almost
1.7×, indicating a certain degree of scalability. In Figure 7(b),
we fix the computational load per GPU when increasing the
sequence length from 256K to 512K. Note that when doubling
the sequence length, we need 4× GPUs than before to keep
the same computational load per GPU(attention calculation
is proportional to S2/P ). In this case, TORCHGT achieves
approximately the same throughput on each GPU as before,
also verifying good scalability.
Sequence Length w.r.t. Number of GPUs. We examine the
maximum sequence length of GPHSlim that can be trained on
1∼8 GPUs with TORCHGT in Figure 9(a). Note that GP-RAW
employs standard full attention. We can see the maximum se-
quence length of TORCHGT can reach up to 1.3M on 8 GPUs.
It also enables the sequence length of 400K with only 1 GPU,
substantially 50× larger than that of GP-RAW. Moreover, the
sequence length of TORCHGT almost scales linearly w.r.t. the
number of GPUs, while the maximum sequence length GP-
RAW can support nearly remains unchanged with the growth
of GPU numbers. With 8 GPUs, TORCHGT supports 1.3M in
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Fig. 10: Convergence comparisons of different attentions: our
interleaved attention, FlashAttention and sparse attention.

length while GP-RAW only supports 22K in length.
Throughput w.r.t. Sequence Length. We further compare
the training throughput of TORCHGT and GP-FLASH under
sequence lengths varying from 128K to 1300K in Figure
9(b). We fix the number of GPUs to 8 and report the
throughput as samples per second. Figure 9(b) shows that
the training throughput of GP-FLASH sharply decreases from
1.9×105 samples/s to 2.2×104 samples/s when the sequence
length increases. The speed degradation of GP-FLASH mainly
comes from the computation bottleneck of FlashAttention
with O(N2) complexity. In contrast, TORCHGT maintains the
training throughput at around 2.5× 106 samples/s by signifi-
cantly reducing the attention computation costs (in §III-B).

D. Micro-benchmarks

We explore the effects of each component in TORCHGT
via ablation studies and perform sensitivity analysis of the
introduced hyperparameters on one 3090 GPU server.
Impact of Dual-interleaved Attention. After employing the
topology-induced attention and interleaving mode introduced
in §III-B, we investigate their effect on model quality.

(1) On large-scale graphs. We measure the convergence
curves of GPHSlim and GT on ogbn-arxiv, and compare the
convergence of interleaved attention with that of FlashAtten-
tion and the sparse variant in Figure 10. The model with
interleaved attention shows faster convergence than the other
two and finally converges to higher accuracy, verifying that the
interleaved attention improves computation efficiency while
displaying great convergence.

(2) On small graphs. Since the raw graph transformer
models fail to be trained on large graphs, we further evaluate
the convergence of interleaved attention on small graphs in
Figure 11. Sparse attention shows the worst convergence rate
while full attention has the best. The model with interleaved
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attention converges to nearly the same as the model with full
attention and obviously outperforms the sparse variant in both
convergence speed and final test score.
Impact of Elastic Computation Reformation. We particularly
examine the impact of the Elastic Computation Reformation
module in TORCHGT, FlashAttention, and sparse attention
w.r.t. the sequence length and the model hidden dimension
on one GPU. Note that we implement the sparse variant with
the pure topology-induced attention pattern.

(1) Attention computation time w.r.t. sequence length. In
Figure 12(a), we first evaluate the speed of the attention
module when varying the sequence length from 64K to 512K.
We use the model hyperparameter setting in GPHSlim and
record the computation time of the attention module in each
method. Clearly, as the sequence length increases, the com-
putation time of FlashAttention grows quadratically, resulting
in heavy training slowdown. The sparse attention improves
the computation speed a bit, but shares a similar computation
speed as FlashAttention when the sequence length is small.
In contrast, TORCHGT essentially improves the computation
efficiency by up to 103.4× compared to FlashAttention. It
is even faster than the sparse attention largely, validating its
effectiveness in reducing irregular memory access with our
cluster-sparse pattern.

(2) Attention computation time w.r.t. hidden dimension. We
fix the sequence length to 256K and change the hidden dimen-
sion from 64 to 256. The computation time of the attention
module is recorded in Figure 12(b). When the model size
increases, TORCHGT still largely outperforms FlashAttention
and sparse attention in all cases, owing to the specialized
cluster sparsity in Elastic Computation Reformation module.
We can conclude that FlashAttention shows poorer adaptation
on long sequences, compared to its higher tolerance on larger
model sizes. This indicates the better scalability of TORCHGT
for long sequences and large model sizes.

(3) Sensitivity analysis of transfer threshold. The introduced
hyperparameter βthre determines the model performance and
efficiency of TORCHGT. As shown in Table VIII, we adopt
different values of βthre and record the training time per epoch
and test accuracy. Note that a larger βthre means more clusters
are transferred to dense ones with sub-blocks. Higher accuracy
can be obtained when smaller βthre is adopted, but coming
with possibly lower training speed (e.g., for GraphSAGE,
0.368s with βthre = βG vs. 0.077s with βthre = 10βG).
Seriously chasing the lowest error (βthre = 0) or just caring
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lengths and (b) model hidden dimensions when S=256K.

TABLE VIII: Training time per epoch and test accuracy on
ogbn-arxiv dataset regarding different transfer threshold βthre.

βthre βG 1.5βG 5βG 7βG 10βG TORCHGT

GPHSlim
tepoch(s) 0.368 0.257 0.088 0.087 0.077 0.114

Test Acc.(%) 53.34 54.19 53.82 50.84 48.31 53.81

GT tepoch(s) 0.098 0.090 0.089 0.084 0.071 0.093
Test Acc.(%) 56.70 56.84 56.51 53.65 45.95 56.72

about the highest training throughput (βthre = 1) is not the
best choice to fully utilize the benefits of the cluster-sparse
pattern. Choosing different values always creates a trade-off
between efficiency and accuracy and further analysis on the
value choice can be done in the future. Currently, we suggest
βthre = 5βG for better balance.

E. Pre-processing Cost

We record the pre-processing cost versus model conver-
gence time on both tasks to understand how much extra
time is brought by TORCHGT. The proportion is 5.2s (5.4%)
versus 91.2s (94.6%) for ogbn-arxiv, and 239.7s (2.0%) versus
11732.4s (98.0%) for MalNet. The overhead only occupies less
than 5.4% of the total training time on all epochs, which is
acceptable compared with the huge model convergence time.

V. RELATED WORK

As a new kind of graph learning algorithms outperforming
traditional GNNs, many graph transformer architectures have
arisen in recent years. Among them, models [14], [16], [27],
[28], [30] utilize standard attention as foundation encoders
to capture the all-pair interactions between nodes, leading to
quadratic computation complexity. Some other works [16],
[32], [57] adopt sampling or pooling methods which only
select a subset of nodes to be trained at each iteration, without
reducing the computation complexity. [17], [20], [21] use self-
defined adapted attention with poor generality and scalability.
As for system optimizations for transformers, sparse attention
[35], [36], [55], [56] has been widely studied in NLP area
for linear complexity. Borrowing this, [15], [25], [26] directly
apply graph topology in the attention computation. Besides,
multiple works for LLM [37]–[40] split the input sentence
sequences and train distributedly for larger scalability.



VI. CONCLUSION

To conclude, TORCHGT reveals challenges and opportuni-
ties in training graph transformer on large graphs, with our
efforts in designing a scalable and efficient training system.
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