
FedNLR: Federated Learning with Neuron-wise Learning Rates
Haozhao Wang

School of Computer Science and

Technology, Huazhong University of

Science and Technology

Wuhan, China

Peirong Zheng
∗

Department of Computing, The Hong

Kong Polytechnic University

Hongkong, China

Xingshuo Han

Nanyang Technological University

Singapore, Singapore

Wenchao Xu

Department of Computing, The Hong

Kong Polytechnic University

Hongkong, China

Ruixuan Li
†

School of Computer Science and

Technology, Huazhong University of

Science and Technology

Wuhan, China

Tianwei Zhang

Nanyang Technological University

Singapore, Singapore

Abstract
Federated Learning (FL) suffers from severe performance degrada-

tion due to the data heterogeneity among clients. Some existing

work suggests that the fundamental reason is that data heterogene-

ity can cause local model drift, and therefore proposes to calibrate

the direction of local updates to solve this problem. Though effective,

existing methods generally take the model as a whole, which lacks

a deep understanding of how the neurons within deep classification

models evolve during local training to form model drift. In this

paper, we bridge this gap by performing an intuitive and theoretical

analysis of the activation changes of each neuron during local train-

ing. Our analysis shows that the high activation of some neurons on

the samples of a certain class will be reduced during local training

when these samples are not included in the client, which we call

neuron drift, thus leading to the performance reduction of this class.

Motivated by this, we propose a novel and simple algorithm called

FedNLR, which utilizes Neuron-wise Learning Rates during the FL

local training process. The principle behind this is to enhance the

learning of neurons bound to local classes on local data knowledge

while reducing the decay of non-local classes knowledge stored in

neurons. Experimental results demonstrate that FedNLR achieves
state-of-the-art performance on federated learning with popular

deep neural networks.

CCS Concepts
• Computer systems organization → Distributed architec-
tures.

Keywords
Federated Learning; Neuron-wise Learning Rates; NonIID

∗
Haozhao Wang and Peirong Zheng contributed equally to this research.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0490-1/24/08

https://doi.org/10.1145/3637528.3672042

ACM Reference Format:
Haozhao Wang, Peirong Zheng, Xingshuo Han, Wenchao Xu, Ruixuan

Li, and Tianwei Zhang. 2024. FedNLR: Federated Learning with Neuron-

wise Learning Rates. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’24), August 25–29, 2024,
Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3637528.3672042

1 Introduction
Federated learning (FL) is emerging as a prominent framework to

train deep neural networks (DNNs) via the collaboration among

clients without sharing their original dataset [25, 32, 38, 42], and

has been widely adopted in various applications such as medical

image processing [9, 27, 44] and recommendation [2, 35]. The ba-

sic steps of FL [32] is to iteratively run the local training of the

models in multiple clients separately and the global aggregation

of all updated models in the server. Although the process of FL is

easy to implement, the data among clients is usually statistically

heterogeneous (i.e., not independently and identically distributed,

NonIID), greatly degrading the performance.

Many works have been proposed to solve the NonIID problem.

One of the representative categories is to explore the essence of per-

formance degradation from the perspective of optimization, which

considers the client drift (i.e., model drift) caused by the NonIID as

the main reason for performance degradation. More specifically,

Karimireddy et al. [17] claim that the optimum of multiple clients

are different from each other and are also far away from the global

optimum due to the NonIID data, thus resulting in the drift of opti-

mization direction. Considering this, a series of approaches seek to

achieve consistency of the local models across clients. For example,

some methods add regularization on the local loss function to facil-

itate the local model to approach the global optimal model [1, 23].

Other works consider that the local gradient is biased and then

correct the local gradient to align the global gradient [7, 17, 37]

There are also some works that seek to calibrate the output of the

last layer or the last-second layer to align them with the global

model to achieve consistency [19, 22, 47]. Although these methods

are effective, they generally view the deep neural network (DNN)

as a whole, which lacks a deep understanding of how the neurons

within the DNN evolve to form the issue of model drift.

In this paper, we seek to tackle the NonIID challenge of FL from

the microscopic level by decomposing the DNN as a set of neurons

3069

https://doi.org/10.1145/3637528.3672042
https://doi.org/10.1145/3637528.3672042
https://doi.org/10.1145/3637528.3672042
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3672042&domain=pdf&date_stamp=2024-08-24


KDD ’24, August 25–29, 2024, Barcelona, Spain Haozhao Wang et al.

to fully unleash FL performance potential. Specifically, we find

that the set of high-activation neurons within a well-converged

global DNN over each class is distinct from other classes, where

these neurons we call bound neurons of this class. However, during
the local training process, each client tends to overuse the DNN

neurons by homogenizing as many neurons as possible to obtain

high activation over its local data. Due to the data heterogeneity

among clients, this may lead to the activation reduction of bound

neurons of those data classes that are not included in this client,

which we call neuron drift. As a consequence, how to prevent the

activation of bound neurons over classes that are not included in

the client from being reduced is the key to the global model learning

the global data distribution.

Motivated by this discovery, we propose an effective yet simple

method named FedNLR, which allows each client to locally train

the deep neural network with neuron-wise learning rates. More

specifically, FedNLR sets a specific learning rate for the parameters

of each neuron based on their activation over the local data. The

learning rate of a neuron is set to be smaller if its activation over

the local data is smaller. The principle behind this is to enhance the

learning of neurons bound to local classes on local data knowledge

while restricting the decay of non-local classes knowledge stored in

neurons. We conduct extensive experiments on various DNNs and

datasets of which the experimental results show that our method

outperforms existing methods. Besides, as far as we know, our
method is the first to solve the NonIID challenge from the perspective
of adapting the local learning rate, which is orthogonal to existing
approaches. Our experimental results show that the performance of

existing methods receives further improvement as combined with

our method. Our contributions are:

• We are the first to investigate how the FL data heterogeneity

affects the trained DNNs by decomposing the DNN into a set

of neurons instead of viewing it as a whole. We identify that

the activation value of a neuron on some certain class will

be reduced during the local training process of a client if this

client has no access to the samples of this class, resulting in

performance degradation.

• We propose a novel method that allows each client to restrict

the update of neurons bound to the other clients and en-

hances the learning of neurons bound to its local data during

the local training process via leveraging neuron-wise learn-

ing rates. The learning rate for each neuron is adaptively set

based on its activation over the local data.

• We provide a theoretical analysis that guarantees the conver-

gence of the proposed method. Besides, the experiments con-

ducted on various configurations such as different learning

rates and different numbers of clients consistently demon-

strate the effectiveness of our method.

2 Related Work
To train a global model, many previous efforts have been proposed

to solve the NonIID challenge in FL [12, 14, 39]. There are mainly

two types of work which include either adding a regularization

item to the local loss or calibrating the local model update with the

global information to achieve consistency across clients.

Regularization-based Consistency Some methods propose

adding a regularization on the local loss function to achieve the

consistency of local updated models [1, 23]. FedProx [23] penalizes

the proximal term on the local objective to force the local update

towards both the local optimum and the last global model. [1] pro-

posed a dynamic regularizer that is based on the current local model

and the received global model to achieve the same stationary point

across all clients. [8] combines the local training process with the

primal-dual algorithm to enhance the consistency among different

variable models. FedSpeed [37] considers that the prox-term will

also introduce the bias and then applies the prox-correction term

on the current local updates to efficiently reduce the bias. [40] show

that the hyper-parameters in the local update process also have an

impact on the consistency and then regularize the local update. By

encompassing the proximal term, [3] further propose a surrogate

loss for the quadratic models and show that the local learning rate

decay can balance the trade-off between the convergence rate and

the inconsistency. [31] applies a local fixed-point to implicitly con-

trol the convergence of the local model. Based on the inconsistency

of local update, [16] propose adaptively tuning the global step size

via computing a regularized term of all local updates.

Calibration-based Consistency Other works consider that the

local gradient is biased and then correct the local gradient to align

the global gradient [13, 17, 37, 43]. [17] firstly demonstrates the

drift of local update in FL and then propose Scaffold that exploits

the bias of the local gradient to the global gradient to mitigate these

drifts. [7] consider the drift between the local optimal model and

the global optimal model essentially exists and propose learning the

drift term to compensate local gradient. [29] propose incorporating

the information of global gradient in the local training process such

that the local bias can be mitigated. Some studies also introduce the

momentum to the FL where the momentum also contains the infor-

mation of past gradients from other clients such that the drift can be

implicitly calibrated [18, 36, 41, 45]. Considering the last layer cares

most about the classification, FedRS [26] utilizes an asymmetric

loss function to calibrate the bias of the last-layer parameters of

different classes. Similarly, there are also some works that seek to

calibrate the output of the last layer or the last-second layer to align

them with the global model to achieve consistency [19, 22, 47].

This paper focuses on the drift problem of local models across

clients in federated learning. Different from previous works that

usually view the training DNN as a whole and consider the drift of

the whole local update, we aim to solve the neuron drift problem

which is a fine-grained phenomenon of the client drift. To tackle

this challenge, we adopt neuron-wise learning rates during the local

training process, which is orthogonal to existing works.

3 Problem Formulation and Preliminaries
Problem Formulation. Our goal is to collectively train a global

model in Federated Learning (FL) for a total of 𝐾 clients. Each client

𝑘 has exclusive access to their private local dataset D𝑘 which con-

sists of 𝐷𝑘 data samples (𝑥𝑛
𝑖
, 𝑦𝑖 ), where 𝑥𝑖 represents the 𝑖-th input

data sample and 𝑦𝑖 belongs to a set of possible labels {1, 2, . . . ,𝐶}
with 𝐶 denoting the total number of classes. The primary objective

is to train a global model w that minimizes the total empirical loss

across all local datasets. The loss function is formulated as:

min

w
𝐹 (w) :=

𝐾∑︁
𝑘=1

𝐷𝑘

𝐷
𝐹𝑘(w),where 𝐹𝑘 (w)= 1

𝐷𝑘

𝐷𝑘∑︁
𝑖=1

𝑓𝑘 (w;𝑥𝑖 , 𝑦𝑖 ), (1)

3070



FedNLR: Federated Learning with Neuron-wise Learning Rates KDD ’24, August 25–29, 2024, Barcelona, Spain

2023/11/12

1

𝑤1,1,1

= 1

Server

1

2

𝑥1 𝑦 = 1

𝑡 = 1 𝑡 = 2

Client 1

Client 2

𝑤1,2,2

= 1

𝑤2,1,1

= 10/9

𝑤2,2,2

= 10/9ℎ1,2

ℎ1,1

2/3

2/3

𝑦 = 2

Rounds

𝑐 = 1

𝑐 = 2

𝑥2

𝑥1

𝑥2

0 1

1

1/3

1

3

1/3

1/3

𝑦 = 1

𝑦 = 2

1

2

1

2

(a) Data Distribution

2023/11/12

1

𝑤1,1,1

= 1

Server

1

2

𝑥1 𝑦 = 1

𝑡 = 1 𝑡 = 2

Client 1

Client 2

𝑤1,2,2

= 1

𝑤2,1,1

= 10/9

𝑤2,2,2

= 10/9ℎ1,2

ℎ1,1

2/3

2/3

𝑦 = 2

Rounds

𝑐 = 1

𝑐 = 2

𝑥2

𝑥1

𝑥2

0 1

1

1/3

1

3

1/3

1/3

𝑦 = 1

𝑦 = 2

1

2

1

2

(b) Training Process

Figure 1: An example of two-client federated learning. One client is sampled in each round and each client only contains
samples of one single label, i.e., client 1 with class 1 and client 2 with class 2. The data of classes 1 and 2 are denoted by triangle
and circle respectively. The upward arrow represents that the value of the parameter is improved and the downward arrow
has the opposite meaning. As can be seen, after training the model in client 1, the parameters corresponding to the bonded
neurons of class 2 may be improperly tuned, leading to their reduced activation magnitude over the data of class 2. A similar
phenomenon also exists in the client 2, which we call neuron drift.

where 𝐷 =
∑𝐾
𝑘=1

𝐷𝑘 denotes the total size of all local datasets,

𝐹𝑘 (w) represents the local loss for the 𝑘-th client, and 𝑓𝑘 (·) usu-
ally adopts the cross-entropy loss which measures the discrepancy

between the model’s predictions and the actual ground truth labels.

Basics of deep neural network. We consider a deep neural net-

work comprising 𝐿 layers, where each layer 𝑙 consists of 𝑀𝑙 neu-

rons. The model’s weight parameters are represented as w and the

parameters of the 𝑙-th layer are denoted by w𝑙 . For each neuron

indexed as 𝑖 in the 𝑙-th layer, we compute its activation output as

ℎ𝑙,𝑖 = 𝜎 (w𝑇𝑙,𝑖h𝑙−1
). In this expression, we use the commonly used

activation function ReLU to signify 𝜎 (·), while w𝑙,𝑖 corresponds
to the parameters specific to this neuron. Furthermore, hl−1 de-

notes the outputs of all neurons in the preceding 𝑙 − 1-th layer,

characterized as hl−1 = [ℎ𝑙−1,1, . . . , ℎ𝑙−1,𝑚𝑙−1

].

4 Neuron Drift
To make predictions, deep neural networks activate different neu-

rons for the data of different classes. In particular, given a well-

converged model, each class is bound to a specific subset of neu-

rons, where the activation magnitude of these neurons over this

class is larger than other classes. Formally, these bound neurons

are defined as follows.

Definition 1. Considering a neuron 𝑖 , if its activation magnitude
ℎ𝑐
𝑖
over the data of class 𝑐 is larger than the activation ℎ𝑐

′
𝑖
over data

of other classes 𝑐′, i.e., min𝑖∈D𝑐ℎ𝑐𝑖 > max𝑖∈D𝑐′ℎ
𝑐′
𝑖
,∀𝑐′ ∈ [𝐶], 𝑐′ ≠ 𝑐 ,

then the neuron 𝑖 is defined as the bound neuron of the class 𝑐 .

Now, based on the theories of neural collapse [6, 10, 28], we show

that each data class corresponds to a subset of bounded neurons in

converged neural networks by the following theorem.

Theorem 1. Considering the neural network has reached the opti-
mal solution of (1) over the balanced-class dataset, if the loss function
𝑓 (·) is cross-entropy (CE) or mean-square-error (MSE) and the ac-
tivation function is ReLU, then there exists a non-empty subset H𝑐

consisting of bound neurons for each class 𝑐 .

Proof. We denote the parameters of the last classifier layer

corresponding to the class 𝑐 as w𝐿,𝑐 , and denote the activation of

the last-second layer over the data of class 𝑐 as h𝑐
𝐿−1

. Based on the

theories of neural collapse, it can be concluded that

w𝐿,𝑐 = 𝐴h𝑐𝐿−1
, (2)

when the model achieves the optimal solution for CE loss (Theo-

rem 1 of [6]) and for MSE loss (Theorem 3 of [10]), where𝐴 > 0 is a

constant. Since the optimal model minimizes the objective function

(1), it makes correct predictions over the training dataset. Hence, for

any data sample of the class 𝑐 , its prediction score 𝑝𝑐 corresponding

to the class 𝑐 is larger than other classes 𝑐′, i.e., 𝑝𝑐 > 𝑝𝑐′ . The pre-

diction score 𝑝𝑐 for each class 𝑐 is calculated based on the softmax

𝑝𝑐 =
exp(w𝑇

𝐿,𝑐
h𝑐
𝐿−1

/𝑇 )∑𝐶
𝑖=1

exp(w𝑇
𝐿,𝑖

h𝑐
𝐿−1

/𝑇 ) . Based on this definition, the prediction

scores of different classes for the sample 𝑥 of class 𝑐 satisfy

𝑝𝑐 =
exp(w𝑇

𝐿,𝑐
h𝑐
𝐿−1

/𝑇 )∑𝐶
𝑖=1

exp(w𝑇
𝐿,𝑖
h𝑐
𝐿−1

/𝑇 )
> 𝑝𝑐′ =

exp(w𝑇
𝐿,𝑐′h

𝑐
𝐿−1

/𝑇 )∑𝐶
𝑖=1

exp(w𝑇
𝐿,𝑖
h𝑐
𝐿−1

/𝑇 )
(3)

for any class 𝑐′ ∈ [𝐶], 𝑐′ ≠ 𝑐 . By eliminating the denominators of

both sides of (3), we get that

w𝑇𝐿,𝑐h
𝑐
𝐿−1

> w𝑇𝐿,𝑐′h
𝑐
𝐿−1

. (4)

Bringing (2) to (4), we have

𝐴(h𝑐𝐿−1
)2 > (h𝑐

′
𝐿−1

)𝑇 h𝑐𝐿−1
, (5)

which directly derives the following inequality

(h𝑐𝐿−1
− h𝑐

′
𝐿−1

)𝑇 h𝑐𝐿−1
> 0 ⇔

𝑀𝐿−1∑︁
𝑖=1

(ℎ𝑐𝐿−1,𝑖 − ℎ
𝑐′
𝐿−1,𝑖 )ℎ

𝑐
𝐿−1,𝑖 > 0, (6)

which indicates that there exists a subset of neuronsH𝑐 ⊂ [𝑀𝐿−1],
the following inequality holds

(ℎ𝑐𝐿−1,𝑖 − ℎ
𝑐′
𝐿−1,𝑖 )ℎ

𝑐
𝐿−1,𝑖 > 0. (7)

3071



KDD ’24, August 25–29, 2024, Barcelona, Spain Haozhao Wang et al.

for each 𝑖 ∈ H𝑐
. Since the activation output by the ReLU func-

tion is always non-negative, i.e., ℎ𝑐
𝐿−1,𝑖

≥ 0,∀𝑖 ∈ [𝑀𝐿−1], we can
immediately obtain that

ℎ𝑐𝐿−1,𝑖 − ℎ
𝑐′
𝐿−1,𝑖 > 0. (8)

for each 𝑖 ∈ H𝑐
. The proof is done. □

Noting that the activation function is ReLU(w𝑇
𝑙,𝑖
h𝑙−1

) and the

prediction probability 𝑝𝑐 for each class 𝑐 is 𝑝𝑐 =
exp(w𝑇

𝐿,𝑐
h𝑐
𝐿−1

/𝑇 )∑𝐶
𝑖=1

exp(w𝑇
𝐿,𝑖

h𝑐
𝐿−1

/𝑇 ) ,

indicating that high activation magnitude strongly contributes to

the classification result. In the following text, for ease of expression,

we also call the neurons subset H𝑐
as the bound neurons of the

class 𝑐 . Obviously, reducing the activation magnitude of bound neu-

rons corresponding to some given class 𝑐 will inevitably decrease

its prediction probability and thus decrease the prediction accuracy.

Unfortunately, in FL scenario, we show that the activation magni-

tude of the bound neurons of some data classes may be severely

reduced during the training process due to the data heterogeneity

across clients. We show this by specifying the following example.

Example 1. We consider training a two-layer neural network over

two clients, as shown in Figure 1. The task is the binary classification

with the label 𝑦 = 1 or 𝑦 = 2 corresponding to samples distributed

around (1, 1/3) and around (1/3, 1) respectively. By simulating the

data heterogeneity, we consider each client has only access to the

samples of one single class (𝑦 = 1 for client 1 and 𝑦 = 2 for client 2).

The initialized parameters of the neural network are presented in

the server of Figure 1a. The bound neurons for the class 𝑦 = 2 are

denoted by gold color, i.e., the second hidden neuron ℎ1,2 which

has a high activation over the data of class 2. Now, we show that

the expected activation of all neurons over the class 2 is reduced

after local training in client 1:

Δℎ1,1 = ℎ2

1,1 − ˜ℎ2

1,1 = 0.67 − 0.73 = −0.06,

Δℎ1,2 = ℎ2

1,2 − ˜ℎ2

1,2 = 1.11 − 1.04 = 0.07,

Δ𝑝1 = 𝑝1 − 𝑝1 = 0.45 − 0.63 = −0.18,

Δ𝑝2 = 𝑝2 − 𝑝2 = 0.55 − 0.37 = 0.18,

(9)

where ℎ2

1,2
and

˜ℎ2

1,2
represent the activation of class 2 before and

after training an iteration in client 1 with the learning rate 0.5. 𝑝2

and 𝑝′
2
represent the probability score over the data of the class 2

before and after local training. By observing the value Δℎ1,2, we

can conclude that the activation of bound neurons over class 2 is

greatly reduced after local training in client 1. This also leads to a

probability reduction as presented by Δ𝑝2, decreasing the accuracy

of the class 2. As a comparison, the values of Δℎ1,1 and Δ𝑝1 indicate

that the risk of class 2 data being misclassified into class 1 increases.

We call this phenomenon neuron drift, which is the essence of neural
networks occurring client drift [1, 17].

The example shows that each client tends to train the neural

network to maximize the probability score over its local data. The

client realizes its objective by increasing the activation magnitude

of neurons over its local data classes. When the bound neurons of

a class missed by the client are included in these updated neurons,

the phenomenon of neuron drift occurs. In fact, the phenomenon

of neuron drift presented in Example 1 exists in general two-layer

neural networks.

Theorem 2. Considering a two-layer neural network has reached
the optimal solution of (1) over the balanced-class dataset of the bi-
nary classification task, and its activation function is ReLU, if the
neural network is trained a local step in a client 𝑘 without the data of
class 𝑐 , then the activation magnitude of the bonded neurons H𝑐

over the class 𝑐 data 𝑥𝑐
𝑖

∈ D𝑐 are reduced as 𝑥𝑇
𝑘
𝑥𝑐
𝑖

> 0. More
specifically, the activation reduction Δℎ1,𝑚 of the 𝑚-th neuron of
the hidden layer is w𝑇

1,𝑚
𝑥𝑐
𝑖
as w𝑇

1,𝑚
𝑥𝑐
𝑖
− 𝜂∑𝑥𝑘 ∈D𝑘 𝑥𝑇𝑘 𝑥𝑐𝑖 ((𝑝𝑐′ (𝑥𝑘 ) −

1)𝑤2,𝑐′,𝑚+𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚

)
≤ 0, and otherwise, the activation reduction

is 𝜂
∑
𝑥𝑘 ∈D𝑘 𝑥

𝑇
𝑘
𝑥𝑐
𝑖

(
(𝑝𝑐′ (𝑥𝑘 ) − 1)𝑤2,𝑐′,𝑚 + 𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚

)
.

Proof. Consider the class 𝑐 and one of its bonded neurons

ℎ1,𝑚 ∈ H𝑐
in the hidden layer. The updated formula of the pa-

rameter connected to this neuron is:

�̃�1,𝑚,𝑗 = 𝑤1,𝑚,𝑗 − 𝜂
∑︁

𝑥𝑘 ∈D𝑘
𝑥
𝑗

𝑘

(
(𝑝𝑐′ (𝑥𝑘 ) − 1)𝑤2,𝑐′,𝑚 + 𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚

)
,

where �̃�1,𝑚,𝑗 denotes the parameter after local training in the client

𝑘 , 𝑝𝑐 (𝑥𝑘 ) denotes the probability score of 𝑥𝑘 over the class 𝑐 , and 𝑥
𝑗

𝑘
denotes the 𝑗-th dimension of the sample 𝑥𝑘 . Considering the model

has achieved convergence of neural collapse, based on equation (2),

i.e., w2,𝑐 = 𝐴h𝑐
1
,∀𝑐 ∈ [𝐶], we have

(𝑝𝑐′ (𝑥𝑘 ) − 1)𝑤2,𝑐′,𝑚 + 𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚 (10)

= −𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐′,𝑚 + 𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚 = 𝑝𝑐 (𝑥𝑘 ) (𝐴ℎ𝑐1,𝑚 −𝐴ℎ𝑐
′

1,𝑚) > 0,

where the last inequality is based on the Definition 1 for the bonded

neurons. Now, for each data sample 𝑥𝑐
𝑖
∈ D𝑐 of the class 𝑐 , when

𝑥𝑇
𝑘
𝑥𝑐
𝑖
> 0 for all sample 𝑥𝑘 ∈ D𝑘 of client 𝑘 , we can compute the

change of the activation ℎ1,𝑚 of the bonded neuron before and after

local updating in the client 𝑘 :

Δℎ1,𝑚 = ReLU(w𝑇
1,𝑚𝑥

𝑐
𝑖 ) − ReLU(w̃𝑇

1,𝑚𝑥
𝑐
𝑖 ) = ReLU(w𝑇

1,𝑚𝑥
𝑐
𝑖 )

−ReLU
(
w𝑇

1,𝑚𝑥
𝑐
𝑖 −𝜂

∑︁
𝑥𝑘 ∈D𝑘

𝑥𝑇
𝑘
𝑥𝑐𝑖

(
(𝑝𝑐′ (𝑥𝑘 )−1)𝑤2,𝑐′,𝑚+𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚

))
≥ 0, (11)

where 𝑑 is the dimension of the data space. The last inequality is de-

rived from (10). More specifically, asw𝑇
1,𝑚
𝑥𝑐
𝑖
−𝜂∑𝑥𝑘 ∈D𝑘 𝑥𝑇𝑘 𝑥𝑐𝑖 ((𝑝𝑐′ (𝑥𝑘 )−

1)𝑤2,𝑐′,𝑚 + 𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚

)
≤ 0, the activation reduction is

Δℎ1,𝑚 = ReLU(w𝑇
1,𝑚𝑥

𝑐
𝑖 ) − 0 = w𝑇

1,𝑚𝑥
𝑐
𝑖 , (12)

and otherwise,

Δℎ1,𝑚

=w𝑇
1,𝑚𝑥

𝑐
𝑖 −w

𝑇
1,𝑚𝑥

𝑐
𝑖 +𝜂

∑︁
𝑥𝑘 ∈D𝑘

𝑥𝑇
𝑘
𝑥𝑐𝑖

(
(𝑝𝑐′ (𝑥𝑘 )−1)𝑤2,𝑐′,𝑚+𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚

)
= 𝜂

∑︁
𝑥𝑘 ∈D𝑘

𝑥𝑇
𝑘
𝑥𝑐𝑖

(
(𝑝𝑐′ (𝑥𝑘 ) − 1)𝑤2,𝑐′,𝑚 + 𝑝𝑐 (𝑥𝑘 )𝑤2,𝑐,𝑚

)
. (13)

The proof is done. □

Although our formal analysis is only based on the two-layer

neural network, it also provides some insights into the deeper

neural networks. Intuitively, we can view the deep neural network

as a series of two-layer neural networks. Except for the last two-

layer neural network, which uses real labels as supervision, all

others use the activation of the intermediate layer as supervision. In

fact, existing studies have shown that the separability of activation

3072



FedNLR: Federated Learning with Neuron-wise Learning Rates KDD ’24, August 25–29, 2024, Barcelona, Spain

between classes also exists and progressively increases from shallow

to deep layers at a linear rate [11, 15, 34], which indicates that

these intermediate activation can be viewed as variants of real

label. As a consequence, the neuron drift may also exist in deep

neural networks, but in different degrees in different layers. The

deeper the layer, the more serious the neuron drift. This intuition is

also consistent with the experimental observations in [30], where

activation similarity among clients linearly reduces with the growth

of layers. Experimental verfications can be found in Appendix A.

5 Methodology
In this section, we propose a simple yet effective method named

FedNLR to mitigate the neuron drift. Specifically, the core idea is to

adopt neuron-level learning rates during the local training process.

The algorithm workflow is presented in Algorithm 1.

As analyzed above, the activation of bound neurons over some

classes may be reduced after training the neural network in the

client without the data of these classes. The principle behind this

is that the client tends to increase the activation of these bound

neurons over its local data. To solve this problem, a direct way is to

identify the bound neurons using these missed classes and then, set

small learning rates for the parameters of these neurons to restrict

their activation reduction.

However, such a way is impractical because the client has no

access to the data of these missed classes. Considering this, we

propose an approximation algorithm, which sets learning rates

according to the activation magnitude of the global model over

the local data. The learning rates of parameters of low-activation

neurons are set to be small. The principle is that the bound neurons

are included in the set of neurons with low activation magnitude

over local data. Therefore, restricting them can also mitigate the

activation reduction of bound neurons over missed data classes.

Consider the local training process of client 𝑘 in each round 𝑡 .

To adapt the neuron-level learning rates, before performing local

training steps, each client first computes the activation ℎ𝑙,𝑚 for

each neuron of the received global model w𝑡 over its local dataset
D𝑘 and then computes the activation average

¯ℎ𝑙,𝑚 over all samples:

¯ℎ𝑙,𝑚 =
1

𝐷𝑘

∑︁
𝑥𝑖 ∈D𝑘

ℎ𝑙,𝑚 (𝑥𝑖 ) . (14)

Since the activation values of neurons in different layers are dif-

ferent, the client sets the learning rates for neurons layer by layer.

Specifically, for each layer 𝑙 , the learning rate 𝜂𝑙,𝑚 of the 𝑚-th

neuron parameters is set to be:

𝑞𝑙,𝑚 =
𝑒

¯ℎ𝑙,𝑚/𝑇𝑙∑𝑀𝑙

𝑖=1
𝑒

¯ℎ𝑙,𝑖/𝑇𝑙
, 𝜂𝑙,𝑚 = 𝜂 ·

𝑀𝑙𝑞𝑙,𝑚∑𝑀𝑙

𝑖=1
𝑞𝑙,𝑚

, (15)

where 𝜂 is the basic learning rate used in existing methods and 𝑞𝑙,𝑚
denotes the scale of the learning rate. The temperature parameter𝑇𝑙
controls the discrepancy between the maximized and the minimized

learning rate for the neurons of the 𝑙-th layer. A larger 𝑇𝑙 indicates

a larger discrepancy. Specifically, to avoid excessively high or low

learning rates, we use a hyper-parameter 𝜇𝑙 =
𝜂𝑙,max

𝜂𝑙,min

to be the ratio

between the maximized and the minimized learning rate for the

neurons of the 𝑙-th layer, where 𝜂𝑙,max
= max(𝜂𝑙,1, . . . , 𝜂𝑙,𝑀𝑙

) and

Algorithm 1: Algorithm workflow of FedNLR

Input :𝑇 : communication round; 𝐾 : client number; 𝜂:

basic learning rate; 𝜇0, 𝑎1, 𝑎2: discrepancy rate

between maximum and minimum learning rates;

1 Initialize the parameter w1
;

2 for 𝑡 = 1 to 𝑇 do
3 Randomly select 𝐾𝑡 clients and send the global model

𝑤𝑡 to them;

4 for each selected client 𝑘 in parallel do
5 Compute activation average

¯ℎ𝑙,𝑚 with (14);

6 Compute the discrepancy ratio 𝜇𝑙 with (17);

7 Compute the temperature 𝑇𝑙 with (16);

8 Compute the learning rate 𝜂𝑙,𝑚 via (15);

9 Update local model w𝑘 for 𝐸 iterations with (18);

10 Send the model w𝑡,𝐸
𝑘

to the server;

11 end
12 Aggregate local models with (19);

13 end

𝜂𝑙,min
= min(𝜂𝑙,1, . . . , 𝜂𝑙,𝑀𝑙

). Then, we can obtain

𝜇𝑙 =
𝜂𝑙,max

𝜂𝑙,min

= 𝑒 (
¯ℎ𝑙,max− ¯ℎ𝑙,min )/𝑇𝑙 ⇒ 𝑇𝑙 =

¯ℎ𝑙,max
− ¯ℎ𝑙,min

ln(𝜇𝑙 )
. (16)

Setting 𝜇𝑙 for each layer of the neural network requires signifi-

cant human costs, we propose a heuristic formula to make configu-

rations for all layers as:

𝜇𝑙 = 𝜇0 + 𝑎1 · 𝑙/𝐿 + 𝑎2 · log𝑀𝑙 , (17)

where 𝜇0, 𝑎1, and 𝑎2 are positive constants. The configuration of

𝜇𝑙 is mainly based on the depth and the width of the neural net-

work layer. The intuition behind this design is based on the sharing

degree of high-activation neurons between different data classes.

Even though the bound neurons of some missed classes are re-

duced by the client, these classes can still achieve high probability

scores with the shared neurons. Hence, the ratio is lower to relax

the restriction when different classes share more high-activation

neurons. Generally, shallow layers reveal the common knowledge

shared among classes and they may activate the similar neurons.

Conversely, deep layers extract different knowledge from different

classes, and each class tends to activate distinct neurons. Therefore,

we set lower ratios for shallow layers. A similar case also exists in

the layer width. When the number of neurons in a layer is small,

these classes have to share them to improve their probability scores.

Hence, we set smaller ratios for narrow layers.

Finally, with the learning rate 𝜂𝑙,𝑚 for the parameters w𝑙,𝑚 of

each𝑚-th neuron of the 𝑙-th layer, the client 𝑘 runs update:

w𝑘
𝑙,𝑚

= w𝑘
𝑙,𝑚

− 𝜂𝑙,𝑚∇w𝑘
𝑙,𝑚

𝑓𝑘 (w𝑘 ), (18)

where ∇w𝑘
𝑙,𝑚

𝑓𝑘 (w𝑘 ) denotes the gradient over a mini-batch of sam-

ples randomly sampled from the local dataset D𝑘 . After performing

𝐸 local iterations, the client 𝑘 uploads the locally updated model

w𝑘 to the server, and the server aggregates received local models

3073



KDD ’24, August 25–29, 2024, Barcelona, Spain Haozhao Wang et al.

into the global model w:

w =

𝐾𝑡∑︁
𝑘=1

𝐷𝑘∑𝐾𝑡

𝑘=1
𝐷𝑘

w𝑘 , (19)

where 𝐾𝑡 is the number of the 𝑡-th round selected clients.

6 Theoretical Analysis
Besides, we make the following assumptions for these objectives

which are widely adopted in FL [5, 40].

Assumption 1. (L-smoothness). The objective function 𝐹𝑛 is L-
smooth with Lipschitz constant 𝐿 > 0, i.e., ∥∇𝐹𝑛 (w) − ∇𝐹𝑛 (w′)∥2 ≤
𝐿∥w −w′∥2 for all w, w′.

Assumption 2. (Bounded Variance). For all parameters w, the
variance of the local stochastic gradient in each client is bounded by
𝜎2

𝑙
: E(∥∇𝑓𝑛 (w) − ∇𝐹𝑛 (w)∥2) ≤ 𝜎2

𝑙
. Besides, the norm of gradient is

bounded by𝑀 : ∥∇𝐹𝑛 (w)∥2 ≤ 𝑀2.

Based on the above assumptions, we have the following theory

for the convergence of the proposed algorithm.

Theorem 3. Consider problem (1) under Assumption 1 and 2. If

the learning rate 𝜂 diminishes with O(
√︃
𝐾
𝑇
), then the global model

w𝑡 obtained by Algorithm 1 achieves asymptotic convergence, i.e.,

1

𝑇

𝑇∑︁
𝑡=1

E∥∇𝐹 (w𝑡 )∥2

2
≤

2(𝐹 (w1) − 𝐹∗))
√︁
𝜇max (𝑀max − 1) + 1

√
𝐾𝑇

+
𝜇2

max (𝜇max (𝑀max − 1) + 1)𝜎2

𝑙
𝐿

(𝜇max +𝑀min − 1)2𝑟
√
𝐾𝑇

+ 4𝜇3

max (𝜇max (𝑀max − 1) + 1)2𝐸2𝑀2

(𝜇max +𝑀min − 1)3

√
𝑇

+ (1 − 𝑟 )𝜇2

max (𝜇max (𝑀max − 1) + 1)𝑀2𝐿

(𝜇max +𝑀min − 1)2𝑟
√
𝑇

, (20)

where 𝑟 is the ratio of participated clients in each round.

With Theorem 3, we ensure the convergence of the global model.

Although the convergence rate does not receive improvement over

baselines, empirical results demonstrate the effectiveness of our

method. The details of the proof can be found in Appendix B.

7 Experiment
In this section, we evaluate the accuracy of FedNLR and compare

it with several advanced methods in various datasets and NonIID

settings. Due to the page limitation, more details are available in

the supplementary materials.

7.1 Setup
Dataset. We explore 3 benchmark datasets: CIFAR-10[20], CIFAR-

100[20], CINIC[4]. For both of them, we use the two NonIID data

settings: the Dirichlet distribution[46] and the shards-based seg-

mentation [33]. In the Dirichlet (𝑛, 𝛼) function, smaller 𝛼 leads to

more NonIID level. In the Shards (𝑛, 𝑆) function, 𝑆 represents the
number of classes in one client. For example, Shards (20, 2) with

CIFAR-10 dataset will allocate each client with 2 classes of images.

Notice that both functions are unbalanced, allocating un-uniform

size of data across clients. Furthermore, we choose different scenar-

ios of data distribution by setting 𝛼 and 𝑆 in [2, 4, 6, 8] to simulate

different levels of real-world NonIID scenarios.

Baseline. Baselines include FedAvg[32], FedProx[24], Scaffold[17],
FedNova[40], FedRS[26], FedLC[47], FedDyn[1], CCVR[30].

Hyper-parameter Settings.The hyper-parameters for eachmethod

were set according to their respective original papers. For instance,

the hyper-parameter for FedProx is set at 0.01, for FedDyn is 0.1,

for FedLC is 1, for FedRS is 0.5, and for FedNLR, it is self-adjusted
using an empirical formula as outlined in Eq. (17). The fine-tuned

empirical formula dynamically adjusts 𝜇𝑙 based on layer depth and

neuron count. The process of fine-tuning the specific factors is

further explained in Sec. 7.2.

Configurations. Unless otherwise mentioned, we set the number

of local training epoch 𝐸 = 2, communication round 𝑇 = 500,

number of clients 𝑛 = 20, participation ration 0.4 in each round;

batch size 64, learning rate 𝜂 = 0.01. We develop a customized

Stochastic Gradient Descent (SGD) optimizer, capable of handling

vector-form learning rates. All methods run without momentum or

weight decay, except FedDyn requiring a weight decay of 0.1 and

running 200 rounds. These experiments are run on the hardware of

4 NVIDIA GeForce RTX 3090 GPUs and the software framework of

PyTorch 2.0. Each experimental setting is run twice, with the final 5

rounds’ ACC(accuracy) averaged and standard variance calculated.

We employ VGG-9 [21] as the basic model architecture, initialized

using the Kaiming uniform function for convolutional layers and

the Xavier normal function for linear layers.

7.2 Result and Analysis
Better Performance. As shown in Tab. 1 and Tab. 2, under all

NonIID conditions, FedNLR or "FedNLR + FedDyn" demonstrates

the best performance on both datasets. Although in a few cases,

FedNLR’s performance is not as good as FedDyn’s, the combination

with FedDyn leads to significant improvement, achieving the opti-

mal state. In the CIFAR-100-Dirichlet(20, 0.05), FedNLR achieves a
3.9% promotion compared with FedAvg, while other methods only

raise around 1%. After enough rounds of training, other methods

don’t show an improvement because they are not designed to focus

on convergence accuracy. Even FedDyn has made great improve-

ments in the CIFAR-10-Dirichlet(20, 0.5), the addition of FedNLR still
shows gains of 1.1%. Moreover, the improvements of FedNLR grow

with the degree of NonIID, as proved by the CIFAR-100-Dirichlet(20,
0.05) and the less NonIID CIFAR-100-Dirichlet(20, 0.5).
Robustness on heterogeneous data. We find that FedNLR exhib-

ited greater performance improvements not only in situations with

higher NonIID degrees but also in a larger number of categories,

inferring from the comparison of the CIFAR-100-Dirichlet(20, 0.05)
and the fewer categories of CIFAR-10-Dirichlet(20, 0.05). This indi-
cates that FedNLR has significant advantages in handling different

types and complexities of data distributions. On the other hand,

we have run the experiment settings in different learning rates

as shown in Fig. 2, in which the resulting improvements are not

affected by the learning rate. Furthermore, when the client par-

ticipation ratio decreases, the NonIID influences more strongly

because of the unbalanced local datasets. We use 100 clients and

choose 10% participation in each round and calculate the average

and variance of the last 30 rounds. As shown in Tab. 3, FedNLR
presents a consistent improvement across different NonIID levels.

In the CIFAR-10-Shards(100, 4), FedDyn improves 4.57% and can

3074



FedNLR: Federated Learning with Neuron-wise Learning Rates KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 1: The comparison of final test accuracy on the two datasets. The best result in each setting is bolded.
Method CIFAR-10(%) CIFAR-100(%)

Shards (𝑛, 𝑆) (20, 2) (20, 4) (20, 6) (20, 8) (20, 20) (20, 40) (20, 60) (20, 80)

FedAvg 72.11±0.61 78.10±0.52 81.26±0.29 81.38±0.19 45.51±0.59 49.40±0.13 49.64±0.45 50.44±0.09

FedProx 71.78±0.32 78.90±0.28 80.99±0.17 81.42±0.14 45.17±0.37 48.43±0.34 49.53±0.36 50.71±0.06

Scaffold 71.76±0.20 78.11±0.46 81.19±0.15 81.13±0.34 45.64±0.32 48.92±0.08 49.78±0.20 51.81±0.32

FedNova 71.64±0.28 77.82±0.33 81.94±0.12 81.61±0.16 46.02±0.44 48.80±0.20 49.88±0.25 50.48±0.39

FedRS 72.13±0.82 78.53±0.28 81.99±0.15 80.95±0.17 46.21±0.59 49.41±0.17 50.75±0.37 51.34±0.19

FedLC 71.24±0.18 78.30±0.33 81.53±0.24 81.74±0.27 46.04±0.53 49.35±0.20 50.24±0.16 51.60±0.24

FedDyn 68.33±1.52 80.65±0.59 84.71±0.40 85.35±0.21 28.88±0.26 31.18±0.30 31.32±0.23 34.09±0.20

FedNLR 74.11±0.48 80.10±0.37 82.77±0.26 82.24±0.12 47.93±0.49 50.20±0.28 51.79±0.62 52.46±0.17
FedDyn + FedNLR 73.27±0.33 81.93±0.30 85.67±0.26 85.89±0.08 35.03±0.15 33.86±0.28 33.44±0.42 35.99±0.30

Dirichlet (𝑛, 𝛼) (20, 0.05) (20, 0.1) (20, 0.3) (20, 0.5) (20, 0.05) (20, 0.1) (20, 0.3) (20, 0.5)

FedAvg 65.42±1.14 72.66±0.20 79.05±0.20 80.13±0.24 40.71±0.55 44.12±0.15 48.89±0.44 50.62±0.55

FedProx 64.02±2.04 72.51±0.76 78.49±0.20 80.20±1.27 41.10±0.62 43.82±0.31 48.49±0.18 50.14±0.77

Scaffold 63.22±3.49 71.84±0.48 78.94±0.17 79.86±0.66 41.86±0.19 44.76±0.63 49.20±0.61 50.26±0.36

FedNova 63.14±1.08 72.58±0.44 79.13±0.42 79.30±2.67 41.49±0.51 44.00±0.48 49.40±0.18 50.72±0.21

FedRS 64.98±0.81 71.54±0.26 78.70±0.21 80.07±0.27 41.25±0.55 44.91±0.36 49.53±0.23 51.26±0.17

FedLC 65.06±1.07 72.31±0.38 78.92±0.23 80.95±0.28 41.74±0.30 44.83±0.59 49.10±0.41 50.20±0.62

FedDyn 51.06±1.22 72.15±0.64 83.26±0.13 84.70±0.30 29.09±0.31 30.64±0.18 33.10±0.19 35.57±0.27

FedNLR 66.11±0.89 73.92±0.60 80.61±0.11 81.65±0.22 44.67±0.48 47.14±0.48 51.29±0.28 51.77±0.15
FedDyn + FedNLR 48.29±2.14 75.02±0.48 84.17±0.36 85.82±0.31 34.37±0.73 34.78±0.48 35.59±0.33 36.52±0.25

Table 2: The accuracy on the CINIC dataset.

Method

Shards(S) Dir(𝛼)

2 4 0.05 0.1

FedAvg 50.88 53.03 43.37 47.51

FedProx 52.12 52.75 43.17 46.74

Scaffold 52.07 52.42 43.33 46.91

FedNova 51.07 52.54 41.55 46.63

FedRS 51.19 52.13 44.47 46.72

FedLC 51.49 52.81 43.64 47.67

CCVR 50.59 51.31 42.66 46.93

FedDyn 47.56 55.99 42.83 50.22

FedNLR 52.17 52.30 43.37 47.81

FedDyn+FedNLR 49.49 56.24 44.69 51.93

gain an additional 2.91% when integrated with FedNLR. Combining

FedDyn with FedNLR performs the best in these NonIID situations.

Orthogonal Combination with other algorithms. FedNLR can

be divided into two methods: the aggregation method, which can

be discarded, and the learning rate scheduler, which can be inte-

grated with many other methods, such as FedRS, FedLC, FedNova,

and FedDyn. With only a few lines of code, the customized SGD

is capable of handling a vector-form learning rate for one layer.

Using the customized SGD, other methods are compatible with the

learning rate scheduler. The integration of FedDyn with FedNLR
demonstrates the capability to achieve state-of-the-art accuracy,

particularly under conditions of low Non-IID levels. This suggests

a synergistic effect between the two methods, enhancing model

performance in scenarios characterized by more homogeneous data

distributions. Because the accuracy of a model is directly correlated

with the utility of the generated activation map: a more accurate

model yields a more informative activation map. Consequently, a

Table 3: 10% clients participate in each round. The compari-
son of final test accuracy on the two datasets.

Method CIFAR-10(%)

Shards (𝑛, 𝑆) (100, 4) (100, 8)

FedAvg 72.94±1.33 75.03±1.27

FedProx 72.33±1.28 75.27±1.19

Scaffold 72.60±1.35 75.63±0.97

FedNova 72.61±1.44 74.65±1.13

FedRS 72.83±1.16 74.88±1.00

FedLC 72.72±1.25 74.32±1.07

FedDyn 77.51±1.84 83.32±0.51

FedNLR 73.38±1.48 76.14±1.31

FedDyn + FedNLR 80.42±1.59 85.26±0.57

Dirichlet (𝑛, 𝛼) (100, 0.1) (100, 1)

FedAvg 63.30±2.31 77.83±0.95

FedProx 62.42±2.37 77.03±1.71

Scaffold 61.79±2.34 77.27±0.71

FedNova 55.49±5.80 78.21±0.97

FedRS 63.58±2.42 77.98±0.92

FedLC 63.17±2.59 77.97±0.66

FedDyn 63.98±2.39 85.22±0.34

FedNLR 63.40±2.51 78.73±1.47

FedDyn + FedNLR 64.16±2.37 86.10±0.39

learning rate scheduler derived from this enhanced activation map

can provide more insightful guidance for model training.

7.3 Hyper-Parameter Sensitivity Analysis and
Ablation Study

Scale Factor Normalization with Range Control. The purpose

3075



KDD ’24, August 25–29, 2024, Barcelona, Spain Haozhao Wang et al.

0.005 0.01 0.05
Learning Rate

40

42

44

46

48

50

Te
st

 A
cc

ur
ac

y 
(%

)

40.04

43.05

40.71

44.67
45.39

48.78FedAvg
FedNLR

Figure 2: Results of FedNLR using different learning rates with
CIFAR-100-Dirichlet(20, 0.05).

0 1 2 3 4 5 6 7 8
Layer Index

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Te
m

pe
ra

tu
re

Figure 3: The temperature 𝑇𝑙 for each layer 𝑙 .

of the 𝜇 is to limit the scale factor for learning rates of a weighted

layer in an interval where the largest scale factor equals the mul-

tiplication of 𝜇 and the smallest scale factor. Also, the average

value of the scale factor in one layer is 1. As depicted in Fig. 3, the

temperature of the SoftMax function is used for the scale factor

normalization. The variance of temperature shows the crucial role

of 𝜇 in reducing manual setting efforts. Empirically, the second

layer typically requires the highest temperature, because it consists

of the most neurons across all layers.

Ablation Experiment of Scaling Each Layer. Fig. 4 shows the
ablation experiment results, proving each layer’s performance im-

provement. Most points are above the red line of FedAvg, proving

the hyperparameter’s insensitivity. There is not a constant num-

ber capable of continuously improving performance, but in most

situations, 1.75 and 2 show improvements. And the hidden layers’

variance is bigger than the shallow layers and the classifier. This

is evidence that hidden layers’ neuron values vary most concern-

ing the change of classes. Intuitively, if we simply sum up all the

improvements of all layers with manually chosen 𝜇, then the final

accuracy should be best. However, Fig. 5 proves that the setting

of the math formula Eq. (17) calculated 𝜇 is better, while manu-

ally chosen 𝜇 doesn’t perform well due to the interaction attribute

among all layers inside neural networks. Also, if we only con-

sider the width or depth, then the performance is not comparable

with the best result. Owing to constraints in computational power,

we have identified an optimal combination of hyper-parameters

within a limited range. As the two parameters increase from 1 to

0 1 2 3 4 5 6 7 8
Layer Index

38.00

40.00
40.71

42.00

44.00

Ac
cu

ra
cy

 (%
)

=1.25
=1.5
=1.75

=2
=2.25
=2.5

=2.75
=3

Figure 4: Experimental result of 9 layers, with individ-
ual hyper-parameter 𝜇, under the setting of CIFAR-100-
Dirichlet(20, 0.05).

Man
ua

l
1.7

5

(0.
45

,0) (1,
0)

(0,
0.3

)
(0,

1)

(0.
45

,0.
3)

(0.
5,0

.5) (1,
1)

(2,
2)

(4,
4)

(6,
6)

(a1, a2) of the Emperical Formula

42

43

44

45

46

47

Te
st

 A
cc

ur
ac

y 
(%

)

42.7 42.8
42.25

43.81

42.47

44.5 44.67

43.79

45.8 45.7
46.2346.0

Figure 5: Performance improvements of FedNLR with differ-
ent 𝜇 under the setting of CIFAR-100-Dirichlet(20, 0.05).

4 and 6, the average accuracy increases to 46.23, and then slightly

decreases, but the overall performance is still optimal. This may

indicate that the moderate increase of depth and width parameters

can improve the model performance, but the effect will decrease

after exceeding a certain range. The main experiment was initially

conducted using (0.45, 0.3). However, potential improvements are

expected if this is changed to (1, 1). Consequently, we configure the
equation Eq. (17) as the following empirical mathematical formula:

𝜇𝑙 = 1 + 𝑙
𝐿
+ log

10
(𝑀𝑙 ), which also applies to other models simply.

8 Conclusion
This paper conducts research on the problem of model drift in fed-

erated learning for training deep neural networks. We provide a deep

understanding of the formation process of model drift. Specifically,

instead of viewing the neural network as a whole, we decompose it

into a set of neurons and track the changes of each neuron during

local training. We identify that each class is bound to a specific

set of neurons and their activation can be reduced during the local

training process when this class is not included by the client. Based

on this motivation, we propose a simple yet effective method named

FedNLR which adopts neuron-wise learning rates to mitigate the

3076



FedNLR: Federated Learning with Neuron-wise Learning Rates KDD ’24, August 25–29, 2024, Barcelona, Spain

drift of neurons. Our theoretical results guarantee the convergence

of FedNLR and empirical results also demonstrate its effectiveness.

Despite the analysis for understanding the evolution of specific

neurons, this paper is limited to the two-layer neural networkwhich

has great potential to be unleashed. Recently, many explanation

methods for deep neural networks have been proposed, which may

shed light on expand the analysis. For example, we may utilize

the Shapley value to identify accurate bound neurons to specific

samples. We leave them as the future work.

Acknowledgments
This work is supported in part by National Natural Science Founda-

tion of China under grants 62302184, 62376103, 62206102, Science

and Technology Support Program of Hubei Province under grant

2022BAA046, Ant Group through CCF-Ant Research Fund,and

two grant from the Research Grants Council of the Hong Kong

Special Administrative Region, China (Project No. PolyU15222621,

PolyU15225023). Besides, the research is supported under the Na-

tional Key R&DProgram of China (2022ZD0160201) and the RIE2020

Industry Alignment Fund - Industry Collaboration Projects (IAF-

ICP) Funding Initiative, as well as cash and in-kind contributions

from the industry partner(s).

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina,

Paul N. Whatmough, and Venkatesh Saligrama. 2021. Federated Learning Based

on Dynamic Regularization. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

[2] Muhammad Ammad-ud-din, Elena Ivannikova, Suleiman A. Khan,Were Oyomno,

Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan. 2019. Federated Collaborative

Filtering for Privacy-Preserving Personalized Recommendation System. CoRR
abs/1901.09888 (2019).

[3] Zachary Charles and Jakub Konečný. 2021. Convergence andAccuracy Trade-Offs

in Federated Learning and Meta-Learning. In The 24th International Conference
on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual
Event. 2575–2583.

[4] Luke Nicholas Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey.

2018. CINIC-10 is not ImageNet or CIFAR-10. CoRR abs/1810.03505 (2018).

[5] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. 2020. Personalized

Federated Learning with Moreau Envelopes. In Proceedings of Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems, NeurIPS.

[6] Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. 2021. Exploring deep neu-

ral networks via layer-peeled model: Minority collapse in imbalanced training.

Proceedings of the National Academy of Sciences 118, 43 (2021), e2103091118.
[7] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. 2022.

FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and

Correction. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24. 10102–10111.

[8] Yonghai Gong, Yichuan Li, and Nikolaos M. Freris. 2022. FedADMM: A Robust

Federated Deep Learning Framework with Adaptivity to System Heterogeneity.

In 38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala
Lumpur, Malaysia, May 9-12, 2022. 2575–2587.

[9] Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, and Vishal M. Patel.

[n. d.]. Multi-Institutional Collaborations for Improving Deep Learning-Based

Magnetic Resonance Image Reconstruction Using Federated Learning. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021. 2423–2432.

[10] X. Y. Han, Vardan Papyan, and David L. Donoho. 2022. Neural Collapse Un-

der MSE Loss: Proximity to and Dynamics on the Central Path. In The Tenth
International Conference on Learning Representations, ICLR, Virtual, April 25-29,
2022.

[11] Hangfeng He and Weijie J. Su. 2022. A Law of Data Separation in Deep Learning.

CoRR abs/2210.17020 (2022).

[12] Ming Hu, Yue Cao, Anran Li, Zhiming Li, Chengwei Liu, Tianlin Li, Mingsong

Chen, and Yang Liu. 2024. FedMut: Generalized Federated Learning via Stochastic

Mutation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
12528–12537.

[13] Ming Hu, Zeke Xia, Dengke Yan, Zhihao Yue, Jun Xia, Yihao Huang, Yang Liu,

and Mingsong Chen. 2023. GitFL: Uncertainty-Aware Real-Time Asynchronous

Federated Learning Using Version Control. In In Proceedings of IEEE Real-Time
Systems Symposium (RTSS). IEEE, 145–157.

[14] Ming Hu, Peiheng Zhou, Zhihao Yue, Zhiwei Ling, Yihao Huang, Anran Li,

Yang Liu, Xiang Lian, and Mingsong Chen. 2024. FedCross: Towards Accurate

Federated Learning via Multi-Model Cross-Aggregation. In IEEE International
Conference on Data Engineering (ICDE). IEEE, 2137–2150.

[15] Like Hui, Mikhail Belkin, and Preetum Nakkiran. 2022. Limitations of Neural Col-

lapse for Understanding Generalization in Deep Learning. CoRR abs/2202.08384

(2022).

[16] Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. 2023. FedExP: Speed-

ing Up Federated Averaging via Extrapolation. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5.

[17] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-

bastian U. Stich, and Ananda Theertha Suresh. [n. d.]. SCAFFOLD: Stochastic

Controlled Averaging for Federated Learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event.
5132–5143.

[18] Geeho Kim, Jinkyu Kim, and Bohyung Han. 2022. Communication-Efficient

Federated Learningwith Acceleration of GlobalMomentum. CoRR abs/2201.03172

(2022).

[19] Jinkyu Kim, Geeho Kim, and Bohyung Han. [n. d.]. Multi-Level Branched Regular-

ization for Federated Learning. In International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA. 11058–11073.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[21] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated Learning

on Non-IID Data Silos: An Experimental Study. In ICDE. IEEE, 965–978.
[22] Qinbin Li, Bingsheng He, and Dawn Song. [n. d.]. Model-Contrastive Federated

Learning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021. 10713–10722.

[23] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and

Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks. In

Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA,
March 2-4, 2020.

[24] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. 2020. Federated optimization in heterogeneous networks.

Proceedings of Machine Learning and Systems 2 (2020), 429–450.
[25] Xin-Chun Li, Yi-Chu Xu, Shaoming Song, Bingshuai Li, Yinchuan Li, Yunfeng

Shao, and De-Chuan Zhan. [n. d.]. Federated Learning with Position-Aware

Neurons. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. 10072–10081.

[26] Xin-Chun Li and De-Chuan Zhan. 2021. FedRS: Federated Learning with Re-

stricted Softmax for Label Distribution Non-IID Data. In KDD ’21: The 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021. 995–1005.

[27] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. [n. d.]. FedDG:

Federated Domain Generalization on Medical Image Segmentation via Episodic

Learning in Continuous Frequency Space. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. 1013–1023.

[28] Jianfeng Lu and Stefan Steinerberger. 2020. Neural Collapse with Cross-Entropy

Loss. CoRR abs/2012.08465 (2020).

[29] Kangyang Luo, Xiang Li, Yunshi Lan, and Ming Gao. 2023. GradMA: A Gradient-

Memory-based Accelerated Federated Learning with Alleviated Catastrophic

Forgetting. The IEEE/CVF Conference on Computer Vision and Pattern Recognition,
(CVPR 2023), Vancouver, Canada (2023).

[30] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. 2021.

No Fear of Heterogeneity: Classifier Calibration for Federated Learning with

Non-IID Data. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual. 5972–5984.

[31] Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter

Richtárik. 2020. From Local SGD to Local Fixed-Point Methods for Federated

Learning. In Proceedings of the 37th International Conference on Machine Learning,
ICML, 13-18 July, Virtual Event. 6692–6701.

[32] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. 1273–1282.
[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works fromDecentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, AISTATS.

[34] Vardan Papyan. [n. d.]. Traces of Class/Cross-Class Structure Pervade Deep

Learning Spectra. Journal of Machine Learning Research, 2020, 252(21):1–64.

([n. d.]).

[35] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays.

2019. Federated Learning for Emoji Prediction in a Mobile Keyboard. CoRR

3077



KDD ’24, August 25–29, 2024, Barcelona, Spain Haozhao Wang et al.

abs/1906.04329 (2019).

[36] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,

Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. 2021. Adaptive Fed-

erated Optimization. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7.

[37] Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, and Dacheng Tao. 2023. Fed-

Speed: Larger Local Interval, Less Communication Round, and Higher General-

ization Accuracy. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5.

[38] Chunnan Wang, Xiang Chen, Junzhe Wang, and Hongzhi Wang. June 18-24, 2022.

ATPFL: Automatic Trajectory Prediction Model Design under Federated Learning

Framework. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, New Orleans, LA, USA. 6553–6562.

[39] Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, Yufeng Zhan, and Zhi-

gang Zeng. 2023. DaFKD: Domain-aware Federated Knowledge Distillation. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023,
Vancouver, BC, Canada, June 17-24, 2023. IEEE, 20412–20421.

[40] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020.

Tackling the Objective Inconsistency Problem in Heterogeneous Federated Op-

timization. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual.

[41] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael G. Rabbat. 2020.

SlowMo: Improving Communication-Efficient Distributed SGD with Slow Mo-

mentum. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020.

[42] FeijieWu, Song Guo, Zhihao Qu, Shiqi He, Ziming Liu, and Jing Gao. 2023. Anchor

Sampling for Federated Learning with Partial Client Participation. In Proceedings
of the 40th International Conference on Machine Learning. 37379–37416.

[43] Feijie Wu, Song Guo, Haozhao Wang, Haobo Zhang, Zhihao Qu, Jie Zhang, and

Ziming Liu. 2023. From Deterioration to Acceleration: A Calibration Approach

to Rehabilitating Step Asynchronism in Federated Optimization. IEEE Trans.
Parallel Distributed Syst. 34, 5 (2023), 1548–1559.

[44] An Xu, Wenqi Li, Pengfei Guo, Dong Yang, Holger Roth, Ali Hatamizadeh, Can

Zhao, Daguang Xu, HengHuang, and Ziyue Xu. [n. d.]. Closing the Generalization

Gap of Cross-silo Federated Medical Image Segmentation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022. 20834–20843.

[45] Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. 2021. FedCM:

Federated Learning with Client-level Momentum. CoRR abs/2106.10874 (2021).

[46] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald,

Nghia Hoang, and Yasaman Khazaeni. 2019. Bayesian Nonparametric Federated

Learning of Neural Networks. In Proceedings of the 36th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 97), Kamalika

Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 7252–7261.

[47] Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, ShuangWu, Shouhong Ding, and ChaoWu.

[n. d.]. Federated Learning with Label Distribution Skew via Logits Calibration.

In International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA. 26311–26329.

A Verification Experiment
To validate the motivations, we propose training a 2-layer MLPwith

25 hidden neurons on theMnist dataset, facilitating the visualization

of neuron activations. In this experiment, each client is assigned

a single data category to create a NonIID setting. Moreover, we

demonstrate the change in activation states before and after local

training on clients 1 and 2 by selecting amodel from an intermediate

training phase, where the chosen model has reached an accuracy of

88%. Below, we verify our viewpoints by comparing the activation

values of the model’s neurons on the data of clients 1 and 2, both

before local training and post-local training; these activation values

are presented in Table 4.

The existence of bounded neurons. Based on the original activation
values on both clients, it can be seen that there is a significant

difference in the bounded neurons between client1 and client2, thus

validating our theory about bounded neurons.

The existence of neuron drift. It can be observed that the activation
values of the model’s bounded neurons on client2 decrease after

local training on client1 using FedAvg.

Our method mitigates neuron drift. Based on the activation values

after local training on client1 using FedNLR, it can be seen that the

activation values of the bounded neurons also decrease on client2,

while the extent of the decrease is smaller compared to FedAvg,

thereby demonstrating that our method alleviates neuron drift.

B Proof of Theorem 3
B.1 Lemmas

Lemma 4. We denote 𝜂𝑘 by the learning rates for all parame-
ters 𝜂𝑘 = [𝜂𝑘

1,1
, . . . , 𝜂𝑘

1,𝑀1

, . . . , 𝜂𝑘
𝐿,𝑀𝐿

]𝑇 . Let 𝜇max = max(𝜇1, . . . , 𝜇𝐿),
𝑀min = min{𝑀1, . . . , 𝑀𝐿}, and 𝑀max = max{𝑀1, . . . , 𝑀𝐿}. If 𝜂max
is the maximum learning rate for all parameters of all clients, i.e.,

𝜂max = max(max(𝜂1), . . . ,max(𝜂𝐾 )),

then its upper bound is 𝜂max ≤ 𝜇max𝜂/(𝜇max +𝑀min − 1). If 𝜂min is
the minimum learning rate for all parameters of all clients, i.e., 𝜂min =

min(min(𝜂1), . . . ,min(𝜂𝐾 )), then its lower bound is𝜂/(𝜇max (𝑀max−
1) + 1) ≤ 𝜂min.

Proof : Based on the definition of learning rate 𝜂 in (15), i.e.,

𝑞𝑙,𝑚 =
𝑒

¯ℎ𝑙,𝑚/𝑇𝑙∑𝑀𝑙

𝑖=1
𝑒

¯ℎ𝑙,𝑖/𝑇𝑙
, 𝜂𝑙,𝑚 = 𝜂 · 𝑞𝑙,𝑚, (21)

we can directly obtain that

∑𝑀𝑙

𝑚=1
𝜂𝑙,𝑚 = 𝜂 for each layer 𝑙 . Further,

based on the definition of 𝜇𝑙 in (16), i.e., 𝜇𝑙 =
𝜂𝑙,max

𝜂𝑙,min

, we can compute

the upper bound of 𝜂𝑙,max
as

𝜂𝑙,max
≤ 𝜇𝑙𝜂/(𝜇𝑙 +𝑀𝑙 − 1) (22)

when the learning rates of all𝑀𝑙 −1 neurons are 𝜂𝑙,min
. By denoting

𝜇max = max 𝜇1, . . . , 𝜇𝐿 and 𝑀min = min𝑀1, . . . , 𝑀𝐿 , we have the

upper bound of the learning rate 𝜂𝑙,max
as

𝜂max ≤ 𝜇max𝜂/(𝜇max +𝑀min − 1) . (23)

Similarly, we have the lower bound of the learning rate 𝜂𝑙,min
as

𝜂/(𝜇max (𝑀max − 1) + 1) ≤ 𝜂min, (24)

which completes the proof.

Lemma 5. The difference between the partially averaged gradient
and the global gradient is bounded, i.e.,

E

 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ ) −
1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

≤ 𝜂2

max𝑀
2

1 − 𝑟
𝑟

.

Proof : We denote 1(𝑘) by the indicator function where 1(𝑘) = 1

when the 𝑘-th client is selected and otherwise, 1(𝑘) = 0. We have

E

 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ ) −
1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

=E

 1

𝐾𝑟

𝐾∑︁
𝑘=1

1(𝑘)𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ ) −
1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

=E

 1

𝐾

𝐾∑︁
𝑘=1

(1 − 1(𝑘)
𝑟

)𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

3078



FedNLR: Federated Learning with Neuron-wise Learning Rates KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 4: The activation of hidden neurons. The activation of bolded fonts represent bounded neurons. Activation change
denotes the value change of bounded neurons on data of client 2 (C-2) between before and after training on client 1 (C-1).

NeuronID 1-8 9-16 17-25

Original activation 0.39 0.16 0.12 0.24 0.17 0.85 0.1 0.49 0.02 0.32 0.34 0.02 0.07

on data of C-1 0.02 0 0 0.01 0 0.02 0.31 0.24 0.35 0.29 0.46 0.21 /

Original activation 0.07 0.33 0.04 0.06 0 0.1 0.23 0.14 0.64 0.22 0 0.2 0.07

on data of C-2 0.56 0 0 0.31 0 0.01 0.23 0.01 0 0.19 0.09 0.52 /

Activation on C-2 0.08 0.31 0.04 0.08 0 0.18 0.19 0.18 0.61 0.25 0 0.17 0.07

After C-1 via FedAvg 0.50 0 0 0.31 0 0.01 0.22 0.01 0.01 0.14 0.11 0.46 /

Activation Change -0.03 -0.06 -0.06

Activation on C-2 0.08 0.31 0.04 0.08 0 0.19 0.19 0.19 0.63 0.25 0 0.17 0.07

After C-1 via FedNLR 0.53 0 0 0.31 0 0.01 0.22 0.01 0.01 0.15 0.11 0.48 /

Activation Change -0.01 -0.03 -0.04

≤ 1

𝐾

𝐾∑︁
𝑘=1

E(1 − 1(𝑘)
𝑟

)2

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

≤
𝜂2

max

𝐾

𝐾∑︁
𝑘=1

E(1 − 1(𝑘)
𝑟

)2∥∇𝐹𝑘 (w𝑘𝑡∗ )∥
2

2

=
𝜂2

max

𝐾

𝐾∑︁
𝑘=1

E
[
𝑟 (1 − 1

𝑟
)2∥∇𝐹𝑘 (w𝑘𝑡∗ )∥

2

2
+ (1 − 𝑟 )∥∇𝐹𝑘 (w𝑘𝑡∗ )∥

2

2

]
≤𝜂2

max
𝑀2

1 − 𝑟
𝑟

, (25)

which completes the proof.

B.2 Proof of Theorem 3
Without losing generality, we consider the data size 𝐷𝑖 = 𝐷 𝑗 , for

any two clients 𝑖 and 𝑗 . We denote the local iteration number 𝑒

of the 𝑡-th round as 𝑡∗ = 𝑡𝐸 + 𝑒 . We also consider the number of

participated clients K𝑡 remains unchanged across different rounds

with a ratio 𝑟 from total 𝐾 clients. Besides, we introduce another

model for ease of analysis as

v𝑡∗ =
1

𝐾𝑟

∑︁
𝑘∈K𝑡

w𝑘𝑡∗ = v𝑡∗−1 −
1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝑓𝑘 (w𝑘𝑡∗−1
), (26)

where ⊙ denotes the element-wise product. 𝜂𝑘 denotes the vec-

tor of the learning rates for the parameters of all neurons 𝜂𝑘 =

[𝜂𝑘
1,1
, . . . , 𝜂𝑘

1,𝑀1

, . . . , 𝜂𝑘
𝐿,𝑀𝐿

]𝑇 . Obviously, we have v𝑡∗ = w𝑡∗ as 𝑡∗ ≡
0 (mod 𝐸). Then, based on Assumption 1, we have

E𝐹(v𝑡∗+1) ≤E𝐹(v𝑡∗)+E<∇𝐹𝑘 (v𝑡∗), v𝑡∗+1−v𝑡∗ >+𝐿
2

E∥v𝑡∗+1−v𝑡∗∥2

2
. (27)

According to the updated formula (26), we have

E∥v𝑡∗+1 − v𝑡∗ ∥2

2
= E∥ 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝑓𝑘 (w𝑘𝑡∗ )∥
2

2

=E
 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝑓𝑘 (w𝑘𝑡∗ ) −
1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )

+ 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

=
(𝑎)
E
 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

+ E
 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝑓𝑘 (w𝑘𝑡∗ ) −
1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

=
(𝑏 )

1

𝐾2𝑟2
E

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙
(
∇𝑓𝑘 (w𝑘𝑡∗ ) − ∇𝐹𝑘 (w𝑘𝑡∗ )

)2

2

+ E
 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

=
(𝑐 )
E

 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

+ 1

𝐾2𝑟
E

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙
(
∇𝑓𝑘 (w𝑘𝑡∗ ) − ∇𝐹𝑘 (w𝑘𝑡∗ )

)2

2

≤
(𝑑 )

𝜂2

max

𝐾2𝑟
E

𝐾∑︁
𝑘=1

∇𝑓𝑘 (w𝑘𝑡∗ )−∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

+E
 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

≤
(𝑒 )

𝜂2

max
𝜎2

𝑙

𝐾𝑟
+E

 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

=
(𝑓 )
E

 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

+
𝜂2

max
𝜎2

𝑙

𝐾𝑟
+ E

 1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ ) −
1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

≤
(𝑔)

𝜂2

max
𝜎2

𝑙

𝐾𝑟
+ 𝜂2

max
𝑀2

1 − 𝑟
𝑟

+ E
 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

. (28)

where (a) and (f) holds because E∥𝑎∥2

2
= E∥𝑎 − E𝑎∥2

2
+ ∥E𝑎∥2

2
. (b)

is due to E𝑓𝑘 (w𝑘𝑡∗ ) = ∇𝐹𝑘 (w𝑘𝑡∗ ). (c) holds because E
∑
𝑘∈K𝑡

𝑎𝑘 =

𝑟E
∑𝐾
𝑘=1

𝑎𝑘 . 𝜂max in the inequality (d) denotes the upper bound of

the learning rate provided in Lemma 4. (e) is derived by Assump-

tion 2. (g) is based on Lemma 5. We further note that

E < ∇𝐹 (v𝑡∗ ), v𝑡∗+1 − v𝑡∗ >

=E < ∇𝐹 (v𝑡∗ ),−
1

𝐾𝑟

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙ ∇𝑓𝑘 (w𝑘𝑡∗ ) >

= − E
𝐿∑︁
𝑙=1

𝑀𝑙∑︁
𝑚=1

1

1

𝐾

∑𝐾
𝑘=1

𝜂𝑘
𝑙,𝑚

<
1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∇𝐹 (v𝑡∗ )𝑙,𝑚,

1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∇𝐹𝑘 (w𝑘𝑡∗ )𝑙,𝑚 >= −1

2

E
𝐿∑︁
𝑙=1

𝑀𝑙∑︁
𝑚=1

1

1

𝐾

∑𝐾
𝑘=1

𝜂𝑘
𝑙,𝑚

3079



KDD ’24, August 25–29, 2024, Barcelona, Spain Haozhao Wang et al.

(
∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∇𝐹 (v𝑡∗ )𝑙,𝑚 ∥2

2
+ ∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∇𝐹𝑘 (w𝑘𝑡∗ )𝑙,𝑚 ∥2

2

− ∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∇𝐹 (v𝑡∗ )𝑙,𝑚 − 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∇𝐹𝑘 (w𝑘𝑡∗ )𝑙,𝑚 ∥2

2

)
= − 1

2𝐾
E

𝐿∑︁
𝑙=1

𝑀𝑙∑︁
𝑚=1

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∥∇𝐹 (v𝑡∗ )𝑙,𝑚 ∥2

2

− 1

2

E
𝐿∑︁
𝑙=1

𝑀𝑙∑︁
𝑚=1

1

1

𝐾

∑𝐾
𝑘=1

𝜂𝑘
𝑙,𝑚

∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

∇𝐹𝑘 (w𝑘𝑡∗ )𝑙,𝑚 ∥2

2

+E
𝐿∑︁
𝑙=1

𝑀𝑙∑︁
𝑚=1

1

2

𝐾

∑𝐾
𝑘=1

𝜂𝑘
𝑙,𝑚

∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘
𝑙,𝑚

(
∇𝐹 (v𝑡∗ )𝑙,𝑚−∇𝐹𝑘 (w𝑘𝑡∗ )𝑙,𝑚

)
∥2

2

≤ − 𝜂min

2𝐾
E

𝐾∑︁
𝑘=1

∥∇𝐹 (v𝑡∗ )∥2

2
− 1

2𝜂max

E∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )∥
2

2

+ 1

2𝜂min

∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙
(
∇𝐹 (v𝑡∗ ) − ∇𝐹𝑘 (w𝑘𝑡∗ )

)
∥2

2
. (29)

Bringing (29) and (29) back to (27), we have

E𝐹 (v𝑡∗+1) ≤ E𝐹 (v𝑡∗ ) −
1

2𝜂max

E∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )∥
2

2

− 𝜂min

2𝐾
E
𝐾∑︁
𝑘=1

∥∇𝐹 (v𝑡∗ )∥2

2
+ 1

2𝜂min

∥1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙
(
∇𝐹 (v𝑡∗ )−∇𝐹𝑘 (w𝑘𝑡∗ )

)
∥2

2

+
𝜂2

max
𝜎2

𝑙
𝐿

2𝐾𝑟
+
(1 − 𝑟 )𝜂2

max
𝑀2𝐿

2𝑟
+ 𝐿

2

E

 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )
2

2

≤E𝐹 (v𝑡∗ ) +
(𝐿
2

− 1

2𝜂max

)
E∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ ∇𝐹𝑘 (w𝑘𝑡∗ )∥
2

2

− 𝜂min

2𝐾
E

𝐾∑︁
𝑘=1

∥∇𝐹 (v𝑡∗ )∥2

2
+
𝜂2

max
𝜎2

𝑙
𝐿

2𝐾𝑟
+
(1 − 𝑟 )𝜂2

max
𝑀2𝐿

2𝑟

+ 1

2𝜂min

∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙
(
∇𝐹 (v𝑡∗ ) − ∇𝐹𝑘 (w𝑘𝑡∗ )

)
∥2

2
(30)

≤E𝐹 (v𝑡∗ ) −
𝜂min

2𝐾
E

𝐾∑︁
𝑘=1

∥∇𝐹 (v𝑡∗ )∥2

2
+
𝜂2

max
𝜎2

𝑙
𝐿

2𝐾𝑟
+
(1 − 𝑟 )𝜂2

max
𝑀2𝐿

2𝑟

+ 1

2𝜂min

∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙
(
∇𝐹 (v𝑡∗ ) − ∇𝐹𝑘 (w𝑘𝑡∗ )

)
∥2

2
≤ E𝐹 (v𝑡∗ )

− 𝜂min

2𝐾
E
𝐾∑︁
𝑘=1

∥∇𝐹 (v𝑡∗ )∥2

2
+

2(𝜂𝑘
max

)3𝐸2𝑀2

𝜂min

+
𝜂2

max
𝜎2

𝑙
𝐿

2𝐾𝑟
+
(1 − 𝑟 )𝜂2

max
𝑀2𝐿

2𝑟
,

where the last-second inequality holds when
𝐿
2
− 1

2𝜂max

< 0, i.e.,

𝜂max < 1

𝐿
. The last inequality holds because

E∥ 1

𝐾

𝐾∑︁
𝑘=1

𝜂𝑘 ⊙ (∇𝐹 (v𝑡∗ ) − ∇𝐹𝑘 (w𝑘𝑡∗ ))∥
2

2

≤
𝜂2

max

𝐾

𝐾∑︁
𝑘=1

E∥∇𝐹𝑘 (v𝑡∗ ) − ∇𝐹𝑘 (w𝑘𝑡∗ )∥
2

2
≤
𝜂2

max
𝐿2

𝐾

𝐾∑︁
𝑘=1

E∥v𝑡∗ −w𝑘𝑡∗ ∥
2

2

=
𝜂2

max
𝐿2

𝐾

𝐾∑︁
𝑘=1

E

 1

𝐾𝑟

𝑒∑︁
𝜏=0

∑︁
𝑘∈K𝑡

𝜂𝑘 ⊙∇𝑓𝑘 (w𝑘𝑡∗−𝑒+𝜏 )−
𝑒∑︁
𝜏=0

𝜂𝑘 ⊙∇𝑓𝑘 (w𝑘𝑡∗−𝑒+𝜏 )
2

2

≤
2𝜂2

max
𝐿2𝑒

𝐾𝑟

𝐾∑︁
𝑘=1

𝑒∑︁
𝜏=0

E
∑︁
𝑘∈K𝑡

∥𝜂𝑘 ⊙ ∇𝑓𝑘 (w𝑘𝑡∗−𝑒+𝜏 )∥
2

2

+
2𝜂2

max
𝐿2𝑒

𝐾

𝐾∑︁
𝑘=1

𝑒∑︁
𝜏=0

E∥𝜂𝑘 ⊙ ∇𝑓𝑘 (w𝑘𝑡∗−𝑒+𝜏 )∥
2

2

≤ 2(𝜂max)3𝑒

𝐾

𝑒∑︁
𝜏=0

𝐾∑︁
𝑘=1

E∥∇𝑓𝑘 (w𝑘𝑡∗−𝑒+𝜏 )∥
2

2

+ 2(𝜂max)3𝑒

𝐾

𝑒∑︁
𝜏=0

𝐾∑︁
𝑘=1

E∥∇𝑓𝑘 (w𝑘𝑡∗−𝑒+𝜏 )∥
2

2
≤ 4(𝜂𝑘

max
)3𝐸2𝑀2 . (31)

Since 𝜂min∥∇𝐹 (v𝑡∗ )∥2

2
≤ ∥

√︃
𝜂𝑘 ⊙ ∇𝐹𝑘 (v𝑡∗ )∥2

2
, re-arranging (30)

obtains

𝜂min

2𝐾
E

𝐾∑︁
𝑘=1

∥∇𝐹 (v𝑡∗ )∥2

2
≤ E𝐹 (v𝑡∗ ) − E𝐹 (v𝑡∗+1)

+
2(𝜂𝑘

max
)3𝐸2𝑀2

𝜂min

+
𝜂2

max
𝜎2

𝑙
𝐿

2𝐾𝑟
+
(1 − 𝑟 )𝜂2

max
𝑀2𝐿

2𝑟
. (32)

By taking a sum of both sides of (32) from 𝑡∗ = 1 to 𝑇∗, we have
𝑇∗∑︁
𝑡∗=1

E∥∇𝐹 (v𝑡∗ )∥2

2
≤

2(E𝐹 (v1) − E𝐹 (v𝑇∗ ))
𝜂min

+
4(𝜂𝑘

max
)3𝐸2𝑀2𝑇

𝜂2

min

+
𝜂2

max
𝜎2

𝑙
𝐿𝑇

𝜂min𝐾𝑟
+
(1 − 𝑟 )𝜂2

max
𝑀2𝐿𝑇

𝜂min𝑟
. (33)

Denote 𝐹∗ as the global optima. Since

∑𝑇
𝑡=1
E∥∇𝐹 (w𝑡 )∥2

2
≤ ∑𝑇∗

𝑡∗=1
E∥∇𝐹 (v𝑡∗ )∥2

2
,

by setting 𝜂 =

√︃
𝐾
𝑇
, based on Lemma 4, we have

1

𝑇

𝑇∑︁
𝑡=1

E∥∇𝐹 (w𝑡 )∥2

2
≤ 2(𝐹 (w1) − 𝐹∗))

𝜂min𝑇
+

4(𝜂𝑘
max

)3𝐸2𝑀2

𝜂2

min

+
𝜂2

max
𝜎2

𝑙
𝐿

𝜂min𝐾𝑟
+
(1 − 𝑟 )𝜂2

max
𝑀2𝐿

𝜂min𝑟

≤
2(𝐹 (w1) − 𝐹∗))

√︁
𝜇max (𝑀max − 1) + 1

√
𝐾𝑇

+
4𝜇3

max
(𝜇max (𝑀max − 1) + 1)2𝐸2𝑀2

(𝜇max +𝑀min − 1)3

√
𝑇

+
𝜇2

max
(𝜇max (𝑀max − 1) + 1)𝜎2

𝑙
𝐿

(𝜇max +𝑀min − 1)2𝑟
√
𝐾𝑇

+
(1 − 𝑟 )𝜇2

max
(𝜇max (𝑀max − 1) + 1)𝑀2𝐿

(𝜇max +𝑀min − 1)2𝑟
√
𝑇

, (34)

which completes the proof.

3080


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation and Preliminaries
	4 Neuron Drift
	5 Methodology
	6 Theoretical Analysis
	7 Experiment
	7.1 Setup
	7.2 Result and Analysis
	7.3 Hyper-Parameter Sensitivity Analysis and Ablation Study

	8 Conclusion
	References
	A Verification Experiment
	B Proof of Theorem 3
	B.1 Lemmas
	B.2 Proof of Theorem 3




