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Abstract—Training large language models (LLMs) encounters
challenges in GPU memory consumption due to the high memory
requirements of model states. The widely used Zero Redundancy
Optimizer (ZeRO) addresses this issue through strategic shard-
ing but introduces communication challenges at scale. To tackle
this problem, we propose Lins, a system designed to optimize
ZeRO for scalable LLM training. Lins incorporates three flexi-
ble sharding strategies: Full-Replica, Full-Sharding, and Partial-
Sharding, and allows each component within the model states (Pa-
rameters, Gradients, Optimizer States) to independently choose
a sharding strategy as well as the device mesh. We conduct a
thorough analysis of communication costs, formulating an op-
timization problem to discover the optimal sharding strategy.
Evaluations demonstrate up to 52% Model FLOPs Utilization
(MFU) when training the LLaMA-based model on 1024 GPUs,
resulting in a 1.56 times improvement in training throughput
compared to newly proposed systems like MiCS and ZeRO++.

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated excep-
tional performance in various tasks, with the relationship be-
tween model size and performance often following a power-
law relationship. Despite the prevailing trend of training giant
models like GPT-3 with 175 billion parameters, recent stud-
ies indicate that optimal performance may be achieved with
smaller models trained on larger datasets [1]. Emerging LLMs
like LLaMA [2], featuring 7 billion to 30 billion parameters.

Training LLMs significantly demands on GPU memory, pri-
marily due to the substantial memory consumption of model
states, encompassing parameters (P ), gradients (G), and op-
timizer states (OS). Additional memory is allocated for ac-
tivations and temporary buffers. For instance, when training
LLaMA-7B, a substantial 112GB of memory is required for
model states, surpassing the capacity of an 80GB NVIDIA
A100 GPU. To address this challenge, ZeRO, implemented in
Deepspeed [3] and PyTorch FSDP [4], introduces a sharding
strategy to alleviate redundant memory allocations. ZeRO-
1 distributes optimizer states across GPUs, ZeRO-2 further
shards gradients and ZeRO-3 extends this approach to param-
eters, gradients, and optimizer states. This strategic sharding
optimizes memory usage, enabling efficient training of large
models within GPU constraints. ZeRO could work in cooper-
ation with 3D parallelism [5] and has become widely adopted
in distributed LLMs training.

ZeRO heavily relies on collective communication for effec-
tive model states management, introducing challenges in large-

scale LLM training due to the substantial transmission cost.
In our experiments, training a LLaMA-7B model on 8 GPUs
using ZeRO-1 achieves a model FLOPs utilization (MFU) of
63%, but scaling to 1024 GPUs with the same batch size
results in a significant performance reduction, with the MFU
dropping to 36%. The costly communication of ZeRO can be
attributed to three primary factors: 1) a significant bandwidth
discrepancy between inter-node and intra-node networks, 2)
an increase in collective communication latency as the com-
munication scale grows, and 3) the use of a small micro-batch
size per GPU on numerous GPUs, exacerbating the compute-
to-communication ratio imbalance.

Several approaches have been proposed to reduce the com-
munication overhead of ZeRO with improved memory utiliza-
tion. ZeRO++ [6] achieves this by maintaining a secondary
parameters shard within small subgroups, effectively reduc-
ing communication latency when collecting them. MiCS [7]
shards all model states components within subgroups and
replicates them across subgroups, reducing communication
scale and consequently reducing communication latency, lead-
ing to enhanced training performance. Despite these efforts,
when scaling LLM training to a large extent, ZeRO++ and
MiCS exhibit suboptimal speedup ratios due to the inflexi-
ble model states sharding mechanism results in suboptimal
communication costs. This limitation is evident in the case
of MiCS, where scaling LLaMA-7B training from 8 GPUs to
1024 GPUs leads to a significant decrease in model training
performance, even falling below the efficiency of ZeRO-1.

We propose Lins for reducing the communication over-
head of ZeRO for training LLMs at scale. To achieve this goal,
Lins incorporates three flexible sharding strategies—Full-
Replica, Full-Sharding, and Partial-Sharding—allowing each
component within the model states (P, G, OS) to indepen-
dently choose a sharding strategy. The introduced sharding
factors (s0p × s1p, s

0
g × s1g, s

0
os × s1os) control the number of

GPUs and the device mesh over which the tensors are sharded.
Given this flexibility, we analyze the memory consumption
and communication costs for each sharding dimension. Then,
we formulate an optimization problem aimed at discovering
optimal sharding factors that minimize communication costs
while adhering to the constraint of GPU memory capacity.
Lins implements an execution engine tailored for training
LLMs, incorporating these flexible sharding factors to achieve



TABLE I
NOTATIONS USED IN THIS WORK.

Notation Meaning

D Memory consumption of a GPU.
T Time consumption.
Φ Model parameters count during training.
N Total number of GPU nodes used for training.
R Number of GPUs per computational node.
B Micro-batch size (sequences per micro-batch).
M Number of micro-batches.
L Number of layers of the model.
K Number of modules within a layer of the model.
sdp, stp, spp Size of data, tensor and pipeline parallelism.
sp, sg , sos Sharding factors of parameters, gradients and model states.

optimized communication efficiency during training.
Extensive evaluations show a significant system perfor-

mance of Lins on training LLaMA-based models. On 1024
Nvidia Ampere GPUs, the MFU of Lins is 51%, 52%, and
42% on LLaMA-7B, LLaMA-13B, and LLaMA-30B training.
In comparison, MiCS demonstrates lower MFU values at 35%,
33%, and 29% for the same models, ZeRO++ shows the least
MFU among the three, with MFU rates at merely 4%, 6%, and
5% for the 7B, 13B, and 30B models, respectively. Compared
to MiCS and ZeRO++, Lins improves the training throughput
by a factor of 1.4− 12.7 on 1024 GPUs for training LLaMA-
based models. Lins1 has been used for training InternLM on
thousands of GPUs. Our efforts also encompass an exhaustive
study characterizing a six-month development workload trace
of LLM collected from our GPU datacenter [8].

II. BACKGROUND

We provide a brief introduction to the essential background
of LLM training and the associated challenges to improve
performance. Table I gives notations used in this work.

A. LLM Architecture

LLMs like GPT-3 [9] and LLaMA [2] widely adopt the
Transformer [10] architecture with multiple layers. Each
Transformer layer comprises a list of modules, such as linear,
multi-head-attention (MHA), and norm modules. The input
and output dimensions for each Transformer layer are denoted
as B × S × H , where B represents the micro-batch size, S
indicates the sequence length, and H is the hidden dimension.
The relationship between the model size of LLMs and their
performance is typically governed by a power-law relationship.
While there has been a trend to train giant models like GPT-
3 with 175B parameters, existing studies suggest that opti-
mal model performance may be attained with smaller models
trained on larger datasets [1]. As illustrated in Table II, recently
introduced LLMs like LLaMA and InternLM typically feature
7B to 30B parameters.

1Please visit https://github.com/InternLM/InternEvo to access the system.

TABLE II
POPULAR LLMS AND THEIR PARAMETERS COUNT.

Model # Parameters Model # Parameters

GPT-3 175B BLOOM 175B
LLaMA 7B, 13B, 33B, 65B Mistral 7B
LLaMA2 7B, 13B, 70B InternLM2 7B, 20B
Cerebras-GPT 1.3B, 2.7B, 6.7B, 13B Baichuan2 7B, 13B

B. Distributed LLM Training

Efficiently training LLMs at scale in GPU clusters involves
utilizing 3D parallelism. Data Parallelism (DP) divides input
data into chunks, distributing them across GPUs, where each
GPU independently computes gradients, later synchronized
through AllReduce communication [11]. Tensor Parallelism
(TP) distributes parameters across GPUs along specific dimen-
sions for parallel training. Megatron-LM employs TP to parti-
tion linear layers along the row or column dimension, integrat-
ing collective communication operations for consistent results
[5]. Pipeline Parallelism (PP) evenly divides a model’s Trans-
former layers into multiple stages, distributing them across
GPUs. A scheduler splits an input batch into micro-batches,
alternating between forward and backward computations [12]
[13]. Two consecutive pipeline stages exchange intermediate
data through point-to-point communication.

C. ZeRO

Training LLMs results in significant memory consumption,
largely due to the occupation of GPU memory by model states,
which comprise tensors containing parameters (P), gradients
(G), and optimizer states (OS). The remaining memory is allo-
cated to activations and temporary buffers. In the context of a
model with Φ parameters, employing mixed precision training
alongside the Adam optimizer [14], it necessitates 2Φ, 2Φ, and
12Φ bytes of GPU memory for P, G and OS, respectively. As
an illustrative example, the LLaMA-7B model requires 112GB
of memory for its model states, exceeding the memory capac-
ity of an NVIDIA A100 GPU (80GB). As shown in Figure
1, ZeRO reduces redundant memory usage for model training
by sharding model states [15].

ZeRO-1 splits optimizer states across GPUs (sos>1). In the
training phase, each GPU independently computes gradients
through forward and backward computations, which are then
synchronized across sdp GPUs using AllReduce. Each GPU
updates specific portions of the model parameters. The most
recent model parameters for a GPU are gathered from other
GPUs using the AllGather operation. ZeRO-2 extends this
approach by further sharding gradients across GPUs (sg =
sos > 1). Each GPU retains only the gradients corresponding
to its optimizer states segment after the reduction operation.

ZeRO-3, also implemented in FSDP [4], employs the shard-
ing strategy on model parameters, gradients, and optimizer
states (sp = sg = sos > 1). Before each forward and back-
ward computation, individual GPUs execute the AllGather
operation to assemble the complete set of model parameters

https://github.com/InternLM/InternEvo


Fig. 1. Overview of GPU memory allocation for model states with different
strategies. ZeRO-1 and ZeRO-3 significantly reduce memory consumption for
model states compared to standard data parallelism. MiCS and ZeRO++ are
proposed to mitigate communication overhead, particularly cross-node com-
munication time, in comparison to the ZeRO approach.

and subsequently discard them post-computation. The syn-
chronization of gradients across GPUs is achieved through
Reduce-Scatter. Each GPU updates its corresponding
shard of model parameters using the maintained optimizer
states and gradients at the end of each step.

III. CHALLENGES AND MOTIVATION

ZeRO has gained extensive adoption across various training
frameworks, such as DeepSpeed [3], FSDP [4], and Colos-
salAI [16], owing to its user-friendly interface and scalability
across hundreds of GPUs. Despite leveraging high-bandwidth
RDMA networks, challenges emerge in the form of poor Qual-
ity of Service (QoS) during distributed LLM training on large-
scale GPU clusters. This can be mainly attributed to significant
communication overhead.

A. High Communication Overhead

ZeRO necessitates extensive usage of collective communica-
tion for managing parameters and gradients. The transmission
cost across large-scale clusters presents a challenge, as it can-
not be easily mitigated through computation-communication
overlapping. When training a LLaMA-7B model on 8 GPUs
using ZeRO-1, the model FLOPs utilization (MFU) attains
63% in our test-bed. Scaling the training to 1024 GPUs with
the same batch size results in a notable performance reduction,
with the MFU dropping to 36%. Similarly, scaling LLaMA-
13B training from 8 GPUs to 1024 GPUs with ZeRO-3 leads
to a substantial MFU reduction from 47% to 4%.

Three main factors contribute to the costly communications
for large-scale LLM training with ZeRO. Firstly, there exists
a notable discrepancy between inter-node network bandwidth
and intra-node NVLINK bandwidth. High-performance DGX-
A100 nodes offer 600GB/s intra-node bidirectional bandwidth
per GPU and provide 400GB/s inter-node bidirectional band-
width per node. The bandwidth ratio between intra-node and
inter-node measures at 2 in our test-bed. Secondly, the latency

8 16 32 64 128256512
(a) Model States

0

20

40

M
em

or
y 

(G
B)

zero1
zero2

zero3

8 16 32 64 128256512
(b) Computation

0101

102

Ti
m

e 
(s

)

8 16 32 64 128256512
(c) Communication

0

5

10

La
te

nc
y 

(m
s) all_reduce

all_gather
reduce_scatter

Fig. 2. Micro-benchmark of training LLaMA-7B across a scale of GPUs,
ranging from 8 to 512, while maintaining a global batch size of 4M tokens.
The micro-batch size B is consistently set to 1 in all tests. Panel (a) illustrates
the GPU memory consumption of model states. Panel (b) depicts the time
taken for forward and backward computations. Panel (c) presents the latency
of three communication operations with a fixed message size of 256MB.

1M 64M 256M 1G

(a) AllGather

0

500

1000

1500

Ef
fe

ct
iv

e 
B

W
 (G

b/
s)

1M 64M 256M 1G

(b) ReduceScatter
1M 64M 256M 1G

(c) AllReduce
1M 64M 256M 1G

(d) Broadcast

8x1 GPUs
8x16 GPUs

8x2 GPUs
8x32 GPUs

8x4 GPUs
8x64 GPUs

8x8 GPUs

Fig. 3. Performance evaluation of collective communication operations using
NCCL. The assessment is conducted with varying message sizes (in bytes).
GPU nodes are linked using 4 Mellanox Infiniband HDR NICs (800 Gbps
bandwidth in total). The notation 8×A GPUs indicates that the tests were
conducted on A nodes, with each node housing 8 NVIDIA Ampere GPUs
(A800) connected by NVLINK.

of collective communication operations demonstrates a posi-
tive correlation with communication scale [17] [18] [19] and
illustrated in Figure 2(c). Figure 3 further illustrates a reduc-
tion in the effective bandwidth of communication operations
utilized by ZeRO, scaling from 8 GPUs to 512 GPUs. Thirdly,
the global batch size limitation for convergence efficiency im-
poses the use of a very small batch size per GPU when training
on numerous GPUs. As depicted in 2 (b), the computation
time of the LLaMA-7B model training linearly reduces from
8 GPUs to 512 GPUs while maintaining a consistent 4M
batch size. This reduction adversely affects the compute-to-
communication ratio, leading to a communication bottleneck.

B. Trade-off between Communication and Memory

A trade-off exists between memory utilization and commu-
nication cost in distributed LLM training. Initially, the com-
munication cost can be effectively reduced by diminishing the
communication scale. This involves limiting communications
to a smaller group of GPUs, potentially within the same node,
which mitigates the overall communication cost. In addition,
as depicted in Figure 2 (a), scaling ZeRO to a large scale does
not yield substantial memory savings compared to a smaller
size. Consequently, various approaches have been proposed to
reduce communication overhead with higher memory usage.

ZeRO++ [6] keeps a secondary shard of parameters while
sharding other model states across the cluster (sp=sg=sos=
sdp), as shown in Figure 1. In the forward phase, it collects
parameters across all GPUs and maintains a secondary shard
of parameters within a small subgroup of GPUs, potentially



within the same node. During the backward phase, it collects
parameters from this secondary shard. Additionally, ZeRO++
uses quantization to compress parameters and gradients, effec-
tively reducing inter-node communication size. Note that we
would not enable configurations related to the quantization of
ZeRO++ to ensure consistent model quality.

MiCS [7] and FSDP [4] facilitate the sharding of model
states within a subgroup and replicate them across subgroups
(sp=sg=sos<sdp), as shown in Figure 1. These approaches
employ AllGather to collect parameters within a subgroup
for both forward and backward computation and synchronize
gradients across the cluster using ReduceScatter. Conse-
quently, MiCS and FSDP contribute to improved training per-
formance by effectively reducing the communication scale. It
is crucial to configure an appropriate subgroup size to prevent
Out-Of-Memory (OOM) errors.

C. Motivation

Despite efforts to reduce communication costs, ZeRO++
and MiCS still exhibit poor speedup ratios when scaling LLM
training to a large scale. This is attributed to their inflexible
model states sharding mechanism, requiring sp = sg = sos ≤
sdp in all cases. Such a configuration may not be optimal for
training LLMs with diverse model sizes and hyper-parameters.
For instance, when scaling LLaMA-7B training from 8 GPUs
to 1024 GPUs with MiCS, MFU decreases from 50% to 35%
in our test-bed. In this scenario, MiCS even exhibits lower
performance than ZeRO-1, highlighting the drawbacks of the
inflexible model states sharding mechanism.

In this study, the three components of model states (P, G,
OS) are sharded into independent subgroups and replicated
across these subgroups, following the condition sp≤sdp, sg≤
sdp, sos≤sdp. This flexibility allows us to fine-tune the trade-
off between communication and GPU memory by configuring
sp, sg, sos. By doing so, we may achieve minimal communica-
tion cost for distributed LLM training through individualized
configuration of the communication scale on P, G, and OS,
while respecting GPU memory constraints.

Taking LLaMA-7B as an illustrative example, we adopt the
configuration of sp = sg = 1, sos = 8 for training. In this
setting, each GPU retains a complete copy of parameters and
gradients, while each node stores a full copy of optimiza-
tion states. During training, gradients are synchronized across
clusters using AllReduce, and each GPU obtains the latest
parameters within the same node through AllGather at the
end of each step. In our test-bed, scaling LLaMA-7B training
from 8 GPUs to 1024 GPUs with this configuration results in
an acceptable MFU reduction from 64% to 51%.

IV. MODEL STATES SHARDING AND ANALYSIS

In this section, we assume that there is no tensor parallelism
or pipeline parallelism during the training, which implies that
stp = spp = 1. This simplification allows us to focus on the
impact of the discussed sharding strategies on communication
and memory aspects.

Fig. 4. Optimizing model states sharding through the dependency rule. In
this instance, when sp = sg = 2, there’s no need to set sos = 1 as it would
store redundant optimized states, incurring additional communication costs.

A. Performance Model of Collective Communication

The α − β cost model [20] is widely employed to charac-
terize the performance of collective communication [?]. Tak-
ing the example of a ring-based AllReduce on p GPUs,
where the input size is v, and the physical bandwidth between
two GPUs is w, the input is evenly split into p chunks. In
the first stage, each chunk undergoes p − 1 rounds of reduc-
tion to each GPU, constituting a ReduceScatter operation
with a time complexity of trs = (p − 1)(α + v

w×p ), where
α denotes the latency per transmission. Then, each reduced
chunk at every GPU is broadcast to other GPUs, constituting
an AllGather operation with the same time complexity as
ReduceScatter. The overall time complexity of the ring-
based AllReduce is given by tar = 2(p− 1)(α+ v

w×p ).
However, predicting collective communication time with

high accuracy using the α − β cost model is challenging
in certain scenarios. First, in addition to the ring algorithm,
NCCL introduces new communication algorithms like Tree
[21], Collnet, CollnetDirect, and CollnetChain. Consequently,
a single cost model struggles to formulate the communication
time for all these algorithms. Second, In-Network Aggregation
solutions are widely implemented in production GPU clusters.
These solutions offload AllReduce onto network switches
to accelerate and scale distributed training [22] [23].

In this work, we adopt a straightforward yet effective
profiling-based approach to model the performance of collec-
tive communication. Specifically, we utilize

t(o, v, p0 × p1) = v/w(o, v, p0 × p1)

to evaluate the time consumption of a collective communi-
cation operator (o) with a given data size (v) and a spec-
ified participant GPU device mesh (p0 × p1, where p0 de-
notes the number of GPUs in a node, and p1 is the num-
ber of nodes). Here, w(o, v, p0 × p1) represents the effective
bandwidth obtained through performance profiling on the tar-
get GPU cluster in advance, as illustrated in Figure 3. In
cases where v is not profiled, we employ the interpolation
method to predict the effective bandwidth and communica-
tion time. This work focuses on four key collective commu-



nication operations: AllReduce(AR), AllGather(AG),
ReduceScatter(RS) and Broadcast(BC).

B. Flexible Model States Sharding with Dependency Rule

We adopt three sharding strategies, namely Full-Replica,
Full-Sharding, and Partial-Sharding, and provide the flexibil-
ity for each of the three components within the model states
(P, G, and OS) to independently select a sharding strategy.
To encapsulate these strategies, we introduce sharding factors
sp = s0p × s1p, sg = s0g × s1g and sos = s0os × s1os, representing
the number of GPUs and the device mesh over which the
tensors of P, G, and OS are sharded, respectively. Setting the
factor to 1 implies full replication of the tensor, simplifying
to vanilla data parallelism if all components (P, G, and OS)
choose the Full-Replica strategy. Conversely, setting the factor
equal to the DP size results in complete tensor sharding, with
each GPU holding 1/sdp of the tensor. For instance, in ZeRO-
3, all components (P , G, and OS) choose the Full-Sharding
strategy. Partial-Sharding emerges when the factor falls be-
tween 1 and sdp, indicating tensor sharding across a subgroup
of GPUs and replication across subgroups.

A dependency rule is crucial when flexibly sharding the
model states to avoid unnecessary data movement and storage.
Throughout the training, the framework employs local param-
eters for gradient computation and synchronized gradients for
updating local optimizer states. If a GPU oversees extra gra-
dients or optimizer states unrelated to its local parameters,
launching additional communication becomes necessary. This
incurs significant and avoidable expenses. Figure 4 illustrates
an instance of this scenario, highlighting the impact when
setting sp = sg = 2, sos = 1. Before independently sharding
P , G, and OS, we establish the following constraints:

R ≥ s0dp ≥ s0os ≥ s0g ≥ s0p, N ≥ s1dp ≥ s1os ≥ s1g ≥ s1p,

where s0dp and s1dp is the device mesh of DP ranks, R denotes
the GPU count per node, and N is the node number. As shown
in Figure 4, adhering to the dependency avoids unnecessary
data movement and storage.

C. Communication Time Analysis

In this subsection, we analyze the communication cost asso-
ciated with individually partitioning parameters, gradients, and
optimizer states. Figure 5 provides an overview of the inserted
collective communication operations for each component.

1) Parameters Sharding: When s0p × s1p = sp > 1, the Φ
parameters of a model are split into sp shards, with each GPU
managing one shard. As shown in Figure 5(a), during each
forward and backward pass of every micro-batch in a step,
the training system orchestrates the collection of parameters
shards from other GPUs to reconstruct the complete set of
model weights required for computations. This is achieved
using AllGather on sp GPUs. In each micro-batch of a
step, after the gradients are generated during the backward
phase, the training framework launches ReduceScatter to
aggregate and distribute gradients across sp GPUs. The train-
ing framework performs AllGather and ReduceScatter

at the granularity of a module within a Transformer layer. The
input size for i-th module of a layer is 2Φi (using FP16). The
communication time attributable to parameters sharding for M
micro-batches of a step is given by:

Tp = ML

K∑
i=0

(
2t(AG, 2Φi, s

0
p × s1p) + t(RS, 2Φi, s

0
p × s1p)

)
,

where L denotes the number of layers and K is the number
of modules of a layer.

Taking Figure 4 (a) as an example, when s0p × s1p = 2× 1,
AllGather and ReduceScatter are executed within the
same node, parameters sharding allows for overlapped com-
munication with computation. During the forward or backward
computation of a module, it is feasible to execute AllGather
and ReduceScatter for the subsequent module.

2) Optimizer States Sharding: When s0os × s1os = sos > 1,
a total of sos GPUs collectively possess a complete duplicate
of optimizer states. Following parameters sharding with sp,
each parameters is stored and replicated across sdp/sp GPUs.
In this configuration, optimizer states may exhibit redundancy,
with sdp/sp replicas distributed across the cluster. To reduce
this redundancy, we introduce a solution by allowing sos > sp,
affording flexibility to reduce redundancy. In this scenario, the
optimizer states for Φ/sp parameters are shared by sos/sp
GPUs, forming an optimizer states sharding subgroup. Illus-
trated in Figure 4 (b), GPU-0 and GPU-2 share common pa-
rameters shards but maintain distinct optimizer states shards,
forming an optimizer states sharding subgroup.

After the backward pass of the last micro-batch in a step,
each GPU updates Φ/sos parameters based on the optimizer
states. Before the update phase, each GPU should gather and
aggregate gradients for parameters within its optimizer states.
To optimize this process, we employ AllReduce on gra-
dients across sdp/sp GPUs sharing the same set of parame-
ters (in the amount of Φ/sp), as illustrated in Figure 5 (c).
In Figure 4 (b), we execute AllReduce on GPU-0/2/4/6.
Given that sos > sp, each GPU receives additional gradients
not managed by its optimizer states. To resolve this issue,
we employ a select & drop mechanism, enabling each GPU
to exclusively select the necessary gradients from the output
of the AllReduce. The AllReduce communication time
attributed to optimizer states sharding for a given step is ex-
pressed as:

T 0
os =

2Φ

Usp

(
t(AR, U,

s0dp
s0p

×
s1dp
s1p

)

)
.

Following the completion of parameter updates, it is es-
sential to spread updated parameters among GPUs within the
same optimizer states sharding subgroup. For example, In Fig-
ure 4 (b), GPU-0 should send its updated parameters to GPU-2.
For disseminating updated parameters, the training system uti-
lizes a group of Broadcast operations. Each Broadcast
operation processes an input of size 2Φ/sos on average, and
the system executes sos/sp such operations. The Broadcast



Fig. 5. Analysis of inserted collective communication operations when individually sharding parameters, gradients, and optimizer states.

communication time attributable to optimizer states sharding
during a step is given by:

T 1
os =

sos
sp

(
t(BC,

2Φ

sos
,
s0os
s0p

× s1os
s1p

)

)
.

optimizer states sharding facilitates the potential for over-
lapped communication and computation. During the backward
computation of the i-th layer, we can perform AllReduce
on gradients generated on layer i+ 1. Simultaneously, during
the forward computation of the i-th layer, it is also possible to
broadcast the latest parameters (updated in the previous step)
for the next layer.

3) Gradients Sharding: When s0g × s1g = sg > 1, a total
of sg GPUs collectively hold a complete copy of gradients
generated at each micro-batch of every step. As depicted in
Figure 4, if sg = sp, each GPU retains Φ/sp gradients, ac-
cumulating them at every micro-batch based on the parameter
sharding mechanism. In this work, we introduce the flexibility
to set sg > sp to conserve GPU memory. For simplicity, we
impose the following constraints on the selection of sg:

sg ∈ {sp, sos}.

In the scenario where sg > sp, each GPU initiates an
AllReduce operation on sg/sp GPUs to aggregate and dis-
tribute gradients in every micro-batch, excluding the last one.
Following the aggregation, each GPU retains only the gradi-
ents allocated to it, discarding the surplus. For instance, in
Figure 4 (c), GPU-0 and GPU-2 can employ such a select &
drop mechanism to shard gradients. Assuming AllReduce
is executed with bucket size U , the communication time at-
tributable to gradients sharding of a step can be expressed as:

Tg = (M − 1)
2Φ

Usp

(
t(AR, U,

s0dp
s0g

×
s1dp
s1g

)

)
.

Gradients sharding can also overlap communication with com-
putation. During the backward computation for i-th layer, we
can concurrently execute AllReduce for (i+ 1)-th layer.

4) Summary: Based on the aforementioned analysis, we
can conclude that the single-step communication time of dis-
tributed LLM training with a flexible model states sharding
strategy is the sum of three components:

Tcomm(s0p, s
1
p, s

0
g, s

1
g, s

0
os, s

1
os) = Tp + Tg + T 0

os + T 1
os.

Fig. 6. Overview of Lins architecture and workflow. The Planner identifies
the optimal solution for model states sharding. The Executor executes LLM
training using the selected strategy, and enhances communication performance
through overlap and placement optimization.

D. GPU Memory Consumption Analysis

In the context of mixed-precision training with the Adam
optimizer, the GPU memory consumed by model states during
training can be expressed as the sum of memory allocated for
sharded parameters, gradients, and optimization states:

Dmodelstate(s
0
p, s

1
p, s

0
g, s

1
g, s

0
os, s

1
os) =

2Φ

s0ps
1
p

+
2Φ

s0gs
1
g

+
12Φ

s0oss
1
os

.

Additionally, the total GPU memory consumption, Dtotal, can
be encapsulated by:

Dtotal = Dmodelstate +Dactivation +Dtmp,

where Dactivation is the memory consumed by activations dur-
ing training, and Dtmp denotes the temporary memory used
by communication buffers or other transient variables. Existing
methodologies [5] [15] for analyzing and predicting activation
memory usage are seamlessly integrated into our present study.

V. SYSTEM DESIGN & COMMUNICATION OVERLAP

To reduce the communication overhead of ZeRO for effi-
cient LLM training, we introduce Lins. It leverages an ex-
panded model states sharding space and is adept at identifying
the most communication-efficient factors. We focus on how
Lins systematically optimizes the training performance with
a flexible model states sharding strategy.

A. System Architecture

Figure 6 illustrates the two components of Lins: the Plan-
ner and the Executor. (1) The Planner identifies the optimal
solution for model states sharding. This component integrates
three modules: the Pre-Filter, narrowing the search space based
on specific rules; the Communication-Profiler, offering pre-
dictions for collective communication time; and the Solver,
constructed by a memory and communication cost model to



Fig. 7. Example of sharding model states within the same node. In (a)
assigning s0p = 1, s1p = 2 results in increased cross-node communication
caused by AllGather and ReduceScatter. In (b) with sos = 2, setting
s0os = 1, s1os = 2 creates cross-node Broadcast.

identify the optimal strategy. (2) The Executor is account-
able for executing LLM training using the selected strategy.
Moreover, Lins employs the topology-aware Communication
Placement strategy to reduce network communication across
spine switches, enhancing overall efficiency.

Workflow. 1 Lins begins by having users define LLM
architecture, specifying metadata such as layer number and
sequence length, along with hyper-parameters like micro-batch
size and micro-batch number. Users also provide settings for
the training cluster, including the total number of GPUs and
GPU memory capacity. 2 The Planner eliminates certain
strategies that may incur additional communication costs, re-
sulting in a set of alternative strategies. The Communication-
Profiler, operating offline, provides communication time data,
aiding the Planner in estimating step time for these alterna-
tives. 3 Using an optimization problem solver, the Planner
identifies the optimal strategy. 4 Subsequently, the Executor
runs the training job using the chosen strategy, enhanced by a
topology-aware Communication Placement strategy.
Lins utilizes real-system profiling to ascertain the effec-

tive bandwidth of three used collective communication oper-
ations (i.e., AllGather, ReduceScatter, AllReduce
and Broadcast) across diverse communication sizes and
device meshes. Consequently, Lins estimates the communi-
cation latency induced by model states sharding.

B. Execution Planner

The Execution Planner generates the optimal combination
strategy for the input model with the provided hardware infor-
mation. Lins formulates an optimization problem to search
for the optimal {s0p, s1p, s0g, s1g, s0os, s1os} by minimizing the sum
of communication costs subject to memory constraints. The
integer programming problem is defined as follows:

TABLE III
STRATEGIES USED FOR SHARDING P , G AND OS .

Model Approach1 s0p s1p s0g s1g s0os s1os

LLaMA-7B

Our Work 1 1 1 1 8 1
ZeRO-1 1 1 1 1 R N
ZeRO-3 R N R N R N
MiCS 8 1 8 1 8 1
ZeRO++2 R N R N R N

LLaMA-13B

Our Work 4 1 4 1 8 1
ZeRO-3 R N R N R N
MiCS 8 1 8 1 8 1
ZeRO++2 R N R N R N

LLaMA-30B

Our Work 8 1 8 1 8 4
ZeRO-3 R N R N R N
MiCS 8 2 8 2 8 2
ZeRO++2 R N R N R N

1 We set s0dp = R, s1dp = N in this experiment.
2 ZeRO++ uses s0p = 8, s1p = 1 to shard secondary parameters.

Minimize Tcomm(s0p, s
1
p, s

0
g, s

1
g, s

0
os, s

1
os) (1)

Subject to Dtotal ≤ GPU_Memory_Capacity (2)

1 ≤ s0p ≤ s0g ≤ s0os ≤ s0dp ≤ R (3)

1 ≤ s1p ≤ s1g ≤ s1os ≤ s1dp ≤ N (4)

s0i × k = s0dp, k ∈ Z, i ∈ {p, g, os} (5)

s1j × k = s1dp, k ∈ Z, j ∈ {p, g, os} (6)

s0i = s0dp, if s1i > 1, i ∈ {p, g, os} (7)

This problem minimizes the communication cost of LLM
training with respect to the GPU memory capacity (Equa-
tion 2) and the dependency rules outlined in Section IV-B
(Equation 3, 4). Instead of exhaustively iterating through all
possible solutions for {s0p, s1p, s0g, s1g, s0os, s1os}, we optimize the
efficiency of assignment strategy exploration by incorporating
two filters. Firstly, s0dp should be divisible by s0p,g,os (Equation
5), ensuring the participation of all GPUs within a node in
the training process. Additionally, s1dp should be divisible by
s1p,g,os (Equation 6), allowing for the utilization of all nodes
in the training. Secondly, to minimize cross-node communi-
cation (Equation 7), a priority is placed on employing fewer
nodes when sharding P , G, and OS independently. For in-
stance, in Figure 7(a), selecting (s0p = 1, s1p = 2) necessitates
launching AllGather and ReduceScatter on two nodes
every micro-batch, while opting for (s0p = 2, s1p = 1) results
in reduced cross-node communication costs. In Figure 7(b),
setting (s0os = 1, s1os = 2) induces cross-node AllGather
for spreading updated parameters per step, whereas (s0os =
2, s1os = 1) confines this communication within a node. Based
on these filters, Lins can efficiently employ a brute-force
search method to obtain the optimal solution, effectively nav-
igating the solution space with reduced complexity.

VI. EVALUATION

A. Experimental Setup

1) Implementation: We use an iterative solver to dynam-
ically optimize communication costs based on the provided
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Fig. 8. End-to-end evaluation results (MFU) of model training.

configuration. To uphold comparable computational perfor-
mance, Lins incorporates FlashAttention-v2 [24] and adopts
mixed-precision training with BF16, aligning with baseline
systems. We also introduce a user-friendly interface enabling
users to customize the sharding of P , G, and OS through
predefined configurations or leverage the integrated solver to
automatically determine the optimal sharding strategy. Lins
uses specific hooks of PyTorch 2.1, to facilitate the necessary
NCCL communications for sharding P , G, and OS. Timely
initiation of these operations is important for ensuring both
correctness and efficiency.

2) Testbed: We evaluate the training performance of three
popular LLMs: LLaMA-7B, LLaMA-13B, and LLaMA-30B.
The training is conducted on a dedicated cluster with 128 GPU
servers. Each server is equipped with 8 GPUs and 128 CPU
cores, resulting in a total of 1024 NVIDIA Ampere GPUs
(A800). Each GPU is outfitted with 80GB of memory, in-
terconnected through NVLink within a node, and inter-node
communication is facilitated by 4 Mellanox HDR InfiniBand
without SHARP.

3) Baselines & Evaluation Metrics: We conduct a compre-
hensive benchmark of Lins, comparing it against DeepSpeed-
ZeRO1, DeepSpeed-ZeRO3 [15], DeepSpeed-ZeRO++ [6],
and DeepSpeed-MiCS [7]. Our evaluation focuses on key per-
formance metrics, including Model FLOPs Utilization (MFU)2

[25] and Tokens per GPU per Second (TGS). The sequence
length is held constant at 4096 tokens in all experiments. The
sequence length is fixed at 4096 tokens. Micro-batch size is
configured to 1 sequence with 4096 tokens, while the global-

2We calculate FLOPs and MFU using the formula in Megatron-LM. As de-
tailed in [24], while the FLOPs due to attention should be halved, with causal
mask, only approximately half the number of elements in attention needs
computation. For consistency, we adhere to the literature formula (without
dividing attention FLOPs by 2) as in FlashAttention and many other libraries.
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Fig. 9. End-to-end evaluation results (TGS) of model training.

batch size is set to 4 million tokens. The micro-batch number
is 128 with 8 GPUs (i.e. M = 128); however, training with
1024 GPUs reduces the micro-batch number to 1 (i.e. M = 1).
Since the core objective of Lins is reducing communication
overhead in ZeRO, we adopt s0dp = R, s1dp = N across all
experiments, excluding tensor or pipeline parallelism.

4) System Configurations: Table III presents the configu-
rations utilized in Lins and the baselines. Lins maintains
a uniform set of configurations when scaling training from 8
GPUs to 1024 GPUs. In ZeRO++, the secondary shard num-
ber of the parameters is tuned for optimal performance, with
(s0p = 8, s1p = 1), and quantization is not enabled. Activation
recomputation is applied during the training of LLaMA-30B,
while it is disabled for LLaMA-7B and LLaMA-13B. The
communication-computation overlap configurations are con-
sistently enabled in all baselines. To ensure a fair comparison
with baselines, we disabled the overlap between Broadcast
and forward computation during the end-to-end system eval-
uations, as these baselines do not provide this function.

B. End-to-End System Evaluation

1) Scalability Performance: Figure 8 illustrates the MFU
during the training of models of varying sizes with different
GPU number, while Figure 9 provides corresponding TGS
results. Lins exhibits higher performance across all cases
than the basesline systems. Specifically, it achieves 51%, 52%,
and 42% MFU when training LLaMA-7B, LLaMA-13B, and
LLaMA-30B models with 1024 GPUs, respectively.

When training LLaMA-7B with 8 GPUs, ZeRO-1 exhibits
a very similar MFU to Lins. The observation indicates that
both systems achieve comparable computation efficiency. This
similarity arises from the fact that they share the same commu-
nication cost. Importantly, this result underscores that Lins,
despite introducing innovative communication optimizations,
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Fig. 10. Peak Memory of training LLaMA-7B/13/30B from 8 to 1024 GPUs.

maintains a comparable level of computation efficiency with
baseline systems, given the commonality in utilizing the same
computation engine, such as FlashAttention.

As the GPU number increases, Lins demonstrates a com-
paratively stable decrease in MFU and TGS across LLaMA-
7B, LLaMA-13B and LLaMA-30B models when compared to
other baselines. Expanding from 8 to 1024 GPUs, Lins ex-
periences a modest 15% reduction in MFU, while ZeRO-3 can
exhibit reductions of up to 88%. The decrease in Lins’s MFU
is attributed to the reduced computational load per GPU as the
number of GPUs grows, leading to a higher communication-
to-compute ratio. Notably, the MiCS approach, which employs
a subgroup communication strategy, also exhibits a relatively
gentle downward trend, similar to Lins. However, due to
its limited array of configuration options, MiCS consistently
maintains an MFU below that of Lins. Zero++, while of-
ten outperforming ZeRO-3, faces challenges such as out-of-
memory (OOM) issues. For instance, when training LLaMA-
30B on 32 GPUs, Zero++ encountered an OOM situation,
whereas other methods achieved an MFU of around 40%.

When training LLaMA-7B on 1024 GPUs, Lins achieves
MFU 51%, surpassing other baselines. ZeRO-1 follows closely
with 36% MFU, while MiCS ranks third at 35%. ZeRO-3 and
ZeRO++ lag significantly behind, achieving approximately 4%
MFU. In comparison to ZeRO-1, Lins effectively constrains
the Broadcast operation, which is used to disseminate up-
dated parameters to other GPUs at the end of each step, involv-
ing only 8 GPUs. This strategic approach minimizes commu-
nication overhead. On the other hand, MiCS also reduces the
communication scale of AllGather and ReduceScatter
within a node for parameters fetch and gradients distribution,
yet it generates more traffic than Lins. Consequently, MiCS
exhibits lower performer compared to ZeRO-1 when training
LLaMA-7B on 1024 GPUs. For LLaMA-13B and LLaMA-

30B training on 1024 GPUs, Lins maintains its leading po-
sition with MFU values of 51% and 43%, respectively. MiCS
follows with 33% for LLaMA-13B and 29% for LLaMA-30B.

2) GPU Memory Analysis: Figure 10 illustrates the max-
imum allocated memory during training for various systems.
ZeRO-3 stands out as the most memory-efficient, primarily
due to its aggressive splitting of model states across all GPUs.
The memory consumption of ZeRO-3 becomes stable in large-
scale training. Both ZeRO++ and MiCS demonstrate enhanced
training performance at the expense of higher memory con-
sumption. MiCS, in particular, prioritizes redundant storage to
optimize communication efficiency, resulting in approximately
double the memory usage compared to ZeRO-3 for the same
models on 1024 GPUs. Lins attains higher training efficiency
by dynamically managing the memory allocation of parame-
ters, gradients and optimizer states.

VII. RELATED WORK

Model parallelism. Model parallelism is represented by two
approaches: tensor parallelism and pipeline parallelism. Tensor
parallelism [5] involves partitioning specific layer weights and
introducing additional AllReduce communication. Pipeline
parallelism [12], [13], [26], [27] divides the layers of the model
horizontally among GPUs. Recent innovations have proposed
methods that autonomously discern parallelism approaches by
intricately melding both data and model parallelism for distinct
operators within the model. To illustrate, solutions like Alpa
[28], FlexFlow [29], [30], and TensorOpt [31] incorporate both
data and tensor parallelism.
Large-scale communication optimization. Some works [4],
[17], [18], [32] try to overlap communication with computa-
tion to mitigate communication costs. ZeRO++ and Espresso
[33] utilize quantization and compression techniques to reduce
communication volume, albeit at the expense of precision.
DEAR [34] aggregates multiple small communications using
fixed-size buffers to reduce communication overheads. Hetu
[35] leverages hierarchical all-to-all to minimize inter-node
communication volume under poor inter-node communication.
Similarly, Hybrid AllReduce [36] attempts to decompose a
single collective communication primitive into a combination
of multiple subgroup communications.

VIII. CONCLUSION

We propose Lins to address the communication challenge
of distributed LLM training at scale with ZeRO. The proposed
Lins introduces a novel approach by incorporating flexible
sharding strategies—Full-Replica, Full-Sharding, and Partial-
Sharding—for each component within the model states (Pa-
rameters, Gradients, and Optimizer States). The introduced
sharding factors (s0p × s1p, s

0
g × s1g, s

0
os × s1os) control GPU and

device mesh sharding. Analyzing memory and communication
costs for each dimension, Lins formulates an optimization
problem to find factors optimizing communication costs under
memory constraints. Compared to MiCS and ZeRO++, Lins
improves the training throughput by 1.4 ∼ 12.7 ×.
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[27] B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa, “Pipemare:
Asynchronous pipeline parallel dnn training,” Proceedings of Machine
Learning and Systems, vol. 3, pp. 269–296, 2021.

[28] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang,
Y. Xu, D. Zhuo, E. P. Xing et al., “Alpa: Automating inter-and {Intra-
Operator} parallelism for distributed deep learning,” in 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), 2022, pp. 559–578.

[29] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks.” Proceedings of Machine Learning and Sys-
tems, vol. 1, pp. 1–13, 2019.

[30] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. E. Q. Narvaez, V. Ra-
makrishnaiah, N. Prajapati, P. McCormick, J. Mohd-Yusof et al., “Unity:
Accelerating {DNN} training through joint optimization of algebraic
transformations and parallelization,” in 16th USENIX Symposium on
Operating Systems Design and Implementation, 2022, pp. 267–284.

[31] Z. Cai, X. Yan, K. Ma, Y. Wu, Y. Huang, J. Cheng, T. Su, and F. Yu,
“Tensoropt: Exploring the tradeoffs in distributed dnn training with auto-
parallelism,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 8, pp. 1967–1981, 2021.

[32] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn training,” Pro-
ceedings of Machine Learning and Systems, vol. 1, pp. 132–145, 2019.

[33] Z. Wang, H. Lin, Y. Zhu, and T. E. Ng, “Hi-speed dnn training with
espresso: Unleashing the full potential of gradient compression with
near-optimal usage strategies,” in Proceedings of the Eighteenth Euro-
pean Conference on Computer Systems, 2023, pp. 867–882.

[34] L. Zhang, S. Shi, X. Chu, W. Wang, B. Li, and C. Liu, “Dear: acceler-
ating distributed deep learning with fine-grained all-reduce pipelining,”
in 2023 IEEE 43rd International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2023, pp. 142–153.

[35] X. Nie, P. Zhao, X. Miao, T. Zhao, and B. Cui, “Hetumoe: An effi-
cient trillion-scale mixture-of-expert distributed training system,” arXiv
preprint arXiv:2203.14685, 2022.

[36] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” pp. 3505–3506, 2020.


	Introduction
	Background
	LLM Architecture
	Distributed LLM Training
	ZeRO

	Challenges and Motivation
	High Communication Overhead
	Trade-off between Communication and Memory
	Motivation

	Model States Sharding and Analysis
	Performance Model of Collective Communication
	Flexible Model States Sharding with Dependency Rule
	Communication Time Analysis
	Parameters Sharding
	Optimizer States Sharding
	Gradients Sharding
	Summary

	GPU Memory Consumption Analysis

	System Design & Communication Overlap
	System Architecture
	Execution Planner

	Evaluation
	Experimental Setup
	Implementation
	Testbed
	Baselines & Evaluation Metrics
	System Configurations

	End-to-End System Evaluation
	Scalability Performance
	GPU Memory Analysis


	Related Work
	Conclusion
	References

